
/,,v- 6 3
_/8/'72..'f

Applications of Artificial Intelligence

to Mission Planning

INTERIM REPORT

for

Mission Analysis Division

Systems Analysis and Integration Laboratory

George C. Marshall Space Flight Center

by

Donnie R. Ford

John S. Rogers

and Stephen A. Floyd

The University of Alabama in Huntsville

Huntsville, AL 35899

(205) 895 -6240

(_ASA-Cn-l_49o4) APPLICATIONS OF APTIFTCIAL

[_T_LLInENCE TU MI3SION PLANNING Interim

Repor_ (^l_bam_ Univ.) 55 p CSCL 09B

G3/O3

NC_1-13939

Uncl _is
031Q172

Table of Contents

1.0 Introduction ... 3

2.0 Software Data Structure Conversion ... 5

2.1 Task Statement ... 5

2.2 Task Conditions .. 5

2.3 Task Approach ... 7

2.4 Task Results .. 11

3.0 Software Functionality Modifications and Enhancements 12

3.1 Task Statement ... 12

3.2 Task Conditions .. 12

3.3 Task Approach ... 12

3.4 Task Results .. 14

4.0 Portability of Resource Allocation To A TI MicroExplorer 17

4.1 Task Statement ... 17

4.2 Task Conditions .. 17

4.3 Task Approach ... 17

4.4 Task Results .. 18

5.0 Frontier of Feasibility Software System ... 19

5.1 Task Statement ... 19

5.2 Task Conditions .. 19

5.3 Task Approach ... 20

Activities .. 20

Resources ... 21

Graphical Representation of Search Space 22

State Space Search Methods .. 24

Modified Breadth Search .. 25

5.4 Task Results .. 27

Appendix A ... 28

Appendix B ... 38

Appendix C ... 47

2

PRECEDING PAGE BLANK NOT FILMED

1.0 Introduction

The scheduling problem facing NASA MSFC Mission Planning is

extremely difficult for several reasons. The most critical factor is the

computational complexity involved in developing a schedule. The

problem space is combinatorially explosive. The size of the search

space is large along some dimensions and infinite along others.

There can be infinite number of choices to assign activities, and a

large number of choices of crew assignments to activities.

Additionally, the goal of the scheduling process is to produce a "good"

schedule. This is ill-specified and encounters a number of often

conflicting requirements. These requirements can include efficient

use of resources, no time or resource constraint violations, and

maximum production during a specified time period. Interrelational

requirements between activities, the performance placement of each

of the activities, and resource usages can make constraint violations

difficult to predict and avoid.

It is because of these and other difficulties that many of the

conventional operation research techniques are not feasible or

inadequate to solve the problems by themselves. Therefore, the

purpose of this research is to examine various artificial intelligence

techniques to assist these conventional techniques or replace them

entirely.

In June 1988, the Mission Analysis Division of the Systems

Analysis and Integration Laboratory of the Marshall Space Flight

Center (MSFC) of NASA tasked UAH to study the mission planning

activities and how artificial intelligence techniques may benefit these

activities. The specific tasks to be performed were (1) identify

mission planning applications for object-oriented programming and

rule-based programming; (2) investigate interfacing AI dedicated

hardware (Lisp machines) to VAX hardware; (3) demonstrate how

Lisp may be called from within FORTRAN programs; (4) investigate

and report on programming techniques used in some commercial AI

shells, such as KEE; and (5) investigate and report on algorithmic

methods to reduce complexity as related to AI techniques. The

results of this study, the prototype computer software and their

operational instructions were reported to NASA MSFC in the first

Interim Report and presented in the form of an oral presentation in
November 1989.

At the conclusion of this oral presentation and during

subsequent meetings with the MSFC staff new goals were set for

continuing research on the previously defined tasks. These new

goals focused on two areas: software and technique. Specific

modifications and enhancements to prototype resource allocation

software were requested in order to increase its functionality and

performance capabilities. Coupled with the modified software, new

Frontier of Feasibility traversing techniques were to be examined. A

description of each of the alterations and additions to the prototype

software and differing techniques are detailed in the following

sections of this paper.

4

2.0 Software Data Structure Conversion

2.1 Task Statement

The purpose of this research was to continue to examine the

advantages and disadvantages of using object oriented programming

techniques to assist in solving the scheduling/resource allocation

problem that is particular to MSFC NASA Mission Planning. This is

further targeted to the future problems associated with activity

planning for the Space Station.

In the first Interim Report (UAH Research Report JRC 90-07) a

detail description was given on a prototype software system called

the Two Pass - Multiple Resource Resource Allocation Program.

Although this system was developed in Common Lisp on a Symbolics

Lisp Machine, the full power of object oriented programming

techniques had not been utilized. It was decided that this software

should be modified in such a manner that the data could be

represented in object form.

2.2 Task Conditions

The conditions of this task are that the prototype was

developed on a Symbolics Lisp Machine and that the object-oriented

paradigm (Flavors) that is presently supported by this platform was

appropriate. As with the original prototype design, the system

focused on time and resource constraints and excluded consideration

of inter-experiment dependencies.

Although the object-oriented programming (OOP) paradigm has

been discussed as with all personnel involved in this current

research effort, a general review of these principals may be

beneficial. OOP has been steadily gaining acceptance as an

alternative software design methodology, especially for large,

distributed systems. OOP techniques have proven most useful in

applications that can be visualized as a collection of objects of distinct

classes, each with their own data and processing requirements, that

5

must collaborate for the system as a whole to function properly. As

an analogy, consider a team of engineers working together to design

a new car. Those responsible for the interior may be interested in

ergonomic data for their work, whereas those designing the engine

may be using fuel efficiency data, EPA requirements, and so on. But

both groups must work together to decide, for instance, whether the

engine will be in the front or the back. For this type of problem,

then, each individual can operate with a large degree of autonomy, as

long as they collaborate when necessary. Now imagine trying to

specify an "algorithm" for designing a car -- step by step instructions

explaining exactly what needs to be done and when. That sounds

pretty difficult, but suppose we concentrate on the car first and think

about its organization rather than that of the design process. We can

easily break the car down into a hierarchy of subsystems (like

maybe the fuel system, and below that the fuel injection and fuel

storage subsystems, and so on), until the leaves of our hierarchical

tree are individual parts, whose design we can specify. Now we have

a tree containing not only structural information about the car, but

also procedural information about designing it. We will have been

given some design parameters describing, probably in general terms,

what kind of car we should design, so now we need only fill those

values in and filter them down through the tree, until a concrete

design begins to take shape. So, in this case, it would seem easier to

concentrate on the object first, rather than the process.

In contrast to this problem, however, consider the task of

building the car once it has been designed. The assembly line

approach has proven to be the best solution here, since each process

is so tightly bound to the output of the previous process and the

input of the next process. In this analogy to conventional

programming, the car being built is like a large data structure being

passed to one processing unit after another, in sequence, until it is

finished. It's not difficult to write down an "algorithm" for making a

car, so it would probably be better to concentrate on the process

rather than the object. Unfortunately, most real-world problems,

including the resource allocation problem, are not as well defined as

an automobile assembly line. For these more interesting problems, it

6

has become clear that we need a new, more natural, way to think

about writing programs.

These examples explain why OOP makes it easier to

conceptualize the automated resource allocation system, but there

are many other advantages as well. Consider the problem of

information presentation. We have said that it may be beneficial to

present procedural information differently, depending on the user's

cognitive presentation biases. Remember that in OOP we construct a

hierarchical tree containing not only structural information, but

procedural information (ie., code) as well. So when we want to

present a step in a procedure, for example, we simply activate the

little piece of code, attached to that step, that tells us how it should

be presented, given the current user's preferences. This organization

becomes particularly efficient when we consider that we may ask for

a presentation of that step in hundreds of locations throughout the

system.

2.3 Task Approach

The approach taken in this task was to create flavor objects

that would represent the resource allocation data and modify the

actual software system itself to access and utilize this new data

structure. The data representation of both the resources and the

activities (experiments) were converted from its original list

structure to this object format. The resource object structure is

shown in figure 1 and the activity object structure is shown in figure

2. Appendix A contains the actual Lisp computer code (or Flavor

definitions) for each of the object structures.

As a consequence of the data structure change many of the

data accessing functions had to be changed. In Lisp a list is similar to

an ordered set in that each item (or atom) contained in that list

occupies a particular position with in the list. However, accessing

information from the list is very dependent on each piece of data

being precisely in a specific position in the list. To retrieve the fifth

data item, the software would be required to pass over the first four

items until it arrived at the desired location. This is obviously not

7

the desired mechanism for data retrieval. It limits the ability of the

system programmer to modify the data structure or the procedures

the access the specific pieces of information.

As stated earlier, using resource and activity objects allows for

data abstraction and encapsulation. This means that the system

designer can now freely modify procedures and specific data items.

In the original prototype, in an attempt to improve on a ordinary list

structure, a property list was utilized. This allowed the user to more

freely access the information by providing some degree of

abstraction. However, internally the system still was storing the

information in list form. The conversion in the second prototype

from this property list to flavor objects allowed complete

encapsulation and departure from from the internal list structure.

RESOURCE OBJECT STRUCTURE

Resource

- Name

- Limit

- Type

- Priority

- Weight-Factor
- Constraint-Function

- Hash-Table

Figure 1

The resource objects are instances of the flavor resource which

is the generalized description of a generic resource. The flavor

structure provides slots called instance variables that can contain
information about the flavor instances. Each individual resource is

an individual flavor instance whose slots contain information that

uniquely describes its properties and behavior. The instance

variables for the resource objects are the resource name, limit, type,

priority, weight-factor, constraint-function, and hash-table. A

description of each of these instance variables is provide below.

Name - The actual name of the resource (ie. Man-Power).

Limit The maximum available quantity of this resource
at an instance of time.

Type - Is the resource non-depletable, depletable, or

replenishable.

Priority - Used in the current maximization algorithm to

order resources (ie. primary, secondary, etc...)

Weight-Factor - Will be used in future implementation to
arrive at better overall resource utilization.

Constrain-Function - mathematical expression that

describes the constraining factors for the resource.

Hash-Table - contains a historical hash table that shows

resource utilization as a function of time.

Currently, the software system allocates the resources Power

and Man-Power. However, there is no limitation on the number of

resources that can be allocated.

9

ACTI VITY OBJECT STRUCTURE

Activity
- Name

- Experiment-Number

- Duration

- Power-Required

- Man-Power

- Data-Rate

- Minimum-Performances

- Maximum-Performances

- Scheduled-Performances

- Highlighted

Figure 2

Activity objects, similar to the resource objects, are individual

flavor instances of the flavor activity. They have their object

definitions contained in instance variables. The activity object's

instance variables are the activity name, experiment-number,

duration, power-required, man-power, data-rate, minimum-

performances, maximum-performances, scheduled-performances,

and highlighted. A description of each of these instance variables is

provide below.

Name - the name of the activity.

Experiment-Number - An activity identification number

(if specified)

Duration - the time required to complete the activity.

Power-Required - the instantaneous power requirements

of the activity.

10

Man-Power - the instantaneous personnel requirements

of the activity.

Data-Rate the instantaneous data production rate of the

activity.

Minimum-Performances - the requested

number of activity performances.

minimum

Maximum-Performances - the requested upper limit of

number of performances.

Scheduled-Performances the actual number of

performances of the activity that have been
scheduled.

Highlighted - the current state of the the menu item,
showing if this activity is currently selected.

