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The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space _==
Center and local industry to actively support research in the computing and i _

information sciences. As part of this endeavor, UH-Clear Lake pro_ _i iq]

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two instituti_ to _onduct the research. : _
The mission of RICIS is to conduct, coordinate and disseminate research on :_

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organi_tions: Withi n UH-Clear

Lake, the mission is being implemented through interdisciplinary involvem_ent of

faculty and students from each of the four schoolsi Business, Educatlo_uman
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations, :: _

having common research interests, to provide additional sources of experti_ to =
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and informzti0n

sciences. Working jointly with NASATJgC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC. = _:
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David E. Goldberg, Kalyanmoy Deb, _ Bradley Korb

Department of Engineering Mechanics

The University of Alabama

Tuscaloosa, AL 35487

1 Introduction

Like neural networks and connectionist systems, genetic algorithms and artificial evolutionary

systems got their start during the cybernetics movement of the late 1940s and 1950s, and as

neural nets faded during the 1960s and 1970s only to receive revived attention in the last decade,

so, too, have genetic algorithms receded from view and undergone a recent renaissance. Simply

stated, genetic algorithms are search procedures based on the mechanics of natural selection

and natural genetics. They combine the use of string codings or artificial chromosomes and

populations with the selective and juxtapositional power of reproduction and recombination to

motivate a surprisingly powerful search heuristic in many problems.

Despite their empirical success, there has been a long standing objection to the use of GAs

in arbitrarily difficult problems. To assure convergence to global optima, strings in simple GAs

must be coded so that building blocks--short, highly fit combinations of bits---can combine to

form optima. If the Unkage between necessary bit combinations is too weak, in certain types of

problems called deceptive problems (Goldberg, 1989b, 1989c), genetic algorithms will converge

to suboptimal points. A number of reordering operators have been suggested to recode strings

on the fly, but these have not yet proved sufficiently powerful in empirical studies, and a recent

theoretical study (Goldberg & Bridges, 1990) has suggested that unary reordering operators

are too slow to be of much use in searching for tight linkage.

On March 23, 1989, a new approach to this problem was launched in the Genetic Algorithms

Laboratory (GALab) at the University of Alabama. On that date, globally optimal results to a

30-bit, order-three-deceptive l_roblem were obtained using a new type of genetic algorithm called

a messy genetic algorithm (Goldberg, Korb, & Deb, 1989). Messy genetic algorithms combine

the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to
effect a solution to the fixed-coding problem of standard simple GAs. Prior to this discovery,

n_ provably difficult problem had ever been solved to optimality using any GA without prior

knowledge of good string orderings. Thus, these results suggest that a major impediment to

the use of GAs on arbitrarily difficult problems has been removed. In the original work, two

challenges were_outlined, challenges that needed to be overcome if messy GAS were to become

a broadly applicable tool. These challenges of nonhomogeneous subproblem scale and size have

been addressed successfully in this investigation.

The purpose Of this report is to present the resuI_ts of our study of raGAS in problems

with nonuniform subfunction scale and size. With these challenges largely answered, messy

genetic algorithms now £ppear capable of solving many diiticult combinatorial optimization to

global optimality in polynomial time or better: in the remainder of this report, the messy GA

approach is summarized, both its operation and its theory of use. Thereafter, experiments on



problemsof wrying scale, varying buiRding-block size, and combined varying scale and size are

presented. Directions for further study and application are also considered.

2 mGAs: How Are They Different, What Makes Them Tick?

The details of simple genetic algorithms are covered in standard references (De Jong, 1975;

Goldberg, 1989a; Holland, 1975), and messy GAs are described more fully in Goldberg et al.

(1989). Here, fundamental differences between the usual simple GA and the messy approach

are highlighted, and the salient theory of messy GAs is briefly discussed.

2.1 Differences between messy GAs and simple GAs

Messy GAs are different from simple GAs in four ways:

1. mGAs use variable-length codes that may be over- or underspecified with respect to the

problem being solved;

2. mGAs use simple cut and splice operators in place of fixed-length crossover operators;

3. mGAs divide the evolutionary process into two phases: a primordial phase and a juxta-

positional phase;

4. mGAs use competitive templates to accentuate salient building blocks.

Messy GAs are messy because they use varlable-len_h strings that may be under- or overspeci-

fled with respect to the problem being solved. For example, the three-bit string 111 of a simple

GA might be represented in a messy GA (using LISP-like notation) as ((l 1) (2 1) (3 1)),

where each bit is identified by its name and its value. In raGAs, since variable-length strings

are allowed, interpretations must be found for strings with too few or too many bits. For exam-

ple, the strings ((l l) (2 l)) and ((l 1) (2 1) (3 1) (1 0)) are both valid toGA strings

in a three-bit problem despite the lack of a third bit in the first and despite the extra first

bit in the second. Note the conflict regarding bit one in the second string; in raGAs, simple

first-come-first-served rules have been used with a left-to-right scan to arbitrate such conflicts.

W_e overspecification may be handled with relatively simple rules, underspecification is the

knottier =problem, and its solution through the use of competitive templates:: is discussed in a
moment.

To recombine the vari_bie-lengthstringsOf raGAs, ftxed-iength,one- or two-cut Crossover

operators are abandoned in favor of separate cut and spliceoperators.Cut and spliceare as

simple as they sound. Cut seversa stringwith specifiedprobabilitypc - (A - 1)p_ that grows

as the stringlengthA, and splicejoinstwo stringstogetherwith fixedprobabilitypj. Together,

cut and splicehave the roughly the same potentialdisruptionas simple crossoverand the same

juxtapositionalpower (Goldberg et al.,1989). The de_tailedtheoreticalargument forcut and

splicemust alsoconsiderthe continued expressionofgood buildingblocks.Such consideration

has led to the divisionof the evolutionaryprocessintotwo phases.

