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1. INTRODUCTION

As part of the continuing effort at NASA/Lewis to improve both the durability and
reliability of hot section Earth-to-Orbit engine components, significant enhancements must
be made in existing finite element and finite difference methods, and advanced techniques,
such as the boundary element method, must be explored. Despite this considerable effort,
the accurate determination of transient thermal stresses in these hot section components
remains one of the most difficult problems facing engine design/analysts. For these prob-
lems, the temperature distribution is strongly influenced by the external hot gas flow,
the internal cooling system, and the structural deformation. Currently, experimentally-
determined film coefficients and ambient temperatures are required for use as boundary
conditions for the thermal stress analysis of the structural component. The determina-
tion of these coefficients is obviously an expensive and time-consuming task. Recently an
attempt was made by Gladden (1989) to use a finite difference-based Navier-Stokes code
to approximate the thermal boundary conditions, and to then input these into a finite
element structural analysis package. However, the most effective way to deal with this
problem is to develop a completely integrated solid mechanics, fluid mechanics, and heat

transfer approach.

In the present work, the boundary element method (BEM) is chosen as the basic
analysis tool principally because the critical surface variables (i.e., temperature, flux, dis-
placement, traction) can be very precisely determined with a boundary-based discretization
scheme. Additionally, model preparation is considerably simplified compared to the more
familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow
is captured through the use of an analytical fundamental solution, eliminating the depen-
dence of the solution on the discretization pattern. The price that must be paid in order
to realize these advantages is that any BEM formulation requires a considerable amount
of analytical work, which is typically absent in the other numerical methods.
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This report details all of the research accomplishments of a multi-year program, com-
mencing in March 1986, aimed toward the development of a boundary element formulation
for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section com-
ponents. It should be noted that this work represents approximately four man-years of
funding from NASA /Lewis. Most of that effort expended under this program has been di-
rected toward the examination of fluid flow, since boundary element methods for fluids are
at a much less developed state. Recently, however, significant strides have been made, not
only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure

interaction problem.

Early in the research program, a two-dimensional boundary element formulation was
developed for the time-dependent response of a thermoelastic solid. This effort resulted
in the first time domain, boundary-only implementation for this class of problems. Since
volume discretization is completely eliminated and surface transient thermal stresses can
be captured very accurately, the new approach provides distinct advantages over standard

finite element methods.

Meanwhile, the initial fluid formulations that were developed, based upon Stokes fun-
damental solutions, provided solutions in the low-to-moderate Reynolds number range.
For creeping flow, these reduce to boundary-only techniques. As the fluid velocities are in-
creased, volume discretization is required, however the solutions are typically very precise,
particularly in the determination of surface quantities. At very high speed, these formu-
lations are less effective, because the Stokes fundamental solutions no longer embody the

character of the flow field which becomes dominated by convection.

This led to the development of convective viscous integral formulations based upon Os-
een fundamental solutions. Since the new convective kernel functions, that were developed
as a part of this effort, contain more of the physics of the problem, boundary element so-
lutions can now be obtained at very high Reynolds number. Flow around obstacles can be
solved approximately with an efficient linearized boundary-only analysis or more exactly
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by including all of the nonlinearities present in the neighborhood of the obstacle. This
perhaps represents the major accomplishment of the present program.

The other significant development has been the creation of a comprehensive fluid-
structure interaction capability within a boundary element computer code. This new
facility is implemented in a completely general manner, so that quite arbitrary geometry,
material properties and boundary conditions may be specified. Thus, a single analysis
code can be used to run structures-only problems, fluids-only problems, or the combined
fluid-structure problem. In all three cases, steady or transient conditions can be selected,
with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by
employing a modified Newton-Raphson approach. However, it should be emphasized that
the existing program is primarily a research code. Significant additional effort is needed
to develop a practical engineering analysis tool.

In the next section, a brief review of the recent applicable boundary element literature
is presented. This is followed by the development of integral formulations for the ther-
moelastic solid in Section 3 and for the thermoviscous fluid in Section 4. A number of
detailed numerical examples are included at the end of these two sections to validate the
formulations and to emphasize both the accuracy and generality of the implementation.
Then, in Section 5, the fluid-structure interaction facility is discussed. Once again, several
examples are provided to highlight this unique capability. It should be noted that all of
the results presented in this report were run on a desktop SUN SPARCstation 1. Section 6
contains a collection of potential boundary element applications that have been uncovered
as a result of work related to the present grant. For most of those problems, satisfactory
analysis techniques do not currently exist. The remaining sections summarize the progress
achieved to date, and specify the future direction. Tables and figures appear at the end of

each section, while references are provided in Appendix A.



2. LITERATURE REVIEW

Very little has appeared in the literature on the analysis of coupled thermoviscous fluid-
structure problems via the boundary element method. However, a number of publications

have addressed the fluid and structure separately.

In general, the solid portion of the problem has been addressed to a much greater
degree. For example, a boundary-only steady-state thermoelastic formulation was initially
presented by Cruse et al (1977) and Rizzo and Shippy (1977). Recently, the present
authors developed and implemented the quasistatic counterpart (Dargush, 1987; Dargush
and Banerjee, 1989b, 19902, 1990b), which is presented in detail in Section 3. Others,
notably Sharp and Crouch (1986) and Chaudouet (1987), introduce volume integrals, to
represent the equivalent thermal body forces. A similar domain based approach was taken
earlier by Banerjee and Butterfield (1981) in the context of the analogous geomechanical

problem.

An extensive review of the applications of integral formulations to viscous flow prob-
lems was included in a previous annual report (Dargush et al, 1987), and will not be
repeated here. Interestingly, only a few groups of researchers are actively pursuing the
further development of boundary elements for the analysis of viscous fluids. The work re-
ported in Piva and Morino (1987) and Piva et al (1987) focuses heavily on the development
of fundamental solutions and integral formulations with little emphasis on implementation.
On the other hand, Tosaka and Kakuda (1986, 1987), Tosaka and Onishi (1986) have im-
plemented single region boundary element formulations using approximate incompressible
fundamental solutions. This latter group has developed sophisticated non-linear solution
algorithms, and consequently, are able to demonstrate moderately high Reynolds num-
ber solutions. Meanwhile, Dargush and Banerjee (1991a, 1991b) present general purpose
steady and time-dependent boundary element methods for moderate Reynolds number

flows.



The most recent work from the above researchers has been collected into a volume en-

titled Developments in BEM - Volume 6: Nonlinear Problems of Fluid Dynamics, edited

by Banerjee and Morino. Contributions from Wu and Wang, and Bush and Tanner are also
included, along with two chapters from the present co-authors. The volume, published by
Elsevier Applied Science Publishers became available in mid-1990, and provides a state-
of-the-art review of boundary element fluid dynamics. However, it should be noted that
the convective thermoviscous formulations of Section 4 are not included. These represent
a significant further advancement which permit solutions for high Reynolds number flows.
Interestingly, the basis for much of this latter development is actually work done early in
this century by Oseen (1911, 1927).

For analysis of the interaction problem, a boundary element thermoelastic solid repre-
sentation must be coupled with a suitable thermoviscous fluid formulation. Only Dargush
and Banerjee (1988,1989a) have tackled this problem. These two papers provide a sum-

mary of the early work performed under this grant.



3. INTEGRAL FORMULATION FOR SOLIDS

3.1 Introduction

In the current section, a surface only time domain boundary element method (BEM)
will be described for a thermoelastic body under quasistatic loading. Thus, transient heat
conduction is included, but inertial effects are ignored. This BEM was first developed as
part of the work performed during the second year (1987) of this grant. Since that time a
number of improvements and extensions have been incorporated. During 1989, the algo-
rithms for numerical integration have been made more efficient as well as more accurate,
and a comprehensive PATRAN interface has been added to aid in the post-processing of
the boundary element results. Additionally, a streamlined approach for uncoupled ther-
moelasticity was introduced (Dargush and Banerjee, 1989b). In 1990, boundary elements
with a quartic variation of the field variables were implemented. These elements are par-
ticularly well suited for problems involving the bending of components (Deb and Banerjee,
1989).

Details of the integral formulation for 2D plane strain is presented below. (Problems
of plane stress can be handled via a simple change in material parameters.) Separate sub-
sections present the governing differential equations, the integral equations, an overview
of the numerical implementation, and a couple of simple examples. Similar formulations
have also been developed for three-dimensional (Dargush and Banerjee, 1990a) and ax-

isymmetric problems (Dargush and Banerjee, 1990b).

3.2 Governing Equations
With the solid assumed to be a linear thermoelastic medium, the governing differential

equations for transient thermoelasticity can be written

d%u; 8%u; a9
A J i = .
A +#) Ox;0z; t “axjazj (32 + 2p)e Oz; 0 (3.10)
a0 8%0
Pest = " o;01; (3.5



where
u; displacement vector
6 temperature
t time
z; Lagrangian coordinate
k thermal conductivity
p mass density
ce specific heat at constant deformation
A, p Lamé constants

o coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated by repeated
indices. For two-dimensional problems considered herein, the Latin indices i and j vary
from one to two.

Note that (3.1b) is the energy equation and that (3.1a) represents the momentum
balance in terms of displacements and temperature. The theory portrayed by the above
set of equations, formally labeled uncoupled quasistatic thermoelasticity, can be derived
from thermodynamic principles. (See Boley and Weiner (1960) for details.) In developing

(3.1), the dynamics effects of interia have been ignored.

3.3 Integral Representations
Utilizing equation (3.1) for the solid along with a generalized form of the reciprocal

theorem, permits one to develop the following boundary integral equation:

cal€)up(€t) = /S [gﬁa *15(X,1) — fga * Uﬁ(XJ)] dS(X). (3.2)

where
@, indices varying from 1 to 3

s surface of solid



ue to generalized displacement and traction
Yo =[uy uz 67
ta=[t1 t2 qF
8,¢ temperature, heat flux
Jap, fop generalized displacement and traction kernels

cap constants determined by the relative smoothness of s at ¢

and, for example

t
Gop+ta = f gop(@, €, T)la(z, )T
o]

denotes a Riemann convolution integral. The kernel functions gap and fap are derived from
the fundamental infinite space solutions of (3.1).

In principle, at each instant of time progressing from time zero, this equation can be
written at every point on the boundary. The collection of the resulting equations could then
be solved simultaneously, producing exact values for all the unknown boundary quantities.
In reality, of course, discretization is needed to limit this process to a finite number of
equations and unknowns. Techniques useful for the discretization of (3.2) are the subject

of the following section.

