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V I  ABSTRACT 
An artificial intelligence design and qualitative model- 
ling tool is disclosed for creating computer models and 
simulating therein continuous activities, functions and- 
/or behavior using developed discrete event techni- 
quers. Conveniently, the tool is organized in four mod- 
ules: library design module, model construction mod- 
ule, simulation module, and experimentation and analy- 
sis. The library design module supports the building of 
library knowledge including component classes and 
elements pertinent to a particular domain of continuous 
activities, functions and behavior being modelled. The 
continuous behavior is defined discretely with respect 
to invocation statements, effect statements and time 
delays. The functionality of the components is defined 
in terms of variable cluster instances, independent pro- 
cesses and modes, further defined in terms of mode 
transition processes and mode dependent processes. 
Model construction utilizes the hierarchy of libraries 
and connects them with appropriate relations. The sim- 
ulation executes a specialized initialization routine and 
executes events in a manner that includes selective in- 
herency of characteristics through the library hierarchy 
and runs the events through a time and event schema 
until the event queue in the simulator is emptied. The 
experimentation and analysis module supports analysis 
through the generation of appropriate log files and 
graphics developments and includes the ability of log 
file comparisons. 

938-948. 
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DIS- EVENT SIMULATION TOOL FOR 
ANALYSIS OF QUALITATWE MODELS OF 

CONTINUOUS PROCESSING SYSTEM 

ORIGIN OF THE INVENTION 
The invention described herein was made in the per- 

formance of work under a NASA contract and is sub- 
ject to the provisions of Section 305 of the National 
Aeronautics and Space Act of 1958, Public Law 85-568 
(72 Stat. 435; 42 U.S.C. 2457). 

BACKGROUND OF THE INVENTION 
1. Field of the Invention 
This invention is a modeling and simulation tool for 

analyzing both the normal and faulty qualitative behav- 
ior of systems and as such relates to the field of discrete 
event modeling and simulation and to the field of artific- 
ial intelligence and qualitative reasoning. 

2. Description of the Prior Art 
Designing, testing, and operating engineered devices 

and systems requires analysis of the effects of failures 
and procedures as they propagate through configura- 
tions of components. Such analyses are done in develop- 
ment of failure management expert system software, in 
the design of system sensors to support failure manage- 
ment, and in failure modes and effects analysis in the 
areas of safety and reliability engineering. An earlier 
study has shown the ways in which engineers perform 
such predictive analyses by using simplified conceptual 
models and mentally simulating the effects of failures 
and control actions as they propagate through the sys- 
tem structure. See Malin, J. T. , and N. Lance, “Pro- 
cesses in Construction of Failure Management Expert 
Systems from Device Design Information”, IEEE 
Trans. on Systems, Man, and Cybernetics, 1987, Vol. 

To predict and analyze the effects of failures and 
control actions in components of a system, designers 
and operators commonly use simplified conceptual 
models of the behavior of system components and the 
structure of the system to form mental models which 
simulate the propagation of effects through the system 
structure. The components of such systems may exhibit 
continuous behavior, yet the mental models used by the 
analyst are frequently not continuous or quantitative, 
but rather discrete and qualitative. System components 
are conceived of as having various normal and faulty 
modes, with different behaviors for each mode. Change 
in a component mode or input variable can result in 
qualitative changes in the component or flows through 
it, which can cause further mode changes or can propa- 
gate qualitative changes in variables through the sys- 
tem, affecting the modes and behavior of other compo- 
nents. The analyst traces this change in behavior and 

SMC-17. 

of device and system behavior. The objective in pro- 
ducing the invention is to provide modeling and simula- 
tion methods that correspond to the common sense 
methods of human experts. This goal has led to exten- 

5 sions of the capabilities of both qualitative modeling and 
discrete event simulation. These efforts include qualita- 
tive fault modeling, adaptation of discrete event struc- 
tures to accommodate models of process systems, and 
combining qualitative modeling and discrete event sim- 

The tool is oriented toward supporting analysis of a 
range of engineered space systems, such as a two-phase 
thermal bus system or an electrochemical air purifica- 
tion system, but is not limited to such systems. These 

l5 types of systems exhibit diagnostic problems associated 
with sparse sensor data and inaccessibility, and model- 
ing problems associated with complex processing com- 
ponents and complex processed substances. 

lo ulation. 

20 QUALITATIVE MODELING BACKGROUND 
There is a large body of research in artificial intelli- 

gence containing results of investigations of this type of 
common sense reasoning. This area of research is called 

25 qualitative representation and reasoning. The dynamic 
behavior of continuous physical systems is described in 
terms of a set of qualitative state variables and qualita- 
tive equations or constraints that describe their interac- 
tions or dependencies. When a continuous state variable 

30 is divided into a set of regions of interest (often positive, 
zero, and negative), it is a qualitative state variable. 
Thus, the qualitative value of a continuous quantity is 
determined by the region it is in. 

Two general types of qualitative reasoning ap- 
35 proaches have been developed, namely, device-cen- 

tered and process-centered approaches. Device-cen- 
tered models use a set of local models of the behavior of 
each type of component in a system (“device”), and 
connections through which information is communi- 

40 cated between the components. For example, a device 
such as a buzzer might be composed of a clapper, a coil, 
and a battery, and the wires and fields that connect 
them, so that outputs from a component can become 
inputs of other components. The local component mod- 

45 els may have a number of distinct behavior regions, and 
may not only specify the behavior of the component in 
each region, but also the conditions that cause a transi- 
tion from the current behavior region to another. The 
device model is a network of components and connec- 

50 tions representing the structure of the system. Reason- 
ing is accomplished by propagating information 
through the local connections. See, for example, J. De 
Kleer and J. S. Brown, “A Qualitative Physics Based on 
Confluences”, Artificial Intelligence, December 1984, 

J J  - 
notes resulting System changes of iiterest. Changes of 
interest can include changes in sensed values at points in Process-centered models use a set of models of physi- 
the system designed to detect failure, or further failures cal processes (e.g., flow, chemical synthesis boiling), 
and degradations caused by an initial failure or failure which need not be local, but may include a system of 
combination. 60 related components in which the process is occurring. 

If computer models that are analogous to these men- Situations can be described as networks of components 
tal models could be constructed and analyzed, this pro- and attribute relationships. Reasoning is accomplished 
cess of analysis could be performed more consistently by scanning the structure for conditions that are re- 
and rapidly. More complex and extensive analyses be- quired for any process to occur. Processes make 
yond the capacity limitations of mental modeling could 65 changes in the situation, which cause further processes 
be performed. to become active or inactive. See, for example, K. D. 

The invention is a generic modeling tool that pro- Forbus, “Qualitative Process Theory”, Artificial Intelli- 
vides a software version of human qualitative analyses gence, December 1984, Vol. 24. 

24* 
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Much of the qualitative reasoning work has focussed and with an explicit specification of qualitative regions 
on developing representations and reasoning methods of time delays, could be used in discrete event simula- 
to generate the set of all possible histories or sequences tion. Furthermore, they could be directly specified by 
of patterns of state variables in a system. Another line of the analyst, rather than produced by a qualitative rea- 
work has focussed on using qualitative representations 5 soning system. This approach of direct specification 
of normal system behavior to generate explanations for eliminates some of the problem of ambiguity inherent in 
an observed abnormal system behavior. Another line of aualitative reasoning. The statistical facilities com- 
work has focussed on generating an explanation of the 
function of a system based on a qualitative description 
of the behavior of its components and its structure. 

The common method for generating explanations and 
determining the historical, qualitative values of state 
variables in a system is constraint propagation. The 
constraints define dependencies among variables in the 
models, and known values are used to assign additional 
values using the network of constraints. This approach 
has the advantage of starting the solution process any- 
where in the network, using whatever values are avail- 
able. The network of constraints is used as assigned 
values are tested to determine if they satisfy constraints. 
The tests are conducted by working through the net- 
work. The system may ultimately fail to assign all the 
desired values. The network is also used to identify 
inconsistencies between constraints and values. This 
capability serves as the basis for failure diagnosis. 

The approach is significantly different from the ap- 
proach used in discrete event simulation, where the 
simulation moves forward deterministically in time, 
performing the computation associated with component 
behavior when it is scheduled to occur. To combine a 
qualitative representation and a discrete event simula- 
tion, a qualitative representation suitable for discrete 
event simulation is needed. Such a representation 
should have an explicit representation of time. In addi- 
tion, such a representation should permit the local be- 
havior of any component to be determined unambigu- 
ously at each step in the simulation. 

Qualitative reasoning approaches typically lack ex- 
plicit representations of time, duration, and delays, 
which are often used by a mental modeler, especially to 
analyze interacting dynamic processes. B. C. Williams, 
“Qualitative Analysis of MOS Circuits”, Artificial In- 
telligence, December 1984, Vol. 24, discusses some of 
the limitations of these approaches, and presents a gen- 
eral approach to representing time qualitatively and 
reasoning about qualitative episodes for use in temporal 
constraint propagation, but not in discrete event simula- 
tion. 

Most researchers in qualitative reasoning have not 
been concerned with representing the analyst’s model 
of a system as composed of components that have a set 
of modes of normal and faulty behavior, and a set of 
events that cause transitions among those modes. 

Pan, J. Y., “Qualitative reasoning with deep-level 
mechanism models for diagnoses of mechanism fail- 
ures”, Proc. First Conference Art. Int. Applications, 
Denver, Colo., Dec. 1984, proposed qualitatively mod- 
eling behavior of faulty and normal modes and using 
qualitative reasoning (constraint propagation) to predict 
types of behavior events from the qualitative model, 
including instantaneous events, trends, trend-break- 
points, stabilization and mode-transitions. Modeling 
includes a time-scale concept to specify delay of a 
mode-transition and duration of trend-type events. 

The work leading up to the invention was based on 
the idea that the types of events resulting from qualita- 
tive reasoning like those proposed by Pan could be 
themselves represented as part of the qualitative model, 

monly resident in discrete event systems could also be 
used explicitly to represent and explore ambiguities of 

DISCRETE EVENT SIMULATION 
BACKGROUND 

10 interest to the analyst. 

Discrete event modeling and simulation is character- 
15 ized by state changes in a system’s entities, “events”, 

that occur discretely rather than continuously (as they 
would in differential equation models), and by provision 
for occurrence of these events at nonuniform intervals 
of time. In the commonest form of discrete event simu- 

20 lation, events are scheduled to occur at some interval 
from the present time. Throughout the simulation, new 
events are scheduled and added to an event list that 
contains records of events and the time they are sched- 
uled to occur. Time advances in nonuniform intervals to 

25 the time of the next event (the one on the list with the 
earliest scheduled time), which is selected for execution 
and removed from the event list. For systematic discus- 
sions of discrete event simulation, see George s. Fish- 
man, Concepts and Methods in Discrete Event Digital 

Discrete event simulation has been used almost exclu- 
sively to solve queueing-oriented service scheduling 
problems, in which there are concerns about distribu- 
tion and selection of workload, resources, and tasks in a 

35 system of “server” entities providing services to a set of 
customers or “job” entities. The basic modeling objects 
and simulation control programs of discrete event simu- 
lation tools and languages have been tailored to these 
problems. These tools and languages are widely and 

40 productively used in systems engineering, operations 
research, and management science. 

