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Preface

This monograph presents a concise, comprehensive summary of present knowledge on the propagation
of acoustic waves in bends and in systems containing bends. It covers both the characteristics and limitations

of sound propagation and the information now available on the design and application of bends and elbows

in various acoustical systems. A nonnegligible part of this monograph discusses various approaches adopted

for handling the difficult matter of mathematically treating motion in curved boundaries.

About 30 papers have been published on the various characteristics of sound propagation in curved ducts.

However, in view of the many aspects of the research, it may be difficult if not impossible to form a clear

picture of the present state of knowledge without going through the entire material. And because the material

is spread throughout various journals, it may be inevitable that some papers will be overlooked.
This monograph gives a general review of the subject, refers to all signi_cant contributions, identifies

the outstanding features of sound wave motion in bends, emphasizes the new and important aspects of each

research paper, and compares findings. It is hoped that it will prove useful to scientists, researchers, and

design engineers.
The contributions are reported as closely as possible and authors' findings and comments are carefully

cited. It must be understood, of course, that only highlights and major data from reviewed papers have

been used. Mathematical derivations and descriptions of experimental procedures have been omitted. To
obtain additional information and often deeper analyses of the various contributions, the reader is referred

to the original works.

Except for the last sections of this monograph, editorial comments are generally avoided, the idea being

not to judge individual contributions, but rather to use the information as published. Finally, this monograph

tries to identify the many areas still requiring substantial analytical and experimental research.
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1.0 Introduction

Following the publication by Lord Rayleigh of his famous Theory of Sound in 1878 and except for

occasional, fragmentary contributions, the subject of sound wave propagation in curved ducting remained

practically untouched until the early 1970's. Before that time Krasnushkin (1945) published some developments
in this field and in 1969 Grigor'yan's work, a series solution of the propagation equations, appeared, but

they did not attract attention.

During the 1970's many important and revealing papers were written; all are listed in alphabetical order

(by the author or authors) in the reference list. Although the subject matter needs further study, the main
characteristics of sound wave motion, in the absence of a mean flow, in curved ducts and duct systems

containing elbows have been established.
In their introductions several authors give engineering and scientific reasons for, as well as the philosophy

behind, their studies. One of the best formulations was written by Grigor'yan (1969):

The propagation of sound and electromagnetic waves in curved waveguides has captured the interest
of many researchers. This is stimulated by the tremendous theoretical importance of the problem
as a logical extension of the theory of waveguide propagation of acoustic and electromagnetic fields.
Moreover, the solution of problems involving wave propagation in curved waveguides also has
practical significance, because almost any waveguide system incorporates couplings of straight sections

by means of curved sections .... In the case of acoustical phenomena one is faced with the problem
of the increase, if any, in the attenuation constant of a waveguide with absorbing walls and bending
of the longitudinal axis. Of no minor interest is the problem of determining the phase velocity of
sound waves in curved guides from the point of view of delay lines.

In several other papers no such introduction is offered and analysis follows a simple statement of the

problem and description of the boundary conditions. However, Tam (1976) remarked that "curved ducts

are an unavoidable feature of most practical duct systems. An efficient procedure to compute their acoustical
characteristics should therefore be valuable to engineers and architects." Cummings (1974) observed that

"such curved ducts frequently form part of elbow bends in duct or piping systems .... The engineer may
well have to estimate the acoustical behavior of duct bends." Myers and Mungur (1976), Cummings (1974),

and later Rostafinski (1976) reminded us that three aircraft tail engine designs utilize either a curved inlet

or a curved exhaust system and that such designs may reduce noise. The S-shaped duct sections used in

these engine designs were first analyzed by Baumeister (1989). Preoccupation with acoustic pollution is

evident in E1-Raheb's (1980) introduction and also in Fuller and Bies (1978a), who mentioned it in connection

with the need to silence air-conditioning ducting. EI-Raheb and Wagner (1980) called attention to the matter

of noise in piping systems and said that, besides piping elements such as valves, sharp bends also are

responsible for turbulence noise. Finally, let me cite from the introduction of a paper by Keefe and Benade
(1983), which opened a separate and important field of study: "For at least a century and a half, makers
of musical instruments have debated the effects of strongly curved portions of musical air columns."

Obviously, there are both scientific and practical reasons for understanding the mechanics of acoustic wave

propagation in ducts bends and in piping system elbows.
Two basic physical systems are considered by various authors. One is an infinite circular bend in a

rectangular-cross-section duct, as approximated in figure 1. l(a) by a coil. At the inlet section of the coil
infinitesimal and harmonic oscillation of a hypothetical piston generates sound waves. Conditions at the

end section are of no consequence because the assumption of an infinite coil implies that the end section
will not contribute (reflections) to the solution. The second basic physical system (fig. 1.1 (b)) consists of

a bend of given angle O connected at the inlet and end sections to straight ducts. The end of this system
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(a) Infinile bend.

(b) Bend connected to two straight ducts,

Figure 1.1. Two physical systems most often considered.

is again at infinity so that reflected waves are no! generated from the end section The more important
dimensions are indicated in both figures, and the two drawings should supplement the list of symbols in
section 2.0.

Several authors treat different acoustical systems than those just described. For instance, lined ducts require

additional dimensional or dimensionless symbols. Also bends formed from bent piping require different

nomenclature. In all those special cases the appropriate graphs are provided as needed. For the sake of

uniformity and clarity, figure and equation numbers, reference citations, and some symbols have been changed

in the quotations.

2.0 More Important Symbols

a

c

i

J,,(kr), Y_(kr)

k

k,

k.

kR_

m,ll

P

Rm

Rt

R2

r

t'2

r,O,z

II

V

radius ratio, R2/R I

speed of sound in free space

4-1

Bessel functions of first and second kinds, of order t, and argument kr

wave number in free space, _o/c

radial wave number

wave number in z coordinate direction

nondimensional acoustic wave number parameter

counting numbers, 1,2,3 ....

acoustic pressure

bend centerline radius, (R2 + Ri)/2

radius of convex (inner) wall of bend

radius of concave (outer) wall of bend

radius

outer radius of pipe cross section

cylindrical coordinates

radial particle velocity

tangential (axial) particle velocity
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x,y,z

77

13

X

b'

Vo

0

7"

(.0

amplitude of harmonic vibration of hypothetical piston

rectangular coordinates

nondimensional wall admittance

overall bend angle

wavelength

angular wave number (order of Bessel functions)

real root of basic (0,0) propagating mode

susceptance

conductance

angular frequency, rad/sec

3.0 Early Contributions

All early (prior to 1972) papers on wave propagation in bends are fragmentary in their scope and findings.

Several deal mainly with electromagnetic waves, but some contain lasting contributions to the theory and
merit our attention. The most remarkable is a short, brilliant analysis in which Lord Rayleigh demonstrated,

in 1878, that long waves in a curved conduit of arbitrary but infinitesimal cross section behave exactly

like waves in a straight duct, the curvature having no effect on the propagation characteristics. The following

is transcribed from paragraph 263 of the Theory of Sound (reissued in 1945):

Hitherto we have supposed the pipe to be straight, but it will readily be anticipated that, when
the cross section is small and does not vary in area, straightness is not a matter of importance. Conceive
a curved axis of x running along the middle of the pipe, and let the constant section perpendicular
to this axis be S. When the greatest diameter of S is very small in comparison with the wave-length
of the sound, the velocity-potential ,_becomes nearly invariable over the section; applying Green's
theorem to the space bounded by the interior of the pipe and by two cross sections, we get

v24, dV=SA -_r "

Now by the general equation of motion

ISS JJJ -l 2SSS' 2Sv 2_ dV = "-;1 _ dV = c2 dt2 q5dV c2 dt 2 4_dr,
C"

and in the limit, when the distance between the sections is made to vanish,

so that

I3.11

showing that q5depends upon x in the same way as if the pipe were straight. By means of equation
[3.1] the vibrations of air in curved pipes of uniform section may be easily investigated, and the
results are the rigorous consequences of our fundamental equations (which take no account of friction),
when the section is supposed to be infinitely small. In the case of thin tubes such as would be used

in experiment, they suffice at any rate to give a very good representation of what actually happens.



Nosignificantcontributionsto this field were made in the later years of the nineteenth century. Until
about 1965, research on wave motion in curvilinear ducts remained rather rare and essentially dealt with

only some aspects of the problem. Furthermore, most papers investigated the propagation of electromagnetic

waves in curved ducts (waveguides). Only a few discussed the propagation of sound waves. Interestingly

enough, along with analytical formulations of wave behavior in bends, there appeared a series of papers

dealing with the mathematics needed to solve the equations expressed in cylindrical coordinates. This parallel

effort indicates that solving the problem of bent acoustic guides required mathematical formulations (needed

to handle Bessel functions of the imaginary order) then not generally available. These early contributions

were discussed by Grigor'yan (1969) and Rostafinski (1970).

Two contributions to the theory of acoustic waves propagating in bends, one published by Krasnushkin

(1945) and the other by Grigor'yan (1969), merit our attention. Krasnushkin approached the problem by

the method of separation of variables, but in view of mathematical difficulties, he proposed a perturbation

method and treated the simplified case of slightly bent tubes. Grigor'yan solved his equations by using

expansion in the Taylor series, evaluated radial particle velocities, and developed an expression for the

angular wave number.

4.0 Fundamental Equations

The linearized wave equation in terms of the velocity potential is

1 02_
_72_b --

c 2 3t 2

with Laplacian

02 0 z c9z

v 2 =_x2 +--+--Oy2 Oz 2

32 1 3 1 32 02

v2 =_5r2 +--- +-- +--r ar r 2 0-_ OZ2

in rectangular coordinates

in cylindrical coordinates

where the velocity potential 4_ is a function of three dimensions and of time.

The particle velocities are given by

r 30
- v(r,O,z,t), the tangential component (4.1)

- u (r,O,z,t), the radial component (4.2)
Or

-- = w(r,O,z,t), the component in the direction of the two flat walls of the duct
Oz

(4.3)

The acoustic pressure is given by

04,

p(r,O,z,t) = -p-_t (4.4)

From this point on, analytical treatment becomes a boundary value problem and, generally speaking, three

methods of solving the problem have been use& One, classical but severely limited by mathematical



difficulties,reliesontheseparationofvariables.Thesecond,oflimitedapplicability,reliesonperturbation
principles.Thethird,of limitedconceptualvaluebutof immensepowertoyieldinformation,consistsof
variousnumericalcomputerizedmethods.

Themostgeneral,three-dimensionalformulationoftheproblemofsoundpropagationinabentductwas
outlinedbyseveralauthorsbutsolvedandappliedonlybyKo(1979),foranacousticallylinedduct,and
byEl-Raheb(1980),foramultiplaneductsystemwithfourbends.Becausetheimportantcharacteristics
ofwavepropagationinbendsdependonthecurvatureoftheductandnotonitsheight,andasindicated
byFullerandBies(1978a),sincethereisnodiscontinuityinductheight,it issatisfactorytouseatwo-
dimensionalcoordinatesystem.Consequently,analysesofbent-ductacousticsbymostauthorstreatonly
thetwo-dimensionalcase.Newercontributionstothetheoryof soundpropagationinbendstreatspecial
casesofnonrectangular-cross-sectionbentpiping.BesidesashortcontributionbyPrikhod'koandTyutekin
(1982),thereisone(oflimitedscope)byTingandMiksis(1983),astudyonbentellipticalpipingbyFurnell
andBies(1989),andanextensivestudyof 90° bentpipingbyFirthandFahy(1984).

Severalpapers(whicharecitedinsubsequentsections)treattwosegmentsof straightductconnected
byabendand,asmentionedbefore(E1-Raheb,1980),multibendducting.Thesecasescallforformulating
wavepropagationinstraightducts,aknownandproventechnique,butmoreimportantlyforadjustingthe
fieldsatthejunctionsinstraight-bentducts.Thecompatibilityrelationsbasedoncontinuityoftangential
particlevelocitiesandpressuresoroncontinuityofbothtangentialandradialparticlevelocitiesatjunctions
allowusto determine(I) constantsof integration,(2)propagatingmodes,and(3)amplitudesof the
nonpropagatingmodes(attenuated,evanescentwavestravelingbothupstreamanddownstreamfromeach
junction).

Solvingtheequationsgivensofarmaycallforevaluatingeigenvalues,it mayrequireintegration,it may
bebasedondirectnumericalevaluationofthedifferentialequations,oritmayrequireseparationofvariables.
Thelastmethodisimportantbecauseitallowsagoodphysicalinterpretationofthecharacteristicsofmotion
inbends.Themainequationsof thismethodaregivenhere.

Sincethelinearizedtwo-dimensionalwaveequationincylindricalcoordinatesisknowntobeseparable,
theHelmholtzequationmaybebrokenupintoasetof ordinarydifferentialequations,eachincludinga
separationconstant.In theimportanttwo-dimensionalcasethesolutionmaybeassumedtobe

q_= (R(r) ,I,(0) II(t)

with

lII"
-- k2

c 2 I-I

and

-- V 2

which leads to

and

Finally

II = e i(wt+eO

ei,=a_cosvO+b_sinvO v # O

¢ =dO + g v=O

(R" + ' + k 2- if{ =0

r

(4.5)



where

6{ = A.J_(kr) + Bff_(kr) (4.6)

which is the characteristic function of the problem. Here J_(kr) and Y_(kr) are the Bessel functions of

the first and second kinds. The argument of these functions should be written (kr r), but in a two-dimensional
case it may be simplified to (kr). Consider the three-dimensional case where kr2 = k 2 - k_. In a two-

dimensional case with (k z = 0) it simplifies to kr = k = w/c, as used for convenience in the characteristic

equation.
Since superposition of solutions is allowed, the general solution may be written in mathematical physics

notation in the form

(a = E ei('°t+_'_(a_ cos vO + sin vO)[A_J_(kr) + Bff_(kr)]
vEC

where o_ is a possible phase lag and the solution v = 0 (linear dependence) is discarded and where C is

a finite set of points in a complex plane to be determined in order to satisfy the boundary conditions. Writing
in a more familiar form, a double summation can be used. Summation of all wave eigenmodes traveling

in the positive and negative directions in a bend gives

OO O_

q_ = _ E Amn(Rmn(r'O)ei(='-_m"O) (4.7)
m=O n=O

where m,n = 1,2,3 .... and all coefficients Amn are complex amplitudes.

In order to satisfy the partial differential equation and the boundary conditions for acoustically lined (or

perfectly rigid) cylindrical walls, a characteristic equation is established whose roots v's are the characteristic

values (eigenvalues) of the problem that yield nontrivial solutions. Grigor'yan (1969) formulated a two-

dimensional equation for different types of lining on the two curved walls; later Ko (1979) wrote a complete

three-dimensional equation for lined ducts. Simpler and sufficient for general discussion is the two-dimensional

eigenvalue equation for identical linings on the two curved walls as given by Rostafinski (1982):

[J_(kRi)Y_(kR2) - J_(kRz)Y_(kRl) l + i_l[J_(kRi)Y_(kR 2)

-- Jv(ke2)Y_(kRl) - Jv(kRi)Y_(kR2) + J_(kg2)Yv(kgl)]

+ rl2[j.(kR1) Yv(kR2) - J_(kR2) Yv(kR1 )] = 0 [4.8]

where _ = -pcu/p (i.e., a dimensionless wall admittance u/p). In general, _7= r + ia is complex,
r is the conductance of the walls, and o the susceptance of the walls. It is clear that using rt = 0 in
Eq. [4.8] leaves only the expression of the cross products of the derivatives of the two Bessel functions,
which corresponds to the case of the hard-walled bend.

For this two-dimensional case, as explained before, k r is written as k for convenience, in the arguments

of the Bessel functions.

Various analytical techniques used by different authors to solve this equation are described, and their

approaches discussed, in the next section.

5.0 Analytical Solutions

Just three basic mathematical methods have been used to calculate the characteristics of sound propagation

in bends: perturbation, separation of variables, and direct numerical techniques. The method of perturbation,

powerful but often limited, has been used by physicists for studying electromagnetic waves in cylindrically

curved waveguides. By the nature of this method, only the limiting case of propagation in slightly bent

6



tubes could be considered. Results of such analyses cannot be extrapolated to situations involving high-
curvature bends. Of the 20 authors who did contribute new developments to the subject of acoustics in bends,

only Krasnushkin (1945) and to a degree Ting and Miksis (1983) and Prikhod'ko and Tyutekin (1982) used

the perturbation method.

Fifteen authors relied on the method of separation of variables and subsequently proceeded, to a greater

or lesser degree, with numerical integration and other numerical techniques, to obtain data that allow the

formulation of laws for sound propagation in bends. Only Tam (1976), EI-Raheb and Wagner (1980), and

Baumeister (1989) used direct numerical techniques such as the Galerkin method, Green functions, and

iterative methods. Also Cabelli and Shepherd (1981) relied on direct finite element computation, but they

evaluated the acoustical properties of a rounded 90* corner rather than a 90 ° bend. Furnell and Bies (1989)

relied, to a degree, on the calculus of variations. All techniques used by the various authors are tabulated,

in alphabetical order, in table 5.1. Rostafinski (1972) used the traditional and most used method of separation

TABLE 5. I.--MATHEMATICAL METHODS OF ANALYSIS

Baumeister and Rice (1975)

Baumeister (1989)

Cabelli (1980)

Cabelli and Shepherd (1981)

Cummings (1974)

EI-Raheb (1980)

EI-Raheb and Wagner (1980)

Finh and Fahy(1984)

Fuller and Bies (1978a,b)

Furnell and Bies (1989)

Grigor'yan (1969 and 1970)

Finite difference formulation.

