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Laser Transit Anemometer Measurements on a
Slender Cone in the Langley Unitary Plan Wind Tunnel

SUMMARY

A Laser Transit Anemometry (LTA) system has been used to probe the boundary layer
on a slender (5° half-angle) cone model in the Langley Unitary Plan Wind Tunnel. The
anemometry system utilized a pair of laser beams with a diameter of 40 #m (0.0016 in.) spaced
1230um (0.0484 in.) apart to measure the transit times of ensembles of seeding particles using
a cross-correlation technique. From these measurements boundary layer profiles around the
model were constructed and compared with theory. The tunnel seeding system consisted of a
small vibrated fluidized bed containing dry kaolin dust with a nominal particle size of 0.9 um
(3.54 x 107 in.). The kaolin was injected directly into the boundary layer via nine 1.32-mm
(0.052-in.) orifices (three rows of three each) in the model nose. Dry kaolin dust was used as
the seeding material to eliminate the problems of condensation present among seeding
systems using liquid carriers such as ethanol.

The measured boundary layer profiles representing the boundary layer velocity
normalized to the freestream as a function of height above the model surface were collected
for zero angle of attack, Mach numbers of 2.5 and 4.5, and Reynolds numbers of 3.3 x 10°/
meter and 6.6 x 10°/ meter (1.0x 10%/foot and 2.0 x 108/ foot) and were collected in a vertical
plane that bisected the model’s longitudinal center line at a location 635 mm (25 in.) from the
tip of the forebody cone. The results indicated an excellent ability of the LTA system to make
velocity measurements deep into the boundary layer. However, because of disturbances in
the flow field caused by the onboard seeding system, premature transition to a turbulent
boundary layer occured, implying that upstream seeding is mandatory if model flow field
integrity is to be maintained.

INTRODUCTION

Programs such as the National AeroSpace Plane (NASP) are becoming increasingly
dependent on having accurate flow diagnostic information in supersonic flows. Mie
scattering-based laser anemometry, which utilizes a laser beam to nonintrusively probe the
test medium, offers a method of measuring the flow velocity, flow angle, turbulence intensity,-
and shear stress around a test model under various flow conditions. Small probe volumes
produce high laser power densities, allowing submicron seed particles to be used as the
radiation scattering medium in the flow field as well as allowing measurements to be made
very close to model surfaces (within = 100 um). Insupport of programs such as NASP, it was
desired to demonstrate the usefulness of a Mie scattering-based system in the supersonic
Langley Unitary Plan Wind Tunnel. To this end, an experiment was conducted using a Laser
Transit Anemometry (LTA) system to probe the boundary layer on a slender (5° half angle)
cone model at Mach numbers of 2.5 and 4.5. The specific goals of this test were:



1. Evaluate the general performance of laser velocimetry based on Mie scattering to achieve
accurate velocity measurements in the facility.

2. Determine the most appropriate type and location of seeding system to use with the LTA
system so that particle tracking is acceptable while at the same time ensuring that the flow field
under investigation is not disturbed.

SYMBOLS

The units for the physical quantities in this paper are given both in U.S. Customary
Units and in the International System of Units (SI). In the text the SI units will be given first
with the U.S. Customary Units following in parentheses.

b background noise estimate in time domain correlogram

C contrast estimate for time domain correlogram

DT delay time between adjacent bins of time domain correlogram function, sec

Em error in mean velocity estimate, m/sec (ft/sec)

Es error in velocity standard deviation estimate, m/sec (ft/sec)

cXcess deviation of velocity space correlogram function from normal distribution

HW half-width of self-adaptive triangular weighting filter

h peak height of time domain correlogram function

mg k'™ moment of velocity domain correlogram function

n number of bins in correlogram function

(1) number of events in i'™ channel of correlogram function in time domain

r(zi)’ normalized number of events in i channel of correlogram function in time domain

r{vi) number of events in i'™ channel of correlogram function in velocity domain

Q total number of correlatcd cvents in time domain correlogram

q total number of correlatcd cvents in velocity domain correlogram

Ta,b individual channel data rates, pulsespersec . .. . . ... .. 3
Re r per m (per f0)