There are three main approaches to modeling for 
discrete event simulation for queueing-oriented prob- 
lems. The predominant approach, event scheduling, 

45 uses a scheduled event list. As scheduled events (includ- 
ing events of beginning or ending a service activity) 
come up, they are executed, unconditionally. Another 
approach, namely, activity scanning, does not use an 
event list. All activities are conditional, and whenever 

50 time is advanced, all are considered for beginning or 
ending by a method that is analogous to the scanning of 
processes in processcentered qualitative reasoning. 
The third approach, namely, process interation, fo- 
cusses on a sequence of activities and events that de- 

55 scribe the total history of the progress of a servicing job, 
and interaction between processes related to several 
jobs. To support this approach, both a scheduled event 
list and a scanned list of conditional events may be used, 
combining the other two approaches. 

The fundamental discrete event approach has poten- 
tial use for solving not only queueing-oriented schedul- 
ing problems, but also other types of problems concern- 
ing systems whose behavior can be modeled discretely. 
Qualitative models have this discrete character. Ber- 

65 nard P. Zeigler, Multifaceted Modelling and Discrete 
Event Simulation, Academic Press, 1984, has formalized 
the general fundamentals of discrete event simulation in 
the discrete event system specification (DEVS) formal- 

30 Simulation, John Wiley & Sons, 1973. 

60 
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ism for specifying a range of models expressible within 
discrete event simulation languages, including the three 

PROCESS LANGUAGE problems. This formalism includes the concept of com- 
ponents of a system, coupled together so that they inter- 5 
act with the output of one as input to another. This The core of a component model is its mode-transition 
f0-m demonstrates the possibility of modular defi- diagram, which specifies modes of operation (both nor- 
nition of hierarchical Structures of components in dis- mal and faulty) and the transitions among them. Mode- 
Crete event simulation system. There is a distinction specific behavior and mode transitions are specified as 
between active and passive components, and the con- 10 processes. The processes can be specified with a range 
cept of phases of component behavior. within these of qualitative and quantitative syntaxes, using data- 
phases, state transition and output functions determine structure types and operators in the language Portion of 
how inpub are how phases change, and how each modeling library. Processes consist of three parts: 

are produced. T~~ of links can be defined, and invocations (preconditions for effects execution), effects 
the on those can be con- 15 (executed if all invocations are satisfied), and delays 
strained. general definition of corresponding to each effect (effect completions sched- 
discrete event simulation that the invention formulates a uled at hcrf2Xnents to the current time). The concept of 
new modeling approach defied to solving of operating modes and mode-transition processes pro- 

20 qualitative model information within the fundamentally failures and control actions as they propagate through device-oriented discrete event system. component codigurations. Computation and specification requirements are re- 
COMBINING QUALITATIVE MODELING AND duced by focusing the level of component description 

DISCRETE EVENT SIMULATION on modes of operation, and specifying qualitative 
25 ranges of component variables relative to mode transi- 

tion boundaries. Discrete events are defined at the level 

ponents in terms of variable clusters associated with 
types of process flows. 

main modeling used for queueingoriented COMPONENT MODELS AND PROCESSES AND 

is in the context of 

problems that require an understanding of the effects of vides a for representing process-oriented 

Discrete event systems are 
for qualitative Of dynamic of changes in operating modes, and process- 

ing need occur only when modes change or variables 
cross qualitative boundaries. Rather than constraint 

Processing They permit the analyst to Observe 
a sequence Of si&cant events, with “time” jumping 
discontinuously from event to event. Current queueing- 30 propagation, discrete event processes determine the 
oriented approaches are not designed to handle qualita- 
tive models of continuous systems, however. They are Continuous behavior is partitioned into trends and 

ior in the real world, not ones that are really continuous. as an appro-ate order of magnitude, which is trans- 
A new discrete event sknulation approach is needed, 35 lated into an interval on the discrete event clock. When 
tailored to Of discretized continuous phe- defining a process qualitatively, the modeler controls 
nomena such as qualitative trends, which might be in- the and combinatorial explosion problems 
tempted during the delay between their beginning and inherent in qualitative modeling by selecting single 
their scheduled end. outcomes for qualitative functions. The modeler can 

To develop this new discrete event simulation aP- 40 also use qualitative trends and higher order derivatives 
proach, a number Of new concepts and methods were in defining processes to help reduce ambiguities. 
developed. These new concepts and methods include a 
new definition of a component model, a new definition 
of the t Y F  of links Connecting components (“rela- Relations define the connections between specific 
tions” and “variable clusters”), new state transitjon 45 variable clusters in one component with specific vari- 
structures ~ P r O C e s ~ ” ) t  new methods for representing able clusters in another component. The concept of 
qditative and qWtitatiVe fUCti0nS (LLprOCeSS h- variable clusters permits the definition of multiple vari- 
Wge”), and new methods for hierarchically specifying ables associated with types of flows in a system and 
models Of component COMections in libraries. A novel accommodates component models with multiple types 
simulation control approach, and new methods for ex- 50 of input and output “ ~ ~ r t ~ ” .  The user can define a bier- 
perimenting with models and analyzing model behavior archy of relation types, and specify constraints on types 
resulting from a simulation have also been developed. of components that can be connected by them. The 

method of specifying variable cluster types also pro- 
vides the means of controlling whether a variable 

55 change should result in a component update event or a SPECIFYING OF MODELS 

These concepts and methods were developed to per- propagation of the change to related components. 
mit use of simulation facilities that are provided in dis- 

CONTROL OF SIMULATION AND 
SCHEDULING 

Crete event simulation tools such as SimKit TM . The 
methods were developed for object-oriented program- 
ming environments, such as is provided by the KEE TM 60 The discrete event simulation control structure was 
software for building expert systems, and which make developed to control the propagation of behavior 
effective use of the classification capabilities of such changes among components. Scheduled events change 
environments. Currently, the tool uses the SimKit TM variable values, make mode transitions, and pass data 
capabilities to support the development of graphical between components along the relations. The primary 
libraries of component models, and permits engineers to 65 event is the update of a component, which can be trig- 
build device models graphically. A model is built by gered by a change in an input variable, local variable, or 
using component objects from a library, and connecting component mode. In such an event, appropriate pro- 
them with relations that define data flow between com- cesses are inspected, and the effects of invoked pro- 

consequences of component changes. 

designed to that exhibit behav- breakpoints. The durations of trends can be represented 

RELATIONS AND VARIABLE CLUSTERS 

OBJECT-ORIENTED AND GRAPHICAL 
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ADVANTAGES RELATIVE TO PRIOR 
DISCRETE EVENT SIMULATION 

Servers vs. Components-In traditional discrete 
5 event simulation, the functional elements of the model 

The objective of any discrete event simulation and are called “SerVeTs”. These elements Simply take in an 
andysis and expe-enta- individual (discrete) item from its input queue, process 

tion to resolve questions about how various versions of that item, and then send the Processed item down- 
the modeled system behave. ne inventions de- stream. The tool calls the basic functioning element a 
scribed here support a broad set of types of expehen-  10 component. components are more 
tation and analysis that would be needed by an engineer complex and flexible than the server. A server is usually 
investigating the effects of failures and procedures as modeled as something which transforms, or processes, 
they propagate through configurations of components. the 

usually only contain few such processes, and if a failure 
ADVANTAGES RELATIVE TO GENERAL 15 of a server is to be modelled, then it is usually repre- 

SIMULATION TECHNIQUES sented as a cessation of all processing involving the 
server. By contrast, components in the tool may have Object-Oriented-One of the best features of the many behavior modes which may include one or invention, herein called tool, is that it has been built in modes. Moreover, Occurrence of a failure mode 

‘lasses are built in an hierarchy9 with inhe’- simply alter its behavior. In traditional discrete event 

members Of these classes which inherit all Of the func- whereas, in the tool the model components are active all 
tionality of its parent class with the ability to change of the time, even when they are in a failure mode. 
information locally, such as variable values or the corn- 25 Sensors as Components--In the tool, sensors repre- 
POnent’S mode. Relation types are also object Classes, SO sent a possible important type of component. The tool 
Specific relations between model Components inherit allows the model builder to mode1 the way in which 
their information and functionality from their respec- Sensor information affects the system and how that 
tive classes. The other elements of the tool, i.e., variable information affects the diagnosabfity of failure modes 
clusters, processes, modes, valueclasses, operators, and 30 of the system. 
operations, are created as objects as well. Jobs vs. “Flow of Parameter Information”-In tradi- 

Separation of Component Classes from Model Com- tional discrete event simulation, the items which move 
ponent Instances-The tool separates the classes of from one server to another are called jobs. Jobs can be 
components in the library from the instances of compo- any number of things to be processed by the servers. In 
nents which make up a model. This separation enables 35 the tool, this is replaced by the concept of “flow of 
the model builder to change a component class’s behav- parameter information” where values for component 
ior and have it inherited down to the component in- parameters (variables) are propagated from one compo- 
stances so that for each new simulation run, d l  of the nent to another dong relations. This permits modeling 
model component instances of the changed class will Of  the effects Of  continuous flows in the system. 
have the new functionality. 40 Relations-In discrete event simulation, there has 

Graphical Representation of the Simulations-Mod- traditionally been Ody One Concept Of relation between 
els are constructed in a window allowing the servers, namely the “downstream” concept in which 
user to draw a schematic ofthe modeled system. the jobs completed by one server are moved downstream to 

-, the uSer can watch a graphic. repre- another, where the job is then placed on the later serv- 

instead of abstract data collection common to most relations, multiple relations defined in a library, multiple 
current analysis techniques. graphical relations used in one model, and multiple relations be- 
changes are represented by using different bitmaps for tween two components. These relations describe a set of 

variables in the “domain” component that are to be the different modes of a component, and by animating 50 propagated to another set of variables in the “range” 
component. These relations control the flow of infor- the propagation of values for a particular variable along 

the relation line-images in the schematic of the model. mation from component to component, and thus, Functional Groupings by Variable Clusters-Com- through the model. 

‘lusters, sometimes referred to as “vc’2 to 55 ponents and the flow of information across relations 
form functional collections within a model. This allows allows of a model which is radically different 
the user to view and analyze simulations based on the from traditional discrete event simulation, is 
functional groupings of the model. oriented to studying the processing of items on input 

queues by servers, such as assembly of cars on a factory 
tool has considerable expressive power. It allows the 60 floor. The tool allows modelling of systems whose be- 
creation of a large number of components and a nearly havior is continuous in nature. Therefore, the inputs are 
infinite number Of possible models. The tool’s efficiency not stacked on a queue, but rather are processed imme- 
resides in its ability to process the component’s behavior diately by the component; the component then alters its 

cesses are scheduled with corresponding delays. Up- 
dates originating from many components can be sched- 
uled at the same time on the discrete event clock. 