2.4 Task Results

The data structure changes described in the preceding sections

were performed on the prototype resource allocation software

system. Additional testing is needed to determine the extent of any

performance gains. Also, software procedural changes need to be

implemented in the form of flavor methods instead of traditional

function calls. This additional change will allow the flavor instance

variables to be directly accessed by the procedural code used in the

software system.

The use of hash-tables as a means of storing the time history of

the resource allocation process, as well as individual resource

utilization, has proven to be an effective and easily manipulative

means of storing this information. The graphics functions in the

software simply traverses the time line and remove specific values

from the tables. Therefore tabular and graphical representations of

the results are made easier to obtain.

11

3.0 Software Functionality Modifications and Enhancements

3.1 Task Statement

The purpose of this research project was to continue the

development of the resource allocation system prototype. After a

performance review at the end of the first interim term, it was

decided that it would be desirable to add additional capabilities to

the prototype software. First, the general algorithm that was in use

should be modified from a multiple performance allocation to a

single step performances approach. Secondly, since the allocation

results are distributed across a time line, it would be desirable to

construct a mechanism that would allow the operator to interject at a

specific point in time and make a change to the allocation. The

system should then perform a re-allocation of the resources starting

at that point on the time line.

3.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.

Any modifications to the software were designed solely for the use

on this platform and may not easily be ported to other platforms.

Also, the data structures of the software were pre-existing and were

not modified in the modification process.

3.3 Task Approach

Although a general description of the resource allocation

software system's allocation algorithm is describe in detail in the

previous Interim Report (UAH Research Report JRC 90-07), it may be

beneficial to include a brief description of the original resource

allocation algorithm. The original algorithm employed by the

prototype system would scan the multitude of combinations of

activities selecting a single combination that best utilized a primary

resource. The system then immediately allocated the entire number

of minimum requested performances (if possible) for each activity

12

that was included in the selected combination of activity

performances for that time slice. This therefore treated the

minimum requested number of performances as one singular and

continuous performance. The allocated activities were then removed

from consideration in future allocation combinations during pass one

of the system. This approach, although simple, demonstrated many

short comings and was deemed too coarse.

The modified approach reduced the allocation step size by only

allocating a single performance of each of the activities in the

selected combination instead of the original entire minimum number.

Each of the activities minimum requested number of performances

was then reduced by one. Unlike the original prototype, the activity

remained in the pass one allocation process until it had exhausted its

requested minimum number of performances instead of immediately

being removed.

In a similar manner pass two operations were changed.

Although it may be less obvious, pass two attempted to allocate
multiple performances of different activities when ever possible.

Now single performances of each selected activity were performed.

The backtracking capability was created to allow the operator

to effect changes to the allocation process. As the system allocated

the resources to the activities a rough schedule is produced. Often as

the grouping of activities process is being performed, multiple groups

of activities are found that have near equal overall resource
utilization. Since the choice of a single group from a list of similar

groupings is completely arbitrary, the computer would simply take

the first member in the list. This selection was then placed on the

agenda for allocation. Although in the immediate time frame the

selection method seems just as valid as any other method for

choosing a candidate from the group of possible candidates, the

selection can cause major changes in future allocation groupings.
Therefore it was deemed desirable to construct a mechanism that

would allow some user control over the candidate selection process.

The backtracking functions required access and control of three

data histories. First, a running history of the actual groups of

possible alternative allocation selections had to be constructed in

13

order for the software system to be able to show possible

backtracking choices. Secondly, the resource utilization history for
each of the resources needed resetting for future reallocation. And

finally, the activity schedule had to cleared of future scheduled

items. All of these data histories were in the form of hash-tables.

The data structures were reset for downstream reallocation.

Although each of the data structures were hash-tables that use the

allocation time as their key words; the downstream resetting

requirements were not the same for each table. For instance, it

became necessary to swap the newly selected group for the previous

group first. Then, the correct resource utilization and new time

history could be calculated. All the downstream activities were then

removed and their corresponding number of scheduled events

reduced. The time history that was used as the key words to the

hash-tables was deleted from the point in time "of the backtracking.

A new resource allocation process is then started from the point of

backtracking.

The backtracking process is initiated by selecting a mouse

sensitive item from the display. This display shows the allocation

time and the current items allocated at that time. It is the time item

that is mouse sensitive. Selecting a time for backtracking causes a

menu of group selections from which the user must select an

alternative. The reallocation process then begins and the display is

refreshed. The system is cyclic in that the user may backtrack as

many times as is desired. However, the system is a two pass system.

Once the results from pass one have been accepted, the user can only

backtrack through pass two allocations.

3.4 Task Results

The software system was modified from a multiple allocation to

a single allocation step process. The system, at least under limited

evaluation, performs a better overall resource allocation based on

resource utilization than the previous approach. However, this comes

with a price. The system which was already under criticism for the

14

141i? ::: :: " (lil_'_If¢_" :::i::-:_:::':¸C.:::,`_:_.:`::.::::::,:::.::::_.__._.::.::..:::.:.::`:.:__.::__.::::`:_::,:__:`:`:::_:_:._::`::__`:_::`:::?__::_`;L:?.::::.T:.`_T::.:::T::__:::._:::3_;:.:T:::.;:::_..:.:.__:::__:::_.:;._.::::-i::_,:'::::'_
" '::]_]': ::[)] I " I _ _ _} " : :"] : :It_: '_:_].]" :]::: :::::::::::::::::::::::::::::::::::]' I]]:'::]: _ :::] _I:[: _:: :] [:] :]]]: t:_:]: ::_[][_ :_]: ::']]]':::: ::]:J; _] ;: _ :::[]];:_]]:_: :];:_]: : :]:[{] :: :; ; _ :: _ :] _:]:[_]]_: :_I :::] : :::: ::]: [::I :]

:::'.:;':,:£:::_ _ :t_t_'i_':t_:: '::: ::_ _:_:,.._:::-.::::'-:'::,,.:_'_:_q_q_:_:(_:_;_i::,_X_£q. :,::.:S_':_':, :-;,_:£-;:,:.,:_:_ ':::",:,::,;, ::::,;.::_ : ::, :.-_1 ::::::::::::::::::::::::::::::: :: ;

_ .]: i.i:::i:::::!:::::[;[.: _1_'_: _ _]::. {_::IX:i::_::i'_:i::: i_.,:::::_::::_ :::_:::':_-::::::::::::::::::::::::::::::::::::::.::.:::::t::`:::::::::`:::::::::::::::h:::::_:::::::::::::::::::_:::i:::::_:::_:':::':::::::'_:::::_:::

============================ ; :::.:_:::..',::.::,:_.;::::.:-::-:::..',,::_;,::,&.::._.:-::.:::::.::
" (INi_'P _etll||e Ntndo_ (_r_.= _ k_ _* _xtr_ .:_-:: -:.:::, ":_Tr:;':':?::::_'::_,'_:':'::'::_"::':': ":_i;'::

.... ,,... _,_,_ _

::::::::::::::::::::::::::::::::::: _1]1_k :::

(.._ L__f i

Figure 3

U

Figure 4

15
O-FJGINAL PAGE iS

OF POOR QUALITY

time requirements necessary for non-trival problems was slowed

even more. The exact amount of this reduced allocation speed has

not yet been quantified. This will magnify the necessity for

evaluating new group selection techniques.

The backtracking capabilities have been implemented in the

system with good success. The user can modify the activity schedule

and effect changes on the resulting overall resource allocation.

Remember the software system is currently designed as a two pass

system. As mentioned earlier each of the two passes are considered

as being independent of the other for backtracking. Thus the effects

of backtracking are confined to the current pass of the system

Since the resetting process is relatively small when compared

to the overall problem of resource allocation, the incremental time

used in backtracking is not significant. However, in a dynamic

environment such as Lisp, the released data or garbage as it is

sometimes called can cause the system itself to slow. This effect can

be seen if repeated backtracking is performed. If excessive amounts

of backtracking and reallocation cycles have been performed the

system's performance is substantially affected.

16

4.0 Portability of Resource Allocation To A TI MicroExplorer

4.1 Task Statement

The purpose of this research was to investigate the

performance of the resource allocation software on the TI

MicroExplorer platform. At the interim review of the software

prototype. It was determined that portability and varying platforms

for the system should be investigated. The system was easily ported

to a Maclvory system and performed comparable to the Symbolics

Lisp Machines. Since the Mission Planning Group at MSFC had a TI

MicroExplorer, it was decided that the software system would be

ported to this platform and a performance evaluation performed.

4.2 Task Conditions

The development language of the TI MicroExplorer is Common

Lisp. The ported software system therefor was limited to the domain

of functionality of this platform.

4.3 Task Approach

Since the Symbolics Lisp machine was the original development

platform for the Resource Allocation Software System, any functions

that were utilized within the system that were specific to this

platform had to be modified or replaced by functions that were

compatible with the TI MicroExplorer. Although the TI

MicroExplorer uses a Flavors System similar to that of the Symbolics,

it is currently several generations behind in its development. This in

most cases did not pose a tremendous problem. However, the

windowing system employs a different type of flavor. There is no

predefined, so called "dynamic", window that allows scrolling,

graphics, etc... Therefore, a composite flavor that would cause the TI

MicroExplorer windows to behave similarly to those on the Symbolics

Lisp machines had to be constructed.

17

Mouse sensitivity is another facility that the TI MicroExplorer

does not easily provide. This causes problems in the Activity and

Resource Editing Module of the software system since it relies so

heavily on complicated procedures that are initiated via mouse

gestures and selections. Since this is a non-essential portion of the

software system this module was omitted from the initial

implementation of the software on the TI platform. Also the

backtracking capabilities while included in the software were

inhibited from operation due to similar mouse sensitivity problems.

Both of these modules of the software system will be added for this

platform.

4.4 Task Results

The software has been ported to the TI MicroExplorer.

Additions and modifications were produced that allow the system to

function on this platform. The analysis of the performance of the

overall Resource Allocation Software system remains incomplete at

this time. Mouse sensitive parts of the system that were omitted in

the initial implementation of the software system will be added. A

complete transfer of all data files is needed and an evaluation of the

systems performance on this platform conducted. These activities

are proposed as part of a continuing research effort.

18

5.0 Frontier of Feasibility Software System

5.1 Task Statement

Experimentation in space is rapidly becoming one of the most

exciting areas in science. Experiments from such widely diverse

areas as medicine and metallurgy are performed side-by-side

onboard space-based experimentation platforms. The Space Shuttle

is currently the workhorse of this effort, but NASA's Space Station

Freedom will assume much of this task when it is constructed.

Each experiment or activity to be performed onboard a platform

has certain resource and time requirements. Since the platform has

only a limited supply of resources available, these activities are in

competition with one another. Determining which activities can be

performed is a complex problem that due to its nature has multiple

solutions.

It is likely that multiple performances of a single experiment are

desirable, therefore, each such experiment must be performed

multiple times during the mission duration. One method for

simplifying the solution set of this problem is to generate a number

of possible solutions based solely on resource and time constraints

for use with a scheduling program. It is therefore the purpose of this

research to examine the techniques for arriving at theses possible

solutions.

5.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.

Any modifications to the software were designed solely for the use

on this platform and may not easily be ported to other platforms.

The prospective of the system is to view the possible starting points

of a scheduler without taking into consideration any intra-activity or

temporal constraints.

19

5.3 Task Approach

The Frontier of Feasibility System is designed to generate "good"

starting points for a scheduling program. This system is not a

scheduler, but is instead a resource allocation program which

operates at a very course level of granularity. A scheduling program

is concerned with placing activities on a time line, while ensuring

that no constraints are violated. The main thrust of a scheduling

package is the ordering of the activities on the time line. The

Frontier of Feasibility System does not attempt to establish a time

line schedule, but instead, only attempts to generate starting points

for a scheduling program by allocating the available resources.