S . V beam Scpafaﬁon, m (ili.) T N T I I UL :, e :,,;:,; N

ST integration time over which measurement is taken, sec



TI : measured turbulence intensity normalized to velocity magnitude at sample point

in flow ficld
u boundary layer local velocity, m/sec (ft/sec)
Ue boundary layer edge velocity, m/sec (ft/sec)
\Y% measured mean flow velocily magnitude at sample point, m/sec (ft/sec)
Vi ith particle velocity measurcment, m/sec (ft/sec)
x(t;) i'" pulse occurring on data channel a
y(ti) it pulse occurring on data channel b
XY,Z model coordinates
Zr focal depth of system, m (in.)
B empirical filter constant (=0.3)
Az height of sample volume above model surface, m (in.)
a laser wavelength, m (in.)
Tj i particle transit time between two beams, sec
Wo Gaussian waist radius of individual sample volume beam, m (in.)

DESCRIPTION OF EXPERIMENTAL APPARATUS
Laser Transit Anemometer (LTA)

In laser transit anemometry, the transit times of seed particles entrained in the flow
field are measured as they cross the foci of a pair of parallel laser beams (Figure 1). The transit
time of an individual particle, i, in conjunction with the known beam separation, s, provides
a measurement of the velocity, vi, of the particle in the plane normal to the optical axis of the
system by

vi = 7 (1)

Assuming that the particle faithfully tracks the flow field, vi is a measure of the flow
velocity in the measurement plane at the sample volume point. The beams are rotated about
an axis that is equidistant from and parallel to the two beams. The ability to rotate the two
beams allows for the determination of two dimensional flow angularity in the measurement
plane.



The optics package used for this test was manufactured by Spectron Development
Laboratories and is shown schematically in Figure 2. An argon-ion laser beam at a wavelength
of 514.5 nm, circularly polarized, is sent through a Wollaston prism/lens assembly which splits
the beam into a pair of parallel beams. These parallel beams are sent through a dove prism
assembly mounted in a rotating ring controlled by a DC servo system to enable the two beams
to be rotated precisely about a common optical axis. The beams then pass through a final field
lens assembly and are focused to form two Gaussian waists at the measurement point in the
flow. The system operates in a 180 degree backscatter mode with the scattered light from
particles crossing the sample volume being collected around the annulus of the transmission
optics. This scattered light passes through the dove prism assembly and beam stop (which
blocks the focused image of each beam) and enters a fiber optic link connected to separate
photomultiplier detectors. Each photomultiplier sends its output to a filter-discriminator /
pulse-center detector circuit which produces a TTL level pulse whenever the signal exceeds a
preset threshold level. Thus, as particles pass through the sample volume, a series of pulses
are produced on two channels, each one corresponding to a separate beam.

The method used to extract transit time information for this test consists of computing
the cross correlation function between the input pulse streams occurring on the two data
channels. This discrete correlation function is given by
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and is represented as a correlogram with 256 discrete channels or bins with each successive
bin representing a delay time vi = iAr.

A block diagram of the LTA system used for this series of tests is shown in Figure 3.
The LTA system is controlled by a MicroVAX II minicomputer system with 9 MB of main
memory running at 0.9 MIPS. The computer is connected to an optical head controller which
operates the image rotator as well as the discriminator / pulse-center detector circuits. The
output from these detectors is sent to an event correlator which computes the cross correlation
function in real time between the two channel data streams and relays this correlation function
to the computer in the form of a correlogram which s a plot of the number of correlated events
versus delay time, which is represented discretely in 256 channels or bins. LaRC-developed
L.TA data acquisition software manages all aspects of LTA system control and data acquisition
as well as controlling the position of the scan rig containing the optics package. Figure 4 shows
the LTA optics package mounted on the scanrigin front of test section 2 of the Langley Unitary
Plan Tunnel.

