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The
RICIS
Concept

mto the cooperative goals of UH-Clear Lake and NASA/JSC

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a
parmershxp with JSC to )onntly define and manage an integrated program of research
in advanced data processmg technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational famlmes are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC and other research organizations. Within UH-Clear
Lake, the mission is being implemented through mterdlscxplmary ‘nvolvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Apphed Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear

Lake establishes relationships with other universities and research orgamzatxons )

having common research inierests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA7JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
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An Investigation of Messy Genetic Algorithms

David E. Goldberg, Kalyanmoy Deb, & Bradley Korb
Department of Engineering Mechanics
The University of Alabama
Tuscaloosa, AL 35487

1 Introduction

Like neural networks and connectionist systems, genetic algorithms and artificial evolutionary
systems got their start during the cybernetics movement of the late 1940s and 1950s, and as
neural nets faded during the 1960s and 1970s only to receive revived attention in the last decade,
so, too, have genetic algorithms receded from view and undergone a recent renaissance. Simply
stated, genetic algorithms are search procedures based on the mechanics of natural selection
and natural genetics. They combine the use of string codings or artificial chromosomes and
populations with the selective and juxtapositional power of reproduction and recombination to
motivate a surprisingly powerful search heuristic in many problems.

Despite their empirical success, there has been a long standing objection to the use of GAs
in arbitrarily difficult problems. To assure convergence to global optima, strings in simple GAs
must be coded so that building blocks—short, highly fit combinations of bits—can combine to
form optima. If the linkage between necessary bit combinations is too weak, in certain types of
problems called deceptive problems (Goldberg, 1983b, 1989c¢), genetic algorithms will converge
to suboptimal points. A number of reordering operators have been suggested to recode strings
on the fly, but these have not yet proved sufficiently powerful in empirical studies, and a recent
theoretical study (Goldberg & Bridges, 1990) has suggested that unary reordering operators
are too slow to be of much use in searching for tight linkage.

On March 23, 1989, a new approach to this problem was launched in the Genetic Algorithms
Laboratory (GALab) at the University of Alabama. On that date, globally optimal results to a
30-bit, order-three-deceptive problem were obtained using a new type of genetic algorithm called
a messy genetic algorithm (Goldberg, Korb, & Deb, 1989). Messy genetic algorithms combine
the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to
effect a solution to the fixed-coding problem of standard simple GAs. Prior to this discovery,
no provably difficult problem had ever been solved to optimality using any GA without prior
knowledge of good string orderings. Thus, these results suggest that a major impediment to
the use of GAs on arbitrarily difficult problems has been removed. In the original work, two
challenges were outlined, challenges that needed to be overcome if messy GAs were to become
a broadly applicable tool. These challenges of nonhomogeneous subproblem scale and size have
been addressed successfully in this investigation.

The purpose of this report is to present the results of our study of mGAs in problems
with nonuniform subfunction scale and size. With these challenges largely answered, messy
genetic algorithms now appear capable of solving many difficult combinatorial optimization to
global optimality in polynomial time or better. In the remainder of this report, the messy GA
approach is summarized, both its operation and its theory of use. Thereafter, experiments on



problems of varying scale, varying building-block size, and combined varying scale and size are
presented. Directions for further study and application are also considered.

2 mGAs: How Are They Different, What Makes Them Tick?

The details of simple genetic algorithms are covered in standard references (De Jong, 1975;
Goldberg, 1989a; Holland, 1975), and messy GAs are described more fully in Goldberg et al.
(1989). Here, fundamental differences between the usual simple GA and the messy approach
are highlighted, and the salient theory of messy GAs is briefly discussed.

2.1 Differences between messy GAs and simple GAs
Messy GAs are different from simple GAs in four ways:

1. mGAs use variable-lén;gth'crzédes that may be over- or underspecified with respect to the
problem being solved;

2. mGAs use simple cut and splice operators in place of fixed-length crossover operators;

3. mGAs divide the evolutionary process into two phases: a primordial phase and a juxta-
positional phase;

4. mGAs use competitive templates to accentuate salient building blocks.

Messy GAs are messy because they use variable-length strings that may be under- or overspeci-
fied with respect to the problem being solved. For example, the three-bit string 111 of a simple
GA might be represented in a messy GA (using LISP-like notation) as ((1 1) (2 1) (3 1)),
where each bit is identified by its name and its value. In mGAs, since variable-length strings
are allowed, interpretations must be found for strings with too few or too many bits. For exam-
ple, the strings ((1 1) (2 1)) and ((1 1) (2 1) (3 1) (1 0)) are both valid mGA strings
in a three-bit problem despite the lack of a third bit in the first and despite the extra first
bit in the second. Note the conflict regarding bit one in the second string; in mGAs, simple
first-come-first-served rules have been used with a leR-to-right scan to arbitrate such conflicts.
While overspecification may be handled with relatively simple rules, underspecification is the
~ knottier problem, and its solution through the use of competitive templates is discussed in a
__moment. - o |

To recombine the variable-length strings of mGAs, fixed-length, one- or two-cut crossover
operators are abandoned in favor of separate cut and splice operators. Cut and splice are as
simple as they sound. Cut severs a string with specified probability p. = (A = 1)p. that grows
as the string length ), and splice joins two strings together with fixed probability p,. Together,
cut and splice have the roughly the same potential disruption as simple crossover and the same
juxtapositional power (Goldberg et al., 1989). The detailed theoretical argument for cut and
splice must also copsider the continued expression of good building blocks. Such consideration
has led to the division of the evolutionary process into two phases.

Simple GAs usually process strings in 2 homogeneous fashion. A population is generated
initially (usually at random), and subsequent generations remain the same size, using repro-
duction, crossover, and other genetic operators to create the next population from the current
population. By contrast, mGAs divide the genetic processing into two distinct phases: a pri-
mordial phase and a juxtapositional phase. In the primordial phase, the population is first
initialized to contain all possible building blocks of a specified length, where the characteristic
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length is chosen to encompass possibly ‘deceptive (misleading) building blocks. Thereafter, the
proportion of good building blocks is enriched through a number of generations of reproduc-
tion without other genetic action. At the same time, the population size is usually reduced by
halving the number of individuals in the population at specified intervals.

