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Abstract 

This paper compares two methods of on-orbit alignment of vector attitude 
sensors. The first method uses the angular difference between simultaneous 
measurements from two or more sensors. These angles are compared to the 
angular differences between the respective reference positions of the sensed 
objects. The alignments of the sensors are adjusted to minimize the 
difference between the two sets of angles. In the second method, the sensor 
alignment is part of a state vector that includes the attitude. The align- 
ments are adjusted along with the attitude to minimize all observation residu- 
als. It is shown that the latter method can result in much less alignment 
uncertainty when gyroscopes are used for attitude propagation during the 
alignment estimation. The additional information for this increased accuracy 
comes from knowledge of relative attitude obtained from the spacecraft gyro- 
scopes. This paper presents the theoretical calculations of this difference 
in accuracy. Also presented are numerical estimates of the alignment 
uncertainties of the fixed-head star trackers on the Extreme Ultraviolet 
Explorer spacecraft using both methods. 
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This paper compares two methods of determini the in-flight alignment estima- 
tion of vector-type attitude sensors. The two methods of alignment estimation 
will be referred to as attitude-independent and attitude-dependent and are 
outlined below. The estimated accuracy of the two approaches will be dis- 
cussed. 

Vector-type attitude sensors are those sensors whose output are vector mea- 
surements of the lines-of-sight to some reference object. Examples of this 
type of sensor are Sun sensors and star trackers. A minimum of two vector 
observations are needed for attitude determination. The analysis presented in 
this paper will be restricted to observations from two fixed-head star track- 
ers (FHSTs) for simplicity. 

Section 2 discusses the theoretical differences in the accuracy of these two 
approaches. Section 3 presents a numerical example of both methods using the 
Extreme Ultraviolet Explorer (EWE) spacecraft as a typical mission case. 

ATTITUDE-INDEPENDENT ALIGNMENT ESTIMATION 

The attitude-independent method of sensor alignment estimation discussed here 
is based on an algorithm first presented in a paper by Shuster, Chitre, and 
Niebur (Reference 1) and later refined by Bierman and Shuster (Reference 2). 
This method of sensor alignment estimation uses the angle between two vector 
observations as its basic observation. This scalar observation is compared to 
the angle between the corresponding reference objects, and the sensor align- 
ment is adjusted to minimize the difference. The method requires simultaneous 
measurements in each sensor. No a priori knowledge of the attitude is used 
nor does the algorithm solve for the attitude. The algorithm seeks to mini- 
mize the overall deviation of the sensor alignments from their prelaunch 
values. 

ATTITUDE-DEPENDENT ALIGNMENT ESTIMATION 

In an attitude-dependent alignment estimation method, the spacecraft attitude 
is part of a state vector that includes the sensor alignments. The attitude 
is either solved-for along with the alignment or is treated as a known quan- 
tity. The primary observation quantity is the unit vector measurement from 
the sensors as opposed to the scalar measurement of the attitude-independent 
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method. Residuals are computed between estimated observations based on the 
state vector and the actual observations. e state vector is adjusted to 
minimize the residuals. Two procedures are in common use to obtain this 
minimization: the sequential filter and the batch filter. The sequential 
filter updates its estimation of the state vector at discrete times using a 
previously estimated state that has been propagated from the time of the last 
sensor observation. The batch filter considers a collection of sensor obser- 
vations in toto and seeks to minimize all residuals simultaneously. Both 
procedures require knowledge of the motion of the spacecraft between observa- 
tions. This knowledge is usually obtained from gyroscope measurements but 
could be inferred from a dynamics model of the spacecraft. The analysis in 
this paper will restrict itself to the batch filter and will assume dynamics 
information is available. 

2. THEORETICAL EVALUATION 

As stated in the introduction, this analysis will assume a spacecraft with two 
FHSTs. The state vector (References 3 through 5 )  to be estimated is 

where Ag(t) is a vector of attitude error angles around the spacecraft body 
axes and t (for i = 1 and 2) is a vector of sensor misalignment angles around 
the it 

i 
FHST axes (References 4 and 5 ) .  

A batch least-squares estimate of the state at an epoch time t , ignoring the 
effects of dynamics noise and consider parameters, has the covariance 
(Reference 3) 

0 

where W is the normal matrix, 
n 

W = W  + F T W F  
n 0 
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T The matrix W is the inverse of the a priori covariance of j? and F W F repre- 
sents the information contained in the measurements. Assuming no a priori 
attitude knowledge and a priori knowledge of sensor misalignments with 
standard deviation (r 

0 

per axis gives 
a 

where 0 denotes an n x m matrix of zeros and Inxn is an n x n identity 
matrix. The form of the matrices F and W depends on the measurements. 

The it FHST re turns the two-component measurement 

nxm 

h 

where W i  is the unit vector measurement of the star in FHST coordinates 
(References 4 and 5 ) .  

be uncorrelated and to have equal measurement variances denoted by (r . 
The observation at a given time processed by the estimator is a function of z1 
and z2. The attitude-independent observation is a scalar given by the inner 
product of the two star vectors in the spacecraft body frame. 

The errors in the two components of zi are assumed to 
2 
m 

where Bi and B2 are the sensor alignment matrices that rotate a vector from 
the spacecraft body frame to FHST-1 and FHST-2 frames, respectively. This 
quantity contains no attitude information. 

The attitude-dependent observation is a four-component vector 
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This quantity contains attitude information. For simplicity, assume the 
sensor alignments, B and B2' are 

1 

B1 = I = 3 x 3 identity matrix 
3x3 

B2 = 0 1 0 = rotation by 90 degrees (deg) about the y-axis [: ~ - ~ ]  
Thus, the sensor boresight, which is along the z-axis in the sensor frame, is 
along the spacecraft z- and x-axis for FHST-1 and FHST-2, respectively. The 
partial derivatives of the observations with respect to the state vector 
components are needed to compute the normal matrix. Again for simplicity, 
assume the observed stars are on the sensor boresights. The partial deriva- 
tive matrix for the scalar observation is 

as A A 

- = [ OlX3, (wl x B ~ B X  w2)', (W2 x B ~ B ~  w1) 
ax 

G 

= [ O , O , O , O ,  1 , 0 , 0 , - 1 , O l  

For the assumed geometry, the variance of the errors in the scalar observa- 
tion, s,  is 2cr . The partial derivative matrix for the vector observation is 
(References 4 and 5) 

2 
m 

where 

0 1 0  

M = [ - l  0 0 ] 
The attitude and misalignment variances will be computed for four cases. For 
either a scalar or vector observation type, either a single measurement or 
else two measurements separated by a 90-deg attitude maneuver about the space- 
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craft y-axis will be considered. The estimate epoch time will be taken to be 
the time of the first observation. The measurement weight matrix, 
assumed to be the inverse of the measurement covariance in all cases. The 
measurement error propagation matrix between the two observation times is 
given by (References 3 through 5 )  

where cPo represents a 90-deg rotation about the y-axis. 
scenarios and their associated weight and total derivative matrices follow: 

The four measurement 

1. A single scalar observation 

F = G  
8 

2. Two scalar observations separated by a 90-deg maneuver 

3. A single four-vector observation 

F = G  
V 

-2 
rn '4x4 

w = c  

4. Two four-vector observations separated by a 90-deg maneuver 

w = I 
m 8 x 8  

For each scenario the normal matrix will be computed and then inverted to 
obtain the covariance matrix. In all cases a permutation of the rows and 
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columns o f  the normal matri diago~al form, facfli- 
tating matrix inversion. Thi the 

state vector as 

T A@ , m Aez, m2xp ABy, m , m m m 
x lx' 1y 2y l z 9  22 

The normal matrix with the permuted rows and columns will similarly be dis- 
tinguished by a prime, Wl. 

SCENARIO 1: A SINGLE SCALAR OBSERVATION 

First consider scenario 1, a single scalar observation, for which 

I O  
3x3 1 3x3 I O3X3 
0 
-.. ....... " ...-...... i .. ".."..."..".." .._.......... ) ""."..."....."I.-.- 

1 c-2 G ~ G  = 
3x3 

FTW F = - 
........ -.... : " ...._........ " ............ " .. "."....*".......-I"..- 

2 r n  s s  2 m  

where D = diag(0, 1, 01 and diagl . . . I  denotes a diagonal matrix with the 
indicated elements along the diagonal. The permuted normal 
scenario is 

-2 W' = c 
n m 

where 

"." 

0 

matrix in this 

a = ( r  / ( T I 2  
m a 
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The variances of the state vector components are the diagonal elements of the 
' . Thus, in this scenario the attitude error variances are all 

infinite, which is to be expected with attitude-independent observations. The 
and C T ~ ( ~ ~ ~ ) ,  are all four misalignment variances, CT (mlxl, CT (mlzls a- (mzx 

equal to their a priori values, CT , which means that the single scalar obser- 
vation does not contain information about these misalignments. The y compo- 
nent of the misalignment variances for  each of the two sensors is given by 

n 

2 2 2 

2 
a 

CT2 + 1/2 CT: 
2 
a 

It is instructive to examine two limiting cases: the case of sensor data 
uncertainty much less than the a priori state vector uncertainty (e << CT 1 and 
the opposite case of poor measurement accuracy (CT The y-axis align- 
ment variance for scenario 1 has the limit CT for  CT >> CT and (1/2) c2 for 
(r << (r . The former result is reasonable since the measurements do not im- 
prove the a priori estimates in this limit. In the opposite limit of accurate 
measurements, the y-axis misalignments of the two FHSTs are in some sense 
averaged. These results are independent of the number of observations. 

m a 
B ea). 

m 
2 
a m a a 

m a 

SCENARIO 2: TWO SCALAR OBSERVATIONS SEPARATED BY A MANEWER 

For scenario 2, two scalar observations separated by a 90-deg maneuver, 

T c-2 [ G ~ G  + ~ T G ~ G  i9 = G ~ G  ] m s s  
F W F = -  2 m  s s  s s  

since it is easily seen that 

a T ~ T ~  e = G ~ G  
8 8  s s  

Thus, the only change in W' from scenario 1 is to replace each 112 in the 
matrix by 1, and the only variances that are modified are 

n 

2 
a 

CT2 + CT 

<r2(m = (r2 [ m 
CT2 + 2 e: f Y  a 
m 
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These variances, however, have the same limits fop. 0' B 0' and Q (< 0' as in 

scenario 1. 
m a m a 

SCENARIO 3: A SINGLE FOUR-VECTOR OBSERVATIO 

Scenario 3, a single four-vector observation, gives 

where 

= diag(1, 2, 11 re, 

r = diag(1, 1, 0, 1, 1, 0) 
mm 

The permuted normal matrix is 

W' = 0'-2 
n m 

I1 1 i  

i l  .............. (a " ..-..... + "..".... ̂" I)! ..... ............. I ..... .....-.....-. 0 
1 1  -1 : 
I-1 (a + 1): 

" ""... ................ I ...... "_I".." ..... " .......... " .....-.. ̂ .............. " _ ........._.... 

............. " " ........ "" ............ " .- ............................. 
i .  

. .  0 

Inverting this matrix gives the attitude variances 

11 



These results can be understood intuitively as follows. An observation of a 
star on the boresight of FHST-1, which is aligned with the spacecraft z-axis, 
provides information about the x- and y-axis attitude errors. Similarly, an 
observation of a star on the boresight of FHST-2, which is aligned with the 
spacecraft x-axis, provides information about the y- and z-axis attitude 
errors. As there is twice as much information about the y-axis attitude, the 
variance of the y-axis attitude is half as large as that of the other two 
axes. The x- and z-axis uncertainties are the root-sum-square of the a priori 
alignment uncertainty and the measurement uncertainty. 

The alignment varzances are the same as in scenario 1; therefore, no align- 
ment information is lost or gained by combining the four components of the 
vector observations into a single scalar observation for measurements taken at 
a single attitude. 

SCENARIO 4: TWO FOUR-VECTOR OBSERVATIONS SEPARATED BY A MANEWER 

The final scenario, two four-vector observations separated by a 90-deg maneu- 
ver , has 

1 F ~ W  F = [ G ~ G  + * T ~ T ~  4 
m v v  v v  

where 

It is easy to see that 

however , 
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0 0 0-1 0 0 

Tk 

0 

- 1 0 0 0 0 0  

is, in contrast to the scalar observation case, the stri cture of the normal 
matrix will be different when a spacecraft maneuver is performed during align- 
ment. The normal matrix is 

-2 W' = O' 
n m 

1 2  1 0 -1 

1 (a + 2) -1 0 

0 -1 2 -1 
i -1 0 -1 (a + 2) 

I 
i 

_._Y.ll. 

0 

0 

i,i ."" I_ 

It can be seen that c2(m This 
result is simply that observations of stars on the boresight can never improve 
knowledge of the misalignment component about the boresight. The y-axis 
attitude and misalignment variances are the same as scenario 3 with O' being 
replaced by (1/2) r2, reflecting the presence of twice as many measurements. 
Thus 

1 = r2 in this scenario as in all the others. iz a 

2 
m 

m 

2 1 
O' (AB ) = - 

The y-axis misalignment uncertainties are the same as those in scenario 2, 
using scalar observations formed from the same measurements. The new feature 
of scenario 4 is the coupling of he , Agz, mix, and mZx in the 4 x 4 block in 
the upper-left corner of W'. 

X 

Inverting this submatrix gives the variances 
n 
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2 
<r + 2 Q 2  

2 <r2 + 2 Q2 

2 2 m a 
m 

s2(Ae f = s (as 1 = 0- 
X z 

m a 

The x-axis misalignment variance of the FHST is the harmonic mean of the 
measurement variance and the a priori alignment variance. It is, therefore, 
less than either variance and approaches the smaller of the two in the limit 
that the other becomes very large. The limits of the x- and z-axis attitude 
variances are (1/2) Q for (r B Q and Q for Q << Q . The latter is, like 

1, finite as Q tends to infinity. Thus, unlike any other scenario 
(r2 (mix a 
considered, the attitude and alignment knowledge obtained from the FHSTs is 
much better than the a priori knowledge of the misalignments. 

2 2 
D m a m m a 

THEORETICAL EVALUATION SUMMARY 

Table 1 summarizes the alignment variance results for the four scenarios. As 
the table shows, the only significant difference in the alignment variance 
results between the attitude-independent and the attitude-dependent methods is 
due to the attitude maneuver. 

Scenario 1 

Scenario 2 

Scenario 3 

Scenario 4 L 

Table 1. Alignment Variance Results Summary 

2 
a 

Q 

2 
a 

Q 

2 2 
a a 

Q2 + 1/2 Q t  

0- 

2 
a 

Q 

2 
Q 
a 

-2 2 
a a m 

Q (Q + Q-21-1 

2 
2 
a 

0- 

2 
a 

(r2 + 1/2 trt 
m 

2 2 
Q + Q  

m a 

2 
2 
a 

Q2 + Q 

0- 
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This section presents a numerical example of the results obtained in Section 
2. The spacecraft that will be used in this example is EWE, an astronomical 
satellite that is scheduled to launch in August 1991. Its primary attitude 
sensors are two FHSTs and three-axis gyroscopes. During the first 6 months, 
EUVE will perform a full-sky ultraviolet survey and will be spinning at rate 
of three revolutions per orbit around the spacecraft x-axis. After this 
survey phase, the spacecraft will be held at constant attitudes to measure the 
spectrum of various targets. The mission profile of EWE, therefore, provides 
the opportunity of FHST alignment calibration under both maneuvering and 
stationary conditions. Although the alignment and attitude motion of EWE 
differs from the analytical model presented in Section 2, they are sufficient- 
ly similar to substantiate the analytical results. 

NUMERICAL MODEL 

The two EUVE FHSTs are NASA standard star trackers with an 8-by-8 deg field- 
of-view (FOV). Their alignment is given as a 3-2-3 Euler rotation sequence. 
The rotation angles are given in Table 2. 

Table 2. Nominal FHST Alignments 

Sensor 

FHST- 1 
FHST-2 

iotation Angles (Degrees) 

59.90 105.60 0.0 

128.10 105.60 0.0 

The assumed a priori alignment uncertainties are 2.68 x lom4 radians (55.3 
arc-seconds) (3~1 for each FHST axis. The measurement noise assumed is 
1.944 x radians (40.1 arc-seconds) (a). In the attitude-dependent case, 
the a priori attitude uncertainties are assumed to be 1 deg (-1 for each 
axis. The measurement rate for the EWE FHSTs is one observation per 0.256 
seconds. To simplify the interpretation of the results, the gyroscopes are 
assumed to be perfect. 
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The attitude-independent alignment accuracy estimate is made using a pro 
that implements the equations for the alignment covariance given in References 
1 and 2. The attitude-dependent alignment accuracy estimate is performed using 
the Attitude Determination Error  lysis System (ADEAS), as described in 
Reference 5 .  In both cases, a one-orbit simulation is run. Although the 
sensor coverage is not continuous because a realistic star catalog is used, 
the length of the simulation run and the data rate are sufficient to give 
several thousand observations. 

RESULTS 

The results for the four simulation runs corresponding to the four scenarios 
are given in Table 3. For simplicity, the arithmetic mean of the uncertain- 

Y 

z 

ties for the two FHSTs are given. The actual differences are in all 
less than 1 percent. All values are three-sigma. 

(40.0) (39.2) (39.8) (6.52) 

(54.7) (41.8) (54.8) (30.9) 

(55.3) (42.6) (55.3) (24.1) 

2.65 2.03 2.66 1.50 

2.68 IO-' 2.07 2.68 lom4 I. 17 

Table 3. OUVE Alignment Uncertainties 

Attitude- Attitude- Attitude- Attitude- 
Independent, Independent, Dependent, Dependent, 
Nonrotating 
(Scenario 1) (Scenario 2) (Scenario 3) (Scenario 4) 

Rotating Nonrotating Rota t ing Axis 

I 

X I 1.94 1.90 1.93 0.32 

cases 

NOTE: Values are in radians (arc-seconds). 

OBSERVATIONS 

Overall, the results in Table 3 and Section 2 agree. The smallest uncertain- 
ties are in the case of using an attitude-dependent alignment method during a 
maneuver. The differences between the results presented in Table 3 and the 
results from Section 2 are mainly due to the different geometry of the two 
cases. Figure 1 shows the fundamental geometry of the analytical and numeri- 
cal models. 
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FHST- 1 FHST-2 

Numerical model 
R OTATl 0 N 

AXIS 

FHST- 1 FHST-2 

Figure 1. Geometry of the Analytical and Numerical Models 
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In the analytical model, a rotation about the FHST y-axis is e uivalent to a 
change in the angle between the sensors. The corresponding axis in the numer- 
ical model is the x-axis. Table 1 indicates that the uncertainty of this axis 
should be 1.90 x IO-' radians (39.1 arc-seconds). This result is in very good 
agreement with the first three cases. Allowing for the difference in sensor 
coordinate definition, the uncertainties of the y- and z-axes for the two 
nonrotating cases are also in good agreement with Table 1 expected results. 
The smaller uncertainties in the rotating cases are due to the finite FHST FOY 
size in the numerical example. In the nonrotating cases, the FHST observes 
the same star for the entire simulation. Under this condition, the y- and 
z-axes alignments are unobservable. This unobservability is also the conse- 
quence of assuming the star to be on the boresight as in the analytical eval- 
uation. In the rotating numerical examples, however, the realistic star 
catalog used results in star measurements over the whole FOV and the align- 
ments of the y- and z-axes are, therefore, observable. The variances of all 
three axes alignments in the attitude-independent case are larger than 
(1/2) (r2. 

a 

4. ~ N C L ~ S ~ O N  

The reason for the superior performance in the fourth measurement scenario of 
Section 2 is that the axis of the 90-deg attitude maneuver has been assumed to 
coincide exactly with the spacecraft y-axis. Since an actual estimator would 
obtain the angular rotation from a set of rate-integrating gyroscopes, this 
assumption is equivalent to the definition that the gyroscope axes are per- 
fectly aligned with the spacecraft body axes. An overall rotation of all the 
sensors, including unspecified payload instruments, is indistinguishable from 
a spacecraft attitude rotation. Because of this perfect correlation, if the 
sensors and payload instruments can be coaligned, the freedom exists to arbi- 
trarily choose one sensor to be perfectly aligned, which is equivalent to 
defining the spacecraft body axes in terms of this sensor's axes. The 
attitude-dependent algorithm, as modeled in Section 2, implicitly defines the 
spacecraft axes in relation to the gyroscope axes, so the improved alignments 
of the FHSTs in scenario 4 are actually owing to their alignment with respect 
to the rotation vector as measured by the gyroscopes. 

An estimator that uses scalar observations as in Section 2 to align the atti- 
tude sensors does not include any attitude information. There is, therefore, 
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no measurement of the sensor alig ect to perfectly ali 
gyroscopes. Because of the correlation be an overall sensor rotation 
the attitude, there are three degrees of freedom in t 
are unobservable. The resulting certainties in the alignment estimates, 
therefore, cannot be made arbitrarily small and will strongly depend on the 
prelaunch measurements. If the alignment uncertainty of one of the sensors is 
assumed to be zero, this sensor would become a reference sensor similar to the 
gyroscope in the attitude-dependent model. The alignment uncertainty of the 
other sensor should then be similar to the attitude-dependent results. To 
illustrate this effect, the scalar observation simulation software was exe- 
cuted assuming one of the sensors to be perfectly aligned. The results of 
this simulation are given in Table 4. Also given in Table 4 is the attitude- 
dependent, rotating case results from Section 3 for comparison. All values 
are three-sigma. 

Y 

z 

Table 4. EWE Alignment Uncertainties Showing 
Reference Sensor Case Results 

( 6 . 5 2 )  (6.19) 

(30.9) (27.2) 

(24.1) (31.0) 

1.50 1.32 

1.17 1.50 

Dependent, Independent, 
Rotating 

(Scenario 4) Reference Sensor 

I x I 0.32 0.30 I 

NOTE: Values are in radians (arc-seconds). 