Finite-element Galerkin formulation of the

wave equation and of the boundary

conditions in dimensionless form.

Numerical solution (finite difference

equations) of the two-dimensional Helmholtz

equation and boundary conditions.

Experiments.

Finite element technique. The subject is not

exactly a cylindrical bend--more a rounded

corner. Experiments.

Separation of variables followed by numerical

integration using Simpson's rule and

solution of simullaneous equations by

Crout's method. Experiments.

After separation of variables, eigenfunction

expansion of the Helmholtz equation.

Matrix of coefficients of compatibilib

equations solved by inversion and

factorization.

Direct solution of the finite difference

equation by using square orthogonal finite

difference grid, Also Green's function

formulation. Good agreement between the

two,

Solution of the Helmboltz equation in

toroidal coordinates by using approximate
formulations for the radial functions in

the pipe bend.

Separation of variables followed by power

series expansion of the Bessel and Neumann

functions, computer integrations by

Simpson's rule. and solving the matrix by

Crout's method. Experiments.

Procedure based on the Rayleigh-Ritz method

for obtaining numerical approximations of
the acoustic modes. Matrices characterize

modal transmissions.

Separation of variables followed by

formulation of expansion in Taylor series.

Numerical data with computer's help.



TABLE 5.1--Concluded.

Keefe and Benade 0983)

Ko and Ho (1977)

Ko (1979)

Krasnushkin (1945)

Myers and Mungur (1976)

Osborne (1974)

Osborne (1976)

Prikfiod'ko and Tyutekin (1982)

Rostafinski (1970)

Rostafinski (1972)

Rostafinski (1974a,b; 1976)

Rostafinski (1982)

Tam (1976)

Ting and Miksis (1983)

Separation of variables, transmission line

model for impedance, and integrations by

Simpson's rule. Experiments.

Separation of variables and eigenfunctions

solved numerically by iterative process.

Separation of variables, numerical evaluation

of eigenvalue equation, and successive

approximations by using Newton-Raphson
method.

Separation of variables and perturbation

method.

Separation of variables, numerically

(fourth-order Runge-Kutta scheme

integrations) obtained eigenvalues and

amplitudes.

Evaluation of eigenvalues by using computer

code for iteration of interpolations.

Separation of variables and numerical

integrations by multiple-strip Simpson's

rule and phase angles obtained from vector

diagrams. Experiments.

Helmhohz operator and perturbation.

Separation of variables and one integral

obtained by Simpson's rule.

Separation of variables and one integral

obtained by Simpson's rule.

Separation of variables and numerical
iterations.

Separation of variables and numerical

interpolations and iterations.

Galerkin's method with iterative algorithm to

solve the eigenvalue matrix.

Perturbation method for bend in tubular

region of arbitrary shape.

of variables in his work on the propagation of long waves in bends of arbitrary sharpness. Because it is

the only paper with explicit, not numerical, formulation of the eigenvalues (angular wave numbers) of the

propagating and evanescent modes, the more interesting parts of this analysis are given in appendix A.
On the other hand, studies that used separation of variables and numerically solved the characteristic equation

to obtain both the eigenvalues and the compatibility equations provide more useful data. Because of

mathematical difficulties in formally evaluating Bessel functions of complex orders, all approaches must

to a degree use numerical calculations. These studies, aided by modern numerical techniques, give insight

into acoustic propagation variables. There is no question now that direct computational methods are effective

and yield valuable information.

6.0 Angular Wave Number

Analytical solutions based on the method of separation of variables lead to formulation of a characteristic

equation and proceed to determine the roots of this equation, the eigenvalues. These roots are orders of



the Bessel functions of the first and second kinds that form the equation. It is worthwhile to bring up an

observation made by Ko and Ho (1977), who state that the eigenvalue equation for a cylindrical bend in

a hard-wall duct is identical to that for a straight, annular hard-wall duct. However, a basic difference exists

between these two cases. The eigenvalue for a cylindrical bend is the order itself of the Bessel functions

of the two kinds, for a given argument, when the acoustic wave propagates around the bend. In contrast,

in the better-known case, the eigenvalue for a straight annular duct is the argument of the Bessel functions

of the first and second kinds, for a given order, when the acoustic wave propagates along the axial direction.

The eigenvalues of the characteristic equation, orders of the Bessel functions, were named by Krasnushkin

(1945) "angular wave numbers," and this name has been adopted universally. Since the order of the Bessel

functions is indicated by the letter v, the angular wave number almost always is known by this symbol.
The angular wave number appears in the wave equation exponential term e i('_t- vO)and is a nondimen-

sional number as opposed to the wave number k, a proportionality constant in the expression ek(c'-_ in

the theory for waves propagating in the rectilinear x direction; the dimension of k is, of course, length to

the -1 power. Angular wave numbers v may be real fractional numbers (and zero at the cutoff), pure
imaginary numbers, or complex numbers. Because v are orders of the Bessel functions, their evaluation

has been for decades the stumbling block in mathematical formulations of wave motion in bends.

6.1 Hard-Wall Bends

The characteristic equation for hard-wall ducts is greatly simplified and becomes treatable in situations
where series expansions of the Bessel functions are possible. In general, however, numerical techniques

are necessary and yield good answers. The first successful attempt to calculate v was done by Rostafinski

(1970 and 1972). Because his study was limited to long waves and extremely low frequencies, he could
limit series expansions to two or three terms and get results without recourse to numerical methods. The

procedure is a classical analysis in which the infinite set of pure imaginary v,, = i(mr/(ln a)), m = 1,2,3,...
is obtained and next the single real root v0 of the basic (0,0) propagating mode is calculated by the

perturbation method. Details of this analysis are given in appendix A.

Rostafinski's expression for the angular wave number shows that it is a function of nondimensional frequency
as given by the parameter kR_ (the wave number in free space times the inner radius of the cylindrical bend)

and of the bend radius ratio a = R2/RI:

If2

( °2-1)2--1n a

vo = (6.1)
a 2- 1

4(kRl)-2+ 1 +a 2+ lna

Fora-- 1 with lim a 2- l
--2,

a--I lna

1 ] 1/2(kRj) -2 + 1
-_ kR_

Using expansion in the Taylor series, Grigor'yan (1969) obtained

3a 1 I/2

This equation tends to v = kR_ for a _ 1 as required, but when a >> 1, its values become unreliable.

Calculations indicate that Rostafinski's expression, even for a of 5 to 10 (sharp bends), yields vo's that



verifythedifferentialequation,butGrigor'yan'sdoesnot.Obviously,expansionsintheTaylorseriesyield
onlyapproximatevalues.

Cummings(1974)didnotcalculatetheangularwavenumberbutgaveaninterestingdiscussionof it.
Ontheotherhand,Osborne(1968)restrictedv0 to certain values (simply for convenience) by assuming

that the pressures at two angular positions in the duct are the same; this restriction was unrealistic in practice

for propagating waves, and v0 must be allowed to take on whatever value is determined by the boundary
conditions at the walls.

Cummings (1974) defined the cutoff frequencies of the modes in a curved section. This condition of

v0 = 0 in the case of kz = 0 corresponds to cutoff frequencies for the radial modes in a straight annular

duct. Osborne (1976) published an interesting table of roots kr,,R_, given here as table 6.1, when the radial
wave number is

The subscript at indicates the propagation mode taken into consideration and h is the depth of the duct in
the z coordinate direction.

The first evaluation of the propagation constants for the evanescent waves was done by Rostafinski (1972),

who calculated the angular wave numbers for long waves. His equation for the cross products of the derivatives

of the Bessel functions of the first and second kinds was simplified by using the relation

Y_.(kr) = (cos rcv)J_(kr) - J'__(kr)
sin Try

and thus the characteristic equation for a hard-wall duct containing only Bessel functions of the first kind
of positive and negative order becomes

F,m(r ) = J_m(kRi)J__,,,(kr) - J_m(kr)J_m(kR 0 (6.2)

When the condition of zero radial vibration at r = R2 is applied, this equation yields

(sin Try) -i [j_,,, (kR,)J'_ _,,,(akR,) - J_,,,(akRl)J'-_,. (kR,)] = 0 (6.3)

Equation (6.3) is equation (3) in Rostafinski (1972). Calculation of the imaginary roots (eigenvalues of the
evanescent waves) was straightforward. Because the only existing tables of the Bessel functions of the

imaginary order, by Buckens (1963), were restricted to imaginary integer numbers, the radius ratio

TABLE 6.1 --ROOTS k.,,R l of J(j(kr,,,R I ) Y_(k.,,R 2) - J_)(k.,,R2) Y_fkr,,,Rl) = 0

[From Osborne (1976).]

Radius Mode

ratio,

a = R2/R 1 ! 6

1.2

1.5 6_ 24.143 I 31.424 [ 37.706
2.0 3_ 9.445 [ 12.581 [ 15.720 ] 18.860
2.5 2_07 [ 8.395[ 10.486[ 12.576
3.0 1_7 [ 4.738 16.3031 7.8701 9.441

40 3.1701 4.2,01 1 6.298 ,
oo _'3__2.4 I 16"471 I 19.6161
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a = R2/Rt = 1.8744 was used; it gave

imTF

Fm -- -- 5im m = 1,2,3 ....
In a

Error in the calculated (on an electrical office calculator) cross product of the derivatives of the Bessel functions

of the imaginary order did not exceed 0.12 percent. Data on angular wave numbers for the evanescent modes

for ducts with a of 2 and 4 are given by Rostafinski (1976). Calculation was done by using Bessel functions

of order (n + 1/2), n = 0,1,2,3 ..... The two graphs in figure 6.1 clearly indicate how the roots decrease

with increasing frequency until cutoff values are reached when v0 = 0 (not shown). Rostafinski's values

of kR_ when v0 = 0 are approximate; those given in table 6.1 are exact.

EI-Raheb (1980) also used a = 1.8744 to calculate, for various parameters, an extensive set of the angular

wave numbers of the basic mode and several higher modes as a function of a nondimensional acoustic wave

number parameter kR_. Although restricted to a single radius ratio, his graphs illustrate well the nature

of changes and the ability of the basic acoustic mode to propagate in curved ducts (fig. 6.2).

Both Rostafinski (1974a) and Ko and Ho (1977) calculated a number of angular wave numbers for various

propagation modes. To profit from closed-form solutions for Bessel functions of order (n + 1/2),
n = 0,1,2,3,..., Rostafinski used an inverted method to determine the characteristics of motion. With this

method the characteristic equation could be written in a simple closed form (NBS, 1964) and was solved

by iterating for the arguments kR_ that would satisfy the boundary conditions. The same technique allowed

him to construct, for comparison, the wave numbers for a straight duct of the same sidewall spacing. The

results are given in figure 6.3. Similarly, Ko and Ho (1977) produced a set of curves v0 (see fig. 6.4) by

using numerical techniques and nondimensionai frequency f, = f.2Rj/c, where f is the frequency and c is

the speed of sound. The curves pertain to bends with a of 1.11, 1.25, and 1.43 (1/a = 0.9, 0.8, 0.7). Later

Fuller and Bies (1978b), using an iterative process on a computer, solved for the angular wave numbers

(roots) of the characteristic equation, consisting of the derivatives of the Bessel and Neumann functions,

and showed the results for two radius ratios on a graph (fig. 6.5). Figures 6.3 to 6.5 can be used to interpolate,

with satisfactory accuracy, values of angular wave numbers for any particular engineering application. All

eigenvalues calculated by various methods and for a quite wide range of parameters constitute nevertheless

a coherent and useful system of data.

An important contribution to the process of calculating the angular wave number has been made by Tam

(1976). He used a method (a computer program) that contains an iterative algorithm that uses the Galerkin
method to solve the matrix eigenvalue problem. In this way he effectively avoided the eigenvalue equation,

which involves (as we well know by now) complicated Bessel functions of noninteger order. Besides figure

6.6, which gives calculated eigenvalues of the propagating modes in a square-cross-section duct for Ri = 3.0

and mode 2, Tam gives extensive tables of eigenvalues for selected (example) parameters. His method was
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Figure 6.2.--Angular wave number for several acoustic modes as function of wave number parameter. Radius ratio, a = 1.8744.
Note the cutoff frequencies at ._ = 0. From EI-Raheb (1980).

developed primarily for rectangular ducts with rigid walls. With some modifications this procedure should

be available for soft-wall ducts.

6.2 Acoustically Lined Bends

The eigenvalues (the angular wave numbers corresponding to propagation of waves in acoustically lined

curved ducts) are complex, as are, of course, the wave numbers corresponding to propagation in lined straight

ducts. The basic difficulty in solving equations of motion in lined bends resides in our inability to split

the final complex equation containing exponential and trigonometric functions into real and imaginary parts.

Were this possible, it still would not guarantee direct answers, but it would greatly help because a single

term would be sufficient to satisfy the characteristic equation.

With complex expressions two real numbers u = _,j + iv2 must be found, so that one is forced to rely

on the sometimes tedious method of successive approximations. Rostafinski (1982), in studying long waves

at extremely low frequencies, used series expansion of Bessel functions of which he could retain only one

or two terms. With nondimensional wall admittance r/= -pcu/p = r + ia (where r is the lining conductance

and a is the lining susceptance), solving the eigenfunction by expanding in series and retaining only the

first terms of the series, rearranging, and eliminating small terms of higher order gave

a + la p +a-U },2
r 2 - 0 2 + 2ira + (o- it)

akR I a"- a-" a(kRl) 2
= 0. [6.41
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TABLE 6.2--COMPLEX ANGULAR WAVE NUMBERS FOR CURVED LINED DUCTS FOR

kR t = 0.02 AND RANGE OF LINING PARAMETERS

Susceptance,

cr

0.2

0.5

0.8

Conductance,

7"

0.1

.2

.3

.4

.5

0.1

.2

.3

.4

.5

0.1

.2

.3

.4

.5

Radius ratio, a

Propagation,

/)1

0.13546

.14460

.15577

.16735

.17873

0.20931

.21224

.21672

.22234

.22873

0.26415

.26565

.26805

.27125

.27511

Attenuation,

I)2

-0.03201

-.05997

-.08351

-.10364

-.12131

-0.02077

-.04097

-.06019

-.07823

-.09505

-0.01651

-.03283

-.04880

-.06480

-.07925

Propagation,

PI

0.14225

0.19199

.19462

.19864

,20367

.20938

0.24649

Attenuation,

P2

-0.07680

-0.01925

-.03797

-.05580

-.07256

-.08823

-0.04564
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For r = a = 0, the conditions for stiff walls, Eq. [6.4] yields a_= a -_ or a 2j'= 1, and

v = inr/ln a, pure imaginary roots derived before in [Rostafinski (1972)]. Equation [6.4] also allows
verification that for finite values of r and o, there are no pure imaginary or simple real roots. Hence,
v must be complex. Roots, which are complex angular wave numbers, have been obtained by
successive approximations. It helped to know that both the real and the imaginary parts of J, must
be small because the real root for the case of the hard walls is small. In applying Eq. [6.4], calculations
have been made for the following set of parameters: k = 0.1; R, = 0.2; a = 2 and 4; r = 0.1,
0.2 ..... 0.5; and a = 0.2, 0.3, 0.5, and 0.8. The calculated complex roots of Eq. [6.4], which are
also complex propagation constants, are listed in Table [6.2] and are shown in Figure [6.7]. It will
be noted that quantities related to attenuation are one order of magnitude smaller than terms related
to propagation. Attenuation increases with increasing r, but attenuation is less pronounced with a
wider duct. For small values of conductance r, susceptance a does not greatly influence attenuation;
with higher r, however, large changes occur with changing a. The percentage change in attenuation
at constant r and varying cr is nearly twice as great for the lower range of r as for the largest r
studied. On the same graph, the angular wave number for the rigid, curved wall case (i.e., for
r = a = 0, and a = 2) is also shown. Presence of acoustical lining on curved walls markedly increases
the values of the propagation constants vl.

The three-dimensional analysis of lined bent ducts described by Ko (1979) is extensive and offers detailed

tables of eigenvalues (the angular wave numbers for selected frequencies, bend geometries, and lining

characteristics). Using those values, he calculated sound attenuation in bends. His curves are given in
figure 11.10.

Myers and Mungur (1976) stated that v being complex renders the formal expression for the characteristic

function of limited practical value in determining the radial functions. Nevertheless, they calculated those

wave numbers numerically and determined normalized pressure modes for a rigid-wall bend for given

frequency and bend dimensions and for a given wall admittance.

7.0 Phase Velocity

Evaluation of the phase velocity in curved ducts is one of the major and more important areas of analysis

done by several authors. Phase velocity happens to be an important wave characteristic in engineering

applications of bends.