Activities

Experimentation is not the only consumer of resources onboard a

platform. Life support, instrumentation, and other onboard systems

are also in competition for the available resources. For this reason, in

this paper competitors for resources will be referred to as activities.

Each activity is defined by its consumption of various resources,

duration, and performance criteria.

Activities are given an abbreviated name and an experiment

number. Duration is perhaps one of the most important facts given

in the activity description. It is assumed that two or more

performances of a single activity cannot occur simultaneously.

However, it is possible for several different activities to be operating

at the same time, resources allowing. Therefore, by taking the

mission duration and dividing it by the duration of a single

performance of an activity, it is possible to arrive at a hard

constraint on the maximum number of performances possible for an

activity.

The activity description also includes resource usage information.

This lists the amount of each resource that will be required to

perform that activity one time. It is assumed in the Frontier of

Feasibility System that this resource usage is continuous throughout

20

the duration of the activity. This is not an accurate representation of

reality, but the purpose of this system is to provide a good starting

point for a scheduler, not a finished answer.

The user also enters a minimum requested and maximum desired

number of performances for each activity into the description. This

provides the system with a minimum number of performances of

each activity that must be scheduled to meet the user's bottom line.

Any remaining resources are then allocated among the activities.

The maximum desired number of performances places an upper limit

on the number of performances of an activity that will be scheduled.

This prevents the system from allocating resources to useless activity

repetition. The upper limit established by the user is verified by the

system to ensure that it is feasible.

(VCF (experiment-number (2))

(power-required (10))

(duration (1))

(performances (1))

(max-performances (4))

(scheduled-performances (0)))

Figure 1. A representation of an activity as a Lisp list.

Ke.. s.a.u.r.ed

The resources available aboard the platform are each given an

abbreviated name and an amount available. Resources can be

classified into several different categories. Non-consumable

resources are not depleted by use, and are available in a constant

quantity for the duration of the mission. Consumable resources have

an initial level which is depleted as activities are performed.

Replenishable resources are those that can be temporarily depleted,

21

but which through processes onboard the platform, may be
replenished during the mission.

The current version of the Frontier of Feasibility System uses one

resource during its search process. Versions currently in

development examine the problem using multiple resources.

Granhical Representation of Search Space

The Frontier of Feasibility System is based around the idea of

representing the resource allocation problem's possible solutions as a

tree graph. The process of creating a feasible combination of activity

performances can be easily demonstrated using a tree graph. A

manager's decisions about which activity to perform more times can

be followed down a path on the tree.

For instance, if the manager decided to add one performance to

the right-most activity, the node created would be one further down

the right-hand-side branch. From this new node, the manager will

make another decision regarding which activity to increase next.

This process is repeated until the manager is satisfied with the

results. Therefore, we adopted this structure as a good reference

frame when seeking ways to calculate a solution set more quickly.

Tree Structure

Each node on the tree graph represents one possible combination

of activity performances. An example root node would be (1 1 1),

representing one performance of three different activities. The

children of this node would be (1 1 2), (1 2 1), and (2 1 1).

Each child represents its parent with an additional performance of

one activity. Only certain activities can be modified on each branch.

The first, left-most, branch allows the modification of all activities.

On the other branches, only the activities to the right of the activity

corresponding to the branch number can be modified. For instance,

in a twelve activity problem, if you are looking at the fifth branch,

only the fifth through twelfth activities can be modified. The first

four activities remain at their minimum requested.

22

11

2

23t 222

241 23: 223

24_ Z33 IZ4

244_

Figure 2. A three activity tree graph.

When dealing with a large number of activities, each of which can

be performed multiple times, the size of the tree becomes quite

large. It is therefore necessary to devise methods for reducing the

size of the search space. One of the simplest is to make the root node

values equal to the minimum number of requested performances of

each activity. This action can greatly reduce the size of the space

that must be searched. Since each activity also has a maximum

number of performances requested, it is possible to restrict the

depth of the tree.

A human manager makes decisions, in terms of the tree graph, by

starting at the root node and moving down the tree from parent to

child, until he can go no further due to constraints. A node to which

no more performances of any activity can be added without violating

a constraint is said to be a Frontier Node, commonly referred to as a

leaf node. The Frontier Nodes fall along a barrier which we call the

23

Frontier of Feasibility. It is the nodes that fall along the Frontier that

offer the best starting points for a scheduling program.

Sortin_ the Activities

It is important to realize that the ordering of the activities within

the nodes affects the shape of the tree. Each activity has a range of

possible performances from its minimum requested to its maximum

desired. Typically, the activities with a large range use a small

amount of resources, while those with a very narrow range use large

quantities of resources. If the activities are sorted so that the largest

range is on the left, and the smallest on the right, then the tree will

be very wide. This is because each new performance of the first

activity represents a new branch. If the activities are sorted in

reverse order, from smallest to largest range, then the tree will be

deeper and narrower. In this case, there will only be a few branches

to the left, thereby restricting the width of the tree.

Which sorting method is best is still being decided. Each method

has its advantages and disadvantages. The second method narrows

the width of the tree, and thereby the number of Frontier Nodes. But

this method makes the calculations for trading between activities

more cumbersome. Method one, although it has a larger Frontier, has

an easily demonstrated process for handling trades. So, for the

purposes of this paper, we will be discussing the problem in terms of

the first method, largest to smallest range.

State Space Search Methods

There are many different search methods available which could

be used to find the possible solutions to this problem. These are

methods which have been developed over time to handle problems

similar to the Space Station resource allocation problem. However,

most of these methods were developed to seek an optimal solution,

or a single answer. Since the purpose of the Frontier of Feasibility

System is to generate several "good" starting points for a scheduler,

many of these methods were ruled out.

24

Modified Breadth Search

It was decided that none of the other regular search methods

would complete the search in an acceptable length of time. The

structure of the tree suggested a new search method. The Frontier

Node of the right-most branch is easily calculated, since only the

number of performances of the right-most activity can be changed.

Simply, divide the resources remaining after all activities have been

performed their minimum requested number of times, by the

amount of resources necessary for the right-most activity. This

calculation yields the number of performances which can be added to

the minimum requested. By adding this number to the right-most

minimum and combining this new total with the rest of the root

node, we have calculated the right-most Frontier Node.

Using this Frontier Node as a starting point, it is possible to cross

the tree along the Frontier of Feasibility, thereby eliminating the

need to search the tree in depth. As discussed earlier, the order in

which the activities are sorted can greatly affect the search process.

We have chosen to discuss the largest to smallest range sort method

because it can be more clearly demonstrated in the context of this

paper. Using this method, the first frontier node that we have just

calculated has maximized the number of performances of the largest

resource using activity.

The Frontier search method is composed of six main steps:

1. Examine the number of performances of each activity in the node,

from left to right, for one which is performed more than the

minimum required number of performances. This step begins its

examination at the second node from the left, because of the way

Step 5 operates.

2. Reduce the current number of performances of that activity by

one.

25

3. Reset all activities to the left of the activity found in Step 1, to

their minimum required number of performances.

4. Recalculate the available resources.

5. Starting just left of the activity found in Step 1 and continuing to

the left, increase the number of performances of each activity as

much as possible with the available resources. Each new

performance reduces the amount of resources available.

6. When no more performances can be added, store the new Frontier

Node and repeat the process.

(11111[_])

(1111L_)

(1111_)

(111r_13)

Figure 3. Example of the six stage process.

The benefit of using the largest to smallest range sort method is

that removing one performance of an activity in Step 3, guarantees

at least one performance of another activity when executing Step 5.

This method sorts the activities from smallest to largest resource

26

users and thereby ensures that enough resources are freed up to add

one performance to the left.

5.4 Task Results

The six stage process describe above produces several hundred

thousand solutions in a small problem. Almost all of these Frontier

Nodes utilize from 95% to 100% of the available resources. There are

several possible mechanisms under consideration to select only a

small subset of these solutions. One of the most promising of these,

reduces the size of the solution set by selecting a starting node

further to the left in the tree. This eliminates all branches right of

the start node from consideration. Random sampling is another

method which could be used. The system would randomly, or at set

intervals, store the node currently under consideration. This method

would provide a smaller solution set, which still represented most of

the branches.

While the system can calculate new nodes fairly rapidly, storage

of the growing solution set slows the systems performance to an

unacceptable level. This problem can be bypassed in several ways,

for instance, by only storing those solutions that use 100% of the

available resources or only the first 10,000 solutions which are

generated.

From the generated solution set, the user must choose a node that

represents a "good" starting point. We are currently working on an

interface which will allow the user to review the solution set and

examine a node in detail. The user would be able to modify the

number of performances of any activity, in order to improve the

"goodness" of the node. The combination of these two systems will

provide the user with a powerful tool for generating rough solutions

to the resource allocation problem.

27

Appendix A

28

ANDY:>jsr>res_urce_a___cati_n>mu_tip_e_with-_av_rs>mu_tip_e-res_urce-_av_rs-and_variab_es._i
sp.7 Page 1

;;; -*- Syntax: Common-Lisp; Package: USER; Base: i0; Mode: Lisp -*-

;; ;;;; Resource Allocation Flavors ;;;;;;

(defflavor RESOURCE

((limit nil)

(priority nil)

(constralnt-function nil)

(hash-table nil))

()

: readable-instance-variables

: writ able-inst ance-variables

: init able-inst ance-variables)

defflavor ENVIRONMENT

((resources nil)

(activities nil)

(total-time nil)

(expendables nil))

()

:readable-instance-variables

:writable-instance-variables

:initable-instance-variables)

de fflavor ACTIVITY

((duration nil)

(performances nil)

(max-performances nil)

(scheduled-performances nil)

(Constraint-function nil))

()

: readable-instance-variables

: writ able-inst ance-variables

: init able-inst ance-variables)

defflavor SELECTION-MENU ()

(tv:drop-shadow-borders-mixin

tv:multiple-menu))

defflavor SHADOWED-TV-WINDOW ()

(tv:drop-shadow-borders-mixin

dw:dynamic-window))

;; ; ; ; ; ; ;;; ; ; ; ;Special Flavor Functions;;;; ;;;;; ;;;

(defun revise-flavor-instances (flavor-name instance-varlables)

(let ((current (append (flavor:FLAVOR-ALL-INSTANCE-VARIABLES

(flavor: find-flavor flavor-name))))

(new (mapcar ' (lambda (x) (cond ((listp x) (car x)) (t x))) instance-variables)))

(cond ((and (= (length current) (I+ (length instance-variables)))

(every ' (lambda (x) (member x current)) new))

nil)

(t

(flavor:remove-flavor flavor-name)

(eval ' (defflavor , flavor-name

, (append instance-variables

' (Constraint-function))

()

: readable-instance-variables

:writ able-inst ance-variables

:initable-instance-variables))))))

(defmacro with-modified-flavor-definitlon (flavor-name instance-variables

flavor-instances &body body)

'(let ((flavor (flavor:find-flavor ,flavor-name)))

(revise-flavor-instances , flavor-name ,instance-varlables)

(loop for each in , flavor-lnstances

do

(flavor:transform-instance each flavor))

• @body))

(defun supply-instance-variables-with-values (variables-and-values instances)

(cond ((and instances variables-and-values)

(loop with flavor = (flavor:flavor-name
ORiGiNAL PAGE IS

OF POOR QUALITY

ANDY:>jsr>res_urce-a_cati_n>mu_tip_e_with_av_rs>mu_tip_e-res_urce-_av_rs-and-4i_H1es_isp_7