It can be seen that the two cases are in good agreement. This result would 
indicate that the distinguishing factor for producing small alignment uncer- 
tainties is not attitude-dependence or -independence but whether there is a 
reference sensor that serves to define an on-orbit spacecraft coordinate 
frame . 
Whether, for a particular mission, an alignment algorithm that defines an 
on-orbit spacecraft frame or one that maintains the prelaunch frame should be 
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used depends on the type of payload. en the payload can align itself 
respect to the attitude sensors, there is no need to maintain the 
spacecraft reference. The ambiguity of the attitude reference can be removed 
by defining a new on-orbit reference, e .  g., the roscope axes, and much 
improved attitude accuracies can result. However, when the payload is atti- 
tude sensitive but not sufficiently so to allow coalignment, an algorithm that 
preserves the prelaunch frame is preferable. In this case, the alignment of 
the payload is known relative only to the prelaunch reference. A method that 
does not make use of a reference sensor minimizes the deviation of the on- 
orbit sensor alignment from the prelaunch measurement and, therefore, will 
result in the best estimate of the payload attitude. 
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ABSTRACT 

An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission 
(SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair 
of fixed-head star trackers relative to the fine pointing Sun sensor. In the present work, new 
sensor alignment algorithms which better quantify the dependence of the alignments on 
the temperature are developed and applied to the SMM data. Comparison with the results 
from the previous study reveals the limitations of the heuristic approach. In addition, some 
of the basic assumptions made in the prelaunch analysis of the alignments of the SMM 
are examined. The results of this work have important consequences for future missions 
with stringent attitude requirements and where misalignment variations due to variations 
in the temperature will be significant. 

Because of the stringent attitude accuracy requirements, the temperature dependence of 
the alignments of the h e  attitude sensors of the Solar Maximum Mission (SMM) has been 
closely These works have attempted to quantify the relationship between the 
variations in the SMM structural temperatures and the variations in the alignments of the 
fixed-head star trackers (FHSTs) relative to the fine pointing Sun sensors (FPSSs). The 
present work, which is an extension of Refs. 3 and 4, attempts to quantify more completely 
the relationship between the temperature and the alignments. This is done by using newly 
developed alignment estimation algorithms that can estimate the alignments better than 
the work in Refs. 3 and 4. In addition, the limiting assumptions made in the prelaunch 
analysis of the SMM with regard to the sensor alignments are examined. 

One of the contributions of this work is a consistent framework for estimating the inflight 
alignments of spacecraft attitude sensors and investigating the nature of the changing 
alignments. An algorithm is provided for computing the alignments at a single temperature 
using infiight sensor measurements without the need to compute the spacecraft attitude 
and angular velocity. These alignment estimates at different temperatures are then input to 
a second algorithm which computes an optimal estimate for the temperature dependence. 
These methods can provide clues to the specific causes of the alignment changes and aid 
in the design of future structural configurations to minimize temperature effects. 
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his work begins by reviewing the euristic analysis and its limitations as presented in 
and simulations 
e a l g o r i t ~ s  to 

n temperature is completely 
he last section discusses the assumptions made pertaining to the actual inflight 

alignment estimation algorithms and possible modifications that would have made 

tline of the new alignme 
rate their capabilities. 
d the dependence of the ali 

these algorithms more effective. 

rat io 

The SMM was launched in February of 1980 from the Eastern Test Range into a low 
Earth orbit to study solar radiation at several wavelengths. In November of 1980 the re- 
action wheels that controlled the spacecraft failed. Thereafter, the spacecraft was put into 
a stabilizing spin mode to preserve the mission. During this time little scientific work was 
accomplished. In April of 1984 the mission was repaired in orbit by the Space Transporta- 
tion System, after which it was returned to normal mission operation. The spacecraft 
functioned normally until December of 1989 when it reentered the Earth’s atmosphere. 
Further details on the history of the SMM are given in Ref. 6 .  

The SMM was the first of the Multimission Modular Spacecraft (MMS) which were 
designed for repair and adaptation. It consisted basically of two separate components. 
The first component was the MMS component which consisted of the communications, 
power, and attitude control modules. The attitude control module included two FHSTs 
and a complete set of gyros which were used for fine attitude determination. The FHSTs 
were mounted together on a rigid structure inside the attitude control module to minimize 
alignment variations. 

The second main component of the SMM was the payload component. It consisted of 
the SMM scientific payload and the SMM-specific attitude sensors. The scientific payload 
consisted of the instruments used to study the Sun. The SMM-specific attitude sensors 
were a redundant set of FPSSs and a set of coarse Sun sensors. The scientific instruments 
and the FPSSs were comounted on a rigid plate to minimize misalignment between them. 
The basic configuration of the SMM is shown in Fig. 1. 

ttit 

The goal of the SMM attitude determination and control system was to point the bore- 
sights of the scientific instruments as accurately as possible, nominally to within 5 arc-sec, 
at specific locations on the Sun. To this end, the scientific instruments and the FPSSs 
were mounted on the same rigid instrument support plate with their boresights parallel. 
It was assumed that they would remain parallel and that the relative misalignments about 
all three axes would be null throughout the mission. Thus, the goal of the attitude deter- 
mination system became to point the FPSSs at locations on the Sun to within 5 arc-sec 
( 3 4 .  

22 



re 1. 

The spacecraft attitude reference and body coordinate frames were defined so that the 
attitude would be directly meaningful in terms of solar pointing. The reference 

frame was a noninertial frame in which the x-axis was defined to be the unit vector from 
the spacecraft to the Sun, the y-axis was defined as the unitized cross product of the x- 
axis and the direction of the solar north pole, and the z-axis completed the right-handed 
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cal coordinates of the pointing location on 
(the x-axis of the spacecraft) to a specific 

sensors that measured rotations about two sensor axes and 
of 2 deg x 2 deg and a specified accuracy of 5 arc-see (30). 

Since the boresights of the two FPSSs were parallel, they provided attitude information 
only about two axes, corresponding to the pitch and yaw axes of the body reference system. 
The SMM FHSTs were also vector sensors that measured rotations about two sensor axes. 
These had an FOV of 8 deg x 8 deg and a specified accuracy of 30 arc-sec (3a). The FOV’s 
of the FHSTs did not overlap (Le., their boresights were well separated). Thus, they could 
be used to compute a full three-axis attitude. Since the FPSSs provided only two axes of 
attitude information, the FHSTs were the prime source of roll attitude information. 

location on the Sun required only successive pitch and yaw maneuvers. 

The S eter~ination System 

Since it was believed that the misalignment of the scientific instruments relative to 
the FPSSs would be negligible, the only alignment calibration needed was of the FHSTs 
relative to the FPSSs. Thus, a complete alignment calibration could be accomplished in 
orbit since the relative alignments are completely ~bservable.~ Therefore, for the SMM, the 
alignment calibration system should have been relatively simple and should have provided 
all the necessary alignment information necessary to compute the most accurate attitude 
of the spacecraft. 

However, two assumptions were made in the prelaunch analysis of the alignments for 
the SMM that restricted the accuracy with which the alignments could be determined. 
The first assumption was, as stated above, that the alignment of the FPSSs relative to the 
scientific payload would not change. Since they were all mounted on a single rigid plate, 
it would seem that this was a valid assumption. However, because of it, no alignment 
calibration of the two FPSSs relative to each other was ever performed. If this assumption 
had not been made, the alignment of FPSS2 relative to FPSSl could have been easily 
computed and the resulting value of the misalignment would have provided insight into 
the general level of misalignment between the FPSSs and the scientific payload. 

The second assumption was that no roll alignment information of the two FHSTs relative 
to the FPSSs would be available. This followed supposedly from the fact that the FPSS 
boresights were parallel to the spacecraft body x-axis. Instead, it was assumed that the 
only roll alignment information available was the roll alignment of FHST2 relative to the 
roll alignment of FHST1. For this reason, the only alignment information ever calculated 
for the SMM were the pitch and yaw alignments of the FHSTs relative to FPSSl and the 
roll alignment of FHST2 relative to FHST1. 

The other notable point about the SMM alignment scheme was that the full inflight 
calibration algorithm generally required that the S M be switched to an operating mode 
that eliminated the scientific data from the telemetry. The SMM scientists, however, were 
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by the FWSTs from the pitch and yaw attitude computed by the FPSSs. The difference 
was attributed to misalignment of the FWSTs. Since the method worked by subtracting 
the computed attitudes, the alignments of the FHSTs were lumped together, i.e., it was 
assumed they moved as a single rigid element. Even though use of the pseudo-alignment 
algorithm provided very incomplete alignment information, it provided sufficiently good 
results that a characterization of the yaw alignment variation was possible. This will be 
further explored in the next section. 

Review of Previous Work 

Using the pseudo-alignment algorithm, it was discovered that the SMM FHSTs yaw 
alignment relative to FPSSl varied over time and could be as large as 120 arc-sec. However, 
the pseudo-alignment algorithm showed no such variation for the alignments about the 
pitch axis. As mentioned earlier, it was thought that misalignment about the roll axis was 
unobservable. 

An investigation into the possible causes of the alignment variation showed that the vari- 
ation was correlated with the changing structural temperatures of the instrument support 
plate on which the FPSSs were mounted. After the data were filtered to remove some of 
the noise, a scatter plot could be constructed that showed the variation to be nearly linear. 
This scatter plot is shown in Fig 2. A least-squares straight line fit to the data yielded the 
following model for the yaw misalignment. 

M = -130. arc-sec + l l .T arc-sec/"C , (2-1) 

where M is the yaw misalignment and T is the spacecraft structural temperature which 
could be obtained from the regular telemetry. The computed accuracy of this equation, 
assuming the errors were normal and uncorrelated was 8.5 arc-sec (la). 

Some questions still remained. For example, why was the yaw alignment temperature 
dependent while the pitch alignment seemingly was not? The previous work postulated an 
answer to this question which, however, was not demonstrated convincingly. In addition, 
because of the large amount of noise inherent in the pseudo-alignment calibration scheme, 
was it possible to better characterize the alignment dependence? In order to understand 
more fully the nature of the SMM alignments, it was decided to utilize more complete and 
rigorous methods of alignment determination to recalibrate the SMM alignments. This 
work is the subject of the remainder of this paper. 
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Figure 2. Scatter Plot of Yaw Misalignment and Temperature 

3. A NEW BATCH ESTIMATOR OF SENSOR ALIGNMENTS 

The batch alignment calibration algorithm used in this work7-’ estimates alignments 
from derived attitude-independent effective measurements. (See also Ref. 10 for a compar- 
ison of this batch algorithm with sequential attitude-dependent algorithms.) This section 
reviews this algorithm and provides guidelines for its application. The reader is referred 
to Refs. 7 through 9 for a more complete description and derivation of the algorithm. A 
statistically correct method for computing the temperature dependence of the alignments 
will also be presented here. Realistic simulations are presented as well to demonstrate the 
power of these methods. 
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ment matrix m 
Thus, the alignment of sensor i at any time during the flight of a spacecraft may be written 
as 

Sj=Mi§;O , (3-1) 

where §io is the prelaunch estimate of the sensor alignment matrix and Mi is the misalign- 
ment matrix, which represents the change in the alignment from the prelaunch value. The 
misalignment matrix may be represented by the rotation vector,ll 6i. If it is assumed that 
Mj represents a very small rotation, then 

where [[ ei]] is the antisymmetric matrix representation of a vector and can be defined as 

The vector, 6i, which represents the misalignment of the sensor from its prelaunch value, 
is the quantity which is computed by the alignment algorithm. 

To simplify the equations which follow, we define an uncalibrated observed vector as 

- 
where U i , k  is the observed vector by sensor i, i = 1,2,. . . , n, at time t k ,  k = 1,2,. . . , N ,  in 
the sensor coordinate frame. Thus, *:,$ is the representation of the observed vector in the 
body frame uncorrected for the misalignment of the sensor from the prelaunch alignment 
estimate. 

The effective attitude-independent scalar measurement used in this work is the difference 
of the cosine of the angle between the observed vectors of sensors i and j from the cosine of 
the angle between the corresponding reference vectors. Assuming that the misalignments 
and the sensor noise is small, the effective measurement equation can be derived as 

where A Z i j , k ,  the effective measurement noise, is 

where we have assumed that the errors in the observations are 
the reference vectors. 

9 (3-6) 

much larger than those in 
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n attitude sensors, t ments at a com 

where H k  and A k are determined from equations (3-5) and (3-6). Since at any time t k ,  n 
sensed unit vectors correspond to 2n equivalent one-dimensional measurements, and three 
measurements are needed to determine the attitude, there can be only 2n - 3 independent 
z; j ,k  at t k .  Thus, if we wish the covaziance matrix of A Z k  to be full-rank, then z k  and 
A z k  are (2n - 3)-dimensional column vectors. 0 is a 3n-dimensional column vector, and 
H k  is a (2n - 3) x 3n matrix. The covariances of A Z i j , k ,  if we assume the QUEST model 
for the sensor measurement errors,12 are given by 

To demonstrate how the components of the measurement equation are formed, a simple 
three sensor example will be presented. The three scalar measurements are 

Thus, the 3 x 1 matrix Z k  is 

z k  = [ Z12 ,k ,Z13 ,k ,Z23 ,k ]  T 7 (3-15) 

and the 9 x 1 matrix 0 is 

where the misalignment angle, 8 , j ,  in equation (3-16) refers to misalignment angle j of 
sensor i. The matrix H k  is formed as 

Relative alignments are defined as the alignment of an attitude sensor relative to another 
attitude sensor. For convenience, the sensor to which the relative alignments are being 
determined will be designated as sensor 1. Thus, 
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sensor i relative to s 

where F is the (3n - 3 )  x 3n matrix and is defined as 

(3-20) 

l-,,, O i X 3  0:x3 ::: 1 3 x 3  ‘ J  
From equation (3-5) it is clear that z k  is sensitive only to the relative alignments and we 
may write 

where H i  is the (2n - 3 )  x (372 - 3 )  matrix obtained by deleting the first three columns of 
H k .  As stated earlier, the relative alignment vector has dimension 3n - 3 and is completely 
observable from the inflight data. 

Zg=Hi \E+AZk , (3-21) 

The Attitude-Independent Inflight Estimator 

Using the measurement model developed above the negat ive-log-likelihood function13 
may be written as 

N 1 
2 J*(*) = -E { [(zk - H ~ \ E ) T ~ ~ : ( z k  -Hi*)] 

k = l  

+ log det Pz, + (2n - 3)log 27r) . (3-22) 

which is minimized to obtain the maximum likelihood estimate of the relative alignments. 
Minimizing this expression leads to the usual normal equations 

(3-23) 

(3-24) 

where “PF” denotes prior-free and indicates that the estimate is based only on the inflight 
data and not on any prior (i.e., prelaunch) estimate of the alignments. 

Determination of the Temperature Dependence of the Alignments 

As was shown in section 2, the SMM yaw alignments depend on the spacecraft structural 
temperature variations. Thus, we seek to use maximum-likelihood estimation methods to 
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better q~antify the dep 
misali~ments are ass 

where To is the reference temperature at which the alignments were determined during the 
prelaunch alignment calibration and T; is the spacecraft structural temperature at which 
the inflight misalignment is estimated to yield !J!Fi(PF). We wish to compute the values 
of the (372 - 3) x 1 coefficient vectors, a and b. Thus we write, 

where 

E{A*\E;,(PF)} = 0 , (3-27) 
E{A9$i(PF) AW$T(PF)} = PqTi (PF) , (3-28) 

where at each temperature Ti, @&(PF) and PtpTi(PF) are obtained from equations (3-23) 
and (3-24). 

Substituting equation (3-25) into equation (3-26) yields 

*.,(PF) = a + b (Ti - To) + A**,(PF) , (3-29) 

and (PF) serves now as an effective measurement. 
Defining the parameter vector 

(3-30) 

the measurement equation becomes 

Q;i(PF) = H$A + A!J!;,(PF) , (3-31) 

where 
Hki = [ I  I(Ti-To)] * (3-32) 

The coefficient vector A may be obtained by minimizing the negative-log-likelihood func- 
tion 

+ log det PtpTi ) + NT log 27r 1 , (3-33) 

where NT is the number of temperatures at which the inflight estimates of the relative 
alignments has been estimated. Carrying out the minimization leads to5 

p?: = .H&y P;:i (PF) H$i , (3-34) 

H&T P<:i (PF)9;i(PF) . (3-35) 
Ti 

Ti 
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he ~ g o r i t h ~  developed above were applied to two simu~tions, the first a very simple 
spacecraft in which the alignm on the temperature and the second 
a spacecraft confi~red like the s are temperature-dependent . 
For each simulation a set of model misalignments was computed in order to generate the 
observed and reference vectors and to judge the effectiveness of the simulated calibrations. 
The distribution of the misalignments was assumed to be Gaussian and zero-mean. This 
particular model was chosen to test an algorithm for estimating launch-shock error  level^'^^ 
not relevant to the SMM application as presented here. 

The first simulation is of a spacecraft with three attitude sensors with well separated 
boresights. The model sensors were taken to have an FOV of 20 deg by 20 deg and an 
accuracy of 10 arc-sec. One hundred frames of simulated data were generated in which 
each sensor was assumed always to have valid data. The results are shown in Table 1. 
The agreement between the model misalignments and the estimates is consistent with the 
computed standard deviations. 

TABLE 1 
Comparison of Model and Estimated 

Relative Misalignments for Simulation 1 

Model Estimated 
Relative Relative 

Misalignment Misalignment 
(arc-sec) (arc-sec) 

-73. -73. f 1. 
-40. -50. f 8. 
63. 78. f 13. 

- 14. -7. f 7. 
-43. -45. f 1. 
131. 146. f 12. 

For the second simulation, where model misalignments were needed at a range of distinct 
temperatures, the coefficient vector b was given arbitrary values while a was sampled from 
a zero-mean Gaussian distribution. The model relative misalignments at the remaining 
temperatures were computed from 

Qn =a+b(Ti-T,) . (3-36) 

The types of sensors and their size and accuracies were modeled after the SMM FPSSs 
and FHSTs. The temperature range of the plate on which the FPSSs were mounted 

31 



odel 
Constant 
Term a 
(arc-sec) 

-43. 
0. 
0. 

-44. 
100. 

-128. 
158. 
-39. 
-189. 

-47. f 14. 
1. f 1. 

-1. f 1. 
-52. f 10. 
91. f 5. 

-119. f 5. 
131. f 11. 
-48. f 5. 
-179. f 5. 

Estimated odel 
Constant Linear 
Term a Term 
(arc-sec) (arc-sec/OC) 

0. 
0. 
0. 

60. 
-30. 
30. 
60. 

-30. 
30. 

Estimated 
Linear 

Term b 
(arc-sec/OC) 

0.0 f 5.0 
0.2 f 0.1 
0.2 f 0.1 
60.1 f 4.0 

-29.9. f 2.0 
29.9. f 2.0 
60.1 f 4.0 

-29.9 rt 2.0 
29.9 f 2.0 

was modeled as varying between 2°C anc 'C with data generated at 2OC Aervals. 
The reference temperature was taken as 6°C. As for the SMM, the misalignments were 
computed relative to the first sensor. The simulated calibration was performed at each 
temperature and the results were collected and used in the algorithm of equations (3-34) 
and (3-35) to estimate the dependence of the misalignments on temperature. 

The results are shown in Table 2. Again the agreement between the model and estimated 
alignments is consistent with the computed standard deviations. Thus, for both simulations 
the algorithms worked well and provided meaningful error bounds. 

4. APPLICATION TO THE SMM 

In this section the newly derived algorithms will be applied to data from the SMM in 
order to better quantify the dependence of the SMM alignments on temperature variations. 
In addition, the limiting assumptions made during the SMM prelaunch analysis will also 
be examined in greater detail. 

Application of Algorithms to SMM Data 

Since this study was conducted nearly five years after the data from the heuristic analysis 
was collected, provisions had to be made to collect sufficient statistics. In order to make 
the best comparisons, it was decided to examine the data from after the repair of the SMM 
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SS boresight, it was 
diEcult to obtain much variation in the FPSS observations, even by combining all data 
sets at the same temperature. Thus, it was impossible to gain any observability about the 
roll axes of the FPSSs (which in turn prevented any observability of the roll axes of the 
FHSTs relative to the FPSSs). 

Despite this limitation of the data, the calibrations were carried out and the results 
are shown in Fig. 3 through Fig. 6. These graphs show several very interesting results. 
First, as unseen from the heuristic analysis, a temperature dependence about the pitch 
axis is evident. The slope of the dependence seems to be nearly the same as that of 
the yaw dependence but opposite in sign. Thus, it remained to determine why this was 
occurring. It is possible that noise from other effects obscured the pitch dependence during 
the heuristic analysis. 

The main source of noise in the pseudo-alignment solutions was from the FHST attitude 
solutions. The accuracy of these solutions depended on the quality of the star fields 
observed by the FHSTs. Thus, in order to resolve the discrepancy between the two results, 
the pitch data from the heuristic analysis was reduced. The first step was to identify 
periods of time when poor star fields were used by the pseudo-alignment algorithm. It 
turned out that periods could be found, of length one to two weeks, where poor star 
data was used that greatly increased the noise level in the solutions. Elimination of these 
periods and replotting of the remaining data as a scatter plot of temperature and pitch 
misalignment results in a nearly linear dependence with slope opposite that of the yaw 
misalignment. This plot is shown in Fig. 7. Thus, after this further analysis, it appears 
the two methods agree. 

The second point to notice from Figs. 3 through 6 is that the slopes of the dependence 
using the new algorithms are opposite those gained from the heuristic analysis. This 
can be seen to be correct when it is recalled that the pseudo-alignments were calculated 
by subtracting the FHST attitude solution from the FPSS attitude solution. Thus, the 
pseudo-alignment s were actually, according to equation (3-18), alignments of the FPSSs 
relative to the FHSTs. Since this is opposite to what was computed by the new algorithms, 
it would be expected that the earlier slopes would be opposite in sign. 

Using the algorithms developed above to compute the actual temperature dependence 
of the alignments, the coefficients were solved for and the results are shown in Table 3. 
As can be seen, the linear dependence was significant about both the pitch and yaw axes. 
The magnitude of the dependence as Calculated by the new algorithms was several times 
greater than that computed by the heuristic methods because the latter was masked by 
the larger random errors in the alignments. 
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Figure 3. FHSTl Pitch Misalignment 
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Figure 4. FHSTl Yaw Misalignment 
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Figure 5. FHST2 Pitch Misalignment 
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Figure 6. FHST2 Yaw Misalignment 
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Figure 7. Reduced Pitch Misalignment Data 
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Constant Term Linear Term 

(arc-sec) (arc-sec/"C) 
a 

Sensor Axis 

FPSS2 PITCH 0.7 f 0.1 0.0 f 0.0 
FPSS2 YAW 0.5 f 0.1 0.0 f 0.0 
FHSTl PITCH -164.7 f 3.7 37.1 f 1.4 
FHSTl YAW 17.8 f 4.3 -33.5 f 1.7 
FHST2 PITCH 278.2 f 2.9 48.0 f 1.1 
FHST2 YAW -100.8 f 3.4 -40.9 f 1.3 

Thus, there is good agreement between the two methods about the nature and depen- 
dence of the SMM FHST pitch and yaw alignments relative to the FPSSs. The new 
algorithms clearly show better results because they avoid the large error sources that 
caused the heuristic methods to miss the pitch alignment dependence and they treated the 
alignments of the FHSTs separately which provided better information as to the actual 
behavior of each one. 

