
United States Patent [11] Patent Number: 4,965,743
Malin et al. [45] Date of Patent: Oct. 23, 1990

[54] DISCRETE EVENT SIMULATION TOOL
FOR ANALYSIS OF QUALITATIVE MODELS
OF CONTINUOUS PROCESSING SYSTEM

[75] Inventors:

[73] Assignee:

[21] Appl. NO.:
[22] Filed:

Jane T. Malin, Houston; Bryan D.
Basham, Seabrook; Richard A.
Harris, Houston, all of Tex.
The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.
219,295
Jul. 14,1988

[51]
[52]
[58]

[561 References Cited

Int. C l . 5 .. GO6F 15/18
U.S. Cl. 364/513; 364/578
Field of Search 364/513, 148, 578, 468,

364/478

U.S. PATENT DOCUMENTS
4,642,782 2/1987 Kemper et al. 364/513
4,649,515 3/1987 Thompson et al. 364/513
4,658,370 4/1987 Erman et ai. 364/513
4,675,829 6/1987 Clemenson 364/513
4,796,194 111989 Atherton 364/468

OTHER PUBLICATIONS
“Applications of AI in Engineering,” Faught, W. S.,
Computer, 1986, pp. 17-25.
“Deep Knowledge and Simulation in Knowledge-
Based Control,” Lumley, J., Colloquim on “Real-Time
Expert Systems in Process Control”, 11/85.
“Expert Systems in On-Line Process Control,” Moore,
R. L., Kramer, M. A.
“Doing Time: Putting Qualitative Reasoning on Firmer
Ground,” Williams, B. C., Automated Reasoning, pp.

“Qualitative Reasoning with Deep Level Mechanism
Models for Diagnosis of Mechanism Failures,” Pan,

“Processes in Construction of Failure Management
Expert Systems from Device Design Information,”
Malin et al., IEEE, 1987, pp. 956-967.
“Qualitative Process Theory,” Forbus, Artificial Intelli-
gence 24, 1984, pp. 85-168.
“A Qualitative Physics Based on Confluences,” De
Kleer et al., Artificial Intelligence 24 (1984), pp. 7-83.
“Experience in the Development of an Expert System

105-1 12, 1986.

IEEE, 1984, pp. 295-301.

for Fault Diagnosis in a Commercial Scale Chemical
Process,” Dhurjati et al., Intelligent Systems for Process
Operations, pp. 589-619.
“Perturbation Analysis of Automated Manufacturing
Systems,” R. Suri, Op. Research, IFORS, 1984, pp.

“A Specification Language to Assist in Analysis of
Discrete Event Simulation Models,” Overstreet et al.,
Com. of the ACM, 2/85, vol. 28, #2, pp. 190-201.
“Qualitative Physics: Past, Present, and Future,” K.
Forbus, Exploring Artificial Intelligence, Morgan Kauf-
mann, Inc., 1988, pp. 239-2966.

Primaiy Examiner-Allen MacDonald
Attorney, Agent, or Firm-Russell E. Schlorff; John R.
Manning; Edward K. Fein
V I ABSTRACT
An artificial intelligence design and qualitative model-
ling tool is disclosed for creating computer models and
simulating therein continuous activities, functions and-
/or behavior using developed discrete event techni-
quers. Conveniently, the tool is organized in four mod-
ules: library design module, model construction mod-
ule, simulation module, and experimentation and analy-
sis. The library design module supports the building of
library knowledge including component classes and
elements pertinent to a particular domain of continuous
activities, functions and behavior being modelled. The
continuous behavior is defined discretely with respect
to invocation statements, effect statements and time
delays. The functionality of the components is defined
in terms of variable cluster instances, independent pro-
cesses and modes, further defined in terms of mode
transition processes and mode dependent processes.
Model construction utilizes the hierarchy of libraries
and connects them with appropriate relations. The sim-
ulation executes a specialized initialization routine and
executes events in a manner that includes selective in-
herency of characteristics through the library hierarchy
and runs the events through a time and event schema
until the event queue in the simulator is emptied. The
experimentation and analysis module supports analysis
through the generation of appropriate log files and
graphics developments and includes the ability of log
file comparisons.

938-948.

25 Claims, 11 Drawing Sheets

U.S. Patent od. 23,1990 Sheet 1 of 11 4,965,743

-J f

r
ci,
ii

U.S. Patent oct. 23,1990 Sheet 2 of 11 4,965,743

SENSOR.COMP - ULTRASONIC.LEVEL.SENSOR

/
CONDENSER
EVAPORATOR
FILTER
PIPE

REG EN ERATOR
SUBCOOLER

-

TI-P IP E
TO-PIPE

MANUAL.VALVE

SOLENOID.VALVE

THERMAL.MODEL.OBJ ECTS

rHERh44L.VARIABLE-CLUSTERS
Variables:

DOWNSTREAM-VCS <Subclass>

0udifafiw.Symbols:

Oualifa five. Symbols:

(None)

Variables:
FLOW with FLOW-CONSTANTS

NONE PARTIAL FULL
PRESSURE with PRESSURE-CONSTANTS

LOW NOMINAL HIGH
FLUID-PHASE with FLUID.PHASE-CONSTANTS

SUB.LIQ SAT.LIQ SAT.VAP SUP.VAP
Oualifafive. Symbols:

CONTAMINATION with CONTAMINATION-CONSTP
Oualifa five. Symbols:

Boolean. Map:

0ualrfafiw.Symbols:

CLEAN SM MED LRG
DELTA with BOOLEAN-VALUES

(p
T F

D-IN-VCS <Subclass>
D-OUT-VCS <Subclass>

SENSOR-VCS <Subclass>
THERh44L.PROPAGATE-VCS <Subclass>
THERMAL.UPDATE-VCS <Subclass>
UPSTREAM-VCS <Subclass>

#-IN2
Variables:

D-lnZ.F/ow:
Variable. Valueclass:

Value:

04112. Pressure:

FLOW-CONSTANTS

FULL

Variable. Valueclass:

Value:
PRESSURE-CONSTANTS

NOMINAL
D-ln2.Fluid Phase:

Variable. Valueclass:

Value:
FLUID.PHASE-CONSTANTS

suB.ua
D-ln2. Contamination:

Variable. Valueclass:

Value:
CONTAMINATION-CONSTANTS

CLEAN
D-ln2. Delia:

Variable. Valueclass:

Value:
BOOLEAN-VALU ES

T

Fig. 3 Fig. 4

U.S. Patent od. 23,1990 Sheet 3 of 11 4,965,743

DOWNSTREAM.RELATION 1 Domain:

Domain. Variable.Cluster:

Range:

Range. Variable.Cluster:

Include:

Exclude:

THERMAL.MODEL.OBJECTS

D-OUT-VCS

THERMAL.MODEL.0BJECTS

D-IN-VCS

<None>

<None>

<None>
Translormations:

<None>
Traced. Variables:

<None>

Meppings:

Fig. 5

7Q7

7 t ~ i NOMINAL t
y 7e

CAVITATE SHUTDOWN

Fig. 7

6

'UMP
Description:

Replace this text with a description
of this component.

Constants:
<None>

Variable. Clusters:
PUMP 1

Variables: 't
Pump 1. Damage-Trend.DC

Variable. Valueclass:
NUMBERS

Value:
0

Variable. Valueclass:

Value:

Pump l.Damaged7:

BOOLEAN-VALUES

F
Pump 1.Damage-Trend:

Variable. Valueclass:
TREND-CONSTANTS

Value:
INACTIVE

D-OUT 1
Variables:

D-OUf 1.Flow:
Variable. Valueclass:

Value:
FLOW-CONSTANTS

FULL
D-Ouf 1.Pressure:

Variable. Valueclass:

Value:
PRESSURE-CONSTANTS

NOMINAL
M u t 1.Fluid-Phase:

Variable. Valueclass:

Value:

Variable. Valueclass:

Value:
CLEAN

D-Outl.Delfa:

FLUID.PHASE-CONSTANTS

SUB.UQ
D-Out 1. Contamination:

CONTAMINATION-CONSTANTS

variable. Valueclass:

Value:
BOOLEAN-VALUES

T
BIN1
U-OUT1
U-IN1

Independent Processes:

Relations:
<None>

<None>
I

Fig.

U.S. Patent oct. 23,1990 Sheet 4 of 11 4,965,743

UMP.NOMINAL
Descnp tion:

peplace this text with description of mode.
FaMy?:

NO
Mode. Dependent Procssses:

FLUID.PHASE.PASSPR0CESS

lnwcations:
<None>

PRESSURE.C-PROCESS

ffracts:
PRESSURE.C.PEFFECT
PRESSUi3E.C.U-EFFECT

MS MS
Deleys:

CONTAMINATION.PASSPROCESS ,
FLOW.FULL-PROCESS
DELTA.T-PROCESS
CLEAR.AHEAD.T-PROCESS

Mode. Transition.Pmcasses:

lnwcations:

PUMP.NOMINAL.TO.PUMP.SHUTDOWN
PUMP.NOMINAL.TO.PUMP.CAVlTATE

1F.INPUT.NOT.SUB.CCOLED
statement:

Result. Class:

(NOT (D-lN1.FLUID-PHASE
EQUAL SUE.UQ))

BOOLEAN-VALUES

SET.DAMAGE.TREND.UP-EFFECT
Effects:

statement:

statement:

(PUMPIDAMAGE-TREND t UP
PUMP.CAVITATE.EFFECT

(CURRENTMODE t
PU MP.CAVITATE)

Dekys:
<None>

Fig. 8

El PUMP.SHUTDOWN
Desuiption:

Replace this text with description of mode.
Fauhyh

NO
Mode.Dependent.Procasses:

h w c a tions:
<None>

Effects:

t FLOW.NONE-PROCESS

FLOW.NONE-EFFECT
Statement:

(D-OUT1.FLOW c NONE)
Delays:

PS
CLEAi3.AHEAD.F-PROCESS
DELTA.F-PROCESS
PRESSURENC-PROCESS

Mode. Transition. Processes: I PUMP.SHUTDOWN.TO.PUMP.NOMINAL -
Fig. 10

'UMP.CAVITATE
Description:

Replace this text with description of mode.
Faulty?:

NO
Mode.Dependent.Procasses:

FLUID.PHASE.PASS-PROCESS
CONTAMINATION.PASS-PROCESS
PUMP.BElNG.DAMAGED-PROCESS

Invocations:

Effects:
IF.DAMAGE.TREND.UP

TRY.DAMAGING-PROCESS
Statement:

(TRY DAMAGING-EFFECT)
Delays:

HRR
DELTA.F-PROCESS
CLC9R.AHEAD.T-PROCESS
FLOW.FULL-PROCESS
PRESSURE.LOW-PROCESS \

Mode. Transjtion.Processes:

Invocations:
PUMP.CAVITATE.TO.PUMP.SHUTDOWN

IF.PUMP.DAMAGED
Statement:

(PUMP1 .DAMAGED?
EQUAL T)

Result. Class:
BOOLEAN-VALUES

Effects:
DAMAGE.TREND.INACTIVE-EFFECT

Statement:
(PUMP1 .DAMAGE-TREND
c INACTIVE)

PUMP.SHUTDOWN.EFFECT
Statement:

(CURRENT.MODE
c PUMPSHUTDOWN)

Delays:
<None>

PUMP.CAVITATE.TO.PUMP.NOMINAL

Fig. 9

US. Patent oct. 23,1990 Sheet 5 of 11 4,965,743

DAMAGING-EFFECT
Invocations:

1F.DAMAGE.TREND.DT.HRS
Statement:

(PUMP1 .DAMAGE-TREND.DT
EQUAL HRS)

Result Class:
BOOLEAN-VALUES

Effects:
PUMP.DAMAGED-EFFECT

statement:
(PUMPl.DAMAGED? t T)

Delays:
<None>

Fig. 11

THERMAL.LANGUAGE
Operators:

CLOG-OPERATOR
EVAP. FLOW-OPERATOR - - - . . -. - - . . -. .
FLUID PHASE-OPERATOR
GREATER.THAN-OPERATOR
LEVEL.TREND-OPERATOR
LEVEL.TREND.SPEED-OPERATOR
PRESSURE.C-OPERATOR
REGEN.FLUID.PHASE-OPERAT0R
Tl.CONTAM-OPERATOR
TI.D-OPERATOR
TLF-OPERATOR