3.4 Numerical Implementation

3.4.1 Introduction

The boundary integral equation (3.2), developed in the last section, is an exact state-
ment. No approximations have been introduced other than those used to formulate the
boundary value problem. However, in order to apply (3.2) for the solution of practical en-
gineering problems, approximations are required in both time and space. In this section,
an overview of a general-purpose, state-of-the-art numerical implementation is presented.
Many of the features and techniques to be discussed, in this section, were developed previ-
ously for elastostatics (e.g., Banerjee et al, 1985, 1988), and elastodynamics (e.g., Banerjee
et al, 1986; Ahmad and Banerjee, 1988), but are here adapted for thermoelastic analysis.
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3.4.2 Temporal Discretization

Consider, first, the time integrals represented in (3.2) as convolutions. Clearly, without
any loss of precision, the time interval from zero to t can be divided into N equal increments
of duration At.

By assuming that the primary field variables, ¢5 and up, are constant within each At

time increment, these quantities can be brought outside of the time integral. That is,

N nat

goa *tp(X,t) = ZtB(X)/ 9ga(X — &t —T)dT (3.3a)
nel (n-1)At
N nat

faa*xug(X,t) = Z ug(X)h/(’ ba foa(X =&t —T)dr (3.3b)
n=1 n—1l)at

where the superscript on the generalized tractions and displacements, obviously, represents
the time increment number. Notice, also, that, within an increment, these primary field
variables are now functions of position only. Next, since the integrands remaining in
(3.3) are known in explicit form from the fundamental solutions, the required temporal
integration can be performed analytically, and written as

nat

GaTr (X == [ gao(X ~gt=r)ar (3.40)
(n—1)At
nAt

FNH-Y (X — €)= / fpa(X — €t = T)dr. (3.4b)
(n—1)At

These kernel functions, G3,(X —¢) and Fg,(X —¢), are detailed in Appendix B.1. Combining

(3.3) and (3.4) with (3.2) produces

N
cpal€)uf (€) = ):/S [Gﬁ:“"(x — OUB(X) = FgoH (X - £)uB(X)] ds(X), (3.5)
n=1

which is the boundary integral statement after the application of the temporal discretiza-

tion.



3.4.3 Spatial Discretization

With the use of generalized primary variables and the incorporation of a piecewise
constant time stepping algorithm, the boundary integral equation (3.5) begins to show
a strong resemblance to that of elastostatics, particularly for the initial time step (i.e.,
N =1). In this subsection, those similarities will be exploited to develop the spatial
discretization for the uncoupled quasistatic problem with two-dimensional geometry. This
approximate spatial representation will, subsequently, permit numerical evaluation of the
surface integrals appearing in (3.5). The techniques described here, actually, originated in
the finite element literature, but were later applied to boundary elements by Lachat and
Watson (1976).

The process begins by subdividing the entire surface of the body into individual ele-
ments of relatively simple shape. The geometry of each element is, then, completely defined

by the coordinates of the nodal points and associated interpolation functions. That is,

X(¢) = zi(¢) = Nuw({)2iw (3.6)
with
¢ intrinsic coordinates
N, shape functions

z;, nodal coordinates

and where w is an integer varying from one to W, the number of geometric nodes in the
element. Next, the same type of representation is used, within the element, to describe
the primary variables. Thus,

ual() = No(Ovaw (3.70)

ta(¢) = Nu({ta (3.7b)

in which u?_ and t?_ are the nodal values of the generalized displacement and tractions,

aw

respectively, for time step n. Also, in (3.7), the integer w varies from omne to Q, the total
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number of functional nodes in the element. From the above, note that the same number
of nodes, and consequently shape functions, are not necessarily used to describe both the
geometric and functional variations. Specifically, in the present work, the geometry is
exclusively defined by quadratic shape functions. In two-dimensions, this requires the use
of three-noded line elements. On the other hand, the variation of the primary quantities can
be described, within an element, by linear, quadratic or quartic shape functions. For each
quartic element, two additional quarter-point nodes are automatically generated by the
program. It should be noted that the introduction of quartic elements this past year, also
provides the foundation for the development of a p-adaptive boundary element capability.

Once the spatial discretization has been accomplished and the body has been subdi-

vided into M elements, the boundary integral equation can be rewritten as

csa(€)up (€ {Z [ [esrmeno - omaom.
- F;ﬁ“‘"(X(c) - N as(x(} (38)

where
M
S= Z S
m=l
In the above equation, t, and u3, are nodal quantities which can be brought outside the

surface integrals. Thus,

coalOul (€) = {Ztﬁw / GYH(X(Q) — ONAQIS(X ()
= F,ﬁi*“"(x«)-e>Nu(<>ds<X(c))} (3.9)

The positioning of the nodal primary variables outside the integrals is, of course, a key
step since now the integrands contain only known functions. However, before discussing
the techniques used to numerically evaluate these integrals, a brief discussion of the sin-
gularities present in the kernels G3, and Fg, is in order.

The fundamental solutions to the uncoupled quasistatic problem contain singularities
when the load point and field point coincide, that is, is when r = 0. The same is true of G3,

11



and F,, since these kernels are derived directly from the fundamental solutions. Series
expansions of terms present in the evolution functions can be used to deduce the level of
singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-
tioned. First, as would be expected F}; has a stronger level of singularity than does the
corresponding Gl,, since an additional derivative is involved in obtaining Fl; from Ggg.
Second, the coupling terms do not have as a high degree of singularity as do the corre-
sponding non-coupling terms. Third, all of the kernel functions for the first time step could

actually be rewritten as a sum of steady-state and transient components. That is,
Glaﬁ 33 Gaﬁ +tr Gi:ﬁ
Féﬁ =5 Fop +r Féﬁ.

Then, the singularity is completely contained in the steady-state portion. Furthermore,
the singularity in G}; and F}, is precisely equal to that for elastostatics, while G}, and F},
singularities are identical to those for potential flow. (For two-dimensions, the subscript
§ equals three.) This observation is critical in the numerical integration of the Fos kernel
to be discussed in the next subsection. However, from a physical standpoint, this means
that, at any time ¢, the nearer one moves toward the load point, the closer the quasistatic
response field corresponds with a steady-state field. Eventually, when the sampling and
load points coincide, the quasistatic and steady-state responses are indistinguishable. As
a final item, after careful examination of Appendix B.1, it is evident that the steady-state
components in the kernels G7; and FJs, with n > 1, vanish. In that case, all that remains

is a transient portion that contains no singularities. Thus, all singularities reside in the

*G,ps and **F,s components of GL; and Fl,, respectively.

3.4.4 Numerical Integration

Having clarified the potential singularities present in the coupled kernels, it is now
possible to consider the evaluation of the integrals in equation (3.9). That is, for any

12



element m, the integrals

R CIGEREAGERE) (3.10a)

m

/S FN41=7(X(C) = £)No(C)dS(X(Q)) (3.10b)

will be examined. To assist in this endeavor, the following three distinct categories can be

identified.

(1) The point ¢ does not lie on the element m.
(2) The point ¢ lies on the element m, but only non-singular or weakly singular integrals
are involved.

(3) The point ¢ lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the integration
occurring in equation (3.9) will be of the category (1) variety. In this case, the integrand is
always non-singular, and standard Gaussian quadrature formulas can be employed. Sophis-
ticated error control routines are needed, however, to minimize the computational effort
for a certain level of accuracy. This non-singular integration is the most expensive part of
a boundary element analysis, and, consequently, must be optimized to achieve an efficient
solution. In the present implementation, error estimates, based upon the work of Stroud
and Secrest (1966), are employed to automatically select the proper order of the quadrature
rule. Additionally, to improve accuracy in a cost-effective manner, a graded subdivision
of the element is incorporated, especially when ¢ is nearby. For two-dimensional prob-
lems, the integration order varies from two to twelve, within each of up to four element
subdivisions.

Turning next to category (2), one finds that again Gaussian quadrature is applicable,
however, a somewhat modified scheme must be utilized to evaluate the weakly singular
integrals. This is accomplished in two-dimensional elements via suitable subsegmentation
along the length of the element so that the product of shape function, Jacobian and kernel
remains well behaved.
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Unfortunately, the remaining strongly singular integrals of category (3) exist only in
the Cauchy principal value sense and cannot, in general, be evaluated numerically, with
sufficient precision. It should be noted that this apparent stumbling block is limited to the
strongly singular portions, * F;; and **Fee, of the F); kernel. The remainder of F},, including
rFL and " Fj, can be computed using the procedures outlined for category (2). However,
as will be discussed in the next subsection, even category (3) *Fi; and ** Fee kernels can be
accurately determined by employing an indirect ‘rigid body’ method originally developed
by Cruse (1974).

3.4.5 Assembly

The complete discretization of the boundary integral equation, in both time and space,
has been described, along with the techniques required for numerical integration of the
kernels. Now, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writing
(3.9) at each global boundary node. The ensuing nodal collocation process, then, produces

a global set of equations of the form

N

> ([ero=r]ien - [pro=r]wn ) = o0 611

n=1
where
[GN+1-1] unassembled matrix of size (d + 1)P x (d +1)Q, with coefficients determined

from (3.10a)

[FN+1-n] assembled matrix of size (d+1)P x (d+1)P, with coefficients determined from

(3.10b) and cg, included in the diagonal blocks
{t"} global generalized nodal traction vector with (d +1)Q components
{v"} global generalized nodal displacement vector with (d + 1)P components
{0} null vector with (d+ 1)P components

P total number of global functional nodes

14



Q = Z:x:l Am
4,, number of functional nodes in element m

d dimensionality of the problem.

In the above, recall that the terms generalized displacement and traction refer to the
inclusion of the temperature and flux, respectively, as the (d+ 1) component at any point.

Consider, now, the first step. Thus, for N = 1, equation (3.11) becomes
(G'{t'} = [F'{u'} = {0}. (3.12)

However, at this point the diagonal block of [F!] has not been completely determined due to
the strongly singular nature of **F;; and **Fge. Following Cruse (1974) and, later, Banerjee
et al (1986) in elastodynamics, these diagonal contributions can be calculated indirectly
by imposing a uniform ‘rigid body’ generalized displacement field on the same body, but
under steady-state conditions. Then, obviously, the generalized tractions must be zero,
and

[ F){1} = {0}, (3.13)
where {1} is a vector symbolizing a unit uniform motion. Using (3.13), the desired diagonal
blocks, **F;; and **Fgg, can be obtained from the summation of the off-diagonal terms of
[#*F]. The remaining transient portion of the diagonal block is non-singular, and hence
can be evaluated to any desired precision. After summing the steady-state and transient

contributions, (3.12) is once again written as

[G1{t'} - [F'){u'} = {0}, (3.14)

but now the evaluation of [F!] is complete.
In a well-posed problem, at time At, the set of global generalized nodal displacements
and tractions will contain exactly (d + 1)P unknown components. Then, as the final stage

in the assembly process, equation (3.14) can be rearranged to form

[41){='} = [B'){y'}, (3.15)
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in which
{z'} unknown components of {u!} and {t'}

{y'} known components of {u'} and {t!}

[A1],[B'] associated matrices

3.4.6 Solution

To obtain a solution of (3.15) for the unknown nodal quantities, a decomposition
of matrix [A!] is required. In general, [4'] is a densely populated, unsymmetric matrix.
The out-of-core solver, utilized here, was developed originally for elastostatics from the
LINPACK software package (Dongarra et al, 1979) and operates on a submatrix level.
Within each submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of [4!] is stored in a direct-access file
for reuse in subsequent time steps. Backsubstitution then completes the determination of
{z!}. Additional information on this solver is available in Banerjee et al (1985).