EXPERIMENTATION AND ANALYSIS 

tool is to 

On its input queue‘ Server-defined 

an objmtsriented environment* Therefore, component 20 need not halt the processing of the component, but 

tance, and the model components are created as object simulation, the servers are either passive or active; 

sentation of the changes occurring within the model, 45 er’s input queue. In the tool there can be many types of 

POnents and are groupd together by Modeling System with Continuous Behavior-Com- 

Expressive and Smulation 

only when necessary, that is, when a change occurs internal variables and mode appropriately. The results 
within the component itself and in the fact that the 65 of such behavior may be the propagation of more infor- 
clock of the simulator is not singly incremental, but mation to other related components. 
leaps forward to the time of the next event on the event Results of the Simulation-In light of the above, the 
list, a feature of discrete event simulation tools. results of the simulation with respect to the tool can be 
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quite different from prior art modelling simulations. 
Whereas, in traditional discrete event simulation the 
results may be an analysis of the servers’ queue lengths 
and idle times, the tool’s simulation usually results in an 
understanding of the effects of the failure of some com- 5 
ponent or the propagation of some parameter value 
through the model. Therefore, one result of the simula- 
tion can be a record of the mode changes of certain 
components with respect to time. 

1-The mode of one component can, and probably will, 
affect the behavior of other components in the model. 
This interaction does not occur in traditional discrete 
event simulation. Also, existence of failure modes of a 
component does not necessarily make the component’s 15 
behavior inactive, or passive, in the tool. 

Types of Scheduling-It is instructive to contrast 
tool capability and performance with two different 
discrete event simulation techniques. These are “Event 
Scheduling” (ES) and “Activity Scanning” (AS). In 20 
“Event Scheduling” the scheduler is used to control 
sequential execution of the events on the event list un- 
conditionally. In “Activity Scanning”, the simulation 
control structure periodically scans all of the possible 
effects to determine which have met their conditions 25 
and then executes those events. The tool uses the sched- 
uler in a manner which combines these two approaches 
so that both conditional and unconditional events can 
be scanned and scheduled. It processes two types of 
events: component update and effect events. To accom- 30 
plish component update events the tool scans the possi- 
ble processes of the component based on the mode 
independent processes and the component’s current 
mode to determine which have met their invocation 
conditions and then either executes or schedules the 35 
effect events of those processes. The tool executes 
scheduled effect events unconditionally with one excep- 
tion, the Try-Process effect event. This Try-Process 
effect event determines if the specified process’s condi- 
tions are met and, if so, runs, or schedules, the effect 40 
events of that process. 

Scheduling Techniques for Continuous Behavi- 
or-The tool also makes novel use of the scheduler by 
employing delays for the effect events and the Try- 
Process effect event type to model systems with contin- 45 
uous behavior. 

ADVANTAGES RELATIVE TO QUALITATIVE 
MODELING 

tive simulation, models are constructed from constraint 
equations using a qualitative mathematical calculus. 
Constraint propagation is used to produce a compiled 
history of all possible scenarios. The tool allows the 
user to simulate one scenario at a time by varying the 55 
initial parameters, e.g. component variables and initial 
mode, of the model. The tool also allows the user to 
alter and fine tune the behavior of entire component 
classes, easily, and then run the model for each new 

Qualitative Languages-The tool allows the user to 
write the invocation and effect statements using a quali- 
tative mathematical language. The library builder uses 
this language to define a customized set of qualitative 
valueclasses (qualitative ranges for system parameters 65 
like flow and effort), as well as the operators, and their 
respective operations. These operations act in the effect 
statements to calculate qualitative values. 

Components Affecting Others within the Mode- 10 

Single Scenario Simulations-In traditional qualita- 50 

alteration to see the effects on the system. 60 

SUMMARY OF THE INVENTION 
A specialized qualitative modeling and discrete event 

simulation tool comprising four modules is described. 
The tool is used for creating computer models and simu- 
lating continuous activities, functions and/or behavior 
using developed discrete event techniques. The mod- 
ules consisting of the library design module, the model 
construction module, the simulation module and the 
experimentation and analysis module. The tool enables 
experimentation and analysis of the qualitative models 
created and is implemented in a general purpose digital 
computer configured with a system language with a 
defined structure, syntax and vocabulary enabling the 
user to create library knowledge bases to be used in 
constructing models. The computer has related operat- 
ing components for compatible memory storage and 
processing, insertion, reviewing, editing and delivery of 
information. 

The library design module supports building library 
knowledge bases that contain component classes and 
elements pertinent to the particular domain of continu- 
ous activities, functions and behavior being modeled. 
The continuous behavior is defined discretely with 
respect to invocation statements, effect statements and 
time delays. All functionality of the components is de- 
fined in terms of variable cluster instances, independent 
processes and modes which are defined in terms of their 
mode transition processes and mode dependent pro- 
cesses. Library elements include components, pro- 
cesses, relation types and language elements, which, in 
turn, includes valueclasses, operators and operations. 
Library elements are organized in hierarchical sub- 
classes and are useful in defining models of both physi- 
cal objects and abstract concepts, for example, as condi- 
tion states associated with a medical diagnosis. 

The model construction module supports building 
models by making component instances of the compo- 
nent classes and connecting them with appropriate rela- 
tions. The simulation module supports the simulation of 
the models built by the model construction module 
without dependence on model configuration. The tool 
initializes models with predefined components by exe- 
cuting a specialized initialization routine and placing 
each component in the model in an event list. The 
model is run by executing events on the event list using 
a discrete event simulator until the list is empty. 

The experimentation and analysis module supports 
the analysis of the output ,generated by the simulation 
module. This support includes compilation of relevant 
statistics, and diagnostic information describing failure 
effects. Additional analysis is obtained by comparison of 
log files to specify the differences in outcomes of spe- 
cific scenarios. 

BRIEF DESCRIPTION OF DRAWINGS 
So that the manner in which the above-recited fea- 

tures, advantages and objects of the invention, as well as 
others which will become apparent, are attained and 
can be understood in detail, more particularly descrip- 
tion of the invention briefly summarized above may be 
had by reference to the embodiment thereof that is 
illustrated in the drawings, which drawings form a part 
of the specification. It is to be noted, however, that the 
appended drawings illustrate only a preferred embodi- 
ment of the invention and are, therefore, not to be con- 
sidered limiting of its scope for the invention may admit 
to other equally effective embodiments. 
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In the Drawings 

FIG. 1 is an overall block diagram of a qualitative 
modeling tool in accordance with a preferred embodi- 
ment of the present invention, referred to herein some- 
times as CONFIG, loaded into a general purpose digital 
computer for creating, simulating, experimenting with 
and analyzing qualitative models. 

FIG. 2 is an example of a component hierarchy 
graph. 

FIG. 3 is an example of a variable cluster heirarchy 
with some variables defined with their associated valu- 
classes. 

FIG. 4 is an example of a variable cluster instance 
definition with variables and their default values. 

FIG. 5 is an example of a relation definition. 
FIG. 6 is an example of a component class definition. 
FIG. 7 is an example of a mode diagram. 
FIG. 8 is an example of a component mode (in this 

FIG. 9 is an example of a component mode (in this 

FIG. 10 is an example of a component mode (in this 

FIG. 11 is an example of a try process. 
FIG. 12 is an example of a language. 
FIG. 13 is an example of an operator and its associ- 

ated table operation. 
FIG. 14 is a flow chart for the method in which the 

invention initializes a model of predefined components 
by executing a specialized initialization routine for each 
component in the model. 

FIG. 15 is a flow chart for the method in which the 
discrete event simulator (SimKitm is used) runs the 
model by executing events on the event queue until the 
queue is empty. 

FIG. 16 is a flow chart for the method in which the 
invention initializes a single component. 

FIG. 17 is a flow chart for the method which de- 
scribes what the invention does when it sets the mode of 
a particular component to a particular mode. 

FIG. 18 is a flow chart for the method which de- 
scribes what the invention does when it tries to schedule 
an update event for a particular component due to a 
particular change in the component. 

FIG. 19 is a flow chart for the method which de- 
scribes how the invention schedules an update event for 
a particular component. 

FIG. 20 is a flow chart for the method which de- 
scribes what the invention’s update event does when it 
gets executed by the discrete event simulator. 

FIG. 21 is a flow chart for the method which de- 
scribes how the invention evaluates a particular pro- 

FIG. 22 is a flow chart which describes the possible 
outcomes when an effect event of the invention gets 
executed by the discrete event simulator. 

FIG. 23 is a flow chart for the method which de- 
scribes how the invention sets a particular variable in a 
component. 

FIG. 24 is a flow chart for the method which de- 
scribes how the invention tries to propagate a particular 
variable from a particular component to all its related 
components. 

case it is a pump nominal) 

case it is pump cavitate) 

case it is pump shutdown) 

cess. 
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DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

FIG. 1, a diagram illustrating the use of the qualita- 
’5 tive modeling tool loaded into a general purpose digital 

computer for creating, simulating, experimenting with 
and analyzing qualitative models. This qualitative mod- 
eling tool (or as stated above is often referred to as the 
“tool”) built upon an object-oriented language 

10 (KEETM by IntelliCorp) and a discrete event simula- 
tor (SimKit TM by IntelliCorp) with additional func- 
tionality provided by the underlying LISP program- 
ming environment (Symbolics) is the preferred embodi- 
ment of the invention. Even though this is the preferred 

15 embodiment, there is nothing about the invention that 
precludes it from being implemented in various manifes- 
tations other than the one described here. 

The purpose for computer aided simulation is to sup- 
port analysis of system behavior beyond what is capable 

20 by human beings. Historically, humans have created 
models represented by computer languages to provide a 
basis for such simulation. Models provide a formal 
means for describing systems, but often lack all the 
information needed to perform adequate simulation of 

25 the physical system. In the past, model building has 
been an extremely laborious and time consuming effort 
often plagued with unnecessary tedium when defining 
similar elements. Recently, with the advent of object- 
oriented programing languages/environments, the con- 

30 cept of hierarchically defined elements have emerged in 
the form of tools that support the hierarchical design of 
libraries of class definitions of elements. The informa- 
tion about “parent” elements defined in the library can 
be inherited to descendant elements of the models; thus, 

35 when a change of design is required, a modification may 
only need to be made to an element in a library and the 
user can be assured that all instances of the class defini- 
tions will change accordingly. These concepts are not 
novel; however, the approach taken by the invention 

40 for knowledge representation in the library is very cru- 
cial to the overall design and simulation of the models 
and is considered an integral part of the innovation. 

In order to support such flexible design and simula- 
tion of complex models, the tool is comprised of four 

45 primary modules (where the word “module” simply 
meam “a conceptually separate functional software 
subsystem”), as shown in FIG. 1. 