TI.P-OPERATOR
TO.F-0PERATOR
TO.P-OPERATOR
AND-OPERATOR
EQUALSOPERATOR

NOT-OP ERATOR

TI.FP-OPERATOR

OR-OPERATOR

Valueclassas:
CONTAMINATION-CONSTANTS
FILTER-CONSTANTS
FLOW-CONSTANTS
FLUID.PHASE-CONSTANTS
HEAT.GRAD-CONSTANTS
HEAT.LOAD-CONSTANTS
H EAT.SIN K-CONSTANTS
PRESSURE-CONSTANTS
TIME-CONSTANTS
TREND-CONSTANTS
TREND.SPEED-CONSTANTS

BOOLEAN-VALU ES
NUMBERS

\

Fig. 12

FLUID.PHASEQPERATOR
Symbd:

Precedence: <Unknown>
Operations.List:

FP

FLUID.PHASE-0PERATIONS
Table:

Arg #2 MEG.HIGH MEG.MED NO.CHANGE POS.MED POS.HIGH

Arg#l: SUB.UQ SUB.UQ SUB.UQ SUB.UQ SAT.LIQ SAT.VAP
SAT.LIQ SUB.UQ SUB.LIQ SAT.LIQ SAT.VAP SUP.VAP
SAT.VAP SUB.UQ SAT.LIQ SAT.VAP SUP.VAP SUP.VAP
SUP.VAP SAT.LIQ SAT.VAP SUP.VAP SUP.VAP SUP.VAP

Argument.Classes. tist:
FLUID.PHASE-CONSTANTS

Quditatiw.Sym&ls:

HEAT.GRAD-CONSTANTS
Qudifatiw.Sym&ls:

SUB.UQ SAT.LIQ SAT.VAP SUP.VAP

MEG.HIGH MEG.MED NO.CHANGE POS.MED POS.HIGH
Result. class:

FLUID.PHASE-CONSTANTS
QuaMatiw.Sym&ls: I

I SUB.UQ SAT.LIQ SAT.VAP SUP.VAP

Fig. 13

U.S. Patent od. 23,190 Sheet 6 of 11 4,965,743
(ilInitialize <model> 1

(Start)
-I

141 $

2. Run <models

Let icomponenu =
next non-initialized

component in unodeb

3. Initialize single

Figure 14

(Empty ?)--

I Remove top event from Queue I
r 3 , .1 ,
Execute removed event

I
Figure 15

U.S. Patent oct. 23,1990 Sheet 7 of 11

1617
Remove all local variable values in ccornponenu

1 6 2 1
Remove value(s) of 'Component.Changes' in <cornponenu

163-
I Remove value of 'Cment.Mode' in ccomponenu

164\
Lct unode> = value of 'Inidal.Mode' in <cornponenu

I 4. Set Mode of
ccomponent> to <mode>

Figure 16

yes
Curren t.Mode'

5. Try to schedule update 1 for aomponenb with <mode>

4,965,743

Figure 17

U.S. Patent oct. 23,1990 Sheet 9 of 11 4,965,743
7. Update event

20 1 7

Remove all 'Component.Changes' for <component>

2 0 2 7

For each <process> in the 'Mode.Transition.Processes'
for the 'Current.Mode' of <cornponenu do:

8. Evaluate <process> i for <component>

2 0 3 7 \c.
For each <process> in the 'Mode.Dependent. Processes'
for the 'Current.Mode' of <cornponenu do:

204-

ccomponenu do:
For each <process> in the '1ndependent.Processes' for

I

Figure 20

8. Evaluate <process>

e n > ' ' ,
of <process>

true?

(Yes
212 7 \k

For each ceffecu and corresponding <delay> in <process> do:

then place the following event on the event queue with clock
time set to current time plus <delay> and priority of 1:
(note: higher priority than Update Event)

If <delay> is greater than 0,

else evaluate the following event immediately:

9. Effect Event for

I

Figure 21

US. Patent od. 23,1990 Sheet 10 of 11

9. Effect Event for
<effect> of <component>

8. Evaluate <process:
for <component> effect?

i 1 4 10. Set <variable>
of <component>

Figure 22

4,965,743

5. Try to Schedule update for
<components with <variable>

variable?

11. Try to Progagate
<variable> from <component>

Figure 23

US. Patent oCt. 23,1990 Sheet 11 of 11 4,965,743

I 1 1 . T r y t o P r o p a g i l t 7 1 <variable> from <comoonent>

Let <related> = next component
related to <cornponenu

/--a I

10. Set <variable>
of <component>

I t
No

Figure 24

4,965,743
1

DIS- EVENT SIMULATION TOOL FOR
ANALYSIS OF QUALITATWE MODELS OF

CONTINUOUS PROCESSING SYSTEM

ORIGIN OF THE INVENTION
The invention described herein was made in the per-

formance of work under a NASA contract and is sub-
ject to the provisions of Section 305 of the National
Aeronautics and Space Act of 1958, Public Law 85-568
(72 Stat. 435; 42 U.S.C. 2457).

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is a modeling and simulation tool for

analyzing both the normal and faulty qualitative behav-
ior of systems and as such relates to the field of discrete
event modeling and simulation and to the field of artific-
ial intelligence and qualitative reasoning.

2. Description of the Prior Art
Designing, testing, and operating engineered devices

and systems requires analysis of the effects of failures
and procedures as they propagate through configura-
tions of components. Such analyses are done in develop-
ment of failure management expert system software, in
the design of system sensors to support failure manage-
ment, and in failure modes and effects analysis in the
areas of safety and reliability engineering. An earlier
study has shown the ways in which engineers perform
such predictive analyses by using simplified conceptual
models and mentally simulating the effects of failures
and control actions as they propagate through the sys-
tem structure. See Malin, J. T. , and N. Lance, “Pro-
cesses in Construction of Failure Management Expert
Systems from Device Design Information”, IEEE
Trans. on Systems, Man, and Cybernetics, 1987, Vol.

To predict and analyze the effects of failures and
control actions in components of a system, designers
and operators commonly use simplified conceptual
models of the behavior of system components and the
structure of the system to form mental models which
simulate the propagation of effects through the system
structure. The components of such systems may exhibit
continuous behavior, yet the mental models used by the
analyst are frequently not continuous or quantitative,
but rather discrete and qualitative. System components
are conceived of as having various normal and faulty
modes, with different behaviors for each mode. Change
in a component mode or input variable can result in
qualitative changes in the component or flows through
it, which can cause further mode changes or can propa-
gate qualitative changes in variables through the sys-
tem, affecting the modes and behavior of other compo-
nents. The analyst traces this change in behavior and

SMC-17.

of device and system behavior. The objective in pro-
ducing the invention is to provide modeling and simula-
tion methods that correspond to the common sense
methods of human experts. This goal has led to exten-

5 sions of the capabilities of both qualitative modeling and
discrete event simulation. These efforts include qualita-
tive fault modeling, adaptation of discrete event struc-
tures to accommodate models of process systems, and
combining qualitative modeling and discrete event sim-

The tool is oriented toward supporting analysis of a
range of engineered space systems, such as a two-phase
thermal bus system or an electrochemical air purifica-
tion system, but is not limited to such systems. These

l5 types of systems exhibit diagnostic problems associated
with sparse sensor data and inaccessibility, and model-
ing problems associated with complex processing com-
ponents and complex processed substances.

lo ulation.

20 QUALITATIVE MODELING BACKGROUND
There is a large body of research in artificial intelli-

gence containing results of investigations of this type of
common sense reasoning. This area of research is called

25 qualitative representation and reasoning. The dynamic
behavior of continuous physical systems is described in
terms of a set of qualitative state variables and qualita-
tive equations or constraints that describe their interac-
tions or dependencies. When a continuous state variable

30 is divided into a set of regions of interest (often positive,
zero, and negative), it is a qualitative state variable.
Thus, the qualitative value of a continuous quantity is
determined by the region it is in.

Two general types of qualitative reasoning ap-
35 proaches have been developed, namely, device-cen-

tered and process-centered approaches. Device-cen-
tered models use a set of local models of the behavior of
each type of component in a system (“device”), and
connections through which information is communi-

40 cated between the components. For example, a device
such as a buzzer might be composed of a clapper, a coil,
and a battery, and the wires and fields that connect
them, so that outputs from a component can become
inputs of other components. The local component mod-

45 els may have a number of distinct behavior regions, and
may not only specify the behavior of the component in
each region, but also the conditions that cause a transi-
tion from the current behavior region to another. The
device model is a network of components and connec-

50 tions representing the structure of the system. Reason-
ing is accomplished by propagating information
through the local connections. See, for example, J. De
Kleer and J. S. Brown, “A Qualitative Physics Based on
Confluences”, Artificial Intelligence, December 1984,

J J -
notes resulting System changes of iiterest. Changes of
interest can include changes in sensed values at points in Process-centered models use a set of models of physi-
the system designed to detect failure, or further failures cal processes (e.g., flow, chemical synthesis boiling),
and degradations caused by an initial failure or failure which need not be local, but may include a system of
combination. 60 related components in which the process is occurring.

If computer models that are analogous to these men- Situations can be described as networks of components
tal models could be constructed and analyzed, this pro- and attribute relationships. Reasoning is accomplished
cess of analysis could be performed more consistently by scanning the structure for conditions that are re-
and rapidly. More complex and extensive analyses be- quired for any process to occur. Processes make
yond the capacity limitations of mental modeling could 65 changes in the situation, which cause further processes
be performed. to become active or inactive. See, for example, K. D.

The invention is a generic modeling tool that pro- Forbus, “Qualitative Process Theory”, Artificial Intelli-
vides a software version of human qualitative analyses gence, December 1984, Vol. 24.

24*

4,9 65,743
3 4

Much of the qualitative reasoning work has focussed and with an explicit specification of qualitative regions
on developing representations and reasoning methods of time delays, could be used in discrete event simula-
to generate the set of all possible histories or sequences tion. Furthermore, they could be directly specified by
of patterns of state variables in a system. Another line of the analyst, rather than produced by a qualitative rea-
work has focussed on using qualitative representations 5 soning system. This approach of direct specification
of normal system behavior to generate explanations for eliminates some of the problem of ambiguity inherent in
an observed abnormal system behavior. Another line of aualitative reasoning. The statistical facilities com-
work has focussed on generating an explanation of the
function of a system based on a qualitative description
of the behavior of its components and its structure.

The common method for generating explanations and
determining the historical, qualitative values of state
variables in a system is constraint propagation. The
constraints define dependencies among variables in the
models, and known values are used to assign additional
values using the network of constraints. This approach
has the advantage of starting the solution process any-
where in the network, using whatever values are avail-
able. The network of constraints is used as assigned
values are tested to determine if they satisfy constraints.
The tests are conducted by working through the net-
work. The system may ultimately fail to assign all the
desired values. The network is also used to identify
inconsistencies between constraints and values. This
capability serves as the basis for failure diagnosis.

The approach is significantly different from the ap-
proach used in discrete event simulation, where the
simulation moves forward deterministically in time,
performing the computation associated with component
behavior when it is scheduled to occur. To combine a
qualitative representation and a discrete event simula-
tion, a qualitative representation suitable for discrete
event simulation is needed. Such a representation
should have an explicit representation of time. In addi-
tion, such a representation should permit the local be-
havior of any component to be determined unambigu-
ously at each step in the simulation.

Qualitative reasoning approaches typically lack ex-
plicit representations of time, duration, and delays,
which are often used by a mental modeler, especially to
analyze interacting dynamic processes. B. C. Williams,
“Qualitative Analysis of MOS Circuits”, Artificial In-
telligence, December 1984, Vol. 24, discusses some of
the limitations of these approaches, and presents a gen-
eral approach to representing time qualitatively and
reasoning about qualitative episodes for use in temporal
constraint propagation, but not in discrete event simula-
tion.

Most researchers in qualitative reasoning have not
been concerned with representing the analyst’s model
of a system as composed of components that have a set
of modes of normal and faulty behavior, and a set of
events that cause transitions among those modes.

Pan, J. Y., “Qualitative reasoning with deep-level
mechanism models for diagnoses of mechanism fail-
ures”, Proc. First Conference Art. Int. Applications,
Denver, Colo., Dec. 1984, proposed qualitatively mod-
eling behavior of faulty and normal modes and using
qualitative reasoning (constraint propagation) to predict
types of behavior events from the qualitative model,
including instantaneous events, trends, trend-break-
points, stabilization and mode-transitions. Modeling
includes a time-scale concept to specify delay of a
mode-transition and duration of trend-type events.

