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Abstract. To use data from a number of different remote sensors in a synergistic

manner, a multidimensional analysis of the data is necessary. However, prior to this

analysis, processing to correct for the systematic geometric distorsion characteris-

tic of each sensor is required. Furthermore, the registration process must be fully

automated to handle a large volume of data and high data rates. In this paper,

a conceptual approach towards an operational multisensor registration algorithm

is presented. The performance requirements of the algorithm are first formulated

given the spatially, temporally and spectrally varying factors that influence the

image characteristics and the science requirements of various applications. Sev-

eral registration techniques that fit within the structure of our algorithm are then

presented. Their performance was evaluated using a multisensor test data set as-

sembled from the Landsat TM, SEASAT, SIR-B, TIMS and SPOT sensors. The

results are discussed and recommendations for future studies are given.

1. Introduction

In future years a number of spaceborne remote sensing instruments will be opera-

tional. These instruments will gather data over a broad range of the electromagnetic

spectrum allowing scientists to study the physical, chemical and electrical proper-

ties of the Earth's environment on a global scale and over an extended period of

time. To derive geophysical parameters of interest for each of the planned science

applications, the data collected by these sensors must be combined and analyzed

in a multidimensional manner. However. the sensors may be on different platforms

and in different orbits, have different physical characteristics, viewing geometries,

and data collection and processing systems. Consequently, systematic and nonsys-

tematic registration errors will exist between coincident multisensor data samples.

It is a prerequisite for synergistic analysis of these data to remove such errors.

Furthermore, because of the anticipated large data volume and high data rates of

future high resolution sensors, it is necessary to develop an automated multisensor

registration process that requires no or little operator supervision.
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Considerableexperiencehas alreadybeenaccumulated in the operational registra-
tion of Landsat data (e.g. Grebowsky,1979). However, these techniquesare not
well adapted to the registration of imagedata from multiple sensorsof significantly
different characteristicsoperating at different wavelengths.A robust and adaptable
automated multisensor registration technique must be developed.

In this paper, a high-levelalgorithm that integrates severalregistration techniques
is presented.First, a formulation of the performancerequirementsfor development
of an operational algorithm is given. Theserequirementsarederived from the needs
of severalkey scienceapplications aswell as a review of practical limitations given
the image characteristics. We then describe the multisensor test data set that has
been assembledfor evaluation of severalcomputational techniquesthat fit within
the structure of our algorithm. One registration techniquethat has beenevaluated
useshigh resolution digital elevation models (DEM) of the areasto be registered.

Others, which operate in the absence of ancillary data, are based on the extraction

and matching of scene features across the different images to be coregistered. The

results are discussed and recommendations for future work are given.

2. Performance Requirements

2.1 Characterization of the Input Data

A number of spatially, temporally and spectrally varying factors influence the image

characteristics and the registration accuracy.

Due to the finite precision of the estimate of the platform ephemeris and attitude,

absolute location errors and geometric distortion affect the geometric quality of

the imagery. Such errors can typically be removed by the use of tiepoints. How-

ever, nonsystematic errors and tiepointing bias the image location, and a final step

of precision registration is required to achieve sub-pixel level accuracy. The ge-

ometric quality of the data is also affected by the presence of topography in the

observed scene. For an active sensor like a synthetic aperture radar (SAR), pre-

dominant terrain-induced geometric distortions such as foreshortening and layover

(Lewis and Mc Donald, 1970) constitutes additional difficulties. Rectification of
these distortions is essential before registration of the data. As an illustration, a

perspective view of geocoded and rectified multisensor imagery is shown in Figure

1 using a technique described in (Kwok et al., 1987).

For sensors on different platforms and in different orbits, the acquired data are

intially sampled to grids that are more natural to the sensor geometry than that

of multisensor registration. A common grid for image coregistration, such as an

Earth-fixed grid, is required. The process of mapping image data into this grid is
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known asgeocodingand hasbeendevelopedfor a variety of sensors including SAR

(Curlander et al., 1987).

Multisensor registration will be affected by the large variability in spatial resolu-

tion of the data to be registered (from tens of meters (SAR, HIRIS) to kilometers

(MODIS, HMMR) in the future NASA Earth Observing System (EOS) platform).