Simple GAs usually processstringsin a homogeneous fashion.A population isgenerated

initially(usuallyat random), and subsequent generationsremain the same size,using repro-

duction,crossover,and other geneticoperatorsto createthe next population from the cu_ent

population. By contrast,raGAs dividethe geneticprocessingintotwo distinctphases: a pri-

mordial phase and a juxtapositionalphase. In the primordial phase, the population is first

-initializedto contain allpossiblebuildingblocksofa specifiedlength,where the characteristic
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lengthischosen to encompass possiblydeceptive(misleading)buildingblocks.Thereafter,the

proportion of good building blocksisenrichedthrough a number of generationsof reproduc-

tionwithout other geneticaction.At the same time,the populationsizeisusuallyreduced by

halving the number of individualsin the populationat specifiedintervals.

With the proportionofgood buildingblocksso enriched,thejuxtapositionalphase proceeds

with a fixedpopulation sizeand the invocationof reproduction,cut,splice,and other genetic

operators(no other operatorsbesidesselection,cut,and splicewere used in the originalstudy,

nor have any othersbeen used herein).Cut and spliceactto recombine the enrichedproportions

of building blocks. In the 30-bittestfunctionused in the proof-of-principlestudy (Goldberg

et al.,1989),an toGA repeatedlyfound globallyoptimal stringsin the firstpossiblegeneration

that stringswere long enough to cover all30 bitsof the problem.

This accomplishment requiredthe noise-freeevaluationof sa_lientbuildingblocks,necessi-

tatingthe inventionof the method of competitivetemplates.The problem of underspecification

was alluded to earlier,but the difficultyissimply stated. Ifa problem isan Lbit problem,

and a stringhas fewer than I bits,how can its objectivefunction value be sampled? The"

proof-of-principlestudy presentedtheoreticalarguments againstthe practicalityof variousav-

eragingschemes (the same argument may be used againstthe practicalityof using simpleGAs

with the usual small population size).To overcome the limitationsof averaging schemes, the

method of competitivetemplates uses a locallyoptimal template to fillin the missing bitsof

partialstrings.In thisway, only salientbuildingblockswillobtain fitnessvaluesbetterthan

the template value and thereby be enrichedduring the primordialphase. In some problems,

under some codings, itmay be possibleto evaluatepartialstringswithout fillingin missing

positionsfrom some competitive template. The pilotstudy demonstrated the effectivenessof

raGAs in such problems in the partial-string-partial-evaluationexperiments.

Together, these fourdifferences,messy strings,messy operators,a two-phase evolutionary

process,and competitive templates, permit raGAs to findgood bit combinations and good

stringarrangements. Later in thisreport,the challengesof varyingsubproblem scaleand size

are considered and overcome using techniquesof genic selectivecrowding (thresholding)and

tie-breakingcombined with nullbits.Beforethis,we emphasize salientportionsoftoGA theory.

2.2 Critical aspects of toGA theory

A number of key points of toGA theory were highlighted in the original study, and several

others were learned over the course of this investigation. Together, four points should be kept

in mind when approaching messy GAs:

1. The study of deceptive problems is critical to the solution of all combinatorial problems

using GAs.

2. The use of competitive templates is necessary to achieve reliable building block evaluation.

3. On a serial machine, raGAs require a number of function evaluations to convergence that

grows only as a polynomial function of the number of decision vAriables. On a parallel

machine (with a polynomial number of processors), this convergence time reduces to a

function that grows as the logarithm of the number of decision variables.

4. When processing kth-order building blocks, raGAs appear to converge with high proba-

bility to the best solution of a k-truncated Walsh model of the function. For the class

of problems with bounded deception, this leads to the conjecture that raGAs find global

optima with high probability.

3
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Each of these is considered in somewhat more detail.

2.3 Deceptive functions

The use of deceptive functions (Goldberg, 1989b, 1989c) as test functions is critical to un-

derstanding the convergence of any GA or other similarity-based technique. The argument is

straightforward. Deceptive functions are designed explicitly to mislead similarity-based meth-

ods away from global optima and toward the complement of the global optimum. Since these

functions are ma_mally misleading, if an algorithm can solve this class of problem, it can solve

anything easier. In these first studies, test functions have been constructed from sums of dis-

joint deceptive subfunctions. The restriction to nonoverlapping subfunctions can be partially

lifted, a matter to be discussed as an extension to this work.

2.4 Competitive templates

Competitive templates are critical to the success of raGAs in problems over a fixed set of

Boolean variables, because they permit the accurate evaluation of partial strings. The argument

is straightforward, yet subtle. Assume that order-k building blocks are being processed, and

further assume that a competitive template is available that is locally optimal to the level k - 1.
If the function is deterministic and nonstationary, then the only structures that will achieve a

function value better than that of the competitive template alone are those that are building

blocks at the level k. Moreover, among directly competing gene combinations, the best building

block at the level k will get the best increment over the competitive template value. In this

way, raGAs are able to separate the value of a bit combination from the string without prior

function knowledge.

The idea of using locally optimal templates to the previous level suggests the most practical

way of using raGAs. Starting at the level k = 1, an order-1 optimal template can be found,
which in turn is used to find a level k = 2 template, and so on. In this way, raGAs can climb

the ladder of deception one rung at a time, obtaining useful intermediate results at the same

time the solution is being refined. It is interesting to note that this ladder-climbing analogy

carries over to the computational cost of solutions with increasing k, a matter addressed in the

next subsection.
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2.5 mGA complexity

In the pilot study, the complexity of messy GAs was not discussed, but subsequent analysis has

shown that they are polynomial on serial machines and logarithmic on parallel machines. The

remainder of this subsection examines this argument in detail.

Analysis of the complexity of the basic toGA is straightforward, if we assume that func-

tion evaluations require much greater processing time than genetic operators, that is t! :_ ton.

Consider a problem with t decision variables being optimized to order-k. We recognize imme-

diately that there are m = l/k building blocks to be discovered. Further analysis proceeds by

considering the processing in the separate phases.

During the primordial phase, the toGA starts with a population size n = 2 _ (_) and a

function evaluation for each population member during initialization. If the function is deter-

ministic, the initial evaluations are not repeated in subsequent rounds of the primordial phase.