Cummings (1974) established that, for most engineering purposes, the curved sections of ducts can be

regarded as equivalent to a straight duct but not of the same median length. In fact, Rostafinski (1970)

has shown that the phase velocity of long waves is higher when averaged across a bend cross section than
in straight ducts. In bends the phase velocity is t_ = _o/uo, as obtained from e(_-"0°); in straight ducts it

is _ = _o/k = c, as given by e (,ot-t_). To compare the two velocities, average the tangential phase velocity
0r = _ over the duct width (from R2 to R]) and obtain _ = RmJv o. The ratio of the two velocities is

_/.t = kR,,/_, o and equals kRl(I + a)/2Uo, as written by El-Raheb (1980). As shown in figure 7.1

(Rostafinski, 1970) the phase velocity of long waves is higher in bends than in straight ducts and increases

with the sharpness of the bend. Note that in the limit when a -- 1 the phase velocity of a slightly bent duct

equals the phase velocity in its straight segment. This last point has been noted by Grigor'yan (1969), who

stated that the fundamental mode in a slightly bent duct propagates along a median circle with the wave

number for the straight duct. As indicated in the section Early Contributions, Lord Rayleigh arrived at this

conclusion first and thus set a limit which the equation of wave motion in curved ducts must satisfy.

Cummings (1974) calculated the phase velocities in bends for a range of frequencies. He discovered that
at kRl (a - 1)/rr = 0.5, which is the wave number of the imposed acoustic disturbance multiplied by the

bend width over 7r equals 0.5, the phase velocities in bends of all sharpnesses equal that in a straight duct

but that at frequencies higher than 0.5 they are always lower. This is illustrated in figure 7.2, adapted from

Cummings (1974).

E1-Raheb (1980) expanded on this subject and warned that little information may be obtained from

calculating phase velocity beyond one-half of the first cutoff wave number (at kR] (a - 1)/Tr = 0.5) because

then coupling between modes becomes stronger and the phase velocity may depend on the relative magnitude

of the phases. These considerations were further developed by EI-Raheb and Wagner (1980). They indicated

that in the expression for phase velocity ratio _/._ = kRl (a + 1)/2u 0 for frequencies below the first cutoff
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and for a < 3, v0 vari_-linearly with a, but that at frequencies approaching cutoff from below this variance

becomes weakly quadratic with increasing rate. For bends with a > 3 the phase velocity ratio becomes

less than unity at smaller values of kRi, meaning that the phase velocity reversal is achieved at frequencies

lower than 0.5.

As an interesting footnote, recall that Buchholz (1939) in his work on electromagnetic waves in curved

waveguides stated that waves are propagated more rapidly in (slightly) bent tubes than in straight tubes.

Krasnushkin (1945) commented that Buchholz's statement is a misunderstanding, since no matter how much

a tube is bent there is a straight line (normal to the radii) on each wave front where the velocity is equal

to the velocity in straight segments. More precisely, in any bend a straight line can be found that divides

the wave front into two parts. For the external part of the front the phase velocity is greater and for the

internal part it is less than the wave velocity of the same number for a straight tube.
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The phenomenon of phase velocity in bends being a function of frequency and bend sharpness has been

experimentally proven by Fuller and Bies (1978a,b) and applied in designing a reactive acoustic attenuator,

which consists of a bent duct with a curved axial partition. Their two interesting papers and fndings are
discussed in section 13.0.

8.0 Particle Velocity and Pressure Distribution

The pressure distribution in bends has been investigated by many researchers. Grigor'yan (1969) and

Rostafinski (1972) first published the results of their calculations of particle velocity distributions in bends.

Grigor'yan showed distribution of radial velocities--both propagating and evanescent. Rostafinski evaluated

the tangential particle velocities (sometimes called axial) and the radial as well. Later, rather than particle

velocities, pressure distribution was evaluated by others; pressure distribution, of course, can be easily

translated into a particle velocity field.

8.1 Hard-Wall Bends

Velocity or pressure distribution across bends is calculated by integrating the basic equations of motion

and using appropriate boundary conditions to evaluate the constants of integration. Except for Rostafinski,

all work in this area was done by numerical integration and thus there is limited insight into the parametric

dependence of those distributions on boundary conditions. Since Rostafinski (1972) limited his analytical

scope to extremely low frequencies, this particular contribution pertains only to propagation of long waves.

Nevertheless, because his results are based on analytical derivations, some elements of his analysis are now

given.

Tangential particle velocity in a bend at 0 = 0, that is, at the bend inlet, where the vibrational displacements

v0 e <;'°° of a piston generate harmonic waves, equals

_1O0 0:o= _ 1 Cmvm _Fvm=Vor -_ r sin(Try,,,)
rt/=O

where

F_m=J_(kRl)J-_(kr) -J._(kr)J_(kRl)

as given before (eq. (6.2)). Using the orthogonality conditions satisfied by the set F_,, gives

'2VoF_,dr
C,.

sin(TrVm) IR21F2v dr

Pm jR 1 r m

The integral in the denominator is easily reducible to a sum of integrable expressions of which one vanishes.

The integral

can be integrated for any desired vibration at 0 = 0. This has been done for three boundary conditions,
as shown in table 8.1.

The first boundary condition, that the particle velocity at 0 = 0 at the piston is independent of radius,

yields amplitudes for the basic mode that depend on the radius ratio a = R2/R l and evanescent waves that

depend partly on this ratio as well. The second boundary condition (v 0 is proportional to radius) results

in the amplitude of the wave and of the decaying vibrations strongly increasing with a. The third boundary

condition (potential vortex at the inlet) results in a wave of almost constant amplitude, independent of a
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TABLE 8. I.--EFFECT OF RADIAL DISTRIBUTION OF INITIAL VELOCITY v 0

[From Rostafinski (1970).]

Initial

particle

velocity
distri-

bution

V 0 = const.

/-

R 1

v 0 --
r

Amplitude of

progressing wave

proportional to -

a-I
-- + O(kr) 2

In a

a 2 -- 1
-- + O(kr) 2
21ha

1 + O(kr) 2

Amplitude of m th decaying wave

proportional to -

(a cos mr - l) + O(kr) _

/m2r 2 + (lna) 2"_ 2

0 + O(kr) 2

and with vanishingly small damped oscillations at the inlet. The assumption that the tangential velocity at
0 = 0 is inversely proportional to the radius results in a remarkable simplification of the equation of motion

because virtually only the undamped simple propagating and weak radial waves are present. Furthermore,

the propagating waves are essentially independent of the bend radius ratio.

The first boundary condition (v0 = constant) and the third have been simulated on a water table (fig. 8.1).

Tests were run by Rostafinski at the yon Karman Institute for Fluid Dynamics in Belgium, in 1965. Two curved

sheet metal bands simulated a cylindrical bend; waves were generated by rolling a 30-mm-diameter plastic

rod back and forth on the table at the bend inlet. Analysis of the first boundary condition (v o = constant)

showed that a system of reflections (radial waves) characterizes the propagation of plane waves

(v 0 - constant) induced at the bend inlet. For the third boundary condition, the potential vortex Iv0 =f(l/r)]

at the inlet, the motion is greatly simplified; virtually all evanescent waves at the inlet are eliminated.
Analysis indicates that initially plane waves propagating into curved ducts are profoundly influenced by

the curvature of the walls. The tangential particle velocities are (for extremely low frequencies) almost exactly

inversely proportional to the radius, that is, velocities follow the distribution of the potential vortex. It is

thus obvious that pressure is almost constant at any wave front. Figure 8.2 shows six curves calculated

for kRl of 0.02 and 0.03.

The radial particle velocities are approximately two orders of magnitude smaller than the tangential particle

velocities. The_ radial distribution is governed by squares of kRI and kr, which are small. Figure 8.3 shows

typical curves of the standing radial particle velocities. Their shape is characterized by lack of symmetry:
the maxima of the curves are shifted toward the bend inner wall.

The attenuated tangential, evanescent panicle velocities characterize the transition of plane waves at the

bend inlet to shapes proper for cylindrical geometries. Figure 8.4 gives results of a sample calculation

illustrating the behavior of those oscillations for a duct radius ratio of 2. The vibrations are basically of

low amplitude. Even at the position 0 = 7r/16, close to the vibrating piston face at 0 = 0, they are one order

of magnitude smaller than the nonattenuated propagating velocities. The radial distribution of these oscillations

changes significantly with wave angular position in the duct. At 0 = 7r/4 these oscillations are reduced to

a low level and are nearly uniform across the duct width. Figure 8.5 shows the same oscillations calculated

for three duct radius ratios but for a single angular position of/7 = r/4. It indicates that the decaying,

evanescent oscillations are much more pronounced and extend farther when induced in a wider duct.

The nonpropagating, evanescent radial panicle velocities at the duct inlet are illustrated in figure 8.6.

Note that the asymmetry Of these vibrations is much more severe than that of the propagating radial particle

velocities (fig. 8.2). Furthermore, the evanescent components are about twice as strong as the propagating
components of the particle velocity fields.

After the publication of Rostafinski's (1972) data on long waves, Cummings (1974) published a much

needed development on shorter wavelengths and above all provided the first experimental verification of

the calculated characteristics. Except for recalculated coordinates, graphs given by Cummings (1974) are

reproduced here as published (figs. 8.7 and 8.8). They illustrate the excellent agreement of his numerical
calculations with measurements.
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Figure 8. l.--Simulation on a water table of first and third cases in table 8. I.
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Figure 8.7 shows the radial distribution of sound pressure for the propagating mode (0,0) in a bend with
a radius ratio a of 1.587 and wave number parameters kRl Of 2.316 and 2.888. Figure 8.8 Shows data on
the propagating mode (0,0) in a sharp bend with a = 10.3 and kRt = 0.228. As noted by Cummings the
variation in the acoustic pressure amplitude across the duct becomes more marked with increasing frequency.
From figure 8.8 we learn that with increasing bend sharpness the pressure distribution nonuniformity of
the propagating mode becomes much more pronounced.

Figure 8.9 shows pressure and velocity fields for a bend with a = 2. The data are taken from Rostafinski's

(1972) paper (on extremely low frequency waves) and recalculated by Cummings to emphasize the pressure
distribution of both propagating and evanescent waves in curved ducts. Finally in figure 8.10 Cummings
compares the pressure and tangential particle velocities of the propagating mode (0,0) in a bend with a = 10.3
and kRt = 0.228. Here the radial pressure gradient is much more marked than in figure 8.9.
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From Cummings (1974).

In two analytical studies Rostafinski (1974a, 1976) analyzed pressure and particle velocities in bends with

several radius ratios and in a range of higher frequencies. To bypass the difficulty of solving the characteristic

equation for Bessel functions of large-valued fractional order, he used an inverse method. Since the Bessel

functions of order (m + 1/2), m = 0,1,2,... can be written in a situple, closed form, the characteristic equation

was solved not for (the imposed) angular wave numbers (m + I/2) but for frequencies as given by the Bessel

function argument kRt. Table 8.2 gives the wave number parameters kRi that satisfy the boundary

conditions (hard walls) for the imposed angular wave numbers (m + 1/2). The objective of this work was

not finding an algorithm but studying the characteristics of propagation in a higher frequency range. Figures
8.11 and 8.12 give several of Rostafinski's results pertaining to the propagating modes. As indicated in

figure 8.11, higher frequencies induce significant changes in tangential particle velocity distributions across
ducts. Figure 8.12(b) shows both tangential and radial particle velocity distributions for higher modes.

The redistribution of particle velocities and acoustic pressure with the angular wave position is shown

in figures 8.13 and 8.14. Radial distribution of the tangential particle velocities strongly depends on frequency.

TABLE 8.2.--PROPAGATION

PARAMETERS FOR RANGE

OF ANGULAR WAVE

NUMBER

[Radius ratio, a = 2;

from Rostafinski

(1976).]

Wave Angular

number wave

parameter, number,

kR l Vm

0.3396 0.5

1.0115 1.5

1.6633 2.5

2.2869 3.5

2.8817 4.5

3.4523 5.5

4.0065 6.5

23



1.5

1.0

Wave number
parameter,
kR l(a-1)

2.804-_ r- 2.008
3.593 -'k

4.373 _,, \ _,//-- 1.207

....... __ _,4027

(a) I -I,-"_ 1 1 [ 1

2.287 -7
2.882 7//--1.163

3.452 _-7/ _/ _1 r'- 1.011

__.3396

_L_.<.,_"Y J_ "1 1

2.0

1.5--

o" (b)
1.0

'_ 1.881-7 /-- 1395_- 2.339-71
/ /-- .870

2.5 z781/,._-" , _ ,-2945s

1.5

1.0 _

1,6 1.4 1.2 1.0 .8 .6 .4 .2

Tangential particle velocity,v/v 0

(a) a = 1.5.

(b) a = 2.0.

(c) a = 2.5.

t S//1

.10 .08 .06 .04 .02 0

Radial particle velocity, u/v0

.12

Figure 8. l l.--Particle velocities in three ducts of different radius ratios a with radius of convex (inner) wall of bend R I = 0.2 m.
(The solid and dashed lines are used for easier identification of curves only.) From Rostafinski (1974a).

24



1.0 0 -1.0 1.0 0 -1.0

Axial velocity, Vx/(Vx)ma x Transverse velocity, Vy/(Vy)max
(a)

Mode .. __-----"_ -----_ _

i____i-f_ _--_-=__--___ _I....... 3 1
1.0

,_- 1,0 .5 0 -.5
Tangential velocity, v/v max

I
-1.0

20

1.0 0 -1.0

Radial veloc/ty, u/(Vr ) max
(b)

(a) In straight duct for one frequency and three consecutive modes.

(b) In curved duct for l,i = 0,5 for four consecutive modes.
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Attenuation of the nonpropagating modes plays an important role in this distribution. At higher frequencies

the "steady state" distribution sets in early, close to the piston face. Acoustic pressure distribution is barely

noticeable at extremely low frequencies. It stabilizes quite early at higher frequencies.

Myers and Mungur (1976) used numerical techniques to obtain pressure distribution curves for three

propagating modes. Their graph, with coordinates modified to conform to the units adopted in this monograph,

is shown in figure 8.15. It supplements data in figure 8.12.

Fuller and Bies (1978b) give two graphs (fig. 8.16) showing the theoretical variation in pressure amplitude

across the duct. It was evaluated by using the following expression:

Relative sound pressure =
(F0o)r

(Foo)R,

where F00 is the characteristic function of the (0,0) mode. Two frequencies have been used, corresponding

to kRl(a - 1) of 1.5 and 3.0 calculated for two ducts (a = 1.28 and a = 2.25). The experimental data in

figure 8.16(b) indicate that the theoretical curve is indeed verified. It can be seen again, as stated by the

authors, that at low frequencies, corresponding to kR_(a - 1) < 1.5, acoustic waves propagate with only

a small variation in pressure amplitude across the duct for the bends shown in figure 8.16. Hence, at low

frequencies the basic design assumption that acoustic waves propagate as plane waves in all sections of

a bend leads to negligible error. However, as the frequency increases, the variation in sound pressure amplitude

across the duct becomes more pronounced, particularly in the sharper bend. Thus, for sharp bends at high

frequencies the assumption of plane waves does not hold. This has been confirmed experimentally by

Cummings (1974).

Fuller and Bies (1978b) further recalled that Rostafinski (1972) had shown that the tangential velocity

distribution for the (0,0) mode follows closely that of a potential vortex for low wave number parameters

(kR, < 1) and is close to that of a forced vortex at higher wave number parameters (kRt = 3).

The distribution of the particle velocities and pressures for the nonpropagating, evanescent, higher modes

has been analyzed by Rostafinski (1976), also by using the "inverse method" of solving the characteristic

equation. The calculated nonpropagating tangential and radial particle velocities at two tangential positions,

at 0 = r/64 (close to the face of the vibrating piston) and at 0 = _r/4, are shown in figures 8.17 and 8.18.

Besides the distribution of velocities, these figures also show the degree of attenuation, which strongly depends

on wave number parameter kR_. Note that at some kR_ the evanescent vibrations may be negative.
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Ratioof real partsof eigenfunctions,
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Figure8.15.--Pressuremodeshapesfor rigid-wall duct.Nondimensional
wail admittance,_ = 0; radius ratio, a = 2; wavenumberparameter,
kRt(a - 1)=6. From Myers and Mungur (1976).
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A paper by EI-Raheb and Wagner (1980) exhibits extensive normalized isobars at resonant frequencies
for a 90 ° bend with a = 5. These data are given in section 10.0.

Interesting data have been published by Rostafinski (1972), Osborne (1976), and Cabelli (1980) showing

particle velocities and acoustic pressures in bends connected to straight ducts and provided with anechoic

terminations so that the end reflections are eliminated. Rostafinski gives particle velocities at the bend's

inner and outer walls for two situations: an infinite bend (a coil) and a bend followed by a straight duct.

This graph (fig. 8.19) shows particle velocity differences at the two curved walls and their rate of change

at the bend inlet and outlet and in the straight duct that follows the bend, where the wave becomes plane

again. These theoretical evaluations for extremely low frequencies and for a bend-straight duct system have

been simulated by Rostafinski on a water table (fig. 8.20). The plane wave at the bend inlet is reflected

from the outer wall and proceeds to the outlet. In the straight duct it is re-formed almost to its original

plane wave configuration. Extensive studies, both analytical and experimental, of the pressure distribution

were done by Osborne (1976) and Cabelli (1980). Osborne, besides various characteristics of acoustic

transmission in bends, calculated the pressure field by the separation of variables, writing equations for

continuity of pressure and particle velocity at discontinuities (junctions) and solving them by numerical

integration. He checked the anaIytical results by testing the sound field in a bend joining two straight ducts.