The work leading up to the invention was based on
the idea that the types of events resulting from qualita-
tive reasoning like those proposed by Pan could be
themselves represented as part of the qualitative model,

monly resident in discrete event systems could also be
used explicitly to represent and explore ambiguities of

DISCRETE EVENT SIMULATION
BACKGROUND

10 interest to the analyst.

Discrete event modeling and simulation is character-
15 ized by state changes in a system’s entities, “events”,

that occur discretely rather than continuously (as they
would in differential equation models), and by provision
for occurrence of these events at nonuniform intervals
of time. In the commonest form of discrete event simu-

20 lation, events are scheduled to occur at some interval
from the present time. Throughout the simulation, new
events are scheduled and added to an event list that
contains records of events and the time they are sched-
uled to occur. Time advances in nonuniform intervals to

25 the time of the next event (the one on the list with the
earliest scheduled time), which is selected for execution
and removed from the event list. For systematic discus-
sions of discrete event simulation, see George s. Fish-
man, Concepts and Methods in Discrete Event Digital

Discrete event simulation has been used almost exclu-
sively to solve queueing-oriented service scheduling
problems, in which there are concerns about distribu-
tion and selection of workload, resources, and tasks in a

35 system of “server” entities providing services to a set of
customers or “job” entities. The basic modeling objects
and simulation control programs of discrete event simu-
lation tools and languages have been tailored to these
problems. These tools and languages are widely and

40 productively used in systems engineering, operations
research, and management science.

There are three main approaches to modeling for
discrete event simulation for queueing-oriented prob-
lems. The predominant approach, event scheduling,

45 uses a scheduled event list. As scheduled events (includ-
ing events of beginning or ending a service activity)
come up, they are executed, unconditionally. Another
approach, namely, activity scanning, does not use an
event list. All activities are conditional, and whenever

50 time is advanced, all are considered for beginning or
ending by a method that is analogous to the scanning of
processes in processcentered qualitative reasoning.
The third approach, namely, process interation, fo-
cusses on a sequence of activities and events that de-

55 scribe the total history of the progress of a servicing job,
and interaction between processes related to several
jobs. To support this approach, both a scheduled event
list and a scanned list of conditional events may be used,
combining the other two approaches.

The fundamental discrete event approach has poten-
tial use for solving not only queueing-oriented schedul-
ing problems, but also other types of problems concern-
ing systems whose behavior can be modeled discretely.
Qualitative models have this discrete character. Ber-

65 nard P. Zeigler, Multifaceted Modelling and Discrete
Event Simulation, Academic Press, 1984, has formalized
the general fundamentals of discrete event simulation in
the discrete event system specification (DEVS) formal-

30 Simulation, John Wiley & Sons, 1973.

60

4,965,743
5 6

ism for specifying a range of models expressible within
discrete event simulation languages, including the three

PROCESS LANGUAGE problems. This formalism includes the concept of com-
ponents of a system, coupled together so that they inter- 5
act with the output of one as input to another. This The core of a component model is its mode-transition
f0-m demonstrates the possibility of modular defi- diagram, which specifies modes of operation (both nor-
nition of hierarchical Structures of components in dis- mal and faulty) and the transitions among them. Mode-
Crete event simulation system. There is a distinction specific behavior and mode transitions are specified as
between active and passive components, and the con- 10 processes. The processes can be specified with a range
cept of phases of component behavior. within these of qualitative and quantitative syntaxes, using data-
phases, state transition and output functions determine structure types and operators in the language Portion of
how inpub are how phases change, and how each modeling library. Processes consist of three parts:

are produced. T~~ of links can be defined, and invocations (preconditions for effects execution), effects
the on those can be con- 15 (executed if all invocations are satisfied), and delays
strained. general definition of corresponding to each effect (effect completions sched-
discrete event simulation that the invention formulates a uled at hcrf2Xnents to the current time). The concept of
new modeling approach defied to solving of operating modes and mode-transition processes pro-

20 qualitative model information within the fundamentally failures and control actions as they propagate through device-oriented discrete event system. component codigurations. Computation and specification requirements are re-
COMBINING QUALITATIVE MODELING AND duced by focusing the level of component description

DISCRETE EVENT SIMULATION on modes of operation, and specifying qualitative
25 ranges of component variables relative to mode transi-

tion boundaries. Discrete events are defined at the level

ponents in terms of variable clusters associated with
types of process flows.

main modeling used for queueingoriented COMPONENT MODELS AND PROCESSES AND

is in the context of

problems that require an understanding of the effects of vides a for representing process-oriented

Discrete event systems are
for qualitative Of dynamic of changes in operating modes, and process-

ing need occur only when modes change or variables
cross qualitative boundaries. Rather than constraint

Processing They permit the analyst to Observe
a sequence Of si&cant events, with “time” jumping
discontinuously from event to event. Current queueing- 30 propagation, discrete event processes determine the
oriented approaches are not designed to handle qualita-
tive models of continuous systems, however. They are Continuous behavior is partitioned into trends and

ior in the real world, not ones that are really continuous. as an appro-ate order of magnitude, which is trans-
A new discrete event sknulation approach is needed, 35 lated into an interval on the discrete event clock. When
tailored to Of discretized continuous phe- defining a process qualitatively, the modeler controls
nomena such as qualitative trends, which might be in- the and combinatorial explosion problems
tempted during the delay between their beginning and inherent in qualitative modeling by selecting single
their scheduled end. outcomes for qualitative functions. The modeler can

To develop this new discrete event simulation aP- 40 also use qualitative trends and higher order derivatives
proach, a number Of new concepts and methods were in defining processes to help reduce ambiguities.
developed. These new concepts and methods include a
new definition of a component model, a new definition
of the t Y F of links Connecting components (“rela- Relations define the connections between specific
tions” and “variable clusters”), new state transitjon 45 variable clusters in one component with specific vari-
structures ~ P r O C e s ~ ”) t new methods for representing able clusters in another component. The concept of
qditative and qWtitatiVe fUCti0nS (LLprOCeSS h- variable clusters permits the definition of multiple vari-
Wge”), and new methods for hierarchically specifying ables associated with types of flows in a system and
models Of component COMections in libraries. A novel accommodates component models with multiple types
simulation control approach, and new methods for ex- 50 of input and output “ ~ ~ r t ~ ” . The user can define a bier-
perimenting with models and analyzing model behavior archy of relation types, and specify constraints on types
resulting from a simulation have also been developed. of components that can be connected by them. The

method of specifying variable cluster types also pro-
vides the means of controlling whether a variable

55 change should result in a component update event or a SPECIFYING OF MODELS

These concepts and methods were developed to per- propagation of the change to related components.
mit use of simulation facilities that are provided in dis-

CONTROL OF SIMULATION AND
SCHEDULING

Crete event simulation tools such as SimKit TM . The
methods were developed for object-oriented program-
ming environments, such as is provided by the KEE TM 60 The discrete event simulation control structure was
software for building expert systems, and which make developed to control the propagation of behavior
effective use of the classification capabilities of such changes among components. Scheduled events change
environments. Currently, the tool uses the SimKit TM variable values, make mode transitions, and pass data
capabilities to support the development of graphical between components along the relations. The primary
libraries of component models, and permits engineers to 65 event is the update of a component, which can be trig-
build device models graphically. A model is built by gered by a change in an input variable, local variable, or
using component objects from a library, and connecting component mode. In such an event, appropriate pro-
them with relations that define data flow between com- cesses are inspected, and the effects of invoked pro-

consequences of component changes.

designed to that exhibit behav- breakpoints. The durations of trends can be represented

RELATIONS AND VARIABLE CLUSTERS

OBJECT-ORIENTED AND GRAPHICAL

4,9 65,743
7 8

ADVANTAGES RELATIVE TO PRIOR
DISCRETE EVENT SIMULATION

Servers vs. Components-In traditional discrete
5 event simulation, the functional elements of the model

The objective of any discrete event simulation and are called “SerVeTs”. These elements Simply take in an
andysis and expe-enta- individual (discrete) item from its input queue, process

tion to resolve questions about how various versions of that item, and then send the Processed item down-
the modeled system behave. ne inventions de- stream. The tool calls the basic functioning element a
scribed here support a broad set of types of expehen- 10 component. components are more
tation and analysis that would be needed by an engineer complex and flexible than the server. A server is usually
investigating the effects of failures and procedures as modeled as something which transforms, or processes,
they propagate through configurations of components. the

usually only contain few such processes, and if a failure
ADVANTAGES RELATIVE TO GENERAL 15 of a server is to be modelled, then it is usually repre-

SIMULATION TECHNIQUES sented as a cessation of all processing involving the
server. By contrast, components in the tool may have Object-Oriented-One of the best features of the many behavior modes which may include one or invention, herein called tool, is that it has been built in modes. Moreover, Occurrence of a failure mode

‘lasses are built in an hierarchy9 with inhe’- simply alter its behavior. In traditional discrete event

members Of these classes which inherit all Of the func- whereas, in the tool the model components are active all
tionality of its parent class with the ability to change of the time, even when they are in a failure mode.
information locally, such as variable values or the corn- 25 Sensors as Components--In the tool, sensors repre-
POnent’S mode. Relation types are also object Classes, SO sent a possible important type of component. The tool
Specific relations between model Components inherit allows the model builder to mode1 the way in which
their information and functionality from their respec- Sensor information affects the system and how that
tive classes. The other elements of the tool, i.e., variable information affects the diagnosabfity of failure modes
clusters, processes, modes, valueclasses, operators, and 30 of the system.
operations, are created as objects as well. Jobs vs. “Flow of Parameter Information”-In tradi-

Separation of Component Classes from Model Com- tional discrete event simulation, the items which move
ponent Instances-The tool separates the classes of from one server to another are called jobs. Jobs can be
components in the library from the instances of compo- any number of things to be processed by the servers. In
nents which make up a model. This separation enables 35 the tool, this is replaced by the concept of “flow of
the model builder to change a component class’s behav- parameter information” where values for component
ior and have it inherited down to the component in- parameters (variables) are propagated from one compo-
stances so that for each new simulation run, d l of the nent to another dong relations. This permits modeling
model component instances of the changed class will Of the effects Of continuous flows in the system.
have the new functionality. 40 Relations-In discrete event simulation, there has

Graphical Representation of the Simulations-Mod- traditionally been Ody One Concept Of relation between
els are constructed in a window allowing the servers, namely the “downstream” concept in which
user to draw a schematic ofthe modeled system. the jobs completed by one server are moved downstream to

-, the uSer can watch a graphic. repre- another, where the job is then placed on the later serv-

instead of abstract data collection common to most relations, multiple relations defined in a library, multiple
current analysis techniques. graphical relations used in one model, and multiple relations be-
changes are represented by using different bitmaps for tween two components. These relations describe a set of

variables in the “domain” component that are to be the different modes of a component, and by animating 50 propagated to another set of variables in the “range”
component. These relations control the flow of infor- the propagation of values for a particular variable along

the relation line-images in the schematic of the model. mation from component to component, and thus, Functional Groupings by Variable Clusters-Com- through the model.

‘lusters, sometimes referred to as “vc’2 to 55 ponents and the flow of information across relations
form functional collections within a model. This allows allows of a model which is radically different
the user to view and analyze simulations based on the from traditional discrete event simulation, is
functional groupings of the model. oriented to studying the processing of items on input

queues by servers, such as assembly of cars on a factory
tool has considerable expressive power. It allows the 60 floor. The tool allows modelling of systems whose be-
creation of a large number of components and a nearly havior is continuous in nature. Therefore, the inputs are
infinite number Of possible models. The tool’s efficiency not stacked on a queue, but rather are processed imme-
resides in its ability to process the component’s behavior diately by the component; the component then alters its

cesses are scheduled with corresponding delays. Up-
dates originating from many components can be sched-
uled at the same time on the discrete event clock.

EXPERIMENTATION AND ANALYSIS

tool is to

On its input queue‘ Server-defined

an objmtsriented environment* Therefore, component 20 need not halt the processing of the component, but

tance, and the model components are created as object simulation, the servers are either passive or active;

sentation of the changes occurring within the model, 45 er’s input queue. In the tool there can be many types of

POnents and are groupd together by Modeling System with Continuous Behavior-Com-

Expressive and Smulation

only when necessary, that is, when a change occurs internal variables and mode appropriately. The results
within the component itself and in the fact that the 65 of such behavior may be the propagation of more infor-
clock of the simulator is not singly incremental, but mation to other related components.
leaps forward to the time of the next event on the event Results of the Simulation-In light of the above, the
list, a feature of discrete event simulation tools. results of the simulation with respect to the tool can be

9
4,965,743

10
quite different from prior art modelling simulations.
Whereas, in traditional discrete event simulation the
results may be an analysis of the servers’ queue lengths
and idle times, the tool’s simulation usually results in an
understanding of the effects of the failure of some com- 5
ponent or the propagation of some parameter value
through the model. Therefore, one result of the simula-
tion can be a record of the mode changes of certain
components with respect to time.