Examination of SMM Alignment Assumptions 

As stated earlier, two assumptions were made regarding the expected nature of the 
SMM fine attitude sensor alignments. In this section, each assumption will be examined 
to ascertain its validity. 

The first assumption was that the alignment of the SMM payload relative to the FPSSs 
would not change from its prelaunch value of zero. While no real data is available from the 
SMM scientific instruments to be used in any alignment algorithm, this assumption could 
still be tested. Since there were two FPSSs that were mounted on the instrument support 
plate along with the scientific payload, any alignment variation between the FPSSs should 
be of the same order of magnitude as that between the FPSSs and the payload. Thus, 
the alignment of the FPSSs relative to each other was studied using the new algorithms. 
This study showed that the alignment of FPSS2 relative to FPSSl showed no significant 
variation, and the values of the misalignment angles were never greater than 1 or 2 arc-sec. 
Thus, the assumption that the payload alignment never varied can be judged as valid from 
the limited information available. 

The second assumption was that no roll alignment information involving the FPSSs was 
observable. As stated in Ref. 6, all the relative alignments are observable, and since the 
alignments of the SMM were computed relative to FPSS1, they should all be observable. 
However, the observability of the alignment about an axis depended on the spread of data 
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in the sensors that are sensitive to that axis. data that was examined 
ility was obtained 

cause the spread 
here that if a good spread could be obtained, axis misalignment could have 
been determined within a reasonable error. Thus, data with a good spread in the FPSS 
FOV had to be found. 

It was discovered that data from the SMM that had a good spread in the FPSS FQV was 
available. During the times of the FPSS electronic response calibrations, that calibrated 
the transformation of FPSS measurements in units of FPSS counts to degrees, the SMM 
was rotated in such a way that the observed Sun vector had a significant variation in the 
FPSS FQV. This data was obtained and the calibration was performed. The computed 
alignments had variances of 60 arc-sec for the determination of the FHST roll alignments. 
During the normal calibrations when the spread of data was poor, the variance was close to 
ten thousand arc-sec. Thus, the simple rotations during the electronic response calibrations 
provided great improvement in the misalignment determination capability. 

During the electronic response calibrations, the rotations were as large as one quarter 
of a degree; thus, the angle between the spacecraft to Sun vector and the FPSS boresight 
vector reached one quarter of a degree. Since the FPSS field-of-view was 2 deg by 2 deg, 
this Sunline angle could have conceivably reached one degree. However, no usable data 
was available where the Sunline angle was greater than one quarter of a degree. Thus, as 
a test of the possible observability of the SMM roll misalignments, simulations were done, 
using the exact SMM configuration, that increased the Sunline angle to one half degree 
and one degree to improve the spread of data in the FPSS field-of-view. The misalignment 
calibrations at one half degree decreased the variance of the roll misalignment solutions 
to 30 arc-sec and the misalignment calibrations at one degree lowered the variance to 16 
arc-sec. Thus, by simply rotating the spacecraft to the full capability of the SMM FPSSs, 
full observability of all the misalignments could have been obtained. 

5. CONCLUSIONS 

A full analysis of the nature of the fine attitude sensor alignment behavior on the Solar 
Maximum Mission has been presented. The dependence of the alignments on the spacecraft 
structural temperature variations has been investigated, and results have shown that simple 
equations could be derived to fully account for the dependence. In addition, an assumption 
on the observability of the alignments has been shown to be unnecessary. The results of this 
work can be applied by other missions so that they may be able to explain the variations 
in the sensor alignments. 
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ASA/Goddar~ Space Flight Center 

ABSTRACT 

A method is described and demonstrated for estimating single-axis gyro 
noise levels in terms of the Farrenkopf model parameters. This is accom- 
plished for the Cosmic Background Explorer (COBE) by comparing gyro- 
propagated attitudes with less accurate single-frame solutions and fitting 
the squared differences to a third-order polynomial in time. Initial results 
are consistent with the gyro specifications, and these results are used to 
determine limits on the duration of batches used to determine attitude. 
Sources of error are discussed, and guidelines for a more elegant imple- 
mentation, as part of a batch estimator or filter, are included for future 
work. 

*This work was supported by the National Aeronautics and Space Administration (NASA) Goddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31500. 
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1.1 WHY WORRY ABOUT GYRO NOISE? 

The usual batch approach to attitude estimation ignores the contribution of propagation to 
solution error. As long as the gyro angular rates are perfect, such simplification is justi- 
fied. Of course, true perfection is never achieved. Even if systematic errors due to 
biases, scale factors, and misalignments are removed, there is still a random component 
of the error, which is called “noise.” Some noise is completely random. Its value at one 
instant says nothing about that at the next. This is “white noise,” and it shows up as a 
jittery line (Figure 1). Closer inspection reveals slowly varying biases on the gyro rates. 
Although both of these random errors average to zero, at least over infinite time, their 
instantaneous effects are not zero and tend to increase in size with propagation time. 
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Figure 1. Noisy COBE X-Gyro Rates 

To control the effect of gyro noise, the propagation time and batch length must be 
limited. Batch length depends on the frequency and accuracy of the observations and the 
gyro noise levels. Kalman filtering addresses the propagation error problem more ele- 
gantly by gradually forgetting past observations, and it can incorporate models that auto- 
matically account for random process noise. Whether a batch estimator or a filter is 
used, to obtain the best results the gyro noise level must be known. 

When the impact of gyro noise was studied prior to launch of the Cosmic Background 
Explorer (COBE), the X-gyro scale factor instability appeared to limit batch duration to 
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Gyro noise shows up in several ways. It is directly observable in the rate data, as Fig- 
ure 1 illustrated. The most obvious noise measure is the variance of the rate, but vari- 
ance includes real motion and so overestimates the noise. Another method is to set some 
cutoff frequency above which the spacecraft cannot move and then find the variance of 
the rate minus the components below that frequency. However, this leaves out any ran- 
dom drift of the rate and so underestimates the noise. A third method is tci obtain limits 
on the total rate noise. The long-term variation of the rate is also observable in the 
history of the drift rate bias. Computing the bias for many orbits over several days, as in 
Figure 2, provides information from which to estimate the very low frequency part of the 
rate noise. 

Figure 2. History of the ERBS Gyro Biases 

Unfortunately, estimating noise directly from the rates does not give a very complete 
picture of the gyro noise. This is particularly true over the frequency midrange from 
100 hertz (Hz) to 1 revolution per orbit, where it is difficult to distinguish between mo- 
tion and noise. To distinguish motion from noise, one has to take advantage of the sensor 
observations, and this means working with attitudes instead of rates. 
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model parameters. 

2. THE GYRO NOISE 

2.1 OVERVIEW 

One popular method of estimating the effect of gyro noise is the Farrenkopf model (Ref- 
erence 2). For the COBE rate-integrating gyros operating in rate mode, the output is 
integrated only over the 1-second interval between gyro samples. These incremental 
angles, through which the spacecraft rotates between samples, are just like samples of the 
angular rate times the constant sampling interval. For this reason, the gyros are treated 
here as rate gyros rather than rate-integrating gyros. The model includes four noise 
sources, and for each noise source it computes a transfer function relating the noise to the 
output angle. From the inverse transfer functions, an expression is obtained to relate the 
variance of the noise sources to that of the total rotation angle obtained from the sum of 
the incremental angles. 

2.2 THE PHYSICS OF RATE GYROS-OPEN LOOP 

Rate gyros do not have their angular momentum vectors fixed in inertial space but are 
forced to rotate with the body, as shown in Figure 3. A torque must be applied to change 
the pointing direction of the rotor, and this torque tilts the rotor up or down in proportion 
to the input rotation angle. 

Euler’s equation for rigid body motion describes the behavior of the open loop non- 
rebalanced gyro. Here, M is used for the torque about the output axis, and H is used for 
the angular momentum of the rotor, which is assumed to have constant magnitude. The 
dot denotes differentiation with respect to time. 

M = H  

The applied torque M consists of two parts. Viscous damping from the gimbal bearing is 
equal to the product of the damping coefficient C with the output angular rate e .  In 
addition, torque is applied by the gimbal assembly to change the rotor direction. For 
small 8, this torque is equal to the product of the input angular rate w and the rotor 
momentum H. 



Source: L. Fallon, 111, “Gyroscopes” (Section 6.4), Spacecraft Attitude Determination 
and Control, J. R. Wertz, ed. Dordrecht, Holland: D. Reidel Publishing Company, 1980. 

Figure 3. Single Axis Gyro Without Rebalance 

The time derivative of the angular momentum is the transverse moment of inertia for the 
rotor I times the angular acceleration of output angle e .  

Because the system is linear, it is convenient to use Laplace transform notation where “s” 
indicates differentiation and “ l/s” indicates integration. Written in Laplace transform 
notation, the open loop equation is 

-sce(s) + HO(S) = s2 Ie(s) 

This can also be represented in a block diagram, as in Figure 4. 

The transfer function of 8 (s) with respect to o (s) is 
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Figure 4. Open Loop Gyro Model 

where z, is the open loop gyro time constant and, for COBE, is equal to 0.7 x 
onds (Reference 3). 

sec- 

z, = I/C = 0.7 x seconds (2-6) 

The impulse response or inverse transform for this open loop transfer function is 

€3 
O(t) = (I - z, e-t/to) - c (2-7) 

Because the integration time of 1 second is much longer thanz,, the second term can be 
neglected. This corresponds to dropping the inertial term from the original differential 
equation and the transfer function to give 

and 

The tilt angle 0 ,  however, is not the rotation about the input axis that is sought. To this 
end, if o is recognized as the time derivative of the input rotation angle $ 

o =  ij (2-10) 
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- - o d t  = c dt 
0 0 

If the input rate o is assumed constant over the 1-second sampling interval, the integral 
can be replaced by a simple proportional relationship between the input and output 
angles. 

q5 = Cb/H (2-12) 

Because this constant of proportionality changes rapidly when the tilt angle is large, most 
rate gyros have a feedback control loop to rebalance the rotor and keep the tilt small. 

2.3 TORQUE REBALANCING-CLOSED LOOP 

In torque-rebalanced rate gyros, such as those on COBE, the response of the gyro to an 
input rotation is damped by a viscous torque, and a restoring torque is applied to return 
the gyro to the null position in the spacecraft frame. The control loop for rebalancing the 
gyros has as input the incremental output angle A0, or the difference between the current 
tilt of the rotor and the tilt at the previous time step. 

This incremental tilt angle A0 is divided by the time between samples, multiplied by the 
rotor angular momentum, and is fed back as a torque. The output is actually a pulse- 
width modulated (PWM) signal in which the pulse width is proportional to the tilt of the 
gyro from the null position. To calculate the total input angle qY through which the 
spacecraft has moved, the pulses are summed and scaled appropriately. 

Adding feedback proportional to the output angle A0 and making the simplifications 
discussed above gives the Farrenkopf model shown in Figure 5. 

"9 

9 

B 
0 

Figure 5. Closed Loop Rate Gyro Model 
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ori 

As shown in Figure 5, HA6 (s)/T is subtracted from Ho(s) leaving sC 6 (s). This quantity 
is divided by SC to give the incremental angle A6 (s). Beca the feedback signal must 
be a torque, A19(s) is divided by the sampling interval T to produce an average rate 8 (s) 
and is then multiplied by the rotor angular momentum H. 

(2-14) 

The resulting transfer function relating the input rate w(s) to the output rate e (s) is 

The impulse response for this system is 

1 
1 + sz, 

- - 

where the closed loop time constant zc is 

z, = CT/H 

(2-15) 

(2-16) 

(2-17) 

~ 

For COBE, the closed-loop time constant is 0.03 second, which yields a bandwidth of 
5 Hz for the rebalanced system. For timescales much longer than the closed-loop time 
constant z,, the rebalanced rate gyro passes the input rate straight through. This can be 
represented by eliminating the loop from Figure 5 .  
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so S 

te bias (b), which is a constant that is imprecisely 

si Float torque noise ( nv) which is white noise on the rate bias 

0 Float torque derivative noise (nJj which is the “strength” of the rate bias ran- 
dom walk 

0 Electronic noise (ne), which is white ‘noise on the incremental angle 8 

Although the rate bias is constant, it is imprecisely known and when used for propagation 
introduces error. It can be estimated, but it can never be known perfectly. Because it is 
constant, the bias autocorrelation, which is needed for predicting the variance of the 
integrated angle @ is also a constant. The variance is obtained by setting the two times 
A and z equal in the expression for the autocorrelation. E[ ...I is used here as the 
expectation operator. 

(2-18) 

The float torque, float torque derivative, and electronic noise sources are zero mean and 
white, meaning that their value at one time is independent of their value at any other 
time. This is an idealization and is not true if the sampling is done at a rate above the 
highest frequency component of the white noise. Although the idealization is used here, it 
is understood that this applies to the COBE gyro sampling rate of 1 Hz. 

The white noise approximation is indicated by the Dirac delta function Q (t), which is zero 
for all t except zero, and which integrates to 1 over an interval including zero. In addi- 
tion, these three white noise sources are completely uncorrelated among themselves. This 
is reflected in the equation below using the Kronecker delta function dij , which is zero 
when i is not equal to j and 1 when it is. 

E[ni(r)] = 0 (i = V, U, e) 

E[ni(A) nj(~)] = ~ Sij S(A - Z) 

(2-19) 

(2-20) 

The names float torque and float torque derivative noise are holdovers from the days 
when the rotors were floated in a liquid for rebalance. Although the physical interpreta- 
tion of these sources is different for the COBE dry-tuned gyros, the effect is the same and 
the traditonal names are preserved. 
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is 
res 

The corresponding impulse response is 

gv(t) = g&) = 1 - etIrc 

The transfer function for nu is l/s times that for n,. 

which has the impulse response 

gu(t) = zce-"'c + t - z, 

The output transfer function for ne is 

with impulse response 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

The response of the system to each of these inputs is the convolution integral of the input 
with the appropriate impulse response function. Because the system is linear, the com- 
bined response is the sum of the individual responses. This and the fact that the noise 
sources are independent imply that the variance of the total rotation angle equals the sum 
of the individual variances. 

var(8) = var(Oe) + var(8,) + var(&) + var(6,)) (2-27) 
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ni(z) gi(t - Z) dz = 0 1 E[Oi] = E (2-28) 

The expected autocorrelation is the expectation of the product of two convolution inte- 
grals. Because the expected value is zero, there is no square of the average to subtract. 
As before, the variance is obtained by evaluating the autocorrelation at a single time t. 

These integrals can be combined and the expectation operator brought inside to give 

t 

var (@) = 1; gi(t - A) E[ni(A) ni(z)] gi(t - Z) d d  (2-30) 
0 

Formal integration of these expressions using the appropriate autocorrelations for the 
four error sources yields the following expressions for their contributions. 

var(0,) = $(t - 3rJ2 + 2e-t1rc - ~~e-~'/7'/2) (2-32) 

var(8,) = & Z,(I - e-2t1rc) 
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var(6) = z, 0 3 2  + c& + $t2 + &t3/3 (2-35) 

Finally, this variance of the summed gyro output angle should be multiplied by (CLt32 to 
convert the variance of 8 to the variance of tp, the angle through which the spacecraft 
has rotated. For the COBE gyros, this factor is 1 and so the variances of 6 and $ are 
equal. 

var(8) = var(tp) (2-36) 

3. ESTIMATES OF THE GYRO NOISE 

3.1 IMPLEMENTATION AND PRACTICE 

Because gyro noise estimation was not planned for from the beginning, it is done with the 
existing COBE software, as shown in Figure 6. As a result, instead of using sensor 
observations directly, the fine attitude determination subsystem (T;ADS) gyro-propagated 
attitude is used as the observation and the coarse attitude determination subsystem 
(CADS) nongyro single-frame solution is used as a reference. The two attitudes are 
converted to their Euler angle representations in the quality assurance subsystem (QA), 
and the squared difference in the yaw angle serves as a sample of the propagation error 
variance at that time. 

Figure 6. Spin Gyro Noise Estimator 

The variation of this sampled variance is fit to a cubic polynomial function of time, in 
keeping with the model developed in the last section. The one difference is that due to 
the large single-frame solution noise, the constant term z,d is more a reflection of this 
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e error t er 
or this reason 

planned for before the ground support software was written, it could have been imple- 
mented more cleanly. 

Gyro noise is usually measured by putting the gyro on a turntable and comparing the 
integrated displacement angle with the measured angle (Reference 5) .  For accuracy, the 
test can be conducted over many days. Although not impossible in flight, such long tests 
are awkward since they require large data sets and long processing times. Instead, 
shorter timespans are employed and the results averaged to improve accuracy. 

Averaging helps more in finding 0; than it does in finding ut. This is because the 
variance from a; grows linearly with time, while that from o;, grows as the third power of 
time. One-tenth the propagation time provides one-tenth the variance and therefore one- 
tenth the information about ov. Repeating the short test 10 times provides the same 
information as one long test. For oU, however, one-tenth the time provides one- 
thousandth the information. Repeating the test over 10 intervals provides only a small 
portion of the information about at that the longer run provides. 

As described above, gyro noise is assumed to cause growing errors in the propagation, 
which are seen by comparing the gyro-propagated solutions with the single-frame solu- 
tions. The single-frame solutions are themselves noisy and susceptible to large localized 
errors, as shown in Figure 7. Thus, long timespans covering several orbits are necessary. 
As long as the large errors are constant from orbit to orbit, the gradual increase in error 
due to gyro noise is still discernable. 

Another problem arises because of the least squares optimization criterion used in pro- 
ducing the gyro-propagated attitude. Because two medium-size errors at the ends of a 
batch are preferable to no error at one end and a large error at the other, the minimum 
propagation error is apt to be at the center rather than the start of the batch. This is also 
visible in Figure 7. 

Instead of fitting one monotonically increasing polynomial to the entire timespan, the 
batches are broken into halves. In finding coefficients for the first half of the data, time 
is thought of as going backward from the middle to the start of the batch. This corrects 
the signs of the odd power coefficients, which would otherwise have the wrong sign. An 
alternative to this would be to propagate from a single-frame solution. In this case, the 
constant term 4 would be set to zero. 

3.2 RESULTS AND COMPARISON WITH SPECIFICATIONS 

Few results have been collected as of this time. The following coefficients come from the 
example of Figure 7. They represent the estimated noise from a 5-hour, 38-minute time- 
span. 
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Figure 7. Typical Yaw Differences and Their Cubic Fit 

Single Frame Noise 4 0.1464 deg2 

Float Torque Noise 8 0.2196 x deg2/s 

Gyro Bias (3 0.4006 x deg2/s2 

Float Torque Derivative Noise 02, - 0.4458 x deg2 /s3 

The first number represents the combined variance of the batch and single-frame yaw 
solutions, and appears to be dominated by the large spikes in the yaw differences. The 
second coefficient represents the white noise on the gyro rate. For samples taken every 
second, this implies an error of 0.005 degree per second”’. The 24 arc-second telemetry 
quantization explains 0.002 degree per second1I2 of that number, and the rest comes 
from other sources. The third coefficient is the variance on the assumed gyro bias and is 
0.2 degree per hour, which is about the accuracy of the typical bias solution. Finally, the 
fourth coefficient is negative, indicating that it is not well estimated over this timespan. A 
longer batch may be necessary to observe it. 

Expected worst case values of o$ and 02, can be backed out of the following COBE 
specifications (Reference 1). 

0 Root mean square gyro drift rate noise error will be less than 0.002 degree per 
second 

0 Gyro rates will be sampled at 1-second intervals (science format at 4 kilobits 
per second) 
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ill c-seco ce 

e stable to 50 tes 

ominal spin rate will be 4.8 degrees per second 

If the drift error is assumed to be the resdt of integrating the float torque noise over the 
1-second sampling interval, it implies that the inherent float torque noise variance is 0.4 x 
lo-' deg2 /s. The telemetry quantization contributes the same amount to the effective 
float torque noise, thus doubling its strength to 0.8 x lo-' deg2/s. 

To estimate the float torque derivative noise, the scale factor stability is multiplied by the 
spin rate to give the spin rate stability. Assuming this error to be the standard deviation 
of the rate at the end of the specified 30-minute period, the float torque derivative noise 
would have to be 0.3 x lo-'' deg2/s3. 

Float Torque Noise $ 0.8 x lo-' deg2/s 

Float Torque Derivative Noise 4 0.3 x lo-'' deg2/s3 

The estimated value of $ is 2-1/2 times that specified, but more sample propagations are 
needed before the gyro performance is questioned. Besides, there may be other sources 
of error outside the gyro that may behave like the float torque noise. The estimate of d, 
while not valid because of the sign, is the right order.of magnitude. It is likely that the 
scale factor stability and other float torque derivative noise sources are well within specifi- 
cations and are too small to be observed over a 5-hour, 38-minute propagation. 

USING THE RESULTS 

For a Kalman filter that estimates the attitude and rate bias, the noise standard deviations 
can be used to compute the state noise covariance matrix (Q), which is added to the state 
covariance matrix (P) after each propagation step (T) (Reference 1). This controls how 
quickly the old state estimate is forgotten. 

I- 1 

For the batch estimator, the only way to control propagation error is to limit the batch 
length zB. The estimator can be modeled as an averaging operation and incorporated into 
a simplified random process model as shown in Figure 8. 
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Figure 8. Propagation Error and Batch Estimation 

If the observations have variance 
d@ has the following variance: 

var (a@) = 

02, and come at a rate of k per second, the epoch error 

(3-2) 

For the COBE float torque noise estimate and azimuth observations with variance 
0.02 deg2 made every 0.5 sec, the epoch solution variance is minimal when the batch is 
55 seconds long. This criterion ignores the inconvenience of doing many short batch 
solutions. A more realistic way to use this estimate is to choose batch length to keep the 
epoch solution variance within acceptable limits. For the COBE definitive accuracy re- 
quirement of 3 arc-minutes (3cr), this restricts batches to 70 sec. For routine attitude 
determination where the requirement is 1 deg (34,  batches of up to 50 minutes are ac- 
ceptable. 