Since resolution defines the ability of a system to discriminate small details within

a scene, it establishes a limit for the achievable registration accuracy.

System noise (i.e. thermal noise, quantization noise, bit error noise, etc.) will also

affect the registration accuracy, because many of the techniques used for registration

are very sensitive to noise. While all sensors are corrupted by additive noise from

the receiver electronics, SAR images are additionally corrupted by multiplicative

noise known as image speckle. Thus the multisensor registration techniques must

be robust to noise of a variety of statistics.

An additional consideration in any registration scheme is the scene composition.

In cases where only a few features can be positively identified across the various

sensors, the registration accuracy may be seriously inpaired. Furthermore, identifi-

able features are inherently space, time and frequency dependent. Therefore, it is

necessary to develop robust automated techniques of selection of invariant features
across the multisensor data.

In view of the above remarks, the input and output data requirements for an op-

erational algorithm can be formulated. They define the operational domain and

conditions under which the multisensor algorithm is expected to operate, and can

be used as a basis for the evaluation of candidate algorithms.

2.2 Input and Output Data Requirements

The input data shall be corrected from the geometric distortion characteristic of

each sensor using the best information available, geocoded onto a preselected grid

common to all sensors (e.g. UTM), and resampled to the same pixel spacing. The

signal to noise ratio of the data shall be better than 5 dB. The geodetic accuracy

of the input images shall be better than 500 meters or 10-50 pixels. It is expected

that most sensors will do better than this since most of them will have an accurate

geographical location system on board.

The output products shall have a registration accuracy of less than one resolution

element. This requirement is derived from a subset of application being considered
for multisensor data analysis.
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In the caseof changedetection, sub-pixel accuracy is desiredto comparethe re-
sponseof individual pixel elements. Dependingon the scenecharacteristics (pres-

ence of identifiable features} this requirement may be very difficult to achieve. In

other cases, for example in the global study of hydrological cycles (which includes

tasks such as sea-ice identification and dynamics, determination of moisture content

of soil and vegetation, vegetation identification, areal extent and growth, etc.} a

registration accuracy of several resolution elements may be sufficient.

It is important to point out that although the accuracy requirements have typically

been well defined for each individual instrument, little or no accuracy requirements

have yet been clearly defined for multisensor registration by the scientific community

(EOS, 1987}. More work is clearly needed in this area for each interdisciplinary

science application.

3. Multisensor Test Data

A multisensor test data set has been assembled using image products from SEASAT

SAR, SIR-B SAR, Landsat TM, SPOT, and TIMS (Kwok et al., 1989). Information

on each sensor, including look angle, spectral range, polarization and spatial reso-

lution is given in Table 1. Geocoding of the images to a common UTM Earth-grid

has been performed and the data have been resampled to the same pixel spacing of

25 meters. Several sub-images of reduced size (512 x 512, 1024 x 1024 pixels) were

selected from the areas where the sensors have coincident coverage. The characteris-

tics of the original image data and of the selected sub-images are presented in Table

2. This table includes information about the geographic location of the data, the

initial sample spacing and size, the revolution number and date of acquisition, the

number of selected sub-images and the type of map projection used for coding. A

summary list of the natural features present in the imaged scenes is also indicated.

For each selected sub-image, manual registration was performed, resulting in an

estimated relative misregistration uncertainty of less than + 2 pixels, roughly equal

to the largest resolution element (40 meters}. This uncertainty results from the

differences in resolution between the various sensors. This estimate is used as a

basis for the true registration for quantitative evaluation of the performance of

various automated registration techniques.

4. Automated Multisensor Registration

The structure of the candidate multisensor registration algorithms is presented on