With the proportion of good building blocks so enriched, the juxtapositional phase proceeds
with a fixed population size and the invocation of reproduction, cut, splice, and other genetic
operators (no other operators besides selection, cut, and splice were used in the original study,
nor have any others been used herein). Cut and splice act to recombine the enriched proportions
of building blocks. In the 30-bit test function used in the proof-of-principle study (Goldberg
et al., 1989), an mGA repeatedly found globally optimal strings in the first possible generation
that strings were long enough to cover all 30 bits of the problem.

This accomplishment required the noise-free evaluation of salient building blocks, necessi-
tating the invention of the method of competitive templates. The problem of underspecification
was alluded to earlier, but the difficulty is simply stated. If a problem is an £-bit problem,
and a string has fewer than £ bits, how can its objective function value be sampled? The’
proof-of-principle study presented theoretical arguments against the practicality of various av-
eraging schemes (the same argument may be used against the practicality of using simple GAs
with the usual small population size). To overcome the limitations of averaging schemes, the
method of competitive templates uses a locally optimal template to fill in the missing bits of
partial strings. In this way, only salient building blocks will obtain fitness values better than
the template value and thereby be enriched during the primordial phase. In some problems,
under some codings, it may be possible to evaluate partial strings without filling in missing
positions from some competitive template. The pilot study demonstrated the effectiveness of
mGAs in such problems in the partial-string-partial-evaluation experiments.

Together, these four differences, messy strings, messy operators, a two-phase evolutionary
process, and competitive templates, permit mGAs to find good bit combinations and good
string arrangements. Later in this report, the challenges of varying subproblem scale and size

" are considered and overcome using techniques of genic selective crowding (thresholding) and

tie-breaking combined with null bits. Before this, we emphasize salient portions of mGA theory.

2.2 Critical aspects of mGA theory

A number of key points of mGA theory were highlighted in the original study, and several
others were learned over the course of this investigation. Together, four points should be kept
in mind when approaching messy GAs:

1. The study of deceptive problems is critical to the solution of all combinatorial problems
using GAs.
2. The use of competitive templates is necessary to achieve reliable building block evaluation.

3. On a serial machine, mGAs require a number of function evaluations to convergence that
grows only as a polynomial function of the number of decision variables. On a parallel
machine (with a polynomial number of processors), this convergence time reduces to a
function that grows as the logarithm of the number of decision variables.

4. When processing kth-order building blocks, mGAs appear to converge with high proba-
bility to the best solution of a k-truncated Walsh model of the function. For the class
of problems with bounded deception, this leads to the conjecture that mGAs find global
optima with high probability.



Each of these is considered in somewhat more detail.

2.3 Deceptive functions

The use of deceptive functions (Goldberg, 1989b, 1989c) as test functions is critical to un-
derstanding the convergence of any GA or other similarity-based technique. The argument is
straightforward. Deceptive functions are designed explicitly to mislead similarity-based meth-
ods away from global optima and toward the complement of the global optimum. Since these
functions are maximally misleading, if an algorithm can solve this class of problem, it can solve
anything easier. In these first studies, test functions have been constructed from sums of dis-
joint deceptive subfunctions. The restriction to nonoverlapping subfunctions can be partially
lifted, a matter to be discussed as an extension to this work.

2.4 Competitive templates

Competitive templates are critical to the success of mGAs in problems over a fixed set of
Boolean variables, because they permit the accurate evaluation of partial strings. The argument
is straightforward, yet subtle. Assume that order-k building blocks are being processed, and
further assume that a competitive template is available that is locally optimal to the level k —1.
If the function is deterministic and nonstationary, then the only structures that will achieve a
function value better than that of the competitive template alone are those that are building
blocks at the level k. Moreover, among directly competing gene combinations, the best building
block at the level k will get the best increment over the competitive template value. In this
way, mGAs are able to separate the value of a bit combination from the string without prior
function knowledge.

The idea of using locally optimal templates to the previous level suggests the most practical
way of using mGAs. Starting at the level k¥ = 1, an order-1 optimal template can be found,
which in turn is used to find a level k = 2 template, and so on. In this way, mGAs can climb
the ladder of deception one rung at a time, obtaining useful intermediate results at the same
time the solution is being refined. It is interesting to note that this ladder-climbing analogy
carries over to the computational cost of solutions with increasing k, a matter addressed in the
next subsection.

2.5 mGA complexity

In the pilot study, the complexity of messy GAs was not discussed, but subsequent analysis has
shown that they are polynomial on serial machines and logarithmic on parallel machines. The
remainder of this subsection examines this argument in detail.

Analysis of the complexity of the basic mGA is straightforward, if we assume that func-
tion evaluations require much greater processing time than genetic operators, that is t; > tga.
Consider a problem with £ decision variables being optimized to order-k. We recognize imme-
diately that there are m = £/k building blocks to be discovered. Further analysis proceeds by
considering the processing in the separate phases.

During the primordial phase, the mGA starts with a population size n = 2% (ﬁ) and a
function evaluation for each population member during initialization. If the function is deter-
ministic, the initial evaluations are not repeated in subsequent rounds of the primordial phase.
Tournament selection is performed until the population contains a proportion O(1/m) of each
building block. With the usual logistic growth (Goldberg et al. 1989), and letting P = 1/m, it



is a straightforward matter to calculate the number of generations required until the completion
of the primordial phase. Starting with the logistic growth equation,

1

P= o W

and solving for ¢, we obtain the result that
t = log(n — 1) — log(m - 1), (2)

where logarithms here and elsewhere are taken with base two. Since m < n, and the population
size is polynomial in ¢, we conclude that the number of generations in the primordial phase is
O(log ¢). The downsizing of the population sometimes performed during the primordial phase
through cutting the population in half every so often does not affect this computation, because
the growth is logistic whether a double round is made to maintain constant population size
or a single round is made, cutting the population size in half. Overall, the primordial phase.
has complexity of O(€*) on a serial machine and O(1) on a parallel machine (assuming Oo(fF)
processors). In either case, the number of generations of tournament selection required to dope
the population with a sufficient number of the best building blocks is O(log£).