W NOISE E S T I ~ A T I O ~  C ULD BE DONE 

4.1 THE DIFFICULTY OF OBSERVING 4 
To observe a,,, one must propagate for a long time. The current batch estimator, which 
stores the data for the entire batch in memory, makes this very expensive. Skipping 
points permits longer batches but may introduce additional error that is not really in the 
gyro data. A better way would be to propagate open loop and estimate the noise parame- 
ters as one goes along. In this way, one could process long timespans without as much 
overhead. 

4.2 A FILTER IMPLEME~TATIUN 

One solution is to incorporate the noise estimation in a Kalman filter, as shown in Fig- 
ure 9. This would facilitate long propagations, because the end state could be used as the 
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Figure 9. Filter Noise Estimator 

The observations of the gyro noise source variances would come from the propagated 
attitude ( ac). The reference would be the attitude estimated from sensor observations 
(a). The noise model would be the same as that used earlier. 

Ideally, the estimated attitude would be computed independently of the gyro rates. This is 
no problem for COBE, which has continuous attitude observability. For other spacecraft, 
one might have to settle for fewer observations of the propagation error due to the lack of 
a complete reference attitude. Alternatively, one might accept use of the gyros to produce 
the reference attitude as long as the state noise covariance (Q) was large enough that old 
observations were forgotten quickly. 

The approach could also be extended to all three axes if a model could be developed for 
the contribution of the noise on each gyro axis to each propagated angle. Those contribu- 
tions would depend on the actual angular velocity and so would have to be computed 
numerically over the duration of the propagation, just as the epoch-to-current-attitude 
propagation matrix and gyro bias variational matrix are computed now in the batch esti- 
mator. 

5. Co~cLusIo~s 

The method presented here for estimating gyro noise levels has been derived from a 
sim2le but theoretically based gyro model and has been shown to provide reasonable 
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less accurate. is end, the filter version 

The next step in estimating noise should be to look at the other manifestations of noise, 
s the drifting of gyro biases over the course of days and weeks and the spectral 

The former is a comparatively long 
timescale variation, which should be compatible with the shorter effects examined here. 
The latter is a shorter timescale approach, which should also agree with the present esti- 
mates of the gyro noise. 

composition of the gyro rates themselves. 

Perhaps even more important than continuing to study the problem is putting these noise 
estimates to use in tuning Kalman filters and setting batch lengths for more enlightened 
attitude determination. If these results prove helpful in this regard, a new system that 
estimates gyro noise along with attitude could be built that would provide more informa- 
tion about gyro performance more conveniently than is now possible. 
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ABSTRACT 

The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission 
(SMM) is defined as the accuracy of the electronic response to the magnitude of a star in 
the sensor field-of-view, which is measured as intensity in volts. To identify stars during 
attitude determination and control processes, a transformation equation is required to 
convert from star intensity in volts to units of magnitude and vice versa. To maintain high 
accuracy standards, this transformation is calibrated frequently. A sensitivity index is 
defined as the observed intensity in volts divided by the predicted intensity in volts; thus, 
the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity 
index, analysis is presented that compares the strengths and weaknesses of two possible 
transformation equations. The effect on the transformation equations of variables, such 
as position in the sensor field-of-view, star color, and star magnitude, is investigated. In 
addition, results are given that evaluate the aging process of each sensor. The results in 
this work can be used by future missions as an aid to employing data from star cameras 
as effectively as possible. 

1. INTRODUCTION 

From the time of the repair of the Solar Maximum Mission (SMM) in April 1984 to its 
reentry in December 1989, an enormous amount of attitude sensor data were collected. 
The fixed-head star trackers (FHSTs) on the SMM during this time primarily collected 
two types of data. The first, star position in the FHST field-of-view (FOV), provided after 
transformation by the FHST alignment matrix, observed star position vectors in the body 
frame for SMM attitude determination. The second, star intensity data, were used for star 
identification purposes. Star intensity is the FHST measurement of the magnitude of the 
star. This paper is concerned with this second type of data, primarily what is the most 
effective way to calibrate the FHSTs’ electronic response to stellar magnitude and how 
may the FHST magnitude data be used to give some insight into how the electro-optical 
components of the FHSTs aged over the lifetime of the SMM. These data, in turn, may 
then be used to aid analysis for future missions that employ similar types of star cameras 
for attitude determination and control. 

For the SMM, visual stellar magnitude was used for star identification. This identifica- 
tion was necessary for both attitude determination and attitude control of the spacecraft. 
For attitude determination, the observed intensity was taken from the raw FHST data, 
converted to visual magnitude using a calibrated transformation equation, and then used 
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to help identify the observed star. Using the identity of the observed star, the correspond- 
ing representation in eocentric Inertial ( CI) coordinates from the star catalog are used 
to form a reference vector. The reference vector and the observed vector are then used 
along with other pairs of reference and observed vectors in an algorithm to determine the 
attitude. 

Stellar magnitude was used for attitude control to maintain the current attitude of the 
spacecraft. Using ground based software, stars useful for control at specific attitudes and 
time periods were selected from the star catalog. The expected positions of these stars 
in the FHST FOV and their predicted magnitudes were then uplinked to the spacecraft. 
The catalog magnitude was transformed to intensity in volts, again using the calibrated 
transformation equation. The FHST then searched for these stars, called guide stars, at 
the predicted coordinates in the FOV. If a star was observed within a specified angular 
distance, usually one tenth of a degree (deg), of the predicted location, its intensity was 
compared with the predicted intensity. If they matched, again within a specified tolerance, 
it was assumed that the correct guide star had been located. Discrepancies in the position 
of the guide star in the FHST FOV were then attributed to error in the spacecraft attitude, 
and the spacecraft would be rotated to null the discrepancy. Thus, the spacecraft attitude 
was maintained. 

The preceding paragraphs show that stellar magnitude is important for accurate space- 
craft attitude determination and control. Thus, the equation that related magnitude and 
intensity was calibrated periodically to maintain an accurate transformation. 

This work has two major goals. The first is to evaluate two possible transformation 
equations for accuracy and ease of application. In addition, the various parameters that 
effect the optical sensitivity of the FHST will be examined and correlated to sensitivity. 
The second goal is to establish a method for investigating the aging process of star cameras. 
It is apparent that as the sensor ages, it will become less sensitive. Methods for examining 
the rate of aging are presented along with results for the SMM FHSTs. 

The paper is organized as follows: Section 2 provides a brief history of the mission, 
along with the basic configuration of the attitude determination and control system of the 
spacecraft. Section 3 includes a description of the FHST hardware aboard the SMM and 
the mathematical models used to reduce the FHST data. Section 4 outlines the analysis 
performed to calibrate the intensity-to-magnitude transformation equation, including an 
investigation of two possible transformation equations and the actual calibration results. 
Section 5 considers how the results of the calibrations may be used to gain insight into the 
aging process of the electro-optical components of the FHST. This provides information 
about the duration of reliability these type of star cameras have in space. 

2. THE SOLAR MAXIMUM MISSION 

Mission History 

The SMM was launched in February 1980 from the Eastern Test Range at Kennedy 
Space Center into an approximately circular low-Earth orbit, with an inclination near 
28 deg. The scientific objective of the mission was the study of solar phenomena. The 
spacecraft attitude system provided three-axis stabilization and supported solar feature 
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one of the two Aerospace CT401 FHSTs sustained a failure in the power supply to 
the sensor. Since the spacecraft had two FHSTs, this loss had only a minimal effect on 
the attitude determination and control of the spacecraft. On December 2, 1989, the SMM 
reentered the Earth’s atmosphere. The surviving remnants crashed into the Indian Ocean. 
Further details on the history of the SMM are available in Ref. 1. 

ission Configuration 

The SMM was the first of the multimission modular spacecraft (MMS) series that were 
modular to facilitate mission repair and adaptation. The SMM basically consisted of two 
parts: the MMS itself and the experiment module. The components that came with the 
MMS series were a communications module, a power module, and a modular attitude 
control system (MACS). The SMM FHSTs were located in the MACS. The experiment 
module contained all the SMM mission-specific components, including the SMM scientific 
instruments and the mission-specific attitude sensors. The instruments comprising the 
scientific payload were designed to study the Sun at several different wavelengths of light, 
including gamma, X-ray, and ultraviolet. 

3. SMM FHST DESCRIPTION 

Hardware Description 

The SMM FHSTs were National Aeronautics and Space Administration (NASA) Stan- 
dard Star Trackers (SST), manufactured by Ball Aerospace Systems Division. An SST is 
an electro-optical instrument that uses an image dissector to search for and track stars2. 
It provides star position and magnitude information about a two-axis coordinate system in 
an eight-by-eight deg FOV. The accuracy of the two-axis position information is 10 arc-sec 
(la) when fully calibrated and is output as counts. The transformation equation from 
counts to degrees is calibrated for star temperature and intensity, and the magnetic field. 

The SST is protected against bright light by a shutter. When the bright object alert 
sensor (BOAS) is triggered, the shutter closes, protecting the SST. When the BOAS senses 
that the bright object is out of the FOV of the SST, the shutter is reopened. 

After the shutter is opened, the SST starts out in a search mode. The instrument will 
search the total FOV by scanning, as shown in Fig. 1. This scan takes approximately 10 
sec to search the complete FOV. The search scan continues until a star is sensed. At this 
point the SST enters the track scan mode. The track scan mode forms a smaller cross- 
pattern that repeats approximately 100 times per sec. This pattern is also shown in Fig. 1. 
The track scan mode provides many observations of the same star. A threshold is set that 
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Figure 1. FHST Field-of-View 

provides a break-track command that forces the SST back to the search mode. Thus, the 
SST operates by searching for a star, entering track mode, providing many observations 
of that star, and then reentering search mode until another star is found. This pattern is 
repeated until the BOAS is triggered, and the shutter is closed. 

When a star is tracked, light from the star enters the lens. The image is focused on 
the photocathode of the image dissector tube (IDT). The optical image is converted to an 
electron image at the photocathode, and this image is refocused at the IDT aperture plate. 
A small aperture passes a portion of the electron image to the electron multiplier. The 
signal is multiplied and sent to the video processing electronics where it is demodulated. 
At this point, star intensity and position information are obtained. Further details on the 
hardware of the SMM FHSTs are available in Ref. 2. 

Mat hematical Description 

Each FHST provided star position about two sensor axes and star magnitude informa- 
tion to the SMM onboard computer (OBC), where it was time tagged and subsequently 
telemetered to the ground. Each star observation was telemetered as three pieces of data. 
The first piece was the angle from the first sensor coordinate axis for a specific star at the 
time tagged by the OBC. The second piece of data was the angle from the second sensor 
coordinate axis for the same star at the same time. The sensed stellar intensity of the 
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coordinate. The 
second piece of data was the angular length of the observed star vector’s projection onto the 
vertical axis, labeled the V coordinate. The H and V cmr tes were then calibrated for 
the effects mentioned earlier and transformed to degrees3. the H and V coordinates, 
a vector representing the direction of the observed star in the FHST sensor coordinate 
frame was formed. This vector was then transformed to the body frame by the FHST 
alignment matrix for use in the attitude determination algorithm. 

The magnitude data were reduced by simply transforming the intensity in volts to mag- 
nitude. There are several general equations to accomplish this. Much of the remainder of 
this paper is concerned with which of two possible candidates was thought to be best for 
the SMM, Le., provided the most usable results. 

4. ANALYSIS 

Data Collection 

Because of the large volume of FHST data collected during the flight of the SMM, data 
reduction was necessary for presentability. It was assumed that the processes that changed 
the sensitivity were not instantaneous, and, in practice, it was found that large changes 
took 6 months to 1 year to occur. In addition, about 3 months of data needed to be 
collected to provide meaningful results. Thus, the periods of data collection were defined 
as presented in Table 1. The selection of the exact time periods during the year depended 
on the availability of data. 

Table 1. FHST Data Interval Timespans 

FHST 1 FHST 2 
October - December 1984 October - December 1984 
July - September 1985 July - September 1985 
January - March 1986 June - August 1986 
July - September 1987 June - August 1987 
July - September 1988 
March - May 1989 

The exact nature of the data collected during the timespans was chosen to facilitate the 
analysis in each of the goals of this work. From the FHST telemetry, each observation 
was tagged with the observation time, FHST ID, horizontal and vertical coordinates, and 
observed intensity. From the SKYMAP star catalog*, the star identification number, pre- 
dicted magnitude, and star color represented as the difference in blue and visual magnitude 
were collected for each observation. 
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To gauge the 
the ratio of obser 
is defined to be 

of the t r ~ s f o r m ~ t i o n  from visual magnitude to 
to predicted intensity, Ip, is used. Thus the sens 

s = I,& . (3-1) 
Observed intensities were provided directly from telemetry as voltages. Predicted in- 

tensities were calculated by one of two transformation equations. The more accurate the 
transformation equation, the closer the sensitivity value would be to 1 for an observation. 

To correlate the calculated sensitivity values with position, each FHST FOV was divided 
into 0.2 x 0.2 deg squares. For each observation, a sensitivity value was calculated and, 
using the observed H and V coordinates, associated with a 0.2 x 0.2 deg square. All the 
sensitivity values for a particular timespan and square were then averaged to obtain one 
sensitivity value for each square. 

Evaluation of Two Transformation Equations 

Although there are many ways the transformation from magnitude to intensity could be 
represented, this work will consider two that show considerable promise but for different 
reasons. The first is a simple conversion from intensity to magnitude based on the loga- 
rithmic scale of magnitude. The logarithm of the intensity is multiplied by a calibrated 
scale factor and added to a calibrated bias. Thus, 

where M is the visual magnitude from the SKYMAP catalog, and A and B are the calibra- 
tion coefficients. This equation lacks any term for star color dependence or FOV position. 
The second equation was recommended for use on SMM before’la~nch~. In fact, this 
analysis is a result of analysis recommended in that report. The equation has the form 

M = A, + A1 H + A2V + A3H2 + A4HV + A5V2 - 2.51ogl0(I,) , (3-3) 

where H and V are the FHST coordinates and the Ai’s are defined as 

where B - V represents the star color and the oij’s are the calibration coefficients. 
During the initial FHST data processing, Equation (3-2) was used to reduce the data 

because it was thought at the time that it would provide adequate results while greatly 
easing implementation. Thus, this assumption may be tested using the actual data. 

To perform the tests, the calibration coefficients for each equation were calculated for 
each segment of data in Table 1. Since Equation (3-2) was used throughout the mission, 
its calibration coefficients were available directly from the SMM archives. The coefficients 
in Equation (3-4) were calculated using a small sample of data before each 3-month data 
segment. Then the observations in each segment were reduced using the equations, and 
the results were graphed and assembled in tables. 
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The results in these figures show the superiority of the polynomial transformation. Fig. 
2 represents the simple transformation for the July though September 1988 time segment. 
The large area of poor sensitivity in the -V half of the FOV, especially in the -V,+H 
quadrant, should be noted. Fig. 3 is the same data fit with the polynomial transformation. 
The reduction in the number of boxes with poor sensitivity d u e s  and the lack of any 
concentrated area with poor sensitivity should also be noted. Figs. 4 and 5 show a similar 
improvement in FHST2 between the simple and polynomial transformations. 

These improvements are expected because the polynomial transformation fully accounts 
for all the factors. We now address the question of whether the improvement is worth the 
effort and computer memory needed to obtain it? 

Further analysis of the comparison and an examination of the errors that result from 
poor FHST sensitivity can resolve this question. The complete comparison results are 
provided in Tables 2 and 3. The columns entitled Simple and Polynomial provide the 
important numbers for the comparison study. The column entitled Original contains the 
data that illustrates FHST aging, which is addressed later. Table 2 presents comparison 
data for the total FOV of each data segment while Table 3 is confined to the -V,+H 
quadrant of FHST1. The numbers in the columns represent the percentage of the total 
number of observed sample boxes that have sensitivity within 10 percent of unity. The 
data in both tables show that the polynomial transformation yields significantly better 
results. 

The type of error that can occur from a lack of sensitivity is a misidentification of a 
star. For the SMM, this misidentification mainly affected the attitude control. If a. star 
was misidentified during the attitude determination process, the observation was simply 
discarded. Since there were usually many observations, discarding one observation did 
not significantly affect the attitude determination. However, the SMM used guide stars to 
control the spacecraft. An identification error could take two forms. First, the wrong star 
could be identified as the guide star. Thus, the spacecraft would correct its attitude by 
rotating to place the misidentified star in the predicted position in the FHST FOV. This 
would cause the attitude of the Spacecraft to be in error. Adding to this error would be 
the fact that the OBC would indicate the attitude was correct because it believed it had 
identified the correct guide star. 

The second type of identification error occurred when the guide star could not be located 
by the search pattern. This happened because the guide star intensity was so poorly 
predicted; no observed star whose intensity matched the prediction could be found. Thus, 
the attitude of the spacecraft would not be corrected and an error would accrue. 

Because of the high accuracy requirements of the SMM, both of these situations would 
cause significant errors in the roll attitude of the spacecraft. However, only in several 
isolated incidents was the roll error higher than the 0.1 deg roll error limit. At these times, 
the roll attitude was computed by the ground support system, and the spacecraft was 
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Figure 2. FHSTl Sensitivity Index Plot Using 
Simple Transformation, 1988 Data 

H R Y l S  IOEGl 

Figure 3. FHSTl Sensitivity Index Plot Using 
Polynomial Transformation, 1988 Data 
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Figure 4. FHST2 Sensitivity Index Plot Using 
Simple Transformation, 1984 Data 

H R X I S  I D E G I  

Figure 5. FHST2 Sensitivity Index Plot Using 
Polynomial Transformation, 1984 Data 
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. F  Sensitivity Values ithin 10 percent 
of Unity 

October - December 
July - September 
January - March 
July - September 
July - September 
March - May 
FHST2 
October - December 
July - September 
June - August 
June - August 

1984 
1985 
1986 
1987 
1988 
1989 

1984 
1985 
1986 
1987 

72 
69 
57 
48 
34 
29 

47 
39 
27 
33 

72 
62 
45 
64 
66 
62 

45 
62 
51 
65 

78 
73 
52 
77 
90 
77 

91 
85 
71 
81 

Table 3. FHSTl Sensitivity Values Within 10 Percent 
of Unity for the H+, V- Quadrant 

Original Simple Polynomial 
FHSTl 
July - September 1985 72 53 81 
January - March 1986 18 36 59 
July - September 1987 24 41 73 
July - September 1988 8 61 91 
March - May 1989 22 56 75 

manually commanded back to the correct attitude. 
Some future missions, most notably the Upper Atmosphere Research Satellite (UARS), 

will contain an onboard star catalog. Thus, another type of error may occur that did not 
affect the SMM. Since WARS will be computing onboard attitudes using the star catalog 
and the intensity-to-magnitude equation, accurate sensing of the correct star magnitude is 
very important. Thus, misidentification of stars, especially when the FHSTs are observing 
sparse star fields, will cause an error in the determined attitude. 

Thus, it is recommended here that missions with high accuracy requirements should use 
the polynomial transformation. However, for missions where the requirements are not as 
stringent, the extra accuracy given by the polynomial fit does not justify the extra effort 
and memory required. 

Affect on Magnitude Response of the Individual Terms 

To ascertain why the polynomial transformation is more accurate than the simple trans- 
formation, the individual components of the polynomial transformation will be exam- 
ined. Terms that depend on FOV position and star color are unique to the polynomial 
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ations contain a de 

s the correction for the position coordinates. 
that areas of poor sensi~ivi were removed 

position coordinates in the polynomial transformation. wever, a quantitative examina- 
tion of this improvement remains to be performed. Since it contains the most observations, 
the segment of data from March through May of 1989 will be examined. The polynomial 
transformation was altered so that only terms accounting for magnitude and star position 
were included. Table 4 shows that the percentage of good observations improved from 62 
percent, using the simple transformation, to 64 percent, using the polynomial transfor- 
mation with only position correction. However, the complete polynomial transformation 
improved the results to 77 percent. Thus, the correction due only to position is a small 
part of the improvement seen using the polynomial transformation. 

The polynomial transformation was then adjusted to include only the star color. Table 
4 shows that the percentage of good observations improved from 62 percent to 73 percent. 
Thus, most of the improvement from using the polynomial transformation is due to the 
star color terms in the equation. 

Table 4. FHSTl Sensitivity Values Within 10 Percent 
of Unity for Star Color or Position Only 

Whole Field 
FHSTl 
March - May 1989 Star Color only 73 

Position only 64 

Fig. 6 shows the dependence of the sensitivity on color. The SMM used a color value 
known its the blue minus visual magnitude index. This represents the blueness of the star. 
The more positive the value of the B - V ,  the bluer the star. Fig. 6 shows that the 
bluer stars, represented by the more positive values of B - V, have generally higher values 
for the sensitivity index. This indicates that the intensity of bluer stars is sensed more 
accurately by the FHST. Since the simple transformation equation was used to compute 
the predicted values in the figure, it is expected that more of the bluer star observations 
will have sensitivity values greater than 1. This is the case as shown in Fig. 6. 

The results of the star color analysis have important consequences. The important point 
to remember is that the NASA standard FHSTs sense the intensity of bluer stars more 
accurately. The results presented here confirm the analysis done previously by Lorenz6 
and Neste?. Lorenz (Ref. 6) first discovered the effect of star color on FHST observations 
in his analysis of the intensity variations seen by the Landsat-4 FHST observations. Neste 
(Ref. 7) adapted that work for use on the UARS mission and even presented a quantitative 
result. The resulting equation computed a correction to the star magnitude ba&d on the 
star color. 
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ging causes changes sensor that re~uire calibration 
to correct the observed intensity. formation equation is used 
without recalibration on each segment of data., the resulting measurement degradation of 
the later segments can provide clues about the aging processes of star cameras in general. 

For the evaluation of the aging process, each FHST was calibrated using the October 
through December 1984 data. With these calibration coefficients, the simple transforma- 
tion was used to compute the predicted intensities for all the remaining data segments. 
As expected, the sensitivity response for both FHSTs degraded significantly. As shown by 
the systematic darkening of Fig. 7 through Fig. 9, the FHSTl response was significantly 
degraded over the lifetime of the SMM. This is the real degradation of the sensor. In 
practice, the SMM FHST performance was maintained by calibrating the response every 
few months. 