After turning from the solver routines, the entire nodal response vectors, {u'} and
{11}, at time At are known. For solutions at later times, a simple marching algorithm 1is

employed. Thus, from (3.11) with N =2,
[GY{e!} = [F){u'} + [G){t%) = [F'){x?} = {0}. (3.16)

Assuming that the same set of nodal components are unknown as in (3.14) for the first

time step, equation (3.16) is reformulated as
[4'){=?} = [B'H{y*} - [G?Ht'} + [F{u'}. (3.17)

Since, at this point, the right-hand side contains only known quantities, (8.17) can be
solved for {z?}. However, the decomposed form of [4!] already exists on a direct-access file,
so only the relatively inexpensive backsubstitution phase is required for the solution.

The generalization of (3.17) to any time step N is simply

N-1

A=) = B} - 3 ([GN“-"]{t"} - [FN“-"]{u"}) (3.18)

n=1
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in which the summation represents the effect of past events. By systematically storing
all of the matrices and nodal response vectors computed during the marching process,
surprisingly little computing time is required at each new time step. In fact, for any
time step beyond the first, the only major computational task is the integration needed
to form [GV] and [FV]. Even this process is somewhat simplified, since now the kernels
are non-singular. As a result, reduced subsegmentation and gaussian integration order is
appropriate. Also, as time marches on, the effect of events that occurred during the first
time step diminishes. Consequently, the terms containing [G] and [F¥] will eventually
become insignificant compared to those associated with recent events. Once that point is
reached, further integration is unnecessary, and a significant reduction in the computing
effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear uncoupled quasistatic problem, with homogeneous properties, can be obtained in
terms of the nodal response vectors, without the need for any volume discretization. In
many practical situations, however, additional information, such as, the temperature at
interior locations or the stress at points on the boundary, is required. The next subsection

discusses the calculations of these quantities.

3.4.7 Interior Quantities

Once equation (3.18) is solved, at any time step, the complete set of primary nodal
quantities, {u"} and {t}, is known. Subsequently, the response at points within the body
can be calculated in a straightforward manner. For any point ¢ in the interior, the gener-

alized displacement can be determined from (3.9) with cga = 6pa- That is,
un(6) = { [ [ b0 - onouseeee

~ . [ B - om0dSx(©)] (3,19

Now, all the nodal variables on the right-hand side are known, and, as long as, ¢ is not on
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the boundary, the kernel functions in (3.19) remain non-singular. However, when ¢ is on the
boundary, the strong singularity in **Fp, prohibits accurate evaluation of the generalized
displacement via (3.19), and an alternate approach is required. The apparent dilemma is
easily resolved by recalling that the variation of surface quantities is completely defined
by the elemental shape functions. Thus, for boundary points, the desired relationship is
simply
ul (&) = Nu(Qui, (3.20)
where N,(¢) are the shape functions for the appropriate element and ¢ are the intrinsic
coordinates corresponding to ¢ within that element. Obviously, from (8.20), neither in-
tegration nor the explicit contribution of past events are needed to evaluate generalized
boundary displacements.
In many problems, additional quantities, such a heat flux and stress, are also important.

The boundary integral equation for heat flux, can be written
N M
FO=2{3 o / ELH=mX(C) - ONoOdS(X ()

~ui [ DO - 0MLOASX(E) (321

where
GRe(X(() = &)

Egei(X(¢) —&) =k 36 (3.21a)
Dja(X(0) ~ ) = 2B =Y (3.218)

This is valid for interior points, whereas, when ¢ is on the boundary, the shape functions

can again be used. In this latter case,

No(Q)al = ni€)al (§) (3.220)

ANL(C) 10z;
——ac—oﬁ ¥ N 6), (3.22b)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from
o) = { S [ [ BB - 90RO
= DE’J“"(X )~ ONL(0S(X O]} (3.23)
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in which

" 2uv G} 8G1\£ aGg n

3 (X(Q) =€) = To=65 55 ( 35? + 85:) — B8i;Gs (3.23q)
" ; 2uv AF%, 3Fﬁl 3FN

D (X(Q) =€) = 10554 asjfw( o (3.230)

with v representing the Poisson ratio and # = (3) + 2u)a. Equation (8.23) is, of course,
developed from (3.19). Since strong kernel singularities appear when (3.23) is written for
boundary points, once again an alternate procedure is needed to determine surface stress.
This alternate scheme exploits the interrelationships between generalized displacement,
traction, and stress and is the straightforward extension of the technique typically used in

elastostatic implementation (Cruse and Van Buren, 1971). Specifically, the following can

be obtained
n;i(€)of} (€) = Nu(Q)th] (3.24a)
De.
ofj(6) - =~ (ukN,z(ﬁ) + uf\,’k(f)) = =B85 N (C)ubl, (3.240)
- oN,,
Pty = el (3.240)

in which u} is obviously the nodal temperatures, and,
D = Mij8ri + 2ubikbji.

Equations (3.24) form an independent set that can be solved numerically for oy (€) and u[(€)
completely in terms of known nodal quantities uf, and tJ,, without the need for kernel
integration nor convolution. Notice, however, that shape function derivatives appear in
(3.24c), thus constraining the representation of stress on the surface element to something
less than full quadratic variation. The interior stress kernel functions, defined by (3.23),

are also detailed in Appendix B.1.

3.4.8 Advanced Features

The thermoelastic formulation has been implemented as a segment of the state-of-the-
art, general purpose boundary element computer program, GP-BEST. Consequently, many
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additional features, beyond those detailed above, are available for the analysis of complex
engineering problems. Perhaps, the most significant of these items, is the capability to
analyze substructured problems. This, not only extends the analysis to bodies composed of
several different materials, but also often provides computational efficiencies. An individual
substructure or geometric modeling region (GMR) must contain a single material. During
the integration process, each GMR remains a separate entity. The GMR’s are then brought
together at the assembly stage, where compatibility relationships are enforced on common
boundaries between regions. Typically, compatibility ensures continuous displacement and
temperature fields across an interface, however, recent enhancements to the code permit
sliding between regions, spring contacts and interfacial thermal resistance to model air
gaps or coating resistances. In the latter instances, discontinuities appear at the interface.
In any case, the multi-GMR assembly process produces block-banded system matrices that
are solved in an efficient manner.

As another feature, a high degree of flexibility is provided for the specification of bound-
ary conditions. In general, time-dependent values can be defined in either global or local
coordinates. Not only can generalized displacements and tractions be specified, but also
spring and convection boundary conditions are available. Another recent addition permits
time-dependent ambient temperatures. A final item, worthy of note, is thé availability of
a comprehensive symmetry capability which includes provisions for both planar and cyclic
symmetry.

During the past two years, an interface to the well-known PATRAN graphics package
was developed and enhanced. This interface allows the user an option to view deformed
shapes, temperatures and stress boundary profiles or contours. A number of PATRAN-
produced illustrations are included throughout this report. In the next section, a couple of
examples are presented to demonstrate the validity and applicability of this boundary-only

formulation.
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3.5 Numerical Examples

3.5.1 Sudden Heating of Aluminum Block

As a first example, transient heating of an aluminum block is examined under plane
strain conditions. The block, shown in Figure 3.1, initially rests in thermodynamic equi-
librium at zero temperature. Then, suddenly, the face at Y = 1.0 in. is elevated to 100°F,
while the remaining three faces are insulated and restrained against normal displacements.
Thus, only axial deformation in the Y —direction is permitted. Naturally, as the diffusive
process progresses, temperature builds along with the lateral stresses o4z and ¢,,. To com-
plete the specification of the problem, the following standard set of material properties are
used to characterize the aluminum:

E =10 x 105psi, v = 0.33,
a=13x 107¢/°F,
k = 25in.1b./sec.in.’F, pce = 200in.1b./in >°F.

The two-dimensional boundary element idealization consists of the simple four element,
eight node model included in Figure 3.1. A time step of 0.4 sec. is selected, corresponding
to a non-dimensional time step of 0.5. Additionally, a finite element analysis of this same
problem was conducted using a modified thermal version of the computer code CRISP
(Gunn and Britto, 1984). The finite element model is also a two-dimensional plane strain
representation, however, sixteen linear strain quadrilaterals are placed along the diffusion
length. In the FE run, a time step of 0.2 sec. is employed.

Temperatures, displacements, and stresses are compared in Table 3.1. Notice that the
boundary element analysis, with only one element in the flow direction, produces a better
time-temperature history than does a sixteen element FE analysis with a smaller time
step. Both methods exhibit greatest error during the initial stages of the process. This is
the result of the imposition of a sudden temperature change. Meanwhile, the comparison
of the overall axial displacement indicates agreement to within 3% for the BE analysis
and 5% for the FE run. A steady-state analysis via both methods produces the exact
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answer to three digit accuracy. The last comparison, in the table, involves lateral stresses
at an integration point in the FE model. The boundary element results are quite good
throughout the range, however, the FE stresses exhibit considerable error, particularly
during the initial four seconds. Actually, these finite element stress variations are not
unexpected in light of the errors present in the temperature and displacement response.
Recall that in the standard finite element process, stresses are computed on the basis of
numerical differentiation of the displacements, whereas in boundary elements, the stresses
at interior points are obtained directly from a discretized version of an exact integral
equation. Consequently, the BE interior stress solution more nearly coincides with the

actual response.

3.5.2 Circular Disc

Next, transient thermal stresses in a circular disc are investigated. The disc of radius
‘a’ initially rests at zero uniform temperature. The top and bottom surfaces are thermally
insulated, and all boundaries are completely free of mechanical constraint. Then, suddenly,
at time zero, the temperature of the entire outer edge (i.e., r = a) is elevated to unity and,
subsequently, maintained at that level.