Tournament selection is performed until the population contains a proportion O(1/m) of each

building block. With the usual logistic growth (Goldberg et al. 1989), and letting P = l/m, it
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isa straightforwardmatter tocalculatethe number ofgenerationsrequireduntilthe completion

of the primordialphase. Startingwith the logisticgrowth equation,

P=
i+ (n- (I)

and solvingfort,we obtain the resultthat

t= log(n- log(.,-i), (2)

where logarithms here and elsewhere are taken with base two. Since m < n, and the population

size is polynomial in t, we conclude that the number of generations in the primordial phase is

O(log _). The downsizing of the population sometimes performed during the primordial phase

through cutting the population in half every so often does not affect this computation, because

the growth is logistic whether a double round is made to maintain constant population size

or a single round is made, cutting the population size in half. Overall, the primordial phase

has complexity of O(l k) on a serial machine and O(1) on a parallel machine (assuming O(t k)

processors). In either case, the number of generations of tournament selection required to dope

the population with a sufficient number of the best budding blocks is O(logt).

To analyze the juxtapositional phase, we consider the processing in two subphases: the

lengthening subphase, and the crossing subphase. In both subphases, we assume a constant

population size n = O(m) = O(l), where enough duplication of building blocks is permitted

to allow for probabilistic variance. During lengthening, the cut probability is small, because

the building blocks are short, and with splice probability near one, the processing tends to

double the string length each generation. The strings are finally long enough to cover the

problem no sooner than a time governed by the equation 1 = k2 t. Solving for t, the duration

of the lengthening phase is clearly t = O(log(t/k)) = O(logt). With a population size of

O(m) = O(l), a serial machine requires a number of function evaluations that is of order

O(tlog t) during lengthening, and a parallel machine requires processing of O(logl).

At the beginning of the crossing subphase, we assume that the optimal building blocks make

up at least half the population when compared to competing substrings. Assuming continued

logistic growth from this starting condition, the proportion of optimal building blocks grows as
follows:

1

P = 1 + (3)

We expect a single instance of the k-optimal string when the population contains at least one

expected copy or when

nP "_= 1. (4)

Substitutingand solvingforthe number ofgenerationsto convergence,we obtain

t - -log(n 1/'_ - 1). (5)

Letting n = (1 +e) 'n and expanding in a power series through quadratic terms using the binomial

theorem, we conclude that _. = 0(m-1/2). Checking the series with the cubic term included

we see that that term dominates. Continuing this process through the jth term, we conclude

that the limiting case is _ -- O(m-(J-1)/J), which for large j yields • - O(m-l). Thus, the

time to convergence in the crossing phase is t = O0ogrn ) = O(logt). As with the lengthening

subphase, we conclude that the crossing phase is of complexity O(llogl) on a serial machine

and O(logl) in parallel.

5
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TableI:Summary ofComplexityEstimatesforan toGA

Phase Duration

Primordial O(log l)

Lengthening O(log t)

Crossing O(log f)
.,=

Overall toGA O(log l)

Serial Parallel

o(e') o(i)
O(/logl) O(logl)

O(tlogl)O(logl)
o(e), O(logt)

I

D

These comple:dty estimates for each of the phases are summarized in Table 1. On a serial

machine, an toGA requires a number of function evaluations that grows as a polynomial function

of the number of decision variables, O(l_). It is interesting that the computation is dominated

by the initialization phase. This suggests that if prior information is available regarding the

function that would permit restriction of initialization to a limited number of building blocks

(something less than O(glogg)), then the overall serial complexity can be reduced to a svelte

O(g log t). On a parallel machine with enough processors, initialization can be done in constant

time, as can the generational function evaluations during lengthening and crossing. Thus, on

a large enough parallel machine, the toGA requires computations that grow only as fast as

a logarithmic function of the number of decision variables. These estimates are exciting and

bode well for the future of messy GAs in combinatorial function optimization, especially when

considered in the light of the following conjecture.

2.6 A conjecture: mGAs find the best solution at a given level

That raGAs converge in polynomial time or betterisimportant, but polynomial convergence

is no virtueifthat convergence isincorrect.Empirically,mGAs have always found globally

optimal results in proble_ of bounded deception, leading us to the following conjecture-

Conjecture 1 with probability that can be made arbitrarily close to one, messy GAs converge

to a solution at least as good as the truncated order-J: solution, where the truncated order-k

solution is defined as the optimum of the function defined by setting all Walsh coefficients of

the original function at order k + 1 or above to zero. Mo_over, this convergence occurs in a

time that is O(l l') on a serial machine and O(log/) on a parallel machine.

The plausibilityof thisconjecturecan be seen quitereadily.During the primordial phase,the

best building blocks grow logisticallyas long as the fitnesssignalis reliable(and as long as

applesare compared to apples,but we willhave more to say about thisin a moment when we

discussthe need for thresholdingor geuicselectivecrowding).During the lengtheningportion

of the juxtapo6itionalphase,the best buildingblockswillhold theirown on average,because

reproductionwillcontinue to increasetheirnumber at a rate near doubling,and splicingmust

continue to express a buildingblock no lessthan halfof the time (because halfthe time a

currentlyexpressed building block willbe placed at the leftend of the string,guaranteeing

continued expression under the first-come-first-servedrule). Thereafter during the crossing

portionof the juxtapositionalphase,the toGA behaves very much likea simple GA with very

tightbuildin_gbl_ocks_,_dcontinuedconveLgenceproceedsaccording to an inequalitythatlooks

very much likethe standard schema the0rem. _ - _:___ .............

Although the conjectureisreasonable,takingitto theoremhood isnontrivialas itisinsuffi-

cientto dealwith the trajectoryofthe populationinexpectation.Itisalsodifficultyto include
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in detail the thresholding and tie-breaking mechanisms to be discussed in the following sections.

Nonetheless, the outline gives more than a hint of the convergence mechanism underlying raGAs

and provides some explanation of the remarkable empirical results observed to date.