(flavor::%INSTANCE-FLAVOR

(eval (cast variables-and-values))))

for (instance value) in variables-and-values

as variable = (read-from-string

(format nil "~a-~A" flavor instance))

do

(eval '(setf (,variable , {eval instance)) ,value))))))

;;;;;;;;;;;;;;Global Variables;;;;;;;;;;;;

defvar *activity*)

defvar *activity-variables* nil)

defvar *environment*)

defvar *frames*)

defvar *max-timo*)

defvar *time-list*)

defvar *l_-lists*)

(defvar *paths*)

defvar *original-screen-size* nil)

defvar *second-timD* nil)

defvar *current-file*)

;;Loaded from data file.

defvar *Resource-File-Directory* "andy:>jsr>resource-allocation>multiple-data-files>")

defvar *resources*)

defvar *resource-variables* nil)

'defvar *resources-output* nil)

defvar scheduled-ltems)

de fvar *maximizing-resource-list*)

defvar *maximizing-resource-position*)

defvar *graphical-output* nil)

idefvar *graphical-display* nil)

defvar *resource-output-window* (tv:make-window 'dw:dynamlc-window

: 1 abel "Resource Allocation Window"

:blinker-p nil))

(defvar *display-menu* (tv:make-window

'selection-menu •

: I abel H Select Displayed Output"
:default-character-style '(:fix :roman :large)

:special-choices ' (("Selection Complete" ;funcall-with-self complete))))

(defvar *resource-manu-window* (tv:make-window 'dw:dynamic-window

=label "Experiment Data Editor Window"
:blinker-p t))

; (defvar *Data-choices-menu* (tv:make-window 'tv:momentary-menu

; :borders 4

; :label ,,Alternate Data File List"))

(defvar *message-window* (tv:make-window 'dw:dynamlc-window

; :blinker-p nil

:edges-from ' (300 300 850 400)

:margin-components

' ((dw:margin-scroll-bar :visibility :if-needed)

(dw:margin-ragged-borders :thickness 4)

(dw:margin-label

:margin :bottom

: string "_4essage Window (Press any key to EXIT) '_)))

(defvar *graphics-window* (tv:make-window 'dw:dynamlc-window O_i_NAL PAGE i.e

"_=_ _ OF POOR QUALFI"Y

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-with-_av_rs>mu_tip_e_res_urces-with-_av_rsB_d

;:; -*- Mode: LISP; Syntax: Common-llsp; Package: USER; Base: iO -*-

;;;;;;;;;;;Input and Variable Initializing Functions;;;;;;;;

(defun open-lnput-file ()

(let ((infile (dw:menu-choose (get-data-file-list)

:prompt "Data File List")))

(cond (infile (load (string-append *Resource-File-Directory* infile)

:verbose nil)

(initialize-frames)

(setq *current-file* infile)))))

defun inltialize-frames ()

(loop for frame in *fran_e*

collect (car frame) into names

finally (setf (environment-activities *envlromment*) names)))

de fun determlne-maximizlng-resource ()

(setq *maximizlng-resource-liet* (prioritize-resource-list)

maximizlng-resource-position

(loop for resource in *maxlmizing-reeource-lilt*

collecting (position resource *resource-variables*)) 55

de fun reeet-llmbda-functlone (5

(loop for (resource priority max-val lambda) in *lamh4a-liets*

do

(cond ((and (boundp resource) (instancep (eval resource) 5)

(setf (resource-limit (eval resource)) max-val)

(serf (resource-priority (eval resource)) priority)

(setf (resource-constraint-function (eval resource)) lambda))

(t

(set resource (make-instance " resource

:limit max-val

:priority priority

:constraint-function lambda))))))

defun initialize-hash-tables (5

(let ((parameters

(loop for resource-item-string in *resources*

as resource = (make-variable-from-string resource-ltem-string)

collecting resource into var

collecting (read-from-string (format nil "activlty--a" resource))

collecting O into value

finally (setq *resource-variables* var

actlvity-variables var2)

(return (list (cons 'scheduled-items var5

(append ' (nil nil) value))))))

(loop for resource in (car parameters)

for val in (cadr parameters)

do

(cond ((boundp-in-instance (eval resource) val5

(clrhash (resource-hash-table (eval resource))))

(t (setf (resource-hash-table (eval resource))

(make-hash-table) 5))

(swaphash 0 val (resource-hash-table (eval resource)))

(swaphash *max-time* val (resource-hash-table (eval resource))))))

; (defun initillize-_arkerm-ar_-variablee ()

; (loop for eac in *frlmoe*

; as name = (car eac)

: do

: (loop for each in (cdr eac)

; do

; (zl:putprop name (caadr each) (car each))))

; (setq *tlme-list* (list O *max-tlme*)) 5

(defun create-object-structures ()

(de fine-environmental-st ructures)

(loop for eac in *frames*

as name = (car eac)

do

(loop for each in (cdr eac)

append (list (read-from-string (format nil ":~a" (car each)))

(caadr each)) into var-list

finally (set name (revise-flavor-instances

into vat2

O_._,_!N_L P,_C_E If

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-with-_av_rs>mu_tip_e-res_urces_with_av_rsDi_g_6_

(make-instance 'activity)

var-list)))

do

(zl:putprop name (caadr each) (car each))))

(setq *time-list* (list 0 *max-time*))

(initialize-hash-tables)

(revise-flavor-instances 'activity *resource-variables*)

(reset-lambda-functions)

(determine-maximizlng-resource))

(defun define-environmental-structures ()

(if (null *environment*)

(setq *environment* (make-instance 'environment

:total-time *max-tlme*))))

;:Returns a sorted list based on highest priority resource

;;in form of ' (expl exp2 exp3 ...)

(defun build-list ()

(let ((ist (environment-activities *activity*)))

(loop for resource in (reverse *maximlzing-reseuroo-list*)

as ist2 = (zl:sortcar (loop for exp in ist

collect (list (funcall resource

do

(setq 1st (loop for each in Ist2

collecting (cadr each))))

Ist))

(defun prioritize-resource-list ()

(sort (remove 0 (copy-list *resource-variables*) :test #'=

:key #'resource-priority)

#'> :key #'resource-priority))

;;;;;;;;;;;;;;Top Level Functions;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;MAIN PROGRAM;;;;;;;;;;;;;;;

(defun Allocate-Resources ()

(time (Allocate-Resources-aux)

(format t "~3%**** Progr&m Timing ****-2%")))

exp) exp)) #'>)

(defun Allocate-Resouroes-aux ()

(cond (*second-time* t)

(t (open-lnput-file)

(setq *second-time* t)))

(create-object-structures)

(initialize-markers-and-variables)

(examine-data)

(create-object-structures)

(send *resource-output-window* :clear-history)

(send *resource-output-window* :select)

(let ((ist (build-list)))

(schedule-pass-one ist)

(display-pass t)

show-used)

format *resource-output-window* "~3%~a "

(catch 'resource (accept 'label-type :stream *rosour_-output-window*

:prompt nil)))

schedule-pass-two ist)

(display-pass)

(show-used))

:(send *graphics-window* :select)

(format *resource-output-window* "~3%~a"

(catch 'resource (accept 'label-type :stream *graphics-window*

:prompt nil)))

(zl:readline *rosourceyoutput-wlndow*))

;;;;;;;;;;;;; TOP LEVEL FUNCTIONS ;;;;;;;;;;;;

(Defun schedule-pass-one (nlst)

(loop with ist = (copy-list nlst)

for (start interval-tlme)=(list 0 *max-time*)

then (find-new-parameters start)

until (or (= start *max-time*) (null Ist))

as group = (find-max-path start (current-status start)

(find-resource-candidates Ist interval-time start))

OI_._,,NAI.. PAGE IS

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_with_av_rs>mu_tip_e_res_urces-with-_av_rs_

do

(format t "~%~A -a " group start)

(cond ((atom (car group)))

(t

(update-hash-tables start

(loop for item in (car group)

as performances = (activity-performances item)

as duration = (activity-duration item)

as time = (* performances duration)

if (> time interval-time)

do (setq time

(* (setq performances

(zl:fix (/ interval-time duration)))

duration))

if (> performances 0)

collect (list item time) into var

finally (return vat)

do

(setf (activity-scheduled-performances item)

(+ performances (activity-scheduled-performances item)))

(setf (activity-performances item)

(- (activity-performances item)))

(cond ((<= (- (activity-performances item) performances) 0.)

(setq ist (remove-experiment-from-schedule-list

item Ist))))))))))

(defun schedule-pass-two (nlst)

(loop with Ist = (copy-list nlst)

for (start interval-time) = (find-new-parameters)

then (find-new-parameters start)

for current-status = (current-status start)

until (= start *max-time*)

as possible-choices = (non-scheduled Ist (gethash start scheduled-items))

do

; (format t "~3% start = ~A ~20t~a" start current-status)

(loop with params = nil

while interval-time

while (Parameters-wlthin-range current-status) ;;Need exit condition here

as group = (find-max-path start current-status

(find-resource-candidates

possible-choices interval-time start))

do

; (format t "~%Interval time = ~a ~20t~a~40t~a" interval-time current-status group)

(cond ((atom (car group))

(cond ((= (+ start interval-time) *max-time*)

(setq interval-time nil))

(t

(setq params (find-next-parameter current-status

(+ start interval-time))

possible-choices (remove-next-time-events

(+ start interval-time) possible-choices))

(setq current-status (car params)

interval-time (- (cadr params) start)))))

(t

(update-hash-tables start

(loop for item in (car group)

as duration = (activity-duration item)

as performances = (zl:fix (/ interval-time duration))

as time = (* performances duration)

collect (list item time) into varl

minimize time into vat2

finally (setq interval-time vat2)

(return varl)

do

(setf (activity-scheduled-performances item)

(+ performances (activity-scheduled-performances item)))

(serf (activity-performances item)

(- (activity-performances item) performances))

(setq possible-choices (remove-experiment-from-schedule-list

item possible-choices))))

(setq interval-time nil))))))

(defun complete (self)

(send self :deactivate))

OR!G{HAL PAGE IS

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_with-_av_rs>mu_tip_e_res_urces_with-_av_rs_li_6_

(defun display-pass (&optional (title nil))

(dw::with-output-truncation (*resource-output-window* :horizontal t)

(cond (title

(format *resource-output-window* "~2%~38t~v_source Allocation Results~_%"

Font)

(cond ((null *resources-output*)

{send *display-menu* : set-label .,Select Displayed Output,.i
(send *displey-mmnu* :set-item-list *resource*)

{send *display-menu* :choose)

(setq *resources-output*

(reverse (send *display-menu* :highlighted-values)))))

(format *resource-output-window* "~4% **** FIRST PASS RESULTS ****~2%"))

(t

(format *resource-output-window* "-4% **** SECOND PASS RESULTS ****")))

(select-graphical-display)

(let ((x-y-locations (Initialize-Graph-information *graphical-output*))

(space I0))

(show-scheduled)

(loop for resource in *resources-output*

initially (space-over *resource-output-window* (+ 6 space})

do

(space-over *resource-output-window* space)

(format *resource-output-window* "~'b__a~_ resource))

(loop for time in *time-list*

for next-tlme in (cdr *time-list*)

do

(setq x-y-locations (display-output-sensitive "~%" time next-time x-y-locations

:stream *resource-output-window*})

(loop for variable in (make-variables *resource-output*)

for header in *resources-output*

as width = (string-length header)

for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)

do

(format *resource-output-window* (format nil "-~~at" (zl:fix column)))

(format *resource-output-window* "-8@a" (gethash time (eval variable)))

(setq column (+ (/ width 2.0) column))))}))