The boundary element model of the disc with unit radius is shown in Figure 3.2. Only
four quadratic elements are employed, along with quarter symmetry. Ten interior points are
also included strictly to monitor response. In addition, the following non-dimensionalized
material properties are arbitrarily selected for the plane stress analysis:

E =1.333 pce = 1.0

v =0.333 k=10

a=0.75
Results obtained under quasistatic conditions for a time step of 0.005 are compared, in
Figures 3.3, 3.4 and 3.5, to the analytical solution presented in Timoshenko and Goodier
(1970). Notice that temperatures, as well as radial and tangential stresses are accurately
determined via the boundary element analysis. In particular from Figure 3.5, even the
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tangential stress on the outer edge is faithfully reproduced. An extremely fine finite element
mesh would be required to obtain a comparable level of accuracy, particularly, for the

surface stresses.

3.6 Summary

A comprehensive boundary element method has been presented for transient thermoe-
lastic analysis. This time-domain formulation requires discretization of only the surface of
the component, and thus provides an attractive alternative to finite element analysis for
this class of problems. In addition, steep thermal gradients, which often occur near the
surface, can be captured more readily, since with a boundary element approach there are
no shape functions to constrain the solution in the direction normal to the surface. For ex-
ample, the circular disc analysis indicates the high level of accuracy that can be obtained.
In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the
present boundary element method should be the preferred approach for general problems

of transient thermoelasticity.
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TABLE 3.1
SUDDEN HEATING OF A CUBE

Temperature (°F)  Axial Displacement (x in.) ~ Lateral Stress (ksi)
Time at Y =0 at Y =10 at Y = 0.5312
(sec.) Exact FE BEM Exact FE BEM Exact FE BEM

0.8 4.7 34 3.8 910 860 920 -56 -39 -34
1.6 22.0 19.8 20.7 1290 1250 1320 91 7.7 -9.2
24 38.3 364 377 1570 1540 1610 -11.3 -103 -11.7
3.2 51.5 50.0 51.5 1780 1760 1840 -13.1 -12.2 -13.5
4.0 619 60.7 622 1950 1930 2000 -14.4 -13.8 -14.8
4.8 70.1 69.1 70.5 2090 2070 2130 -156.5 -15.0 -15.9
5.6 76.5 T75.7 76.9 2200 2180 2230 -16.3 -15.9 -16.7
6.4 81.5 80.9 819 2280 2270 2310 -17.0 -16.7 -17.3
7.2 85.5 849 8538 2340 2330 2370 -17.5 -17.2 -17.8
8.0 88.6 88.2 888 2400 2390 2410 -17.9 -17.7 -18.1
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4. INTEGRAL FORMULATION FOR FLUIDS

4.1 Introduction

Attention is now shifted to the hot fluid. A number of integral formulations will
be presented for both incompressible and compressible thermoviscous flow. In particular,
significant effort has been directed recently toward the development and implementation of
the convective formulations. As a result, boundary element solutions can now be obtained
in the high Reynolds number range.

The presentation is separated into the three classes, namely, incompressible, convective
incompressible and convective compressible flow. Individual subsections under each head-
ing present the governing equations, integral representations, numerical implementation
and numerical examples. It will be evident that significant progress has been made in the
development of boundary element methods for both incompressible cases. On the other
hand, for the compressible case, most of the effort has been necessarily directed toward

the derivation of new fundamental solutions, which capture the essential character of the

flow field.

4.2 Incompressible Thermoviscous Flow

4.2.1 Introduction

In the following, steady and time-dependent formulations are presented for relatively
slow incompressible flow. The primary variables in each case are velocity, temperature,
traction and heat flux. This is the set of variables for which boundary conditions are
most readily defined, and for which the extension to three-dimensions is most easily ac-
complished. As will be seen, the individual formulations have much in common. The
major differences involve the fundamental solutions that are employed, and the treatment
of the contributions of past events. Both formulations have been implemented within the
computer code GP-BEST.
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4.2.2 Governing Equations

Application of the Principles of the Conservation of Mass, Momentum and Energy for

an incompressible thermoviscous fluid lead to the development of the following differential

equations:
SZZ =0 (4.10)
uaf;;;j - %—p%+ﬁ =0 (4.1b)
lcai%j——pccg—f+¢= (4.1c)
where
z; Eulerian coordinate
t time
v; velocity vector
p pressure
f temperature
p mass density
p viscosity
k thermal conductivity
ce specific heat
fi body force
¥ body source,
and the operator
D 8 i}

E =-a—t+vj&; (42)

represents a material time derivative. By introducing a constant free stream velocity U;

and a velocity perturbation u;, such that

v; = U; + u;, (4.3)
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the governing equations can be rewritten as

Au;
! = 44
v 0 (4-4a)
6%u; 8p Bu; du; Su;
L SR el N Rinthal Mt ;= 4.4b
Borson, oa Pa Piee, PWam; TH0 (4.49)
526 08 86 86
90 0 e e, Ly = 44
Kousae; P Peligy, TPty TV (4.4c)

Note that in equations (4.4) only the terms pUjg—z'; and pecu; 2 are actually nonlinear,
although in some instances the body forces and sources may also contain nonlinearities. A
number of distinct integral formulations are possible, depending upon which of the linear
terms are included in the differential operator. All terms excluded from the differential
operator, must then be grouped together as effective body forces and sources, f; and ¢,
respectively. Integral formulations based upon Stokes kernels are detailed in the next

subsection.

4.2.3 Integral Representations

4.2.3.1 Steady
In this first formulation the time-dependent terms vanish, and the entire contribution

of the convective terms are considered as effective body forces and sources. Thus,

8u,' au,'
fi= —PUjgj ~ PG, + fi (4.5a)
a6 el
'd)/ = —pcer—a-z—j - pCc’Ujg;; + '(/) (45b)

As a result, the well-known fundamental solutions for incompressible Stokes flow and
steady-state heat conduction are applicable. The integral formulation, which can be de-
rived directly from the governing differential equation (Dargush and Banerjee, 1990c), can

be written
Caplia = / [Gapta — Faptia — Gapta) dS + / [Dapr0ia + GapfaldV (4.6)
S 1%

30



where

ug = {u; uz 6} (4.7a)
ta={t1 t2 ¢} (4.7b)
fa={fi f2 ¥} (4.7¢)

are generalized velocities, tractions, and body forces. In (4.7b), t; are the surface tractions
defined by

t; = TN — PNy (4.80)

with n; representing the local unit outward normal to the surface S, and =; the fluid

stresses, while the heat flux is defined via

= —k——n;. 4.8b
g 52" (4.8b)
Furthermore,
_ e 0 _ | Gy 0 _ 1 Fy 0
Cap = [ 0 CBG] ) Gaﬁ - [ 0 Ges ) Faﬂ = 0 Fos (4.90, b, C)
8Gag
afk = 4.9d
Dogk Bz, (4.9d)
Oka = [P(Uk + uk)u; pce(Uk + ur)b) (4.10a)
12 = op k. (4.10b)

In the terminology of Lighthill (1952), o¢; is the momentum flux tensor or fluctuating
Reynolds stress. Here, o¢_ is labeled the generalized convective stress tensor, while t3 is
the generalized convective traction. Both o2, and t3 contain terms which are nonlinear in
the generalized velocities.

In (4.92), c;;(¢) and cpe(€) are constants. When ¢ is inside S,c;; = 6;; and cge = 1. If € is
on the boundary then the values are determined by the relative smoothness of 5 at ¢. For ¢
outside the region V, both c¢;; and cge are zero. Meanwhile, the kernel functions Gi;, Ges, F;
and Fyg are provided in Appendix B.2.
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4.2.3.2 Time-Dependent

For this next formulation, the effective body forces and sources are identical to those
provided in (4.5), however, the time-dependent terms are now included in the linear oper-
ator. The required fundamental solution for the viscous portion was first given by Oseen
(1927), while the transient heat conduction fundamental solution is well-known (Carslaw
and Jaeger, 1959). By applying standard methodology (Banerjee and Butterfield, 1981;

Dargush and Banerjee, 1990d), the following governing integral equations can be derived

Caflia = / (905 * ta — fop * Ua — gap * 12)dS +] [dagk * Ofa + 9ap * fo — gappul)dv (4.11)
S 1%

Note that (4.11) is similar to (4.6) for the steady case, except that Riemann convolution
integrals over time have been introduced, along with an initial condition volume integral
involving u¢. Once again o2, and tg contain terms which are nonlinear in the generalized
velocities. Kernel functions, Gos and Fog, developed from the instantaneous point force and
source adjoint fundamental solutions gos and fugs, are provided in Appendix B.3. It should
be noted that these functions are considerably more complicated than the corresponding

steady kernels.

4.2.4 Numerical Implementation

4.2.4.1 Introduction

Analytical solutions are possible for only the simplest geometries and boundary con-
ditions. More generally, approximations must be introduced in both time and space to
expose the practical utility of these integral equations. Consequently, in this section, state-
of-the-art boundary element technology is applied to steady and unsteady incompressible
thermoviscous flows. Recent boundary element developments in the fields of elastodynam-
ics (Banerjee et al, 1986; Ahmad and Banerjee, 1988) and thermoelasticity (Dargush and
Banerjee, 1989b, 1990a) are directly applicable for these problems. The presentation below
will concentrate on those aspects of the numerical implementation which differ from that
detailed in Section 3. The current implementation is limited to the two-dimensional case,
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although certainly both of the integral formulations presented in the previous subsection

are equally valid in three dimension.

4.2.4.2 Temporal and Spatial Discretization

For time-dependent problems, the total time interval from zero to r is subdivided into
N equal increments of duration Ar. Then, the field variables 1o, 4o, 12, and o2, are assumed

constant within each Ar time increment. As a result,

N naT N
pasrta= Y12 [ gopdt= Y 263 (412)
n=l (n-1)ar n=1

with similar expressions holding for the remaining convolution integrals. This is identical
to the treatment discussed in Section 3 for thermoelasticity.

The methodology employed for spatial discretization of the bounding surface also fol-
lows that described in Section 3. Thus, linear, quadratic or quartic shape functions are
utilized to portray the functional behavior of the field variables over three-noded surface
elements.

However, in addition to the surface description, the domain must be discretized into
cells in the regions where the nonlinear convective effects are important, or where nonzero
initial conditions are present. Shape functions are once again introduced to approximate
the geometric and functional variation with each volume cell. Thus, for any point X within

an individual cell

zi({) = Muw({)ziw (4.13)

and

05(C) = Mu({)0i0n (4.14)

where
My, M, shape functions
z:w nodal coordinates
e2 ., nodal generalized convective stress .
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The current implementation utilizes six and eight-noded cells for the geometric representa-
tion, along with linear, quadratic, or quartic functional variation. Typical cells are depicted
in Figure 4.1. For the quadratic cell, both serendipity (8-noded) and lagrangian (9-noded)
variations are included. Serindipity quartic cells were found to have unsatisfactory perfor-
mance and consequently are not available.