1-The mode of one component can, and probably will,
affect the behavior of other components in the model.
This interaction does not occur in traditional discrete
event simulation. Also, existence of failure modes of a
component does not necessarily make the component’s 15
behavior inactive, or passive, in the tool.

Types of Scheduling-It is instructive to contrast
tool capability and performance with two different
discrete event simulation techniques. These are “Event
Scheduling” (ES) and “Activity Scanning” (AS). In 20
“Event Scheduling” the scheduler is used to control
sequential execution of the events on the event list un-
conditionally. In “Activity Scanning”, the simulation
control structure periodically scans all of the possible
effects to determine which have met their conditions 25
and then executes those events. The tool uses the sched-
uler in a manner which combines these two approaches
so that both conditional and unconditional events can
be scanned and scheduled. It processes two types of
events: component update and effect events. To accom- 30
plish component update events the tool scans the possi-
ble processes of the component based on the mode
independent processes and the component’s current
mode to determine which have met their invocation
conditions and then either executes or schedules the 35
effect events of those processes. The tool executes
scheduled effect events unconditionally with one excep-
tion, the Try-Process effect event. This Try-Process
effect event determines if the specified process’s condi-
tions are met and, if so, runs, or schedules, the effect 40
events of that process.

Scheduling Techniques for Continuous Behavi-
or-The tool also makes novel use of the scheduler by
employing delays for the effect events and the Try-
Process effect event type to model systems with contin- 45
uous behavior.

ADVANTAGES RELATIVE TO QUALITATIVE
MODELING

tive simulation, models are constructed from constraint
equations using a qualitative mathematical calculus.
Constraint propagation is used to produce a compiled
history of all possible scenarios. The tool allows the
user to simulate one scenario at a time by varying the 55
initial parameters, e.g. component variables and initial
mode, of the model. The tool also allows the user to
alter and fine tune the behavior of entire component
classes, easily, and then run the model for each new

Qualitative Languages-The tool allows the user to
write the invocation and effect statements using a quali-
tative mathematical language. The library builder uses
this language to define a customized set of qualitative
valueclasses (qualitative ranges for system parameters 65
like flow and effort), as well as the operators, and their
respective operations. These operations act in the effect
statements to calculate qualitative values.

Components Affecting Others within the Mode- 10

Single Scenario Simulations-In traditional qualita- 50

alteration to see the effects on the system. 60

SUMMARY OF THE INVENTION
A specialized qualitative modeling and discrete event

simulation tool comprising four modules is described.
The tool is used for creating computer models and simu-
lating continuous activities, functions and/or behavior
using developed discrete event techniques. The mod-
ules consisting of the library design module, the model
construction module, the simulation module and the
experimentation and analysis module. The tool enables
experimentation and analysis of the qualitative models
created and is implemented in a general purpose digital
computer configured with a system language with a
defined structure, syntax and vocabulary enabling the
user to create library knowledge bases to be used in
constructing models. The computer has related operat-
ing components for compatible memory storage and
processing, insertion, reviewing, editing and delivery of
information.

The library design module supports building library
knowledge bases that contain component classes and
elements pertinent to the particular domain of continu-
ous activities, functions and behavior being modeled.
The continuous behavior is defined discretely with
respect to invocation statements, effect statements and
time delays. All functionality of the components is de-
fined in terms of variable cluster instances, independent
processes and modes which are defined in terms of their
mode transition processes and mode dependent pro-
cesses. Library elements include components, pro-
cesses, relation types and language elements, which, in
turn, includes valueclasses, operators and operations.
Library elements are organized in hierarchical sub-
classes and are useful in defining models of both physi-
cal objects and abstract concepts, for example, as condi-
tion states associated with a medical diagnosis.

The model construction module supports building
models by making component instances of the compo-
nent classes and connecting them with appropriate rela-
tions. The simulation module supports the simulation of
the models built by the model construction module
without dependence on model configuration. The tool
initializes models with predefined components by exe-
cuting a specialized initialization routine and placing
each component in the model in an event list. The
model is run by executing events on the event list using
a discrete event simulator until the list is empty.

The experimentation and analysis module supports
the analysis of the output ,generated by the simulation
module. This support includes compilation of relevant
statistics, and diagnostic information describing failure
effects. Additional analysis is obtained by comparison of
log files to specify the differences in outcomes of spe-
cific scenarios.

BRIEF DESCRIPTION OF DRAWINGS
So that the manner in which the above-recited fea-

tures, advantages and objects of the invention, as well as
others which will become apparent, are attained and
can be understood in detail, more particularly descrip-
tion of the invention briefly summarized above may be
had by reference to the embodiment thereof that is
illustrated in the drawings, which drawings form a part
of the specification. It is to be noted, however, that the
appended drawings illustrate only a preferred embodi-
ment of the invention and are, therefore, not to be con-
sidered limiting of its scope for the invention may admit
to other equally effective embodiments.

4.965.743
11

In the Drawings

FIG. 1 is an overall block diagram of a qualitative
modeling tool in accordance with a preferred embodi-
ment of the present invention, referred to herein some-
times as CONFIG, loaded into a general purpose digital
computer for creating, simulating, experimenting with
and analyzing qualitative models.

FIG. 2 is an example of a component hierarchy
graph.

FIG. 3 is an example of a variable cluster heirarchy
with some variables defined with their associated valu-
classes.

FIG. 4 is an example of a variable cluster instance
definition with variables and their default values.

FIG. 5 is an example of a relation definition.
FIG. 6 is an example of a component class definition.
FIG. 7 is an example of a mode diagram.
FIG. 8 is an example of a component mode (in this

FIG. 9 is an example of a component mode (in this

FIG. 10 is an example of a component mode (in this

FIG. 11 is an example of a try process.
FIG. 12 is an example of a language.
FIG. 13 is an example of an operator and its associ-

ated table operation.
FIG. 14 is a flow chart for the method in which the

invention initializes a model of predefined components
by executing a specialized initialization routine for each
component in the model.

FIG. 15 is a flow chart for the method in which the
discrete event simulator (SimKitm is used) runs the
model by executing events on the event queue until the
queue is empty.

FIG. 16 is a flow chart for the method in which the
invention initializes a single component.

FIG. 17 is a flow chart for the method which de-
scribes what the invention does when it sets the mode of
a particular component to a particular mode.

FIG. 18 is a flow chart for the method which de-
scribes what the invention does when it tries to schedule
an update event for a particular component due to a
particular change in the component.

FIG. 19 is a flow chart for the method which de-
scribes how the invention schedules an update event for
a particular component.

FIG. 20 is a flow chart for the method which de-
scribes what the invention’s update event does when it
gets executed by the discrete event simulator.

FIG. 21 is a flow chart for the method which de-
scribes how the invention evaluates a particular pro-

FIG. 22 is a flow chart which describes the possible
outcomes when an effect event of the invention gets
executed by the discrete event simulator.

FIG. 23 is a flow chart for the method which de-
scribes how the invention sets a particular variable in a
component.

FIG. 24 is a flow chart for the method which de-
scribes how the invention tries to propagate a particular
variable from a particular component to all its related
components.

case it is a pump nominal)

case it is pump cavitate)

case it is pump shutdown)

cess.

12
- I -

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1, a diagram illustrating the use of the qualita-
’5 tive modeling tool loaded into a general purpose digital

computer for creating, simulating, experimenting with
and analyzing qualitative models. This qualitative mod-
eling tool (or as stated above is often referred to as the
“tool”) built upon an object-oriented language

10 (KEETM by IntelliCorp) and a discrete event simula-
tor (SimKit TM by IntelliCorp) with additional func-
tionality provided by the underlying LISP program-
ming environment (Symbolics) is the preferred embodi-
ment of the invention. Even though this is the preferred

15 embodiment, there is nothing about the invention that
precludes it from being implemented in various manifes-
tations other than the one described here.

The purpose for computer aided simulation is to sup-
port analysis of system behavior beyond what is capable

20 by human beings. Historically, humans have created
models represented by computer languages to provide a
basis for such simulation. Models provide a formal
means for describing systems, but often lack all the
information needed to perform adequate simulation of

25 the physical system. In the past, model building has
been an extremely laborious and time consuming effort
often plagued with unnecessary tedium when defining
similar elements. Recently, with the advent of object-
oriented programing languages/environments, the con-

30 cept of hierarchically defined elements have emerged in
the form of tools that support the hierarchical design of
libraries of class definitions of elements. The informa-
tion about “parent” elements defined in the library can
be inherited to descendant elements of the models; thus,

35 when a change of design is required, a modification may
only need to be made to an element in a library and the
user can be assured that all instances of the class defini-
tions will change accordingly. These concepts are not
novel; however, the approach taken by the invention

40 for knowledge representation in the library is very cru-
cial to the overall design and simulation of the models
and is considered an integral part of the innovation.

In order to support such flexible design and simula-
tion of complex models, the tool is comprised of four

45 primary modules (where the word “module” simply
meam “a conceptually separate functional software
subsystem”), as shown in FIG. 1.

The Library design module (as seen in Module 11 of
FIG. 1) supports building library knowledge bases gen-

50 erally designated 112 of component classes 112.1 in
which all functionality of the components is defined in
terms of variable cluster instances, independent pro-
cesses, and modes which are defined in terms of their
mode transition processes and mode dependent pro-

55 cesses. Much of this module is provided by the object
oriented language in the particular embodiment; how-
ever, there have been significant enhancements made by
the invention. A unique knowledge representation
schema is used for which an extensible formal design

60 language 112.5 is provided to allow the library designer
111 to create statements 112.6 that can be used to define
the invocations and effects of processes 112.4. Relation
types 112.2 may be defined according to their allowable
domain and range components and/or variable clusters.

65 The library designer may also specify variable map-
pings and transformations for each relation type. These
enhancements along with the overall method used to
define a library are considered the first portion of the

4,965,743
13 14

invention and in themselves could support many differ-
ent approaches to qualitative modelling. This portion of
the invention is described in detail in the descriptions of
FIG. 2 through FIG. 12.

FIG. 1) supports the construction of model knowledge
bases generally designated 122 by making component
instances 122.1 of component classes chosen from a
particular library constructed via the library design
module 11. These component instances 122.1 must then 10 tion as d e s d ~ e d herein.
be with the appropriate relations 122.2. ne
model builder 121 not be concerned with the de-
tails of the component level functionality that was de-
fined by the library designer 111. The majority of this
module is provided by the discrete event simulator in l5

experimentation on and analysis of models by using the
expanded library definitional capabilities and selec-
tive simulation techniques to examine the effect of
changes of parameter values in simulation results

The Model building module (as Seen in Module 12, 5 These are not dependent on each other. The simulation
techniques could be implemented with other k m ~ l -
edge StnICtureS, perhaps not SO efficiently. In this em-
bodiment the three major features of the invention have
been united to form an efficient and compact combina-

The following four sections illustrate the manner in
which the invention has been implemented in the pre-
ferred

Library Design Module

the particular embodiment; however, the invention
insures that the comection of relations is always be-

Knowledge engineering, like all computer program-
ming disciplines, usually involves learning a complex
language in which to express ideas. An important fea-

module (as Seen in Module 13, FIG. 1) ture of the invention is its success in minimizing the

ing module without dependence on model configura- encounter before beginning to design useful libraries.
To facilitate this, the invention incorporates a user inter-

event simulator in the particular embodiment. In partic- information that the designer is to create. informa-
ular' the basic initialization loop and run 25 tion includes: components, modes, processes, state-

and 15) is provided by the discrete event simula- elements (valueclasses, operators, and operations). The
tor. The rest of the simulation module's event structure library designer creates the entire library from this edit-
and control flow is considered the second portion of the menu window system, specialized to the information

FIG. 16 through FIG. 24. When the end user 131 per- machine,s window system
forms a simulation via the simulation module 13 several allows the library designer to display many windows on
different forms Of may be generated as the computer screen at once. This permits the designer
generally designated in 132. The results of the simula- to see and add information to the library in many differ-
tion can either be permanently recorded in a log fie of 35 ent places at virtually the same time; thus, providing a
debug text 132.1 or be viewed graphically during Simw unique environment for rapid prototyping of libraries.
lation by bitmap and active trace images 132.1. The invention provides a top level menu that allows