(defun display-output-sensitive (return time next-time x-y-locatlons &key (stream *resource-menu-window*)

(type 'l_l-type))

(dw:with-output-as-presentation (:single-box t

:stream stream

:dont-snapshot-variables t

:type type

:object (list time))

(prlnt-it stream return time))

; {print-it *graphlcs-window* return time))

(if (and (not (equal *graphical-display* 'none)} x-y-locations)

(setq x-y-locations (funcall *graphical-dlsplay* x-y-locations next-time)))

x-y-locations)

(defun print-it (stream return time)

(format stream (format nil "-a~A" return time)))

(defun make-variablom (let)

(loop for string in let

collect (make-variable-from-string string)))

(defun show-used ()

(format *resource-output-wlndow* "-3%-10TItem-20tRemaining-40tSchedulod-%")

(loop for item in (environment-activities *environment*)

do

(format *resource-output-wlndow* "~%~10T~A-23t~a~43t~a" item (activity-performances item)

(actlvity-scheduled-performances item})))

;;;;;;;;;;;;;; Second Pass Functions ;;;;;;;;;;;

(defun non-scheduled (let used)

(let ((possible let))

(loop for item in used

do

(setq possible (remove item possible :test #'equal)))

possible))

;; ;;;;; ; ; ; ;; ;; Common Pass Functions ;;;;; ;;;;; ; OF' POOR QOALI, Ty _

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-with-_av_rs>mu_tip_e-res_urces_with-_av_rs_li_$

(defun find-new-parameters (&optional (current nil)(params nil))

(let ((Ist *time-list*))

(cond ((null current)

(setq ist (cons 0 ist)))

(t

(setq ist (member current *tlme-llst* :test #'=))))

(loop with start = (cadr ist)

with status = (if params params (current-status start})

for time in (cddr ist)

while (compare-each-time-status status time)

finally (return (list start (if time (- time start)

(- *max-ti -_* (cadr ist))))))))

(defun find-next-parameter (current time)

(let ((next (mapcar #' (lambda (x y) (if (> x y) x y)) current

(current-status time))))

(list next (cadr (member time *tlme-list*)))))

(defun remove-next-time-events (time ist)

(loop for item in (gethash time scheduled-ltems)

do

(setq Ist (remove-experiment-from-schedule-list item Ist)))

Ist)

(defun compare-each-time-status (status time)

(loop for pos from 0

for each in *maxlmizlng-resource-list*

for location in *maximizing-resource-positlon*

always (<= (gethash time (eval each})

(nth location status))

finally (return t)))

(defun Parameters-within-range (current-status)

(loop for each in *maxlmlzing-resource-list*

for location in *maximizing-resource-positlon*

always (> (resource-limit each)

(nth location current-status))))

(defun update-Hash-tables (start Ist)

(loop for (iteml duration) in Ist

as end-time = (+ start duration)

do

(cond ((null (member end-time *time-list* :test #'=))

(loop for resource in (cons 'scheduled-items *resource-varlables*)

do

(swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))

(setq *time-list* (sort (cons end-time (copy-list *time-list*)) #'<))))

(loop for time in (member start *time-list*)

until (= end-time time)

do

(swaphash time (append (Gethash time 'scheduled-items) (list iteml))

scheduled-items)

(loop for resource in *resource-variables*

for operation in *activity-variables*

do

(swaphash time (+ (Get-hash-value time (resource-hash-table resource))

(funcall operation iteml)) (resource-hash-table resource))))))

(defun Get-hash-value (time resource-table &optional (not-new t))

(let ((value (gethash time resource-table)))

(cond (value value)

(not-new nil)

(t (gethash (loop with previous = 0

for last-time in *time-list*

until (>= last-time time)

finally (return previous)

do

(setq previous last-time))

resource-table)))))

(defun find-resource-candidates (ist endpoint start)

(loop for exp in (find-interval-candidates Ist endpoint)

if (check-constraints (add-constraint-values (current-status start) e×p))

collect exp into resource-candidate-list

finally (return resource-candidate-list)))

OR_C_%L P;_E IS
O{ POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-with_av_rs>mu_tip_e_res_urces-with-_av_rs_i_

(defun find-interval-oandidatel (ist endpoint)

(loop for exp in ist

if (feasible-interval exp endpoint)

collect exp into variable

finally (return variable)))

(defun feasible-interval (experiment endpoint)

(< (get experiment 'duration) endpoint))

(defun find-possible-downward-paths (sv ist)

(let* ((top (car ist))

(bottom (cdr ist))

(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) ' (()))

(bottom

(loop for down-lst on (cdr ist)

append (group-intermediate-lists

top (find-possible-downward-paths val down-lst)) into var

finally (return var)))

(t (list ist)))))

(defun a_-constraint-values (Ist exp)

(loop for resource in *resource-variables*

for value in Ist

if (null value)

do (setq value O)

collecting (+ value (get exp resource))))

(defun check-constraints (Ist)

(loop for resource in *resource-variables*

for value in ist

always (apply (resource-constraint-function resource) (list value))

finally (return t)))

defun find-max-path (time sv ist)

(loop with max-paths = nil

with max-value = 0

for new-let on Ist

as paths = (find-possible-paths sv new-lst)

as value = (get-time-lnterval-priority-value (get-group-values (car paths)) sv)

finally (setq max-paths (sort-max-paths max-paths))

(swaphash time max-paths *paths*)

(return (car max-paths))

do

(cond ((= max-value value)

(setq max-paths (append max-paths paths)))

((< max-value value) (setq max-paths paths

max-value value)))))

defun sort-max-paths (paths)

(let ((Ist (loop for path in paths

collecting (list path (get-group-values path)))))

(loop for pos in (reverse *maximlzlng-resource-posltion*)

do

(setq Ist (sort ist #'> :key (lambda (x) (nth pos (cadr x))))))

ist))

(defun get-time-interval-prlority-value (values Ist &optional (pos 0))

(cond (values

(+ (nth (nth pos *maximlzing-resource-;_Dmitlon*) values)

(nth (nth pos *maximizing-resour_-positlon*) ist)))

(t 0)))

(defun group-inteEmediate-lists (item 1st)

(loop for each in Ist

collect (cons item each)))

(defun remove-experiment-from-schedule-list (exp Ist)

(remove exp (copy-list ist) :test #'equal))

(defun find-possible-paths (val reseurce-candidates)

(let ((ist (find-possible-downward-paths val resource-candidates)))

(cond ((null ist) (return-from find-possible-paths nil))

(t (get-maximized-sub-path ist)))))

G"__ POCR QUALIT_'

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_with_av_rs>mu_tip_e_res_urces-with-_av_rs_]i_e¢

(defun get-maxlmized-sub-path (paths)

(loop for resource in *maximlzlng-relour_-list*

for position in *maximizlng-regource-pomltlon*

until (= (length paths) i)

do

(setq paths

(loop for ist in paths

with max-val = 0

with max-lsts = nil

as resource-value = (nth position (get-group-values ist))

finally (return (reverse max-lsts))

do

(cord ((> resource-value max-val)

(setq max-val resource-value

max-lsts (list ist)))

((= resource-value max-val)

(setq max-lsts (cons Ist max-lsts)))))))

paths)

(defun get-group-values (group)

(loop for item in *actlvity-varlables*

collecting (loop for each in group

summing (funcall item (eval each)})))

(defun current-status (time)

(loop for each in *resource-variahlel*

as value = (gethash time (resource-hash-table (eval each)))

if (null value)

do (setq value 0)

collecting value))

(defun show-scheduled ()

(format *resource-output-window* "~2% Tima ~20tSchadulad Events~%")

(loop for time in *time-list*

do

(format *resource-output-window* "-% ~A ~20t~A" time (gethash time scheduled-items)))

(format *resource-output-window* "_2%"))

(defun show-resource (resource)

(loop for time in *time-list*

do

(format t "-% ~A ~20t~A" time (gethash time resource))})

; (defun make-mouse-sensitlve-labels (return object &key (stream *ralource-menu-window*)

; (type 'label-type))

; (dw:with-output-as-presentation (:single-box t

; :stream stream

: :type type

; :object object)

; (format stream (format nil "~a-A " return (cadr object)))))

OF' POOR QUALITY

Appendix B

38

ANDY:>jsr>res_urce-a_cation>mu_tip_e_sing_e.performance_step>mu_tipIe_res_ur_es.h_$

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

(defun open-lnput-file ()

(let ((infile (dw:menu-choose (get-data-file-list)

:prompt "Data File List")))

(cond (infile (load (strlng-append *Resource-File-Dire=tory* infile)

:verbose nil)

(initialize-frames)

(setq *current-file* infile)})))

(defun initialize-framJs ()

{zl:putprop "list-of nil 'names)

{loop for frame in *frames*

as name = (car frame}

do

(zl:putprop 'list-of {append (get 'list-of 'names) {list name)} 'names)))

{defun determlne-maximizing-resource ()

(setq *maximizing-resource-llst* (prioritize-resource-list)

maximizlng-resour=e-position

{loop for resource in *maxlmizing-remour_-liet*

collecting (position resource *resource-variaJbles*))))

(defun reset-lambda-functions ()

(loop for (resource priority max-val lambda) in *lambda-lists*

do

(zl:putprop resource max-val 'resource-limit}

(zl:putprop resource priority 'resource-priority)

(zl:putprop resource lambda 'resource-constraint-function)))

(defun initialize-hash-tables ()

(let ((parameters

(loop for resource-item-string in *resources*

as resource = (make-variable-from-string resource-item-string)

collecting resource into var

collecting 0 into value

finally (setq *resource-variables* var)

(return (list {append ' (*paths* scheduled-items) var)

{append '(nil nil) value}))))}

(loop for resource in (car parameters)

for val in (cadr parameters)

do

(cond ((boundp resource)

(clrhash (eval resource)))

(t (set resource (make-hash-table})))

(swaphash 0 val (eval resource))

(swaphash *max-time* val {eval resource))))

{loop for exp in (get 'list-of 'names)

do

(zl:putprop exp nil 'when-scheduled)))

(defun initialize-markers-and-variables ()

(loop for eac in *frauds*

as name = (car eac)

do

(loop for each in {cdr eac)

do

(zl:putprop name (caadr each) (car each))))

(setq *time-list* {list 0 *max-ti"_*))

(initialize-hash-tables)

(reset-lambda-functions)

(determine-maxlmlzing-resource))

;;Returns a sorted list based on highest priority resource

;;in form of ' {expl exp2 exp3 ...)