The Library design module (as seen in Module 11 of 
FIG. 1) supports building library knowledge bases gen- 

50 erally designated 112 of component classes 112.1 in 
which all functionality of the components is defined in 
terms of variable cluster instances, independent pro- 
cesses, and modes which are defined in terms of their 
mode transition processes and mode dependent pro- 

55 cesses. Much of this module is provided by the object 
oriented language in the particular embodiment; how- 
ever, there have been significant enhancements made by 
the invention. A unique knowledge representation 
schema is used for which an extensible formal design 

60 language 112.5 is provided to allow the library designer 
111 to create statements 112.6 that can be used to define 
the invocations and effects of processes 112.4. Relation 
types 112.2 may be defined according to their allowable 
domain and range components and/or variable clusters. 

65 The library designer may also specify variable map- 
pings and transformations for each relation type. These 
enhancements along with the overall method used to 
define a library are considered the first portion of the 
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invention and in themselves could support many differ- 
ent approaches to qualitative modelling. This portion of 
the invention is described in detail in the descriptions of 
FIG. 2 through FIG. 12. 

FIG. 1) supports the construction of model knowledge 
bases generally designated 122 by making component 
instances 122.1 of component classes chosen from a 
particular library constructed via the library design 
module 11. These component instances 122.1 must then 10 tion as d e s d ~ e d  herein. 
be with the appropriate relations 122.2. ne 
model builder 121 not be concerned with the de- 
tails of the component level functionality that was de- 
fined by the library designer 111. The majority of this 
module is provided by the discrete event simulator in l5 

experimentation on and analysis of models by using the 
expanded library definitional capabilities and selec- 
tive simulation techniques to examine the effect of 
changes of parameter values in simulation results 

The Model building module (as Seen in Module 12, 5 These are not dependent on each other. The simulation 
techniques could be implemented with other k m ~ l -  
edge StnICtureS, perhaps not SO efficiently. In this em- 
bodiment the three major features of the invention have 
been united to form an efficient and compact combina- 

The following four sections illustrate the manner in 
which the invention has been implemented in the pre- 
ferred 

Library Design Module 

the particular embodiment; however, the invention 
insures that the comection of relations is always be- 

Knowledge engineering, like all computer program- 
ming disciplines, usually involves learning a complex 
language in which to express ideas. An important fea- 

module (as Seen in Module 13, FIG. 1) ture of the invention is its success in minimizing the 

ing module without dependence on model configura- encounter before beginning to design useful libraries. 
To facilitate this, the invention incorporates a user inter- 

event simulator in the particular embodiment. In partic- information that the designer is to create. informa- 
ular' the basic initialization loop and run 25 tion includes: components, modes, processes, state- 

and 15) is provided by the discrete event simula- elements (valueclasses, operators, and operations). The 
tor. The rest of the simulation module's event structure library designer creates the entire library from this edit- 
and control flow is considered the second portion of the menu window system, specialized to the information 

FIG. 16 through FIG. 24. When the end user 131 per- machine,s window system 
forms a simulation via the simulation module 13 several allows the library designer to display many windows on 
different forms Of may be generated as the computer screen at once. This permits the designer 
generally designated in 132. The results of the simula- to see and add information to the library in many differ- 
tion can either be permanently recorded in a log fie of 35 ent places at virtually the same time; thus, providing a 
debug text 132.1 or be viewed graphically during Simw unique environment for rapid prototyping of libraries. 
lation by bitmap and active trace images 132.1. The invention provides a top level menu that allows 

The and module (as Seen in the designer to create these edit-menus for the particu- 
Module 149 of the Output lar elements of the library. This top level menu consists 
generated by the simulation module. The end user 141 is 40 of the following options and their associated sub- 
able to perform various experimentations and analyses options: 
based on the analysis information generally designated Components-this menu option forces the user to 
142 provided by the tool. Statistical analysis 142.1 is select one of the 
Performed by the discrete event simulator in the Partic- Create Component-This menu option allows the user 
ular mhdiment  of the invention. certain forms of 45 to create a new class of components for the library. 
diagnostic analysis 142.2 Can be performed by ComPar- The new component class is then displayed in an 
h g  the log file Outputs of model perturbations and/or object class edit-menu. This menu option is an en- 
library redefinitions. In addition, tables of modes versus hancement to the standard create object class option 
discrete time Can be analyzed as a means of predictive provided by the discrete event simulator of the par- 
analysis. In some cases it is the model configuration that 50 ticular embodiment. 
should be experimented with and in others it is the Display Edit Menu-This menu option displays the 
component definitions that warrant investigation. For edit-menu for all components. This is one of the key 
example, comparing the difference between a specific displays because it allows the library designer to get 
valve being frled in the open position and a specific at nearly all of the information within hisher library. 
valve being failed in the closed position would be con- 55 Graph Component Hierarchy--This menu option 
sidered a model perturbation analysis. Where as, com- graphs the component heirarchy of the current li- 
paring the difference between all pumps failing after X brary in the output window. This menu option is 
amount of time in a cavitation mode with all pumps provided by the object-oriented system used in the 
failing after Y amount of time in a cavitation mode particular embodiment. 
would be considered a library redefinition analysis. Relations-this menu option forces the user to select 

As described above there are three unique capabilities one of the following sub-options: 
in the invention Create Uni-directional Relation-This menu option 
a new and more compact schema for delineating the allows the library designer to create a unidirectional 

knowledge representation in library design relation in the library. The new relation is then dis- 
use of the newly created and more robust library struc- 65 played in the relations class menu. This menu option 

ture to implement control methods and event se- is an enhancement to the standard create relation 
quencing to simulate model behavior which more option provided by the discrete event simulator of the 
faithfully depicts the actual phenomena being studied particular embodiment. 

tween a single pair of variable clusters. 
The 

the simulation of models built via model build- 2o amount Of learning that a new library designer must 

tion* Of this module is Provided by the discrete face which displays windows, called edit-menus, for the 

loop in detail in the descriptions Of l4 ments, variable clusters, relations, and the language 

invention and iS described in detail in the descriptions Of 3o being 
The nature of the 

Supports the 

sub-options: 

60 
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Create Bidirectional Relation-This menu option al- 
lows the library designer to create a bidirectional 
relation in the library. The new relation is then dis- 
played in the relations class menu. This menu option 
is an enhancement to the standard create relation 
option provided by the discrete event simulator of the 
particular embodiment. In fact, the discrete event 
simulator does not have any notion of bidirectional 
relationships. 

Hide Relation(@-This menu option allows the library 
designer (or model builder or simulation user) to hide 
one or more of the relations in the current model 
displayed. This is simply a screen management option 
that allows the users to close some of the line images 
that represent the component relations. This does not 
remove the actual relation; it only hides the image. 

Show Relation@)-This menu option performs the op- 
posite function as Hide Relations. 
Variable clusters-This menu option displays all vari- 

able cluster classes (and instances) in edit-menu. This 
edit-menu allows the library designer to see what vari- 
ables and associated valueclasses are defined for which 
variable cluster (VC). 

Processes-This menu option displays all of the pro- 
cesses in the librarv in an edit-menu. This edit-menu is 

16 
come additional attributes of the component with 
associated constant values. Constants are very similar 
to variables in the variable clusters, except that they 
may not be changed by any statements (variables are 
described in more detail in defining variable clusters 
below and statements are described in more detail in 
defining statements below). 

Variable clusters-This holds the names of the variable 
cluster instances associated with a component. When 
a name is added to this component attribute, if the 
variable cluster (VC) does not exist, then one is cre- 
ated automatically and the designer is prompted to 
indicate what the parent clusters are for the new 
instance. In most cases it is simply a decision whether 
the new cluster is a propagate variable cluster, update 
variable cluster, both, or neither. (VCs are described 
in more detail in defining variable clusters below). 

Independent processes-This holds the names of the 
independent processes associated with a component. 
When a name is added to this component attribute, if 
the process does not exist, then one is created auto- 
matically and the designer is able to fill in its associ- 
ated attributes (processes are described in more detail 
in defining processes below). 

25 Mode diaaram-This is an attribute that is created bv a 

5 

10 

15 

20 

most useful to sed (and. create) processes outside of create i o d e  diagram menu option. It is this diagram 
components or modes; such example processes are, that contains the possible modes a component may 
trend processes used in a “Try Process” statement. exhibit and the transitions among the modes. When 

Language-This menu option displays the language creating a mode diagram, modes are created with 
of the current library in an edit-menu. At the top level 30 their appropriate attributes; and when a transition is 
the edit-menu shows the valueclasses and operators of defined among modes, mode transition processes are 
the library’s language, plus any valueclasses and opera- automatically created. A mode diagram is also used 
tors inherited from the superlibraries of the current to designate which mode is the initial mode a compo- 
library. The operations of the operators can be found nent is to be initialized with (modes and mode pro- 
within the display of an individual operator. cesses are described in more detail in defining modes 

Debus log file-This menu option allows the follow- below). 
ing sub-options for the simulation user to turn on and off Some of the above attributes have their own set of 
a log file which records the changes of the model dur- attributes; thus, adding to the complete d e f ~ t i o n  of a 
ing a simulation run: component. See below for their specific definitions. In 
Open-This menu option opens a log file. This will 40 addition to the user defined attributes, components have 

automatically close a log that is already open. several hidden attributes that are used by the simulation 
Close-This menu option closes the current log file, if control portion of the invention. They include: (1) com- 

one is open. ponent changes, (2) current mode, and (3) initial mode. 
From the above menu options, the library designer is A component class is a type of component that is a 

able to create the knowledge representation information 45 parent to other component classes (sub-classes) or com- 
that is needed for the creation of models and the simula- ponent instances, thus passing down any attributes and- 
tion of such models. Following is a description of the /or functionality defined at its level to all children de- 
major elements of a library and their appropriate defin- fined under it. A component class may be considered a 
tions. generic component, fully functional component, or 

50 both. Component classes may only be defined in a li- 
brary and are created from the tool’s top level menu Defining Component Classes 

Components are the basic building blocks in the in- which prompts the user for the parent class of the new 
vention used to represent the objects of a model. A component class. 
component does not necessarily have to represent an A component instance is a component that has been 
actual physical entity; it may represent any abstract 55 created from a component class and is not a sub-class 
object that possesses attributes and behavior. Compo- (this type of creation is commonly referred to as instan- 
nents may inherit attributes and functionality from par- tiation). An instance must be a child of a particular 
ent component classes. All components consist of sev- component class of a library and in the particular em- 
eral attributes that are defined by the library designer bodiment a component instance must reside in a model. 
and are as follows: 60 Component instances can be viewed as the lowest leaf 
Description-This is user supplied text that describes in the class inheritance tree. Instances may have many 

the intended use and functionality of the component. ancestors but may not have any descendants. 
This text is optional and is only intended to aid the Fully functional components are component classes 
designer in capturing his reasoning for making certain that possess all the functionality required in order to 
design choices. 