3 Nonuniform Scaling and Genie Selective Crowding

It is clear that the test function considered ]n the pJJot study (Goldberg et al., 1989) is quite

difficult. Each of the 10 subfunctions has two loca!optima, yielding a total of 21° = 1024 optima,

1023 of them false. On the other hand, the function seems like something of a special case. After

all, 10 copies of the same function were added together, thereby prohibiting any study of what

happens to mGA convergence when either the scale of the subfunction varies or when building
block size is different. In this section, we extend the toGA to permit the solution of problems

with varying subfunction scale using a technique called genie selective crowding or thresholding.

Simply stated, this technique restricts the selection procedure by requiring competitions to

be held between only those individuals that have a better-than-random number of genes in

common. In this way, only apples are compared to apples, and only relevant differences in scale

are used to d_stinguish between different b_lding blocks.

In the remainder of this section, the qualitative theory of genie selective crowding, a mathe-

matical analysis of two of its important parameters, and some simulation results are presented

to lend support to the use of this technique. A later section will present results using this

method in combination with tie-breaking on functions with mixed scale and building block size.

3.1 Theory of genie selective crowding

In the pilot study, tournament selection was used during the primordial phase by repeatedly

drawing two strings chosen at random (without replacement) from the population and selecting

the better string. In the problem considered in that study, that procedure worked well, because

all subfunctions had identical scaling. In general, however, this procedure is flawed, because

it permits substrings to be compared to one another regardless of whether they are referring

to the same subfunctionmregardless of whether they contain any genes in common. The pilot

study recognized this challenge, and suggested a technique called genie selective crowding (or

thresholding) to overcome the difficulty.

The idea of genie selective crowding is straightforward. Tournaments are held as per usual,

except that individuals are forced to compete with those individuals who have at least some

threshold number of genes in common with them. In this way, a pressure is maintained for

like to compete with like, helping to insure that the comparison is a meaningful one. The

mechanism is not unlike that of a number of niching procedures in common use (Deb, 1989;

Deb & Goldberg, 1989; De Jong, 1975; Goldberg and Richardson, 1987; Holland, 1975), except

that allele values are not compared; only the presence of genes in common is checked.

In practice, the actual algorithm works as follows. The first candidate for selection is picked

uniformly at random without replacement from a candidate permutation list that originally

includes all population members in randomly generated order. The second candidate is chosen

by checking the next shuffle number, n,h, candidates in the permutation list one at a time

until one is found that has at least threshold, 0, genes in common with the first candidate. If

a candidate is found, the tournament is held in the normal manner with the better individual

being selected for subsequent genetic processing. If no second candidate is found that meets

the criterion in nmh tries, the first candidate is chosen for subsequent processing.

7



The two parameters of genic selective crowding, the threshold value and shuffle number, play

an important role in properly implementing the thr_hold[ng mechanism in messy GAs. It is

important to choose a threshold value that discriminates between the chance occurrence of genes
in common and the likelihood that such commonality is statistically significant. Intuitively, it

seems reasonable to expect that the threshold will have to increase in a messy GA as the

strings get longer, and an analysis of appropriate threshold values will show exactly that. It is

also important to choose a shuffe number such that t_h_ere is a better than random chance of

choosing at least one individual with the threshold number of bits in common. This parameter

should vary as the string length, but without some further thought, it is unclear exactly how.

Simplified analyses that guide reasonable choices for threshold and shuffe number are presented

in the next subsection.

3.2 Reasonable values for threshold and shuffle number

Simplifiedanalyses of threshold and shufflenumber valuesare presented herein. Under the

assumption of a randomly generated population of candidates,we requirethat the threshold

value 0 be set higher than itsexpected value for a given current stringlength and that the

shufflenumber n,h be set so as to expect at leastone occurrence of a second candidate with

9 genes in common with the firstcandidate. Although the algebra issomewhat involved,the

analysisleavesus with a straightforwardprocedure thatappears to givegood results.

Assuming an i-bitproblem, itisclearthat an toGA may have raw stringsoflength A less

than or greaterthan I. After decoding,however, the processedlengthofa string(thenumber of

differentbitsmentioned in the string)must be lessthan or equal to the lengthofthe problem L

In the remainder of thissubsection,the lengthsdiscussedare allprocessedlengths.In a given

thresholdcomparison, we considerthe possibilityofhaving differentprocessedlengths AI and

A2. Clearly thereare (4 _" (4 _ combinations oftwostringsoflength AI and A2 possible.The

numoer oI combinations of two strings having z common genes between them may be estimated

by ftxJng z positions in both the strings and calculating the number of possible combinations

to place the rest (l - z) genes in the remaining positions of both strings.

The number of combinations of two strings containing z common genes is equal to the

number of combinations of choosing z positions from l possible choices, times the number of

combinations which allocate the (Ax - z) remaining positions in the first string from the (t - z)

remaining choices, times the number of combinations which allocate the (A2 - z) remaining

positions in the second string from (t - Aa) remaining choices or symbolically

Therefore, the probabilitythat two stringscontain exactlyz common genes k given by the

equation

There are limitson the number of common genes between two strings,z that willsatisfythe

above equation. A littlecomputation shows that the minimum and maximum limitson z axe

m x(0, + t)

and

rain(A1,
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respectively. It can be proved easily that

Substituting equation 7 for the first two terms in the numerator of equation 6 yields the point

probability function for a hypergeometric distribution (Feller, 1968):

The limits on x mentioned above agree with that in a hypergeometric distribution. There-

fore, the probability that there are a certain number of common genes between two random

strings is hypergeometric. To calculate the threshold value, we compute the expected number

of bits in common by summing over all possible values:

m]n('_l ,)_2)

= (9)
==m_(O,Al+_-t)

After a good bit of manipulation it is found that the expected number of bits in common is

given by the simple equation, E[z] = _r x. In the program, we simply require that a threshold

be used that is at least equal to the nearest integer greater than the calculated E[z] value.