As a result of the spatial discretization, the boundary integral equation for time-

dependent thermoviscous flow can now be written

N M
captl = > { > [tgw /S G NLdS — ul, /S FNPHIN,dS -t
n=l \m m m

=1 m

Ggﬁ_"“NwdS]

L L

+ Z [UZ?M/ Dfﬁ—kn+1M“’dV} } + Z [pugw/ ggﬁdeV] (4.15a)
vi Vi

=1 =1
while for steady conditions this reduces to

M
Captia = D [W /S GapNudS — ta. /S FapN,dS — 13, /S GagNwdS]

m=1
L

+> [a,‘:w y Daﬁkadv], (4.15b)
=1 1

where M and L are the total number of surface elements and volume cells, respectively,

and
M
S5=Y Sn (4.16a)
m=1
L
v=> V. (4.16b)
=1

The positioning of the nodal variables outside of the integrals is a key step, since now the
integrands of (4.15) contain only known functions, which can be evaluated numerically.
Up to this juncture, the region of interest has been assumed to be composed of a single
volume V with surface S. However, this need not be the case. In general, space may
be subdivided into a number of individual non-overlapping geometric modeling regions
(GMRs). Each GMR occupies a certain volume of space, say Vg, bounded by the surface
S,. For a point ¢ within V,, the integration required by (4.15) need only be conducted over
S, and V,, since the contribution to ua(¢) from the other GMRs outside S; will be zero.
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As a result, integration costs can be dramatically reduced by introducing multiple GMRs
for thermoviscous flow problems. Additionally, there is no inherent requirement that all
GMRs utilize the same physical model. For example, one GMR could employ the steady
formulation of equation (4.6), while a second region includes the transient kernel effects
contained in the formulation of (4.11). In any case, compatibility must, of course, be
maintained across all GMR-to-GMR interfaces. Examples of mixed GMR formulation are
contained in Section 4.3.6 and form the basis of the approach for fluid structure interaction

that will be explored in Section 5.

4.2.4.3 Integration

The evaluation of the integrals appearing in (4.15) is the next process to be examined.
Due to the singular nature of the kernel functions Gags, Fap and Do considerable care must
be exercised during numerical integration. This is particularly true for incompressible
viscous flow, in which the final solution is extremely sensitive to errors in integration
coefficients. In general, the integration algorithms must be much more sophisticated than
those developed for thermoelasticity. In the present implementation, discussed in detail
in Honkala and Dargush (1990), a number of different integration schemes are employed
depending upon the order of the kernel singularity, the proximity of the field point ¢ to
the element, and the size of the element.

Once again consider the following three distinct categories for the surface integrals:
(1) The point ¢ does not lie on the element m.

(2) The point ¢ lies on the element m, but the kernels involve only weakly singular inte-

grands of the in r type.
(3) The point ¢ lies on the element m, and the integral has a strong ! singularity.

In practical problems involving many elements, it is evident that most of the integration
occurring in equation (4.15) will be of the Category (1) variety. The integrand is non-
singular and standard Gaussian quadrature can be employed. However, for near-singular
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cases when ¢ is close to element m very high order formulas are needed to capture the
kernel behavior. For these instances, it is beneficial to identify the point X° on the element
nearest to ¢, and then subdivide the interval of integration about X°. Within each of
the two subsegments a nonlinear transformation is used to further reduce the order of
Gaussian quadrature needed for high precision. This nonlinear transformation is similar
to that proposed by Mustoe (1984) and Telles (1987), however it should be emphasized

that subsegmentation is still required.

Turning next to Category (2), one finds that, unlike elasticity or potential flow, stan-
dard Gaussian formulas alone are inadequate. Instead the terms involving In » must be
isolated and integrated with special log-weighted Gaussian integration. The remaining

non-singular terms comprising Gag are then evaluated utilizing standard quadrature.

The strongly singular integrals of Category (3) exist only in the Cauchy principal
value sense and cannot be evaluated numerically with sufficient precision. Fortunately,
the indirect ‘rigid body’ or ‘equipotential’ method, originally developed by Cruse (1974),
is applicable, and leads to the accurate determination of the singular block of the second
integral in (4.15). The remainder of that integral is non-singular. Consequently, subseg-

mentation along with standard Gaussian quadrature is adequate.

Similar care is needed for the volume integrals, which involve the kernel Dagr con-
taining a !-type singularity. However, for two-dimensional volume integration, this kernel
is only weakly singular, and can be evaluated in the following direct manner. First, the
nearest node, say A, in cell I to the point ¢ is determined. The cell is then subdivided
into triangles radiating from A as shown in Figure 4.3. Next, each triangle is mapped
onto a unit square. The apex corresponding to A is stretched to form one side of the
square. This process essentially eliminates the ! singularity. Finally, the square is further
subsegmented in both radial and circumferential directions depending upon the closeness
of ¢ and the size of cell I. Standard Gaussian quadrature is applied to each subsegment.
This cell integration scheme was based on work by Mustoe (1984) for elastoplasticity. In
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the present incompressible viscous flow implementation, tolerances have been tightened so
that additional subsegmentation is performed, along with higher order quadrature formu-
las. Additionally, it has been found that circumferential subsegmentation is much more
beneficial than the radial breakup.

In time-dependent problems, beyond the first time step, additional integration is re-
quired. This integration involves the kernels G5, F; and D7y, for o > 1. From Table 4.1,
these are all nonsingular. As a result, a much less sophisticated integration scheme is em-
ployed to obtain the required level of accuracy with fewer subsegments and gauss points.
If the initial velocities are not uniform, then the nonsingular initial condition integral of
equation (4.15a) must also be evaluated at each time step. This is accomplished in a

manner similar to the integration of DJg,.

Table 4.1 - Kernel Singularities

Kernel Singularity Order
Gis Inr

Gog forn>1 non-singular
Flg :
Figforn>1 non-singular
Dagk :

DZg, for n> 1 non-singular

4.2.4.4 Assembly

Once the spatial discretization and numerical integration algorithms are completely
defined, a system of nonlinear algebraic equations can be developed to permit an approx-
imate solution of the thermoviscous boundary value problem. The method of collocation
is employed by writing (4.15) at each functional mode.
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For each time step N of a transient problem, this nodal collocation process yields

where

tn

Gﬂ

FTL

Dﬂ

N
Z [GN—n+1tn _FN-ntlyn GgN-ntlgon DN—n+la,on] —TNu°=0 (4'17)
n=1

nodal traction vector for time step n with 3Q components
nodal velocity vector for time step n with 3P components
nodal convective traction vector for time step n with 3Q components

nodal convective stress vector for time step n with 6P components

nodal initial velocity vector with 3P components

unassembled matrix of size 3P x 3Q calculated from the first

integral of (4.15) during time step n

assembled matrix of size 3P x 3P calculated from the second
integral of (4.15) during time step n, plus the cop contribution

in F!

assembled matrix of size 3P x 6P calculated from the first volume

integral of (4.15)

assembled matrix of size 3P x 3P calculated from the initial condition

integral of (4.15)

total number of functional nodes

number of functional nodes in element m .

All of the coefficient matrices in (4.17) contain independent blocks for each GMR in mul-

tiregion problems. However, for any well-posed problem, the boundary conditions and

interface relations remove all but 3P unknown components of u™ and t¥. Furthermore,
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by solving (4.17) at each increment of time, all of the components of u”, ", t" and o for

n < N are known from previous time steps. Then, (4.17) can be rewritten at time NAr as

g(x) = Ax"Y - DoV 4+ GItN - By"

N-1
_ Z [GN_n+1t" _ FN—n+1un _ GN—n+1ton + DN—n+la.on] + PNuo -0 (4.18)
n=1
in which
xN nodal vector of unknowns with 3P components
yN nodal vector of knowns with 3Q components

while A and B are the associated coefficient obtained from F! and G'. The A matrix now
includes the compatibility relationships enforced on GMR interfaces. As a result, the GMR
blocks in A are no longer independent, however A does remain block banded.

The terms included in the summation of (4.18) represent the contribution of past
events. This, along with the terms By™ and I'Vu°, can be simply evaluated once at each

time step N with no need for iteration. Let,
N-1
bN - —ByN _ Z [GN—n+1tn _ FN—n+1un _ GN_"+1Y,°" + DN—-n+10,an] + I‘Nuo. (4.19)
n=1
Then (4.18) becomes the following nonlinear set of algebraic equations

g(x) = AxN - Do + G}tV + bV = 0. (4.20)

A closer examination of b is in order. For example with N =1
b! = —By' + T''v?, (4.21a)
while for the second time step
b? = —By? — G2’ + F2u' + G%°' - D% + T?u° (4.21b)

Obviously, for each step N, one new set of matrices GV, F¥, DV and I'V must be determined
via integration and assembly. Integration, particularly the volume integration needed for
DV and TV, can be quite expensive.
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As an alternative to the convolution approach defined above, a time marching recur-
ring initial condition algorithm can be employed. This has been utilized by a number of
researchers for transient problems of heat conduction, acoustics, and elasticity (Banerjee
and Butterfield, 1981). For this latter approach, at time step N the entire contribution of
past events is represented by an initial condition integral which utilizes uM-? as the initial
velocity. Thus,

g(x) = AxV = D'o°V + GtV + bV =0 (4.22)

with

bN = —By" + a1 (4.23)

Obviously, (4.22) is identical to (4.20). Only the evaluation of bV is different. The advan-
tage of the recurring initial condition approach is that no integration is needed beyond the
first time step. However, volume integration is required throughout the entire domain be-
cause of the presence of u¥-1, even for linear problems in which volume integration would
not normally be required.

In order to take full advantage of both methods, the present work utilizes the con-
volution approach in linear regions, and the recurring initial condition algorithm for the
remaining nonlinear GMRs which are filled with volume cells. Since b can be computed

independently for each GMR, this new dual approach provides no particular difficulty.