Figure 8.21 gives the geometry and location of the measurement points of Osborne's experimental setup,

a 45 ° bend with a = 2. Figures 8.22 to 8.24 give his analytical and experimental results. In general, his

theoretical predictions have been closely verified by tests. Interestingly, his data pertain to high-frequency

regions: 630 to 1000 Hz. All sound sources except one are of the (0,1) mode. At 800 Hz both modes (0,1)

and (0,0), the plane wave, have been evaluated. His angular wave numbers _, range up to 15.5 for the (0,0)

mode and up to 11.0 for the (0,1) mode; this represents propagation of the (0,0), (0,1), (0,2), (1,0), and

(1,1) modes in the bend.

Osborne (1976) gives the following description of his figures:

In each figure the predicted distribution at the start of the bend due to the sound pressure field
in the first straight duct is indicated by the chain dotted line whilst that calculated from the modal
constants...is indicated by the full line. At the end of the bend the sound field calculated from the
bend modal constants is represented by the broken line and that from the final straight duct modal
constants...by the full line. The differences between the two sets of calculated values at each bend

junction are slight and may be the result of ignoring the contributions of the evanescent modes ....

o Calculated points

1.4 _ Infinitebend

1.3

z_ 1.2

_ 1.1 -

_ 1.0

I'_ _ r v atouterwall
.8

.7
0 /r,/4 "/r,/2

Angularposition,radians

I I I I I
0 .25 .50 .75 1.00

x/2L

Figure 8.19.--Propagation in bend-straight duct system. Tangential particle velocities on walls. From Rostafinski (1972).
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Figure 8.21.--Plan of test ducts showing measurement sections. From Osborne (1976).

Figure [8.24] shows contours of sound pressure level interpolated from traverses on sections midway

between the non-curved walls of the bend .... The total number of spot readings being of the order

of 350 at each frequency.

Cabelli (1980) evaluated a 45 ° and a 180 ° bend of radius ratio a = 9 at two frequencies corresponding

to kR_ of 0.31 and 0.375. His measuremcrits give pressure amplitude in various locations in a bend and

in the two straight ducts connected to thc bend inlet and outlet. In his analysis the equations and the boundary

conditions were approximated by finite difference equations applied at the nodes of a mesh superimposed

on the solution domain. Second-¢_rder central differences were used to approximate derivatives. The obtained

set of simultaneous equations was expressed in partitioned matrix form as described by Baumeister and

Rice (1975).

The results of Cabelli's studies are summarized in several figures. Figure 8.25 shows deviations from

initially uniform pressure distribution in upstream and downstream straight ducts; consequently, Cabelli

proceeds with modal analysis of the sound field. The results are given in figure 8.26. His comments on

this figure are as follows:

...Only the plane wave and the first two higher order modes were significant and are featured in

the figure. The small variation in the amplitude of the plane wave downstream of the bend is typical

of the errors which were described in relation to the propagation and the decay in a straight duct.

The upstream variation of this component, however, is significant. It represents the standing wave

pattern associated with the reflection of sound from the discontinuity. The reflection coefficient for

k = 2.5 was equal to O. 15 approximately. In addition to Ihe reflection of the propagating plane wave,

the bend was responsible for the presence of the higher order modes. As expected, however, these

decayed exponentially. The exponent of the rate of decay for the first order mode was found from

the numerical results to be approximately equal to 1.8. Analysis predicts a value of 1.9. For higher

order modes the discrepancy was greater; numerical results indicated decay rates of 4.9 and 6.8

fi)r the second and third orders whereas analysis predicts corresponding rates of 5.8 and 9.1. The

magnitude of these modes was sufficiently small, however, that the errors would have a negligible

influence on the pressure distribution. Figure [8.27] also shows the standing Wave pattern for the

plane wave when k = 3.0. The reflection coefficient in this case was found to be approximately

equal to 0.4. The corresponding distribution of the pressure amplitude across the duct is shown

at selected sections through the system. The greater distortion of the pressure profile is evidence

of the increasing magnitude of the evanescent higher orders. This aspect is reviewed later.

The characteristics of the 45" bend were studied numerically over a range of values ofk less than r.
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Outer
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Several other test results are given in figures 8.28 to 8.30. Cabelli's discussion of his findings is given here.

...Figure [8.28] displays the distribution of the pressure amplitude at four sections across the duct.

Station 1 was located at the plane of the discontinuity, whereas stations 2, 3 and 4 were located

upstream of the discontinuity at dimensionless distances of 0.33, 0.66 and 1.13 respectively. In

all the cases there is good agreement between the experimental and the numerical results ....

Cummings [1974] pointed out that "the sound pressure pattern in the (0,0) mode in the curved

duct section is not uniform across the duct, although it tends towards uniformity for large bend

radii." Furthermore, his results indicated that the variation across the duct became progressively

more marked for increasing frequencies .... It should be stressed, however, that in the solutions which

were obtained by Cummings the effects of evanescent modes were neglected whereas in the solutions

which were obtained by the finite difference method they were not. The interaction of these decaying

modes with the propagating modes inside the bend resulted in characteristics of the pressure amplitude

which were different from those obtained by Cummings and, in particular, which were dependent

on the geometry of the bend. Typically, for a 45 + bend with an inner radius [parameter] of 0.125

(i.e., a radius ratio of 9:1), the profile of the pressure amplitude followed the prediction made by

Cummings, with the departure from uniformity at the centre of the bend increasing with increasing

magnitude of the wave number. In contrast, for a i 80 ° bend with the same curvature, the variation

from uniformity at the central section was most pronounced for a value of the wave number equal

to 2.50 approximately. The distribution of the pressure amplitude at this section, normalized with

respect to the value at the outer boundary, is shown in Figure [8.29] .... The decay characteristics

of evanescent modes in infinite bends have been described by Rostafinski [1976] and his analyis

predicted that for any value of the wave number non-propagating modes would be sustained longer

in sharper bends. This characteristic is verified in Figure [8.30], which displays the distribution

of the pressure amplitude at different radial sections in bends with inner radii [parameters] of 0.125
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and 0.50 respectively [radius ratios, 9:1 and 3: i] and for a value of the wave number parameter

equal to 2.50. The evanescent modes had obviously not decayed in the central section of the sharper

180" bend whereas in the 150" bend with the bigger inner radius, amplitude profiles were identical

for angles greater than 50*. In the presence of evanescent modes, the shape of these curves can

vary considerably according to the amplitude and the relative phase of each contributing mode. This

is again exemplified by the results for the 180" of Figure [8.29] where, with the exception of the

solution for k = 0.5, evanescent modes were always found to be evident at the plane of symmetry

of the bend but were small for k less than 2.0 approximately. The cusps in the distributions of the

pressure amplitude of Figures [8.29] and [8.30] were in fact a consequence of the influence of the
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evanescent modes on the propagating mode. Whilst no experimental pressure measurements were

taken radially at the plane of symmetry of the bends, good agreement was obtained with the published

experimental results of Cummings for a 180 ° bend with a radius ratio of 10: l and a value of the

wave number equal to 2.1 approximately.

8.2 Acoustically Lined Bends

Three papers, abstracted here, present data on pressure and particle velocity distribution in curved ducts

with acoustically lined walls. Rostafinski (1982) discusses the case of long waves (extremely low frequencies).

Several of his data are given in figures 8.31 and 8.32. His comments about those figures are as follows:

The radial distribution of the particle velocity components and of the acoustic pressure has been

analyzed .... Samples of typical profiles in a curved, lined duct are shown in Fig. [8.31 ]. The particle

velocities are nondimensionalized by using v0. Basically, very slight radial variations have been

detected when [conductance] r and [susceptance] o were given their full range of values. Also, when

the wave was moving down the curved duct, the pressure and axial-velocity profiles remained

unchanged except for a gradual decrease in their amplitudes. The profile of the radial components

of the particle velocity is different in that its slope changes with distance. The radial velocity distribution

exhibits a zero point near the inner wall of the bend. This point is not much displaced toward the

center of the duct when a duct three times as wide is used. in Fig. [8.32] these profiles of particle
velocity components are compared with distributions calculated for the case of unlined bends of

the same geometry and for similar, very low frequencies Of acoustic waves. A striking difference

exists between the two radial particle velocity distributions. This was to be expected, because a
lined duct has a finite value of wall impedance which does not require that the radial particle velocities

vanish at the wall. The relative values of the radial velocities shown on the graph have no particular

meaning, because the boundary conditions at 0 = 0 for the rigid and the lined bends are different.
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Thedistributionofthetangentialvelocitycomponentisnotaffectedbythepresenceofalining,
exceptforagenerallyloweramplitudeatallradii.

The radial distribution of the acoustic pressure is markedly changed by the presence of a lining.

The data are nondimensionalized by using P0, the acoustic pressure corresponding to reference

particle velocity v 0. Within a hard-walled bend, the pressure is characteristically higher at the outside

wall, as was first documented by Cummings [1974]. In a lined, curved duct, it is practically

independent of the radial position.

Myers and Mungur (1976) calculated pressure mode shapes for a bend of radius ratio a = 2 and a

representative frequency corresponding to kRf(a - 1) = 6.0. Their graphs illustrate the capability of their

computational code in the area of complex numbers. On two graphs (fig. 8.33) a single type of acoustical

lining is considered with nondimensional wall admittance rj = 1 + i0.25, and data are given for the real

and imaginary parts of the wave potential function. They add:

It is perhaps worthwhile to note that there is no plane-wave mode in the curved duct, even if all

the walls are rigid. The (0,0) mode has a significant radial variation, and this variation becomes

sharper the higher the frequency. Thus, for example, a planar piston source at # = 0 will necessarily

excite several modes in the duct unless the frequency is very low [see Rostafinski (1972)]. Implications

of this are discussed in the next section in terms of the flow of acoustic power in the duct.

Finally, unusual data have been published by Baumeister (1989). In a set of five graphs (fig. 8.34) he

examines the pressure field in an S-shaped duct of five levels of offset h/b,. The wall lining is of the

extended reacting type; in contrast, other authors have considered locally reacting liners, such as perforated

plates. The wall properties were taken to be ew = 1.0-/2.83 and #w = 4.1, where Ew and #,, are

dimensionless property constants. These properties (as stated in the reference) are associated with nearly

maximum absorption of a plane pressure wave in a straight duct at the frequency of unity. In addition,

the author comments:

The root-mean-square pressure fields inside the duct are illustrated in Fig. [8.34]...As seen in Fig.

[8.34(a)] the pressure remains high in the central portion of the duct with grazing contact along

the absorbing wall until it reaches the exit with very little attenuation. In contrast, in Fig. [8.34_e)1

the pressure field comes in nearly normal contact with the wall and quickly dies out giving rise

to the much larger power attenuation ....
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Figure 8.33.--Pressure mode shapes for lined duct bend. Nondimensional wall admittance, _ = 1 + i 0.25; radius ratio, a = 2;

angular coordinate in cross section, _ = 0.5; wave number parameter, kRl(a - 1) = 6. From Myers and Mungur (t976).
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9.0 Sound Reflection and Transmission

Sound reflection and transmission in bends undoubtedly need further work. Some interesting experimental

data have been generated, but the theoretical developments lack general understanding. A degree of confusion

(reflections versus evanescent, backward-running waves at discontinuities) can be noticed in various papers.

Although Rostafinski (1972) presents a comprehensive theory on evanescent waves at extremely low

frequencies, he makes no reference to sound reflection in bends. The first important experimental information

on this subject was given by Cummings (1974). His measurement apparatus is shown in figure 9. !. The

following quote is taken from his paper:

Three types of measurement were made on curved bends. The first of these was the pressure

transmission coefficient of the whole bend.., with a pc termination in the form of a polyurethane

foam wedge. The second experiment was to measure the specific impedance of the duct system... [with]

a rigid closed end. [For details on the two bends evaluated by Cummings, see section 8.0.] .... The

transmission coefficient, T, was calculated from the standing-wave ratio, SWR:

The impedance was calculated from the usual standing-wave theory.

The pressure transmission coefficient gave a measure of how much sound was reflected back from

the bend down the duct towards the source: in other words, how severe a discontinuity the bend

presented to the incident sound wave. The impedance was a useful measure of the effective acoustic

path length of the bend, a quantity which, as will be seen, is of major interest in any calculations

on curved bends. The radial factor for the sound field gave a measure of how much the sound field

in the curved portion of the duct deviated from that for a plane wave in a straight duct ....

Loudspeaker

(a)

Foam wedge

/ Microphone
I

L_ Probe
tube

(b) 0
Closed end

(c)

Z Microphone_-_ [

(a) Transmission coefficient measurement.
(b) Impedance measurement.

(c) Radial factor measurement.

Figure 9. l.--Measurement apparatus. From Cummings (1974).
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The results of the pressure transmission coefficient measurements for bends 1 and II are shown

in Figures [9.21 (a) and (b). The values of Tare plotted against the parameter [(R 2 - ROk/Tr = bk/Tr]

(this is equal to 1 at the cut-on frequency of the first higher-order mode in duct sections 1 and 3.)

It is seen that for bend I (of moderate sharpness), Tis practically 100% over the whole of the frequency

range .... For bend II (of severe sharpness) Tis still very close to 1, and does not fall below 97.5%.

It is felt that bend II represents the sharpest bend likely to be encountered in practice--thus, for

all practical purposes, the transmission coefficient of all curved elbow bends, for

[(R 2 - ROk/Tr ] < 1, may be considered to be unity.

In his conclusions, Cummings restates that it has been shown that curved duct bends, even those of severe

sharpness (e.g., a = 10.3), transmit sound extremely efficiently and that higher-order mode generation at

bends is of secondary importance. Recall that Cummings restricts most of his remarks to the basic mode.

He says, "Sound transmission through rectangular and circular section curved elbow bends has been discussed,

with particular reference to the frequency region where only the (0,0) mode propagates."

A completely different picture emerges from the work of Cabelli (1980). His data on the distribution

of pressure amplitudes across sections of a straight duct-bend-straight duct system were discussed earlier.

His tests were conducted for wave numbers of 0.5 to 3.0 (not really high frequencies) and in ducts of several

total angles but all of radius ratio a = 9.0, that is, extremely sharp bends in which serious distortion of

particle velocities and pressure distribution profiles should be expected. Figures 9.3 and 9.4 are examples

of his results. They also illustrate a good experimental check of his numerical calculations.

Cabelli (1980) devoted a section of his paper to evanescent waves. His conclusions are as follows:

An interesting feature of the propagation of sound in this duct system is concerned with the

generation of higher order modes at the discontinuity. Figure [8.26] indicated that for values of

less than r, the first (evanescent) mode was the most significant among the higher orders ....

The magnitude of the higher order modes was also found to be affected by the angle of the bend.

This, however, was not a simple relationship and any trend observed for a range of values of O

was only valid at the particular value of the wave number parameter. It is significant, however,

that the greatest amplitude of the first cross mode which was found at (say) the upstream discontinuity

was generally not for the bend with the greatest angle, Furthermore, as the value ofk was increased,

the angle of the bend for which this component was greatest decreased. Consider for instance bends

with an inner radius of 0.125 units [a = 9.0]. At a value of k of 2.5, the normalized magnitude

of the first cross mode reached a maximum of 0.7 when the angle of the bend was approximately
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equal to 90*. When k was increased to 3.1, a maximum in excess of 2 was reached for a bend

angle of 30 ° approximately. The corresponding values for the normalized magnitude of the second

order mode were 0.10 and O. l I approximately. The significance of this result is that any solution

which relies on matching boundary conditions at the discontinuity and which is satisfactory for a

bend with a given turning angle will not necessarily be satisfactory for a bend with a smaller turning

angle unless the number of terms used to satisfy continuity of pressure and velocity is made

correspondingly higher.

E1-Raheb and Wagner (1980), in a study of resonances in duct corners and bends, commented on reflections

but without evaluating them. Figure 9.5 gives pressure distribution in a duct corner (miter bend) and in

a similar circular bend, in both cases for frequencies corresponding to the first resonance (1,0). For the

corner the first resonance happens at 1306 Hz, and in a bend it happens at 1373 Hz. They comment:

At frequencies lower than w*(1,0), the bend's isobars are lines radiating from its center of curvature.

As the frequency increases, constant pressure lobes form near midlength along the larger circumference

suggesting an increase in transverse wave activity. These standing waves are generated as a

consequence of reflections from the duct's curved boundary. The reflections produced by a corner

are more intense than those initiated by the smoothly varying boundary of a bend. Note the difference

in transverse pressure gradients (across lobes) between bend and corner for w*(1,0). As a result,
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the longitudinal phase velocity and longitudinal pressure gradient are lower in the corner than in

the bend since in the latter less energy is consumed in transverse excitations. Consequently, _0*(1,0)
in the corner is lower than in the bend.

Keefe and Benade (1983) did not study reflections in bends for the simple reason that reflections are

imperceptible for the long waves they considered. (This is true even in the 90 ° miter corner studied by

Lippert, 1954.) Nevertheless, they considered the evanescent waves and concluded that for low frequencies

...the effect of the evanescent modes is very small compared to the propagating mode, since the

discontinuity impedance is much less in magnitude than the propagating mode impedance .... The

assumption made that the evanescent modes response is negligible relative to that of propagating
mode is therefore shown to be valid.