The and module (as Seen in the designer to create these edit-menus for the particu-
Module 149 of the Output lar elements of the library. This top level menu consists
generated by the simulation module. The end user 141 is 40 of the following options and their associated sub-
able to perform various experimentations and analyses options:
based on the analysis information generally designated Components-this menu option forces the user to
142 provided by the tool. Statistical analysis 142.1 is select one of the
Performed by the discrete event simulator in the Partic- Create Component-This menu option allows the user
ular mhdiment of the invention. certain forms of 45 to create a new class of components for the library.
diagnostic analysis 142.2 Can be performed by ComPar- The new component class is then displayed in an
h g the log file Outputs of model perturbations and/or object class edit-menu. This menu option is an en-
library redefinitions. In addition, tables of modes versus hancement to the standard create object class option
discrete time Can be analyzed as a means of predictive provided by the discrete event simulator of the par-
analysis. In some cases it is the model configuration that 50 ticular embodiment.
should be experimented with and in others it is the Display Edit Menu-This menu option displays the
component definitions that warrant investigation. For edit-menu for all components. This is one of the key
example, comparing the difference between a specific displays because it allows the library designer to get
valve being frled in the open position and a specific at nearly all of the information within hisher library.
valve being failed in the closed position would be con- 55 Graph Component Hierarchy--This menu option
sidered a model perturbation analysis. Where as, com- graphs the component heirarchy of the current li-
paring the difference between all pumps failing after X brary in the output window. This menu option is
amount of time in a cavitation mode with all pumps provided by the object-oriented system used in the
failing after Y amount of time in a cavitation mode particular embodiment.
would be considered a library redefinition analysis. Relations-this menu option forces the user to select

As described above there are three unique capabilities one of the following sub-options:
in the invention Create Uni-directional Relation-This menu option
a new and more compact schema for delineating the allows the library designer to create a unidirectional

knowledge representation in library design relation in the library. The new relation is then dis-
use of the newly created and more robust library struc- 65 played in the relations class menu. This menu option

ture to implement control methods and event se- is an enhancement to the standard create relation
quencing to simulate model behavior which more option provided by the discrete event simulator of the
faithfully depicts the actual phenomena being studied particular embodiment.

tween a single pair of variable clusters.
The

the simulation of models built via model build- 2o amount Of learning that a new library designer must

tion* Of this module is Provided by the discrete face which displays windows, called edit-menus, for the

loop in detail in the descriptions Of l4 ments, variable clusters, relations, and the language

invention and iS described in detail in the descriptions Of 3o being
The nature of the

Supports the

sub-options:

60

4.965.743
15

Create Bidirectional Relation-This menu option al-
lows the library designer to create a bidirectional
relation in the library. The new relation is then dis-
played in the relations class menu. This menu option
is an enhancement to the standard create relation
option provided by the discrete event simulator of the
particular embodiment. In fact, the discrete event
simulator does not have any notion of bidirectional
relationships.

Hide Relation(@-This menu option allows the library
designer (or model builder or simulation user) to hide
one or more of the relations in the current model
displayed. This is simply a screen management option
that allows the users to close some of the line images
that represent the component relations. This does not
remove the actual relation; it only hides the image.

Show Relation@)-This menu option performs the op-
posite function as Hide Relations.
Variable clusters-This menu option displays all vari-

able cluster classes (and instances) in edit-menu. This
edit-menu allows the library designer to see what vari-
ables and associated valueclasses are defined for which
variable cluster (VC).

Processes-This menu option displays all of the pro-
cesses in the librarv in an edit-menu. This edit-menu is

16
come additional attributes of the component with
associated constant values. Constants are very similar
to variables in the variable clusters, except that they
may not be changed by any statements (variables are
described in more detail in defining variable clusters
below and statements are described in more detail in
defining statements below).

Variable clusters-This holds the names of the variable
cluster instances associated with a component. When
a name is added to this component attribute, if the
variable cluster (VC) does not exist, then one is cre-
ated automatically and the designer is prompted to
indicate what the parent clusters are for the new
instance. In most cases it is simply a decision whether
the new cluster is a propagate variable cluster, update
variable cluster, both, or neither. (VCs are described
in more detail in defining variable clusters below).

Independent processes-This holds the names of the
independent processes associated with a component.
When a name is added to this component attribute, if
the process does not exist, then one is created auto-
matically and the designer is able to fill in its associ-
ated attributes (processes are described in more detail
in defining processes below).

25 Mode diaaram-This is an attribute that is created bv a

5

10

15

20

most useful to sed (and. create) processes outside of create i o d e diagram menu option. It is this diagram
components or modes; such example processes are, that contains the possible modes a component may
trend processes used in a “Try Process” statement. exhibit and the transitions among the modes. When

Language-This menu option displays the language creating a mode diagram, modes are created with
of the current library in an edit-menu. At the top level 30 their appropriate attributes; and when a transition is
the edit-menu shows the valueclasses and operators of defined among modes, mode transition processes are
the library’s language, plus any valueclasses and opera- automatically created. A mode diagram is also used
tors inherited from the superlibraries of the current to designate which mode is the initial mode a compo-
library. The operations of the operators can be found nent is to be initialized with (modes and mode pro-
within the display of an individual operator. cesses are described in more detail in defining modes

Debus log file-This menu option allows the follow- below).
ing sub-options for the simulation user to turn on and off Some of the above attributes have their own set of
a log file which records the changes of the model dur- attributes; thus, adding to the complete d e f ~ t i o n of a
ing a simulation run: component. See below for their specific definitions. In
Open-This menu option opens a log file. This will 40 addition to the user defined attributes, components have

automatically close a log that is already open. several hidden attributes that are used by the simulation
Close-This menu option closes the current log file, if control portion of the invention. They include: (1) com-

one is open. ponent changes, (2) current mode, and (3) initial mode.
From the above menu options, the library designer is A component class is a type of component that is a

able to create the knowledge representation information 45 parent to other component classes (sub-classes) or com-
that is needed for the creation of models and the simula- ponent instances, thus passing down any attributes and-
tion of such models. Following is a description of the /or functionality defined at its level to all children de-
major elements of a library and their appropriate defin- fined under it. A component class may be considered a
tions. generic component, fully functional component, or

50 both. Component classes may only be defined in a li-
brary and are created from the tool’s top level menu Defining Component Classes

Components are the basic building blocks in the in- which prompts the user for the parent class of the new
vention used to represent the objects of a model. A component class.
component does not necessarily have to represent an A component instance is a component that has been
actual physical entity; it may represent any abstract 55 created from a component class and is not a sub-class
object that possesses attributes and behavior. Compo- (this type of creation is commonly referred to as instan-
nents may inherit attributes and functionality from par- tiation). An instance must be a child of a particular
ent component classes. All components consist of sev- component class of a library and in the particular em-
eral attributes that are defined by the library designer bodiment a component instance must reside in a model.
and are as follows: 60 Component instances can be viewed as the lowest leaf
Description-This is user supplied text that describes in the class inheritance tree. Instances may have many

the intended use and functionality of the component. ancestors but may not have any descendants.
This text is optional and is only intended to aid the Fully functional components are component classes
designer in capturing his reasoning for making certain that possess all the functionality required in order to
design choices.

Constants-This holds the names of the constant attri- Generic components are component classes from
butes defined by the library designer. The names which the user is able to create subclasses. The concept
added to this component attribute automatically be- of generic components is important to the overall de-

35

65 create working component instances in a model.

18
4,965,743

17
sign efficiency of the library. Generic components the necessity of variable clusters is given by the follow-
allow the user to make changes to entire classes of com- ing:
ponents without having to hunt down all the compo- Assume a definition of a T-pipe is desired with two
nents and make the same change to each. Generic com- inputs and a single output. Assume that this T-pipe
ponents also provide the designer with levels of classifi- 5 has internal variables such as pressure, temperature,
cation within individual libraries. They are distin- flow and fluid phase. It is not possible to simply con-
guished from functional components only by their in- nect the outputs of two different components to the
complete definition. For example, generic components same set of input variables in the T-pipe. The T-pipe
may only contain characteristics common to a group of must be modelled such that it receives two separate
components thus, this implies that they may not have all 10 sets of inputs (In1 and Id) for these variables and
the functionality needed to perform appropriately in a combines them in some fashion to determine what the
model. output values of the T-pipe should be. Thus, variable

At first it may seem that generic components should clusters allow the designer to differentiate among
never be used in a model (Le., instantiated). In many multiple inputs for the same set of variables.
cases this is true; however, a component class may be 15 Vc's may be defined in a hierarchical fashion similar
used as both a generic parent class and also a fully func- to components. An example of a hierarchy of variable
tional component class. For example, a valve may be cluster classes can be seen in FIG. 3, which shows some
defined as a fully functional component that can be variables defined with associate valueclasses (for more
instantiated as a simple valve that may be closed or detail on valueclasses see defining language below) for
open; but it can also be considered the generic compo- 20 variable clusters defined under downstream VCs.
nent class parent for other specific classes of valves such An example of a variable cluster instance can be seen
as pressure valves (which automatically open and close in FIG. 4 which shows the newly created attributes
based on their input pressure). This is illustrated in the which are the names of the variables concatenated with
component class hierarchy shown in FIG. 2, where the name of the cluster. Each new variable attribute has
there is VALVE defined at the level just below THER- 25 two attributes associated with it: (1) variable.valueclass
MAL.COMP which has several other classes of valves and (2) value. The variable.valueclass defines what the
defined below it. Note that THERMAL.COMP is a acceptable values are for that particular variable and the
generic component class that represents all the attri- value indicates what the default value is for that vari-
butes common to thermal components and is not consid- able if it has a default.
ered a fully functional component, in this case, since it 30 The way components get these variable attributes
does not represent a physical component in the thermal associated with them is by adding a VC instance to a
domain. The key point here is that subclasses will in- component classes variable clusters attribute. All vari-
herit all the functionality of their parent plus gain any able cluster information is then inherited down to the
additional functionality defined at their own level. component class. An example of such inheritance may

The appropriate levels of hierarchical classification is 35 be seen in FIG. 6 which is edit-menu display for the
a design issue to be resolved by the library designer. It attributes of the pump component class. Upon initializa-
is also the responsibility of the library designer to keep tion and before simulation begins, the model component
track of which classes of components are used solely as instances inherit the default values of the component
generic components and which classes are intended to classes variables. (see description of simulation module
be fully functional. The tool does not differentiate be- 40 below for more detail on initialization and how default
tween generic and fully functional components because values are used) Note that many different component
it would restrict the user to making premature design classes may share the same variable cluster instances
decisions. The tool assumes all component classes ex- and that if a particular component class needs a different
cept the root component are fully functional and when default value than what is defined in the variable clus-
instantiated will operate as defined. 45 ter, then the default value may be defined at the compo-

nent class level instead. This will effect all children of
the component but will not effect any other components Defining Variable Clusters

Variable clusters are groupings of component vari- that share the same variable cluster.
ables for some purpose. Variables are grouped by add- When a variable cluster is created via the edit-menu
ing them to the variables attribute (which is the only 50 for variable clusters obtained from the tool's top level
attribute) of a variable cluster class or instance. The menu or via a component attributes edit-menu, the de-
classic reason for such groupings is the port concept; signer is prompted to indicate what the parent clusters
that is to say that a certain location on the component are for the new instance. In most cases it is simply a
(called a port) can be specified by a collection of param- decision whether the new cluster is a propagate variable
eters which are stored as the Vc's variables. For exam- 55 cluster, update variable cluster, both or neither. The
pie, a pipe has two ports one on each end of the pipe, yet reason a VC may be both an update and a propagate VC
it is necessary to refer to the flow and pressure of the is because the variable cluster class heirarchy may be
fluid as distinct variables at each end. Thus, the library defined such that the VCs obtain information by multi-
designer would construct two Vc's via the variable ple inheritance (i.e., a VC may have more than one
clusters top level menu option called In and Out, both 60 parent).
with the variables flow and pressure. The pipe compo- An update variable cluster is a VC for which one of
nent would then contain the following four variables: its ancestors is the predefined UPDATE.VCS. Thus, in
In.Flow, In.Pressure, Out.Flow, and 0ut.Pressure. order to create this type of VC, the library designer

Most importantly, VCs provide the mechanism need only specify UPDATE.VCS as one of the parents
which allows relations(see defining relations below for 65 when the new VC is created. This type of VC will cause
more detail on relations) to connect a specific set of a component update event to be scheduled when any
variables from a component to a specific set of variables variable in the VC changes, if there is not already an
in another component. Another example that illustrates update event scheduled.