Calibration of LTA System

The LTA focal point beam separation is a critical parameter, and any error in the
measurement of this parameter directly affects system accuracy. The measurement of beam
separation is performed by placing a 25-um slit directly in front of a power meter detector at
the focal point of the instrument. The focal length was approximately 900 mm for the optical



configuration used for this test. The slit/detector is aligned normal to the plane of the beams
and scanned across both beams while monitoring laser power. A plot of laser power versus
slit position allows the determination of both focal point beam diameter and beam separation.
Using this technique, the beam diameter at the focal point was measured to be approximately
40 um, while the beam separation was measured to be 1230 #um * 10 #m. The depth of focus
can be expressed using the Rayleigh range criteria [1] by:

T wld

=% = (©)

where z: is the focal depth, wo is the beam radius, and 4 is the laser wavelength. By using
equation (3), the depth of focus for the instrument is computed as = 2.44 mm. The active
measurement volume is defined by the focal depth, beam separation, and beam waist cross
section.

Wind Tunnel

The Langley Unitary Plan Wind Tunnel is a closed-circuit, continuous-flow, pressure
tunnel with two 1.22- by 1.22- by 2.13-m (4- by 4- by 7-ft) test sections. The major elements of
the facility are a 74.6-MW (100 000-hp) drive system, a dry air supply and evacuating system,
a cooling system, and interconnecting ducting to produce the proper airflow through either of
two test sections. The tunnel overall volume is 4642 m’ (163,922 t3). The tunnel circuit is
designed to operate at pressure from near-vacuum to 10 atm (1 atm = 101.3 kPa). The settling
chambers provide a large volume which results in low-velocity flow and smooth transition from
the circular tunnel duct work to the rectangular nozzles and test section. The settling chamber
for test section 2 used in this test is a cylindrical duct 3.66 m (12.0 ft) in diameter and 7.47 m
(24.5 ft) long followed by a 1.07-m (3.5-ft) long transition section from circular to 1.22- by
2.67-m (4- by 8.75-ft) rectangular. The nozzle is of the asymmetric sliding-block type such that
the nozzle throat-to-test-section area ratio can be varied to provide continuous variation of
Mach number. With this arrangement, the Mach number in test section 2 is variable from 2.3(
to 4.63 while the unit Reynolds number per m (per ft) is variable from 1.64 x 10°t026.23 x 10°
(0.50 x 10° to 8.00 x 10°). [2]

Model

The model employed for this test consisted of a 5° half angle cone forebody, a cylindrical
midbody, and a 9° truncated cone afterbody. Figure 5 gives the dimensions of these individual
components making up the overall model. The model was attached to the model support
system in test section 2 which provided for forward and aft travel of 0.921 m (36.25 in.) in the
tunnel x direction and traverse travel of £0.508 m (+20 in.) in the tunnel y direction. The
model was maintained at a zero degree angle-of-attack. By traversing the LTA system on its
scan rig while at the same time moving the model support system, approximately 80 percent
of the model’s surface was accessible for surveys. Figure 6 shows the mounted model in test
section 2.



Seeding System

One of the challenges to using laser anemometry in supersonic facilities is the ability
to introduce the proper type of seeding material into the flow field of interest without
disturbing the flow. The seed material used must be sufficiently small that particulate flow
field tracking error is acceptable to the researchers. Thus the choice of a proper seeding system
and seed material constituted one of the goals of this test.

Several seeding systems were tried during the course of the experiments with varying
degrees of success. The first twg systems utilized polystyrene latex (PSL) microspheres,
measured to be 0.6 um (2.36 x 10° in.) in diameter, suspended in water and then suspended
in pure ethanol. The PSL and liquid carriers were injected through six 0.64 mm (0.025 in.)
orifices on the nose of the model, with the flow field across the orifices shearing off the liquid
as it left, thus atomizing it. However, both systems were unsuccessful due to the incomplete
atomization of the liquid carrier, causing the liquid to run down the sides of the model. The
failure of the carrier to be atomized completely is due in part to the lower velocities present
in the boundary layer of the model.