Tam (1976), who in his applied mathematics paper (using a procedure based on the Galerkin method)

developed a method for determining angular wave numbers, makes the following interesting comments:

As frequency increases there are more and more propagating modes just as in the case of a straight

duct. It is to be noted that even at moderately large values of w the angular wave numbers [u] of

the propagating modes are quite large. This implies (verified by actual computation) that the phases

of the transmission and reflection coefficients will oscillate very rapidly between positive and negative

values even with small changes in [total bend angle] or o_. Thus in considering the transmission

of sound through a duct system good accuracy must be retained in joining the solutions together

at the two ends of a curved bend so as to ensure correct matching of phases.

Discussing the structure of his transmission matrix, Tam states that the physical implication of the developed

diagonal symmetry is that the transmission coefficient of the m th mode due to an incident wave of the n th

mode is the same as the transmission coefficient of the n th mode due to an incident wave of the m In mode.

This interesting property does not seem to have been noticed before.
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Osborne(1976)indicatesthatanalysisofa202.5° bendinthefundamentalmode,forwhichtheangular
wavenumberis4.25(thefrequencybeing87percentofthefirstpropagatingcross-modefrequency),shows
novariationinsoundpressuredistributionbetweenangularsectionsspaced22.5° apart.The experimental

evidence, therefore, suggests that a bend of 45" when excited in the first few modes does not constitute

an appreciable discontinuity and that reflections are negligil_le. Further, he notes that the contribution to

the sound field by evanescent modes is more difficult to determine. It might be expected that for bends

of large radius ratio, and particularly in the fundamental mode, the effect of nonpropagating modes will

play a large part in establishing the transition of the sound field between the straight duct and the bend.

In Osborne's (1976) work it was difficult to discern any effect that could be attributed specifically to those

modes.

Finally, in a study of sound propagation in an acoustically lined S-shaped bend Baumeister (1989) touches

upon the subject of evanescent and reflected waves. It is discussed here in section 11.0.

The important and useful theory of reflections finds its application in circular bends equipped with axial

turning vanes, partitions that effectively create two bends from one. This special study is presented in

section 13.0.

10.0 Impedance of Bends and Resonances

Cummings (1974) first calculated and experimentally verified the impedance of curved ducts. He describes

his procedure and his interesting developments and data as follows:

Figures [10.1 and 10.2] show measured and predicted data on the reactance ratio of bends I

and II [both 180"; for bend I, a = 1.587; for bend II, a = 10.3], for various frequencies, with

section 3 terminated in a rigid wall. It was thought that possibly it may be sufficient to neglect

completely higher-order mode generation and pressure and velocity non-uniformity at

discontinuities...and simply to correct the length of the bend at the centreline for the modified acoustic

propagation velocity (along the centreline) in the curved section (the circumferential wavenumber,

k C, is equal to [v/Rm] where [Rm] is the mean radius of the bend). Thus the impedance (assumed

to be entirely reactive) is given by

_B=ic°t [klORm_+fll"

The angular wavenumber [v] was [calculated]. The reactance curves...are plotted out in Figures

[ 10.1 and 10.2]. In the absence of appropriate data, one would intuitively take the bend's effective

length to be equal to the length l m along the centreline, with impedance given by

_'B = i cot [k(,e m + g)]

[where l is the length of a straight duct downstream from the bend].

The reactance corresponding to this expression is also plotted out in Figures [10.1 and 10.2].

It is seen that in all cases, merely correcting the median length of the bend gives predictions in

good agreement with measurements. The impedance predicted when using the bend's uncorrected

median length is (except at low frequencies) not in agreement with experiment. In Figure [10.21

the agreement between the corrected median length of the bend and experiment falls off somewhat

towards the anti-resonance at about [k(R2-Ri)/r] =0.14. Accordingly, the reactance

predicted...(with no higher-order modes taken into account...)is also plotted out. This is in good

agreement with the experimental results. Predictions were not made in which one or more higher
order modes were used ....

It is apparent that simply correcting the bend's median length produces satisfactory results in most

cases. If more accurate predictions are required, then the zero-order solution (whose associated

computing cost is reasonable) gives sufficiently accurate results.

From this it is surmised that the principal effect of the curved bend section is not generation of

higher-order modes and associated reflection of the acoustic wave from the bend, but a change in

the propagation characteristics in the curved section. Certainly, higher-order modes are generated

at each discontinuity, but their effects on the bend's overall behaviour seem slight.
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Figure 10. l.--Reactance ratios for bend I. From Cummings (1974).

Rostafinski (1974b; 1976) gave an analytical expression for the impedance of bends and based it on the

length of the bend centerline. Keefe and Benade (1983) noted that Rostafinski's results are incorrect because

his work predicts an increase in the wave impedance of a bend relative to a straight pipe at low frequencies,

whereas a decrease is always observed. They indicated that the impedance Zofa bend is equal to the impedance

Zo = pc of a straight pipe multiplied by u/kRm. They also write, for future reference, that the wave

admittance Yequals Yo(kR,,/u), where Y0 = I/Z0. They draw the most interesting conclusion that the shifts

in wave admittance and phase velocity in a curved rectangular duct, relative to a straight duct, are equal

even if the small radial variations of the pressure are included. Effectively, their expression for long-wave

phase velocity is c(kR,,,/u).

Recalculating Rostafinski's expression for wave impedance in bends (long waves; (0,0) mode only) based

on the bend radius where the phase velocity equals v 0 (piston's Voei_t, see figs. l.l(a) and (b)) yields

Z = Zo(kRi/v)[(a- l)/ln a]. Keefe and Benade's equation and Rostafinski's corrected equation yield

identical results, some of which are given in figure 10.3.

Keefe and Benade (1983) called attention to the often overlooked fact that the natural frequencies of the

air column in curved pipes

are affected not only by changes in the impedance and velocity produced by pipe curvature, but

also by discontinuity effects that arise at the junctions between pipe segments of differing curvature.

Any such junction discontinuity may be represented to good approximation by a series inertance

plus a small resistive term which does not affect the resonance frequency although it may contribute
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Figure 10.2.--Reactance ratios for bend II. From Cummings (1974).

significantly to the overall damping of the modes. This is because there is a local change in the

flow field at the junction, but pressure is continuous. The resulting perturbation in the local kinetic

energy density is represented in the transmission line by a complex inertance in series.

EI-Raheb and Wagner (1980) conducted an extensive (numerical) analysis of wave propagation in miter

joints, bends, and three-way branches. The bend considered consisted of a 90 ° elbow (a = 5) with a nearly

square cross section. Calculations involved three methods: the Green function's formulation, the finite

difference method, and an analytical approach (eigenfunction expansion). Their results are summarized in

figure 10.4, which compares average loading in a 90* bend for the three methods. The agreement is excellent

indeed and the results are impressive, resonant frequencies having been calculated for a wide frequency

range. In table 10.1 an interesting comparison is made; it shows that, except for one case, the bend lowers

the resonant frequencies relative to those in a straight duct.

El-Raheb (1980) evaluated resonant frequencies in a network of rigid ducts with four bends. Using

eigenfunction expansion he first calculated eigenvalues (angular wave numbers, see fig. 6.2) and then evaluated

the load factor for the cases given in table 10.2. Additional cases included the addition of straight ducts

downstream from the bend (cases C1 and El). The results of this extensive analysis are given in figures

10.5 to 10.7 and table 10.3. E1-Raheb's conclusions are as follows:

The basic qualitative aspects of the acoustic wave propagation in rigid finite length networks

involving straight and curved ducts are summarized with emphasis on the comparison with the

equivalent one-dimensional behavior:
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TABLE 10.1.--ACOUSTIC RESONANCES

[From EI-Raheb and Wagner (1980).]

Type

(m,,)

(I,0)

(2.0)

(1,1)

(3,0)

(2,1)

(3,1)

(4,0)

Two-

dimensional

straight

90* bend

Analytical Green's

function

(76 elements)

Resonant frequency, Hz

1388.9

2777.8

3419.7

4166.7

4181.1

5208.3

5555.6

1376.2

2669.4

3503.1

3957.5

4463.6

5040.8

1373.2

2670.1

35O5.8

3961.3

4461.5

5039.5

TABLE 10.2.--GEOMETRY

OF CASES B E

[From E1-Raheb (1980).]

Case Convex Concave Radius

(inner), (outer), ratio,

R I R 2 a

Radii of bend wall, m

B 0.0508 0.1524 3

C .0508 .254 5

D .1016 .3048 3

E .1524 .4572 3

40
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-20
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-- _ _,(2,o1 A

- /I
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Figure 10.5.--Variation of load factor with frequency for case E From table 10.2. Radii of convex (inner) and concave (outer)

walls of bend, respectively: R L = 0. I524 m; R 2 = 0,4572 m. Radius ratio, a = 3; speed of sound, c = 1270 m/s. From

E1-Raheb (1980).
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Figure 10.6.--Variation of load factor and loading ratio with frequency for case C_ from table 10.3. Centerline length of straight

duct, /s = 0.4064 m; radius ratio, a = 5; speed of sound, c = 1270 m/s. From E1-Raheb (1980).

(1) The duct curvature introduces a shift in the longitudinal acoustic resonances of the system.

The shift fluctuates from positive at large wavelengths to negative for w*(l, 1) > w* > 1/2 w*(1,1)

back to positive beyond w*(1,1) following a cyclic and involved mechanism which depends on the

position of_0* relative to w*(1 ,n) and on wavelength [where n is the transverse acoustic mode shape

number]. The magnitude of the shift increases uniformly with (lb/fs).

(2) The acoustic loading on the bend grows uniformly with duct width as a result of radial vibrations

initiated by curvature. The loading intensity rises continuously as the fundamental radial resonance

is approached beyond which the rate drops slightly. The loading is independent of bend curvature

although X is implicitly responsible for triggering the overpressure.
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Figure 10.7.--Variation of load factor and loading ratio with frequency for case E I from table 10.3. Centerline length of straight

duct, /'s= 0.4064 m; speed of sound, c = 1270 m/s. From EI-Raheb (1980).

(3) The asymmetry in acoustic pressure, resulting from bend curvature, attenuates rapidly as it

propagates along a straight duct beyond a bend interface and reaches a near uniform distribution

after a short transition distance, so long as _* < o_c*of. Beyond the first cutoff frequency, the standing

radial waves propagate resulting in pressure asymmetry, and loading comparable to the reactive

loading on the bend.

(4) Longitudinal system resonances often relocate away from transverse resonances to produce

a more even separation and satisfy minimum energy requirements.
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TABLE 10.3.--ACOUSTIC RESONANCES FOR

CASES C l AND E I

[From E1-Raheb (1980).]

Case Type m,n

Ci

Nondimensional Difference between

angular frequency equivalent straight
for three- duct and bend

dimensional duct, resonances,

With Straight t00 1 -
bend _ 3oJ

percent

Longitudinal 1,0 1015.8 983.3 3.2

Longitudinal 2,0 1952.3 1966.6 -.7

Longitudinal 3,0 2848.4 2949.9 -3.6

Cutoff 0,1 ...... 3125.0 ---

Radial 1,1 3510.6 3276.1 6.7

Radial 2,1 3734.4 3692.3 1. I

Longitudinal 4,0 4063.4 3933.2 3.2

Radial 3, I 4515.4 4297.4 4.8

Longitudinal 5,0 4818.7 4916.5 -2.0

E l Longitudinal 1,0 730.7 717.4 1.8

Longitudinal 2,0 1420.5 1434.7 - 1.0

Longitudinal 3,0 2073.5 2152.1 3.8

Cutoff 0,1 ...... 2083.3 ---

Radial 1,1 2376.0 2203.4 7.6

Radial 2, I 2662.2 2529.6 5.0

Radial 3, i ...... 2995.3 ---

Longitudinal 4,0 3200.3 2869.5 I 1.5

Radial 4,1 ...... 3546.0 ---

Longitudinal 5,0 3807.4 3586.9 6.1

Radial 5,1 ...... 4147.9 ---

Cutoff 0,2 ...... 4166.7 ---

Radial 1,2 4050.0 4228.0 4.0

Longitudinal 6,0 4418.4 4304.2 2.6

Radial 2,2 4654.5 4406.8 5.3

Radial 3,2 ...... 4689.6 ---

Radial 6,1 ...... 4781.9 ---

Longitudinal 7,0 4998.2 5021.6 -.5
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11.0 Attenuation of Sound in Bends

Attenuation of propagating modes in hard-wall bends may result, almost exclusively, from backrunning

waves reflected from the cylindrical boundaries. These losses have been examined and test checked by

Cummings (1974) and by Cabelli (1980). This subject is covered in section 9.0.

A different source of attenuation in bends has been evaluated by Keefe and Benade (1983): viscous energy

dissipation in curved ducts. Their remarks and conclusions are as follows:

A wave propagating in a curved duct is modified by the presence of viscosity. There are viscous

(and thermal) losses at the walls, viscous bulk losses in the interior of the fluid, and possibly nonlinear

viscous losses in the form of time-independent acoustical streaming. The bulk losses in a propagating

wave in a straight duct are negligible compared to the wall losses at low to moderate audio frequencies.

We show in this section that the bulk losses for a propagating wave in a curved duct of similar

geometry to those used in our experiments are orders of magnitude larger than the bulk losses in

a straight duct. However, the curved duct bulk losses do not exceed the wall loss in a straight duct
of similar cross section ....



We compare the bulk loss in the curved pipe to that of the straight pipe by forming the ratio gb

[defined as]

]where (LTc)is the time-averaged power loss in a curved duct and (Es) is the time-averaged viscous
energy loss for a plane wave in a straight pipe].

For the tubing sizes and acoustical frequency used in our experiments gb turns out to be about
4000. The additional shearing losses in the bulk of the medium in the curved duct are sizable, due

to the extra shear present as the propagating wave "turns the corner" of the bend .... Anytime there
is curvature in an acoustical waveguide with air as the medium, the shear losses in the bulk of the

fluid may become significant relative to the wall loss, even at low frequencies. This is especially
true in musical instruments, where the player is extremely sensitive to changes in the damping ....

The phase velocity and wave admittance are both increased in a curved duct relative to their straight
duct values. Our experiments show that the wave-admittance shift is larger than the phase-velocity
shift, although all theories predict that they should be equal. The observed shifts are smaller than
the predicted shifts, which suggests that large shearing losses in the bulk of the fluid in the curved

duct may be present.

Substantial research has been done on attenuation in cylindrical bends with acoustical linings on the two

curved walls and even on all four walls. Sound attenuation is defined as a decrease in mean acoustic energy

between the inlet and the outlet sections of a duct segment. The total sound attenuation, also called attenuation

of transmitted acoustic power, is measured in decibels.

Grigor'yan (1970) first analyzed sound propagation in a bent duct with its curved walls lined with sound-

absorbing material. Using numerical-analytical techniques he evaluated ducts with various degrees of sharpness
lined on the inner, the outer, or both curved walls with two different sound-absorbing materials. He concluded

that sound-absorbing materials are not equally "sensitive" to the curvature of the bend, that attenuation

increases with the sharpness of the bend, and that when only the inner curved wall is lined, attenuation

decreases with the sharpness of the bend. In other words, by no means does curvature of a lined duct always

substantially increase attenuation of the fundamental mode. The effect depends on the properties of the sound-

absorbing material, the lining arrangement (which wall is lined), and the frequency.

Rostafinski (1982) did some studies in the extremely long wave region, compared sound attenuation in

straight and curved lined ducts, and checked particle velocity (both tangential and radial) for two values

of conductance and susceptance. He calculated sound propagation in a straight duct by using an expression

given by Rice (1975)

p = COS (2gYte[iut-(u/c)_xl

where the g's are complex roots, _"= a + i_ is a complex wave number with its propagation and attenuation

terms, H/2 is the half-width of the duct, and x and y are axial and transverse coordinates with y = 0 at
the duct centerline. Rostafinski calculated sound propagation in bends by classical expansion of the Bessel

functions of complex order. The results of his analysis indicate that at extremely low frequencies and for

the duct and lining parameters taken into consideration, sound attenuation is less pronounced in bends than

in a straight duct of the same wall impedance.
Myers and Mungur (1976) calculated transmission loss in lined straight ducts and lined curved ducts (a = 2)

for one type of lining but for several bend angles and for a range of wave number parameters kRl(a - 1).

Commenting on their results (figs. 11.1 and 11.2), they noted that a curved duct generally seems to attenuate
the sound field more than a straight duct, the difference being more pronounced at the higher frequencies.

At kRl(a - 1) = 4 the transmission losses in the curved and straight sections are nearly equal; the curves

are coincident in figure l l.2(a). The difference increases at the higher wave number parameters.

An important study by Ko and Ho (1977) on sound attenuation in acoustically lined curved ducts in the
absence of fluid flow is based on numerical evaluation of equations obtained by the separation of variables.

53



..q

c
o

E
c

I'--

20

16

12

8

1 I

Station,
O,

deg

18

I I
6 8

Ratio of
axial location
to duct width

I
0 2 4 10 0 2 4 6 8 10

Wave number parameter, kR 1(a - 1)

(a) Curved duct
(b/ Straight duct.