4,965,743
19 20

Defining Modes A propagate variable cluster is a VC for which one of
its ancestors is the predefined PR0PAGATE.VCS.
Thus, in order to create this type of VC, the library A mode is a particular operating range that a compo-
designer need only specify PROPAGATE.VCS as one nent may have in which there are unique operating
of the parents when the new VC is created. This type of 5 characteristics. These unique operating characteristics
vc will cause the simulation control mechanism to try are defined by the library designer by filling in the fol-
to propagate any change that occurs to any variable lowing attributes associated with each mode:
within the vc to all the related v c s in other compo. Description-This is text describing the unique charac-
nents. (this is in detail in the description ofthe teristics of the mode. This text is optional and iS Only
simulation module below) intended to aid the designer in capturing his reason-

ing for making certain design choices.
Faulty?-Currently, in the particular implementation of

the tool, this attribute is not used by the invention and
is intended to be used by a future innovation.

hmce to a variable cluster in other component in- 15 Mode Dependent Processes-This contains the names
of the Processes that are common to the associated

pose is to provide a path for propagation of information mode* This Of process is evaluated Only when a
from one component insmce to another within a component is in the associated mode. When a name is
model. men a of the domain vc is altered, added to this component attribute, if the process does
that change is moved to a not exist, then one is created automatically and the

designer is able to fill in its associated attributes. (pro- range VC.
Relations are created from the tools Top Level cesses are described in more detail in defining pro-

cesses below). Menu. Edit-menus for each relation can be created. The Mode Transition Processes-This contains the names of attributes associated with a relation are as follows: the processes that may change the component from

this relation can have as its domain. This is, which added to this component &tribute, if the process does

designer is able to fill in its associated attributes. (pro- nect from.
Domain Variable Cluster-This defines what vc 3o ceSses are described in in defining pro-

within the domain component is to be related to the cesses below).
range component. Components may have several operating modes.

Range-This defines what ‘lass Of components that this Modes can be thought of a sectioned-off ranges of inter-
relation can have as its range. That is, which type of esting behavior within a component. F~~ example, a
components may this relation be used to connect to. 35 typical pump will have thee as Seen in FIG. 7:

Range Variable Cluster-This defines what VC within nominal 71 where the pump is operating as expected;

domain component. fluid consisting of both vapor and liquid; and shutdown
Include-This declares that only certain variables from 73, where the pumping is no longer opera-

the vc are to be Propagated. This may 40 ble (Le., failed and has interrupted the flow of the fluid).
be left blank which indicates that all vanables are to A component groups it’s modes together by a mode
be Propagated except for those declared in the E X - transition diagram designated 70 as seen in FIG. 7. The
clude attribute. tool’s user interface allows the library designer to create

Exclude-This declares which Particular Variables modes as bitmap images in the special mode transition
from the vc that are not to be Propagated- This 45 diagram window. It also allows the library designer to
information may be left blank which indicates that d l connect the modes with a next mode line image (repre-
Variables are to be Propagated if none are d ~ l a r e d in sented as an arrow from one mode to the next). As a
the Include attribute. result of connecting the modes together, mode transi-

MaPPings--This declares which Variables within the tion processes are automatically created and added to
domain vc are to be matched to which variables 50 the mode transition processes attribute of the appropri-
Within the range vc. This information mY be left ate mode. These automatically created mode transition
blank which indicates that variables of like name are processes are merely templates that the library designer
to be matched up. must still fill out in order to cause the mode change only

Transformations-This declares what the values of the when appropriate.
variables are to be transformed to. This information 55 An edit-menu may be created for each mode which
may be left blank which indicates that no values are displays the mode attributes. Examples of the pump’s
to be transformed during the propagation. mode attributes for each mode can be seen in the edit-
An example of a relation defintion is shown in the menus in FIG. 8, FIG. 9, and FIG. 10. Look at FIG. 8,

edit-menu of FIG. 5. This relation may connect any the nominal mode attributes, and notice that it has two
thermal model object to any other thermal model ob- 60 mode transition processes associated with it. This corre-
ject; however, it may only connect a variable cluster of sponds to the fact that the mode diagram FIG. 7 shows
the domain cpmponent that is an instance of the D- two arrows emanating from it to the other two modes.
OUT-VCS (which is class of VCs that define all the Thus, the pump may go from nominal to cavitate before
characteristics of downstream output variable clusters) failing or may go directly to shutdown without cavitat-
to a variable cluster of the range component that is an 65 ing first. Note that the PUMP.NOMINAL.TO.PUMP-
instance of the D-IN-VCS (which is class of VCs that .CAVITATE process has an invocation that checks to
define all the characteristics of downstream input vari- see if the fluid phase in the input variable cluster is not
able clusters). equal to subcooled liquid. This invocation must be true

10

Defining Relations
A relation is a mechanism that can be used to relate/-

a variable ,-luster (vc) in a domain component

called the range components. Its

variable in the 20

25 Domain-This defines what ‘lass Of components that the current mode to another mode. When a name is

type Of components may this be used to ‘On- not exist, then one is created automatically and the

the range component is to receive the data from the cavitate 72, where the pump is cavitating due to input

4,965,743
21 22

before the pump may change from the nominal to the Mode Transition Processes usually reside in the
cavitate mode. This invocation was defined by the li- modes of the component and are processes that try to
brary designer and is apparently the only invocation change the mode of the component to some other mode.
needed. Note that the process has two effects: one The word “try” :means that the process is always evalu-
changes the current mode to the cavitate mode and the 5 ated when in the particular mode, but that the effect of
other sets a bpl.Damage-Trend variable to “UP” to the process-(changing modes) only occurs if some pre-
indicate that the Pump is being damaged while in the conditions (the invocations) are satisfied. Technically,
cavitate mode. The PUMP.CAVITATE.EFFECT that the library designer could actually put mode transition
changes the mode Was automatically created by the too1 processes in the independent processes attribute of a
when the Next Mode line image was associated between lo component, but this would result in the process getting
the tried no matter what mode the component is currently
and is used to start the damage trend* An in. In some cases, mode change dispatching from the

modes- The Other effect was added by the
Of a

mode dependent process is one which declares that all component might be desirable; but it
flow
Seen in lo’ (Processes’
described in more detail in defining processes

in a Pump that is in the mode as straight forward to think of a mode changing from one
and effects are l5 particular mode to another rather than to think of the

component &=ging frorn any mode to a particular
Defining Processes

Processes provide and define the functionality/-
behavior of all components. There are three types of
processes that the library designer may define via the
component attributes edit-menu and the mode attributes

dent processes, and (3) mode transition processes. In 25 lar mode and are Only evaluated when in that particular
addition, there is another type of process called a Try- A good is Seen in lo* were the
Process that may be defined via the edit-menu obtained PUMPSHUTDOWN mode always generates no *Ow

from the processes option of the tool’s top level menu. in the FLOW.NONE-PROCESS.
All of these processes are defined in the same manner; Try-Processes are a special type of process that may
however, they are differentiated by where they reside 3o be kwked by the effect of another Process. Try Pro-
and by what function they usually perform. All pro- cesses are not necessarily associated with a component
cesses have the following three attributes associated attribute or a mode attribute and are usually created via
with them: the processes top level menu option. A try process is
Invocations-This contains statements that evaluate to just like all other processes except that it is invoked

boolean true and false values. During evaluation of 35 individually by an effect event rather than being in-
the process, these invocation statements must all eval- voked with many other processes by the component
uate to true before the following effects may be exe- update event (see description of simulation module
cuted. If any one of them is not true, then the effects below for more information on these two types of
are ignored. If there are no invocations in this attri- events). This is analogous to putting conditional events
bute, then the effects are executed unconditionalb. 40 on the event queue, since the effects of this process are
(statements are described in detail in defining state- only executed if the invocations hold. This is also
ments below) claimed to be an innovative way to emulate dynamic

Effects-This contains the effects statements that dic- scheduling of events.
tate what is to occur in the context of the component. The PUMP.CAVITATE mode, as seen in FIG. 9,
There are three primary types Of effects: (l) a try 45 has a mode dependent process call PUMP.BEING.DA-

description of the simulation module).

that

mode. An example of a mode transition process can be
seen in FIG. 8, where the current mode is changed to

20 the PUMP.CAVITATE mode via the PUMP-
.CAVITATE.EFFECT of the PUMP.NOMINAL.-
TO.PUMP.CAVITATE process.

edit-menu: (1) independent processes, (2) mode &pen- Mode dependent processes reside in a Particu-

process effect, (2) a change mode effect, and (3) a set
variable effect. mee are all further in the

MAGED-PROCESS which has a single invocation
that check to see if the pump damage trend is “up’’. If
so, then the process places the TRY.DAMAGING-

to each effect’ Effects are sched- 50 queue. When the discrete event simulator reaches this
numbers Or qualitative values

uled according to these delays. (this Will be described
further in the description ofthe Simulation module).

EFFECT on the event queue at HRS time down the

event, it evaluates the DAMAGING-EFFECT pro-
cess. As Seen in FIG. 11, process check to Independent processes reside in the actual component sure the trend’s delta time is equal to H R S before it class definition and are always evaluated by the simula-

ponent happens to currently be in. This type of process marize* these series Of processes guarantee that the
appears to be rare in the sense that there are few pump has actually remained in the cavitation mode with
physical components that a behavior damage trend “up” for “HRS” amount of time before it
at all times; however, it is a convenient way to model a changes the Pump to a failed shutdown mode. If some-
component without having to define specific operating 60 thing Occurs during the interim that changes the
modes. A pipe is a good example of a component that Pumpl.Damage.Trend variable, then the delta time will
the designer might want to model without any modes automatically get changed internally by the simulation
and simply define the independent processes accord- control mechanism. Thus, the DAMAGING-EFFECT
ingly. On the other hand, if the library designer decided Process will not be satisfied and the mode will not
that the pipe could possibly rupture or get clogged, then 65 change until it has remained in a damaged state for the
the mode diagram could be added and the independent appropriate period of time to cause a shutdown. This
processes are moved from the component attribute to will become more clear when reading the simulation
their appropriate mode attributes. module description.

tion control mechanism no matter what mode the corn- 55 that the Pump is damaged* To sum-

* A
4,965,743

-9 La

Defining the Language
The language is based on an arithmetic syntax, but is

geared to manipulating symbols representing qualitative
ranges for variable values. For example, fluid phase
could be split up into the ranges: Subcooled.Liquid,
Saturated.Liquid, Saturated.Vapor, and Superheated.-
Vapor. The library designer is given the facilities to
create hisher own qualitative valueclasses, as well as
operators which manipulate those values. A language
can be created by the language option of the tool’s top
level menu which will display the edit-menu for a par-
ticular library’s language. All libraries contain their
own language which consists of the following elements:
Operators-This contains the names of all the operators

that may be used by the library designer when defin-
ing the statements. When a name is added to this
attribute, if the operator does not exist, then one is
created automatically and the designer need only fill
in the necessary operator attributes which include the
symbol that is used and the operations associated with
the operator. (see below for definition of operator)

Valueclasses-This contains the names of all the value-
classes available to the library designer when defining
variables and statements. When a name is added to
this attribute, if the valueclass does not exist, then one
is created automatically and the designer need only
fill in the legitimate values. (see below for definition
of valueclass and see defining statements for more
detail about statement)
See FIG. 12, the edit-menu of the THERMAL.LAN-

GUAGE, to see an example of a language with its oper-
ators and valueclasses. Language elements may be in-
herited from a superlibrary; thus, allowing the library
designer to create additional language elements within
the appropriate library and conceivably incrementally
increasing the vocabulary of the language.

Operators are used to perform calculations on the
values set forth in the valueclasses. The operators
Equals, Not, And, and Or and their corresponding op-
erations are predefined by the tool and inherited by all
libraries. All operators have the following attributes:
Symbol-This contains a list of the symbols that may be
used in the statements to refer to a specific operator.
(i.e., the operator in which this attribute resides)

0perations.List-This contains a list of all the opera-
tions associated with a particular operator. Multiple
operations may be associated with a single operator,
since the structure and valueclasses of the operands
(or arguments to the operator) may dictate which
operation to use.
Operations specify what is to be done when an opera-

tor is called with a set of arguments. Most operations
have the following attributes:

A’+
Valueclasses are a means of categorizing possible

values for variables. They are also used to specify the
legitimate values of particular arguments to operations
and define what the result of the operation should be.