Table 3. The input data satisfy the requirements as formulated in the previous sec-

tion. The first processing step consists of automatically selecting sub-frames from

each input image to define local areas of multisensor coincident coverage where pre-
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cision registration can be performed with a high confidenceof success. Depending

on the availability of ancillary data (DEM or cartographic maps) a registration

mode is selected. For the case where DEM is available the multisensor data are

coregistered to the common grid provided by the DEM. Otherwise, invariant fea-

tures are extracted from the sub-images and correspondence is established across

the data to be registered. To reduce the computational complexity of the algorithm

and obtain several estimates of the misregistration per sub-image, feature match-

ing is performed at multiple locations and the results are then filtered to evaluate

their relative spatial consistency within the selected patch (local constraints). If

the match can be labeled as statistically significant (e.g. satisfies some goodness

measure), the misregistration error of the selected sub-image is estimated and the

multisensor data are then registered. Otherwise, the result is rejected and the

selection and matching process is repeated with different parameters. At a higher-

level of processing, the combined results from different features and from registered

neighborhood patches (global constraints) can be used to produce a more accurate

and more reliable solution. In effect, a cooperative process can be established where

the results from different stages of the processing are used as reinforcements for the

entire process.

Several candidate techniques which are effective within this structure are presented

in the remainder of this section. They have been selected based on compatibil-

ity, robustness and adaptivity to the various sensors. Each matching algorithms'

performance is assessed using the multisensor test data set described in the last
section.

4.1 Automated Selection of Sub-images

Selection of the patches where fine registration is desired must be based on the

extraction of stable features that can be unambiguously identified across the entire

multisensor image data set. The difficulty is to formulate an approach without

a-priori knowledge of the scene content. One possible technique has been described

in (Davis and Kenue, 1978) where binary edge maps are used to compute a figure of

merit for candidate control points. The results obtained with images from different
sensors are then cross correlated to retain valid candidates.

4.2. Automated registration to digital terrain data

Our approach is to simulate multisensor imagery from a digital elevation model

(DEM) of the area where the sensors have a coincident coverage and register this

simulated imagery with the actual imagery, thereby inducing coregistration of the

multisensor data on the common grid provided by the DEM.
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Using elevation data, viewing geometry and a model of the scene reflectance, the

appearance of the scene for any given sun angle and viewing angle can be simulated

as in (e.g. Horn and Bachman, 1978) for passive sensors operating in the visible and

near-visible part of the spectrum. An example of a synthetic image generated using

this technique is shown in Figure 2. The illumination parameters were matched to a

Landsat TM image data acquired over the same area. A simple matching technique

(area-correlation) is then used to establish the correspondence between the images.

The registration error is approximately 80 meters for the images shown.

Our approach to generate simulated SAR image from the DEM is similar to that

described above. The sensor imaging geometry, the elevation data and a model of

the radar backscatter are all required to produce the image shown in Figure 3. The

imaging geometry simulates that of a SEASAT image acquired over the same area.

An area correlation scheme is then used to match the radar and simulated images.

Using tiepoint measurements of identifiable features not within the image shown, a

misregistration error of 60 meters was obtained.

Several potential error sources affect the registration accuracy, including the the

uncertainty in the actual imaging geometry, the geometric accuracy of the DEM

data (height), and the reflectance model used for the optical data.

4.3 Computational Approaches

In the absence of reference maps, elevation data, geographical information or cor-

relative ground truth information, blind techniques based on the identification of

invariant features across the data can be used for image registration.

A. Feature extraction

Candidate features commonly used in digital imagery include edges, regions, lines,

vertices of line intersection, shapes, etc. These features must be robust to change

in sensor geometry, wavelength, SNR and noise statistics. Two particular types of

features, region boundaries and edges, were examined using our multisensor data

set.

Multisensor region boundaries extraction

Region boundaries are one of the simplest invariant low-level features than can be

used to characterize the misregistration.

Even though many unsupervised segmentation techniques exist for optical images,

most of them are not effective for SAR images because of the presence of speckle
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noise. Oneunsupervisedtechnique that seemsto work reasonablywell is a scheme
basedon a clustering algorithm to segmentthe imagesinto several regionsof sim-
ilar intensity and texture (Kwok et al., 1989). The region boundaries are then
establishedwhere a classtransition occurs.

A resulting segmentationmap, using 3 classes,is shown on Figure 4 together with
the original imagesfrom SEASAT, Landsat, and SPOT. A 3 x 3 pixels window
was used at each pixel location to compute the mean grey level and grey level
texture via a simplestandard deviation measure.The resultsobtained by matching
these region boundaries are usually less accurate than those obtained with other
techniques. However region segmentation can still be refined, especially in the
caseof SAR imagery, to provide information that complementsresults from other
techniques.