(defun build-list ()

(let ((ist (get 'list-of 'names)))

{loop for resource in {reverse *maxlmizing-resource-list*)

as ist2 = {zl:sortcar (loop for exp in ist

collect (list (get exp resource) exp)) #'>)

do

(setq ist (loop for each in ist2

collecting {cadr each))))

ist))

(defun Rig-to-subst-gibbys-frontier-nodes-as-minimnlms ()

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-sing_e-perf_rmance_step>mu_tip_e_res_urces_8

(with-open-file (stream *Gibbys-frontier-node-file*

:if-does-not-exist nil)

(cond (stream

(loop for each in (read stream)

for value in (read stream)

do

(zl:putprop each value 'performances)))

(t

(format t "~3%~v_ibby, I need a frontier node!!!~_3% " ' (:eurex :italic :huge))

(beep)

"missing))))

(defun prioritlzo-rosource-list ()

(sort (remove 0 (copy-list *resource-variables*) :test #'=

:key ' (lambda (x) (get x 'resource-priority)))

#'> :key #' (lambda (x) (get x 'resource-prlorlty))))

(defun permanently-store-pass-one-results ()

(loop for resource in *resource-varifies*

as results = (eval resource)

do

(zl:putprop resource results 'pass-one))

(loop for each in (get 'list-of 'names)

do

(zl:putprop each (get each 'when-scheduled) 'pass-one))

(setq *Pass-one-time-line* *time-list*))

;;;;;;;;;;;;;;Top Level Functions;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;MAIN PROGRAM;;;;;;;;;;;;;;;

(defun Allocate-Resources ()

(time (Allocate-Resources-aux)

(format t "-3%**** Program Timing ****~2%")))

(defun Allocato-Resources-aux (&key (Gibby nil))

(cond (*slcond-tim_* t)

(t (open-input-file)

(setq *second-time* t)))

(initialize-markers-and-variables)

(if (and gibby (Rig-to-subst-gibbys-frontier-nodes-as-mlnimums))

(return-from Allocate-Resources-aux "Program Terminated Due to File-Not-Found"))

(examine-data)

(let ((ist (build-list)))

(send *resource-output-wlndow* : clear-history)

(send *resource-output-wlndow* : select)

(continue-allocation-pass-one let)

(permanently-store-pass-one-results)

(continue-allocation-pass-two ist)))

(defun continue-allocation-pass-one (Ist)

(schedule-pass-one ist)

(display-pass t}

(show-used}

(place-exit-button "Continue to Second Pass")

(proceed 'continue-allocation-pass-one})

(defun continue-allocation-pass-two (Ist)

(schedule-pass-two ist)

(display-pass)

(show-used)

(place-exit-button "Terminate Program")

(proceed "continue-allocation-pass-two))

; ; ;;; ;; ;; ; ; ; ; Back Tracking Capabilities ; ;;;;; ;;;;; ;;

(defun Proceed (function)

(let ((response

(car (catch 'resource (accept 'label-type :stream *resource-output-window*

:prompt nil)))))

(cond ((numberp response)

(backtrack function response))

((equal response " proceed)))))

O_i_._L PAGE _$

OF' POOR QUALFI'y

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_sing_e_perf_rmance_step>mu_tip_e_res_urces._h_

(defun backtrack (function time-slot)

(let ((cholces (gethash time-slot *paths*)))

up"

(loop while

(if (> (length choices) i)

(remove-and-restart function tlme-slot choices)

(send-message-to-user

(format nil "The only allocation selection given for ~a is the currently~%allocated gro

time-slot))))))

defun remove-and-restart (func time choices)

(loop as selection = (get-option-list

(format nil "Select Alternate Activity Schedule at Time -a" time)

(append (string-lists (cdr choices))

• ("Do Not Change Current Activity Schedule")))

when selection

do

(cond ((listp (read-from-string selection))

(reset-data-structures func time choices selection)

(funcall func time))

(t

(return-from remove-and-restart t)))))

(defun reset-data-structures (func time choices selection)

(let* ((cholce (read-from-string selection))

(common (intersection choice (car choices)))

(new (intersection common choice :test #' (lambda

(old (intersection common (car choices) :test #' (lambda (x y)

(kill-tlme (cdr (member time *tic-list*))))

(loop for exp in (get 'list-of 'names)

as scheduled = (get exp 'scheduled-performances)

as perfs = (get exp 'performances)

as times = (get exp 'when-scheduled)

do

(loop for eac in times

until (<= eac time)

counting t into number

finally

(zl:putprop exp (subseq times (I- number)) 'when-scheduled)

(zl:putprop exp (- scheduled number} 'scheduled-performances)

(zl:putprop exp (+ perfs number) 'performances)))

(loop for resources in *resource-variables*

as table = (eval resources)

do

(Remove-hash-entrles-with-times-greater-than table time))))

de fun Remove-haeh-entries-with-timee-greater-than (table start-time)

(maphash '(lambda (time value)

(if (> time ,start-time)

(remhash time ,table)))

table))

defun strlng-lists (ist)

(mapcar ' (lambda (x) (format nil "~a" x)) Ist))

(defun Place-exit-h._tton (message)

(format *resource-output-wlndow* "-2%~20t")

(dw:with-output-as-presentation (:single-box t

: st ream *resource-output-window*

: type ' label-type

:object 'proceed)

(surrounding-output-wlth-border (*resource-output-wlndow* :shape :oval

: filled t

:move-cursor nil)

(format *resource-output-window* message))))

;;;;;;;;;;;;; TOP LEVEL FUNCTIONS ;;;;;;;;;;;;

(Defun schedule-pass-one (nlst &key (backtrack-time nil))

(loop with Ist = (copy-list nlst)

for (start interval-time)= (if backtrack-time

(find-new-parameters backtrack-time)

(list 0 *max-time*))

then (find-new-parameters start)

until (or (= start *max-time*)

(null ist))

(X y) (not (eql x y)))))

(not (eql x y)))))

OF!_C:_C'-','.:_LPAGE IS

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_sing_e_perf_rmance_step>mu_tip_e_res_urces_b_g_8

as posslble-choices = (non-scheduled ist (gethash start scheduled-items))

as group = (find-max-path start {current-status start)

(find-resource-candidates

possible-choices interval-time start))

do

(format t "-%-A ~a " group start)

(cond ((atom (car group)))

(t

(update-hash-tables start

(loop for item in (car group)

as performances = (get item 'performances)

as time = (get item "duration)

collect (list item time) into var

finally (return vat)

do

(zl:putprop item (cons start (get item 'when-scheduled))

(zl:putprop item (+ 1 (get item 'scheduled-performances))

"scheduled-performances)

(zl:putprep item (- performances i)

"performances)

(cond ((<= performances I.)

(setq ist (remove-experiment-from-schedule-list

item Ist))))))))))

'when-scheduled

(defun schedule-pass-two (nlst)

(loop with ist = (copy-list nlst)

for (start interval-time} = (find-new-parameters)

then (find-new-parameters start)

for current-status - (current-status start)

until (= start *max-time*)

as possible-choices = (non-scheduled Ist (gethash start scheduled-items))

do

; (format t "~3% start = ~A ~20t~a" start current-status)

(loop with params = nil

while interval-time

while (Parameters-within-range current-status) ;;Need exit condition here

as group = (find-max-path start current-status

(find-resource-candidates

possible-choices interval-time start))

do

; (format t "~%Interval time = ~a ~20t~a~40t~a" interval-time current-status group)

(cond ((atom (car group))

(cond ((= (+ start interval-time) *max-ti_*)

(setq interval-time nil))

(t

(setq params (find-next-parameter current-status

(+ start interval-time))

possible-choices (remove-next-time-events

(+ start interval-time) posslble-choices))

(setq current-status (car params)

interval-time (- (cadr params) start)))))

(t

(update-hash-tables start

(loop for item in (car group)

as duration = (get item "duration)

as performances = (zl:fix (/ interval-time duration))

as time = (* performances duration)

collect (list item time) into varl

minimize time into var2

finally (setq interval-time var2)

(return varl)

do

(zl:putprop item (+ performances

(get item 'scheduled-performances))

'scheduled-performances)

(zl:putprop item (- (get item 'performances)

performances)

'performances)

(setq possible-choices (remove-experlment-from-schedule-list

item possible-choices))))

(setq interval-time nil))))))

(defun complete (self)

(send self :deactivate))

G_iGiN_L PAGE IS

C_ POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-sing_e-perf_rmance-step>mu_tip_e-res_urces_i_28

(defun dlsplay-pass (&optional (title nil))

(dw::with-output-truncation (*reeouEoe-output-wlndow* :horizontal t)

(cond (title

(format *resource-output-window* "~2%~38t~vBesource Allocation Results~_%"

Font)

(cond ((null *resources-output*)
lr%_ __I __ J f% L_ L

(send *display-mlnu* : set-label ulsp, ayeu uutput,,)

(send *display-_nu* :set-item-list *relourc_s*)

(send *4Lisplay-menu* :choose)

(setq *zesouzcem-output*

(reverse (send *display-menu* :highlighted-values)))))

(format *resource-output-window* "~4% **** FIRST PASS RESULTS ****~2%"))

(t

(format *resource-output-window* "~4% **** SECOND PASS RESULTS ****")))

(select-graphical-display)

(let ((x-y-locations (Initialize-Graph-informatlon *graphical-output*))

(space I0))

(show-scheduled)

(loop for resource in *resources-output*

initially (space-over *resource-output-window* (+ 6 space))

do

(space-over *resource-output-window* space)

(format *resource-output-window* "~'b_.a~_ resource))

(loop for time in *time-list*

for next-time in (cdr *time-list*)

do

(setq x-y-locations (display-output-sensitive "~%" time next-time x-y-locations

:stream *resource-output-window*))

(loop for variable in (make-variables *resources-output*)

for header in *resources-output*

as width = (string-length header)

for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)

do

(format *resource-output-window* (format nil "~~~at" (zl:fix column)))

(format *resource-output-window* "~8@a" (gethash time (eval variable)))

(setq column (+ (/ width 2.0) column)))))))

(defun display-output-sensitive (return time next-time x-y-locations

&key (stream *remouroe-_nu-windew*)

(type 'l_l-type))

(dw:with-output-as-presentation (:single-box t

:stream stream

:dent-snapshot-variables t

:type type

:object (list time))

(print-it stream return time))

; (print-it *graphlcs-window* return time))

(if (and (not (equal *graphical-display* 'none)) x-y-locations)

(setq x-y-locations (funcall *graphlcal-display* x-y-locations next-tlme)))

x-y-locations)

(defun print-it (stream return time)

(format stream (format nil "~a~A" return time)))

(defun make-variables (Ist)

(loop for string in Ist

collect (make-variable-from-strlng string)))

(defun show-used ()

(format *resource-output-window* --3%-10TItem-20tRemaining-40tScheduled-%")

(loop for item in (get 'list-of 'names)

do

(format *resource-output-window* "~%~10T~A~23t~a~43t ~a" item (get item 'performances)

(get item 'scheduled-performances))))

;;;;;;;;;;;;;; Second Pass Functions ;;;;;;;;;;;

(defun non-a=heduled (Ist used)

(let ((possible ist))

(loop for item in used

do

(setq possible (remove item possible :test #'equal)))

possible))

OF POOP. QtJALIT_

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_sing_e-perf_rmance-step>mu_tip_e_res_urces_h_6

;;;;;;;;;;;;;; Common Pass Functions ;;;;;;;;;;;

(defun find-new-plrameteri (&optional (current nil)(params nil))

(let ((Ist *time-list*))

(cond ((null current)

(setq ist (cons 0 ist)))

(t

(setq ist (member current *time-list* :test #'=))))

(loop with start = (cadr ist)

with status = (if params params (current-status start))

for time in (cddr Ist)

while (compare-each-time-status status time)

finally (return (list start (if time (- time start)

(- *max-time* (cadr ist))))))))

(defun flnd-next-p&rameter (current time)

(let ((next (mapcar #' (lambda ix y) (if (> x y) x y)) current

(current-status time))))

(list next (cadr (member time *ti_-list*)))))

(defun remove-next-time-events (time ist)

(loop for item in (gethash time scheduled-items)

do

(setq Ist (remove-experiment-from-schedule-list item ist)))

ist)

(defun con_pare-each-time-status (status time)

(loop for pos from 0

for each in *maxlmizing-resource-list*

for location in *maximizing-resource-polition*

always (<= (gethash time (eval each))

(nth location status))

finally (return t)))

(defun Parameters-within-range (current-status)

(loop for each in *maximizing-resource-list*

for location in *maximizing-reiource-polition*

always (> (get each 'resource-limit)

(nth location current-status))))

(defun update-Haeh-tables (start ist)