To analyze the juxtapositional phase, we consider the processing in two subphases: the
lengthening subphase, and the crossing subphase. In both subphases, we assume a constant
population size n = O(m) = O({), where enough duplication of building blocks is permitted
to allow for probabilistic variance. During lengthening, the cut probability is small, because
the building blocks are short, and with splice probability near one, the processing tends to
double the string length each generation. The strings are finally long enough to cover the
problem no sooner than a time governed by the equation ¢ = k2'. Solving for ¢, the duration
of the lengthening phase is clearly t = O(log(£/k)) = O(log¢). With a population size of
O(m) = O(£), a serial machine requires a number of function evaluations that is of order
O(£log ¢) during lengthening, and a parallel machine requires processing of O(log?).

At the beginning of the crossing subphase, we assume that the optimal building blocks make
up at least half the population when compared to competing substrings. Assuming continued
logistic growth from this starting condition, the proportion of optimal building blocks grows as
follows:

1
P=iye ®)

We expect a single instance of the k-optimal string when the population contains at least one
expected copy or when

nP™ = 1. (4)
Substituting and solving for the number of generations to convergence, we obtain
t = —log(n}/™ -~ 1). (5)

Letting n = (1+¢)™ and expanding in a power series through quadratic terms using the binomial
theorem, we conclude that e = O(m=1/2). Checking the series with the cubic term included
we see that that term dominates. Continuing this process through the jth term, we conclude
that the limiting case is € = O(m~(i-1)/), which for large j yields ¢ = O(m~'). Thus, the
time to convergence in the crossing phase is ¢ = O(logm) = O(log!). As with the lengthening
subphase, we conclude that the crossing phase is of complexity O(¢log¢) on a serial machine
and O(log¢) in parallel.



Table 1: Summary of Complexity Estimates for an mGA

Phase | Duration | Serial | Parallel
Primordial | O(log?) o(t%) o(1)
Lengthening | O(log¢) | O(llogf) | O(logt)
Crossing | O(log?) | O(llogf) | O(logt)
Overall mGA | O(log¢) o(¢*) | O(logt)

These complexity estimates for each of the phases are summarized in Table 1. On a serial
machine, an mGA requires a number of function evaluations that grows as a polynomial function
of the number of decision variables, O(£¥). It is interesting that the computation is dominated
by the initialization phase. This suggests that if prior information is available regarding the
function that would permit restriction of initialization to a limited number of building blocks
(something less than O(£log¢)), then the overall serial complexity can be reduced to a svelte
O(¢log¢). On a parallel machine with enough processors, initialization can be done in constant
time, as can the generational function evaluations during lengthening and crossing. Thus, on
a large enough parallel machine, the mGA requires computations that grow only as fast as
a logarithmic function of the number of decision variables. These estimates are exciting and
bode well for the future of messy GAs in combinatorial function optimization, especially when
considered in the light of the following conjecture.

26 A con_]ecture mGAs ﬁnd the best solutxon at a given level

That mGAs converge in polynomla.l tlme or better is 1mportant but polynom.la.l Vconvergence
is no virtue if that convergence is incorrect. Empirically, mGAs have always found globally
optimal results in problems of bounded deception, leading us to the following conjecture: -

Conjecture 1 With probability that can be made arditrarily close to one, messy GAs converge
to a solution at least as good as the truncated order-k solution, where the truncated order-k
solution is defined as the optimum of the function defined by setting all Walsh coefficients of
the original function at order k + 1 or above to zero. Moreover, this convergence occurs in a
time that is O(£¥) on a serigl machine and O(log l) on a parallel machine.

The plausibility of this conjecture can be seen quite readily. During the primordial phase, the
best building blocks grow logistically as long as the fitness signal is reliable (and as long as
apples are compared to apples, but we will have more to say about this in a moment when we
discuss the need for thresholding or genic selective crowding). During the lengthening portion
of the juxtapositional phase, the best building blocks will hold their own on average, because
reproduction will continue to increase their number at a rate near doubling, and splicing must
continue to express a building block no less than half of the time (because half the time a
currently exprased building block will be placed at the left end of the string, guaranteemg
continued expression under the first-come-first-served rule). Thereafter during the crossing
portion of the juxtapositional phase, the mGA behaves very much like a simple GA with very
tight building blocks, and continued convergence proceeds a.ccordmg to an mequahty that looks

very much like the standard schema theorem. - - - e

Although the conjecture is reasonable, taking it to theoremhood is nontnvxa.l as it is 1nsufﬁ- ‘

cient to deal with the trajectory of the population in expectation. It is also difficulty to include
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in detail the thresholding and tie-breaking mechanisms to be discussed in the following sections.
Nonetheless, the outline gives more than a hint of the convergence mechanism underlying mGAs
and provides some explanation of the remarkable empirical results observed to date.

3 Nonuniform Scaling and Genic Selective Crowding

It is clear that the test function considered in the pilot study (Goldberg et al., 1989) is quite
difficult. Each of the 10 subfunctions has two local optima, yielding a total of 2!° = 1024 optima,
1023 of them false. On the other hand, the function seems like something of a special case. After
all, 10 copies of the same function were added together, thereby prohibiting any study of what
happens to mGA convergence when either the scale of the subfunction varies or when building
block size is different. In this section, we extend the mGA to permit the solution of problems
with varying subfunction scale using a technique called genic selective crowding or thresholding.
Simply stated, this technique restricts the selection procedure by requiring competitions to
be held between only those individuals that have a better-than-random number of genes in
common. In this way, only apples are compared to apples, and only relevant differences in scale
are used to distinguish between different building blocks.

In the remainder of this section, the qualitative theory of genic selective crowding, a mathe-
matical analysis of two of its important parameters, and some simulation results are presented
to lend support to the use of this technique. A later section will present results using this
method in combination with tie-breaking on functions with mixed scale and building block size.