Constants-This holds the names of the constant attri- Generic components are component classes from 
butes defined by the library designer. The names which the user is able to create subclasses. The concept 
added to this component attribute automatically be- of generic components is important to the overall de- 

35 

65 create working component instances in a model. 
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17 
sign efficiency of the library. Generic components the necessity of variable clusters is given by the follow- 
allow the user to make changes to entire classes of com- ing: 
ponents without having to hunt down all  the compo- Assume a definition of a T-pipe is desired with two 
nents and make the same change to each. Generic com- inputs and a single output. Assume that this T-pipe 
ponents also provide the designer with levels of classifi- 5 has internal variables such as pressure, temperature, 
cation within individual libraries. They are distin- flow and fluid phase. It is not possible to simply con- 
guished from functional components only by their in- nect the outputs of two different components to the 
complete definition. For example, generic components same set of input variables in the T-pipe. The T-pipe 
may only contain characteristics common to a group of must be modelled such that it receives two separate 
components thus, this implies that they may not have all 10 sets of inputs (In1 and Id )  for these variables and 
the functionality needed to perform appropriately in a combines them in some fashion to determine what the 
model. output values of the T-pipe should be. Thus, variable 

At first it may seem that generic components should clusters allow the designer to differentiate among 
never be used in a model (Le., instantiated). In many multiple inputs for the same set of variables. 
cases this is true; however, a component class may be 15 Vc's may be defined in a hierarchical fashion similar 
used as both a generic parent class and also a fully func- to components. An example of a hierarchy of variable 
tional component class. For example, a valve may be cluster classes can be seen in FIG. 3, which shows some 
defined as a fully functional component that can be variables defined with associate valueclasses (for more 
instantiated as a simple valve that may be closed or detail on valueclasses see defining language below) for 
open; but it can also be considered the generic compo- 20 variable clusters defined under downstream VCs. 
nent class parent for other specific classes of valves such An example of a variable cluster instance can be seen 
as pressure valves (which automatically open and close in FIG. 4 which shows the newly created attributes 
based on their input pressure). This is illustrated in the which are the names of the variables concatenated with 
component class hierarchy shown in FIG. 2, where the name of the cluster. Each new variable attribute has 
there is VALVE defined at the level just below THER- 25 two attributes associated with it: (1) variable.valueclass 
MAL.COMP which has several other classes of valves and (2) value. The variable.valueclass defines what the 
defined below it. Note that THERMAL.COMP is a acceptable values are for that particular variable and the 
generic component class that represents all the attri- value indicates what the default value is for that vari- 
butes common to thermal components and is not consid- able if it has a default. 
ered a fully functional component, in this case, since it 30 The way components get these variable attributes 
does not represent a physical component in the thermal associated with them is by adding a VC instance to a 
domain. The key point here is that subclasses will in- component classes variable clusters attribute. All vari- 
herit all the functionality of their parent plus gain any able cluster information is then inherited down to the 
additional functionality defined at their own level. component class. An example of such inheritance may 

The appropriate levels of hierarchical classification is 35 be seen in FIG. 6 which is edit-menu display for the 
a design issue to be resolved by the library designer. It attributes of the pump component class. Upon initializa- 
is also the responsibility of the library designer to keep tion and before simulation begins, the model component 
track of which classes of components are used solely as instances inherit the default values of the component 
generic components and which classes are intended to classes variables. (see description of simulation module 
be fully functional. The tool does not differentiate be- 40 below for more detail on initialization and how default 
tween generic and fully functional components because values are used) Note that many different component 
it would restrict the user to making premature design classes may share the same variable cluster instances 
decisions. The tool assumes all component classes ex- and that if a particular component class needs a different 
cept the root component are fully functional and when default value than what is defined in the variable clus- 
instantiated will operate as defined. 45 ter, then the default value may be defined at the compo- 

nent class level instead. This will effect all children of 
the component but will not effect any other components Defining Variable Clusters 

Variable clusters are groupings of component vari- that share the same variable cluster. 
ables for some purpose. Variables are grouped by add- When a variable cluster is created via the edit-menu 
ing them to the variables attribute (which is the only 50 for variable clusters obtained from the tool's top level 
attribute) of a variable cluster class or instance. The menu or via a component attributes edit-menu, the de- 
classic reason for such groupings is the port concept; signer is prompted to indicate what the parent clusters 
that is to say that a certain location on the component are for the new instance. In most cases it is simply a 
(called a port) can be specified by a collection of param- decision whether the new cluster is a propagate variable 
eters which are stored as the Vc's variables. For exam- 55 cluster, update variable cluster, both or neither. The 
pie, a pipe has two ports one on each end of the pipe, yet reason a VC may be both an update and a propagate VC 
it is necessary to refer to the flow and pressure of the is because the variable cluster class heirarchy may be 
fluid as distinct variables at each end. Thus, the library defined such that the VCs obtain information by multi- 
designer would construct two Vc's via the variable ple inheritance (i.e., a VC may have more than one 
clusters top level menu option called In and Out, both 60 parent). 
with the variables flow and pressure. The pipe compo- An update variable cluster is a VC for which one of 
nent would then contain the following four variables: its ancestors is the predefined UPDATE.VCS. Thus, in 
In.Flow, In.Pressure, Out.Flow, and 0ut.Pressure. order to create this type of VC, the library designer 

Most importantly, VCs provide the mechanism need only specify UPDATE.VCS as one of the parents 
which allows relations(see defining relations below for 65 when the new VC is created. This type of VC will cause 
more detail on relations) to connect a specific set of a component update event to be scheduled when any 
variables from a component to a specific set of variables variable in the VC changes, if there is not already an 
in another component. Another example that illustrates update event scheduled. 
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Defining Modes A propagate variable cluster is a VC for which one of 
its ancestors is the predefined PR0PAGATE.VCS. 
Thus, in order to create this type of VC, the library A mode is a particular operating range that a compo- 
designer need only specify PROPAGATE.VCS as one nent may have in which there are unique operating 
of the parents when the new VC is created. This type of 5 characteristics. These unique operating characteristics 
vc will cause the simulation control mechanism to try are defined by the library designer by filling in the fol- 
to propagate any change that occurs to any variable lowing attributes associated with each mode: 
within the vc to all the related v c s  in other compo. Description-This is text describing the unique charac- 
nents. (this is in detail in the description ofthe teristics of the mode. This text is optional and iS Only 
simulation module below) intended to aid the designer in capturing his reason- 

ing for making certain design choices. 
Faulty?-Currently, in the particular implementation of 

the tool, this attribute is not used by the invention and 
is intended to be used by a future innovation. 

hmce to a variable cluster in other component in- 15 Mode Dependent Processes-This contains the names 
of the Processes that are common to the associated 

pose is to provide a path for propagation of information mode* This Of process is evaluated Only when a 
from one component insmce to another within a component is in the associated mode. When a name is 
model. men a of the domain vc is altered, added to this component attribute, if the process does 
that change is moved to a not exist, then one is created automatically and the 

designer is able to fill in its associated attributes. (pro- range VC. 
Relations are created from the tools Top Level cesses are described in more detail in defining pro- 

cesses below). Menu. Edit-menus for each relation can be created. The Mode Transition Processes-This contains the names of attributes associated with a relation are as follows: the processes that may change the component from 

this relation can have as its domain. This is, which added to this component &tribute, if the process does 

designer is able to fill in its associated attributes. (pro- nect from. 
Domain Variable Cluster-This defines what vc 3o ceSses are described in in defining pro- 

within the domain component is to be related to the cesses below). 
range component. Components may have several operating modes. 

Range-This defines what ‘lass Of components that this Modes can be thought of a sectioned-off ranges of inter- 
relation can have as its range. That is, which type of esting behavior within a component. F~~ example, a 
components may this relation be used to connect to. 35 typical pump will have thee as Seen in FIG. 7: 

Range Variable Cluster-This defines what VC within nominal 71 where the pump is operating as expected; 

domain component. fluid consisting of both vapor and liquid; and shutdown 
Include-This declares that only certain variables from 73, where the pumping is no longer opera- 

the vc are to be Propagated. This may 40 ble (Le., failed and has interrupted the flow of the fluid). 
be left blank which indicates that all vanables are to A component groups it’s modes together by a mode 
be Propagated except for those declared in the E X -  transition diagram designated 70 as seen in FIG. 7. The 
clude attribute. tool’s user interface allows the library designer to create 

Exclude-This declares which Particular Variables modes as bitmap images in the special mode transition 
from the vc that are not to be Propagated- This 45 diagram window. It also allows the library designer to 
information may be left blank which indicates that d l  connect the modes with a next mode line image (repre- 
Variables are to be Propagated if none are d ~ l a r e d  in sented as an arrow from one mode to the next). As a 
the Include attribute. result of connecting the modes together, mode transi- 

MaPPings--This declares which Variables within the tion processes are automatically created and added to 
domain vc are to be matched to which variables 50 the mode transition processes attribute of the appropri- 
Within the range vc. This information mY be left ate mode. These automatically created mode transition 
blank which indicates that variables of like name are processes are merely templates that the library designer 
to be matched up. must still fill out in order to cause the mode change only 

Transformations-This declares what the values of the when appropriate. 
variables are to be transformed to. This information 55 An edit-menu may be created for each mode which 
may be left blank which indicates that no values are displays the mode attributes. Examples of the pump’s 
to be transformed during the propagation. mode attributes for each mode can be seen in the edit- 
An example of a relation defintion is shown in the menus in FIG. 8, FIG. 9, and FIG. 10. Look at FIG. 8, 

edit-menu of FIG. 5. This relation may connect any the nominal mode attributes, and notice that it has two 
thermal model object to any other thermal model ob- 60 mode transition processes associated with it. This corre- 
ject; however, it may only connect a variable cluster of sponds to the fact that the mode diagram FIG. 7 shows 
the domain cpmponent that is an instance of the D- two arrows emanating from it to the other two modes. 
OUT-VCS (which is class of VCs that define all the Thus, the pump may go from nominal to cavitate before 
characteristics of downstream output variable clusters) failing or may go directly to shutdown without cavitat- 
to a variable cluster of the range component that is an 65 ing first. Note that the PUMP.NOMINAL.TO.PUMP- 
instance of the D-IN-VCS (which is class of VCs that .CAVITATE process has an invocation that checks to 
define all the characteristics of downstream input vari- see if the fluid phase in the input variable cluster is not 
able clusters). equal to subcooled liquid. This invocation must be true 