Multisensor edge detection

An extensive literature exists on the subject of edge detection in optical imagery.

However, in the case of SAR images the detection process is complicated since the

images are corrupted by speckle noise. Techniques based on an approximation of the

first and second directional derivatives (e.g. Sobel, or Robert operators) perform

poorly, especially in terms of localization of the edges since they tend to produce

large responses. Statistical edge operators (Touzi et al., 1988, Frost et al., 1982) in
a lot of cases suffer from the same limitation.

This problem is solved by regularization techniques, specifically using a two-dimensional

Gaussian smoothing operator as in a Marr-Hildreth operator (Marr and Hildreth

1980) or a Canny edge detector (Canny 1983). These operators typically have good

detection and localization properties without multiple responses to a single edge,

the three performance criteria for evaluation of edge detection algorithms. Theo-

retically, these techniques are compatible to almost all types of remote sensor data.

Their performance with optical data have been documented in the literature (Marr

and Hildreth 1980, Canny 1983).

The performance of these two operators was quantitatively compared in (Kwok and

Rignot, 1989) in the case of synthetic SAR images as well as actual SAR images. It

was shown that the gradient operator outperforms the Laplacian operator in both

detection and localization of edges in image speckle.

Significant improvments in the performance of the _TG operator can result from

optimizing the parameter selections. In particular, the value of the filter spatial

width a must be adapted to the spatial resolution of the different sensors. Automatic

thresholding is another important factor. In our implementation, a threshold with
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hysteresis as in (Canny, 1983) is used to eliminate insignificant edges. Further

post-processing such as thinning and contour-filling techniques have been shown to

improve the quality of subsequent matches. Another possible improvement of the

edge detector uses multiple operator widths and combines the resulting edges using

a technique called feature synthesis, where the responses of the smaller operators

are used to predict the response of a larger operator. Some results with optical

images have been presented in (Canny 1983).

For illustration, one example of edge-map using SEASAT, Landsat TM and SPOT

data and the Canny edge detector with a spatial width of 2 pixels (40 m) and

adaptive thresholding is presented in Figure 5.

B. Feature Matching

Candidate feature matching techniques include binary cross correlation, distance

transform / Chamfer matching, dynamic programming, and structural and symbolic

matching.

In the case of region boundaries and edges a convenient binary representation of the

feature maps can be used, a grey level of one at location of a feature-point and zero

otherwise. This representation reduces the computational complexity of feature

matching since computational cost becomes proportional to a linear dimension as

opposed to area correlation where computational cost is proportional to an area.

Binary correlation

The binary feature-maps of each of the images to be registered can be cross corre-

lated for various relative image shifts. The shift corresponding to the peak of the

cross correlation will be an estimate of the actual misregistration between the im-

ages. The process is fast and can be efficiently implemented on an array processor

or vectorizing computer.

Distance transform and Chamfer matching

The distance transform and Chamfer matching are described in (Barrow et ai.

1977). In this method feature-points are matched by minimizing a generalized
distance between them.

A distance transform is first applied to a binary feature-map, arbitrarilly refered

as the source image. The result of this transformation is a distance map where

the grey level of each pixel is a measure of the distance between the pixel and the

nearest feature-point. For various values of the relative shift between the source and
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the target images, the total distance between the feature points of the two images

can be computed. This measure is the sum of the distance values read from the

source image at each location of a feature-point in the target image. If matching

were perfect, this distance would be zero. The relative shift that produces the

smallest total distance corresponds to an estimate of the actual relative translational

misregistration between the images to be registered.

This method is more robust to distortion or residual rotation effects than a binary

correlation method.

Comparison of binary correlation and Chamfer matching

The time of computation of the binary correlation is less than the time of computa-

tion of Chamfer matching, typically in the ratio 1 to 4 for a search area of 100 x 100

pixels using a 512 x 512 pixel image. The tolerance to residual rotation effects is of

1 degree in the case of the binary cross correlation based on a maximum registration

accuracy of 2 pixels. This tolerance is improved to 3 degrees when thicker edges are

used (3 pixels wide instead of 1) (Wong, 1977). In the case of Chamfer matching

the rotation tolerance is of 3 degrees. Better registration results (10 to 20 %) were

consistently obtained by binary correlation as compared to Chamfer matching. The

reason is that the quality metric used during Chamfer matching does not perform as

well as expected with multisensor data due to the presence of non-matchable edges

across the data, i.e. edges that appear in one image and not in the other. Their

presence biases the total distance between feature points and significantly affects

the accuracy, whereas the binary cross correlation is not affected by non-matchable

edges.