Therefore, the threshold value is taken as

e(g,_,,_2)= [_1, (1o)

where the operator [ ] denotes a ceiling operator that calculates the nearest integer greater

than the operand.
With a statable choice of threshold, we turn to calculating a reasonable value for the shuffle

number. We would like to choose a shuffle number that ensures a reasonable probability of

selecting a second candidate that has at least 0 genes in common with the first candidate.

Calculating the cumulative probability distribution of having at least 0 genes in common is a

straightforward exercise:

:in(X_,X2)

•P(t,)q,)_2,0)= _ I_t,)q,)_2, k). (11)
k=O

Setting the expected number of matched copies in the shuffle subpopulation to one and solving

for the shuffle number yields the following:

I (12)
n,h(t, _t, _2, 0) = P(t, _I, :_, 0)"

Assuming strings of equal length, '_I -" _2, the value of shtti_e number is shown as a function

of string length for a 3D-bit problem in figure I. It may be shown using the usual normal

approximation to the hypergeometric distribution that the lowest probabilities of occurrence of

0 matches between randomly chosen strings occurs when the strings are both very short or very

long. Substituting appropriate length and threshold values into the probability distribution

yields the equation
n°h(t, _1, _2, 0) = t , (13)

which is used regardless of string length as a reasonable bound on the necessary shuffle number.
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Figure 1: The shu_e number versus striBg length (,_z = A2 assumed).

3.3 Computational experiments with and without thresholding

The thresholding mechanism described in the previo_ subsections has been implemented in

mGA code developed for execution on a TI Explorer. Several test functions having subfunctions

with unequal scaling have been used to examine the elect of thresholding on messy GAs. Scaled

versions of the original 30-bit test function are formed by multiplying each of the subfunctions

by a scale factor, thereby producing an unequal selection pressure on each subfunction, making

it more difficult for messy GAs to solve the problem to global optimality without a mechanism

such as selective genic crowding. A performance ca,,,parison of messy GAs with and without

thresholding is made by applying them on these fund_m. In each experiment, five simulations

are performed and the average values are presented. The basic GA parameters used in all
simulation runs are as follows:

number of generations = 30;

probability of cut = 1/60;

probability of splice = 1.0;

probability of mutation = 0.0.

In the following, the test functions and their corresl_mding simulation results are presented.

3.3.1 Test function I: nine up, one down

In this test function, the first subfunction is scaled down by a factor of three and the other

subfunctions (two through ten) are scaled up by a fit_or of seven. This introduces an adverse

selection pressure against the first subfunction. To make matters worse, an extra 1000 copies

of each correct three-bit building block for subfunetions two through ten are added to the

initial population, making a total of 9000 additional strings. This perturbation is perfomed in

an attempt to overwhelm the poorly scaledbuildingblock. Adverse scalingt_etllerwit-t_an

adverse initialproportion produces a stiffchallengefezthe toGA to maintain enough copiesof
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Figure 2: Maximum number of subfunctions correct in test function 1 with nine subfunctions scaled up
and one scaled down. The average of five runs is shown. Without thresholding, the mGA is unable to
get all ten subfunctions correctly. With thresholding, the toGA correctly finds global optima reliably.

the correct building block for the first subfunction in the population. The other GA parameters

used in the simulations follow:

population size

string length

number of generations

= 41480 reduced to 2592;

= 3;

= 30.

Simulations with and without thresholding are performed, and the average of five simula-

tions is plotted. The thresholding parameters 0 and shu/tie number are adopted according to the

theory presented in the previous subsection, using a threshold of [_] and a shuffle number

of 30. Figure 2 compares the maximum number of subfunctions correct versus generation for

raGAs with and without thresholding. The first subfunction and the rest of the subfunctions

are plotted separately to show the convergence of the algorithm in each category. The toGA

without thresholding is unable to maintain correct strings corresponding to the first subfunc-

tion throughout the primordial phase, whereas the toGA with thresholding maintains enough

copies of the correct string corresponding to the first subfunction in successive generations to

=solvethe problem to global optimality. Figure 3 shows the average number of subfunctions in

• the population versus generation number. It is clear from the figure that the toGA without

thresholding loses the correct building block corresponding :to the first subfunction, while the

toGA with thresholding maintains all ten correct building blocks, solving the problem to global

optimality quite easily.

3.3.2 Test function 2: one up, nine down

In the second test function, we investigate the reverse situation from that of the first. Here,

subfunction one is scaled up by &factor of seven and the remaining nine subfunctions are scaled

II
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Figure 3: Average number of subfunctions correct in test function 1 with nine subfunctions scaled up
and one scaled down.

down by a factor three. As an added perturbation, an extra 9000 copies of the best scaled-up

building block (subfunction one) are added to the initial population............ to try to overwhelm the

poorly Scaled building blocks. This test function and initial condition combination provide a

stiff challenge to toGA convergence. All GA parameters are the same as those in the simulations

for test function 1.

Figure 4 shows the maximum number of subfunctions correct at each generation for messy

GAs with and without thresholding. The graph shows that the toGA without thresholding loses

the correct building blocks corresponding to the poorly scaled subfunctions and is only able to

get a single subfunction answered correctly. On the other hand, the toGA with thresholding
is able to maintain and recombine the correct building blocks to all subfunctions and solve

the problem to global optimality. Figure 5 graphs the population average number of correct

building blocks versus generation. The figure once again confirms the role of thresholding in

successfully classifying the tournaments,thereby allowing only comparable building blocks to

compete with one another.