As the figures illustrate, the SMM FHSTl degradation was very significant. This FHST 
appeared to age faster in the lower-right quadrant (the +H,-V). Table 2 shows this aging 
for each segment, and these statistics indicate that the FHST became completely unusable 
after several years. Table 3 shows that the lower-right quadrant aged faster and became 
unusable in about 1 year. 

The results for FHST2 differ from those of FHST1. Table 2 shows that the FHST2 
sensitivity response degraded only slightly over the years. Fig. 10 through Fig. 12 confirm 
this pattern. While the sensitivity response of FHST2 did degrade, it was not as profound 
as that of FHST1. This behavior can be partially explained by the alignment of the two 
FHSTs. The angle between the sensor boresight and the spacecraft to Sun direction was 
smaller for FHSTl than for FHST2 by approximately 73 deg. Thus, it is possible that 
more stray sunlight entered FHSTl causing it to age faster. 

The causes of aging in star cameras are factors such as temperature variations, space 
radiation, bright light impingement, space debris collisions, and any other effects native to 
the space environment. Thus, it may be concluded from this analysis that NASA SSTs age 
at different rates and., in addition, separate areas of the same FHST may age differently. 

CONCLUSIONS 

This paper has presented a study of the sensitivity response of the fixed-head star track- 
ers flown on the Solar Maximum Mission. Three studies were performed, and the results 
may be used by future missions to aid in the performance analysis of any type of star 
camera. The first study examined two separate intensity-to-magnitude transformation 
equations and the results indicated that the polynomial transformation provided better 
results than the simple transformation. On the basis of these results, the polynomial 
transformation was recommended for use on missions with stringent attitude requirements 
so that errors due to misidentification of stars may be avoided. The second study was an 
examination of the individual affects of star color and position on sensitivity. This study 
showed that star color was the more important effect, and correction for it, either b y  using 
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Figure 7. FNSTl Sensitivity Index Plot, Original Transformation Coefficients, 1984 
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Figure 8. FHSTl Sensitivity Index Plot, Original Transformation Coefficients; 1987 
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Figure 9. FHSTl Sensitivity Index Plot, Original Transformation Coefficients, 1989 
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Figure 10. FHST2 Sensitivity Index Plot, Original Transformation Coefficients, 1984 
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Figure 11. FHST2 Sensitivity Index Plot, Original Transformation Coefficients, 1985 
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showed that star color was the more important effect, and correction for it, either by using 
the polynomial tr~sformation equation or a separate equation correcting the final mag- 
nitude, is i m p o r t ~ t .  The third study examined the aging of star trackers and concluded 
that aging due to the effects of the space environment was apparent, and that the sensors 
age at different rates with different characteristics. Therefore, the aging process of each 
sensor should be studied closely throughout the mission. 
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T 

The goal of the Flight Dynamics Facility (FDF) attitude support is twofold: to deter- 
mine spacecraft attitude and to explain deviations from nominal attitude behavior. 
Attitude determination often requires resolving contradictions in the sensor observa- 
tions. This may be accomplished by applying calibration corrections or by revising 
the observation models. After accounting for all known sources of error, solution 
accuracy should be limited only by observation and propagation noise. 

The second half of the goal is to explain why the attitude may not be as originally 
intended. Reasons for such deviations include sensor or actuator misalignments and 
control system performance. In these cases, the ability to explain the behavior 
should, in principle, be limited only by knowledge of the sensor and actuator data 
and external torques. 

This paper documents some results obtained to date in support of the Cosmic Back- 
ground Explorer (COBE). Advantages and shortcomings of the integrated attitude 
determination/sensor calibration software are discussed. Some preliminary attitude 
solutions using data from the Diffuse Infrared Background Experiment (DIRBE) 
instrument are presented and compared to solutions using Sun and Earth sensors. A 
dynamical model is constructed to illustrate the relative importance of the various 
sensor imperfections. This model also shows the connection between the high- and 
low-frequency attitude oscillations. 

*This work was supported by the National Aeronautics and Space Administration (NASA) /Goddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-37500. 
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This paper compiles an assortment of results and comments regarding attitude determination and sensor 
calibration for the Cosmic Background Explorer (COBE). The central problem is to disentangle the true 
spacecraft motion from the apparent motion reported by imperfect sensors. M e n  these sensors also 
control the spacecraft, their biases not only produce fictions in the measurements but induce wobbles in 
the true motion. 

First, a brief description of the COBE Attitude Control System (ACS) is given. The Diffuse Infrared 
Background Experiment (DIRBE) instrument is also described, in the context of using star sightings to 
increase attitude determination precision. Section 2 discusses the advantages and shortcomings of the 
integrated attitude determinationhensor calibration software, with emphasis on real-world difficulties. 
This is followed by a comparison of preliminary attitude solutions using DIRBE data with results using Sun 
and Earth sensor data. The final section is meant to complement the data reduction techniques of Sec- 
tion 2. Rather than solving for the sensor biases that best match the predicted observations to the real 
data, the dynamical equations themselves are solved. This allows the separate study of the effects of each 
bias or misalignment. 

1.1 

COBE is a spinning, three-axis stabilized spacecraft. Two counter-spinning momentum wheels control the 
spin rate and leave the spacecraft with zero net angular momentum (except for the 1-rotation per orbit 
(rpo) pitch rate about the Sun line). Sensors, actuators, and much of the control electronics exist in 
triplicate on the three control axes (A, B, and C). These axes are symmetrically located in the plane 
normal to the spin axis. The sensors include a gyroscope, an Earth scanner assembly (ESA) , a digital Sun 
sensor (DSS), and a three-axis magnetometer (TAM) on each control axis. The actuators are reaction 
wheel assemblies (RWAs) and magnetic torque rods (transverse and X-axis) for momentum unloading. 
The ACS drives the three reaction wheels independently on each axis in proportion to rate, roll, and pitch 
error signals (Reference 1). 

The DSS most directly facing the Sun measures the Sun elevation and azimuth. A common electronics 
unit produces the sine and cosine of the Sun azimuth angle. It also produces the sine and cosine of this 
angle plus or minus 120 degrees (deg) for use by the other axes. 

The rate error signal is the gyro output minus an orbit rate-stripping term, normally equal to 1 rpo multi- 
plied by the cosine of the Sun azimuth. Choosing a rate-stripping parameter different from 1 rpo gener- 
ates an error signal that can be balanced only by a nonzero pitch signal. For this reason, the rate-stripping 
parameter also serves as the pitchback parameter. 

Roll angle is minus the Sun elevation angle. The commanded roll offset is subtracted, and the result is 
multiplied by the sine of the appropriate Sun azimuth to yield the roll error signal. 

The pitch signal is the difference between the instantaneous ESA split-to-index angle and a modulated 
reference value. The reference is the split-to-index angle sampled when the Sun azimuth is 90 deg (actu- 
ally 8 1 deg to avoid Sun interference). At 90 deg, the ESA is directly reading the roll angle. This value is 
held for a full spin period. It is multiplied by the sine of the Sun azimuth and subtracted from the 
instantaneous split-to-index. With the roll contribution thus stripped out, the result is the pitch angle 
multiplied by the cosine of the Sun azimuth. 

The rate, roll, and pitch error signals are amplified, filtered, limited, and combined into a torque com- 
mand signal for the RWAs. The reaction wheel tachometer also provides feedback so that, in the absence 
of other signals, each wheel will spin down to a commanded speed. 

The DSS has a precision of only 0.5 deg, which is an inherent limitation on the ability of the ACS to 
establish the roll angle and the correct azimuthal phase for modulating the sensor output. Star sightings in 
the DIRBE instrument, described in the next section, offer data with greater precision. Although these 
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measurements are not available to the ACS for attitude control, they can be used Q posteriori for im- 
proved ground-based attitude determination. 

DIRBE is a COBE science instrument whose mission is to perform a full-sky survey of diffuse infrared 
radiation in the wavelength range of 1 to 300 microns. As a bonus, DIME also provides star sightings to 
the Flight Dynamics Facility (FDF) that enhance the FDF’s ability to determine attitude. DIRBE has a 
square field of view, 0.7 by 0.7 deg. The DIRBE boresight (at the center of the field of view) is oriented 
30 deg from the spacecraft spin axis. The field of view sweeps out a spiral pattern on the celestial sphere 
as COBE spins. Two edges of the square field of view are parallel to the scan direction. 

As DIRBE scans the sky, pointlike sources, such as stars and planets, pass through the field of view. 
These sources lead to a sharp increase in the measured infrared intensity. Examples of these “spikes” in 
intensity are shown in Figure 1. The spike profile can be processed (Reference 2) to determine when the 
pointlike source passed through the center of the field of view. This “time of passage” (TOP) is then used 
to predict the boresight direction by interpolating approximate attitudes computed from the attitude deter- 
mination subsystems. 

The predicted boresight direction at the TOP is used for star identification. The observed star is com- 
pared to the SKYMAP 2.2 micron (K-band) wavelength reference catalog (Reference 3). For a positive 
star identification, a reference star must be located within a user-specified angular radius of the predicted 
DIRBE boresight. Approximately 2000 well separated, sufficiently bright stars are currently in the refer- 
ence catalog, and about 1.3 valid DIRBE star identifications occur per minute. 

Individual star sighting accuracies are expected to be ~0.35 deg in COBE body elevation and ~ 0 . 1  deg in 
COBE body azimuth. These star sightings have been used to determine the attitude of COBE independ- 
ently of SA and Earth data. 
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In turn, these attitude solutions can be used for sensor calibration. 
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Figure 1. Converted DIRBE Data 
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Two of the tools used to determine the attitude of COBE are the Coarse Attitude Determination Subsys- 
tem (CADS) and the Fine Attitude Determination Subsystem (FADS). 

CADS computes single-frame attitudes from “simultaneous” sensor measurements that have been interpo- 
lated to a common time. As the content of ESA and DSS data is partly redundant, the user can choose 
how heavily to weight each. This choice results in a range of solutions reflecting the different sensitivities 
and misalignments of the various sensors. 

FADS estimates these misalignments, the gyro biases, and an epoch attitude by performing a least-squares 
fit to the data over a given timespan. The bias-corrected gyro data are used to propagate the epoch 
attitude over the timespan. 

2.1 INTEGRATED ESTIMATION 

2.1.1 BACKGROUND 

COBE is the first spacecraft supported by the FDF to estimate attitude, gyro, and sensor calibrations in a 
single ground support subsystem, FADS (Reference 4). This integrated capability is the next logical step 
from the Earth Radiation Budget Satellite (ERBS) FADS (Reference S), which combined attitude and 
gyro calibration, and follows in the spirit of the Multisatellite Attitude Determination/Optical Aspect Bias 
Determination (MSAD/OABIAS) System (Reference 6), which is the standard estimator for spinning 
spacecraft. 

The COBE FADS is a batch-weighted least squares estimator that can use any combination of the 23 ob- 
servation types to solve for almost any combination of the 49 possible state parameters. The three attitude 
parameters must be solved for as a group. This approach is attractive because it obviates the need for 
separate calibration utilities and the need to go back and forth between them to obtain a complete set of 
self-consistent calibrations. Instead, all parameters are solved for in the same subsystem and, in principle, 
at the same time. Although the first benefit is definitely realized, the second benefit, simultaneous solu- 
tion, is problematic for several reasons. 

First, solving for many parameters at once often causes the solution to diverge or to converge to an answer 
worse than the a priori solution. Only when the parameters being solved for are very close to their correct 
values is there a benefit to solving for many parameters at once. Then, the solution usually improves. 
This problem may be solved, in whole or part, by changing the method of solving the batch least-squares 
problem. Marquardt’s algorithm and others offer alternatives to the standard Newton-Raphson method 
used here. 

Second, a byproduct of this great flexibility is confusion. With so many parameters, it becomes hard to 
decide what to include in the state vector. At present, choosing parameters depends on the analyst’s 
ability to recognize patterns in the residuals and to identify the parameter causing the pattern. Because 
many parameters have similar effects and may combine to produce unrecognizable residual patterns, it 
may take longer than the 2 months usually allotted for launch support to decide exactly what is wrong. 

Third, whether it is a simple mistake in the specifications or a more fundamental problem, gyro calibration 
takes a very long time to converge. As COBE convergence criteria are maximum values arbitrarily set for 
the change to the state, a more meaningful comment might be that the gyro calibrations approach their 
final values slowly and monotonically. They never overshoot their true values, as do the other parameters. 
Moreover, they approach slowly, typically by halves. Because FADS is already slow, the need for so many 
iterations increases the central processing unit (CPU) time demands and restricts calibration work to 
off-hours when the mainframe is not being heavily used. 

Thus, although it is possible to solve for all 49 parameters at once, that has not been a real benefit of the 
integrated calibration approach. The main benefits have been in centralizing the solution process and in 
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providing a better, more complete view of the calibration problem, as reflected in part by the following 
statistics. 

Statistics are useful for assessing solution accuracy and selecting parameters for the state vector. The 
following statistics are being tried for COBE. Knowing the solution accuracy can help in recognizing when 
a solution is diverging and in choosing between competing solutions. To evaluate the quality of a batch 
solution, the FADS provides the weighted root mean square (RMS) residual ( up). This is a single number 
whose magnitude is the size of a typical residual ( Ayi) at time ti weighted by the weight matrix (W). The 
set of calibrations that gives the smaller RMS for the same data is probably the better set. To first order, 
the RMS residual is independent of the number of data points and the choice of observation weights. 

To know how accurate each parameter of the solution really is, FADS provides a residuals-based estimate 
of the covariance matrix. Rather than assume that the observation residuals are zero mean and white, 
with the variance assumed for weighting purposes, the covariance estimate is computed from its definition: 

cov (x) = E [&AXT] - E [AX] E [&IT (2) 

The two terms are computed from the expressions for the change to the state. Here, Fi represents the 
partial derivative of the observation types with respect to the state variables at time i, based on the same 
currently estimated state used to predict the observations: 

One possible explanation for the divergence of solutions and the slow convergence of the gyro calibration 
is that the observabilities of the state parameters are too different. For a state vector of two elements, this 
means that the level curves of the loss function being minimized are elliptical rather than circular. If the 
minimization algorithm moves perpendicular to these level curves, the less observable parameter can be 
slow to converge (Figure 2). 
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Figure 2. Convergence With Very Different Observabilities 

The diagonal elements of the normal matrix ( Z  FT W F) provide estimates of the relative observability of 
the different parameters in the state vector. Due to differences in the units used for computation and 
display, however, the standard deviations in the iteration summaries may not reflect the true conditioning 
of the normal matrix. A more direct indication of the unbalanced observabilities and singularity is the 
condition number (K), which is the product of the row norm of the normal matrix and that of its inverse 
(Reference 7) : 

When K is large, the parameters solved for have very different observabilities, and the matrix is nearly 
singular. As a further check, the maximum and minimum eigenvalues of the normal matrix are computed 
along with their eigenvectors. The associated eigenvectors indicate which parameters are the most or least 
observable. This tool has not proven very useful because condition numbers routinely reach 1 million 
without the solution diverging, and convergence can be slow without there being a very large condition 
number. 

Knowing what is most observable and least observable, however, does not dictate the parameters to in- 
clude in the state vector. The most observable parameter may be completely accurate, and the error may 
be caused by the least observable one. An enhancement, which has not yet been implemented, takes the 
inner product of the residual histories over the batch timespan with the predicted residual histories due to 
each parameter error. The computation entails normalizing the derivative of the residual vector ( Ay - ) at 
time i with respect to each parameter (xi ): 

where 



and accumulating this dot product to indicate which parameters best fit the residuals. 

2.1.3 COB€ CALIBRATION HISTORY 

Before launch, calibration looked straightforward. FADS was working. Signatures of the individual cali- 
bration errors had been identified, and a “foolproof” procedure had been set down whereby anyone 
could determine the calibrations. The only thing that would prevent calibration from being completed the 
day of launch was that DIRBE measurements would not yet be available. 

Important results were obtained in the first few days. Earth sensor-A appeared to have a twist misalign- 
ment (split-to-index bias) of 0.5 deg, and the X-gyro scale factor was 0.1 percent high. After that, 
however, progress was slow. Finding scale factor corrections for the transverse axis gyros proved treacher- 
ous, and when transverse gyro biases were solved for, the results were not repeatable. Localized sources 
of error, such as horizon radiance, also turned out to be more significant than expected. 

One of the early “casualties” in this struggle was the original calibration plan. Reasonably, it had seemed, 
sensor alignments should be solved first, over short timespans, before gyro errors could become signifi- 
cant. Gyros would then be calibrated. In practice, however, the X-gyro scale factor error could not be 
ignored even over a single 75-second spin period, and the procedure was changed to make it the first 
parameter solved. 

With the Earth sensor and X-gyro scale factor corrections, it was possible to increase the length of the 
batches to 20 minutes without the observation residuals exceeding 0.5 deg. Prelaunch information had 
also suggested that batches longer than this would have propagation errors of more than 0.1 deg due to 
gyro noise. As a result, 20 minutes became the standard batch length. The next significant problem was 
the growing Earth sensor split-to-index residuals. These residuals could be reduced by assuming large 
transverse scale factor errors. This solution was considered valid for several weeks until it was noted that 
attitude histories computed in this way had pitch discontinuities at the batch boundaries. The large scale 
factors had to be abandoned. 

After a few weeks, it was realized that without the large scale factors the roll drifted off, and solving for 
sensor alignments along with the X-gyro scale factor made the residuals and discontinuity much smaller. 
When a full orbit was processed, the roll came back over the second half of the batch. This identified the 
problem as a spin phase error similar to that caused b y  incorrect telemetry time tags or single-step attitude 
propagation (Reference 8). It turned out that the Sun sensors that measure yaw were slightly misaligned 
with respect to the gyros. By correcting the Sun sensor azimuth alignments by approximately 0.1 degree, 
the problem was resolved. 

Recently, attention has returned to the question of transverse gyro scale factor errors, because single- 
frame and FADS pitch solutions diverged slightly over long times. When 0.002 scale factor corrections 
were made, the Earth sensor residuals were halved, and the gyro-propagated attitude repeated from orbit 
to orbit. These results corroborate earlier ones obtained without examination of pitch repeatability, the 
full importance of which was not appreciated at the time. 

One of the first calibration objectives following launch was to determine transverse gyro biases. Even 
today, these remain a puzzle. The problem is that Earth sensor twist misalignments and transverse gyro 
biases have the same effect on the split-to-index residuals. If zero biases are assumed, Earth sensor-A 
twist appears to be 0.5 deg. If the twist is fixed at its prelaunch value of 0.3 deg, the biases on gyro-A and 
-C are on the order of 30 deg per hour. It has not been determined what the real answer is. 
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The small coning motion implied by such a twist or bias is not readily observable from the Sun sensor 
elevation measurements because of their coarse 0.5 deg quantization and the attitude being controlled to 
maintain constant Sun elevation. DI E elevation measurements, with their 0.7 deg field of view and 
approximate 1-minute spacing, are similarly crude. Nor does the control system provide any help. As 
both the Earth sensors and the gyros are in the control loop, various mixtures of the two errors also cause 
coning. This may be a situation in which if it is so hard to decide, it probably does not matter. 

Finally, although observation residuals are now about as small for a full orbit as they are for one spin 
cycle, old data must be reexamined to see if the calibrations that work well now would have been as 
successful then. Horizon radiance effects, which peak at the solstices and vanish at the equinoxes, might 
have contributed to those large early residuals. Other localized errors that appear at the orbit rate and its 
harmonics are also under study. 

The COBE calibration effort has not been quick or smooth; each advance has been hard won. Moreover, 
these solutions could probably not have been foreseen before launch, even with twice the preparation 
time. The combined spinning and pitching made COBE calibration more confusing, but each mission is 
certain to have its own challenges, and so calibration may always be a puzzle. In solving the puzzle, ideas 
are like pieces, the more the better, but each must be evaluated and recorded to avoid confusion and 
needless duplication of effort. The integrated estimation software was able to reduce some of this confu- 
sion by providing a broad view of all the observations and calibrations at once, but it was not a panacea. 

2.2 DIRBE ATTITUDE RESULTS 

Preliminary results with DIRBE indicate good agreement with Sun and Earth attitude solutions. However, 
DIRBE misalignments have not yet been computed, and the solutions seem sensitive to these misal- 
ignments. A comparison was made between FADS runs using data from January 29, 1990. One (the 
nominal case) assumed the DIRBE boresight to be aligned with the nominal body azimuth (240 deg in the 
body). The other (the misaligned case) assumed a -0.3 deg misalignment of the boresight with respect to 
the nominal azimuth. The computed roll in the nominal case, when averaged over a spin cycle to elimi- 
nate the effects of short-term oscillations, experienced a long-term drift of 0.3 deg over 25 minutes (Fig- 
ure 3). This agreed with FADS solutions, using Sun and Earth data, to better than 0.06 deg in the roll, 
pitch, and yaw. In the misaligned case, however, roll experienced a long-term drift of only 0.1 deg in 
25 minutes (Figure 4). Sun elevation data drift by roughly 0.1 deg over the 25-minute time interval. 
Based on Sun elevation information alone, the misaligned DIRBE solution is more believable. However, 
the half-degree digitization of the DSS makes such a comparison suspect. Adding to the uncertainty is the 
possibility that the Earth scanner information is corrupted by unmodeled horizon radiance effects. 

3. DYNAMICAL MODEL 

This section approaches the attitude problem from a different direction. The intent is to understand what 
is driving both the high-frequency motion (time scale = spin period) and the low-frequency motion (time 
scale = orbital period), which have been observed since the failure of the B-axis control gyro. The starting 
point is the system of Euler equations and the attitude control laws. Sensor misalignments, biases, and 
failures can be added one at a time to see how each contributes to the attitude motion. 

During one spin period, the COBE body Xc-axis traces out two unequal cones; the pitch and roll angles 
oscillate with dominant frequency components equal to the spin rate and twice the spin rate. The ampli- 
tudes are a few tenths of one degree and are dependent on the spin rate. 