4.2.4.5 Solution

An iterative algorithm, along the lines of those traditionally used for BEM elastoplas-
ticity (Banerjee and Butterfield, 1981; Banerjee et al, 1987), can be employed to solve the
boundary value problem. However, convergence is usually achieved only at low Reynolds
number. More generally the interior equations must be brought into the system matrix, as
in (4.20), and a full or modified Newton-Raphson algorithm must be employed to obtain
solutions even at moderate Reynolds number. (Similar ‘variable stiffness’ algorithms have
also been introduced by Banerjee and Raveendra (1987) and Henry and Banerjee (1988)
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for elastoplasticity.) Symbolically, at any iteration k,

1)) = fo}

1 = xF 4 Ax* (4.25)

where

and the derivatives on the lefthand side of (4.24) are evaluated at x*. With the full
Newton-Raphson approach, I = k and the system matrix must be formed and decomposed
at each iteration. The out-of-core solver used in the present implementation was devel-
oped originally for elastostatics (Banerjee et al, 1985) from the LINPACK software package
(Dongarra et al, 1979), and operates on a submatrix level. Within each submatrix, Gaus-
sian elimination with single pivoting reduces the block to upper triangular form. The final
decomposed compacted form of the system matrix is stored in a direct access file for later

reuse. Backsubstitution completes the determination of Ax*. Iteration continues until

ll(ax™*)]

—_—— < € 4.26
[EalE] (426)
where ¢ is a small tolerance, and |x|| is the Euclidean norm of x. For the modified Newton-
Raphson algorithm, the system matrix is not formed at every iteration, and only backsub-

stitution is needed to determine Ax*.

4.2.4.6 Calculation of Additional Boundary Quantities

Once the iterative process has converged, a number of additional boundary quantities
of interest can be easily calculated. For example, lift and drag can be calculated by numer-
ically integrating the known nodal traction and shape function products over the surface
elements of interest. Low order Gaussian quadrature is adequate for this integration, since
all the functions are very well behaved.

Furthermore, at each boundary node, the pressure p, stress o;;, and strain rates %‘;—f can

be determined by simultaneously solving the following relationships:

a5i(£)n;(§) = Nu({tiw (4.270)
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u; Ou;
eis©) - n(FE©) + G2O) +5(6) =0 (4.278)
7 i
oz ; 8u,~ _ 81\’“. )
‘5&15;;(5) = a—cuw (4.27¢)
0—2@ +p(€) =0. (4.27d)

It should be emphasized that (4.27) represents a set of nine independent equations which
are written at the boundary point ¢, and can be solved easily for p,s;; and %‘—z‘f at that

point. Afterward, boundary vorticity and dilatation can be obtained, respectively, from

aUQ 3U1

-t 4.28
bz, bz, (4.280)
8111 8U2

= —— 4 —=, 4.28b
82:1 81'2 ( )

Of course, for incompressible flow, the dilatation should be zero, but (4.28b) can be used
as a check.

A comprehensive PATRAN interface has also been developed. Consequently, any of
the quantities computed above may be displayed graphically in the form of profiles or

contours.

4.2.5 Numerical Examples

4.2.5.1 Introduction

All of the formulations discussed above have been implemented as a segment of GP-
BEST, a general purpose boundary element code. In this section, a number of examples
are included, primarily, to demonstrate the validity and attractiveness of the boundary

element formulations for relatively slow incompressible flow.

4.2.5.2 Converging Channel

The two-dimensional incompressible flow through a converging channel also possesses
a well known analytical solution which is purely radial (Millsaps and Pohlhausen, 1953).
A comprehensive finite element study of this problem has been made by Gartling et al
(1977).
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The boundary element model is shown in Figure 4.4a. The mesh contains 96 cells
and is divided into two regions. The boundary conditions were modeled using an exact
specification of the boundary conditions appearing in the analytical solution (Fig. 4.4a).
Viscosity is unity, and tractions and density are incremented to reach higher Reynolds

numbers. The Reynolds number for this problem is defined as

_ pR;Vo(R;)

14

R. (4.29)

where V,(R;) is the maximum velocity in the region, which is —24.0 for the problem solved
here.

Figure 4.4b illustrates the results for two Reynolds numbers, indicating good accuracy
along the entire width of the channel. Not only are the velocities accurate, but the pressures
and tractions are very accurate also.

It has been observed that finite element versions of this problem have several pecu-
liarities which prevent the analytical solution from being reproduced. First of all, since
velocities are often specified at the inlet and at the wall and centerline, ambiguous bound-
ary condition specification results. Also, typically a parabolic “fully develdped” velocity
profile 1s usually specified at the inlet. However, the nonlinear solution has a flattened
velocity distribution across the width of the channel (see Fig. 4.4b). Hence, the analyt-
ical solution cannot be reproduced exactly if the “fully developed” profile is specified at
the inlet. Also, the finite element modelers of this problem usually leave out the traction
distribution at the exit and specify zero tractions there. This also gives rise to non-radial
flow.

The reason for so much interest in the converging flow problem is that it is one of
the few problems possessing an analytical solution. However, by specifying a model which
does not correspond to this problem, as in the finite element case, one cannot accurately
compare results to the analytical solution. Any such comparisons are merely qualitative.
In this light, the boundary element model here has utilized an exact model of the boundary
condition and a meaningful comparison can be made.
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4.2.5.3 Transient Couette Flow

Consider as the first transient analysis the case of developing Couette flow between
two plates, parallel to the x-z plane, a distance h apart. Initially, both of the plates, as
well as the fluid, are at rest. Then, beginning at time ¢ = 0, the bottom plate is moved
continuously with velocity V in the x-direction. Due to the no-slip condition at the fluid-
plate interface, Couette flow begins to develop as the vorticity diffuses. Eventually, when
steady conditions prevail, the x-component of the velocity assumes a linear profile.

The following exact solution to this unsteady problem is provided by Schlicting (1955):

v(y 1) =V { :erfc'[%m +n] - ierﬂ[?(n +1)m — n]} (4.30a)
vy(y,) = 0 (4.30b)
where
n= (4#—170)’_’5 m= W (4.31a,b)
erfe(z) = 1—erf(z) = 1 - ;273 : 7 dy. (4.31¢)

All of the nonlinear terms vanish, since both v, and 8v;/8z are zero.

The two-dimensional boundary element model, utilized for this problem, is displayed
in Figure 4.5. Four quadratic surface elements are employed, with one aiong each edge
of the domain. A number of sampling points are included strictly to monitor response.
Notice that the region of interest is arbitrarily truncated at the planes z =0 and z = ¢. All
of the boundary conditions are also shown in Figure 4.5. For the presentation of GPBEST

results, all quantities are normalized. Thus,
(4.32a)

T== (4.320)

and the horizontal velocity is v./V. Figure 4.6 provides the velocity profiles at four different
times, using a time step AT = 0.025 and the convolution approach. There is some error
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present at small times near the top plate, where the velocity is nearly zero. Results at
Y = 0.5 versus time are shown in Figure 4.7 for several values of the time step. Obviously,
the correlation improves with a reduction in time step and AT = 0.025 provides accurate
velocities throughout the time history. However, even for a very large time step, the
GPBEST solution shows no signs of instability. Error, evident in the initial portion,
diminishes with time, and all values of AT produce the correct steady response. Further
reduction of AT beyond 0.025 yields little benefit. Instead, mesh refinement in the y-
direction is needed, primarily to capture the short time behavior. Figure 4.8 shows the
GPBEST results for a model with just two, equal length, elements along each vertical side.
The correlation with the analytical solution is now excellent. The time step selected for

the refined model was based upon the general recommendation that

. 0.05£2

AT min (4.33)

c

where £,,;,, is the length of the smallest element.

The convolution approach, defined by equation (4.18), was used to obtain the results
presented in Figures 4.6-4.8. Alternatively, the recurring initial condition algorithm can
be invoked. In that case, complete volume discretization is required even for this linear
problem. For the model of Figure 4.6, a single volume cell connecting the eight nodes is
all that is required. The GPBEST results for different values of AT are shown in Figure
4.9. The solutions are good for the two smaller time step magnitudes, however there is a
slight degradation in accuracy from the convolution results.

Interestingly, the solution in (4.30a) is identical to that for one-dimensional transient
heat conduction in an insulated rod with one end maintained at temperature V, while the
other remains at zero. However, in a corresponding boundary element analysis, the numer-
ical integrations defined in (4.15a) must be calculated much more precisely for unsteady

viscous flow than for heat conduction in order to obtain comparable levels of accuracy.
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4.2.5.4 Flow Between Rotating Cylinders

As the next example, the developing flow between rotating cylinders is analyzed. The
inner cylinder of radius r; is stationary, while the outer concentric cylinder with radius
ro is given a tangential velocity V, beginning abruptly at time zero. The steady solution
appears in Schlicting (1955). However, even for the transient case, the flow is purely

circumferential. Thus, the governing Navier-Stokes equations reduce to

321)9 1 8vy Ve g
OV 2% Ve _ 20 = 4.34
“(aﬂ +r8r re - 0 ( @)
dp vl
L4 28— 4.34b
or + r 0 ( )

in polar coordinates (r,6,z). As discussed in Batchelor (1967), separation of variables can

be used to obtain the following solution (Honkala and Dargush, 1990)

ve(r, 1) =10 (4.35a)
c nd a
ve(rt) = cyr + 72 + 3 Da{Ji(Anr)Vi(Anro) = Yi(Anr)Jy (Anro)fe™2ne (4.35b)
n=1
where
Vr
= 2 _oriz ez = —errf (4.36a,b)
72 AnJE(Anri)

n= 5 nTo)l'in n n ]
D= Ty = JFre) U Tl in A1) (4.350)
Fin = —e1[r202(nro) = 220 r)] + ealTo(Anre) = Jo(Anrs)] (4.364)
Fp, = cl[rng(/\nro) - r?Yz(Anri)] — co[Yo(Anro) = Yo(Anti))] (4.36¢)

and ), is the nth root of the equation
Ti(m)Yi(Aro) = Ji(Are)Yi(Ari) = 0. (4.37)

Figure 4.10 depicts the boundary element model representing the region between the
two cylinders. A thirty degree segment is isolated, with cyclic symmetry boundary condi-
tions imposed along the edges 8 = 0° and 6 = 30°. The inner radius is unity, while an outer
radius of two is assumed. Unit values are also taken for the viscosity, density and V. The
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model consists of six quadratic elements and two quadratic cells. The cells, of course, are
not needed for linear analysis utilizing the convolution approach.

Results of the GPBEST analysis are compared to the exact solution in Figure 4.11
for convolution and in Figure 4.12 for the recurring initial condition algorithm. In both
diagrams, results with and without the nonlinear convective terms are plotted. The re-
sults are quite good throughout the time history with the convolution approach, while
some noticeable error is present at early times for the recurring initial condition solutions.
The linear and nonlinear velocity profiles are nearly identical, as expected from the exact
solution expressed in (4.35b). However, unlike the previous example, the nonlinear terms
do not simply vanish from the integral equation written in cartesian form. Instead, the
nonlinear surface and volume integrals must combine in the proper manner to produce
the correct solution. Consequently, this problem provides a good test for the entire BEM

formulation.