3.3.3 Test function 3: A linear scaling

Having tested the extremes of behavior, test function 3 considers a linear scaling of the 10,

three-bit subftmctions, starting from a factor of 10 for subfuaction one and going up to 100

for subfunction ten with an ]_cre_m_ent of 10 between each subftmction. No extra_opi_ are

added here. An initial population size equal to32,_ is us_l and the population is reduced

to 2030 at the end of the primordial phase. The other GA parameters including thresholding

parameters used in the simulations are the same as those used in the previous test functions.
Messy GAs with and without thresholding are appl_ to this function and_:t_e_mum-and

average objective function values are compared in f_e 6. The plot shows that thresholding

permits the toGA to maintain and recombine all ten subfunctions in the population. The toGA
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with thresholding is also able to maintain a higher value of average fitness across the population

than the toGA without thresholding. Also note that the toGA with thresholding finds globally

optimal structures more quickly tha a the toGA without thresholding; the toGA with thresh-

olding finds its first optimal solution at generation 15, whereas the mC_A without threshoiding

takes one generation longer. It is actually interesting that the toGA without thresholding can

solve the problem at all. Clearly, the thresholding is useful here, but the pressure applied by

thresholding to maintain separate competitions appears to be more important in situations that

become greatly perturbed from an ideal mix of optimal building blocks. This speaks well for

the robustness of the procedure

4 Nonuniform Size, Tie Breaking, and Null Bits

In the previous section, a genic selective crowding (thresholding) mechanism successfully ad-

dressed the probhm of nonuniform subfunction scale. In this section, we introduce a method

that tackles the problem of nonuniform building block size. In the remainder of the section,

the difficulty is further explained and the method of null bits with tie breaking is introduced.

Thereafter, simulations are performed to demonstrate the efficacy of the method. Problems
with combined nonuniform subfunCtion scale and size are also attacked using a combination of

null bits, tie br_ng, and thr_holdiagf:

4.1 Theory of parasitic bits, tie breaking, and null bits _

It is fairly easy to understand why nonuniform scaling of different subfunctions can cause an

toGA difficulty, if steps are not taken to enforce meaningful competitions; however, it is not
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immediately obvious why nonuniform building block size should cause an mGA any difficulty.

The problem can best be understood if we imagine a discrepancy between function and algorithm

building block size. Suppose an mCA is processing at the level k = 4, but suppose that the

longest building blocks in the function are of length 3. Such a mismatch between algorithmic

and functional building blocks can cause difficulty depending on the bits that fill in the leftover

positions in the shortest substrings. For example, consider the two strings A - ((i 1) (2

l) (3 1) (8 1)) and B " ((1 1) (2 1) (3 1) (8 0)). Referring to the previous 30-bit

problem, both contain optimal building blocks ((1 1) (2 1) (3 1)), but they differ as to

how to fill in the blank. Thinking about the desirable outcome, we would rather see string A

selected and B eliminated, because the fill-in bit (8 O) in string B may prevent the expression

of the optimal bit combination over positions 7-8-9, whereas the fill-in bit (8 i) in string A

agrees with the correct solution and would not inhibit its expression. Yet, if nothing is done,

string B will most often be selected in this deceptive problem because a lone zero will, on

average, have higher fitness than a 10he one. In some sense, such bits that ride along on a

chromosome are parasites, because they agree with locally optimal solutions, but do nothing to

improve the solution further. Later on, these same parasitic bits inhibit expression of correct

bit combinations, and they must be selected against, if we are to have some hope of solving

problems with differing building block size.

The pilot study suggested a mechanism to deal with this knotty problem. Specifically the

inclusion of null or placeholder bits and the use of a tie-breaking procedure were recommended.

The idea is straightforward. A number of null bits are introduced as placeholders to fill in

leftover positions. Then during a tournament, if the fitness of two strings is the same, the

string with the shorter effective length (the one with the greater number of null bits) is selected.

Returning to the example given above, the addition of null bits and tie-breaking fixes the

problem with parasitic bits completely. Consider the modified string/t' - ((1 1) (2 1) (3
1) (8 l_)) with a null bit as a placeholder for gene eight. When the objective function is

sampled, this string will have the same function value as B - ((1 1) (2 1) (3 1) (8 0))

(assuming an all-zero competitive template), but string A' will be preferred, because it has the

shorter effective length.

In general, the number of null bits that must be added to a problem is the difference

between the size of the largest and smallest subfunctions in the problem. Since this information

is not usually known beforehand, a total of k - 1 mall bits should be added to the solution,

thereby bounding all possible building block lengths. Another way to perform essentially the

same operation is to initialize the problem with bui]ding blocks of all sizes up to k and break

ties on the basis of shorter actual length. Either mechanism is reasonable, and the biological

plausibility of them both has been argued (Goldberg et al., 1989) on the grounds of a preference

for most energy- or mass-efficient representation.

4.2 Monkey wrench runs

In the first size experiments, we don't actually use a problem with different building block

size. Instead, we return to the original 30-bit problem of the pilot study with its ten, three-bit

deceptive subfunctions. To simulate the effect of a mismatch between algorithm building block

size and problem building block size, 9000 copies of four-bit parasitic strings (we call these

the four-bit monkey wrenches, because they axe added intentionally to gum up the works) are

introduced on top of the normal population of 32,480, three-bit strings. The added parasitic

strings contain an optimal substring (1-i 1)- pltm a spurious fourth bit having a value 0 at the

first position of one of the other nine subfunctions. A simple count shows that there are a total
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Figure 7: Average and maximum number ofoptimal suhfunctionsversusgeneration inthe 30-bitproblem

with 4-bit monkey wrenches. Without null bits the discoveryof the correct solution isconsiderably

delayed and not entirelystable.With tie-breaking,the toGA findsthe globallyoptimal solutionin the

firstgeneration the stringsare long enough to cover the problem.

m

lIB

of 9 • 10 = 90 such variations and a 100 copies of each variant are included. Five independent

simulations are performed using the following GA pa_meters:

initialpopulation size

probabilityofcut

probabilityofsplice

probabilityofmutation

= 41,480down to 2592;

- 1/60;,
= 1.0;
= 0.0.

In figure7 the m_um and average number of optimal subfunctions versus generation is

shown for raGAs with and without tie-breaking.The figureshows that with tle-breaking,an

optimal solutionisfound a_ soon as the stringsare long enough to encompass the solution,

whereas without tie-breakingthe occurrenceof an optimal solutionisconsiderablydelayed and

unstable.The maximum and average functionvalueofthe stringsversusgenerationare shown

in figure8.