During one orbit period, the spin-averaged pitch angle varies by a few degrees, with the amplitude de- 
pending on the time of day. Two unequal peaks appear each orbit, so the dominant frequency compo- 
nents are w and 2 o, where o is the orbital frequency. 
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3.1 MODEL EQUATIONS 

The derivation of the equations of motion and control laws is outlined in Appendix F of Reference 1. 
The following is a brief summary of those equations and definitions. (Reference 9 also derives similar 
equations and applies them to a stability analysis of the nominal ACS configuration.) 

A convenient reference system is the despun frame, which is the COBE body frame rotated to zero deg 
yaw angle. The Euler equations in this frame can be written 

L, = SZ cos 8 h, - 8 h, + T, 

I 6 = - D cos 8 L, - I D2 sin 8 cos 8 - G! sin 8 h, - h, + T, (7) 

I (4 - i j )  cos 8 = 2 I Q 6 sin 8 + 6 L, + !2 sin 8 h, - h, + T, 

where 

Ilr, 6, @ = yaw, roll, pitch 

'I = ideal pitsh anomaly 

!2 = +  -'I + o  

w = orbital rate 

I = transverse moment of inertia = 2700 ft-lb-sec2 
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L X  = X-axis angular momentum 

h,, hp = net angular momentum of the three reaction wheels, measured in the body 
frame and transformed to the despun frame 

Tx, T r ,  T p  = external torques (e.g., gravity gradient and torquer bars) 

The ACS controI torque commands to the three wheels are projected on the body YC - and ZC -axes and 
then transformed to the despun frame: 

h, = -Kt  h, + 1.5 (K, + K, Fzo) (0 - 8,) + 1.5 K, 8 - W hp 

h, = -K, hp + 1.5 Kp 9 + 1.5 Kg ( 8  cos 8 - Qcmd) + ?v h, 

where 0, is the roll offset and 8 c m d  is the orbit rate-stripping parameter. The feedback loop gains are 

K, = 1.07 ft-Ib/rad 

K, = 6.59 ft-lb/rad 

K, = 189.6 ft-lb/(rad/sec) 

Kt = 0.0168 sec-' 

The yaw rate is related to the X-angular momentum through the following equation: 

lu = luo + L ~ / I ~  + 8 sin 0 

where Wo is the nominal yaw rate. 

The ACS roll loop has a 20-second filter to smooth out the 0.5-deg digitization of the DSSs. Although the 
digitization is not included in the model, the 20-second filter has been retained. The filter operator Fzo 
converts 0 into 8, where 

To a good approximation, the pitch anomaly is 

where Q, is the difference between the Sun's declination and that of orbit normal. 
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inearizing the dynamical system in the roll, pitch, L,, and control torques, and taking the Laplace 
transform, yields 

- 
where s is the complex Laplace transform variable, A 4  is the transform of 4 - q , and 

3 
2 

B = A + - KJ(1 + 20s) 

2w 
4w2 + s2 

3 E = -- K, tan2 
2 

3 
2 

P = - Kg (Q - Q,,)/s 

The initial conditions have all been taken to be zero. P is the pitchback command, and E is the pitch 
anomaly. Hr, H, are errors caused by the failed gyro and ESA twist misalignment discussed in the next 
subsections. T, is assumed to be zero. 

The characteristic equation is obtained by setting the determinant of the matrix in Equation (12) to zero. 
The determinant can be written 

det = I2 (s2 + w2) D (14) 

5 
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With ?y, = -0.815 revolutions per minute (rpm) and two working gyros, the roots are 

= -0.009715 

s2 = -0.02740 + i 0.01604 

s3 = -0.07978 + i 0.08095 

and the complex conjugates, all having units of sec-'. These are the time constants for the decay of 
transients. They all have negative real parts, so the system is linearly stable. 

One can solve the algebraic equations for A@ and then obtain -@(t) by inverting the Laplace transform. 
The inverse is obtained by inspection from the singularities in A @ , discarding the transient solutions. The 
residues of the simple poles give the amplitudes. Double poles lead to oscillations plus secular terms; that 
is, terms that grow linearly with time. These occur when an external roll torque oscillates at the orbital 
rate, always pointing the same direction in inertial space. Such secular terms (for example, the gravity 
gradient torque) must be canceled by the secular terms from the momentum management assembly 
(MMA) torque. On average, the spacecraft is not accumulating angular momentum. These terms are 
dropped in the following solutions. 

In this manner, the equations have been solved for the commanded pitchback (PB), the pitch anomaly 
(PA), and the gravity gradient (GG) source terms: 

- 

@(t) = -6.883 (PB) 

-0.1833 sin (2wt + 76.75 deg) (PA) 

-0.3721 sin (wt - 34.14 deg) (GG) 

in units of degrees. These solutions assume that the yaw rate is -0.815 rpm, the Sun declination is 
-21 deg, the roll offset is -4 deg, and the gain in the gyro feedback loop is appropriate for two working 
gyros. The pitch anomaly has been added back in, so Equation (17) represents the actual pitch angle and 
not @ .  

3.2 &AXIS GYRO FAILURE 

With the failure of the B-gyro, the ACS torque command to the B-axis RWA became 

+ (nom) 
where h~ is the nominal torque command, %b = - (Ij) + 120 deg) is the Sun azimuth measured 
from the B-axis (note that azimuth and yaw angles are opposite in sign), a c m d  is the rate-stripping pa- 
rameter on the A- and C-axes, and 6 2 ~  is the rate-stripping parameter for the B-axis. Since the gyro 
failure, rate-stripping has been set to zero on all three axes, but it may be desirable to command a 
different value for the B-axis now that the symmetry has been broken. To allow for this, the nominal 



cmd is subtracted, and B is explicitly included. sine and cosine factors in Equation (1 8) repre- 
sent the projection of roll and pitch rates on the B 

After projecting the new B-axis torque command on the body Uc- and Zc-axes, transforming to the 
despun frame, and Laking the aplace transform, the resulting source terms become 

+ L [e cos (2q + 60") + A i  sin (299 + 60") 

I + L [e sin (299 + 60") - A i  cos (299 + 60°)] 

The first term on the right-hand side of Equations (19) and (20) can be moved to the left-hand side of 
Equation (12). This effectively reduces the rate gain from 3 K,/2 to K, in the matrix elements A and B. 
The second term in both equations drives the system at twice the spin rate. 

The third term in Equation (20) determines the pitchback angle when it is balanced by the pitch feedback 
term from Equation (8). The nominal pitchback term, P, is included in Equation (20) to make explicit 
the net pitchback. Writing 2Qcmd as QA + Qc, the pitchback angle for the ACS with Ng working 
control gyros is 

With the rate-stripping parameters set to zero and NE = 2, the pitchback is -6.883 deg. 

In the final terms of Equations (19) and (20),  the L is the Laplace transform operator. These terms are 
dropped in first order. They are added back in iteratively, using the rates obtained in the first-order 
solution. This produces terms with zero frequency (constant 0.1-deg roll and 0.75-deg pitch offsets) and 
small oscillatory terms with a frequency four times the spin rate (amplitude 

In solving for roll and pitch as functions of time, it is found that the failed gyro forces the spacecraft to 
move on an almost circular cone, twice per spin: 

deg). 

6 = 0.100 - 0.103 sin (211 + 14.46") (22) 

qj  = -6.883 + 0.745 - 0.102 sin (299 - 76.60") (23) 

where ly = qo t and Vo = -0.8'15 rpm. Angles are given in degrees. The -6.883 deg term is the normal 
pitchback, and the other two constants are the second-order corrections. The cone is larger and less 
circular for lower spin rates. 
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The part of the high-frequency motion that is driven by the failed gyro can be prevented by choosing 
rate-stripping parameters that make the oscillatory source terms vanish; that is, set = 0. This can be 
done for any desired pitchback angle, h. The required parameters are 

QB = Qcmd - 0 

The choice of QA and Qc is not affected by the failed gyro, and the value of QB is reduced by w .  

3.3 NT 

The sensor calibration feature in FADS has established the ESA twist misalignment angles to be TA = 
0.54 deg and TC = -0.15 deg. These twists alter the index angle in measurements of the split-to-index. 
(This FADS solution assumes that all the error is due to ESA twist and none to transverse gyro drift bias.) 

Analysis similar to that of the previous section yields the attitude solutions (in deg): 

6 = -0.0182 - 0.0394 sin (q - 85.38O) + 0.0063 sin (2q + 32-54') (25) 

# = +0.0355 sin (q t 0.72O) + 0.0062 sin (2q - 58.53') (26) 

The error in the instantaneous split-to-index drives the system at the spin rate; the error in the sample- 
and-hold split-to-index drives the system at twice the spin rate and generates the offset. 

The predicted high-frequency attitude motion is the sum of these expressions and the failed gyro solutions 
given in Equations (22) and (23). This motion is plotted in Figure 5 .  The figure shows two spin periods, 
starting from V = 0 at t = 0. Figure 6 shows two spin periods of spacecraft data as determined by 
FADS. In that figure, the yaw angle is zero at time 19.31.11. The phase and overall shape of the FADS 
solution are well reproduced by the model equations driven only by gyro and ESA errors. The average 
values disagree because neither the commanded roll offset nor the magnetic torques are included in 
Figure 5 .  The predicted ampliwde falls below the actual value by approximately 0.05 deg. These calcu- 
lations have been repeated for tU, = -0.225, -0.4, and -0.6 rpm. The qualitative agreement with FADS 
is good at all spin rates, but the amplitude is consistently low. This is possibly caused by an unmodeled 
momentum wheel misalignment, which also shows up as a larger-than-predicted, spin-rate-dependent off- 
set of the reaction wheel speeds. Gyro drift biases of roughly 30 deg per hour also could possibly make up 
the difference. 

3.4 MAGNETIC TORQUES 

Under ideal conditions, the RWA holds the spacecraft at the desired attitude with the wheels absorbing all 
the accumulated angular momentum. The MMA takes the tachometer signals, filters out any constant 
offset, and energizes the torquer bars to dump this excess angular momentum. However, imperfect sen- 
sors cause the ACS to spin the wheels up and down, even when the attitude is nominal. The MMA 
receives the oscillating wheel speed signals and attempts to dump excess momentum when there is none. 

The model assumes a dipole Earth field, oriented so that COBE's orbit passes over the dipole axis at the 
northernmost point at t = 0. The field components in the body frame depend primarily on the yaw angle. 
For simplicity, they are calculated with pitch and roll assumed as zero. The reaction wheel speeds are 
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found by integrating the ACS control laws, using the high-frequency attitude solutions already obtained. 
In agreement with spacecraft data, the A-, B-, AX-, and BX-torquers are driven to their limits by the large 
oscillations of the A- and B-wheels. 

Transforming the A-, €3-, C-dipoles to the despun frame multiplies them by sine and cosine of the yaw 
angle. This beats with the reaction wheel frequencies (predominantly the spin rate). As a result, the pitch 
and roll components of the MMA dipole have both an offset and an oscillation at twice the spin rate. The 
MMA flips the sign in the Southern hemisphere. Multiplying by the Xc-component of the Earth’s mag- 
netic field and spin-averaging yields torques that vary as the absolute value of cos ( w t) . 
The final step is to put the MMA torques into Equation (12) and solve for the attitude. 
averaged torques are crudely approximated to be 

The spin- 

T, = - 0.9 x lo-’ (COS Ut( (ft-lb) 

T, = -0.2 X - 1.1 X lo-’ (cos wtl (ft-lb) (28) 

- 
Solving for A $J , one finds terms with single and double poles at s = 0, and single poles at s = +i w and s = 
ki2n w (n running from one to infinity). The amplitudes drop off rapidly with n; only the n = 1 terms are 
kept. They drive the system at twice the orbital frequency. 

Figure 7 shows two orbits of the pitch motion driven by pitch anomaly, gravity gradient, and MMA 
torques. The spacecraft data are shown in Figure 8. The agreement is not good, although the model does 
give the large amplitude and two unequal peaks. The shape and amplitude are fairly sensitive to the 
parameter used in Equation (27), which in turn is sensitive to the details of the model (for example, 
inclusion of ESA misalignments and second-order gyro effects). 

The solution could be improved by using a more realistic magnetic field model and by taking proper 
account of the attitude when calculating the field components in the body frame. Using the true attitude 
rather than the nominal values would also improve the gravity gradient results. This could be important 
because the gravity gradient natural period is approximately 93 minutes, comparable to the orbital period. 

With the absence of any other large perturbations, it is concluded that the MMA is the immediate cause 
of the low-frequency pitch motion. In turn, the MMA is responding primarily to the inconsistent 
pitchback signals due to the failed B-gyro. It is suggested that commanding the same pitchback angle on 
all three axes, as in Equation (24), could significantly improve spacecraft performance. 
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Definitive attitude solutions are supposed to be the most accurate possi- 
ble. For the Earth Radiation Budget Satellite (Ems), this has been ac- 
complished by using gyro rates to transform many nonsimdtaneous 
observations to a common time point and then averaging to reduce the 
effects of observation noise. Rate quality is critical to realizing improved 
accuracy with this method. Gyro deterioration, which shows up as large 
observation residuals and discontinuities between contiguous batch solu- 
tions, now discourages using the batch approach for ERBS. To address 
this problem, a simple Kalman filter is tried in place of the batch estima- 
tor. The filter works well as long as the attitude is completely observable. 
During periods without Sun coverage, however, the extrapolated yaw may 
diverge and then change abruptly when the Sun returns to the sensor field 
of view. Causes of this behavior are discussed, and some solutions are 
tried that address the observability aspect of the problem. 

*This work was supported by the National Aeronautics and Space Administration (NASA) /Goddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31 500. 
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efinitive attitude solutions are to be the 
over the entire e best conditio 
and operationally 1). In this paper, we con 
lems-that caused by attitude propagation error. 

As a spacecraft gets old, its gyros may become noisy. This has been the case for the 
Earth Radiation Budget Satellite ( E R B S )  . Without accurate angular velocity measure- 
ments, its definitive attitude determination system has been unable to provide continuous 
solutions or fit all observations. 

To remedy this, the batch estimator is replaced by a Kalman filter that accounts for the 
gyro noise. The results obtained are described, and recommendations are made for fur- 
ther work to improve the approach. 

2. ERBS BACKGROUND 

ERBS is an Earth-pointing spacecraft in a 57-degree (deg) inclination, nearly circular orbit 
with a period of 97 minutes. It has two horizon sensors for measuring geodetic pitch and 
roll plus two Sun sensors whose alpha angles measure yaw. In addition, ERBS has a 
three-axis magnetometer. The horizon sensors are accurate to 0.5 deg, due primarily to 
horizon radiance effects. The Sun sensor is accurate to 0.05 deg, and the magnetometer 
is accurate to 3 deg. Because of its lower accuracy, the magnetometer is not used for 
definitive attitude determination. ERBS also has two redundant three-axis gyros for,meas- 
uring its angular velocity. Both gyros have now partially failed. The first failure occurred 
on a pitch-axis gyro in August 1986, 22 months after launch. The second gyro failed on a 
pitch axis as well in July 1988. At present, only roll and yaw rates are available. 

While the horizon sensors always see the Earth, the Sun sensors see the Sun for only part 
of each orbit. This means that attitude is not completely observable at all times, and good 
angular velocity measurements are needed to provide a complete history of the attitude. 
This incomplete observability also necessitates special care in dividing up each day’s data 
for computing attitude. 

3. DEFINITIVE ATTITUDE DETER~INATION 

The ERBS definitive attitude system has three parts that determine the effect of propaga- 
tion error-the estimator, the segmenter, and the smoother (Reference 2). The current 
batch least squares estimator updates its previous estimate of the state (epoch attitude, 
gyro bias, and scale factor errors) using all the observations at once. Sensor observations 
from different times are in effect propagated back to one epoch time, where they are 
averaged to reduce the effect of measurement noise. 

If propagation were perfect, any number of observations could be so transformed, giving 
a solution of unlimited accuracy. In practice, however, propagation does add uncertainty, 



rates, they can be reduced by solving for rate bias and scale factor corrections along with 
the epoch attitude. Since bias errors grow with time,  owing the attitude at both ends of 
the batch affords the best opportunity for estimating biases. For this reason, the seg- 
menter divides the day’s data so that there is Sun sensor coverage at the start and end of 
every batch. 

The smoother also serves to reduce the evidence, if not the effect, of propagation error. 
Because not all gyro errors are eliminated by bias and scale factor corrections, the time 
dependence of the attitude history may still be incorrect. No matter what the choice of 
epoch attitude, the solution cannot be correct over the entire batch. This shows up in the 
definitive attitude as discontinuities between batches. The smoother discards points 
around the junction and replaces them with values obtained by linearly interpolating be- 
tween the new end points as in Figure l. This is done without regard to sensor observa- 
tions, and may not significantly improve the solution. 

The batch estimator, by ignoring this random part of propagation error, creates a problem 
that the segmenter cannot fix and the smoother simply covers up. 

This ensures that the rate biases can be accurately determined. 

4. MODELING PROPAGATION ERROR 

Although propagation error can cause batch junction discontinuities, it remains to be 
shown that the ERBS gyro deterioration actually produces such discontinuities. To make 
this connection, a simplified Farrenkopf gyro noise model is used to predict discontinuity 
size based on the observations of gyro noise. These predictions are then shown to track 
the daily average pitch, roll, and yaw junction discontinuities. 

Unlike the white noise seen in the sensor observations, errors in the propagated attitude 
tend to change continuously. For this reason, the propagated angle ( e )  and its error 
(A$) are modeled as a random process. The model in Figure 2 is a linear second-order 
system with four zero mean value sources of error: 

0 

0 Float torque noise (nv) 

e 

0 Drift rate bias (b) 

Float torque derivative noise (nu) 

Initial attitude error (A0 (0)) 

The float torque derivative noise is integrated to give a random walk that is added to the 
true angular rate (0). A constant, but imprecisely known bias and the float torque noise 
are also added at that point. At the output, another constant error is added representing 
the initial or epoch attitude error. * 
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The individual error source variances are defined as follows where E is the expectation 
operator and Q is the Dirac delta function. 

E[b2] = 4 

(4) E[nv(t) nv(r)] = d d(t - 

Standard deviations of the ERBS gyro rates were compiled over the course of the mission 
and provide an estimate of the gyro noise. Figure 3 shows this history of increasing 
noise. 

These standard deviations for the sampled angular velocity (uAil) give an estimate of the 
float torque noise standard deviation ((I") that can be used to predict a typical batch 
junction discontinuity. Because the sampled rates are actually averaged over the sampling 
interval (T), their variance is smaller than the float torque noise variance by a factor of 
1iT. 

O2 = g / T  
Ail 

Since T is 1 second, the numerical values of oAit and a; are equal, but their units differ 
as they should. 

5. EVIDENCE OF GYRO NOISE 

Figure 4 plots daily average junction discontinuities and observation residuals against 
corresponding gyro rate standard deviations. In all cases, the discontinuities and residuals 
increase with increasing noise. 

One thing that requires explanation here is the very steep slope of the yaw and Sun A 
curves. This is due to the low noise on the yaw gyro and the coupling of propagation 
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Figure 3. Gyro Rate Standard Deviations 

errors on the roll and yaw axes. The large roll gyro noise causes yaw as well as roll 
propagation errors. Plotting yaw error against yaw gyro noise alone is therefore mislead- 
ing. A better way to show the dependence might be to combine the roll and yaw into a 
single curve. 

The predicted values of junction discontinuity are based on Equation 1 and use the gyro 
rate standard deviation for a,. Although inaccurate, the predictions are of the same 
order of magnitude as the observed discontinuities. Also, the rate standard deviation is 
an overestimate of the gyro noise since it includes the actual angular acceleration of the 
spacecraft. With a smaller assumed value for a;, the predictions would be closer to the 
observed discontinuities. 
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angular rates almost at face value. After correcting for biases and scale factors, the 
propagation is assumed to be perfect and observations far from the epoch are given equal 
weight with those close to the epoch. 

The Kalman filter differs from the batch estimator in that it estimates the attitude at each 
time point rather than at an epoch time (Reference 7). It also gives greater weight to 
observations made close to the solution time. This seemed to be the answer to the propa- 
gation error/discontinuity problem. Old observations would be forgotten, giving the solu- 
tion more freedom to follow recent observations. Even more, solutions could be made 
continuous at batch boundaries by starting with the previous batch solution and covari- 
ance. 

Although different in approach from the batch estimator, the filter makes many of the 
same computations. For a very simple filter estimating attitude and constant bias, only 
three major modifications are required to the ERBS batch estimator. 

1. Change the partial derivatives 

a. In the batch estimator, the partial derivatives of the current observation 
residual vector AB 

AB = y~ (observed) - y~ (computed) (7) 

with respect to the current attitude error vector 3 are postmultiplied by the 
epoch-to-current-time propagation matrix @(tj, to) . This multiplication is 
omitted in the filter 

b. Filtered gyro biases bj act only over individual time steps before being 
updated with the bias error vector 3. Rather than accumulate derivatives 
of the current attitude error with respect to gyro biases from epoch to the 
current time, as in the batch estimator, the filter computes them only for 
the most recent time step. 
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atio a 

c. To simplify notation, the combination of the attitude and gyro bias error 
vectors are referred to as the state - ~ c j  

and the partial derivatives of the observation residuals with respect to the 
state is called Fj 

2. Update the state at each time step-The batch estimator weights, transforms, 
and accumulates the observation residuals over the entire batch to give 

The observation weight matrix W is diagonal with elements equal to the recipro- 
cal of the observation variances 

The batch estimator also accumulates the normal matrix, which is the inverse of 
the covariance matrix P. 
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In batch estimation, the epoch state estimate is updated after all the observation 
residuals have been accumulated. 

The filter makes this correction at each time step using the weighted trans- 
formed observation residuals for that instant and the accumulated covariance 
matrix. 

3. Propagate the covariance matrix-The batch estimator propagates the attitude 
and predicts observations at each time step. The filter propagates the co- 
variance matrix as well. This is done by pre- and postmultiplying the 
covariance matrix by the incremental state propagation matrix Q(tj, tj-1) and its 
transpose. 

A contribution Q due to the propagation error is also added at this point (Refer- 
ence 3). 

Q =  

The state propagation matrix includes the attitude propagation matrix as its 
upper left block 
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The gyro bias corrections aj are simply added to the previous bias values 

7. COMPARING THE BATCH ESTIMATOR AND THE FILTER 

After being implemented, the filter was used with low and high noise gyro rate and was 
compared to the results from the batch estimator. For timespans having Sun sensor 
coverage, the attitude is completely observable, and the filter provides smaller root-mean- 
square (rms) observation residuals. This is shown in Table 1. There is no chance of 
junction discontinuities because the filter starts with the last attitude of the preceding 
timespan. 