Figurc t 1.1. Transmission loss in curved and straight ducts, Radius ratio, a = 2; nondimensional wall admittancc,

"q= 1 + i0.25. From Myers and Mungur (1976),

54



3O

25

O
*020
.9o

$
m

m is

c
0
"N

E 10

F-

Curved duct

Straight duct

Wavg
number

parameter,
kR l(a - 1)

/
/

/
/6

/
/

/
/

/
/

/
/

I I I
0 1 2 3 0

Wave
m number

times
duct width

10
B

8

- f jJ .j--

I I I
1 2 3

Axial distance (duct widths)

Figure l 1.2.--Transmission loss in curved and straighl ducts. Radius ratio, a = 2; nondimensional wall admittance, _ = I + i 0.25;

From Myers and Mungur (1976).

55



First,theyobtainedextensivetablesofcomplexeigenvaluesforaselectedrangeofparametersandforfour
modesofmotion.Withthehelpofseveralfigures(figs.11.3to11.9)theyillustrateandpresenttheirresults.
Foralltheresults(unlessnotedotherwise)thelininghasnondimensionaldepth(d.= d/2R2) of 0.05, its

specific acoustic resistance (R. = Ripe) is 1.5, and generally the calculations pertain to 45 ° bends.

Nondimensional frequency f, equals 2f, R2/c, or 22.32. Figure l l.3(a) shows the effect of radius ratio

a = R2/RI on sound attenuation. The sound attenuation of this fundamental mode (0,0) increases as the

radius ratio decreases. This may be due to the increase in the wave path length for a fixed bend angle.

When the nondimensional median arc length is fixed by varying the bend angle and the inner or outer radius

(fig. 11.3(b)), the effect of the radius ratio on the sound attenuation becomes insignificant. The sound attenua-

tion also increases as the bend angle increases (fig. 11.4) but decreases with broadening bandwidth as the

specific acoustic resistance ratio R. increases (fig. 11.5). The nondimensional frequency of the peak

attenuation increases as the lining thickness decreases. This phenomenon, shown in both figures 11.5 and

11.6, was also well demonstrated in studies made of sound waves propagating in acoustically lined straight

ducts with both rectangular and circular cross sections. The sound attenuation in curved ducts lined with

dissimilar acoustic linings of two different depths differed greatly (fig. 11.7). For a fixed bend angle the

sound attenuation for an outer-wall-lined duct is much greater than that for an inner-wall-lined duct (fig. 11.8).

This may be due to the difference between the arc lengths of the outer and inner walls. As shown in figure 11.9

the fundamental mode (n = 0) is capable of traveling through the duct at all frequencies, but the higher

wave modes (n = 1, 2, and 3) are capable of traveling through the duct only above their respective cutoff

frequencies. Ko and Ho's (1977) main comments are as follows:
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Figure I 1.3.--Variation of sound attenuation with radius ratio. Specific acoustic resistance ratio, 1.5; nondimensional lining thickness

on inner and outer walls, 0.05; nondimensional characteristic frequency, 22.32. From Ko and Ho (1977).
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Theresultsobtainedforalinedcurvedductsection,withoutterminationsateitherendsoftheduct,
are,inmanyrespects,similartothoseobtainedforlinedstraightducts.However,thecharacteristic
ofsoundtransmissioninalinedductsystemconsistingofabendjoiningstraightductsectionsmay
bedifferentfromthatinalinedstraightduct.

A different,extensivestudyonthepropagationofsoundwavesinductbends,acousticallylinedonall
fourwalls,hasbeendonebyKo(1979).Thisisararethree-dimensionalstudy.Themethodisbasically
thesameasthatusedbyKoandHo(1977),buttheequationsarewrittenwithoutomittingthethirddimension
(theductdepth)andareextendedbyusingasanadditionalvariabletheacousticalliningonthebend'sroof
andfloor.

Theeigenvaluesofmotion,theangularwavenumbersofthepropagation,werecalculatedbyincluding
in thecomputationswavenumbersof motionin theverticalductdirection.Thethree-dimensionalstudy
showsthat,generally,theeffectoftwoormoreacousticallylinedwallsisnotnegligible;thesoundattenuation
is increased.In oneof hisfigures(fig. 11.10)Ko(1979)givessoundattenuationcalculatedfor several
differentductdepthsandacurveobtainedbysimplertwo-dimensionalcalculations.Hestatesthatthelimiting
caseof thethree-dimensionalcaseisthetwo-dimensionalone(i.e.,calculationof thesoundattenuation
basedonthethree-dimensionalmodelapproachesthatbasedonthetwo-dimensionalmodel,asit should).

Baumeister(1989)evaluatesattenuationinanacousticallylinedS-shapedduct.Thisisanunusualcase
becausehisliningisnottypical;it isnotthelocallyreactivetype considered by all previous authors, but

is rather an extended reaction liner that admits axial wave propagation in its material. His propagation theory

and property formulas were validated by a number of experiments. Figure 11.11 shows the degradation

of acoustic power flow in S-shaped ducts for one (representative) type of lining but for three duct lengths

(i.e., for three degrees of duct offset). Increasing duct offset increases the attenuation of the transmitted

power. Next, in figure 1 I. 12, Baumeister explains the effect of lining thickness on power flow for the bend

geometry shown in figure 11. l l(b). It becomes obvious that only the lining layers immediately adjacent

to the duct passage contribute to the attenuation of acoustic energy. Extremely thin layers of absorbing material

do not attenuate waves to any significant degree. Finally, a useful map has been calculated (fig. 11.13)

in which normalized acoustic attenuation contours for an S-shaped duct have been drawn. This is a design

tool that can be obtained for any duct section.
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12.0 Energy Flow

Cummings (1974) did not calculate energy flow in the bends that he tested, but he nevertheless outlines

the procedure for such calculations. In an opening sentence he notes that in a hard-wall curved duct section

without flow, the acoustic modes are orthogonal and thus the total energy flow is simply the sum of the

contributions from various modes. (It is not necessary to recall here the standard equations for acoustic

intensity and power in the angular direction.)

Two graphs (fig. 12. I) by Myers and Mungur (1976) merit attention. Figure 12. l(a) shows, for a hard-

wall bend with a = 2, the distribution of angular acoustic intensity Is for several angular stations in the

bend, including at the inlet (0 = 0). Intensity peaks occur near the outer wall. Figure 12. I(b) shows the

same distribution for the same duct but with an acoustical lining. The axial sound intensity attains its maximum

value near the center of the duct. The absorbing walls smooth out the energy distribution between the radial

walls.

Rostafinski (1974b) calculated sound intensity in a range of frequencies for hard-wall duct bends of three

radius ratios. The values he obtained for energy flux are compared in figure 12.2 with energy flux in straight

ducts, which has the well-known form pv = pcv_/2. The figure shows that the ability of bends to transmit

acoustic energy depends strongly on the frequency and the bend radius ratio. Rapid decreases in the transmissivity

of bends sharper than a = 1.5 should he linked to the cutoff characteristics evaluated in section 9.0.
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13.0 Bends With Turning Vanes

An axial partition in a cylindrical bend divides it into two concentric bends and thus creates a completely

new boundary condition for the propagating sound waves. Such a partition significantly alters the sound

transmission through the bend. Three papers deal with .this problem, and in all three there is excellent

agreement between analytical and experimental results.

Fuller and Bies (1978a) analytically and experimentally evaluated an acoustical discontinuity created by

inserting a partition along the centerline of a 180 ° bend. The partition drastically altered the acoustic properties

of the bend because it divided it into two bends of unequal path length. Fuller and Bies limited their analysis

to frequencies lower than the cutoff frequency of the (1,0) mode in two straight ducts connected by a bend.

Their analysis began with formulation of the characteristic equation (separation of variables) followed by

a set of equations for each discontinuity (i.e., at the inlet and outlet of the 180" bend). Derivation of Fourier

coefficients for each mode allowed the propagating mode and an infinite set of evanescent waves to be

evaluated. Numerical application of the derived equations and experiments was done for a bend of a = 2

divided, at the centerline, into two concentric bends by a thin, rigid partition. The description of test procedures

and results along with their interpretations are given here as written by Fuller and Bies (1978a):

Three parameters were measured. The power reflection coefficient, an indication of how much

sound is reflected back towards the source, and the characteristic impedance, an indication of how

severe a discontinuity the bend presents to acoustic propagation, were obtained by measuring the

standing wave in the upstream straight duct and applying standing-wave theory. Values of the

experimental reflection coefficient plotted against a nondimensional frequency parameter

[kRl(a - l)] are shown in Fig. [13. I]. Since the analysis is limited to less than the cut-off frequency

of the (1,0) mode in the straight-duct section, for which [kRt(a - 1)] = r, values of [kRl(a - 1)]

are terminated at [kRi(a - 1)] = 3.02. Experimental values of the resistive impedance R/pc are

shown in Fig. [13.2] while those of the reactive part X/pc are shown in Fig. [13.3[.

The insertion loss [is] a measure of the attenuation in decibels of the incident wave .... The insertion

loss is defined to be the difference in decibels of P_ - E_3. Thus using standing-wave theory it

can be shown that,
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Hence the insertion loss of the bend is

measured insertion loss (dB)= P_oax- 20 logl0(1 + o6!/2) - E_o(dB)

[where] _,. is the measured power reflection coefficient, [superscript i refers to the incident wave,

E is the measured sound pressure level in the downstream duct, and pmax is the measured maximum

sound pressure in the upstream duct.]
The theoretical insertion loss is

I.L. = -20 logl0(l - o_r)I/2 ....

As can be seen in Fig. [13.1[ there is close agreement between theoretical and experimentally

measured values of the frequencies at which maxima occur ....

The magnitude of the experimental reflection coefficient is consistently less than predicted at the

maxima. This was thought to be due to the difficulty of determining accurately the standing wave

ratio when it is quite large ....

As can be seen in Fig. [13.1] a curved 180 ° bend with a partition positioned on its centreline

provides a large disruption to sound propagation. In fact the theory developed here predicts that

at a number of the dimensionless frequencies...[kRl(a - 1)[...the power reflection coefficient is

very close to unity ....

Theoretical and experimental values of the resistive and reactive parts of the characteristic impedance

are in good agreement as shown in Figs. [13.2] and [13.3]...

Much closer agreement is demonstrated by comparison of experimental and theoretical values

of insertion loss shown in Fig. 113,4] than reflection coefficient shown previously in Fig. [13.11.

This observation supports the argument presented previously to explain the discrepancies shown

in the latter figure ....

The partition was found to significantly alter the sound propagation through the bend, resulting

in high reflection of sound at a number of discrete frequencies.

Cabelli (1980) extensively studied the effects of a partition in a bend. He checked his analytical findings

by experiments on 45", 90 °, 150 °, and 180 ° bends with axial vanes of different lengths extending through

the bend but, generally, not reaching the junction sections between the straight ducts and the ends of each

bend. The vane length dictated to a large degree the extent of the reflections that occurred.

Citing Cabelli, figures 13.5 and 13.6 show the behavior of the reflection coefficient for five bends and

a variety of turning vanes. For the range of geometries considered in this work, the difference in length

between the two sound paths in the curved section could be equal to half the wavelength only for a bend
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Figure 13.6.--Variation of reflection coefficient with wave number when turning vane is located in bend for two bend radius ratios.

From Cabclli (1980).

angle of 150 ° . With the turning vane angle also equal to 150 ° the mean path length difference was 1.31,

which corresponds to total reflection for a wave number of 2.4. With a turning vane of 120 ° the path length

difference tbr total cancellation corresponds to a wave number of 3.0. The experimental and numerical

characteristics given in figure 13.5 predict and verify these trends. As Cabelli (1980) states,

The results of Figure [ 13.5] also describe a shift of the high reflection zone toward lower frequencies

as the length of the turning vane was increased. When the angle of the bend was equal to 45*, this

was achieved either by locating the turning vane further out in the bend (i.e., Rv = 0.750) [in other

words, increasing the radius of the wine R,I or literally by increasing the length of the vane at a

given radius. In the former case, the mean path length difference remained unchanged although

the individual mean path lengths were longer .... An,thor I:cature of the results which can be seen

in Figure [13.5] is the broadening of the high rellection band as the angle of the bend was increased.

This however, was found to be at function of the tightness of the bend. For bends of Smaller curvature

and with identical path length differences, the reflection coefficient retained the narrow selective

characteristic seen in Figure [13.5] but developed additional peaks of low transmission at higher

ang]e_-Figure [13.6], which desCribesihe reflection coefficient for _,45 ° bend with an inner radius

of unity and for a 90 ° bend with an inner radius of 0.5, provides an example of this behaviour.

It appears that multiple peaks are characteristic of bends with small curvatures whereas tight bends
5 °such as the 1_0 bend of Figure [13.5] will generate broad reflection patterns. This is confirmed

by solutions for a 180" bend with a 2:1 radius ratio which are discussed later and which also produced

peaks of reflection at discrete frequencies.

The presence of turning vanes in duct bends generally gave rise to cross mCulcs which were of

much greater amplitudes than those found in the absence of centre bodies ....

The numerical solution method was also used to simulate the experimental conditions of Fuller

and Bies [1978a]. The input data described a 180 ° bend with a radius of2:1 .... Turning vanes were

positioned either at Rv = 1.375 or at Rv = 1.65 and their end co-ordinates were either (8,26)

corresponding to an angle 160 ° _< oe < 180" or (8,27) describing an angle of 180 ° wilh straight

sections at each end. These limits define a range which covers the geometry investigated analytically

and experimentally by Fuller and Bies [ 1978a]. The numerical results for the reflection coefficient

were generally in good agreement with the experimental results. Both the numerical solution and

the modal analysis of Fuller and Bies [1978a] predicted sharp peaks in the reflection coefficient

at values of the wave number parameter approximately equal to 0.7, 1.2 and 3. These were

substantiated by the trends observed experimentally. The length and location of the turning vane
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werefoundtohaveasmallinfluenceonthebehaviourdescribedbythenumericalsolution,the
mostevidenteffectbeingachangeinthepositionofthepeaks.However,oneaspectofthenumerical
solutionwhichwasnotobservedinthemodalsolutionisconcernedwiththebehaviouratvalues
ofthewavenumberbetween1.8and2.2approximately.Inthisrange,FullerandBiespredicted
nearlytotalcancellationofthetransmittedsoundwh'ilsttheexperimentalresultsandthepresent
numericalsolutionindicated values of the (pressure) reflection coefficient nearer 0.8. This discrepancy

was probably caused by the presence of higher order cross modes at the discontinuities. The influence

of cross modes higher than the first was neglected in the matching boundary condition used for

the analytical solution ]given by Fuller and Bies (1978a)]. In fact, the numerical solution predicted

amplitudes of these evanescent modes which were higher when the wave number was equal to 2,0

than for corresponding solutions with wave number parameters equal to 1.0 or 2.75. A typical solution

indicated the normalized magnitude of the second cross mode to be equal to 0.40 when k was equal

to 2.0. When the wave number parameter was equal to 1.0 and 2.75, the normalized magnitude

of the second order mode was equal to 0.07 and 0.12 respectively. Figure ]13.7] displays some

results obtained by the numerical method of solution superimposed on the theoretical and experimental

results of Fuller and Bies [1978a]. The power reflection coefficient plotted in the figure is equal

to the square of the pressure reflection coefficient R,.. The numerical results for R v = 1.375 and

R,, = 1.65 can be seen generally to straddle the experimental results of [Fuller and Bies] (which

were obtained for a value R_ = 1.50) and the deviation from the experimental results is smaller

than that obtained by Fuller and Bies for the range of values of the wave number in which the second

cross modes have significant magnitudes at the geometric discontinuities.
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1.375 _. Numerical
1.65 .J results
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I g
2 3
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Figure 13,7.--Sound power reflection coefficient for 180" bend. Radius ratio, a = 2. From Cabelli (1980).
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Thefirst(documented)attempttoevaluatetheeffectiveness(inattenuatingnoisepropagatinginventilation
ducting)of a shaped partition in a duct bend was published by Luxton (1968). He showed, by experiments,

that a properly designed partition that divides a bend into two paths differing in length by a half-wavelength

does attenuate sound as expected.

A similar type of partition was designed and evaluated by Fuller and Bies (1978b). It is a crescent-shaped

centerbody (shown in fig. 13.8) set in a bend connecting two straight ducts. The authors call this device

an attenuator because it attenuates sound effectively in the design frequency range. As in other studies the

analytical and experimental procedure limited the propagating modes in the bend to the fundamental (0,0)

mode. For convenience the authors adopted a reference amplitude of the incident wave as P_0 = I - 0i;

the design frequency for the propagating mode was 844 Hz. As in the study on the effects on sound propagation

of a simple partition placed in a bend (Fuller and Bies, 1978b) this analysis also involved evaluating the

sound power transmission coefficient and the transmission loss.

...The predicted values of transmission coefficient were then evaluated from

_, = I - [e6o/P_o2

The theoretical values obtained for the original attenuator are shown in Figure [13.9(a)], where

sound power transmission coefficient is plotted against a non-dimensional frequency parameter [kR II.

Measured values are also shown in the figure for comparison.