3.1 Theory of genic selective crowding

In the pilot study, tournament selection was used during the primordial phase by repeatedly
drawing two strings chosen at random (without replacement) from the population and selecting
the better string. In the problem considered in that study, that procedure worked well, because
all subfunctions had identical scaling. In general, however, this procedure is flawed, because
it permits substrings to be compared to one another regardless of whether they are referring
to the same subfunction—regardless of whether they contain any genes in common. The pilot
study recognized this challenge, and suggested a technique called genic selective crowding (or
thresholding) to overcome the difficulty.

The idea of genic selective crowding is straightforward. Tournaments are held as per usual,
except that individuals are forced to compete with those individuals who have at least some
threshold number of genes in common with them. In this way, a pressure is maintained for
like to compete with like, helping to insure that the comparison is a meaningful one. The
mechanism is not unlike that of a number of niching procedures in common use (Deb, 1989;
Deb & Goldberg, 1989; De Jong, 1975; Goldberg and Richardson, 1987; Holland, 1975), except
that allele values are not compared; only the presence of genes in common is checked.

In practice, the actual algorithm works as follows. The first candidate for selection is picked
uniformly at random without replacement from a candidate permutation list that originally
includes all population members in randomly generated order. The second candidate is chosen
by checking the next shuffle number, n,s, candidates in the permutation list one at a time
until one is found that has at least threshold, 8, genes in common with the first candidate. If
a candidate is found, the tournament is held in the normal manner with the better individual
being selected for subsequent genetic processing. If no second candidate is found that meets
the criterion in 7,4 tries, the first candidate is chosen for subsequent processing.



The two parameters of genic selective crowding, the threshold value and shuffle number, play
an important role in properly implementing the thresholding mechanism in messy GAs. It is
important to choose a threshold value that discriminates between the chance occurrence of genes
in common and the likelihood that such commonality is statistically significant. Intuitively, it
seems reasonable to expect that the threshold will have to increase in a messy GA as the
strings get longer, and an analysis of appropriate threshold values will show exactly that. It is
also important to choose a shuffle number such that there is a better than random chance of
choosing at least one individual with the threshold number of bits in common. This parameter
should vary as the string length, but without some further thought, it is unclear exactly how.
Simplified analyses that guide reasonable choices for threshold and shuffie number are presented

in the next subsection.

3.2 Reasonable values for threshold and shuffie number

Simplified analyses of threshold and shuffle number values are presented herein. Under the-

assumption of a randomly generated population of candidates, we require that the threshold
value 6 be set higher than its expected value for a given current string length and that the
shuffle number n,; be set so as to expect at least one occurrence of a second candidate with
8 genes in common with the first candidate. Although the algebra is somewhat involved, the
analysis leaves us with a straightforward procedure that appears to give good results.

Assuming an £-bit problem, it is clear that an mGA may have raw strings of length A less
than or greater than £. After decoding, however, the processed length of a string (the number of
different bits mentioned in the string) must be less than or equal to the length of the problem ¢.
In the remainder of this subsection, the lengths discussed are all processed lengths. In a given
threshold comparison, we consider the possibility of having different processed lengths A; and
A;. Clearly, there are (f\l) . (f\z) combinations of two strings of length A; and A; possible. The
number of combinations of two strings having z common genes between them may be estimated
* by fixing z positions in both the strings and calculating the number of possible combinations
to place the rest (£ — z) genes in the remaining positions of both strings.

The number of combinations of two strings comtaining z common genes is equal to the
number of combinations of choosing z positions from £ possible choices, times the number of
combinations which allocate the (A; — z) remaining positions in the first string from the (£ - z)
remaining choices, times the number of combinations which allocate the (A; ~ z) remaining

positions in the second string from (£ — A,) remaining choices or symbolically

(L= -2
(z) (A] - .‘l‘) (Xg - ?c) :
Therefore, the probability that two strings contain exactly £ common genes is given by the
equation
N(l-3 £~ '
(I) (/\1 - 3) (Ag - ]i)

p(6 A1, 20, 2) = (AN -

There are limits on the number of common genes between two strings, z that will satisfy the
above equation. A little computation shows that the minimum and maximum limits on z are

(6)

and
min( Ay, Az),
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respectively. It can be pr&é(i easily that

EN(E—-z Y= (L Y (M

(I) (/\1 - .’E) - (1\1) (2 ) ' (7)
Substituting equation 7 for the first two terms in the numerator of equation 6 yields the point
probability function for a hypergeometric distribution (Feller, 1968):

A [\ ‘ ,
p(8 M1, Ao, 7) = Ué:)— ‘,) ' (8)

The limits on = mentioned above agree with that in a hypergeometric distribution. There-
fore, the probability that there are a certain number of common genes between two random
strings is hypergeometric. To calculate the threshold value, we compute the expected number
of bits in common by summing over all possible values:

min()\l,Ag)
E[.’L’] = Z 3'P(l,A17'\27z)~ (9)

z=max(0,/\1+A2—l)

After a good bit of manipulation it is found that the expected number of bits in common is
given by the simple equation, E{z] = ikl'\-l In the program, we simply require that a threshold
be used that is at least equal to the nearest integer greater than the calculated E[z] value.
Therefore, the threshold value is taken as

6(¢, 1, A2) = [24p2], , (10)

where the operator [ | denotes a ceiling operator that calculates the nearest integer greater

than the operand.
With a suitable choice of threshold, we turn to calculating a reasonable value for the shuffle

number. We would like to choose a shuffle number that ensures a reasonable probability of
selecting a second candidate that has at least § genes in common with the first candidate.
Calculating the cumulative probability distribution of having at least § genes in common is a
straightforward exercise:
min()1,A3)
Pt 22,8 = 3 PG M e k). (11)
k=8
Setting the expected number of matched copies in the shuffle subpopulation to one and solving
for the shuffle number yields the following:
1
=— 12
n’h(l’ AI?A'Z’H) P(tv A11)‘3"9) ( )
Assuming strings of equal length, A\; = A;, the value of shuffle number is shown as a function
of string length for a 30-bit problem in figure 1. It may be shown using the usual normal
approximation to the hypergeometric distribution that the lowest probabilities of occurrence of
9 matches between randomly chosen strings occurs when the strings are both very short or very
long. Substituting appropriate length and threshold values into the probability distribution
yields the equation 7
n,;.(l, A1 Az 0) ={, 7 (13)

which is used regardless of string length as a reasonable bound on the necessary shuffle number.