Table 1. RMS Residuals-Complete Observability 

Observation Residual Variance (deg 2) 

I Low Noise I Roll I Pitch 

I High Noise I Roll I Pitch 

Filter 0805 0.1 3 

1 Batch I 0.85 I Om73 
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i.e., tuning of the filter. 
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Figure 5. Drifting of Filtered Yaw 

As shown in Table 2, the residuals are still much smaller for the filter than for the batch 
estimator. This is in spite of the discontinuity. The reason is that the filter fits all the 
observations better except for the first few following the start of Sun coverage. 
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8. DIVERGENCE REMEDIES 

The batch estimator, despite its problems with junction discontinuities and observation 
residuals, does not drift during periods of incomplete attitude observability. This is be- 
cause it has access to data from the entire batch at once. Thus, the batch estimator can 
choose a bias satisfying the observations at both the beginning and the end of the batch. 
The filter, on the other hand, knows only what has been seen up to the current time and 
does not have this advantage. 

To improve filter performance during periods without Sun, the magnetometer can be used 
along with the Sun and Earth sensors. Although it is the least accurate sensor, the mag- 
netometer provides some measure of the yaw at all times. As shown in Figure 6,  this 
prevents divergence but does not provide a very accurate definitive attitude solution. 

An alternative to improving the observability is to improve the propagation. To do so, the 
batch estimator can be used to compute a gyro bias over the period lacking Sun coverage. 
This bias can then be used in the filter to reduce the divergence, as shown in Fjgure 7. 
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A variant on this “two-pass” processing is to average the forward-filtered solution with a 
backward-filtered solution obtained by starting from the end of the timespan and letting 
time run backward. This “filter-smoother” can still diverge toward the middle of the Sun 
coverage gap, but does not change abruptly the way a simple filter can. 
The approach that should, perhaps, have been tried first is to “tune” the gyro noise 
parameter values to reduce the divergence. The values used here for the Q-matrix were 
based on the noise estimated from the raw gyro rates. It was noted that these assumed 
values strongly affect the filter divergence, but no effort was made to find values that 
worked well in all cases. Judging from the satisfactory performance of the ERBS gyro- 
compass, which uses only the Earth sensors and gyro, it should be possible to find such 
values. Perhaps the gyro noise levels used here were too large and so caused the filter to 
forget old observations too quickly. 
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9. SUMMARY 

This paper uses the ERBS definitive attitude determination system to demonstrate two 
things: first, that gyro noise affects batch attitude accuracy, as seen in the observation 
residuals and batch junction discontinuities; and second, that Kalman filtering can reduce 
those residuals and eliminate the junction discontinuities as well. What was also demon- 
strated, albeit inadvertently, was that during times of incomplete attitude observability, 
the filtered attitude may diverge. Patchwork remedies were tried, such as using additional 
sensors or future observations, but the basic cause of the problem seems to have been the 
“tuning” of the filter. Had a smaller value been assumed for the gyro noise, the attitude 
would not have diverged as quickly as it did. In spite of the present incomplete success, 
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Abstract 

Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft’s 
angular position and velocity were made during July through September, 1989, during 
the spacecraft’s heliocentric flight to Venus. The purpose of this data acquisition and 
reduction was to verify this data type for operational use before Magellan is inserted into 
Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 
20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The 
media effects and their calibrations are quantified; the wet fluctuating troposphere is the 
dominant source of measurement error for angular velocity. The charged particle effect 
is completely calibrated with S and X-Band dual-frequency calibrations. Increasing the 
accuracy of the Earth platform model parameters, by using VLBI-derived tracking station 
locations consistent with the planetary ephemeris frame, and by including high frequency 
Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the 
angular position measurements. Angular velocity measurements were insensitive to these 
Earth platform modelling improvements. 

Introduction 

The Magellan spacecraft, launched May 4, 1989, is currently on a heliocentric trajec- 
tory to Venus, with a scheduled arrival on August 10, 1990. Upon arrival, Magellan will 
be inserted into a nearly polar orbit in order to systematically map the surface of Venus 
using a Synthetic Aperature Radar (SAR). The spacecraft orbit will be determined from 
radiometric measurements of the spacecraft velocity; highly accurate orbit reconstruction 
and prediction are required to effectively command the SAR, to provide picture-element 
registration in the ground processing of the radar image data, and to interpret measure- 
ments from an on-board altimeter. The nominal orbit about Venus will have a relatively 
short orbital period (3.15 hours) and low periapsis altitude (250 km), with an eccentricity 
of 0.38. This orbit geometry poses a substantial challenge to navigators in determining 
the spacecraft orbit within the stringent accuracy requirements because (1) conventional, 
two-way, coherent Doppler measurements are less sensitive to certain orbit parameters, 
namely, the orientation of the orbit about the Earth-spacecraft line-of-sight [Wood, 19861, 
and (2) uncertain irregularities in the Venus gravity field will perturb the spacecraft over 
a large fraction of each orbit. 

* Member of Magellan Navigation Team, Navigation Systems Section. 

Member of Tracking Systems and Applications Section. 
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To meet orbit dete 
velocity in the plane-of- 
mation on the orbit parameters p 
measures the spacecraft velocity 
Baseline Interferometry (VLBI) is used to provide this measurement by correlating the 
spacecraft radio downlink received at two widely separated ground antennas [Melbourne, 
19771. 

s of the spacecraft 

This VLBI technique has been experimentally proven with Voyager, a 
[Border et al., 19821, and with Pioneer 12, a Venus orbiter [Esposito et al., 19831, but never 
proven operationally. To verify that- the VLBI system can meet stringent operational and 
accuracy requirements for a planetary orbiter, a 9 week test was conducted during the 
early heliocentric cruise portion of Magellan’s trajectory to Venus. Spacecraft and quasar 
VLBI measurements were acquired and processed during this time period, in a manner 
similar to the planned VLBI data acquisition and reduction in the orbit phase. This 
paper describes this test, and the assessment of the VLBI measurement precision about a 
reference trajectory. The accuracies of the reference trajectory, the media calibrations, and 
the Earth platform models are presented. Their contribution to the measurement accuracy 
is included in the presentation of the VLBI measurement accuracy. 

Magellan Radiometric Measurements 

Three types of radiometric measurements of the spacecraft state are made: 2-way 
coherent Doppler, Differential One-way Range (DOR), and Differential One-way Doppler 
(DOD). Doppler is collected at a single station, and the DOR and DOD are VLBI mea- 
surements, made by simultaneously recording 10 minute scans of the spacecraft downlink 
signal at two widely separated tracking stations. NASA’s Deep Space Network (DSN) 
tracking stations acquire and relay the data to the Jet Propulsion Laboratory in Pasadena, 
California. The DSN tracking stations are spaced around the globe in California, Spain, 
and Australia. The VLBI intercontinental baselines are between the Spain-California and 
California-Australia tracking stations. Figure 1 shows the DSN sites. Simplified Earth- 
spacecraft geometry is shown in Figure 2. This geometry is simplified by assuming a 
distant spacecraft, where the range, p, is much greater than the baseline length, B. These 
three data types are briefly described below. 

Doppler 

Two-way coherent Doppler measures the spacecraft’s velocity component in the line-of- 
sight from. the antenna to the spacecraft, as shown by b1 and b2, at tracking stations 1 
and 2, in Figure 2. The tracking station generates and transmits a signal with a stable 
frequency, and the spacecraft sends a coherent version of the received signal back to the 
same station where the Doppler frequency shift is determined. This Doppler frequency 
shift is proportional to the spacecraft velocity component in the line-of-sight direction by 
the factor (c/2f), where f is the signal frequency and c is the speed of light. The line-of-sight 
direction is specified by dl  in Figure 2. 
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Figure 1. Deep Space Network Sites 

Figure 2. Simplified VLBI Geometry 

117 



ifferential One-way ) measures the geocentric angular position of the space- 
craft with respect to the baseline; this quantity is shown by in Figure 2. This angle 
is determined by directly measuring r ,  the delay of the spacecraft signal reception from 
station 1 to station 2. In Figure 2, 

Given B, the basline length, B is determined from the measurement of c r ,  the differential 
range between stations. 7 is determined by differencing the phase of the signal received at 
each station [Border, 19721. This delay is ambiguous by an integer number of cycles, how- 
ever. Multiple downlink frequency tones axe needed to provide the information to resolve 
this ambiguity. Harmonics of Magellan's telemetry subcarrier signal provide recordable 
side tones 2 to 35 MHz apart. The ambiguity in the 2 MHz bandwidth is c / 2  Mhz/B, or 
17 microradians, and is 'easily resolved from apriori knowledge. The 35 MHz bandwidth 
provides more measurement precision. 

DOD 

Differential One-way Doppler (DOD) measures the geocentric angular velocity of the space- 
craft with respect to the baseline; this quantity is shown by d in Figure 2. This angular 
rate is determined by directly measuring i, the time delay-rate of the spacecraft carrier 
signal from station 1 to station 2. Differentiating equation (1) with respect to time gives 

c i  S B cos 6(b).  (2) 

c i  is the differential velocity between stations, and the sought-after rate is: 

C i  

B cos e ar 

4 

6 is related to the spacecraft velocity, V,,,, by: 

-+ 

or ("" * '" + Earth rotation of baseline R 

(3) 

(4) 

where R is the Earth to spacecraft range, and ê z is the direction normal to the antenna- 
spacecraft line-of-sight, as shown in Figure 2. Assuming the earth rotation of the baseline 
is known, the measurement of c i  is related to the spacecraft velocity, g8/,, by: 
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i is determined by rate of change of the carrier signal phase from each station. 

DQR and DO measurements can also be generated &om the radio 
quasass for ~ e a s ~ e ~ e n t  calibration 
correlation [Thomas, 19721. Since these quasar measurements are corrupted in almost the 
same way as spacecraft measurements are by tracking station location errors, media errors, 
and timekeeping errors, spacecraft and quasar measurements made in close temporal and 
spatial proximity are differenced to greatly reduce these major errors. These spacecraft- 
quasar differenced measurements are signified by ADOR and ADOD, or AVLBI in general. 

asar delay is obtained by s 

The Mapellan Traiectorv 

The radiometric data used for this accuracy analysis was collected from July 1, 1989 
to August 11, 1989, early in Magellan’s 15 month heliocentric cruise to Venus. The view 
of the spacecraft trajectory during this period, from the north ecliptic pole, is shown in 
Figure 3. 

July 4,1989 to August 3,1989’ 

Figure 3. Trajectory View from North Ecliptic Pole 

The VLBI measurement accuracy is quantified as an R.MS value of measurement 
‘residuals’. A measurement residual is the difference of the acquired measurement and a 
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predicted m e ~ ~ e m e n t ~  The predicted measurement is computed using a reference space- 
craft trajectory and he Earth plat for^, radio quencies, and quasar locations. 
So the measure ifies the data precision ut a reference trajectory. This 
reference traje as been compute , so that the absolute measurement accu- 
racy can be ascertained. A reference trajectory was determined from Doppler and ADOR 
data. From Equation (3), one can see that 9 is an intermediate quantity in the computa- 
tion of 8, given the measurement of e+. To evaluate the ADOD data accuracy, then, the 
reference trajectory computation included ADOR data, to provide direct information of 
9. 

The trajectory accuracy is given in terms of uncertainty in geocentric spherical co- 
ordinates of the spacecraft on August 11, 1989 (at the end of the data arc). The right 
ascension, a, is measured with respect to the vernal equinox of 2000.0, and the declination, 
6, is measured with respect to Earth’s mean equator. These uncertainties take into ac- 
count the measurement errors, as well as the known uncertainties in the station locations, 
spacecraft non-gravitational forces (i.e. solar radiation pressure), and quasar locations.* 
The trajectory uncertainties are given in Table 1 for orbit solutions using 3 different data 
sets: Doppler only, DopplerSADOR, and Doppler+ADOD. 

Table 1. Trajectory Uncertainty on August 11, 1989, computed with three data 
sets: Doppler only, Doppler+ADOR, and Doppler+ ADOD. 

The strength of each VLBI data type is apparent. The ADOR data brings in angular 
position information, reducing the angular position uncertainty by a factor of 2. The 
ADOR data arc was only 2 weeks long, compared to a 6 week arc of ADOD. For comparable 
data arcs, the ADOR would be expected to produce by far the most accurate measure of 
angular velocity during cruise. The ADOD data brings in angular velocity information, 
reducing the angular velocity uncertainty by a factor of 1.5. 

* These uncertainties are: 20% in non-gravitational force values (solar radiation pressure and unbal- 
anced spacecraft manuevers); 20 nanoradian radio/planetary frametie offset; station location errors of: 
1.5 meters in distance from the pole, 1.0 meter in longitude, 10.0 meters in height above the equator; 10 
cm relative station error; and 30 cm longitude error due to Earth rotation uncertainty. 
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media on the VL 
calibrations used t 
the calibrations are shown with comparisons of uncalibrated and calibrated VLBI data 
residuals. 

Radio signal propogation is delayed by charged particles in solar plasma and in the 
Earth's ionosphere, and by the Earth's troposp . Only the corruption to the VLBI 
downlink signal needs to be calibrated because the uplink signal, being common to each 
of the two recorded downlink signals, cancels out in the correlation process. The charged 
particle delay is proportional to the Total Electron Content (TEC) along the signal path 
and inversely proportional to the signal frequency squared. The TEC changes with time, 
inducing an error in the delay-rate measurement. 

Since the charged particle delay is frequency dependent, a calibration to the delay-rate 
measurement can be computed with a linear combination of two delay-rates recorded at 
separate frequencies, S and X band. The computation for X-Band delay-rate, in Hertz, is: 

i z  - ( f Z / f d ) i d  

1 - (fi/fd2 Delay-rate correction = 

where iz and is are the measured delay rates at X and S bands, and fs and fz are the S 
and X band frequencies [Wolf€, 19851. 

The average daytime flucuation in the X-band zenith ionosphere delay is on the order 
of 0.1 mm/sec over 10 minutes [Wu, 19821. Solar plasma induces a delay rate error on the 
order of 0.01 mm/sec in X-band signal phase-rate over 10 minutes, 10" away from the Sun 
[Kahn, 19881. 

The S-band downlink cannot be coherently phase-tracked when the signal path is 
within 5" of the Sun due to large solar plasma induced spectral broadening and variations 
in the received signal phase. This will occur in the middle of Magellan's prime mission, 
from October 13,1990 to November 22, 1990. To calibrate for charged particles during this 
period, ionospheric delay rate will be measured independently by measuring the Faraday 
rotation of linearly polarized VHF signals from geosynchronous satellites over the track- 
ing stations. The TEC along the line-of-sight is deduced from these measurements, and 
mapped to the Magellan spacecraft or quasar line-of-sight as a function of time. [Royden, 
19801 

A comparison between the dual-frequency calibrations and the Faraday rotation cali- 
brations are shown in Figure 4. The calibrations, in Hertz, are shown for three spacecraft 
and three quasar scans, made up of 20 second points. These data were acquired on August 
10,1989. The Faraday calibrations agree with the mean of the dual-frequency calibrations 
for each 10 minute scan, but the dual-frequency method provides calibrations for charged 
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cuations within a 10 minute scan. The aday method provides calibrations 
for only the low-frequency variation of the ionosphere over a 10 minute scan. 

The Earth's troposphere induces a r delay from 2 meters at zenith, to 
12 meters at 10" elevation. A seasonal model of the delays, generated from 2 years of 
radiosonde measurements made at the DSN tracking stations, can calibrate this delay to 
6 cm in zenith, which scales to other elevation angles in proportion to the path length 
through the troposphere [Chao, 19711. This model does not predict the fluctuating wet 
component of the troposphere well. A theoretical prediction of this error at 10" elevation 
is 0.07 mm/sec [Truehaft and Lanyi, 19871. 

To verify the integrity of the VLBI data, the sub-second phase residuals from each 
station are plotted before compressing. A line is removed from these residuals, leaving only 
media information, so that any cycle slips can be corrected before observable generation. 
These plots are also useful to assess the size of media corruptions. In Figure 5,  the S and 
X-Band phase residuals are plotted, for 3 separate 10 minute spacecraft scans, over 75 
minutes on July 27, 1989. The phase received at the California station and the Madrid 
station are each plotted, as well as the station differenced phase. The scale is defined by 
the S and X wavelengths denoted on the right side of the plots. In scans 1 and 2, at 
both California and Spain, the same phase signatures appear, and the X-Band signature is 
larger than the S-Band. This is due to charged particle corruption to the uplink, which is 
multiplied by the spacecraft to X-Band frequency for downlink. This effect is eliminated in 
t.he station differenced phase for these scans. In scan 3, however, the phase is perturbed by 
the fluctuating wet troposphere, which has a larger effect at the higher X-Band frequency, 
and is not eliminated in the station differencing. The wet troposphere can fluctuate so 
fast that this effect cannot be removed by the quasar calibration, leaving this effect as the 
dominant VLBI error source for velocity measurements. 

Figure 6 also shows phase residuals for 2 spacecraft scans, acquired over 2 hours on 
July 16, 1989. In both scans, the ionosphere delay over Australia is apparent because 
the X-Band phase signature is magnified in the S-Band phase, and remains in the station 
differenced phase. This effect can be completely eliminated by applying the S and X-Band 
dual-frequency calibration to each the spacecraft and quasar data points. 

Media Calibration Results 

DOR 

Two sets of ADOR residuals, each computed with the reference trajectory described 
above, are shown in Figure 7. These residuals were computed with and without the seasonal 
troposphere calibration. The calibrated troposphere delay is about 5 meters. The post- 
calibration residual RMS is 0.183 meters, or 20 nanoradians in 6 ,  the geocentric angular 
position. 

Figure 8 shows residuals computed with and without Faraday rotation ionosphere 
calibrations. This calibration improves some scans (August 6 and 8), but degrades others 
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Figure 4. Charged Particle Calibrations for August 10,1989 
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Figure 7. ADOR Residuals with and without Troposphere Calibration. 

2 2 m  27-JUL 01-AUG 06-AUG 11-AUG 
1989 1989 1989 1989 1989 

Figure 8. ADOR Residuals with and without Ionosphere Calibration. 

(July 25), with a small net resid& RMS degradation of 0.07 meters. This could be due to 
the error incurred when mapping the TEC from zenith to the low Magellan line-of-sight. 

126 



Two sets of ADOD residuals are shown in Figure 9. These residuals were computed 
with and without the seasonal troposphere calibration. The RMS troposphere delay-rate 
calibration is 0.66 mm/sec. The post-calibration residual RMS is 0.054 mm/sec, or 6 
picoradians/sec in the geocentric angular velocity, 4. 

0 
0 

Figure 9. ADOD Residuals with and without Troposphefe Calibration. 

The calibration improvement using the quasar DOD measurement is shown in Figure 
10, which plots the DOD residuals with and without the quasar calibration. Both data 
sets have been calibrated with the seasonal troposphere model. The quasar calibration 
improves the residual RMS by 0.05 mm/sec, or about 6 picoradians/sec in 8, the geocen- 
tric angular velocity. The quasar calibrates the ionosphere and troposphere components 
common between the two scans, station location errors, and station clock drift. 

Figure 11 shows two sets of ADOD residuals, computed with and without charged par- 
ticle calibrations. Dual-frequency (S and X-Band) calibrations were used, except for mea- 
surements where the S-Band measurement was not recorded; in these cases, the Faraday 
ionosphere calibration was used (20% of the data points). The charged particle calibration 
improves the data RMS by 0.01 mrn/sec, or about 1 picoradian/see. This is the expected 
delay-rate due to the solar plasma; most of the ionosphere delay-rate for this data set wits 
calibrated with the quasar measurement. The resulting residual FtMS is 0.045 mm/sec, or 
about 5 picoradians/sec. 
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Figure 10. DOD Residuals with and without Calibration by Quasar. 

Earth Platform Model 

Errors in the tracking station location in inertial space induce errors in the compu- 
tation of the AVLBI signal delay and delay-rate. An error in the angular position of the 
quasar also contributes to the error. The tracking station locations and quasar locations 
used for the AVLBI computations were derived from VLBI observations of quasars, and 
oriented to the planetary ephemeris frame. This orientation waa constructed by matching 
the VLBI station locations to the Lunar Laser Ranging (LLR) station locations, which 
were used in the derivation of the planetary ephemeris reference frame [Folkner and Fin- 
ger, 1989; Neill, 19841. The uncertainty of this orientation is believed to be 20 nanoradians, 
though possible systematic errors are still being investigated. Figure 12 shows the ADOR 
residuals computed with these station locations and quasar locations. The ADOR residu- 
als were also computed using tracking stations derived from planetary encounter tracking 
data [Moyer, 19881. The quasar locations were oriented to this planetary frame by simply 
rotating the quasar right ascensions by the average offset between the longitudes of the 
Moyer station set and the standard VLBI station set [Ulvestad, 19891. This average offset 
is 208 nanoradians. Figure 12 also shows the ADOR residuals computed with these station 
locations and quasar locations. The ADOR residual RMS was degraded by 5.4 cm, or 6 
nanoradians in geocentric angular position, for this case. 

The Earth’s pole location and rotation rate (UT1) fluctuate due to deformations of the 

128 



0 

Figure 11. ADOD Residuals with and without Charged Particle Calibration. 
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Figure 12. ADOR Residuals with alternate Earth Platform Models. 
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solid Earth and by exchanges of angular momentum between the solid and fluid parts of the 
Earth, as well as by exchanges of angular ntum with extrate~estrial objects. This 
motion is estimated using several sources of geodetic measurements. 
solution produces a smoothed time series with interpolation points sp 
Tidal deformation of the Earth by the sun and moon produce periodic variations in the 
Earth’s moment of inertia, and therefore in the Earth’s rotation rate. These short-term 
tidal effects can be calculated from a theoretical model [Yoder et al., 19811, and included in 
this time series, with interpolation points every 2 days. Figure 12 shows ADOR residuals 
computed with and without these tidal effects. Inclusion of these tidal terms improved the 
residual RMS by 1.5 em, or 1.7 nanoradians. 

These improved levels of Earth platform modelling did not improve the ADOD mea- 
surement accuracy. As shown in Figure 12, these model improvements only provided slight 
improvement to the ADOR measurement accuracy. 