Dynamic Programming

This iterative method, combined with an autoregressive model (AR), was used in

the work by (Maitre and Wu, 1989) to register severely distorted optical images to

a reference map without a-priori knowledge of the distortion. The two processes

work at a different level. The AR model defines the deformation of the image at

a pixel scale, and dynamic programming optimizes the search for best registration

of an ordered sequence of features or primitives (usually edges) with a comparable

sequence of features extracted from a reference map. The technique is robust in

the presence of non-matchable edges. Good results are shown in (Maitre and Wu,

1989) using NOAA-7 satellite data.

This method has not been tested yet using the multisensor test data set, but offers

good potential.
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C. Constraint Filtering

In practice, matching is performed on small areas (typically 256 x 256 pixels or less)

to minimize the distortion. Thus, the time of computation is also reduced and the

number of estimates of the nfisregistration between the two images is increased. The

resulting data must therefore be filtered to eliminate false matches. A clustering

technique can be used where the cluster centroid corresponds to the estimated

misregistration of the images.

At a higher level, results obtained from several feature matches are used to improve

clustering of the data. Results from neighborhood patches can also be included.

4.4 Experimental Results

Twelve 512 x 512 pixel images corresponding to 3 different geographic areas have

been registered. Each image was divided into 4 sub-blocks, and the search area for

the local registration shift was 101 x 101 pixels in each sub-block.

In the case of the images from SEASAT and SPOT, the rate of success of the binary

correlation of edges was 87 %, and increased to 92 % after constraint filtering, with

no false matching. In the case of images from SEASAT and Landsat TM, the rate

of success of the same technique was 85 % before constraint filtering, and 86 %

after. Registration was qualitatively more difficult in that case because of the lower

resolution of the Landsat images as compared to SPOT images, and also because a

few additional scenes where registration was more difficult was used.

The registration accuracy of the multisensor data was approximately + 2 pixels (40

m). The achievability of sub-pixel accuracy seemed difficult to establish by visual

inspection of our multisensor test data set, a fact that is a common problem when

comparing digital imagery from multiple remote sensors.

5. Conclusions and recommendations

It is of considerable importance to develop automated multisensor registration tools

for synergistic use of the data from a variety of spaceborne sensors. A high level

algorithm that integrates a variety of registration techniques in a systemalic manner

was presented in this paper. It was tested using a somewhat limited multisensor

test data set. A more complete study would enlarge this data set to include more

instruments and more scene types. Additional techniques for feature extraction and

feature matching also need to be evaluated in a follow-on study.

The performance of a multisensor registration algorithm is dependent on the sci-
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encerequirementsof the particular applicationsaswell as the characteristicsof the
instrument, the imagedsurfaceand the environmental conditions. This very com-
plex task cannot be solvedwith just a single technique,but will require combining
several techniquestogether that work in a competitive-cooperativemode of interac-
tion. For this reasonit seemslogical that a rule basedartificial intelligenceapproach
may be necessaryfor the high level algorithm to select the optimal techniquesand
parametersfrom a particular multisensor application.
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(a) (b)

Fig. I. Perspective viewing of multisensor geocoded and rectified images of an area

near Los Angeles, California: (a) SEASAT radar image; (b) Landsat TM, band 4,

image.
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(a) (b)

Fig. 2. Comparison of simulated versus actual Landsat TM image: (a) simulated

image' (b) actual image.
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(a) (b)

Fig. 3. Comparison of simulated versus actual SEASAT radar image: (a) simulated

image: (b) actual image.
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Fig. 4. Unsupervised segmentation of Optical and SAR images from an area near

the Altamaha River, Georgia. (a) SEASAT, (b) Landsat TM, and (c) SPOT images

are segmented into 3 regions represented in (d), (e), and (f) respectively. The

corresponding images of region boundaries are (g), (h), and (i) respectively.
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