(loop for (iteml duration) in ist

as end-time = (+ start duration)

do

(cond ((null (member end-time *time-list* :test #'=))

(loop for resource in (cons 'scheduled-items *resource-variables*)

do

(swaphash end-tlme (Get-hash-value end-time resource nil) (eval resource)))

(setq *tlme-list* (sort (cons end-time (copy-list *time-list*)) #'<))))

(loop for time in (member start *time-list*)

until (= end-time time)

do

(swapbash time (append (Gethash time scheduled-items) (list iteml))

scheduled-items)

(loop for resource in *resource-variables*

do

(swaphash time (+ (Get-hash-value time resource)

(get iteml resource)) (eval resource))))))

(defun Get-hesh-value (time resource &optional (not-new t))

(let ((value (gethash time (eval resource))))

(cond (value value)

(not-new nil)

(t (gethash (loop with previous = 0

for last-time in *time-lilt*

until (>= last-time time)

finally (return previous)

do

(setq previous last-time)) (eval resource))))))

(defun find-resource-candldates (1st endpoint start)

(loop for exp in (find-interval-candidates ist endpoint}

if (check-constralnts (add-constraint-values (current-status start) exp))

collect exp into resource-candidate-list

finally (return resource-candidate-list)))

ORIGINAL PAGE IS

OF POOR QUALITY

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e-sing_e-perf_rmance-step>mu_tip_e-res_urces_g

(defun find-lnterval-candidates (ist endpoint)

(loop for exp in ist

if (feasible-interval exp endpoint)

collect exp into variable

finally (return variable)))

(defun feasible-interval (experiment endpoint)

(< (get experiment 'duration } endpoint))

(defun find-possible-downward-paths (sv ist)

(let* ((top (car Ist))

(bottom (cdr 1st)}

(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) '(()))

(bottom

(loop for down-lst on (cdr Ist)

append (group-intermediate-lists

top (find-possible-downward-paths val down-lst)) into var

finally (return var)))

(t (list ist)))))

(defun add-constralnt-values (Ist exp)

(loop for resource in *resource-variables*

for value in Ist

if (null value)

do (setq value O)

collecting (+ value (get exp resource))))

(defun check-constraints (ist)

(loop for resource in *resource-variables*

for value in ist

always (apply (get resource "resource-constraint-function) (list value))

finally (return t)))

(defun find-max-path (time sv ist)

(loop with max-paths = nil

with max-value = 0

for new-lst on ist

as paths = (find-possible-paths sv new-lst)

as value = (get-time-interval-priority-value (get-group-values (car paths))

finally (setq max-paths (sort-max-paths max-paths))

(Set-back-tracking-paths

time (gethash time scheduled-items) max-paths)

(return (car max-paths))

do

(cond ((= max-value value)

(setq max-paths (append max-paths paths}))

((< max-value value)

(setq max-paths paths

max-value value)))))

(defun Set-back-tracking-paths (time prefix suffix)

(swaphash time

(remove-duplicates

(loop for (eac rst) in suffix

collect (append prefix eac))

:test #'equal)

paths))

(defun sort-max-paths (paths)

(let ((Ist (loop for path in paths

collecting (list path (get-group-values path)))))

(loop for pos in (reverse *maxlmizlng-resouroe-position*)

do

(setq ist (sort ist #'> :key (lambda (x) (nth pos (cadr x))))))

Ist))

(defun get-time-interval-priorlty-value (values Ist &optional (pos 0))

(cond (values

(+ (nth (nth pos *maximizing-reseurce-_mition*} values)

(nth (nth pos *maximlzlng-resouree-pomitien*) ist)))

(t 0)))

(defun group-intern_diate-lists (item ist)

(loop for each in Ist

collect (cons item each}))

sv)

OR_G!NAL PAGE IS

OF POOR QUALiTf

ANDY:>jsr>res_urce_a_cati_n>mu_tip_e_sing_e_perf_rmance-step>mu_tip_e_res_urces_B_g_8

(de fun r4unove-_rimont-from-schedule-limt (exp ist)

(remove exp (copy-list ist) :test #'equal))

(defun find-possible-paths (val resource-candidates)

(let ((ist (find-possible-downward-paths val resource-candidates)})

(cond ((null ist) (return-from find-possible-paths nil))

(t (get-maximized-sub-path ist)))))

(defun get-maximlzed-sub-path (paths)

(loop for resource in *maximizing-resource-list*

for position in *maximizing-resource-position*

until (= (length paths) I)

do

(setq paths

(loop for Ist in paths

with max-val = 0

with max-lets = nil

as resource-value = (nth position (get-group-values ist))

finally (return (reverse max-lsts))

do

(cond ((> resource-value max-val)

(setq max-val resource-value

max-lsts (list ist}))

((= resource-value max-val)

(setq max-lsts (cons let max-lsts)))))))

paths)

(defun get-group-values (group)

(loop for item in *resource-variables*

collecting (loop for each in group

summing (get each item))))

(defun current-status (time)

(loop for each in *resource-variables*

as value = (gethash time (eval each))

collecting (if value value 0)))

(defun show-scheduled ()

(format *resource-output-window* "~2% Time ~20tSche4h_led Events~%")

(loop for time in *time-list*

do

(format *resource-output-window* "~% ~A ~20t~A" time (gethash time scheduled-items)))

(format *resource-output-window* "~2%"))

(defun show-resource (resource)

(loop for time in *time-list*

do

(format t "~% ~A ~20t~A" time (gethash time resource))))

; (defun make-_uge-aensitive-labela (return object &key (stream *relource-menu-window*)

; (type 'label-type))

; (dw:with-output-as-presentation (:single-box t

; :stream stream

; :type type

; :object object)

; (format stream (format nil "~a~A" return (cadr object)))))

OR_L ;-_GE iS

OF P_GR.. QUALITY

Appendix C

47

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 1

;;; -*- Syntax: Common-Lisp; Package: USER; Base: I0; Mode: LISP -*-

defvar *Resource-File-Directory* "andy:>jsr>resource-allocation>multiple-data-files>")

defvar *frames*)

defvar *max-resource-area* 0)

defvar *currently-used* 0)

defvar *current -file* nil)

defvar *experiments*)

defvar *max-resource-area* 58000000)

defvar *Not-Previously-Notified* t)

defvar *mossage-window* (tv:make-window 'dw:dynamic-window

; :blinker-p nil

:edges-from '(300 300 850 400)

:more-p nil

:margin-components

'((dw:margin-scroll-bar :visibility :if-needed)

(dw:margin-ragged-borders :thickness 4)

(dw:margin-label

:margin :bottom

:string '_4essage Window (Press any key to EXIT)"))))

(defvar *interface-wlndow* (iv:make-window 'dw:dynamic-window))

(de fflavor activity

(Name

Experiment-Number

Duration

Power-Required

Man-Power

Data-Rate

Performances

Minimum-Performances

Maximum-Performances

Scheduled-Performances

Presentation

(Highlighted nil))

()

(:conc-name "")

: init able-i nst ance-variables

: readable-instance-variables

:writ able-inst ance-variables)

(defun set-up-objects ()

; (setq *max-resource-area* (* *max-time* *max-resource*))

(loop for each in *frames*

as name = (car each)

collecting name into name-list

as ist = (loop for next in (cdr each)

collecting (read-from-string (format nil ":~a" (car next))) into args

collecting (caadr next) into args

finally (return (append (list :name (format nil "-a" name)) args)))

finally (setq *Experiments* name-list)

do

(set name (apply #'make-instance (cons 'activity Ist)))

(set-minimum (eval name)))

(calculate-area-used))

(defmethod (set-minimum activity) ()

(setq Minimum-performances Performances))

(defun restart ()

(setq *current-file* nil *currently-used* 0 *used-lst* nil ij I))

(defun calculate-area-used ()

(setq *currently-used*

(loop for name in *experiments*

as duration = (duration (eval name))

OREG!P,,t,_LPAGE IS

OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 2

as power = (power-required (eval name))

as parrs = (performances (eval name))

summing (* duration power parrs) into tot-area

finally (return tot-area))))

(defun make-window-layout ()

(let* ((space i0))

(format *interface-window* "~%")

(loop for exp-lst in (subgroup-list *experiments* 12)

counting t into row

collecting (loop for exp in exp-lst

counting t into column-number

as column = (* i0 column-number)

collect (list exp row column-number) into headings

finally (format *interface-wlndow* "~%")

(return headings)

do

(format *interface-window* (format nil "~~~at~a" (zl:fix column) exp))) into vat

do

(loop for exp in exp-lst

counting t into col-hum

as col = (* I0 col-hum)

do

(place-variable col 'performances exp))

(format *interface-window* "~2%"))))

;;This defines the item presentation type and documentation llne display

(define-presentation-type resource-type ()

:no-deftype t

:parser ((stream) (loop do (dw:read-char-for-accept stream)))

:printer ((object stream)

(format stream "the resource ~A" (car object))))

;;This is what is done when the item is selected

(define-presentation-action choose-type

(resource-type t

:gesture :left

:context-independent t

:documentation "Change this value")

(resource)

(throw ' resource

(list resource (presentation (eval (caar resource))))))

;;This function assists in correct column spacing

(defun place-variable (column variable exp)

(format *interface-window* (format nil "~~~at" (zl:fix column)))

(format-item-mouse-sensitive *interface-window* (funcall variable (eval exp))

(list (list exp variable)

(multiple-value-bind (a b)

(send *interface-window* :read-cursorpos)

(list a b)))))

;;This function prints the item to the screen with mouse sensitivity

(defun format-item-mouse-sensitive (stream incoming-item descriptors)

; (if (> iJ 172) (dbg:dbg) (setq ij (+ 1 ij)))

(let* ((object (eval (caar descriptors)))

(items (verify-value-range object Incoming-item))

(font (car items))

(item (cadr items)))

(eval '(setf , (list (cadar descriptors) object) ,item))

(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))

(clearspace stream)

(serf (presentation object)

(dw:with-output-as-presentation (:single-box t

:stream stream

:type 'resource-type

:object descriptors)

(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))

(format stream "~v__a~_ font item)))))

(defmethod (verify-value-range activity) (item)

; (if (> ij 172) (dbg:dbg))

(let* ((font '(:fix :roman :normal))

(upper maximum-performances)

(lower minimum-performances) ;; (zl:fix (+ (* 2/3 upper) .9)))

(state nil) ORiG!N._L PAGE iS

OF POOR QUALITf

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 3

(available (- *max-resource-area* *currently-used*))

(increment (zl:fix (/ available (if (> power-required 0)

{* duration power-required) (abs available)))

(resource-limit (+ performances

(if (> increment 0) increment 0))))

(dbg:dbg)

(cond ((and (> item upper)

(>= resource-limit upper))

(setq font ' (:fix :bold :normal)

state "upper))

((< item lower)

(setq font ' (:fix :italic :normal)

state 'lower))

((and (> item resource-limit)

(> upper resource-limit))

(setq font ' (:fix :roman :normal)

state "resource-limit)))

(case state

(upper (setq font ' (:fix :bold :normal))

(send-message-to-user

(format nil "The value you entered (~a) for the number of~

~%Performances of ~a is above the maximum allowed of ~A~2%~

The maximum value will be used." item name upper))

(setg item upper))

(lower (setq font ' (:fix :italic :normal))

(send-message-to-user

(format nil "The value you entered (~a) for the number of ~

~%Performances of ~a is below the minimum allowed of ~A~2%~

The minimum value will be used." item name lower))

(setq item lower))

(resource-limit

(send-message-to-user

(format nil "The value you entered (~a) for the number of ~

~%Performances of ~a would exceed the available ~%~

amount of the resource (~A).~2%~

The maximum possible value (~a) will be used."