10 

Defining Relations 
A relation is a mechanism that can be used to relate/- 

a variable ,-luster (vc) in a domain component 

called the range components. Its 

variable in the 20 

25 Domain-This defines what ‘lass Of components that the current mode to another mode. When a name is 

type Of components may this be used to ‘On- not exist, then one is created automatically and the 

the range component is to receive the data from the cavitate 72, where the pump is cavitating due to input 
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before the pump may change from the nominal to the Mode Transition Processes usually reside in the 
cavitate mode. This invocation was defined by the li- modes of the component and are processes that try to 
brary designer and is apparently the only invocation change the mode of the component to some other mode. 
needed. Note that the process has two effects: one The word “try” :means that the process is always evalu- 
changes the current mode to the cavitate mode and the 5 ated when in the particular mode, but that the effect of 
other sets a bpl.Damage-Trend variable to “UP” to the process-(changing modes) only occurs if some pre- 
indicate that the Pump is being damaged while in the conditions (the invocations) are satisfied. Technically, 
cavitate mode. The PUMP.CAVITATE.EFFECT that the library designer could actually put mode transition 
changes the mode Was automatically created by the too1 processes in the independent processes attribute of a 
when the Next Mode line image was associated between lo component, but this would result in the process getting 
the tried no matter what mode the component is currently 
and is used to start the damage trend* An in. In some cases, mode change dispatching from the 

modes- The Other effect was added by the 
Of a 

mode dependent process is one which declares that all component might be desirable; but it 
flow 
Seen in lo’ (Processes’ 
described in more detail in defining processes 

in a Pump that is in the mode as straight forward to think of a mode changing from one 
and effects are l5 particular mode to another rather than to think of the 

component &=ging frorn any mode to a particular 
Defining Processes 

Processes provide and define the functionality/- 
behavior of all components. There are three types of 
processes that the library designer may define via the 
component attributes edit-menu and the mode attributes 

dent processes, and (3) mode transition processes. In 25 lar mode and are Only evaluated when in that particular 
addition, there is another type of process called a Try- A good is Seen in lo* were the 
Process that may be defined via the edit-menu obtained PUMPSHUTDOWN mode always generates no *Ow 

from the processes option of the tool’s top level menu. in the FLOW.NONE-PROCESS. 
All of these processes are defined in the same manner; Try-Processes are a special type of process that may 
however, they are differentiated by where they reside 3o be kwked  by the effect of another Process. Try Pro- 
and by what function they usually perform. All pro- cesses are not necessarily associated with a component 
cesses have the following three attributes associated attribute or a mode attribute and are usually created via 
with them: the processes top level menu option. A try process is 
Invocations-This contains statements that evaluate to just like all other processes except that it is invoked 

boolean true and false values. During evaluation of 35 individually by an effect event rather than being in- 
the process, these invocation statements must all eval- voked with many other processes by the component 
uate to true before the following effects may be exe- update event (see description of simulation module 
cuted. If any one of them is not true, then the effects below for more information on these two types of 
are ignored. If there are no invocations in this attri- events). This is analogous to putting conditional events 
bute, then the effects are executed unconditionalb. 40 on the event queue, since the effects of this process are 
(statements are described in detail in defining state- only executed if the invocations hold. This is also 
ments below) claimed to be an innovative way to emulate dynamic 

Effects-This contains the effects statements that dic- scheduling of events. 
tate what is to occur in the context of the component. The PUMP.CAVITATE mode, as seen in FIG. 9, 
There are three primary types Of effects: (l) a try 45 has a mode dependent process call PUMP.BEING.DA- 

description of the simulation module). 

that 

mode. An example of a mode transition process can be 
seen in FIG. 8, where the current mode is changed to 

20 the PUMP.CAVITATE mode via the PUMP- 
.CAVITATE.EFFECT of the PUMP.NOMINAL.- 
TO.PUMP.CAVITATE process. 

edit-menu: (1) independent processes, (2) mode &pen- Mode dependent processes reside in a Particu- 

process effect, (2) a change mode effect, and (3) a set 
variable effect. mee are all further in the 

MAGED-PROCESS which has a single invocation 
that check to see if the pump damage trend is “up’’. If 
so, then the process places the TRY.DAMAGING- 

to each effect’ Effects are sched- 50 queue. When the discrete event simulator reaches this 
numbers Or qualitative values 

uled according to these delays. (this Will be described 
further in the description ofthe Simulation module). 

EFFECT on the event queue at HRS time down the 

event, it evaluates the DAMAGING-EFFECT pro- 
cess. As Seen in FIG. 11, process check to Independent processes reside in the actual component sure the trend’s delta time is equal to H R S  before it class definition and are always evaluated by the simula- 

ponent happens to currently be in. This type of process marize* these series Of processes guarantee that the 
appears to be rare in the sense that there are few pump has actually remained in the cavitation mode with 
physical components that a behavior damage trend “up” for “HRS” amount of time before it 
at all times; however, it is a convenient way to model a changes the Pump to a failed shutdown mode. If some- 
component without having to define specific operating 60 thing Occurs during the interim that changes the 
modes. A pipe is a good example of a component that Pumpl.Damage.Trend variable, then the delta time will 
the designer might want to model without any modes automatically get changed internally by the simulation 
and simply define the independent processes accord- control mechanism. Thus, the DAMAGING-EFFECT 
ingly. On the other hand, if the library designer decided Process will not be satisfied and the mode will not 
that the pipe could possibly rupture or get clogged, then 65 change until it has remained in a damaged state for the 
the mode diagram could be added and the independent appropriate period of time to cause a shutdown. This 
processes are moved from the component attribute to will become more clear when reading the simulation 
their appropriate mode attributes. module description. 

tion control mechanism no matter what mode the corn- 55 that the Pump is damaged* To sum- 
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Defining the Language 
The language is based on an arithmetic syntax, but is 

geared to manipulating symbols representing qualitative 
ranges for variable values. For example, fluid phase 
could be split up into the ranges: Subcooled.Liquid, 
Saturated.Liquid, Saturated.Vapor, and Superheated.- 
Vapor. The library designer is given the facilities to 
create hisher own qualitative valueclasses, as well as 
operators which manipulate those values. A language 
can be created by the language option of the tool’s top 
level menu which will display the edit-menu for a par- 
ticular library’s language. All libraries contain their 
own language which consists of the following elements: 
Operators-This contains the names of all the operators 

that may be used by the library designer when defin- 
ing the statements. When a name is added to this 
attribute, if the operator does not exist, then one is 
created automatically and the designer need only fill 
in the necessary operator attributes which include the 
symbol that is used and the operations associated with 
the operator. (see below for definition of operator) 

Valueclasses-This contains the names of all the value- 
classes available to the library designer when defining 
variables and statements. When a name is added to 
this attribute, if the valueclass does not exist, then one 
is created automatically and the designer need only 
fill in the legitimate values. (see below for definition 
of valueclass and see defining statements for more 
detail about statement) 
See FIG. 12, the edit-menu of the THERMAL.LAN- 

GUAGE, to see an example of a language with its oper- 
ators and valueclasses. Language elements may be in- 
herited from a superlibrary; thus, allowing the library 
designer to create additional language elements within 
the appropriate library and conceivably incrementally 
increasing the vocabulary of the language. 

Operators are used to perform calculations on the 
values set forth in the valueclasses. The operators 
Equals, Not, And, and Or and their corresponding op- 
erations are predefined by the tool and inherited by all 
libraries. All operators have the following attributes: 
Symbol-This contains a list of the symbols that may be 
used in the statements to refer to a specific operator. 
(i.e., the operator in which this attribute resides) 

0perations.List-This contains a list of all the opera- 
tions associated with a particular operator. Multiple 
operations may be associated with a single operator, 
since the structure and valueclasses of the operands 
(or arguments to the operator) may dictate which 
operation to use. 
Operations specify what is to be done when an opera- 

tor is called with a set of arguments. Most operations 
have the following attributes: 

A’+ 
Valueclasses are a means of categorizing possible 

values for variables. They are also used to specify the 
legitimate values of particular arguments to operations 
and define what the result of the operation should be. 

5 Rather than creating valueclasses by adding them to the 
valueclass attribute of the language, they may also be 
created by associating them with a variable when defin- 
ing the variables of a variable cluster. Most valueclasses 
have an attribute called Qualitative.Symbo1s that con- ’’ tains a list of the possible values defined by the value- 
class. Thus, if a variable is defined with a particular 
valueclass associated with it, then it may only contain 
one of the values set forth in the list of Qualitative.Sym- 
bols. Some valueclasses are not as restrictive, such as 

l5 “numbers”, which is predefined by the tool and allows 
the variable to contain any quantitative value (integer 
or real numbers). The tool also provides another prede- 
fined valueclass call “boolean.values” which is needed 

2o by the control mechanism to evaluate the result to the 
invocation statements. See FIG. 3, the THERMAL.- 
VARIABLE-CLUSTERS edit-menu for an example of 
variables with their associated valueclasses. 

Defining Statements 
Statements are associated with processes by adding 

them to the invocations and effects attributes of the 
process. They are written in terms of the operators, 
component variables inherited from the VCs, and the 

30 values of the valueclasses defined in the language. They 
may be defined by filling in the statement attribute with 
the appropriate expression. See any of the figures with 
expanded processes in them to see the actual statement 
attribute associated with each statement. 

Effects statements may perform three different types 
of actions: (1) set a component variable, (2) set a compo- 
nent’s mode, or (3) try a process (this is most useful in 
coordinating trend processes of components as de- 
scribed above in defining processes). 

Invocation statements are tests which are performed 
on the component’s variables to determine whether or 
not the effects of a process would in fact be evaluated. 
This dictates that the result of such a statement must be 
a boolean value of some sort. 

Statements are the fundamental elements of a library 
that actually get evaluated during the simulation of the 
model. Statements, once written, are compiled into 
LISP code. It is this LISP code that is executed when a 
component attempts to evaluate a process. Remember, 

50 evaluating a process involves the evaluation of the invo- 
cations statement’s LISP code and then, if all of the 
results are true, executing the effects statement’s LISP 
code (or scheduling the effects statements to be exe- 

25 

35 

40 

45 

55  cuted at a later time). 
Argument.Classes1List-This contains an ordered list of 

valueclasses that represent the possible values of the 
arguments to the operator. 

ResultClass-This contains a single valueclass that 
dictates what the resultant valueclass of this opera- 60 
tion will be. 
The language interpreter matches the arguments of 

the particular call to the operator with the valueclasses 
listed in the Argument.Classes.List to determine which 
is the appropriate operation to use. The most common 65 
operation and easiest to define is the table operation as 
shown in FIG. 13, the FLUID.PHASE-OPERATOR 
with its FLUID.PHASE-OPERATION. 

Model Building Module 
This module allows the model builder to construct a 

model graphically, by creating “instances” of compo- 
nents from the Object Class Menu placing the instances 
in the Model Design Canvas, then connecting the in- 
stances with relations obtained from the Relations Class 
Menu. The manner in which the relations are connected 
to single pairs of variable clusters rather than simply 
from one component to another is a unique feature of 
the invention. This feature is required by the simulation 
module in order to perform proper propagation of vari- 
ables. 
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Simulation Module 
FIG. 14 is a flow chart for the method Initialize 

model] in which the invention initializes a model of 
predefined components by executing a specialized ini- 
tialization routine for each component in the model. 
FIG. 14, shows a standard way to initialize a model; 
however, a specialized initialization routine is called for 
each individual component. As seen in 141, as long as all 
components have not been initialized individually, then 
continue to get the next non-initialized component and 
assigned it as the [component] parameter as in 142, and 
perform 3.Initialize Single [component] routine. When 
all components have been initialized, then run the 
model by performing 2. Run model routine. 

Turning to FIG. 15, there is shown a flow chart for 
the method Run [model] in which the discrete event 
simulator runs the model by executing events on the 
event queue until the queue is empty. FIG. 15 shows a 
standard way discrete event simulators execute events. 
As seen in 151, as long as there are stiU events left on the 
queue, then continue to remove the top event from the 
queue as in 152, and execute the removed event as seen 
in 153. When the queue becomes empty then the simula- 
tor must halt. This FIG. 15 flow chart illustrates the 
general platform needed to support the control struc- 
ture of the invention. 