Relative run times are shown in Table 4.2 for the different analysis types. Obviously,
the nonlinear convolution approach is very expensive, since this involves volume integration
at each time step. As a result, in the general implementation, convolution is only utilized

in linear GMRs.

Table 4.2 - Flow Between Rotating Cylinders

(Run Time Comparisons)

Analysis Type Time Marching Algorithm Relative CPU Time

Linear Convolution 1.0
Nonlinear Convolution 25.8
Linear Recurring Initial Condition 1.5
Nonlinear Recurring Initial Condition 1.8
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4.2.5.5 Driven Cavity Flow

The two-dimensional driven cavity has become the standard test problem for incom-
pressible computational fluid dynamics codes. In a way, this is unfortunate because of the
ambiguities in the specification of the boundary conditions. However, numerous results
are available for comparison purposes.

The incompressible fluid of uniform viscosity is confined within a unit square region.
The fAuid velocities on the left, right and bottom sides are fixed at zero, while a uniform
nonzero velocity is specified in the x-direction along the top edge. Thus, in the top corners,
the x-velocity is not clearly defined. To alleviate this difficulty in the present analysis, the

magnitude of this velocity component is tapered to zero at the corners.

Results are presented for the four region, 324 cell boundary element model shown in
Figure 4.13. Notice that a higher level of refinement is used near the edges. Spatial plots
of the resulting velocity vectors are displayed in Figures 4.14a and b for Reynolds numbers
(Re) of 400 and 1000, respectively. Notice that, in particular, the shift of the vortical
center follows that described by Burggraf (1966) in his classic paper. A more quantitative
examination of the results can be found in Figure 4.15 where the horizontal velocities on
the vertical centerline obtained from the present GPBEST analysis are compared to those
of Ghia et al (1982). It is assumed that the latter solutions are quite accurate since the
authors employed a 129 by 129 finite difference grid. As is apparent, from the figure, all
of the solutions are in excellent agreement. Finally, it should be noted that the simple
iterative algorithm fails to converge much beyond Re = 100. Beyond that range the use of
a Newton-Raphson type algorithm is imperative.

In this driven cavity problem, complete volume discretization is required, since the
nonlinear convective terms are nonzero throughout the entire domain. As a result, the
evaluation of the volume integrals appearing in (4.6) is computationally expensive due
to the singular nature of the kernels. Consequently, it is important to investigate the
relative merits of a boundary element approach. To aid in this study, a finite element
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formulation was developed based primarily on the work of Gartling et al (1977). This
finite element implementation utilizes a penalty function approach for incompressibility,
along with a Newton-Raphson solution algorithm. An identical sixty-four lagrangian cell
model was selected for both the boundary element and finite element analysis. Results are
plotted in Figure 4.16 for Re = 100. The boundary element results, though more expensive,
are significantly more accurate. In fact, at this level of refinement, the finite element
results show some oscillation. Clearly, for a given mesh, the boundary integral formulation
captures more of the physics. Further comparative studies are planned for the coming

months.

4.2.5.6 Transient Driven Cavity Flow

The next example involves the initiation of flow in the same square cavity. An in-
compressible fluid of uniform density and viscosity is at rest within a unit square region.
The velocities of the vertical sides and the bottom are fixed at zero throughout time. At
time zero, the horizontal velocity of the top edge is suddenly raised to a value of 1000
and maintained at that level. A gradual transition of velocities is introduced near the top
corners to provide continuity.

The four region, 324 cell model shown in Figure 4.13 1s employed for the boundary
element analysis. The resulting velocity vector plots at several times are shown in Figure
4.17 for this case having a Reynolds number of 1000. The recurring condition algorithm
was used. As in the previous two time-dependent examples, the results lead directly to
the steady solution after a sufficient number of time steps. This steady solution correlates
closely with the results of Ghia et al (1982), as presented in Figure 4.15.

It should be noted that Tosaka and Kakuda (1987) have run the transient driven cavity
at Re = 10,000. However, their results show signs of instability even at relatively small times,
and are compared to the steady solution of Ghia et al which also is not correct at this
much higher Reynolds number. A valid solution in this Re range would necessitate the use
of an extremely refined mesh, far beyond that employed by Tosaka and Kakuda or Ghia
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et al.

4.2.6 _Summary

The formulations presented in this section, based upon Stokes fundamental solutions,
are suited primarily for low Reynolds number regimes. For creeping flows, all of the
nonlinear terms vanish, resulting in a very efficient, very precise boundary-only solution.
The resulting boundary element method is clearly superior to any of the domain based
methods for problems of this nature, under both steady and transient conditions.

At somewhat higher velocities, the nonlinear convective effects cannot be ignored.
Consequently, the surface integral involving t and the volume integral containing o}, in
equations (4.6) and (4.11) are required. Since volume integration is quite computationally
intensive, a boundary element approach becomes less attractive. This is particularly true
when discretization is required throughout the domain, as is the case for confined flows.
Still, for a given mesh, the boundary element formulation provides a higher degree of
accuracy than finite difference or finite element methods, especially in the determination

of boundary quantities.

4.3 Convective Incompressible Thermoviscous Flow

4.3.1 Introduction

At high fluid velocities, the convective terms in Navier-Stokes equations tend to dom-
inate. As a result, boundary element formulations employing Stokes kernels are inappro-
priate, since these fundamental solutions model the effects of viscosity but not convection.
Instead, more of the physics of the problem must be brought into the linear operator. This
concept was clearly understood by Oseen in the early portion of the twentieth century. In
his 1927 monograph, Oseen developed exact integral expressions for Navier-Stokes equa-
tions using a convective fundamental solution. Unfortunately since this was well before
the advent of the computer, he was unable to do much with his formulations beyond some
approximate solutions at very low Reynolds number. In the present section, the work of
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Oseen is resurrected to form the basis for an attractive boundary element method for high

speed flows.

4.3.2 Governing Equations

The differential equations, governing the behavior of an incompressible thermoviscous

fluid in the presence of a free stream velocity U;, can be written:

82ui 8p 8ui 3ui y
_ £ _ it S =0 4.38
Hoz,0r;, oz ' bz Ca +h=0 (4:38)
du;
i = 4.38b
i, (4:38))
520 06 06
k - e — — /' =0. 4.38
das0z; P ViGg, T eH TV (4.38¢)

where u; once again represents the velocity perturbation. In (4.38), the effective body

forces and sources are defined as

3ui
fi= Y5, + fi (4.39a)
¢I — —Pceuj 80 + w (4.39b)
3rj

These equations are of course identical to those presented in (4.4), except that now the
convective terms pU;du;/dz; and pc.U;80/8z; are included in the linear differential operator.
Fundamental solutions based upon (4.38) will contain the character of the flow field at

high velocities.

4.3.3 Fundamental Solutions

It is instructive to begin with a look at the fundamental solution of the steady form
of the heat equation defined above as (4.38¢). In a static medium (i.e., U; = 0), the
fundamental solution G must satisfy

9°G
8Ij8$j

k oz —£)=0 (4.40)

in which 6 is the generalized delta function. The solution to (4.40) in two-dimensional
space is the well-known potential flow Green’s function

G(z,€) = —% (4.41)
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with
vi=zi—& (4.42a)
= vy (4.42b)

Thus, G(z,€) represents the temperature response at z due to a unit point heat source at
¢. This response is plotted in the z; — z, plane for a source at the origin in Figure 4.18.
Radial symmetry is evident.

However, if the medium is moving at velocity Ui, then the fundamental solution GY

must instead satisfy
2GY aGY

— — pe U
Oz;0z; pee

k Rl
7 8z,

+6(z—€)=0 (4.43)

Now, the Green’s function (e.g. Carslaw and Jaeger, 1947) is given by

e—Ukyk/Qn

U =
G ('r7£)'— 27rk

Ko [(UUR)? (;7)] (4.44)

in which & = k/pc.. This response is plotted in Figures 4.19a-d for various magnitudes of
an z;-directional velocity. Obviously, in a moving medium, radial symmetry is lost and
a pronounced front-and-back effect develops. That is, at a given distance from the heat
source, it is hottest directly downstream.

It should be emphasized that the so-called convective fundamental solution defined in
(4.44) actualy embodies both the processes of conduction and convection. At low velocity,
conduction dominates producing a nearly radially symmetric response. On the other hand,
in a high speed medium, the response is concentrated in a very narrow band downstream
of the source. Thus, as illustrated in Figure 4.19, GU captures the transition from elliptic
toward hyperbolic behavior.

The corresponding convective viscous fundamental solution Gf, was first presented by

Oseen (1911), as the solution to

#GY  oGY, aGY,

- o br )

Wbz~ Bz, PUkag, toudle—€) =0 (4.450)
8GY.

il (4.45b)
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The GY tensor is given in explicit form in Appendix B.4. However, the component GYj,
which represents the velocity in the z;-direction due to a unit point force in the z,-direction,
is displayed in Figures 4.20a-d. For very small U;, the solution of (4.45) approaches the
Stokes kernels detailed in Appendix B.2. This is shown in Figure 4.20a. Notice that, unlike
the heat conduction response of Figure 4.19a, the static viscous fundamental solution is not
radially symmetric. This is due to the vectorial nature of the flow, and is directly attributed
to the y;y;/r? terms in G;;. However, as the flow velocity increases (i.e., Figures 4.20b-d), a
stronger sense of upstream and downstream develops, and the response once again becomes
concentrated in a narrow band ahead of the applied force. At high speed, outside of this
band, the response is essentially zero. This behavior is not only important from a physical
standpoint, but also can be beneficial in the development of efficient boundary element

algorithms.

4.3.4 Integral Representations

The convective fundamental solutions depicted in Figures 4.19 and 4.20 capture the
proper character of high Reynolds number incompressible thermoviscous flows, and as a
result, can provide the basis for an attractive boundary element formulation. The corre-
sponding integral equations, under steady conditions, can be developed directly from the

governing differential equations (4.38). This result is,

Coplia = /s [CYsta — Fsua — GU5t5°) dS + L [DYsioke + GUpfa) AV, (4.46)

where
o0 = [puru; peeugb] (4.47a)
tV° = olon,. (4.47b)

the superscript U on the kernel functions is a reminder that these are based upon convective
fundamental solutions. All of the kernels appearing in (4.46) are detailed in Appendix B.4.
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In most cases the body forces, fa, are either zero or can be accounted for via a particular
integral so that the second volume integral in (4.46) is not needed.