9
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Figure 1: The shuffle number versus string length (A; = A; assumed).

3.3 Computational experiments with and without thresholding

The thresholding mechanism described in the previous subsections has been implemented in
mGA code developed for execution on a TI Explorer. Several test functions having subfunctions
with unequal scaling have been used to examine the effect of thresholding on messy GAs. Scaled
versions of the original 30-bit test function are formed by multiplying each of the subfunctions
by a scale factor, thereby producing an unequal selection pressure on each subfunction, making
it more difficult for messy GAs to solve the problem te global optimality without a mechanism
such as selective genic crowding. A performance comparison of messy GAs with and without
thresholding is made by applying them on these functions. In each experiment, five simulations
are performed and the average values are presented. The basic GA parameters used in all
simulation runs are as follows:

number of generations = 30;
probability of cut = 1/60;
probability of splice = 1.0;
probability of mutation = 0.0.

In the following, the test functions and their correspounding simulation results are pfesénted.

3.3.1 Test function 1: nine up, one down
In this test function, the first subfunction is scaled down by a factor of three and the other
subfunctions (two through ten) are scaled up by a factor of seven. This introduces an adverse
selection pressure against the first subfunction. To make matters worse, an extra 1000 copies
of each correct three-bit building block for subfunctions two through ten are added to the
initial population, making a total of 9000 additional strings. This perturbation is performed in
an attempt to overwhelm the poorly scaled building block. Adverse scaling together with an

adverse initial proportion produces a stiff challenge for the mGA to maintain enough copies of
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Figure 2: Maximum number of subfunctions correct in test function 1 with nine subfunctions scaled up
and one scaled down. The average of five runs is shown. Without thresholding, the mGA is unable to
get all ten subfunctions correctly. With thresholding, the mGA correctly finds global optima reliably.

the correct building block for the first subfunction in the population. The other GA parameters
used in the simulations follow:

population size = 41480 reduced to 2592;
string length = 3;
number of generations = 30.

Simulations with and without thresholding are performed, and the average of five simula-
tions is plotted. The thresholding parameters § and shuffle number are adopted according to the
theory presented in the previous subsection, using a threshold of [22] and a shuffle number
of 30. Figure 2 compares the maximuni number of subfunctions correct versus generation for
mGAs with and without thresholding. The first subfanction and the rest of the subfunctions
are plotted separately to show the convergence of the algorithm in each category. The mGA
without thresholding is unable to maintain correct strings corresponding to the first subfunc-
tion throughout the primordial phase, whereas the mGA with thresholding maintains enough
copies of the correct string corresponding to the first subfunction in successive generations to

“solve the problem to global optimality. Figure 3 shows the average number of subfunctions in
__the population versus generation number. It is clear from the figure that the mGA without
thresholding loses the correct building block corresponding to the first subfunction, while the

mGA with thresholding maintains all ten correct building blocks, solving the problem to global
optimality quite easily. - : ,

3.3.2 Test function 2: one up, nine down

In the second test function, we investigate the reverse situation from that of the first. Here,
subfunction one is scaled up by a factor of seven and the remaining nine subfunctions are scaled
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Figure 3: Average number of subfunctions correct in test function 1 with nine subfunctions scaled up
and one scaled down. .

down by a factor three. As an added perturbation, an extra 9000 copies of the best scaled-up
building block (subfunction one) are added to the initial population to try to overwhelm the
poorly scaled building blocks. This test function and initial condition combination provide a
stiff challenge to mGA convergence. All GA parameters are the same as those in the simulations
for test function 1.

Figure 4 shows the maximum number of subfunctions correct at each generation for messy
GAs with and without thresholding. The graph shows that the mGA without thresholding loses
the correct building blocks corresponding to the poorly scaled subfunctions and is only able to
get a single subfunction answered correctly. On the other hand, the mGA with thresholding
is able to maintain and recombine the correct building blocks to all subfunctions and solve
the problem to global optimality. Figure 5 graphs the population average number of correct
building blocks versus generation. The figure once again confirms the role of thresholding in
“successfully classifying the tournaments, thereby allowing only comparable building blocks to
compete with one another.

3.3.3 Test function 3: A linear scaling

Having tested the extremes of behavior, test function 3 considers a linear scaling of the 10,
three-bit subfunctions, starting from a factor of 10 for subfunction one and going up to 100
for subfunction ten with an increment of 10 between each subfunction. No extra copies are
added here. An initial population size equal to 32,480 is used and the population is reduced
to 2030 at the end of the primordial phase. The other GA parameters including thresholding

parameters used in the simulations are the same as those used in the previous test functions.

Messy GAs with and without thresholding are applied to this function and the maximum and
average objective function values are compared in figure 6. The plot shows that thresholding
permits the mGA to maintain and recombine all ten subfunctions in the population. The mGA
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Figure 4: Maximum number of subfunctions correct in test function 2 with one subfunction scaled up and
nine functions scaled down. The mGA without thresholding is only able to get the upscaled subfunction
correct, while the mG A with thresholding maintains and recombines all subfunctions to obtain the global
optimurn.
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Figure 5: Average number of subfunctions correct in test function 2.
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Figure 6: Maximum and average value of the objective function versus generation number on the linearly
scaled test function 3. Both mGAs with and without thresholding are able to find the global optimum,
but the mGA with thresholding finds the optimum more quickly and maintains higher average perfor-

mance across the population.

with thresholding is also able to maintain a higher value of average fitness across the population
than the mGA without thresholding. Also note that the mGA with thresholding finds globally
optimal structures more quickly than the mGA without thresholding; the mGA with thresh-
olding finds its first optimal solution at generation 15, whereas the mGA without thresholding
takes one generation longer. It is actually interesting that the mGA without thresholding can
solve the problem at all. Clearly, the thresholding is useful here, but the pressure applied by
thresholding to maintain separate competitions appears to be more important in situations that
become greatly perturbed from an ideal mix of optimal building blocks. This speaks well for
_the robustness of the procedure. : :

4 Nonuniform Size, Tie Breaking, and Null Bits

In the previous section, a genic selective crowding (thresholding) mechanism successfully ad-
dressed the problem of nonuniform subfunction scale. In this section, we introduce a method
that tackles the problem of nonuniform building block size. In the remainder of the section,
the difficulty is further explained and the method of null bits with tie breaking is introduced.
Thereafter, simulations are performed to demonstrate the efficacy of the method. Problems
with combined nonuniform subfunction scale and size are also attacked using a combination of

null bits, tie breaking, and thresholding.