5 Rather than creating valueclasses by adding them to the
valueclass attribute of the language, they may also be
created by associating them with a variable when defin-
ing the variables of a variable cluster. Most valueclasses
have an attribute called Qualitative.Symbo1s that con- ’’ tains a list of the possible values defined by the value-
class. Thus, if a variable is defined with a particular
valueclass associated with it, then it may only contain
one of the values set forth in the list of Qualitative.Sym-
bols. Some valueclasses are not as restrictive, such as

l5 “numbers”, which is predefined by the tool and allows
the variable to contain any quantitative value (integer
or real numbers). The tool also provides another prede-
fined valueclass call “boolean.values” which is needed

2o by the control mechanism to evaluate the result to the
invocation statements. See FIG. 3, the THERMAL.-
VARIABLE-CLUSTERS edit-menu for an example of
variables with their associated valueclasses.

Defining Statements
Statements are associated with processes by adding

them to the invocations and effects attributes of the
process. They are written in terms of the operators,
component variables inherited from the VCs, and the

30 values of the valueclasses defined in the language. They
may be defined by filling in the statement attribute with
the appropriate expression. See any of the figures with
expanded processes in them to see the actual statement
attribute associated with each statement.

Effects statements may perform three different types
of actions: (1) set a component variable, (2) set a compo-
nent’s mode, or (3) try a process (this is most useful in
coordinating trend processes of components as de-
scribed above in defining processes).

Invocation statements are tests which are performed
on the component’s variables to determine whether or
not the effects of a process would in fact be evaluated.
This dictates that the result of such a statement must be
a boolean value of some sort.

Statements are the fundamental elements of a library
that actually get evaluated during the simulation of the
model. Statements, once written, are compiled into
LISP code. It is this LISP code that is executed when a
component attempts to evaluate a process. Remember,

50 evaluating a process involves the evaluation of the invo-
cations statement’s LISP code and then, if all of the
results are true, executing the effects statement’s LISP
code (or scheduling the effects statements to be exe-

25

35

40

45

55 cuted at a later time).
Argument.Classes1List-This contains an ordered list of

valueclasses that represent the possible values of the
arguments to the operator.

ResultClass-This contains a single valueclass that
dictates what the resultant valueclass of this opera- 60
tion will be.
The language interpreter matches the arguments of

the particular call to the operator with the valueclasses
listed in the Argument.Classes.List to determine which
is the appropriate operation to use. The most common 65
operation and easiest to define is the table operation as
shown in FIG. 13, the FLUID.PHASE-OPERATOR
with its FLUID.PHASE-OPERATION.

Model Building Module
This module allows the model builder to construct a

model graphically, by creating “instances” of compo-
nents from the Object Class Menu placing the instances
in the Model Design Canvas, then connecting the in-
stances with relations obtained from the Relations Class
Menu. The manner in which the relations are connected
to single pairs of variable clusters rather than simply
from one component to another is a unique feature of
the invention. This feature is required by the simulation
module in order to perform proper propagation of vari-
ables.

4.965.743
25

Simulation Module
FIG. 14 is a flow chart for the method Initialize

model] in which the invention initializes a model of
predefined components by executing a specialized ini-
tialization routine for each component in the model.
FIG. 14, shows a standard way to initialize a model;
however, a specialized initialization routine is called for
each individual component. As seen in 141, as long as all
components have not been initialized individually, then
continue to get the next non-initialized component and
assigned it as the [component] parameter as in 142, and
perform 3.Initialize Single [component] routine. When
all components have been initialized, then run the
model by performing 2. Run model routine.

Turning to FIG. 15, there is shown a flow chart for
the method Run [model] in which the discrete event
simulator runs the model by executing events on the
event queue until the queue is empty. FIG. 15 shows a
standard way discrete event simulators execute events.
As seen in 151, as long as there are stiU events left on the
queue, then continue to remove the top event from the
queue as in 152, and execute the removed event as seen
in 153. When the queue becomes empty then the simula-
tor must halt. This FIG. 15 flow chart illustrates the
general platform needed to support the control struc-
ture of the invention.

By looking at only FIG. 14 and FIG. 15 it can be
concluded that there must be some element that places
events on the event queue or otherwise the routines
would halt immediately. It should be clear that the 3.
Initialize Single component routine must be the mecha-
nism by which the invention begins to place events on
the queue. It should also be noted that in order for the
simulation to continue to run after the initial events are
placed on the queue, the execution of the initial events
must be doing something to cause subsequent events to
be placed on the queue. It is not this aspect that makes
the invention novel, but it is the method in which these
subsequent events are generated and manipulated which
is innovative.

FIG. 16 is a flow chart for the method Initialize Sin-
gle component. As seen in 161, the fust thing that is
done is that all values of the local variables in compo-
nent are removed. It is important to know what it means
to remove all the local values of a component because
this does not imply that all variables within the compo-
nent become unknown. The component being initial-
ized is a particular component instance in a model that
has inherited all its attributes from its parent component
class (which may or may not include values of the vari-
ables). Local values are values that have been assigned
to a given component class or instance and have not
been inherited from some parent class. The particular
inheritance method used is called “override values”
which means local values have precedence over any
inherited values. However, if a local value is removed
then the new value becomes whatever the parent’s
value is, rather than becoming unknown (unless the
parent’s value is also unknown). When defining the
component classes in the library, the designer decides
which variable values are to have default values and
which ones don’t. So, by removing all the local values
a component instance, it gets all its variables set to their
default values. The next thing done is to remove the
values of the hidden attribute called “Component

26
in 163. 162 and 163 are crucial steps which guarantee
that the next steps will actually cause an event to get
placed on the event queue. 164 assigns the [mode] pa-
rameter for the next routine to be the value of another

5 hidden attributes called “Initial Mode”. The “Initial
Mode” is designated by the library designer when he/-
she creates a mode diagram for the component class.
Now that all the necessary conditions have been set, the
4. Set Mode of [component] to [mode] routine can be

10 executed with the assurance that an actual change will
occur when the mode gets set to the value of the Initial
Mode. This change will then cause an update event to
be scheduled.

Turning to FIG. 17, there is shown a flow chart for
15 the method Set Mode of [component] to [mode] which

describes what the invention does when it sets the mode
of a particular component to a particular mode. If the
new mode of component is different from the Current
Mode of component as seen in 171, then 5. Try to

20 Schedule Update for component with mode, else do
nothing if the mode is the same. Note that during initial-
ization (Le., if this routine is called from 3. Initialize
Single component) then the mode will always be differ-
ent, thus guaranteeing the execution of 5. Try to Sched-

25 ule Update for component with mode routine. Note also
that this routine can be called from routine 9. Effect
Event for effect or component.

FIG. 18 is a flow chart for the method Try to Sched-
ule Update for [component] with [change] which de-

30 scribes what the invention does when it tries to schedule
an update event for a particular component due to a
particular change in the component. As seen in 181, the
change is added to the Component Changes hidden
attribute of the component and then in 182 it is deter-

35 mined if there were already changes in this Component
Changes attribute. Since the only routines that remove
the values of the Component Changes attribute are 3.
Initialize Single component as seen in FIGS. 3 and 7.
Update Event for component as seen in FIG. 20, and

40 since this is the only routine that can call 6. Schedule
Update for component, then there is no need to sched-
d e an update event unless this is the fust change. If this
change is not the fust change in the Component
Changes attribute, then there must already be an update

45 event on the event queue for this component; therefore,
there is not need to schedule another one because it
would be redundant to execute the same update event
more than once for a set of changes that occurred dur-
ing the same time frame. On the other hand, if this is the

50 fist change (i.e. there were no Component Changes for
component), then 6. Schedule Update for component.

FIG. 17 is a flow chart for the method Schedule
Update for [component] which describes how the in-
vention schedules an update event for a particular com-

55 ponent. According to 171, this routine simply places 7.
Update Event for [component] on the event queue
using the current clock time and the lowest priority of
0. The fact that the event is scheduled with the lowest
priority is very important aspect to the invention. It

60 guarantees that any other events scheduled by other
update events being executed in the same time frame
will possibly have higher priority than the event that
has just been scheduled. Her is an example: Suppose a
change occurs due to the execution of the top event on

65 the queue and this change is the fust change in a compo-
nent; therefore, an update event for that component will
be scheduled by 5. Try to Schedule Update for compo-
nent with change. But also suppose there were already

Changes” as seen in 162. Also, remove the value of
another hidden attribute called “Current Mode” as seen

4.965.743
27

events on the queue at the same time frame that had
higher priority than 0. This means the update event will
be placed behind those events. Assume those higher
priority events also cause a change to occur in the same
component when they get executed. Since they will sti l l
be executed before the 7. Update Event for component
gets executed they may have side effects that continue
to make changes to the component in question. These
changes will not cause another update event to be
scheduled because the Component Changes already has
a value (i.e. each subsequent change is not considered
the fust change and is therefore ignored). When should
another update event get scheduled? Only after the
latest one has been executed. Thus, this leads to the next
routine shown in FIG. 20 which answers this question.

FIG. 20 is a flow chart for the method Update Event
for [component] which describes what the inventions
update event does when it gets executed by the discrete
event simulator. The answer to the how to signal when
a new update should be schedule lies in 201, which
removes all the Component Changes from the compo-
nent. Thus, as soon as any other event causes a change
to occur in component, a new update will be scheduled.
A new update event may even be scheduled before the
completion of the current update event. In most cases
that is what happens, because it is the update event that
causes new changes to occur within a component. The
next thing the update event tries to do, as seen in 202, is
change modes by calling 8. Evaluate [process] for [com-
ponent] for each of the mode transition processes asso-
ciated with the Current Mode of the component. Note
that the evaluation of these processes may or may not
actually change the current mode of the component.
Next, as seen in 203, all the mode dependent processes
are evaluated by calling 8. Evaluate [process] for [com-
ponent] for each of them. Finally, as seen in 204, all the
independent processes are evaluated by calling 8. Eval-
uate [process] for [component] for each of them. In
order to understand how the evaluation of these pro-
cesses cause subsequent changes occur and subsequent
events to be scheduled see next method shown in FIG.
21.

FIG. 21 is a flow chart for the method Evaluate [pro-
cess] for [component] which describes how the inven-
tion evaluates a particular process. As seen in 211, all
invocations associated with the process are tested with
the component as their evaluation context and if any
one is not true, then the rest of the process is ignored.
As seen in 212, only when all invocations are satisfied,
do any effects get evaluated or scheduled. If so, then
each effect that has no delay or a zero delay associated
with it will get evaluated immediately. Remember, this
is occurring within a process evaluate which was called
by the update event. Thus, update events have the abil-
ity to initiate changes (execute effects) within a compo-
nent. The effects that have a delay greater than zero do
not get evaluated immediately, instead the 9. Effect
Event for [effect] of [component] is put on hold, so to
speak, and scheduled delay down the queue (Le., put on
the queue at current clock time plus the delay time). See
the next figure (FIG. 22) for the type of effects that get
scheduled and their ultimate results.

FIG. 22 is a flow chart which describes the Dossible

28
nent probably changes to a new mode by calling 4. Set
Mode of [component] to [mode]. Else, as seen in 222, if
the effect was an effect that tries to evaluate a process,
then 8. Evaluate [process] for [component] gets called

5 again. Note that this is a recursive call and in some cases
it could even be a self referencing call (Le., the process
that was evaluated may have an effect that actually tries
to reevaluate the process. This would continue until the
invocations of the process were not satisfied). This por-

10 tion of the invention is what provides dynamic schedul-
ing of events and thus supports unpredictable events
such as trends, which are normally very hard to discre-
tize. As a result, the invention provides an acceptable
alternative to modelling historically continuous pro-

15 cesses with a discrete event simulator. If both 221 and
222 are not the case, then the effect must simply set a
variable of a component which is described in the
method.