In examining (4.46), it should be noted that the nonlinearities are contained in the
surface integral involving GY;tY° and the remaining volume integral, DY, 002, Specifically,
only tU° and ¢V are nonlinear, and these are both formed from the product of pertur-
bations. For high speed flows, these perturbations are only significant in the vicinity of
objects and in the wake. As a result, volume discretization is only needed in those areas.
Elsewhere, the linearized Oseen approximation is adequate.

Equation (4.46) is identical to the integral equation developed by Oseen (1927), ex-
cept for the treatment of the nonlinear convective terms. In deriving (4.46), an additional
integration-by-parts operation was invoked to completely eliminate the appearance of ve-
locity gradients.

If one is interested in the transient thermoviscous response in a medium with a more
or less steady free stream velocity, then a time-dependent formulation is also possible. For
this case, the time derivatives are retained in the linear operator, and the following integral

equation results:
Caplia = /s l965 % ta — fop * va — 95p * tY°] ds
+ /V (@Y * 0%2 + gY5 * fo — gappud) dV (4.48)

This integral equation and the corresponding fundamental solutions have not appeared
in the literature. The functions ¢J, are quite involved, but can be expressed in terms of

incomplete exponential integrals. Details will be presented next year.

4.3.5 Numerical Implementation

The integral representations for convective thermoviscous flow are quite similar to those
presented in Section 4.2.3. Consequently, there is a great deal of overlap in the algorithms
employed for their respective numerical implementation. At present, the major difference
occurs in the schemes utilized for integration.
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As discussed previously, the convective fundamental solutions have a much different
character than the more familiar Stokes based kernels. The standard boundary element
integration schemes are unable to accurately capture the localized nature of the convective
kernels, particularly at large Reynolds number. In general, subsegmentation must be
much more intense for singular and near-singular cases. For example, in convective near-
singular integration, first the location X° on the element nearest to the load point ¢ is
identified. Then, a graded subsegmentation pattern is defined about X° based upon criteria
including the distance of ¢ to X° and the free stream velocity. For higher speed flow,
smaller subsegments are generated. Gaussian integration order is also typically higher for
the convective surface integration. Similar adjustments are required for volume integration

as well.

During this past year, some progress has been made in the development of alternate
integration strategies for singular integration. For example, partial analytical treatment
of the GY kernel has proved to be more cost effective. Also, the standard ‘rigid body’
technique has been extended to other known solution fields in order to indirectly calculate

some of the singular contributions.

However, additional effort is still needed to develop integration algorithms designed
specifically for high speed convec.tive.a kernels. In particular, the response depicted in Figure
4.20d must be anticipated. Thus, there is no need to integrate an element which lies outside
the narrow band of nonzero response. Furthermore, elements located partially or wholely

within the band should be subsegmented accordingly.

The remainder of the numerical implementation follows that discussed in Section 4.2.4.
Thus, assembly, solution, and the calculation of additional boundary quantities are ac-
complished in the same manner as for the Stokes kernel approach. While this is perfectly
legitimate, full advantage has not yet been taken of the character of the convective re-
sponse. For example, at very high speeds, as the behavior becomes hyperbolic, the system
equations form a nearly-sequential, banded set. The present assembler and solver, which
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were designed for elliptic systems, do not recognize this structure, and consequently, are

quite inefficient.

4.3.6 Numerical Examples

4.3.6.1 Introduction

In order to thoroughly study the effectiveness of a boundary element approach for high
speed flows, the above convective formulations were implemented as a segment of a state-
of-the-art general purpose boundary element code. In the following, several numerical
examples are presented. These examples are intended to validate the formulations, and
to suggest the potential advantages of using a boundary element method for this class of

problems.

4.3.6.2 Burgers Flow

The classic uniaxial linear Burgers problem provides an excellent test of the convective
thermoviscous formulations. The incompressible fluid flows in the z-direction with uniform
velocity U. Meanwhile, the y-component of the velocity and temperature are specified as
U, and T,, respectively, at inlet. Both are zero at the outlet. The length of the flow field

is L. The analytical solution (Schlicting, 1955) is

Vy =¢Uo
T =(T,
where
(= {1 —ezxp [RL (—E - 1)}}/{1 —exp[—RL]}
with Ry, = UL.

The boundary element model employs eighteen quadratic surface elements encompass-
ing the rectangular domain. The elements are graded, providing a very fine discretization
near the exit, where V, and T vary substantially for large R.. Results are shown in Figure
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4.21 for the thermal problem and in Figure 4.22 for the viscous problem. Excellent cor-
relation with the analytical solution is obtained in both instances for this boundary-only
analysis, even for the highly convective case of R = 1000. The portion of the flow field
just ahead of the outlet is examined more closely in Figure 4.23. The convective Oseen
solution obviously produces a precise solution. This problem can also be solved by utilizing
the Stokes kernels and volume cells. As seen in Figure 4.23, this latter approach is not
quite as accurate. It should be noted that traditionally finite difference and finite element
methods have a difficult time dealing with the convective terms present in this problem.
Generally, ad hoc upwinding techniques must be introduced to produce stable, accurate
solutions. On the other hand, with the convective boundary element approach the kernel
functions contain an analytical form of upwinding. As a result, very precise BEM results

can be obtained.

4.3.6.3 Flow Over a Cylinder

As the next convective fluids example, the oft-studied case of incompressible flow over
a circular cylinder is considered. Initially for this problem, both the steady convective
and non-convective formulations are utilized in the same analysis. The boundary element
model is displayed in Figure 4.24. Note that half-symmetry is imposed. In the inner
region, the Stokes kernels are employed along with a complete volume discretization. Thus,
the complete Navier-Stokes equations are represented. The outer region uses the Oseen
kernels with a boundary-only formulation. The small non-linear contributions that would
be present in the outer region away from the cylinder are ignored. For those more familiar
with finite elements, each region can be thought of as a substructure or superelement.
However, the outer region does not require a volume mesh.

The steady-state velocity vector plot at Re = 40 is shown in Figure 4.25. The recirculat-
ing zone, behind the cylinder, is clearly visible. Additionally, the resulting drag coefficient
(Cp) of 1.8 obtained from the BE analysis is within the band of experimental scatter as
presented by Panton (1984) for the circular cylinder.
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Similarly, a transient analysis can be conducted. Now a full mesh as shown in Figure
4.26 is employed. The inner region uses a time-dependent nonlinear Stokes formulation,
while linear Oseen kernels provide the basis for the outer infinite region. Results are shown
in Figure 4.27a for Re = 100 at a time for which the flow is nearly fully developed. Mean-
while, Figure 4.27b present the solution at the same time, but with a different angle of
attack for the oncoming fluid. The results are virtually identical. This illustrates the
relative insensitivity of boundary element solutions to the cell discretization pattern. The
reason for this behavior, which is particularly important in modeling hyperbolic phenom-
ena, is that so much of the boundary element formulation is analytical. Another item
to note from these results is the completely symmetric flow patterns that were obtained.
Asymmetry would have to be induced by perturbing either the geometry, the free stream

velocity or the boundary conditions.

While all of this is encouraging, the development of a simplified procedure involving
far less volume discretization is desirable. For example, a completely linear Oseen analysis,
which ignores all nonlinear convective terms in both regions, produces a very similar solu-
tion, except in the vicinity of the cylinder. Vector plots from the nonlinear analysis and
the boundary-only linear Oseen analysis are superimposed in Figure 4.28. Although it is
difficult to distinguish between the two analyses in that plot, both produce a recirculatory
zone behind the cylinder. Thus, the main features of the problem are captured by the
boundary-only analysis. However, the linear solution, in general, overstates the velocities
and velocity gradients in the neighborhood of the cylinder. Consequently, a drag coefficient
of 3.4 is calculated, which is much higher than that found experimentally. This trend, of
overpredicting the experimental drag, continues even to much higher Reynolds numbers
as shown in Figure 4.29. Qualitatively, however, the behavior of the BEM Oseen solution

is consistent with the experimental curve for Reynolds Numbers up to 100,000.

A much improved solution can be obtained by introducing a row of cells encompassing
the cylinder. The full nonlinear Navier-Stokes equations are solved within this inner region
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which includes an inner and outer ring of surface elements. Exterior to the outer ring is a
linear Oseen region. This exterior region consists simply of one matching ring of surface
elements. Its volume extends outward to infinity, where the velocity reaches its free stream
value. Figure 4.30 illustrates a typical mesh, along with the resulting velocity vectors. As
Reynolds number is increased, the significant nonlinear effects concentrate nearer to the
cylinder, so that the thickness of the inner region may be reduced. Figure 4.29 also displays
the drag obtained by utilizing just a single row of cells. Results are quite encouraging.
An alternative approach for high speed flows involves the conversion of the nonlinear
volume integral into effectively a surface integral by introducing a suitable perturbation
velocity decay function. If this is accomplished then even a nonlinear analysis reduces to a
boundary-only solution algorithm. A concerted effort will be made in this direction during

the coming year.

4.3.6.4 Flow Past Airfoils

For illustrative purposes, a boundary-only thermoviscous analysis was conducted for
convective flow around a pair of NACA-0018 airfoils. The boundary element model of the
blades is shown in Figure 4.31. A hot fluid at unit temperature flows from left to right
with a unit magnitude of the free stream velocity. Meanwhile, the airfoils are assumed to
be stationary with their outer surface maintained at zero temperature.

It should be emphasized that this problem was run as a boundary-only analysis, how-
ever, a number of sampling points were included in the fluid surrounding the airfoils in
order to graphically portray the response. First the thermal solution is examined. Figure
4.32a depicts the temperature distribution in the fluid at a Peclet (Pe) number of ten,
where Pe = UL/x, with fluid velocity U, thermal diffusivity « and airfoil chord length L.
Meanwhile, Figures 4.32b-d show the response at progressively higher Peclet number. At
Pe = 10000, quartic surface elements were required in order to obtain an accurate solution.
The strong convective character is quite noticeable at larger Pe as the effect of the cold
airfoils is swept downstream. Also, in Figures 4.32c and d there is virtually no interaction
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between the airfoils. This type of behavior is expected from a physical standpoint. It oc-
curs in the analysis because of the banded nature of the convective fundamental solutions
illustrated previously (e.g., Figure 4.19). However, interaction will take place if the angle
of attack is altered. Figure 4.32e shows the response at a 30° angle for Pe = 1000.

The velocity distribution around the airfoils follows a similar pattern. For these results
displayed in Figure 4.33, Reynolds number is defined by Re = pUL/u. In these plots, the
magnitude of the velocity, obtained from a boundary-only solution, is contoured. These
results feature somewhat more interaction particularly upstream of the airfoils. It should
be emphasized that even tho