As shown in Figure [13.9(a)] close agreement is observed between the predicted and measured

frequencies at which minima in the transmission coefficient are observed, especially at lower

frequencies. Slight discrepancies between the theoretical and experimental frequencies of minimum

transmission are thought to be due to dimensional inaccuracies in the geometry of the attenuator,

affecting the mean path difference between the two ducts. At low frequencies the wavelength of

the incident sound is very much larger than the duct's small scale dimensions and thus only a small

discrepancy results. However, at high frequencies this is no longer true and the discrepancies are

larger.

The magnitude of the measured transmission coefficient, which agrees closely with that predicted

at low frequencies, is progressively greater than predicted at increasing frequencies. Three possible

reasons for this observation are suggested, as fi)llows.
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Figure 13.8.--Arrafigement and coordinate system of attenuator. From Fuller and Bies (1978b).
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O

(1) The walls of the experimental duct are not absolutely rigid as supposed by theory. In fact

they were found to vibrate and radiate sound .... (2) The minima of the standing wave measured

in the upstream duct become sharper with increasing frequency, particularly at large values of the

standing wave ratio n. This leads to error in evaluating the magnitude of the minimum pressure

and results in a higher value of transmission coefficient than predicted. (3) The duct dimensions

are not exactly described by the theory.

Minimum transmission at the design frequency may be fully accounted for in terms of reflection

at the bend exit plane, interface D of Figure [13.8] .... The additional minima are due to-"muhi-

reflections at interfaces A and D and are fully accounted for by the more exact theory presented

here. The frequencies at which additional minima occur depend upon the magnitude of the path

difference relative to the mean lengths of either of the ducts in the compound bend. For convenience

we will take the inside duct mean length as the standard length for comparison. Thus the ratio of

the inside duct length to path difference determines the frequencies of additional minima ....

An attenuator designed for optimal attenuation characteristics has the following dimensions: with

reference to Figure [13.8] its radii are R 1 = 0.184 meters, Re = 0.248 meters, R3 = 0.006 meters

and R4 = 0.070 meters.

The theoretical and experimentally measured transmission coefficient values of this attenuator

are shown in Figure [13.9(b)]. It can be seen that the extra minima have indeed moved closer to

the design frequency than those shown in Figure [ 13.9(a)]. In the model attenuator a rejection band

of 430 Hz centered at a design frequency of 844 Hz has been achieved.

Closer agreement is obtained in the position of theoretical and experimentally measured minima

produced by the optimum attenuator. This is due to more accurate machining of components in the

attenuator, thus achieving the correct mean path lengths.

The theoretical transmission loss is predicted by

transmission loss = - 10 log(otr).

Theoretical and experimentally measured values of transmission loss for the original attenuator are

shown in Figure [13.10(a)] while those for the optimum attenuator are shown in Figure [13.10(b)] ....

The attenuator provides large transmission loss at a series of discrete frequencies all below the

cut-off frequency for the first cross-mode in the duct. The presence of these discrete frequencies

is explained by reflection of incident sound at the exit and entrance to the attenuator. Their relative

distribution is determined by the geometry of the attenuator.
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14.0 Sound Propagation in Pipe Bends

Cummings (1974) supplements his study on the transmissivity of cylindrical bends in rectangular ducts

by considerations on the acoustical characteristics of pipe bends. The problem is, he indicates, that the toroidal

coordinate system required to suit the boundary conditions of a circular-section curved duct (pipe) is not

one of the I I coordinate systems in which the wave equation is separable. By using some numerical methods,

however, it should be possible to evaluate the sound fields in pipe bends and calculate their characteristics.

As a guide for future research in this area, some experimental data published by Cummings (1974) are

given here. His descriptions and comments are as follows:

...In this paper, measurements are given of the sound field in a circular section curved duct, and

certain plausible proposals are made regarding a design guide. These are supported by measurements.

Figure [14.1] shows the measured sound pressure field in a circular section curved duct with pipe

radius [r2] = 0.0445 m, centreline bend radius = 0.445 m [ko = 35.1 ; and O = 90*]. It is seen that

\ Inside of bend

\

Figure 14.1 .--Sound field in circular-section curved duct. Imposed wave number, k = 35.1; centerline bend radius, R m = 0.445 m;
outer radius of pipe cross section, r2 = 0.0445 m; O = 90*. From Cummings (1974).
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thesoundfieldappearsverymuchthesameasacircularportionofthesoundfieldinasquare
sectioncurvedductif thesideofthesquaresectionisequaltothediameterofthecircularduct,
andthecentrelineradiusisthesameinbothcases.Thatis,thesoundpressurevariationisprincipally
inadirectionparalleltoadiameterofthebend;thereisverylittlesoundpressurevariationina
directionatrightanglesto this in the plane of the duct cross-section.

Figure [ 14.2] shows a comparison of the sound pressure patterns, in the two directions previously

mentioned, between the measurements in the circular section duct and predictions for a square section

curved duct of width and depth equal to the pipe diameter, and the same centreline radius. The

sound pressure pattern along the line AB is almost identical in the two cases (the discrepancy is

within experimental error). Along the line CD, the sound pressure in the square duct is, of course,

uniform since k S has been assumed zero, while there is a small variation in the sound pressure in

the circular section duct ....

Figure [14.3] shows impedance measurements and predictions on the circular duct depicted in

Figure [ 14.2]. In the nomenclature of the diagram in Figure [14.3], (l't + e2) in this case was equal

to 0.1135 m. Three theoretical curves are shown: one calculated on the basis of an equivalent duct

width of r/4 times the duct diameter, one on the assumption of an equivalent duct width equal to

the duct diameter, and one derived by using the centreline length of the curved section. The first

of these appears to be in best agreement with the measurements. The last of these is in almost as

good agreement as the first, while the second is in poor agreement.

It is evident that the equivalent duct width of _r/4 times the diameter gives good agreement with

experiment. This can be used as a basis of a design guide; the ensuing procedure is simply that

for a rectangular section duct.

In view of the mathematical difficulties in handling toroidal coordinates, Keefe and Benade (1983)

...propose an approximate model in which the flow through the circular cross section is considered

to be a superposition of flows through rectangular slices which are stacked on top of one another

to build up the circle. Cummings [1974]...has suggested the possibility of such an approach. We

imagine that the circular cross section is split up into a collection of rectangular slices, each lying

in a plane perpendicular to the axis of curvature having a height H = dz. We assume that the flow

in each slice is that calculated from the velocity potential.., for a duct of this shape and size. In other

words, we assume that the rectangular slices do not communicate with one another, so that only

negligible effects are produced by pressure variations in the vertical z direction and by shear between

moving elements at the interslice boundaries.

Circular duct (measured)
Square-section duct (theoretical)

1.0 _,_ A
.8 "_

" ............... _C"" D

I ( I I
0 .2 .4 .6 .8 t .0

Distance across duct

Figure 14.2.--Sound pressure distributions in circular and rectangular ducts. From Cummings (1974).-
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Figure ]4,3.--Reactance ratio for circular-section curved bend. From Cummings (1974).

Because of its importance and uniqueness the analysis of toroidal ducts done by Keefe and Benade (1983)

is given here.

Given this assumption, the total flow in the circular duct is the sum of the flows in the individual

slices. Figure [14.4] shows that the cross-sectional area of a particular rectangular slice, located

a distance z from the center of the circular cross section, is (r 2 - z 2) I/2 dz. The ratio ap of the

outer to inner radius of this slice may be written in terms of the bend parameter

B[=r2/Rm=(a- 1)/(a + ])].

1 + B[I - (zlr2) 2] 1/2

ap = I - B[I - (zlr2) 2] 1/2 "

In order to determine the wave impedance and phase velocity we again use the transmission line

formulation. The circular cross section arises as a superposition of all the slices, so that the transmission

line representing the curved pipe is composed of the parallel combination of inertances, each shunted

by its own compliance. The inertance L i and compliance Ci per unit length of the ith rectangular

slice are found...to be

Li = (plS)(voIkRm)2= p/ (Rm ln ap dZ),

Ci=(S/pc2),
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Figure I4.4.--Circular cross section of radius r2 of toroidal bend, where for a given rectangular slice at a fixed height z the flow

is assumed to be similar to that in a rectangular bend of height dz. From Keefe and Benade (1983).

where

S = (R 2 - Rl)dZ.

The inertance L r and the compliance C_ of the toroidal duct are obtained by summing over all the

slices in parallel:

Lt

The integrals obtained are

1 R,,, " dzlna/,,

Lt _ r2

CI= (rr_/pc 2) = C O •

The compliance per unit length of a curved duct is simply the cross-sectional area divided by

the bulk modulus. We wish to call particular attention here to the fact that the compliance ofa toroid

or rectangular bend is equal to the compliance CO of a straight pipe of the same cross section. In

the low-frequency regime, the inertance is ahvays lowered relative to its straight pipe value• The

inertance of the toroidal pipe may be written in terms of the inertance per unit length Lo of a straight

pipe of similar cross section as follows:

L0 = (p/rr2) ,

I = cos 0 In - dO,

_0 B cos
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where _ is defined as
The wave admittance Y and phase velocity Vp of the toroidal pipe are

where

/ X'l/2 ( ) I/2 'v = _C,/L,) = Yo 21/_B

The integral l...has been numerically integrated by use of Simpson's rule; the relative shifts in wave

admittance and phase velocity defined in the equation below are plotted in Fig. [14.5] as a function

of the bend parameter B:

AVp AY (21") I/2
-7-= \Th/ -,.

The figure shows that the shifts in admittance and phase velocity vary from 0% to 15% as the curvature

of the bend increases, i.e., as B approaches unity ....

We have measured the wave impedance and phase velocity of acoustical wave propagation in

the curved section of a pipe of circular cross section, by means of normal mode frequency

measurements on several combinations of straight and curved ducts ....

One set of five semicircular curved pipe segments is assembled as a continuous helix [Fig. 14.6(a)].

Another set is assembled as a sinuous pipe of alternating curvature [Fig. 14.6(b)]...

.t_ 16

!
12 Experiment

(curved tubing, to

_ 4

C

I
0 .2 .4 .6 .8 1.0

Bend parameter. B = r2 IR m

Figure 14.5.--Predicted shifts in wave admittance and phase velocity for

wave in toroidal duct as function of bend parameter B = r2/R,, ,, where

r2 is radius of the curved duct cross section and Rm is its radius of

curvature. From Keefe and Benade (1983).

Junction

discontinuity --_

Helical length,

L 3 = 5trRm--..

(a)

T
L 2

_L

_'_'_T _-- Junction discontinuity _ "

-IT , (doubled)--_, Iv

(b) ""- Sinuous length, L 3 = 5tr.R m

(a) Five curved segments joined as continuous helical spiral to form toroidal

duct with 2_h turns.

(b) Five segments joined as sinuous duct so that adjacent segments have

alternating curvature.

Figure 14.6.--Five semicircular segments from baritone horn tuning slide,

each of whose midline lengths is R,,, = 12.7 mm. Radius of circular cross

section, r 2 = 9.25 mm. From Keefe and Benade (1983).
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Our experimental result is that the wave-impedance, wave-admittance (AYIYo = - AZ/Z0), and

phase-velocity shifts are given by

AZ/Z 0 = -6.3%,

AY/Y o = 6.3%,

AVplC = 4.7%.

It is notable that the measured wave-admittance shift is significantly larger than the phase-velocity

shift, in disagreement with the earlier theoretical predictions that they should be equal. The

discontinuity impedance Z,. as defined above is

z,. = i(k6)z0,

[where 6 is the length of a short segment of tubing] so that

Z,.IZo <- 0.1%.

We see that the effect of the evanescent modes is very small compared to the propagating mode,

since the discontinuity impedance is much less in magnitude than the propagating mode impedance ....

The assumption made that the evanescent modes response is negligible relative to that of propagating

mode is therefore shown to be valid ....

The theory of wave propagation in the long-wavelength limit within strongly curved ducts of both

rectangular and circular cross section has been investigated. The phase velocity and wave admittance

are both increased in a curved duct relative to their straight duct values. Our experiments show

that the wave-admittance shift is larger than the phase-velocity shift, although all theories predict

that they should be equal. The observed shifts are smaller than the predicted shifts, which suggests

that large shearing losses in the bulk of the fluid in the curved duct may be present.

The unresolved issues could be clarified by further low-frequency experiments using curved ducts

of both rectangular and circular cross section.

Sound propagation in bends in a slender three-dimensional tubing of arbitrary (nonspecified) cross section

was evaluated analytically by Ting and Miksis (1983) for four scalings of the wave number k. The slenderness

of the tubing allowed them to bypass the difficulty of solving nonseparable toroidal coordinate systems by

using the perturbation method (solving for motion inside the bent tubing). Slenderness is described by the

perturbation parameter defined as the ratio r2/e << I, where 1"2 is the reference length of the cross sections

(here the radius of the circular tubing) and e is the length of the bend or its radius of curvature. This perturbation

analysis makes it possible to split the three-dimensional problem into two problems (a two-dimensional problem

in a cross section and a one-dimensional problem along the curved centerline). Ting and Miksis concluded

that for extremely long waves in curved tubing, sound propagation does not differ from that in straight

tubing. For frequencies one order of magnitude higher, their results indicate that the phase of motion depends

only on the length of the bend along its centerline and that the wave amplitude is inversely proportional

to the square root of the tubing cross-sectional area.

For still higher frequencies (wavelengths of the order of the tubing radius) several modes can propagate

and their number is governed by the tubing cross-sectional area. Some of the eigenvalues become imaginary,

indicating evanescent waves. For shorter waves the propagation becomes a function of the bend's curvature.

An unusual study of modal wave propagation in bent elliptical piping was published by Furnell and Bies

(1989). They described the way they solved the problem as follows:

In this paper, an approach similar to that proposed by Rice [1948] is used to facilitate a theoretical

investigation of the modal nature of acoustic wave propagation within straight and circularly curved

waveguides .... The problem is made amenable to an analysis [by] incorporating the theory of matrices

[and] by seeking approximate mode solutions in the form of finite functional series expansions. By

requiring that these solutions satisfy variational statements equivalent to the boundary value problem

posed by [the Neumann condition] the series coefficients are determined via the Rayleigh-Ritz

method ....
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...The interaction of the mode solutions at the junctions between sections of straight and curved
waveguide are considered. This leads to the derivation of transmission and reflection matrices which
relate the complex amplitudes of modes in a wave incident upon a section of curved waveguide,
to those in waves transmitted through and reflected from it.... The derivation of these matrices utilizes
techniques similar to those appearing in the papers by Tam [1976], Firth and Fahy [ 1984], Rostafinski
[1976] and Fuller and Bies [1978a], and, once calculated, can be used to analyze complicated
waveguide systems containing many curved and straight sections ....

Finally .... the preceding theory is applied to a waveguide of elliptic cross-section, and results are
presented which verify the feasibility of the proposed numerical algorithms.

The eigenfunctions and eigenvalues of a propagation were obtained by the classical separation of variables

method, but the solution of the transverse field within the pipe was obtained by an approximate method
based on the calculus of variations. Determination of the transmission and reflection characteristics of curved

elliptical tubing relied on a system of matrices with eigenvectors and vectors containing complex amplitudes

of the wave's eigenmodes. Next, to avoid using the complicated Mathieu functions in evaluating the

characteristics of elliptical cross sections, Furnell and Bies (1989) used a transformation of coordinates that

greatly simplified the analysis. Figure 14.7 shows contours of modes propagating in straight and curved

elliptical tubing.

In an extensive study Firth and Fahy (1984) used series expansions to evaluate acoustic torus modes.

Their Helmholtz equation in toroidal coordinates, in terms of the velocity potential, is

02_b+ ..... + + + k2_k = 0
Or2 R - r cos a Or r2 c9_2 r(R - r cos or) 0or (R - r cos _)2 002

The assumed solution involves two potentials: one dependent on propagation within the pipe (pipe radius

r and angular coordinate ct in the pipe cross section are variables), the other involves the angular coordinate

of the bend. Since _b(r,o_) is not separable in r and o_, Firth and Fahy used a series solution to bypass the

difficulty:

_rc_(r,ot) =

oo

S An(r) cos nc_ + Bn(r) sin nct,
n=O

where An (r) and B,, (r) are functions representing the radial dependence, which will be different
for each n.

They warn that a separate solution will be required for every frequency under consideration--a minor

inconvenience. Radial dependence inside each cross section is represented by functions An (r) and B n (r).

For plane waves incident on the bend, they write

An(r ) =

oo

E amJn(Xmr/r2)'
m=O

where the am are constant coefficients and Jn is the Bessel function of the first kind of order n.
The X m are the zeros of the gradient of the function J,, (x) and [r2] is the radius of the cross section

that is, the sum of the radial functions of the modes in a straight pipe, which yields, as needed, zero normal

gradient on the pipe wall. They give the results of a numerical analysis that includes matching solutions

in the pipe bend with solutions in a straight pipe as shown in table 14.1.

Firth and Fahy (1984) performed calculations for a bend with a = 2.33 and r2/R,, = 0.4 (where r2 is the

pipe radius) and for several modes of motion. In article notation, frequency is given as f/ft, where fl is

the first cutoff frequency for the cylindrical pipe. Angles o_are angular locations in the pipe's cross sections
measured from the horizontal. Figure 14.8 gives the calculated radial and angular distributions of normalized

acoustical pressure. The modes, of course, resemble those propagating in a straight pipe and, as frequency
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(a) Odd mode.

(b) Even mode.