item name available resource-limit))

(setq item resource-limit)))

(cond-every ((= item lower)

(setq font ' (:fix :italic :normal)))

((= item upper)

(setq font ' (:fix :bold :normal))))

(setq *currently-used* (+ *currently-used* (* (- item performances)

(list font item state)))

duration power-req_ired)))

defun review-possible-increases ()

(let ((Frontier-node t))

(loop for each in *experiments*

do

(cond (no-possible-increase (eval each))

(highlight-object (eval each)))

(highlighted (eval each))

remove-existing-highlight (eval each))

setq Frontier-node Nil))

not-maximized (eval each))

remove-existing-highlight (eval each))

setq Frontier-node Nil))))

Frontier-node)

defmethod (not-maxlmlzed activity) ()

(> maximum-performances performances))

defmethod (no-possible-increase activity) ()

(> (* duration power-required)

(- *max-resource-area* *currently-used*)))

defmethod (remove-existing-highlight activity) ()

(let ((box (dw::presentation-displayed-box presentation))

(original-position (multiple-value-bind (a b)

(send *interface-window* :read-cursorpos)

(list a b)))

(font '(:fix :roman :normal)))

(setq highlighted nil)

(cond ((= performances maximum-performances)

(setq font ' (:fix :bold :normal)))

((= performances minimum-performances) ORIG!,_!AL PAGE IS

OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 4

(setq font ' (:fix :italic :normal))))

(graphics:draw-rectangle (dw::box-left box) (dw::box-top box)

(dw::box-right box)(dw::box-bottom box)

:stream *interface-wlndow* :opaque t :alu :erase)

(send *interface-window* :set-cursorpos (dw::box-left box) (dw::box-top box))

(format *Interface-window* "~v__a~_ font performances)

(send *interface-window* :set-cursorpos (car original-position)(cadr original-position))))

(defmethod (highlight-object activity) ()

(let ((box (dw::presentation-displayed-box presentation)))

(setq highlighted t)

(graphics:draw-rectangle (dw::box-left box) (dw: :box-top box)

(dw::box-right bo×)(dw::box-bottom box)

:stream *interface-wlndow* :opaque nil :gray-level .15))

(defun clearspace (stream)

(loop repeat 8

do

(send stream :clear-char)

(send stream :forward-char)))

;;This function returns the list of data files that can be selected.

(defun get-data-file-list ()

(loop for directory in (cdr (fs:directory-list *Resource-File-Directory*))

as pathname = (cond ((not (string= (send (car directory) :name) "err"))

(format nil "~A" (send (car directory) :string-for-dired))))

collect pathname))

;;This function allows communication between the user and the program.

(defun send-message-to-user (message)

(send *message-window* :clear-history)

(send *message-window* :set-cursor-visibility nil)

(send *message-window* :select)

(format *message-wlndow* message)

(send *message-window* :any-tyi)

(send *message-window* :deselect))

(defun subgroup-list (ist group-sizes)

(let* ((group-size (if (>= group-sizes i) (zl:fix group-sizes) (length ist)))

(len (length ist))

(repeats (/ fen group-size)))

(loop repeat (zl:fix (if (not (= (mod len group-size) 0))

(+ 1 repeats) repeats))

as start first 0 then (+ start group-size)

as finish first group-size then (+ finish group-size)

collect (if (> finish len)

(subseq ist start)

(subseq ist start finish)))))

;;This function reads in a value, but does not issue a line-feed.

(defun read-without-return (&optional (stream *standard-output*)

&key (activation-characters " (#\Return #\End)))

(loop with cursor-position = (list (multiple-value-bind (a b)

(send stream :read-cursorpos)

with vat2 = nil

with position = 0

as varl = (send stream :tyi)

as total-length = (length vat2)

until (member varl activation-characters)

if varl

do

(cond (

(list a b)))

(and (equal varl #\rubout) var2)

(send stream :tyo #\backspace)

(send stream :clear-char)

(setq vat2 (cdr var2)

position (I- position)

cursor-position (cdr cursor-position)))

((and (or (equal varl #\c-B) (equal varl #\backspace)) varZ)

(setq position (i- position))

(send stream :tyo varl))

((equal varl #\c-F)

(cond ((< position total-length)

(setq position (I+ position))

(send stream :tyo varl))))

((= position total-length)

ORiGff_/_L P_E 15

OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/9007:40:09 Page5

(setq var2 (cons varl var2)

position (I+ position)

cursor-position (cons (multiple-value-bind (a b)

(send stream :read-cursorpos)

(list a b)) cursor-position))

(format stream "~a" varl))

((or (equal varl #\c-B) (equal varl #\rubout)))

(t (send stream :insert-char)

(format stream "-A" varl)

(setq vat2 (reverse (loop for temp = nil

then (append temp (list (car end))

for end = (reverse vat2) then (cdr end)

repeat position

finally (return

(append temp (cons varl end)))))))

finally (return (cond (var2 (setq var2 (read-from-string

(apply #'string-append (reverse var2))))))))

;;This function allows the data values to be changed.

(defun change-data-point ()

(cond ((and *Not-Previously-Notified* (review-possible-increases))

(send-message-to-user (format nil "~%The current selection represents a Frontier Node.~2% -

No possible performance INCREASES exist."))

(setq *Not-Previously-Notified* nil)

"Notified)

(t

(let ((data (catch 'resource (accept 'resource-type

:prompt nil

:stream *interface-window*)))

(original-position (multiple-value-bind (a b)

(send *interface-window* :read-cursorpos)

(list a b)))

(position))

(setq *Not-Previously-Notified* t)

(cond ((or (atom data) (atom (car data)))

data)

(t

(setq position (cadar data))

(send *interface-window* :erase-displayed-presentation (cadr data))

(send *interface-wlndow* :set-cursorpos (car position)(cadr position))

(send *interface-window* :set-cursor-visibility :blink)

(format-item-mouse-sensitive *interface-window*

(read-without-return *interface-window*)

(car data))

(send *interface-window* :set-cursor-visibility nil)

(send *interface-window* :set-cursorpos (car original-position)

(cadr original-position))

'data))))))

(defun frontier-interface ()

(if (null-string *current-file*)

(open-input-file))

(loop with again = t

while again

do

(send *interface-window* :select)

(send *interface-window* :clear-history)

(format *interface-window* "~50t~v_trontier Development Interface~_2% '' ' (:Fix :bold :normal))

(make-window-layout)

(send *interface-window* :set-cursor-visibility nil)

(monitor-usage)

(loop with finished = nil

until finished

as choice = (change-data-point)

while choice

do

(monitor-usage))))

(defun monitor-usage ()

(send *interface-window* :set-cursorpos 550 670)

(send *interface-window* :clear-rest-of-line)

(format *interface-window* "~5,2f% Available (-a Remaining ~a Used)"

(* I00.0 (/ (- *max-resource-area* *currently-used*) *max-resource-area*))

(float (- *max-resource-area* *currently-used*)) (float *currently-used*)))

(defun null-string (str) O_'_N_L PAGE IS
07 POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 6

(= (length str) 0))

(defun open-input-file ()

(let ((infile (dw:menu-choose (get-data-file-list)

:prompt "Data File List")))

(cond (infile (load (string-append *Resource-File-Directory* infile)

:verbose nil)

(set-up-objects)

(setq *current-file* infile)))))

(defun test ()

(loop for each in *experiments*

as eac = (eval each)

do

(format t "_%~a~14t~a~20t~a~30t~a~45t~a~60t~A ''

each (performances eac) (minimum-performances eac) (maximum-performances eac)

(* (power-required eac) (duration eac)) (no-possible-increase eac))))

Oi PO0_ QUALITy

ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2 4/07/90 07:40:01 Page 1

;;; -*- Syntax: Common-Lisp: Package: USER; Base: I0; Mode: LISP -*-

defvar *resource-allocation-graphics-window*

(tv:make-window 'dw:dynamic-window))

defvar *objects* nil)

de fflavor activities

(Value

Horlzontal-location

vertical-location

Maximum

Minimum)

()

: initable-inst ance-vari ables

: readable-instance-variables

:writable-in st ance-va riable s)

defvar *horizontal-limit* 600)

defvar *vertical-offset* 75)

defvar *horizontal-offset* I00)

defvar *scale-x* 3)

defmethod (draw-object-mouse-left activities) (xref)

(let ((x (+ xref *horizontal-offset*)))

(graphics:draw-string (format nil "-a" value) (+ Horizontal-location I0) vertical-location

:stream *resource-allocation-graphics-window* :alu :erase

:attachment-y :top :character-style ' (:fix :roman :very-small))

(graphics:draw-rectangle x vertical-location Horizontal-location (+ 5 vertical-location

:stream *resource-allocation-graphics-window* :alu :flip)

(setq Horizontal-location x

Value (calc-new-value Horizontal-location))

(graphics:draw-string (format nil "~a" value) (+ Horizontal-location I0) vertical-locat on

:stream *resource-allocation-graphics-window*

:attachment-y :top :character-style ' (:fix :roman :very-small))))

defun calc-new-value (x)

(/ (- x *horizontal-offset*) *scale-x*))

defmethod (check-object activities) (y)

(<= vertical-location y (+ 5 vertical-location)))

defun create-lnitial-objects (num)

(loop repeat hum

for name in ' (anfghj ertyuil yupoliu ewyrue ttyyss gsgsgsg iweie83k ieieiokk jfjfjfkl qwernm)

counting t into down

as vert = (+ (* down I0) *vertical-offset*)

as val = (random 200)

as hori = (zl:fix (+ *horizontal-offset* (* (/ val 200) *horlzontal-limit*)))

collect (make-instance 'activities

:vertical-location vert

:Horizontal-location hori

:Value val

:Maximum (zl:fix I+ val (* .5 (- 200 val))))

:Minimum (zl:fix (* .5 val))) into vats

finally (setq *objects* vars)

do

(graphics:draw-string (format nil "~a" name) (- *offset* I0) vert :stream *resource-allocation-graphi

cs-wlndow*

:attachment-y :top :attachment-x :right :character-style '(:fix :roman :very-s_

all))

(graphics:draw-rectangle *horlzontal-offset* vert Hori (+ 5 vert) :stream *resource-allocation-graphi

cs-window*)

(graphics:draw-string (format nil "~a" val) (+ i0 Hori) vert :stream *resource-allocation-graphics-wi

ndow*

:attachment-y :top :character-style ' (:fix :roman :very-small))})

(defun top-level-ii (&optional (num i0})

(send *resource-allocation-graphlcs-window* :select)

(send *resource-allocation-graphics-window* :clear-history)

(create-initial-objects hum)

(dw:with-output-recerding-disabled (*resource-allocation-graphics-window*)

(loop with previous = nil

,_.,_._. P_GE IS

OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2 4/07/9007:40:01 Page 2

do

(dw:tracking-mouse (*resourcl-allocation-graphics-window*

:who-line-documentation-string

"Revise allocation of item")

(:mouse-motion-hold (x y)

(let ((xloc (* (truncate (- x *horlzontal-offset*) *scale-x*) *scale-x*))

(if (and previous

(validate-object-maximum previous xloc))

(draw-object-mouse-left previous xloc))))

(:mouse-click (button x y)

(if (equal button #\mouse-l)

(loop for each in *objects*

when (check-object each y)

do

(setq previous each))))

(:release-mouse ()

(setq previous nil))))))

(defmethod (valldate-object-maxim.am actlvitiel) (mouse-position)

(<= minimum (/ mouse-position *s=ale-x*) maximum))

OF P_C_ QUALITY