Due to these problems with using seeding materials in a liquid carrier, various dry
seeding systems were investigated. The first dry seeding system consisted of injecting incense
smoke through the same orifices on the model nose; however, the concentration of smoke was
not sufficient to obtain good data rates with the LTA system. It was decided at this point to
use dry kaolin [3] as the seeding material. A small vibrated fluidized bed (Figure 7) was used
to create a cloud of dry kaolin particles which were injected into the flow via nine 1.32-mm
(0.052-in.) orifices (three rows of three each) in the model nose (Figures 8 and 9). The kaolin
used was Engelhard ASP 200 coated with 0.5 percent Degussa R972 to minimize caking and
prevent agglomeration of particles. The nominal aerodynamic particle size of the kaolin was
measured using a TSI model 3300 aerodynamic particle sizer to be 0.9 AL (3.54 x 10° > in, ),
with 96 percent of the particles being less than or equal to 1.7 #m (6.69 x 107 in. ) in diameter.
A pressure differential of approximately 724.0 mm Hg (14 psi) was maintained across the
fluidized bed during particle injection by leaving the intake of the seeding system at
atmospheric pressure and allowing the low static pressure present in the tunnel provide the
necessary pressure differential. Adequate data rates (greater than 1000 pulses/sec per
channel) were obtained with the LTA system using this seeding arrangement.

LTA DATA ACQUISITION

The data acquisition procedure used for this series of tests allows the determination of
mean velocity, mean flow angle, and the turbulence intensity along this angle. The basic
procedure illustrated in Flgure 10, consists of collecting correlograms at between five and
nine discrete angular positions preselected by the system operator. From this set of
correlograms a measurement of the mean flow angle is made. Next, the beam orientation is
set to the mean flow angle so that an additional correlogram containing the mean velocity and
turbulence intensity information can be obtained.



Angular Search Procedure

For each correlogram obtained with the system, a contrast quantity defined [4] as

h-b
C—:—'—l;/-;— 4)

is computed, where h is the number of events occurring in the peak channel of the correlogram
and b is the average level of background noise present in the correlogram (due to spurious
correlations and flare light from model surfaces). A plot is produced of these contrast
quantities versus angular position through which a least squares fit of a parabolic equation is
performed. The abscissa of the parabolic vertex is taken to be the mean flow angle or best
angle. Figure 11shows an example of this process. The standard deviation of the least squares
fit represents the error in the mean flow angle estimate. Once the mean flow angle is
determined, the two beams are repositioned at this angle and a velocity magnitude measure-
ment is performed. Note that this procedure assumes a constant particulate concentration
present in the flow. If for some reason the particulate concentration should vary during data
acquisition, the correlograms used to determine the mean flow angle can be normalized by
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where r(zi)' is the number of events in the i" channel of the normalized correlogram, r(zj) is
the number of events in the i'" channel of the original correlogram, ra, ro are the individual
data rates from each channel, and ST is the integration time over which the raw correlogram
is collected. The normalized functions are then used in the least squares fit routine to
determine the mean flow angle.

DATA ANALYSIS
Filtering and Noise Removal

The first step in the data analysis process (Figure 12) is the removal of noise from the
correlogram through filtering and background removal. To filter the correlogram, a
self-adaptive digital filter incorporating a Parzen triangular weighting function is used. The
average background level for the function, b, is first estimated by averaging the correlogram
between the third channel and the channel nearest to 0.6 times the peak channel. The total
data in the correlogram, Q, is determined by adding up all the events in all the channels of the
correlogram. The half-width of the filter is then computed by

HW = ROUND <é§3,—1%'§2) (6)



where the operation ROUND makes HW an integer. f is an empirical constant which
provides control over the broadening induced by the filter while n is the number of bins in the
correlogram (normally 256 for this instrument). For this series of tests, B was set to 0.3.
Having computed HW, the filter is now used on the original correlogram. Each data point
Y(k) in the function is replaced by a triangularly weighted average over the set of data points
from locations k-HW to k + HW using

j=+HW .
Y@« a5 a-Ezbhyg ™

j=-1w

After filtering, a new estimate of the background noise is made by computing the
average channel height over the first 20 percent of the bins in the correlogram and over the
last 20 percent of bins. The greater of these two averages is then taken to be the background
estimate which is then subtracted from the correlogram. Note that this background removal
process assumes that the nonspurious correlations in the correlogram do not occupy more than
the central 50 percent of the correlogram, thereby limiting the effective turbulence intensity
that can be measured. Higher turbulence intensities can be measured, but an estimate of the
background noise must be made by visual inspection of the correlogram and then subtracted
out.