4.1 Theory of parasitic bits, tie breaking, and null bits - =

It is fairly easy to understand why nonuniform scaling of different subfunctions can cause an

mGA difficulty, if steps are not taken to enforce meaningful competitions; however, it is not
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immediately obvious why nonuniform building block size should cause an mGA any difficulty.
The problem can best be understood if we imagine a discrepancy between function and algorithm
building block size. Suppose an mGA is processing at the level k = 4, but suppose that the
longest building blocks in the function are of length 3. Such a mismatch between algorithmic
and functional building blocks can cause difficulty depending on the bits that fill in the leftover
positions in the shortest substrings. For example, consider the two strings A = ((1 1) (2
1) (3 1) (8 1)) and B = ((1 1) (2 1) (3 1) (8 0)). Referring to the previous 30-bit
problem, both contain optimal building blocks ((1 1) (2 1) (3 1)), but they differ as to
how to fill in the blank. Thinking about the desirable outcome, we would rather see string A
selected and B eliminated, because the fill-in bit (8 0) in string B may prevent the expression
of the optimal bit combination over positions 7-8-9, whereas the fill-in bit (8 1) in string A
agrees with the correct solution and would not inhibit its expression. Yet, if nothing is done,
string B will most often be selected in this deceptive problem because a lone zero will, on
average, have higher fitness than a lone one. In some semse, such bits that ride along on a
chromosome are parasites, because they agree with locally optimal solutions, but do nothing to’
improve the solution further. Later on, these same parasitic bits inhibit expression of correct
bit combinations, and they must be selected against, if we are to have some hope of solving
problems with differing building block size.

The pilot study suggested a mechanism to deal with this knotty problem. Specifically the
inclusion of null or placeholder bits and the use of a tie-breaking procedure were recommended.
The idea is straightforward. A number of null bits are introduced as placeholders to fill in
leftover positions. Then during a tournament, if the fitness of two strings is the same, the
string with the shorter effective length (the one with the greater number of null bits) is selected.
Returning to the example given above, the addition of null bits and tie-breaking fixes the
problem with parasitic bits completely. Consider the modified string A’ = ((11) (21) 3
1) (8 N)) with a null bit as a placeholder for gene eight. When the objective function is
sampled, this string will have the same function valee as B = ((1 1) (2 1) (3 1) (8 0))
(assuming an all-zero competitive template), but string A’ will be preferred, because it has the
shorter effective length.

In general, the number of null bits that must be added to a problem is the difference
between the size of the largest and smallest subfunctions in the problem. Since this information
is not usually known beforehand, a total of ¥ — 1 null bits should be added to the solution,
thereby bounding all possible building block lengths. Another way to perform essentially the
same operation is to initialize the problem with building blocks of all sizes up to k and break
ties on the basis of shorter actual length. Either mechanism is reasonable, and the biological
plausibility of them both has been argued (Goldberg et al., 1989) on the grounds of a preference
for most energy- or mass-efficient representation.

4.2 Monkey wrench runs

In the first size experiments, we don’t actually use a problem with different building block
size. Instead, we return to the original 30-bit problem of the pilot study with its ten, three-bit
deceptive subfunctions. To simulate the effect of a mismatch between algorithm building block
size and problem building block size, 9000 copies of four-bit parasitic strings (we call these
the four-bit monkey wrenches, because they are added intentionally to gum up the works) are
introduced on top of the normal population of 32,480, three-bit strings. The added parasitic
strings contain an optimal substring (1 1 1) plus a spurious fourth bit having a value 0 at the
first position of one of the other nine subfunctions. A simple count shows that there are a total
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Figure 7: Average and maximum number of optimal subfunctions versus generation in the 30-bit problem
with 4-bit monkey wrenches. Without null bits the discovery of the correct solution is considerably
delayed and not entirely stable. With tie-breaking, the mGA finds the globally optimal solution in the
first generation the strings are long enough to cover the problem.

of 9- 10 = 90 such variations and a 100 copies of each variant are included. Five independent
simulations are performed using the following GA parameters:

initial population size = 41,480 down to 2592;
probability of cut = 1/60;

probability of splice = 1.0

probability of mutation = 0.0.

In figure 7 the maximum and average number of optimal subfunctions versus generation is
shown for mGAs with and without tie-breaking. The figure shows that with tie-breaking, an
optimal solution is found as soon as the strings are long enough to encompass the solution,
whereas without tie-breaking the occurrence of an optimal solution is considerably delayed and
unstable. The maximum and average function value of the strings versus generation are shown
in figure 8.