By looking at only FIG. 14 and FIG. 15 it can be 
concluded that there must be some element that places 
events on the event queue or otherwise the routines 
would halt immediately. It should be clear that the 3. 
Initialize Single component routine must be the mecha- 
nism by which the invention begins to place events on 
the queue. It should also be noted that in order for the 
simulation to continue to run after the initial events are 
placed on the queue, the execution of the initial events 
must be doing something to cause subsequent events to 
be placed on the queue. It is not this aspect that makes 
the invention novel, but it is the method in which these 
subsequent events are generated and manipulated which 
is innovative. 

FIG. 16 is a flow chart for the method Initialize Sin- 
gle component. As seen in 161, the fust thing that is 
done is that all values of the local variables in compo- 
nent are removed. It is important to know what it means 
to remove all the local values of a component because 
this does not imply that all variables within the compo- 
nent become unknown. The component being initial- 
ized is a particular component instance in a model that 
has inherited all its attributes from its parent component 
class (which may or may not include values of the vari- 
ables). Local values are values that have been assigned 
to a given component class or instance and have not 
been inherited from some parent class. The particular 
inheritance method used is called “override values” 
which means local values have precedence over any 
inherited values. However, if a local value is removed 
then the new value becomes whatever the parent’s 
value is, rather than becoming unknown (unless the 
parent’s value is also unknown). When defining the 
component classes in the library, the designer decides 
which variable values are to have default values and 
which ones don’t. So, by removing all the local values 
a component instance, it gets all its variables set to their 
default values. The next thing done is to remove the 
values of the hidden attribute called “Component 
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in 163. 162 and 163 are crucial steps which guarantee 
that the next steps will actually cause an event to get 
placed on the event queue. 164 assigns the [mode] pa- 
rameter for the next routine to be the value of another 

5 hidden attributes called “Initial Mode”. The “Initial 
Mode” is designated by the library designer when he/- 
she creates a mode diagram for the component class. 
Now that all the necessary conditions have been set, the 
4. Set Mode of [component] to [mode] routine can be 

10 executed with the assurance that an actual change will 
occur when the mode gets set to the value of the Initial 
Mode. This change will then cause an update event to 
be scheduled. 

Turning to FIG. 17, there is shown a flow chart for 
15 the method Set Mode of [component] to [mode] which 

describes what the invention does when it sets the mode 
of a particular component to a particular mode. If the 
new mode of component is different from the Current 
Mode of component as seen in 171, then 5. Try to 

20 Schedule Update for component with mode, else do 
nothing if the mode is the same. Note that during initial- 
ization (Le., if this routine is called from 3. Initialize 
Single component) then the mode will always be differ- 
ent, thus guaranteeing the execution of 5. Try to Sched- 

25 ule Update for component with mode routine. Note also 
that this routine can be called from routine 9. Effect 
Event for effect or component. 

FIG. 18 is a flow chart for the method Try to Sched- 
ule Update for [component] with [change] which de- 

30 scribes what the invention does when it tries to schedule 
an update event for a particular component due to a 
particular change in the component. As seen in 181, the 
change is added to the Component Changes hidden 
attribute of the component and then in 182 it is deter- 

35 mined if there were already changes in this Component 
Changes attribute. Since the only routines that remove 
the values of the Component Changes attribute are 3. 
Initialize Single component as seen in FIGS. 3 and 7. 
Update Event for component as seen in FIG. 20, and 

40 since this is the only routine that can call 6. Schedule 
Update for component, then there is no need to sched- 
d e  an update event unless this is the fust change. If this 
change is not the fust change in the Component 
Changes attribute, then there must already be an update 

45 event on the event queue for this component; therefore, 
there is not need to schedule another one because it 
would be redundant to execute the same update event 
more than once for a set of changes that occurred dur- 
ing the same time frame. On the other hand, if this is the 

50 fist change (i.e. there were no Component Changes for 
component), then 6. Schedule Update for component. 

FIG. 17 is a flow chart for the method Schedule 
Update for [component] which describes how the in- 
vention schedules an update event for a particular com- 

55 ponent. According to 171, this routine simply places 7. 
Update Event for [component] on the event queue 
using the current clock time and the lowest priority of 
0. The fact that the event is scheduled with the lowest 
priority is very important aspect to the invention. It 

60 guarantees that any other events scheduled by other 
update events being executed in the same time frame 
will possibly have higher priority than the event that 
has just been scheduled. Her is an example: Suppose a 
change occurs due to the execution of the top event on 

65 the queue and this change is the fust change in a compo- 
nent; therefore, an update event for that component will 
be scheduled by 5. Try to Schedule Update for compo- 
nent with change. But also suppose there were already 

Changes” as seen in 162. Also, remove the value of 
another hidden attribute called “Current Mode” as seen 
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events on the queue at the same time frame that had 
higher priority than 0. This means the update event will 
be placed behind those events. Assume those higher 
priority events also cause a change to occur in the same 
component when they get executed. Since they will sti l l  
be executed before the 7. Update Event for component 
gets executed they may have side effects that continue 
to make changes to the component in question. These 
changes will not cause another update event to be 
scheduled because the Component Changes already has 
a value (i.e. each subsequent change is not considered 
the fust change and is therefore ignored). When should 
another update event get scheduled? Only after the 
latest one has been executed. Thus, this leads to the next 
routine shown in FIG. 20 which answers this question. 

FIG. 20 is a flow chart for the method Update Event 
for [component] which describes what the inventions 
update event does when it gets executed by the discrete 
event simulator. The answer to the how to signal when 
a new update should be schedule lies in 201, which 
removes all the Component Changes from the compo- 
nent. Thus, as soon as any other event causes a change 
to occur in component, a new update will be scheduled. 
A new update event may even be scheduled before the 
completion of the current update event. In most cases 
that is what happens, because it is the update event that 
causes new changes to occur within a component. The 
next thing the update event tries to do, as seen in 202, is 
change modes by calling 8. Evaluate [process] for [com- 
ponent] for each of the mode transition processes asso- 
ciated with the Current Mode of the component. Note 
that the evaluation of these processes may or may not 
actually change the current mode of the component. 
Next, as seen in 203, all the mode dependent processes 
are evaluated by calling 8. Evaluate [process] for [com- 
ponent] for each of them. Finally, as seen in 204, all the 
independent processes are evaluated by calling 8. Eval- 
uate [process] for [component] for each of them. In 
order to understand how the evaluation of these pro- 
cesses cause subsequent changes occur and subsequent 
events to be scheduled see next method shown in FIG. 
21. 

FIG. 21 is a flow chart for the method Evaluate [pro- 
cess] for [component] which describes how the inven- 
tion evaluates a particular process. As seen in 211, all 
invocations associated with the process are tested with 
the component as their evaluation context and if any 
one is not true, then the rest of the process is ignored. 
As seen in 212, only when all invocations are satisfied, 
do any effects get evaluated or scheduled. If so, then 
each effect that has no delay or a zero delay associated 
with it will get evaluated immediately. Remember, this 
is occurring within a process evaluate which was called 
by the update event. Thus, update events have the abil- 
ity to initiate changes (execute effects) within a compo- 
nent. The effects that have a delay greater than zero do 
not get evaluated immediately, instead the 9. Effect 
Event for [effect] of [component] is put on hold, so to 
speak, and scheduled delay down the queue (Le., put on 
the queue at current clock time plus the delay time). See 
the next figure (FIG. 22) for the type of effects that get 
scheduled and their ultimate results. 

FIG. 22 is a flow chart which describes the Dossible 
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nent probably changes to a new mode by calling 4. Set 
Mode of [component] to [mode]. Else, as seen in 222, if 
the effect was an effect that tries to evaluate a process, 
then 8. Evaluate [process] for [component] gets called 

5 again. Note that this is a recursive call and in some cases 
it could even be a self referencing call (Le., the process 
that was evaluated may have an effect that actually tries 
to reevaluate the process. This would continue until the 
invocations of the process were not satisfied). This por- 

10 tion of the invention is what provides dynamic schedul- 
ing of events and thus supports unpredictable events 
such as trends, which are normally very hard to discre- 
tize. As a result, the invention provides an acceptable 
alternative to modelling historically continuous pro- 

15 cesses with a discrete event simulator. If both 221 and 
222 are not the case, then the effect must simply set a 
variable of a component which is described in the 
method. 

FIG. 23 is a flow chart for the method Set [variable] 
20 of [component] which describes how the invention sets 

a particular variable in a component. As seen in 231, this 
methdd makes sure the variable has actually changed 
values, otherwise there is no need to do any thing. Ac- 
cording to 232, if the variable is defined in an update 

25 variable cluster, then invention tries to schedule and 
update by calling 5. Try to Schedule Update for [com- 
ponent] with [variable]. Note that this time a variable is 
passed as the change parameter to this method rather 
than a mode. After that, as seen in 233, if the variable is 

30 defined in a propagate variable cluster, then the inven- 
tion tries to propagate the variable by calling 11. Try to 
Propagate [variable] from [component]. Note that both 
of these method may be called for single variable, since 
variables may be defined as having the ability to cause 

FIG. 24 is a flow chart for the method Try to Propa- 
gate [variable] from [component] which describes how 
the invention tries to propagate a particular variable 
from a particular component to all its related compo- 

40 nents. As seen in 241, if all related components have 
been tied, then there is no need to send the variable 
anywhere else. In 242, the next related component is 
assigned to the related parameter. Then, as seen in 243, 
if the variable is in the related component, then 10. Set 

45 [variable] of [related] where [related] is passed as the 
component parameter. Note that if 243 is true, then this 
results in another recursive cll back to the 10. Set [vari- 
ables] of [component] routine. 

35 propagate, update or both. 

50 Experimentation and Analysis Module 
.. 

This module allows the end user to experiment with 
both the library design definitions of the components 
and the specific component configurations set forth in 
one or more models. 

Analysis information may be produced in various 
manners, visual analysis can be performed by running a 
simulation with a portrayal of dynamic activity via 
bitmap or active trace images. Bitmap images may only 
represent a variable name and will more along the rela- 

60 tion image on the screen whenever a value of that par- 
ticular variable gets propagate through the relation. 
Active trace images are also associated with a particular 
variable name and more with propagation, just as bit- 

55 

outcomes when an effect event of the invention gets map images do. However, active images show the new 
popped off the event queue and executed by the discrete 65 value that is being propagated rather than remaining a 
event simulator or gets executed immediately by 8. static bitmap. Active and bitmap trace images are asso- 
Evaluate [process] for [component]. As seen in 221, if ciated with particular relation types and may be turned 
the effect was a mode transition effect, then the compo- on or off for any number of relations depending on the 
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analysis desired by the end user. An important feature 
of these trace images is the ability to associate trace 
speeds with each image. This is very useful when the 
user wishes to slow down the simulation. Interesting 
simulations may be obtained by assigning different trace 
speeds to a different variable propagated across differ- 
ent relations. 