FIG. 23 is a flow chart for the method Set [variable]
20 of [component] which describes how the invention sets

a particular variable in a component. As seen in 231, this
methdd makes sure the variable has actually changed
values, otherwise there is no need to do any thing. Ac-
cording to 232, if the variable is defined in an update

25 variable cluster, then invention tries to schedule and
update by calling 5. Try to Schedule Update for [com-
ponent] with [variable]. Note that this time a variable is
passed as the change parameter to this method rather
than a mode. After that, as seen in 233, if the variable is

30 defined in a propagate variable cluster, then the inven-
tion tries to propagate the variable by calling 11. Try to
Propagate [variable] from [component]. Note that both
of these method may be called for single variable, since
variables may be defined as having the ability to cause

FIG. 24 is a flow chart for the method Try to Propa-
gate [variable] from [component] which describes how
the invention tries to propagate a particular variable
from a particular component to all its related compo-

40 nents. As seen in 241, if all related components have
been tied, then there is no need to send the variable
anywhere else. In 242, the next related component is
assigned to the related parameter. Then, as seen in 243,
if the variable is in the related component, then 10. Set

45 [variable] of [related] where [related] is passed as the
component parameter. Note that if 243 is true, then this
results in another recursive cll back to the 10. Set [vari-
ables] of [component] routine.

35 propagate, update or both.

50 Experimentation and Analysis Module
..

This module allows the end user to experiment with
both the library design definitions of the components
and the specific component configurations set forth in
one or more models.

Analysis information may be produced in various
manners, visual analysis can be performed by running a
simulation with a portrayal of dynamic activity via
bitmap or active trace images. Bitmap images may only
represent a variable name and will more along the rela-

60 tion image on the screen whenever a value of that par-
ticular variable gets propagate through the relation.
Active trace images are also associated with a particular
variable name and more with propagation, just as bit-

55

outcomes when an effect event of the invention gets map images do. However, active images show the new
popped off the event queue and executed by the discrete 65 value that is being propagated rather than remaining a
event simulator or gets executed immediately by 8. static bitmap. Active and bitmap trace images are asso-
Evaluate [process] for [component]. As seen in 221, if ciated with particular relation types and may be turned
the effect was a mode transition effect, then the compo- on or off for any number of relations depending on the

29
4,965,7

analysis desired by the end user. An important feature
of these trace images is the ability to associate trace
speeds with each image. This is very useful when the
user wishes to slow down the simulation. Interesting
simulations may be obtained by assigning different trace
speeds to a different variable propagated across differ-
ent relations.

The debug facility allows the user to turn debug on or
off for any class of components. Therefore, if the user
wishes see a textual description of all the events, he/she
can turn debug on for the root class in a library. In most
physical systems, the operator of the system is usually
only provided with sensor information on which he/she
must make all diagnostic decisions. Thus, the tool sup-
ports the recording/display of information provided by
the sensor class of components. A log file of sensor
information plus partial or component information ob-
tained from a simulation may be used to create diagnos-
tic rules or for intelligent decision making or proce-
dures regarding the operation of the system.

In addition to the analysis information provided by
the invention, the particular embodiment also provides
common statistical information by means of “data col-
lectors”. Several types of data collectors are provided
which support both graphical and report oriented meth-
ods of display.

It is the above forms of analysis information that
provides a robust environment for experimentation.
The user can easily compare the differences between
model pe-bations by using one of the above analysis
tools. Investigation of component redefinitions require
no different approach to analysis. The only difference is
the motivation behind each type of analysis. Redefini-
tion analysis is motivated by the users desire to under-
stand and/or modify the design of the system compo-
nents, were as model perturbation analysis is motivated
by the need to gain understanding of the system dynam-
ics. The manner in which the tool accomodates both
motivations and allows the user to move freely between
them is a significant feature of the invention.

While a preferred embodiment of the invention has
been shown and described, and modifications or alter-
natives have been discussed, it will be understood that
the invention is not l i i t e d thereto since modifications
can be made and will become apparent to those skilled
in the art.

What is claimed is:

5

10

15

20

25

30

35

40

45

1. A method for off-line experiments and analyses of

143
30

within the model knowledge base, to control a
time-ordered simulation,

inputting data, which may include malfunction data,
to effect changes in the component instances
within the model knowledge base, either by chang-
ing a variable value of a component instance or by
changing the current mode of a component in-
stance,

updating variable values and the current mode of
component instances, and propagating changes
through the model knowledge base in a time-
ordered fashion in response to the input data and
resulting changes, under control of the change
control mechanisms,

and outputting information in response to the changes
in variable values and the current mode of compo-
nent instances and to the propagation of changes
through the model knowledge base, to support
analysis of effects of changes which may include
malfunctions, on modes of component instances,
and to support analysis of diagnostic experiments in
which effects of malfunctions on the system are
compared.

2. The method of claim 1 wherein the step of provid-
ing components with modes and mode transitions in-
cludes providing normal and malfunction modes, and
providing the set of allowable transitions between these
modes, to provide the context for mode-specific behav-
ior descriptions.

3. The method of claim 1 wherein the step of provid-
ing component behavior descriptions, called processes,
includes the steps of:

providing behavior descriptions for each mode which
includes processes that describe each mode-specific
behavior and processes that describe each mode
transition,

and providing processes that describe each mode-
independent behavior.

4. The method of claim 3 wherein the step of provid-

providing a set of invocation statements that describe
conditions that determine whether the process is
applicable,

and providing a set of effect statements, each with an
associated delay value, that determine effect ac-
tions to be performed on a component instance
during a simulation, and the time in the simulation
when the actions occur.

ing processes includes the steps of:

an application specific system of components using 50
qualitative modeling and discrete event simulation to
analyze dynamic system effects of changes in compo-
nents with continuous behavior, including malfunction,
comprising the steps of:

5. The method of claim 4 wherein the step of provid-
ing the set of effect statements includes providing state-
ments for the steps of:

setting a component instance variable to a value cal-
culated from combinations of variables from the

providing a library knowledge base of domain spe- 55 component instance using the qualitative algebra
cific modeling elements which includes compo- defined in the library knowledge base,
nents with modes, mode transition, variables, and setting the current mode of a component instance to
behavior descriptions, a qualitative algebra for one of the modes of the component instance,
deftning and combining component variables, and or activating a process of the component instance.
relations to link the components, constructed rela- 60 6. The method of claim 1 wherein the step of provid-
tive to the application specific system, ing a qualitative algebra for defining and combining

providing a model knowledge base for the applica- component variables includes the steps of:
tion specific system, which includes component providing qualitative valueclasses which are ordered
instances, each with a current mode, linked by lists of symbols that define the values of specific
relation instances, 65 classes of component variables, to provide discrete

providing change control mechanisms, independent values for continuous variables,
and distinct from the domain specific modeling and providing operators on the qualitative value-
elements, to select and control effects of changes classes which describe how to combine the values

31
4,9 6 5,743

32
of qualitative valueclasses that are arguments to the
operator, to calculate a resulting qualitative value.

7. The method of claim 6 wherein the step of provid-
ing an operator for the qualitative algebra includes the
step of providing one or more operations for the opera-
tor, to define how to combine each set of applicable
qualitative valueclasses that can be used as arguments to
the operator.

8. The method of claim 7 wherein the step of provid-
ing operations includes the step of describing, in a tabu-
lar format, the resulting qualitative value of each combi-
nation of the values in the qualitative valueclasses of the
arguments to the operation.

9. The method of claim 1 wherein providing relations
that link components includes the steps of:

providing variable clusters, which are specific sets of
component variables,

and providing a mapping that associates variables of a
variable cluster of a domain component with vari-
ables of another variable cluster of a range compo-
nent.

10. The method of claim 1 wherein providing change
control mechanisms includes providing a change con-
trol mechanism for the variable cluster of the domain
component to control the step of propagating changes
through the model knowledge base by propagating the
values of the variables in the variable cluster of the
domain component into the corresponding variables in
the linked variable cluster of the range component,
based upon the mapping.

11. The method of claim 1 wherein the combonent

5

10

15

20

25

30

instances within the model knowledge base inheit all of
their behavior from the description of the component
variables, modes, mode transitions, and behavior de- 35
scriptions; and the variable values of the component
instances are local to the component instances; further-
more, all component instances contain a local attribute,
called current mode, which keeps track of the mode of

12. The method of claim 1 wherein the step of provid-
ing component variables and modes includes the step of
attaching change control mechanisms that respond to
changes in variable values and modes by providing the
steu of storing an uudate comuonent event on the event 45

the component instance during a simulation. 40

- -
qudue, with a time value of the simulation time and a
priority value of zero.

13. The method of claim 1 wherein providing change
control mechanisms includes providing a discrete event
simulation control mechanism to control:

providing simulation events, independent and distinct
from the domain specific modeling elements,
which are actions with simulation time informa-
tion, created in response to changes in component
instanCeS,

storing future events in the simulation on an event
queue, which contains an ordered list of the simula-
tion events, each with an associated time of the
event,

running the discrete event simulator which includes
the steps of executing the next event on the queue,
and halting when there are no more events on the
queue,

storing the simulation time which is the time value of
an event being executed, into a simulation clock
variable.

14. The method of claim 13 wherein events on the
event queue are ordered by the time value associated

50

55

60

65

with the event, is ascending order, and sub-ordered by
an integer priority value, in descending order.

15. The method of claim 13 wherein the step of pro-
viding simulation events includes providing descrip-
tions of actions to be performed on component instances
within the model knowledge base.

16. The method of claim 15 wherein the actions to be
performed on component instances include the steps of:

updating the component instance;
and performing effect actions on the component in-

17. The method of claim 16 wherein the step of updat-

activating the mode transition processes of the cur-
rent mode of the component instance, activating
the mode specific processes of the current mode of
the component instance,

and activating the mode independent processes of the
component instance.

18. The method of claim 17 wherein the step of acti-

evaluating all of the invocation statements of the
process,

performing the effect actions of all of the effect state-
ments of the process, on the component instance,
based on the delay value of the effect statement, if
and only if all of the invocation statements evaluate
to true.

19. The method of claim 18 wherein the step of per-
forming the effect action occurs immediately if the
delay value of the effect statement is zero; otherwise, an
effect execution event, to perform the effect action on
the component instance, is added to the event queue
with a time value of the simulation time plus the effect
statement delay value, and a priority value of one.

20. The method of claim 16 wherein the effect state-
ments include actions for the steps of:

setting a variable of the affected component instance
to a value calculated from combinations of vari-
ables from the affected component instance using
operators from the qualitative algebra defined in
the library knowledge base,

setting the current mode of the affected component
instance to one of the modes of the component
instance, or activating a process of the component
instance.

21. The method of claim 1 wherein the outputting of
information in response to changes in the model knowl-
edge base includes outputting a graphic representation
of the component instances and the relation instances.

22. The method of claim 21 wherein the outputting of
the graphic representation includes outputting bitmaps
of the component instances which are specific to the
current mode of the component instance.

23. The method of claim 1 wherein the output of a
simulation includes a textual output of the sequence of
changes occurring in component instance, each with an
associated simulation time.

24. The method of claim 1 wherein the output of a set
of simulations is recorded into some format, either using
files of the text output or time-based tables, in order to
compare effects of changes, including malfunctions, on
the application specific model.

25. A simulation and analysis tool for off-line experi-
ments and analyses of an application specific system of
components using qualitative modeling and discrete
event simulation to analyze dynamic system effects of

stance.

ing the component instance includes the steps of:

vating the processes includes the steps of:

4.965.743
I ,

33
changes in components with continuous behavior, in-
cluding malfunctions, comprising:

a library knowledge base of domain specific modeling
elements which includes components with modes,
mode transitions, variables, and behavior descrip- 5
tions, a qualitative algebra for defining and combin-
ing component variables, and relations to link the
components, constructed relative to the application
specific system,

a model knowledge base for the application specific 10
system which includes component instances, each
with a current mode and linked by relation in-
stances,

means for inputting data to effect changes of compo-
nent instances within the model knowledge base, 15
either by changing a variable value of a component
instance or by changing the current mode of a
component instance,

change control mechanisms, independent and distinct
from the domain specific modeling elements, to 20
select the control effects of changes within the
model knowledge base, by updating variable values

34
and the current mode of the component instances,
and by propagating changes in the model knowl-
edge base in a time-ordered fashion in response to
input data and the resulting changes, under control
of the change control mechanisms,

means for applying the change control mechanisms to
select and control changes in the component in-
stance variables and the current mode of the com-
ponent instances,

a discrete event simulator including an event queue
containing an ordered list of simulation events, a
clock containing the simulation time, and the simu-
lation events, independent and distinct from the
domain specific modeling elements, that are cre-
ated under control of the change control mecha-
nisms,

means for running the discrete event simulator,
and means for outputting information in response to

changes of variable values and the current mode of
component instances, and to the propagation of
changes through the model knowledge base. * * * * *

25

30

35

45

50

55

60

65