It is interesting that the mGA without tie breaking is able to solve this problem to global
optimality, albeit more slowly than the mGA with those features, even though the monkey
wrenches were present to disturb the solution process. Apparently, cut and splice were sufficient
to excise the bad bits that went along for the ride. In general, however, multiple parasitic
~ bits can tag along, and to simulate this possibility a six-bit monkey wrench is devised that

takes a single optimal building block and adds one zero each from three of the remaining nine
subfunctions. There are g) = 84 such six-bit monkey wrenches per function. One copy of each
is included per subfunction for a total 10 - 84 = 840 substrings appended to the original initial
population of 32,480, three-bit strings yielding a total of 33,320 strings in the initial population.
During the primordial phase, this population is reduced to size 2082 with successive population
halving; the size is held constant throughout the juxtapositional phase as per usual. Otherwise,

16

I N 1/ €. =n

L

|



310 =13 itk Tie Breaking
----1--- Max., w/o Tie Breaking
300 -—a— Avg., with Tie Breaking - H
G 4
g ----#--- Avg., wjo Tie Breaking [.-~" *
S 290f
[~
2
£ 20 /
=
Q
>
-: ‘\
3, 270t 5
3 A
260} ..
\\
B gt liaie eevaos —aemoe -
50 . ; v v y
2505 s 10 15 20 25 30
Generation Number

Figure 8: Average and maximum function value versus generation in the 30-bit problem with four-bit
monkey wrenches.

the messy GA parameters used in these simulations are the same as those used in the previous

experiment.

The population maximum and average function values are graphed in figure 9. The tie-
breaking algorithm allows messy GAs to converge to the optimal solution by maintaining all
low-order building blocks in the population, whereas, the mGA without tie breaking cannot
solve the problem to global optimality; the presence of multiple parasitic bits is simply too

disruptive.

4.3 Differently sized building blocks

The monkey wrench experiments give us confidence in the tie-breaking procedure. Here we
actually construct a problem with building blocks of differing sizes and try the mGA with and

without tie breaking and null bits.
Specifically, a 31-bit function with one three-bit subfunction and seven 4-bit subfunctions is

designed. The three- and four-bit subfunctions use Liepins’s construct (Liepins & Vose, 1989)
for a fully deceptive function of order &:

1-4%, ifd=0;
fld,k)=4 1, fd=k;
1= ‘—‘{l, otherwise.

Here d is the number of ones in the substring. Thus, the function has a global optimum at
1...1alocal optimum at 0...0 and a value that declines as the function’s argument gets more

distant (in the sense of Hamming) from all zeroes.
Because the disparity between building block sizes is so small, only a single null bit, (32 ¥),
is required and used. GA parameters identical to the previous experiments are used, except
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Figure 9: Average and maximum function value of the population versus generation in a problem with
six-bit monkey wrenches.

that the population starts at size 24 (‘22) = 575,360 and is ramped down to 2247 with succes-
sive population halving. Average quantities from three independent simulations are presented.
Figure 10 shows the average proportion of the three-bit optimal strings during the primordial
phase. The mGA without tie breaking and null bits is unable to grow a substantial portion of
the three-bit building blocks. As a result, it is also unable to optimize the function to global
" optimality as is seen in figure 11. By contrast, the mGA with null bits and tie-breaking is able
to solve the problem to global optimality quite quickly. '

4.4 Nonuniform scaling and nonuniform building block size

Thus far, we have treated the problems of nonuniform scale and size as though they always occur
in separate objective functions. Of course, it is likely that a function will have both nonuniformly
scaled and sized subfunctions in it. In this subsection, a test function is constructed with both
difficulties, and mGAs with genic selective crowding alone, tie breaking with null bits alone,
and both features together are tried and compared. '

A 36-bit test function with differently scaled and sized building blocks is constructed. In
the problem, three subfunctions are three bits long, three other subfunctions are four bits long,
and the remaining three subfunctions are five bits long. Liepins’s construct is used here for
all three sizes, and each function is scaled by twice its order squared, 2k2. Thus, the three-bit
function is multiplied by 18, the four-bit function by 32, and the five-bit function by 50.

Two null bits are required for these runs, and this dictates that an initial population re-

quired for this run be quite sizeable: n = 2% (28) = 16,062,144. It should be remembered,

however, that this is a small portion of the search space, which is itself of size 238 = 6.87(1019).
Because of the large size of population required initially, the primordial selection is performed in
subpopulations, and the best strings are brought forward to be considered for further selection.
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Figure 11: Average and maximum number of optimal building blocks versus generation in a problem
with one three-bit subfunction and seven four-bit subfunctions.
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During primordial selection, the population size is successively reduced by half until it reaches
the chosen size for juxtapositional selection, n = 200.

Figure 12 shows the maximum number of subfunctions correct versus generation with thresh-
olding alone, tie breaking alone, and their combination. The results are averaged over three
simulations. The figure shows that thresholding and tie breaking alone cannot solve the problem
to global optimality, whereas their combination is able to maintain all subfunctions in the solu-
tion. Figure 13 shows the population maximum and average fitness in successive generations.
Even though there were many copies of all order-three building blocks in the initial population
due to null-bit duplicates, neither the mGA with tie breaking alone nor the mGA with thresh-
olding alone could maintain enough copies of them at the end of the primordial phase. On
the other hand, when both thresholding and tie breaking methods were applied, thresholding
maintained a uniform selection pressure for different subfunctions, and tie breaking maintained
a selection pressure for the individual building blocks with null bits. The combined action of
these methods permitted the optimal to be found repeatedly.

5 Continuations and Extensions

The initial investigation of mGAs and this study lead to a number of interesting continuations
and extensions:

[
.

analyze and solve overlapping subfunctions;
. prove the fundamental conjecture of mGAs;

implement a parallel version of an mGA;

I

develop other messy code types, including permatation codes, messy floating point codes,
and messy classifiers (rules);

5. extend mGAs to nondeterministic functions;
6. extend mGAs to nonstationary functions.