The final step in the noise removal process is to truncate the outliers to remove any
stray background signals that remain beyond the bounds of the central correlogram
distribution. The truncation limits are defined to be the channels on either side of the peak
of the function which first fall below the average background estimate. The correlogram is
zeroed out beyond these limits. Through visual inspection these truncation limits may be
changed to correct failures in the automatic truncation limit algorithm due to unusual
background features which sometimes appear in correlograms. An example of the noise
reduction process can be seen in Figure 13 for a typical function.

Transformation to Velocity Space

Before the mean and higher order moments are extracted from the final correlogram
acquired after the angle search, the nonlinearity between the time domain (also referred to as
tau space) and velocity domain (or velocity space) must be taken into account. Note that this
nonlinearity is a first order inverse relationship between time and velocity as represented by
equation (1): o S ' ST

§
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i

Before any flow parameters are extracted, the function is transformed from tau space to



velocity space through the application of the Jacobian function [3], 7%/s, as shown below:
2
r(v) « () ®

where (i) represents the number of events in thehilh discrete channel of the tau space
correlogram and r(vi) is the number of events in the it discrete channel of the velocity space
correlogram.

Extraction of Flow Parameters

For each correlogram transformed to velocity space, the total number of nonspurious
correlated events in the correlogram is computed by

2

q=2, r(vi) - €))
i=0
The mean velocity is computed by
i v, r(v,)
_i=0
V= q ’ (10)

while the higher-order moments are computed by

i (vi—V)kr(vi)

my = i=0 p . (11)

The turbulence intensity along the direction of the mean flow angle is defined as

TI = ——‘/TV'Z , (12)

and is usually expressed as a percentage. The standard error in the mean velocity measurement
can be determined from

; vm,
! Em = —v—él , (13)
while the standard error of the standard deviation can be determined from
1
Es = (¥ (7,0 XV T+ 28 ) : (14)



where excess represents the deviation of the correlogram from a normal distribution and is
defined as

m

excess = kurtosis — 30 = -~ 30 . (15)
(m,)?

Note that excess is zero for a purely normal distribution.

MEASUREMENT RESULTS

Boundary layer surveys were conducted in the vertical x-z plane at a longitudinal center
line distance of 635 mm (25 in.) from the model apex. The surveys were obtained at free stream
Mach numbers of 2.5 and 4.5 for Reynolds numbers of 3.3 x 10"/m and 6.6 x 10%m (1.0 x 10%t
and 2.0 x 10%/ft). Table I lists the LTA measured flow quantities as well as the tunnel free
stream conditions for each measurement in the test. Each survey was started approximately
4-5 mm (0.157-0.197 in.) from the model surface. The two beams were lowered to the surface
in discrete increments with a velocity measurement made at each step. Note that angles
searches were not performed for these surveys because the flow angle was assumed to be
parallel to the model surface over the range of profile measurement positions. Thus, the beams
were oriented to be parallel to the model surface and only a single correlogram collected at
each measurement point (see figure 10, alternate acquisition procedure). Data acquisition
time was reduced by a factor of five to ten using this procedure.

The correlograms collected for the data points listed in Table I are shown in Figure 14,
and several observations are in order. First, as the beams were lowered into the boundary
layer, the measured turbulence intensity increased from a low value of 1.0 - 1.5 percent in the
near free stream region to a high of 20.0 percent near the model surface. This effect can be
seen in the turbulence intensity profiles shown in Figures 15-18. Second, the background
noise rose steadily as the beams were lowered into the boundary layer. This effect, observed
in similar tests, is not surprising given the increase in flare light as the model surface is
approached. Finally, during the course of the surveys an occasional large surge would occur
in the measured data rate and the correlogram would display unusual characteristics similar
to the one shown in Figure 14 - File 21. At these times agglomerated particles were probably
passing through the sample volume of the system.

An interesting effect observed from the collected correlograms is the nonsymmetric
nature of the background noise present in many of the plots of Figure 14, especially for
correlograms collected near the model surface. The background noise level is higher toward
the longer transit time portions of the correlograms, corresponding to the lower velocity
regions of the velocity space correlograms. The most likely cause of this effect is model
vibrations during the tests. Such vibrations can cause integration of velocity regions in the
boundary layer due to the finite size of the LTA sample volume. During the course of the
tests, the model could be seen to vibrate several millimeters, especially with free stream Mach
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numbers of 4.5. These vibrations can be reduced or eliminated with a stronger model support
system.