Figure 14.7.--Contours in straight and curved waveguides, where # and _, are elgenvalues in straight and bent elliptical ducts,

respectively. From Furnell and Bies (1989).

TABLE 14. I.--ORDER OF

CYLINDER MODES

[From Firth and Fahy (1984).]

Mode Order, Terms of

n series,

m

1 0 0 0

2 1 1 1.84118

3 2 3.05424

4 0 3.83171

5 3 4.20119

6 4 , 5.31755

7 1 2 5.33144
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Figure 14.8.--Symmetric acoustic torus modes. From Firth and Fahy (1984).
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decreases,themodesbecomemorelikethecylindricalmodes.Thecalculatedtoruswavenumbersforseveral
modesareshowninfigures14.9and14.10.ThesecondgraphincludesdatacalculatedbyCummings(1974)
forabentduct.Thetransmissionandreflectioncoefficientshavebeencalculatedfora90*bendconnected
totwostraightpipes.Figure14.11givestheamplitudeandphaseof theincidentwaves(threemodes)at
theinletjunctionasafunctionof frequencyuptotwice"thefirst-modefrequencyinastraightpipe.The
basicplane-wavemodeis transmittedwell.
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Figure 14.9.--Dispersion curves for Iorus modes for radius ratio, rJR m = 0.4. From Firth and Fahy (1984).
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Figure 14.10.--Variation of bend wave number with frequency for various bend radii. From Firth and Fahy ([984).
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coefficient, B+; incident plane wave. From Firth and Fahy (1984).
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15.0 Sound Propagation in Rounded Corners

Although not exactly belonging to the study of acoustical behavior in cylindrical bends, the paper by

Cabelli and Shepherd (1981) on acoustical characteristics of rounded corners (see fig. 15.1) merits mention

in this monograph because it further illustrates the effects of rounded corners, axial partition in a bend,

and selective, frequency-dependent reflections. Out of the experimental data reported in their paper, one

figure may be of special interest here (fig. 15.2). It illustrates the influence of the inner and outer radii

on the acoustic energy reflected in a 90* mitered bend with rounded corners at wave number parameter

kRi(a - 1) = 4.5. They comment as follows:-

Clearly a radius on the outer wall of the bend greatly reduces reflection while a radiused inner

wall increases reflection, particularly where an outer radius exists. Therefore, a generous inner wall

radius is beneficial acoustically and aerodynamically (at most frequencies between cut-on of the

first and second cross modes) whilst a curved outer wall represents a trade off between aerodynamic

and acoustic performance.
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t
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Figure 15.1.--Rounded corner geometry. From Cabelli and Shepherd
(1981).
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Figure 15.2.--Variation of reflection coefficient with bend radii for
90* bend. Wave number parameter, kRl(a - I) = 4.5. From Cabelli
and Shepherd (1981).

16.0 Main Acoustical Characteristics of Bends

Work done so far has contributed considerably to the knowledge of sound propagation in bends. In early

papers published before the 1970's at least one new characteristic, the angular wave number, was defined.

Krasnushkin (1945) coined the term "angular wave number," a nondimensional parameter, as opposed

to the dimensional wave number, which characterizes motion in straight conduits. In the 1970's and 1980's

a wealth of information was obtained. The main features of sound propagation in curved ducts and pipes
are as follows:

(I) The existence of a nondimensional propagation parameter called the angular wave number, which
is the order of the Bessel function, the eigenvalue of the characteristic function of motion. Angular wave

number is a function of both the wave number parameter kR_, which is the argument of the Bessel functions,

and of the bend radius ratio a = R2/RI, which also defines the characteristic equation. In other words, the

radial geometry of the bend and the frequency of the imposed sound determine this parameter. In spite

of the importance of the angular wave number, the bend's acoustical characteristics can be established by

numerical methods that do not require knowledge of the angular wave number.

(2) Similarity between motion in pipes and ducts. Propagation in pipes does not differ to any radical degree

from motion in ducts so that data available from studies of rectangular bends constitute a satisfactory

approximation for engineering purposes.

(3) Inability of the plane wave (0,0) mode to propagate in a bend. A plane wave moving in a straight

duct changes its characteristics when it enters a bend. Particle velocities are no longer uniform, and even

in the low frequency range the pressure distribution is not exactly uniform. In extremely narrow ducting,

however, long waves propagate as if the duct were straight. On the other hand, sound propagation in bends

is always characterized by the appearance of radial vibrations.

(4) The existence of many modes. As in a straight duct many different modes can propagate in bends;

also a great number of evanescent waves are generated at every junction between a straight and a curved

section of a ducting system. They attenuate rapidly but go farther in sharp bends (large a) than in narrow
ducting.
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(5)Dependenceofphasevelocityinbendsonfrequency.At frequencieslowerthankRl(a - 1)/Tr = 0.5

a wave moves faster; at higher frequencies it moves slower. At frequencies corresponding to exactly 0.5,

waves propagate with phase velocity entirely independent of a (i.e., as if there were no duct curvature).

(6) Resonances in bends. As in straight ducts, resonances appear in bends, but the curvature introduces
a shift in the resonant frequencies.

(7) Uncertainty about reflections. The matter of reflections in hard-wall bends is not clear as yet. Some

experiments indicate that the transmissivity of bends, even extremely sharp bends, is excellent for extremely

low to low frequencies. At higher frequencies significant reflections have been measured.

(8) Lower impedance than straight ducts. The impedance of hard-wall ducts is slightly less than the

impedance of corresponding (lengthwise along the centerline and the mean radius (Ri + R2)/2) straight
ducts.

(9) Effectiveness of acoustic lining. Acoustically lined bends, of all radius ratios but of equal median

length, attenuate sound about as well as a corresponding straight duct. Not all modes are capable of propagating

in a curved acoustically lined duct: only the fundamental mode can propagate at all frequencies.

(10) Effectiveness of turning vanes. Bends equipped with turning vanes (flat or shaped), if properly designed,

may become excellent sound attenuators in a relatively wide range of frequencies.

17.0 Concluding Remarks

Many analytical and experimental studies of bends with many different degrees of sharpness and in a

wide frequency range have determined the main characteristics of sound propagation in curved ducts. The

data, as reported herein, and supplemented when needed by the original papers, should give satisfactory
understanding of the penalties and benefits involved in using bends in acoustical systems.

However, several important areas require serious additional analytical and experimental effort:

(1) An overall encompassing code is needed for obtaining all the characteristics of sound propagation

in any particular bend for any given frequency.

(2) The matter of reflections should be clarified and the reflectivity and transmissivity of both hard-wall
and acoustically lined bends determined.

(3) The acoustical performance of cylindrical pipe bends should be studied in greater detail.
(4) The effect of flow on sound transmission in bends should be determined.

(5) The merits of non-locally-reactive acoustical linings in bends relative to standard, Helmholtz resonator

linings should be investigated further.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, August 2, 1990
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Appendix A
Derivation of Roots for Long Waves in Hard-Wall Bends

There are no known tables* for the roots Vm of the characteristic equation

[J_m (kR_)J'_ v,, (akR_) - .l_m(akR,)f_ v,,(kRl)] = 0

In order to evaluate the urn's, the J_ and J'v are expanded by increasing the powers of the arguments akR_

and kR_. Limiting the expansion in the first approximation to the first term, which yields satisfactory results

when arguments of the Bessel functions are much less than 1, gives

_ v l)(kr)__ l + . . .Y_(kr) 2T(v +

J'-v(kr) = v (kr)-"-l+ ...
2-"(1 - v)

and using a recurrence relation for the gamma function gives, after substitutions,

p2 [ ( kRi ) -_- l(akRi ) v-I - (kRi ) _- _(akRl) -v-t] =0
sin 7rvF(v + 1)(1 - v)

and finally

v (a v-I - a -v-1 ) = 0
7r(kR1) 2

Solution v = 0 must be rejected as a general solution. Therefore, the general solution must satisfy the equation

which may be put in the form

Hence, 2v In a = 2mrri, that is,

a v-I = a-_-I

a 2v = 1 or e 2vlna = 1

m_ri
1'm :- m = 1, 2, 3 .... (A1)

In a

Better approximations will be given by the second and following terms of the expansion of J_ and J'-v.

After algebraic manipulations and dropping the term containing (kRl)z,

sin Try

16Try(1 + v)(1 - v)
Iv(1 - v)(2 + v)(a -v-I - a I+") + (1 + v)(2 - v)v(a v-I - a t-v )

+ 4v2(1 -- v)(1 + v)(kR 1) -2(aV-I -- a-V-I)] = 0

*A table of roots for v,,, = 0.5, 1.5, 2.5 .... has been published by Rostafinski (1974c). In the present case (extremely small v,,,)

it is necessary to extrapolate the tabulated data.
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In order to improve on the first approximation (eq. (AI)), it is assumed that

1/m _ m

mri ln(1 + era)
+

In a In a
(A2)

where E,,, is a small quantity. Solving and remembering that

In z = In ]zI + i(arg z + 2nr)

and substituting again, since

gives

1
=l-e

l+e

n=0, ±1,...

(2- u2)(a-l -al) + 2v(1- u2)(kRi)-2 (_) =O

(2 - u2)(kRl ) 2

4v(1 - v 2)
(I -a 2) = -i

(kRi)2(a 2 - 1)[2 + m2"n'2 ]C. I

I m 2,tl.2 ]4mTr 1 + (In a)2J

In o

Finally,

m27r 2 ](kRi)2(a 2 - 1) 2 + (In a)2J

4mTr [ 1 + (1--_a)2jm27r2]

Now for m = 0 in equation (A2)

in (1 +Co)
P0_

In a

Substituting again and neglecting terms in Vo2 gives

1 m=1,2,3 ....

[ In (1 + Co).] 1 a(1 +Co) + [2 +2 1-na a(l + eo) ln(l+e°)]C+e°ln a 1 +a_o)

In (1 + Co) -2
+ 4 (kR l)

In a 1 + eo a i]a a(l + e0
=0
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Solving gives

[2 In (1+%!]1na
1 -- C?0

a
a(l + e) + a(l - t)

In (1 + %)
+4

In a
(kRi) -2 =0

Finally,

-4

% In (1 + %) =
In a

_) 8e0In(1 +%)
+ +

a In a

4 1
_ (kRi)-2+a+_
a 2

(kRi) -2 = 0

Since ln(l + %) = %,

and

e_ 2(a 2- 1)

lna 4(kRi)-2 + a 2+ 1

2(a 2 - 1)

In a
v_=

4(kR1)-2 +a 2 + 1

Since the result depends on v_, the preceding steps must be retraced and evaluation performed without

neglecting terms in vg. After algebraic manipulations a new expression for v0 is obtained:

I4 2(a 2- 1)

in a

(kRI)-2 + a 2+ 1 +--
a 2- 1

In a

I 1/2

There is an infinite set of pure imaginary roots Pm= i(mTr/In a), m = 1, 2, 3 .... and one single real
root v0. The uniqueness of the obtained real root can be verified by substituting for a" the power series

a _= 1 + vlna 4
v2(ln a) 2
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In the first approximation,

k,0 =

2_(a2 - 1) I 'f2

In a a - i_ _
= (kRl) \2 In a/t

/2

This result was obtained with only the first two terms of the series for aL When three terms of this series

were used and when small terms of the fourth order were neglected, the result was

l, 0 =

I4 2(a 2 _- 1)

In a

(kR,) -2 + a 2 + 1 + a2
1

"1 1/2(a 2 -- l)ln a
In a

The equation for v0 was thus verified by series expansion, and the uniqueness of the root v0 was established.
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Appendix B

Propagating-Mode and Evanescent-Wave Solutions of Characteristic

Equation for Long Waves in Hard-Wall Bends

Let us consider the characteristic function

F_,.(r) = J_,,,(kRt)J_.,,,(kr) - J_,,,(kr)J'__,,,(kR 1) where m = 0, 1, 2 ....

Real Root Solution

Let us consider the solution of F_0.pertaining to the real root v0. Using the series expansions for J_o(kr)
and J__o(kRl) and for J_o(kr) and J_,o(kRl) and equations for the gamma functions and rearranging those
expressxons gives

- -4Vo + 4v03- 2(kRl + " - v0(kRl) 2]F_o(r'R') 4(kRi)u-_r(l_v02)

(r'] _° Vo-v6 + (kRl)" Vo( ,)2. + (r'_ [-4% + 4go3+ (kr) 2
\Rb/ 2 \Rill L

+ 2(kR1) z - u_(kRj)" - eo(kRi) 2] + (kr) 2
\RJ 2

Next, using power series for the exponential functions

/l/r'x *_0 r=1 + v01n--+
\Rb/ RI

4-
2! 3!

-{- , , ,

and neglecting terms in v_)and terms containing products (kr) 2 (kRl) _ that are of the same order, we get

F, o (r,Rt) = -8 + 8v_ - 2(kRl) 2 - 4(kRt) 2 In r r-- + 2v_(kRl) 2 In --
Rl R_

]--4v_ (ln-_l)E-v2o(kR,)2(ln-_l) -_v_(kR,)2 (ln_

+ (kr) 2 2-2v61n--+vo 2 In
RI

This general solution verifies the differential equation for a wide range of radius ratios a -- R2/RI. For

4 < a < 1 the error is negligible; for a = 10 the error is approximately ! percent.

This equation, if greatly simplified by eliminating products of small terms becomes

sin(Trvo) -8 + 8vo2 - 2(kRI) 2 - 4vo2 In + 2(kr) z - 4(kRi) "_In
F"°(r'Rl) 47r(kRt)
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and,whenappliedtothedifferentialequation,stillyieldsasatisfactoryexpressionforv0 at r = R2, namely

2(a 2 -- a)

Ina
1,o2 _=

4(kR1 ) -2

For numerical calculations F_o is, with high accuracy,

Fuo --_

Imaginary Root Solutions

_ (kRi)2 a2- 1
21na

2 sin(r%)

7r(kRi)

Let us consider the Bessel functions of pure imaginary order and real argument and use tables of functions

published by Buckens (1963). The very basic relations (from Buckens, 1963) are

F_(kr) + iG_(kr) = 2iup (1 + i#)Jiu(kr ) . . .

F. (kr) - iG_ (kr) = 2 -iup(i - i#)J_i. (kr)

The left sides of these equations are complex conjugates. As P(l + ip`) -- F(l + i/_), it can be concluded

that 2iuJ_i_(kr ) is a complex conjugate of 2-iuJi_,(kr ). In these equations ip` = u and

G_(kr) = Au(kr ) sin[p` ln(kr)] + Bu(kr) cos[p, ln(kr)]

F.(kr) = A#(kr) cos[p` In(kr)] - Bu(kr ) sin[p` ln(kr)]

The functions Au(kr) and B.(kr) are

GO

A_,(kr) = E (_)2g(ikr)2g
g=0

OO

Bu(kr) = _ (_)2g(ikr) 2g
g=0

where g = 0, 1, 2, 3 ..... (_)0 = 1, (Do = 0, and

_'2g= g_'2_-2 - P`_2_-2
4g(#2 + g2)

_2g = g_2g-2 + P`_'2_¢-2
4g(#2 + g2)

Neglecting the fourth and higher powers of kr gives

[ .]F_(kr) = 1 4(1 + p2)J cos[/_ ln(kr)l

(kr) 2 ]G_(kr) = 1 4(1 + p`2)
sin[p` ln(kr)] + --

(kr) 2

4(1 + p`2) sin[p` In(kr)]

(kr) 2

4(1 + #2) cos[p` ln(kr)]

88



Substituting into the basic equations for F_(kr) + iG¢(kr) results in expressions for Ji_(kr) and J_i_(kr)
for kr << 1 (terms in (kr) 2 neglected).

cos[# ln(kr)] + i sin[_ ln(k_')] = 2i_1"(1 + i_)Ji_(kr)

cos[/_ In (kr)] - i sin[_ In (kr)] = 2i_'I'(l - i#)J_i_ (kr)

Taking the derivative of the basic equation for Fu (kr) + iGu (kr) with respect to the argument kr of the
Bessel function gives

2;_r(1 + ilz)Ji_(kr) = sin[_ ln(kr)l [2_'2(kr) +/z_2(kr) - _r] + cos[# ln(kr)][t_2(kr) - 2_2(kr)]

+i I-cos[#ln(kr)] [2_2(kr)+Iz_2(kr)-_rr] +sin[#ln(kr)][Ix_2(kr)-2_2(kr)] 1

All terms containing _'2(kr) and _2(kr) are small in relation to #/kr and in the first approximation may

be neglected. The resulting equations are

2°'I"(1 + i#)Ji_,(kr) = - /_ sin[/_ ln(kr)] + i _ cos[/z In(kr)]
kr kr

2 - iur (1 - itt)J-iu (kr) = - --# sin[# ln(kr)] - i _ cos[_ ln(kr)]
kr kr

Therefore Fv," for m ;_ 0 can be formed as follows:

Fvm = -2i #___.msin[gin ln(kr)] sin[t_m ln(kRi)] + cos[#m ln(kr)] cos[/z,, ln(kRl)]
kR_ F(I + i#m)r(l - i/xm)

Since

r(l + i/Xm)r(1 - i/_m) -

using trigonometric transformation results in

Fun = i cos /'_m In

w(kRI)

This equation shows that F,,, is a pure imaginary number and is a function of radius r.
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