In the remainder of this section, each of these possibilities is considered in somewhat more
detail. '

In both the pilot study and the current investigation, only nonoverlapping subfunctions were
considered. This is a reasonable assumption to launch a new technique, but the question arises
whether functions can be deceptive at higher levels because of a large number of low-order in-
teractions. For example, many problems can be described with linear and quadratic interaction
between Boolean decision variables, but does this imply that such functions are no more than
order-two deceptive? The answer to this and related questions lies in a careful application of
the Walsh theory described elsewhere (Goldberg, 1989b, 1989¢). Working in reverse, nonde-
ceptive interactions can clearly be added to what otherwise would be nonoverlapping deceptive
subfunctions without affecting the mGA’s ability to solve the augmented problem, and it is
reasonable to expect that further analytical extensions of the class of mGA-solvable problems
are possible. Work in this area is important if we are to understand the full class of problems
that mGAs can solve to global optimality. Regardless of these fine points, as a practical matter,
mGAs may be used in the manner suggested earlier, climbing the ladder of deception one bit
at a time. At some point, it becomes impractical to chmb further, and the best answer so far

is adopted and used.
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Figure 12: Maximum number of optimal subfunctions correct versus generation in a mixed size-scale
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Figure 13: Population maximum and average fitness versus generation for a mixed size-scale problem.
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Proving the fundamental conjecture and obtaining probabilistic bounds on the method are
important, yet nontrivial, extensions of this work. On the one hand, because mGAs process
strings in distinct phases, it may be easier to perform a rigorous analysis of convergence than
it is with a homogeneous simple GA, where everything is going on all at once. On the other
hand, these systems still have many degrees of freedom, and simple calculations in expectation
(calculations like the schema theorem) are not enough to prove the conjecture. Progress here
will depend on a two-pronged attack. Instead of analyzing mGA mechanics directly, simpli-
fied versions should be attacked that retain the essence of the algorithm. More sophisticated
analytical horsepower will also be required, including some fairly sophisticated tools from the
theory of stochastic processes. ]

A parallel version of an mGA should not be difficult to implement, and as has been suggested,
the logarithmic convergence guarantees of a parallel version are very attractive. A parallel
version is easy to implement, because all genetic and selective processing requires only pairwise
interaction. Local tournaments may be held in the neighborhood of a given processor, and
mating and recombination can also be held locally.

The pilot study and this investigation have concentrated on solving problems that map from
a fixed number of Boolean variables into the reals. Of course, the messy philosophy of mGAs can
be extended to many different classes of problems through many different types of codes. The
pilot study suggested a specific floating-point code and ongoing studies are considering it and a
number of variants. Messy permutations were also suggested, and this should be a particularly
fruitful avenue of research in scheduling and resource allocation problems. Another method
of tackling problems over permutations is to map them to binary strings, using the Boolean
satisfiability techniques suggested by De Jong and Spears (1989). This indirect approach may
be fruitful in that it exploits the solid convergence of binary mGAs and the simplicity of a
reasonable penalty-like method.

Messy classifiers were also suggested in the pilot study. The idea is straightforward. There
is little need to carry along don’t care positions explicitly, and only information-carrying posi-
tions need to be mentioned. Moreover, messy classifiers provide a natural means of resolving
the grand debate between the Michigan and Pitt approaches (Goldberg, 1989a; Wilson & Gold-
berg, 1989). Because mGAs can recombine strings of arbitrary length containing an arbitrary
number of rules, there is no need to decide beforehand whether a single rule or a group of
rules is the appropriate unit of reward. Suitable punctuation marks could be used to define
corporate boundaries and rule clusters could merge or spin off subsidiaries within the normal
mGA framework. )

The method of competitive templates essentially removes the “deterministic noise” that
exists in simple GAs because of the simultaneous variation of multiple building blocks. There
are problems, however, where real noise is present, and mGAs can be extended to permit their
solution. There are basically two approaches to follow. In one method, building blocks can
be duplicated enough times in the initial population to ensure that their average evaluation
is sufficiently accurate. In the other technique, individual copies of building blocks may be
evaluated repeatedly, taking a moving average or other estimate of their function value. Either
way, it should be possible to perform calculations of the duplication or repetition required to
reduce the error within reasonable bounds.

It should also be possible to use mGAs on nonstationary problems. Elsewhere (Goldberg,
1989a; Goldberg & Smith, 1987; Holland, 1975; Smith, 1988) techniques of dominance and
diploidy have been suggested and applied in nonstationary problems, and these certainly could
be adapted to mGA practice. There is another possibility, however. We have already seen how
the decoding of an mGA string involves a form of gene expression that is something like an
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intrachromosomal dominance mechanism. Why not introduce explicit dominant and recessive
markers within the mGA together with a dominance shift mechanism, thereby permitting allele
combinations (building blocks) to be alternately remembered and held in abeyance as time
goes on? Doing this in an mGA context has the advantage of being able to recall or store
appropriately sized (and tested) building blocks, whereas it is unclear in a simple GA how to
get beyond independent storage or retrieval of more than single alleles.

Although there are many fruitful avenues for continued research, it should be pointed out
that messy GAs are ready for real-world application today. Their combination of polynomial
or better efficiency and apparent global convergence seems difficult to beat in many blind
combinatorial optimization problems.

6 Conclusions

This report has discussed the salient features and theory of messy genetic algorithms, and it-
has presented the results from an investigation of techniques that permit mGAs to be applied
to problems of varying subfunction scale and size.

Although more basic work is needed, mGAs are ready for real-world applications, because
they work, because they are efficient, and because they are practical. The pilot study and this
investigation have laid the foundation for mGAs, demonstrating that mGAs can converge to
globally optimal results in the worst kind of problem, so-called deceptive functions. Because
mG As can converge in these worst-case problems, it is believed that they will find global optima
in all other problems with bounded deception. Moreover, mGAs are structured to converge in
computational time that grows only as a polynomial function of the number of decision variables
on a serial machine and as a logarithmic function of the number of decision variables on a parallel
machine. Finally, mGAs are a practical tool that can be used to climb a function’s ladder of
deception, providing useful and relatively inexpensive intermediate results along the way.

For these reasons and because of their potential benefit in so many areas, we recommend
the immediate application of mGAs to difficult, combinatorial problems of practical import.
Although several i’s remain to be dotted and a number of t’s are still there for the crossing, we
believe that this technique will become an important weapon in the analyst or designer’s arsenal
to combat nontrivial blind combinatorial problems in a rational, efficient manner. Moreover, the
apparent efficiency and convergence of such an inductive and speculative process gives new hope
that one day a rigorous computational theory of innovation and design can be developed. While
not detracting from the designer’s art, such a theory would provide rigorous underpinnings in
an area where jingoism has too long substituted for careful analysis.
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