Itisinterestingthat the mGA without tiebreakingisable to solvethisproblem to global

optimality,albeitmore slowly than the mGA with those features,even though the monkey

wrenches were presenttodisturbthe solutionprocess.Apparently,cut and splicewere sufficient

to excisethe bad bits that went along for the ride In general,however, multiple parasitic

bitscan tag along, and to simulate thispossibilitya six-bitmonkey wrench is devised that

takesa singleoptimal buildingblock and adds one ze'oeach from three of the remaining nine

subfunctions. There are (_) = 84 such six-bit monkey wrenches per function. One copy of each

is included per subfunction for a total 1"0.84 = 840 mlbstrings appended to the origlnM initial

population of 32,480, three-bit strings yielding a total of 33,320 strings in the initial population.

During the primordial phase, this population is red_ed to size 2082 with successive population

halving; the size is held constant throughout the juxt_positionM phase as per usual. Otherwise,
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Figure 8: Average and maximum function value versus generation in the 30-bit problem with four-bit
monkey wrenches.

the messy GA parameters used in these simulations are the same as those used in the previous

experiment.

The population maximum and average function values are graphed in figure 9. The tie-

breaking algorithm allows messy GAs to converge to the optimal solution by maintaining all

low-order building blocks in the population, whereas, the toGA without tie breaking cannot

solve the problem to global optimality; the presence of multiple parasitic bits is simply too

disruptive.

4.3 Differently sized building blocks

The monkey wrench experiments give us confidence in the tie-breaking procedure. Here we

actually construct a problem with building blocks ofdiifering sizes and try the toGA with and

without tie breaking and null bits.

Specifically, a 31-bit function with one three-bit subfunction and seven 4-bit subfunctions is

designed. The three- and fotu-bit subfunctions use Liepius's construct (Liepins & Vose, 1989)

for a fully deceptive function of order k:

{ 1-_, ifd=0;f(d,k) 1, _, if d k;1 - otherwise.

Here d is the number of ones in the substring. Thee, the function has a global optimum at

1... 1 a local optimum at 0... 0 and a value that declines as the function's argument gets more

distant (in the sense of Hamming) from all zeroes.

Because the disparity between building block sizes k so small, only a single null bit, (32 !I),

is required and used. GA parameters identical to the previous experiments are used, except

17
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that the population starts at size 24 (342) = 575,360 and is ramped down to 2247 with succes-

sive population halving. Average quantities from three independent simulations are presented.

Figure 10 shows the average proportion of the three-bit optimal strings during the primordial

phase. The toGA without tie breaking and null bits is unable to grow a substantial portion of

the three-bit building blocks. As a result, it is also unable to optimize the function to global

optimality as is seen in figure 11. By contrast, the toGA with null bits and tie-breaking is able

to solve the problem to global optimality quite quickly.

4.4 Nonuniform scaling and nonuniform building block size

Thus far, we have treated the problems of nonuniform scale and size as though they always occur

in separate objective functions. Of course, it is likely that a function will have both nonuniformly
scaled and sized subfunctions in it. In this subsection, a test function is constructed with both

difficulties, and raGAs with genic selective crowding alone, tie breaking with null bits alone,

and both features together are tried and compared.
A 36-bit test function with differently scaled and sized building blocks is constructed. In

the problem, three subfunctions are three bits long, three other subfunctions are four bits long,

and the remaining three subfunctious are five bits long. Liepins's construct is used here for

all three sizes, and each function is scaled by twice its order squared, 2k 2. Thus, the three-bit

function is multiplied by 18, the four-bit function by 32, and the five-bit function by 50.

Two null bits are required for these runs, and this dictates that an initial population re-

quired for this run be quite sizeable: n - 2 s (38) _ i6, 062,144. It should be remembered,

however, that this is a small portion of the search space, which is itself of size 2 _ = 6.87(101°).

Because of the large size of population required initially, the primordial selection is performed, in

subpopulations, and the best strings are brought forward to be considered for further selection.
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During primordial selection, the population size is successively reduced by half until it reaches

the chosen size for juxtapositional selection, n = 200.

Figure 12 shows the max/mum number ofsubfunctions correct versus generation with thresh-

olding alone, tie breaking alone, and their combination. The results are averaged over three

simulations. The figure shows that thresholding and tie breaking alone cannot solve the problem

to global optimality, whereas their combination is able to maintain all subfunctions in the solu-

tion. Figure 13 shows the population maximum and average fitness in successive generations.

Even though there were many copies of all order-three building blocks in the initial population

due to null-bit duplicates, neither the mGA with tie breaking alone nor the toGA with thresh-

olding alone could maintain enough copies of them at the end of the primordial phase. On

the other hand, when both thresholding and tie breaking methods were applied, thresholding

maintained a uniform selection pressure for different subfunctions, and tie breaking maintained

a selection pressure for the individual building blocks with null bits. The combined action of

these methods permitted the optimal to be found repeatedly.

w

w

u

5 Continuations and Extensions

The initial investigation of mGAs and this study lead to a number of interesting continuations
and extensions:

1. analyze and solve overlapping subfunctions;

2. prove the fundamental conjecture of raGAs;

3. implement a parallel version of an mGA;

4. develop other messy code types, including permutation codes, messy floating point codes,

and messy classifiers (rules);

5. extend mGAs to nondeterministicfunctions;

6. extend mGAs to nonstationaryfunctions.

In-the remainder of thissection,each of these possibilitiesis considered in somewhat more

detail.