VELOCITY PROFILES

Boundary layer velocity profiles corresponding to the measurements listed in Table I
are shown in Figures 19-22. Also shown are theoretical predictions based on the method
described in [6]. At Mach 2.5, the LTA data corresponds very nearly to the turbulent boundary
layer prediction. While the LTA data at Mach 4.5 exhibits a turbulent boundary layer profile
trend, it does not correspond as well with the turbulent prediction. Based on these
comparisons, it is believed that the all the boundary layers are fully turbulent. The
descrepancies between the LTA data and the theoretical turbulent boundary layer predictions
are most likely due to the previously mentioned model vibration problems.

The development of a turbulent boundary layer condition on the model is not surprising
even though the test Reynolds numbers were generally below previously measured cone
transition Reynolds numbers. In [7], onset and end of transition Reynolds numbers of 11.5 x
10%m and 19.7 x 10%m (35x 10%/ft and 6.0 x 1()6/ft), respectively, were measured on a highly
polished 10-degree cone. Several factors have likely contributed to premature transition at a
lower Reynolds number in the present study. Foremost is the disturbance due to the ejection
of seeding particles directly into the boundary layer. Shadowgraph photographs of the model
during the course of the tests (Figure 23) show a shock at the seeding orifices on the model.
Also, a slight buildup of kaolin was observed at the ejection orifices which would also
contribute disturbances sufficient to create an observable weak shock even for the case of
having the seeding system shut off. The disturbances caused by these two factors are sufficient
to cause transition into a turbulent boundary layer. Obviously if upstream seeding were
employed the direct disturbance to the boundary layer would be eliminated. However, due to
the tendency of kaolin to stick on surfaces (the tunnel walls and model supports contained a
dusting of kaolin, although this could have been caused by the proximity of the seeding
orifices), it is still possible to disrupt the boundary layer even with upstream seeding due to
the accumulation of kaolin on the model. It is also possible that surface roughness caused
premature transition since the model was not highly polished.

Finally, note that in Figure 19, part of the LTA data was corrected. A height correction
of 0.5 mm (1.969 x 10 jn.) was necessary to remove a bias present in the scan rig readout of
position due to mechanical errors early in the test.

CONCLUSIONS

The results of the surveys indicate that indeed Mie scattering-based laser velocimetry
systems are capable of yielding significant flow information which would be difficult to obtain
otherwise in the Unitary Plan wind tunnel. The area of greatest education from this test
concerned the choice of which seeding method to use. It is obvious that onboard seeding as
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was used to conduct this test has severe consequences in terms of obtaining accurate
information about laminar boundary layers on models, due to the effect of premature
transition from disturbances caused by injection of particles into the boundary layer. A more
appropriate seeding system would consist of upstream injection of particles into the flow,
preferably in the settling chamber of the tunnel. However, given the turbulent boundary layers
present on the model, the LTA system performed adequately in surveying the boundary layer
and was able to make measurements to within several microns of the model surface.
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Figure 4: Laser Transit Anemometer System Mounted on Scan Rig
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Figure 5: Geometric Description of Model (in inches)
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DATA ACQUISITION PROCEDURE
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at Discrete Angular Orientations :
1
Compute Contrast Quantity
for Each Correlogram
I
Perform Parabalic Fit on Plot
of Contrasts versus Angles

Acceptable Fit?

Reorient Beams to Mean Flow
7 Angle Determined fram Fit

U |
Coltect Final Carrelogram
Containing Velocity Infarmation
1
Process Final Correlogram
to Extract Flow Parameters

Alternate Method

Figure 10: Laser Transit Anemometer Data Acquisition Procedure
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Figure 11: Parabolic Fit Procedure for Determining Mean Flow Angle
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CORRELOGRAM PROCESSING

Raw Correlation
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Figure 12: Laser Transit Anemometer Data Analysis Procedure
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Figure 13: Example of Laser Transit Anemometer Data Processing Sequence
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Figure 17: Turbulence Intensity Profile 111
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Figure 23: Shadowgraph Photos of Model
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Mach # = 2 50 for all Photos

= 3.281 x 10 / meter - Seeding On
= 6.562 x 10 / meter - Seeding On
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6.562 x 10° / meter - Seeding Off
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