The debug facility allows the user to turn debug on or 
off for any class of components. Therefore, if the user 
wishes see a textual description of all the events, he/she 
can turn debug on for the root class in a library. In most 
physical systems, the operator of the system is usually 
only provided with sensor information on which he/she 
must make all diagnostic decisions. Thus, the tool sup- 
ports the recording/display of information provided by 
the sensor class of components. A log file of sensor 
information plus partial or component information ob- 
tained from a simulation may be used to create diagnos- 
tic rules or for intelligent decision making or proce- 
dures regarding the operation of the system. 

In addition to the analysis information provided by 
the invention, the particular embodiment also provides 
common statistical information by means of “data col- 
lectors”. Several types of data collectors are provided 
which support both graphical and report oriented meth- 
ods of display. 

It is the above forms of analysis information that 
provides a robust environment for experimentation. 
The user can easily compare the differences between 
model pe-bations by using one of the above analysis 
tools. Investigation of component redefinitions require 
no different approach to analysis. The only difference is 
the motivation behind each type of analysis. Redefini- 
tion analysis is motivated by the users desire to under- 
stand and/or modify the design of the system compo- 
nents, were as model perturbation analysis is motivated 
by the need to gain understanding of the system dynam- 
ics. The manner in which the tool accomodates both 
motivations and allows the user to move freely between 
them is a significant feature of the invention. 

While a preferred embodiment of the invention has 
been shown and described, and modifications or alter- 
natives have been discussed, it will be understood that 
the invention is not l i i t e d  thereto since modifications 
can be made and will become apparent to those skilled 
in the art. 

What is claimed is: 
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1. A method for off-line experiments and analyses of 

143 
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within the model knowledge base, to control a 
time-ordered simulation, 

inputting data, which may include malfunction data, 
to effect changes in the component instances 
within the model knowledge base, either by chang- 
ing a variable value of a component instance or by 
changing the current mode of a component in- 
stance, 

updating variable values and the current mode of 
component instances, and propagating changes 
through the model knowledge base in a time- 
ordered fashion in response to the input data and 
resulting changes, under control of the change 
control mechanisms, 

and outputting information in response to the changes 
in variable values and the current mode of compo- 
nent instances and to the propagation of changes 
through the model knowledge base, to support 
analysis of effects of changes which may include 
malfunctions, on modes of component instances, 
and to support analysis of diagnostic experiments in 
which effects of malfunctions on the system are 
compared. 

2. The method of claim 1 wherein the step of provid- 
ing components with modes and mode transitions in- 
cludes providing normal and malfunction modes, and 
providing the set of allowable transitions between these 
modes, to provide the context for mode-specific behav- 
ior descriptions. 

3. The method of claim 1 wherein the step of provid- 
ing component behavior descriptions, called processes, 
includes the steps of: 

providing behavior descriptions for each mode which 
includes processes that describe each mode-specific 
behavior and processes that describe each mode 
transition, 

and providing processes that describe each mode- 
independent behavior. 

4. The method of claim 3 wherein the step of provid- 

providing a set of invocation statements that describe 
conditions that determine whether the process is 
applicable, 

and providing a set of effect statements, each with an 
associated delay value, that determine effect ac- 
tions to be performed on a component instance 
during a simulation, and the time in the simulation 
when the actions occur. 

ing processes includes the steps of: 

an application specific system of components using 50 
qualitative modeling and discrete event simulation to 
analyze dynamic system effects of changes in compo- 
nents with continuous behavior, including malfunction, 
comprising the steps of: 

5. The method of claim 4 wherein the step of provid- 
ing the set of effect statements includes providing state- 
ments for the steps of: 

setting a component instance variable to a value cal- 
culated from combinations of variables from the 

providing a library knowledge base of domain spe- 55 component instance using the qualitative algebra 
cific modeling elements which includes compo- defined in the library knowledge base, 
nents with modes, mode transition, variables, and setting the current mode of a component instance to 
behavior descriptions, a qualitative algebra for one of the modes of the component instance, 
deftning and combining component variables, and or activating a process of the component instance. 
relations to link the components, constructed rela- 60 6. The method of claim 1 wherein the step of provid- 
tive to the application specific system, ing a qualitative algebra for defining and combining 

providing a model knowledge base for the applica- component variables includes the steps of: 
tion specific system, which includes component providing qualitative valueclasses which are ordered 
instances, each with a current mode, linked by lists of symbols that define the values of specific 
relation instances, 65 classes of component variables, to provide discrete 

providing change control mechanisms, independent values for continuous variables, 
and distinct from the domain specific modeling and providing operators on the qualitative value- 
elements, to select and control effects of changes classes which describe how to combine the values 
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of qualitative valueclasses that are arguments to the 
operator, to calculate a resulting qualitative value. 

7. The method of claim 6 wherein the step of provid- 
ing an operator for the qualitative algebra includes the 
step of providing one or more operations for the opera- 
tor, to define how to combine each set of applicable 
qualitative valueclasses that can be used as arguments to 
the operator. 

8. The method of claim 7 wherein the step of provid- 
ing operations includes the step of describing, in a tabu- 
lar format, the resulting qualitative value of each combi- 
nation of the values in the qualitative valueclasses of the 
arguments to the operation. 

9. The method of claim 1 wherein providing relations 
that link components includes the steps of: 

providing variable clusters, which are specific sets of 
component variables, 

and providing a mapping that associates variables of a 
variable cluster of a domain component with vari- 
ables of another variable cluster of a range compo- 
nent. 

10. The method of claim 1 wherein providing change 
control mechanisms includes providing a change con- 
trol mechanism for the variable cluster of the domain 
component to control the step of propagating changes 
through the model knowledge base by propagating the 
values of the variables in the variable cluster of the 
domain component into the corresponding variables in 
the linked variable cluster of the range component, 
based upon the mapping. 

11. The method of claim 1 wherein the combonent 
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instances within the model knowledge base inheit all of 
their behavior from the description of the component 
variables, modes, mode transitions, and behavior de- 35 
scriptions; and the variable values of the component 
instances are local to the component instances; further- 
more, all component instances contain a local attribute, 
called current mode, which keeps track of the mode of 

12. The method of claim 1 wherein the step of provid- 
ing component variables and modes includes the step of 
attaching change control mechanisms that respond to 
changes in variable values and modes by providing the 
steu of storing an uudate comuonent event on the event 45 

the component instance during a simulation. 40 

- -  
qudue, with a time value of the simulation time and a 
priority value of zero. 

13. The method of claim 1 wherein providing change 
control mechanisms includes providing a discrete event 
simulation control mechanism to control: 

providing simulation events, independent and distinct 
from the domain specific modeling elements, 
which are actions with simulation time informa- 
tion, created in response to changes in component 
instanCeS, 

storing future events in the simulation on an event 
queue, which contains an ordered list of the simula- 
tion events, each with an associated time of the 
event, 

running the discrete event simulator which includes 
the steps of executing the next event on the queue, 
and halting when there are no more events on the 
queue, 

storing the simulation time which is the time value of 
an event being executed, into a simulation clock 
variable. 

14. The method of claim 13 wherein events on the 
event queue are ordered by the time value associated 
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with the event, is ascending order, and sub-ordered by 
an integer priority value, in descending order. 

15. The method of claim 13 wherein the step of pro- 
viding simulation events includes providing descrip- 
tions of actions to be performed on component instances 
within the model knowledge base. 

16. The method of claim 15 wherein the actions to be 
performed on component instances include the steps of: 

updating the component instance; 
and performing effect actions on the component in- 

17. The method of claim 16 wherein the step of updat- 

activating the mode transition processes of the cur- 
rent mode of the component instance, activating 
the mode specific processes of the current mode of 
the component instance, 

and activating the mode independent processes of the 
component instance. 

18. The method of claim 17 wherein the step of acti- 

evaluating all  of the invocation statements of the 
process, 

performing the effect actions of all of the effect state- 
ments of the process, on the component instance, 
based on the delay value of the effect statement, if 
and only if all of the invocation statements evaluate 
to true. 

19. The method of claim 18 wherein the step of per- 
forming the effect action occurs immediately if the 
delay value of the effect statement is zero; otherwise, an 
effect execution event, to perform the effect action on 
the component instance, is added to the event queue 
with a time value of the simulation time plus the effect 
statement delay value, and a priority value of one. 

20. The method of claim 16 wherein the effect state- 
ments include actions for the steps of: 

setting a variable of the affected component instance 
to a value calculated from combinations of vari- 
ables from the affected component instance using 
operators from the qualitative algebra defined in 
the library knowledge base, 

setting the current mode of the affected component 
instance to one of the modes of the component 
instance, or activating a process of the component 
instance. 

21. The method of claim 1 wherein the outputting of 
information in response to changes in the model knowl- 
edge base includes outputting a graphic representation 
of the component instances and the relation instances. 

22. The method of claim 21 wherein the outputting of 
the graphic representation includes outputting bitmaps 
of the component instances which are specific to the 
current mode of the component instance. 

23. The method of claim 1 wherein the output of a 
simulation includes a textual output of the sequence of 
changes occurring in component instance, each with an 
associated simulation time. 

24. The method of claim 1 wherein the output of a set 
of simulations is recorded into some format, either using 
files of the text output or time-based tables, in order to 
compare effects of changes, including malfunctions, on 
the application specific model. 

25. A simulation and analysis tool for off-line experi- 
ments and analyses of an application specific system of 
components using qualitative modeling and discrete 
event simulation to analyze dynamic system effects of 

stance. 

ing the component instance includes the steps of: 

vating the processes includes the steps of: 
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changes in components with continuous behavior, in- 
cluding malfunctions, comprising: 

a library knowledge base of domain specific modeling 
elements which includes components with modes, 
mode transitions, variables, and behavior descrip- 5 
tions, a qualitative algebra for defining and combin- 
ing component variables, and relations to link the 
components, constructed relative to the application 
specific system, 

a model knowledge base for the application specific 10 
system which includes component instances, each 
with a current mode and linked by relation in- 
stances, 

means for inputting data to effect changes of compo- 
nent instances within the model knowledge base, 15 
either by changing a variable value of a component 
instance or by changing the current mode of a 
component instance, 

change control mechanisms, independent and distinct 
from the domain specific modeling elements, to 20 
select the control effects of changes within the 
model knowledge base, by updating variable values 

34 
and the current mode of the component instances, 
and by propagating changes in the model knowl- 
edge base in a time-ordered fashion in response to 
input data and the resulting changes, under control 
of the change control mechanisms, 

means for applying the change control mechanisms to 
select and control changes in the component in- 
stance variables and the current mode of the com- 
ponent instances, 

a discrete event simulator including an event queue 
containing an ordered list of simulation events, a 
clock containing the simulation time, and the simu- 
lation events, independent and distinct from the 
domain specific modeling elements, that are cre- 
ated under control of the change control mecha- 
nisms, 

means for running the discrete event simulator, 
and means for outputting information in response to 

changes of variable values and the current mode of 
component instances, and to the propagation of 
changes through the model knowledge base. * * * * *  
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