In both the pilotstudy and the currentinvestigation,only nonoverlappingsubfunctionswere

considered.This isa reasonableassumption tolaunch a new technique,but the questionarises

whether functionscan be deceptiveat higherlevelsbecause of a largenumber oflow-orderin-

teractions.For example, many problems can be descn'bedwith linearand quadraticinteraction

between Boolean decisionvariables,but does thisimply that such functionsare no more than

order-two deceptive? The answer to thisand relatedquestionsliesin a carefulapplicationof

the Walsh theory described elsewhere(Goldberg, 1989b, 1989c). Working in reverse,nonde-

ceptiveinteractionscan clearlybe added to what otherwisewould be nonoverlappingdeceptive

subfunctions without affectingthe mGA's abilityto solve the augmented problem, and itis

reasonable to expect that furtheranalytic_Me_xtensiomof the classof toGA-solvable problems

are possible.Work in thisarea isimportant ifwe are to understand thefullclassof problems

that mGAs can solveto globaloptimality.Regardlessofthesefinepoints,as a practicalmatter,

raGAs may be used in the manner suggested earlier,climbing the ladderof deception one bit

at a time. At some point,itbecomes impracticalto climb further,and the best answer so far

is adopted and used.
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Proving the fundamental conjecture and obtaining probabilistic bounds on the method are

important, yet nontrivial, extensions of this work. On the one hand, because mGAs process

strings in distinct phases, it may be easier to perform a rigorous analysis of convergence than

it is with a homogeneous simple GA, where everything is going on all at once. On the other

hand, these systems still have many degrees of freedom, and simple calculations in expectation

(calculations like the schema theorem) are not enough to prove the conjecture. Progress here

will depend on a two-pronged attack. Instead of analyzing mGA mechanics directly, simpli-
fied versions should be attacked that retain the essence of the algorithm. More sophisticated

analytical horsepower will also be required, including some fairly sophisticated tools from the

theory of stochastic processes.

A parallel version of an toGA should not be difficult to implement, and as has been suggested,

the logarithmic convergence guarantees of a parallel version are very attractive. A parallel

version is easy to implement, because all genetic and selective processing requires only pairwise

interaction. Local tournaments may be held in the neighborhood of a given processor, and

mating and recombination can also be held locally.
The pilot study and this investigation have concentrated on solving problems that map from

a fixed number of Boolean variables into the reals. Of course, the messy philosophy ofmGAs can

be extended to many different classes of problems through many different types of codes. The

pilot study suggested a specific floating-point code and ongoing studies are considering it and a

number of variants. Messy permutations were also suggested, and this should be a particularly

fruitful avenue of research in scheduling and resource allocation problems. Another method

of tackling problems over permutations is to map them to binary strings, using the Boolean

satisfiability techniques suggested by De ,long and Spears (1989). This indirect approach may

be fruitful in that it exploits the solid convergence of binary raGAs and the simplicity of a

reasonable penaity-like method.

Messy classifiers were also suggested in the pilot study. The idea is straightforward. There

is little need to carry along don't care positions explicitly, and only information-carrying posi-

tions need to be mentioned. Moreover, messy classifiers provide a natural means of resolving

the grand debate between the Michigan and Pitt approaches (Goldberg, 1989a; Wilson & Gold-

berg, i989). Because raGAs can recombine strings of arbitrary length containing an arbitrary

number of rules, there is no need to decide beforehand whether a single rule or a group of

rules is the appropriate unit of reward: Suitable punctuation marks could be used to define

corporate boundaries and rule clusters could merge or spin off subsidiaries within the normal

toGA framework.

The method of competitive templates essentially removes the Udeterministic noise _ that

exists in simple GAs because of the simultaneous variation of multiple building blocks. There

are problems, however, where real noise is present, and raGAs can be extended to permit their

solution. There are basically two approaches to follow. In one method, building blocks can

be duplicated enough times in the initial population to ensure that their average evaluation

is sufllciently accurate. In the other technique, individual copies of building blocks may be

evaluated repeatedly, taking a moving average or other estimate of their function value. Either

way, it should be possible to perform calculations of the duplication or repetition required to

reduce the error within reasonable bounds.

It should also be possible to use raGAs on nonstationary problems. Elsewhere (Goldberg,

1989a; Goidberg _ Smith, 1987; Holland, 1975; Smith, 1988) techniques of dominance and

diploidy have been suggested and applied in nonstationary problems, and these certainly could

be adapted to toGA practice. There is another possibility, however. We have already seen how

the decoding of an toGA string involves a form of gene expression that is something like an
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intrachromosomal dominance mechanism. Why not introduce explicit dominant and recessive

markers within the mGA together with a dominance shift mechanism, thereby permitting allele

combinations (building blocks) to be alternately remembered and held in abeyance as time

goes on? Doing this in :an toGA context has the advantage of being able to recall or store

appropriately sized (and tested) building blocks, whereas it is unclear in a simple GA how to

get beyond independent storage or retrieval of more than single alleles.

Although there are many fruitful avenues for continued research, it should be pointed out

that messy GAs are ready for real-world application today. Their combination of polynomial

or better efficiency and apparent global convergence seems difficult to beat in many blind

combinatorial optimization problems.

6 Conclusions

This report has discussed the salient features and theory of messy genetic algorithms, and it.

has presented the results from an investigation of techniques that permit mGAs to be applied

to problems of varying subfunction scale and size.

Although more basic work is needed, raGAs are ready for real-world applications, because

they work, because they are efficient, and because they are practical. The pilot study and this

investigation have laid the foundation for raGAs, demonstrating that mGAs can converge to

globally optimal results in the worst kind of problem, so-called deceptive functions. Because

mGAs can converge in these worst-case problems, it is believed that they will find global optima

in all other problems with bounded deception. Moreover, raGAs are structured to converge in

computational time that grows only as a polynomial function of the number of decision variables

on a serial machine and as a logarithmic function of the number of decision variables on a parallel

machine. Finally, raGAs are a practical tool that can be used to climb a function's ladder of

deception, providing useful and relatively inexpensive intermediate results along the way.

For these reasons and because of their potential benefit in so many areas, we recommend

the immediate application of raGAs to difficult, combinatorial problems of practical import.

Although several i's remain to be dotted and a number of t's are still there for the crossing, we

believe that this technique will become an important weapon in the analyst or designer's arsenal

to combat nontrivial blind combinatorial problems in a rational, efficient manner. Moreover, the

apparent efficiency and convergence of such an inductive and speculative process gives new hope

that one day a rigorous computational theory of innovation and design can be developed. While

not detracting from the designer's art, such a theory would provide rigorous underpinnings in

an area where jingoism has too long substituted for careful analysis.
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