Conclusions 

Measurements of the Magellan spacecraft angular position and velocity are were made 
with AVLBI during the the spacecraft’s heliocentric cruise from Earth to Venus. The angu- 
lar measurement accuracy was 20 nanoradians in position and 5 picoradians/sec in velocity. 
The largest error contribution for velocity comes from the fluctuating wet troposphere; this 
media effect fluctuates too quickly to be calibrated with the quasar measurement. Charged 
particle effects are eliminated by dual-frequency calibrations. Faraday rotation measure- 
ments provide effective ionosphere calibrations when dual-frequency measurements are not 
available. Small improvements in the ADOR measurement accuracy, on the order of a few 
nanoradians, were obtained with an Earth platform model containing tracking station 
locations derived from quasar VLBI observations versus stations locations derived from 
planetary encounter tracking data. Modelling the high frequency effects in the Earth ro- 
tation model due to the solid Earth tides also improves the ADOR measurement accuracy 
by a few nanoradians. Each of these Earth platform models did not improve the ADOD 
measurement accuracy for this data set. 
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ABSTRACT 

This paper describes the procedures used and the results obtained in the joint Johnson 
Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the 
two-TDRS S-band tracking configuration for support of low- to medium-inclination (28.5 
to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions 
(STS-32). The objective of this certification effort was to certify the two-TDRS configu- 
ration for nominal STS on-orbit navigation support, thereby making it possible to signifi- 
cantly reduce the ground tracking support requirements for routine STS on-orbit 
navigation. 

JSC had the primary responsibility for certification of the two-TDRS configuration for 
STS support, and GSFC supported the effort by performing Ground Network (GN) and 
Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution com- 
parisons. 

In the certification process, two types of orbit determination solutions were generated by 
JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and 
TDRS-West tracking data combined with ground tracking data (the reference solutions) 
and one type using only TDRS-East and TDRS-West tracking data. The two types of 
solutions were then compared to determine the maximum position differences over the 
solution arcs and whether these differences satisfied the navigation certification criteria. 
The certification criteria were a function of the type of Shuttle activity in the tracking 
arc, ;.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or 
ventings, moderate periods included one or two maneuvers or ventings, and active 
periods included more than two maneuvers or ventings. 

This paper presents the results of the individual JSC and GSFC certification analyses for 
the STS-29, STS-30, and STS-32 missions and the joint JSCIGSFC conclusions regarding 
certification of the two-TDRS S-band configuration for STS support. 

* This work was supported by the National Aeronautics and Space Administration (NASA) /Johnson Space Center (JSC) , 
Houston, Texas, under Contract NAS 9-1 8000, and by NASAlGoddard Space Flight Center (GSFC) , Greenbelt, varyland, 
under Contract NAS 5-31500. 
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NASA is transitioning navigation support for Shuttle missions and for unmanned spacecraft from a primarily 
ground-based system (the Ground Network (GN)) , utilizing Ground Spacecraft Tracking and Data Network 
(GSTDN) S-band tracking stations and Department of Defense (DOD) C-band tracking stations, to a primarily 
space-based system (the Space Network (SN)), utilizing the Tracking and Data Relay Satellite (TDRS) System 
(TDRSS) , Currently, TDRSS consists of three geosynchronous satellites: TDRS-East, located at 4 1 degrees 
west longitude; TDRS-Spare, located at 17 1 degrees west longitude; and TDRS-West, located at 174 degrees 
west longitude. 

The task of certifying the TDRSS for navigation support for the Space Transportation System (STS) was as- 
signed to the TDRSS Orbit Determination and Navigation Working Group (TODNWG) , a group composed of 
engineers from the Johnson Space Center (JSC) Navigation Section and from the Goddard Space Flight Center 
(GSFC) Flight Dynamics Facility (FDF). This group first met in 1982 to develop the STSITDRSS Navigation 
Certification Plan (Reference 1). The first step in the certification of TDRSS for STS support was a joint 
JSC/GSFC single-TDRS certification effort, which took place between August 1983, the start of TDRSS track- 
ing services, and the end of the STS-41G mission in October 1984. This effort was successful in certifying the 
augmented single-TDRS network (TDRS-East plus ground stations outside the TDRS-East coverage) as an 
adequate navigation system for noncritical Shuttle flight periods (see Reference 2). 

The second step in the certification process was a joint JSCIGSFC two-TDRS certification effort with the 
objective of certifying the TDRS-East/TDRS-West configuration (without ground station augmentation) for 
nominal on-orbit navigation support of STS flights. A successful certification effort would mean that ground 
tracking support for routine STS on-orbit navigation could be significantly reduced or eliminated. Some 
ground-based tracking would still be necessary to support critical and high-activity periods. 

This certification effort consisted of two phases: (1) certification of the two-TDRS configuration for navigation 
support of low- to medium-inclination (28.5 to 62 degrees) missions that do not include a rendezvous and 
(2) certification of the two-TDRS configuration for navigation support of low- to medium-inclination rendez- 
vous missions. The STS certification missions were STS-29 and STS-30 (nonrendezvous missions) and STS-32 
(a rendezvous mission). This paper documents the certification results obtained for these three missions at JSC 
and GSFC. A more detailed report of the certification results will be published at a later date (Reference 3). 

JSC had the primary responsibility for certification of the two-TDRS network for STS support. GSFC sup- 
ported this effort by performing tracking data evaluation for the GN and SN tracking data and by performing 
parallel orbit solutions and solution comparisons. 

1.2 ORGANIZATION OF PAPER 

Section 2 describes the JSC and GSFC certification criteria and procedures used in this study, and Section 3 
presents the certification results. Conclusions are given in Section 4. 

2.0 CERTIFICATION CRITERIA AND PR~CEDURES 

This section presents the two-TDRS navigation certification criteria and describes the procedures used in the 
orbit determination process and in the comparison of orbit solutions at both JSC and GSFC. It also defines the 
spacecraft (Shuttle and TDRS) characteristics and force modeling parameters used in the orbit solutions. 

AVIGATIO~ CERTlFl 

The criteria for evaluating the navigation certification results for the two-TDRS effort are documented in Refer- 
ence 4. For each tracking data arc evaluated, orbit determination solutions were obtained using TDRS-East 
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and TDRS-West tracking data combined with ground tracking data (the reference solution) and using only the 
TDRS-East and TDRS-West tracking data. These solutions were then compared to determine the maximum 
position differences between the reference and two-TDRS solutions over the tracking data arc. These maxi- 
mum differences could not exceed the certification criteria shown in Table 1. Quiet periods included no 
attitude maneuvers or ventings within the tracking arc; moderate periods included only one or two attitude 
maneuvers or ventings; and active periods included more than two attitude maneuvers or ventings and the 
6-hour period just prior to deorbit ignition. TDRSS tracking of the Shuttle was rated satisfactory when 70 per- 
cent or more of the Doppler data were usable during scheduled support periods. 

Table 1. Acceptance Criteria for STS Navigation Certification 

EPHEMERIS 
COMPARISONS 

TWO-TDRS-ONLY BET VERSUS 
REFERENCE BET 

NOTES: 

1. EPHEMERIS COMPARISONS SHALL SATISFY THE ABOVE CRITERIA IN 90 PERCENT OF THE CASES FOR EACH ACTIVITY 
LEVEL. 

2. BTB = BATCH-TO-BATCH 
BET = BEST ESTIMATED TRAJECTORY 

2.2 JSC CERTIFICATION PROCEDURES 

The JSC two-TDRS certification procedures that were common to all three missions are described in Sec- 
tions 2.2.1 and 2.2.2. The mission-specific procedures are described in Section 2.2.3. The reference and 
two-TDRS-only solutions generated by JSC used the spacecraft characteristics and force modeling parameters 
given in Table 2. 

TDRS-East and TDRS-West ephemerides were updated every 6 hours using accurate GSFC-supplied vectors. 
The tracking data sampling rate was every 40 seconds for TDRSS S-band measurements, every 10 seconds for 
GN S-band measurements, and every 6 seconds for GN C-band measurements. Data weights (sigmas) used in 
the solutions were (1) 0.10 hertz for TDRS S-band Doppler measurements; (2) 18.3 meters, 0.0344 degree, 
and 0.60 hertz for GN S-band two-way range, angles, and Doppler measurements, respectively; and 
(3) 18.3 meters and 0.0229 degree for GN C-band two-way range and angle measurements, respectively. 

2.2.1 Batch-to-Batch (BTB) Processinq 

JSC Ground Navigation normally processes data in a batch-to-batch (BTB) mode, where data batches are 
processed sequentially after the end of each tracking pass. A weighted least-squares differential correction of 
the spacecraft orbital estimate is performed according to the following equation: 
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where 

Ax = 

~y = vector of residuals (observations minus the expected values) 
A 

W = diagonal matrix of observation data weights (11'2 ) 
r-1 = 
k" = covariance multiplier 

current and last corrections to the a priori position and velocity state vector estimate for each 
iteration 

matrix containing the partial derivatives of the data observations with respect to the Cartesian 
position and velocity components 

covariance from the last BTB solution, propagated to the time of the current batch 

= 

The multiplier k" is applied to the a priori covariance to control the amount by which previous history con- 
strains the current solution. The number of times the k value is applied, n, is controlled by the JSC navigator 
during processing. The multiplier can be applied to the entire covariance matrix (an (XYZ) kr). The 
in-plane or out-of-plane elements of the covariance can be selectively downweighted through a transformation 
of the covariance from Cartesian to UVW (radial, along-track, and cross-track) coordinates (a (UVW) k r  ). 
An in-plane (UV) k r  allows the current data to change the in-plane elements of the state vector while con- 
straining out-of-plane changes. A (W) k r  affects only the out-of-plane covariance elements. A (UV) kT 
followed by a (W) k r  is completely equivalent to an (XYZ) kr . TDRS BTB processing often employs 
in-plane covariance downweighting in an attempt to compensate for the weakness of Doppler-only TDRS data 
in orbital plane determination following trajectory perturbations. 

2.2.2 Best-Estimated-Traiectorv (BET) Processinq 
The mathematical basis of best-estimated-trajectory (BET) differential correction processing is essentially the 
same as for BTB processing, although in practice there are several differences between the two modes. Rather 
than processing a single pass of tracking data from one station, BET processing considers data arcs that contain 
measurement information from several tracking passes. The solved-for state vector can include up to three 
vents, whose start and stop times are specified b y  the JSC navigator. These solved-for vents are often used to 
account for unmodeled thrusting due to attitude and translational maneuvers. BET processing does not nor- 
mally use an a priori covariance, because this would unrealistically constrain the solved-for position, velocity, 
and vent force solutions. Angle measurements are usually excluded from BET processing. 

The two-TDRS-only BET processing was performed over the same data arcs used in the reference BET. Quiet 
periods were certified during STS-29 and therefore were not included in the STS-30 and STS-32 processing. 
Each data arc began and ended with TDRSS data so that the reference and two-TDRS-only BETS would be 
directly comparable. Adjacent arcs included one or two common batches to minimize discontinuities between 
successive trajectories. The start and stop times for each BET arc were defined as the points of minimum 
trajectory difference within the overlap portions of the surrounding arcs. Solution residuals were minimized by 
solving for the Shuttle state vector and for vents that were placed to match actual trajectory perturbations as 
closely as possible. Vents were not solved for in the overlap regions. Solution quality was judged on the basis 
of residuals beyond the data arc, as computed from the propagated solution vector, solution statistics, and the 
reasonableness of solved-for parameters. 

2.2.3 Mission-Specific Procedures 
The JSC two-TDRS certification procedures that were mission specific are discussed beIow for STS-29, 
STS-30, and STS-32. 

2.2.3.1 STS-29 PROCEDURES 

JSC Ground Navigation maintained two realtime BTB sequences (chains) throughout the entire mission. The 
reference BTB chain was initialized on the revolution 2 C-band ground pass from Kwajalein. The two-TDRS- 
only BTB chain was initialized with a BET solution over the first two post-OMS-2 TDRSS passes (OMS is the 
Orbital Maneuvering System). A Shuttle body-axis correction vent was modeled during the on-orbit timeframe 
to account for unmodeled translation effects of attitude control thrusting. Both the reference and two-TDRS 
BET solutions included this vent, meaning that any solved-for vent force was in addition to the already 
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modeled forces. A reference BET and a two 
entire mission. 

T were generated for 23 data arcs spanning the 

JSC Ground Navigation maintained two realtime BTB chains throughout the entire mission. The reference 
BTB chain was initialized on the revolution 2 C-band ground pass from Kaena Point, Hawaii. The two-TDRS 
BTB chain was initialized on a BET solution over the first two on-orbit TDRS passes. Constant Shuttle body- 
axis correction vents were modeled. Both the reference and two-TDRS BET solutions included these modeled 
vents, meaning that any solved-for vent force was in addition to the already modeled forces. The STS-30 
reference BET consisted of 19 data arcs spanning the period between OMS-2 and the deorbit burn. 

2.2.3.3 STS-32 PROCEDURES 

JSC Ground Navigation maintained the reference BTB chain throughout the entire mission. The two-TDRS 
BTB chain, which spanned only the rendezvous period, was initialized on a TDRS-East solution from the 
well-established reference BTB chain. Five reference and three two-TDRS-only BET arcs were processed 
during the rendezvous certification period. Constant Shuttle body-axis correction vents were modeled. Both 
the reference and two-TDRS BET solutions included these modeled vents, meaning that any solved-for vent 
force was in addition to the already modeled forces. 

2.3 GSFC/FDF CERTIFICATION PROCEDURES 

The GSFC/FDF certification processing and procedures are described below. The GSFC solutions were gener- 
ated using the spacecraft parameters and force modeling parameters given in Table 3. The TDRS-East and 
TDRS-West ephemerides used in conjunction with SN tracking data were those generated as part of the normal 
FDF daily operations. 

The tracking data types used in the solutions were (1) TDRSS S-band Doppler measurements, (2) GN S-band 
range and range-rate measurements, and (3) GN C-band range measurements. The tracking data sampling 
rate was every fourth observation for the TDRS S-band measurements and every observation for the GN 
S-band and C-band measurements. The data weights (sigmas) used in the solutions were (1) 0.25 hertz for 
the TDRSS S-band Doppler measurements; (2) 20 meters and 10 centimeters per second for the GN S-band 
range and range-rate measurements, respectively; and (3) 20 meters for the GN C-band range measurements. 

2.3.1 GSFC FDF Batch Processing 

The GSFC FDF uses a differential correction process to estimate the spacecraft orbit and associated parame- 
ters. This process uses a Bayesian weighted least-squares estimation algorithm with an a priori covariance 
matrix. For low- 
eccentricity orbits (such as TDRS and Shuttle), GSFC/FDF uses a fixed integration step size, in contrast to 
JSC, which uses a variable step size. The orbit processing at GSFC/FDF is essentially equivalent to the JSC 
BET processing. 

The Cowell equations of motion are integrated with a predictor/corrector algorithm. 

2.3.2 GSFC FDF Procedures 

For each certification tracking data arc, the GSFCIFDF generated a reference solution including both GN and 
SN tracking data and a two-TDRS solution including only SN tracking data. The orbit solutions for each 
tracking data arc were initially generated with no attempt to model the thrusting activities within the arc, as the 
FDF does not have an STS thrust modeling capability comparable to the JSC modeling. For those cases where 
the maximum position differences exceeded the certification criteria, the solutions were regenerated applying 
along-track thrust components provided by JSC. Finally, the reference and two-TDRS solutions were com- 
pared to determine the maximum position difference between the two solutions for each of the tracking data 
arcs. Whenever successive tracking data arcs overlapped, overlap comparisons were performed for both the 
reference solutions and the two-TDRS solutions. 
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a~acterjst~cs an elin ters (JSC) 

_ _ _ ~ - ~ ~ -  ~- 

TYPE OF INTEGRATION 

INTEGRATION STEPSIZE 

PARAMETERS STS-29, STS-30, STS-32 TDRS-EAST AND TDRS-WEST 

~ ~ ~ ~ ~ 

ENCKE ENCKE 

52 SECONDS 333 SECONDS 

INTEGRATION COORDINATE 
SYSTEM 

MEAN OF 1950.0 MEAN OF 1950.0 

I GEOPOTENTIAL MODEL GODDARD EARTH MODEL-10 GEM-10 7x7 
(GEM-10) 7x7 

1 -2.0 

ATMOSPHERIC DENSITY MODEL 

SOLAR REFLECTIVITY 
COEFFICIENT (cn ) 

I NIA 

JACCHIA-UNEBERRY MODEL NIA 
WITH QO-DAY MEAN SOLAR 
FLUX (1970-71) 

NOT USED NOT USED 

SOLARILUNARIPLANETARY 
FILE 

SOLVED-FOR PARAMETERS 

Table 3. Spacecraft Characteristics and Force Modeling Parameters (GSFCIFDF) 

JPL DE-19 JPL DE-19 

STATE (POSITION AND NIA 
VELOCITY), VENTS, AND 
MANEUVERS 

INTEGRATION COORDINATE 
SYSTEM 

GEOPOTENTIAL MODEL 

ATMOSPHERIC DENSITY MODEL 

SOLAR REFLECTIVITY 
COEFFICIENT (CR ) 

DRAG COEFFICIENT (CD) 

SOLARILUNARIPLANETARY 
FILE 

SOLVED-FOR PARAMETERS' 
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MEAN OF 1950.0 MEAN OF 1950.0 

GODDARD EARTH MODEL-9 GEM-9 8x8 
(GEM-9) 7x7 

HARRIS-PRIESTER N I A  

1.5 SOLVED FOR 

2.0 NIA 

JPL DE-1 18 JPL DE-1 18 

STATE (POSITION AND VELOC- STATE, Cp, 
I N )  AND DRAG VARIATION 
PARAMETER 



The JSC and GSFCIFDF certification results for the STS-29, STS-30, and STS-32 missions are described 
below. 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

STS-29 was launched into a circular 28.5-degree inclination, 296-kilometer altitude orbit on March 13, 1989. 
The primary objective of the STS-29 mission was to deploy the third operational Tracking and Data Relay 
Satellite (TDRS-4). Twenty-three tracking data arcs were used for navigation certification during this mission. 
The thrusting activity level, the start and stop times, and the number of GN and SN tracking passes for each 
tracking data arc are given in Table 4. 

MODERATE 
MODERATE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
MODERATE 
ACTIVE 

Table 4. Tracking Arc Definition, Thrusting Activity Level, and Number of Tracking Passes 
for STS-29 

VENTING 
ACTIVITY 

LEVEL 

1 ACTIVE 
2 ACTIVE 
3 QUIET 
4 MODERATE 
5 ACTIVE 

MODERATE 
QUIET 

8 ACTIVE 

TRACKING INTERVAL I NO. OF TRACKING PASSES 

START I END I GROUNDNETWORK I TDRSS 

GMT 
DATE (HHMMSS) DATE 

3/13/89 

3 I1 4 I89 

3 I1  5 189 

3116189 

31171ag 

3/18/89 

15:53:30 
21 :25:20 
02:25:20 
08:01:30 
12:11:30 
1834: 00 
00: 17:30 
0551 :30 
11:33:10 
17: 09: 00 
22:03:00 
02:51:30 
08:27:00 
12:34:20 
15:46:30 
20:40:10 
02 : 12 :40 
07 :59: 00 
12:30:00 
17:40:00 
20:12:20 
04:56:30 
08:55:50 

3113189 
3/14/89 

3 I1  5 189 

3/16/89 

3/17/89 

3118189 

GMT 
(HHMMSS) 

21 : 10:40 
03:51: 10 
08 : 48 : 40 
13:21: 10 
18 :56 : 40 
00:47:30 
06: 11 :30 
12:17:10 
16 :44 :20 
23:35:10 
04:23:40 
09: 11 :20 
14 : 03 :20 
17: 11 :20 
21 :09:30 
03 : 38 : 20 
08 : 27 : 40 
13:15:20 
18:09:20 
23:46:20 
06: 06:50 
09:45:10 
13:35:10 

S-BAND1 
C-BAND 

0 I 13 
0 1  4 
0 1  3 
0 1  3 
1 I 11 
0 1  3 
0 1  6 
0 1  3 
0 1  4 
0 1  1 
1 1  5 
1 1  3 
0 1  4 
0 1  3 
0 1  2 
0 1  4 
0 1  4 
0 1  4 
2 I 11 
0 1  1 
1 1  5 
0 1  3 
0 I 12 

TOTAL 

13 
4 
3 
3 

12 
3 
6 
3 
4 
1 
6 
4 
4 
3 
2 
4 
4 
4 

13 
1 
6 
3 

12 

TDRS-El 
TDRS-W 

3 1  4 
4 1  4 
3 1  6 
3 1  5 
5 1  3 
4 1  6 
4 1  5 
4 1  4 
3 1  4 
4 1  5 
4 1  5 
5 1  5 
3 1  4 
3 1  3 
4 1  3 
6 1  4 
4 1  4 
4 1  3 
4 1  4 
4 1  5 
4 1  7 
3 1  4 
3 1  3 

TOTAL 

7 

9 
8 
8 

10 
9 
8 
7 
9 
9 

10 
7 
6 
7 

10 
8 
7 
8 
9 

11 
7 
6 

a 

The GSFC tracking data evaluation for STS-29 is documented in Reference 5. A total of 8 S-band and 
108 C-band GN on-orbit passes were evaluated. Anomalies were encountered in four of the S-band passes 
and three of the C-band passes. Approximately 80 percent of the TDRS-East view periods and 84 percent of 
the TDRS-West view periods had at least 70 percent usable data. With Doppler compensation and GN times 
deleted, the TDRS-East and TDRS-West data were approximately 95 percent usable. 

The JSC and GSFC orbit determination results for STS-29 are presented in Sections 3.1.1 and 3.1.2, respec- 
tively. 

3.1.1 JSC Orbit Determination Results for STS-29 

This section describes the JSC STS-29 two-TDRS BTB and BET certification results. 

The maximum position differences between the two-TDRS-only BTB and reference BET solutions (and their 
radial, cross-track, and along-track components) are shown in Table 5 .  Three of the two-TDRS-only BTB 
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I MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 

VENTING I REFERENCE SOLUTIONS (METERS) 

ACTIVE 
ACTIVE 
QUIET 
MODERATE 
A C M  
MODERATE 
QUIET 
ACTIVE 
MODERATE 
MODERATE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
MOD€RATE 
ACTIVE 

19 
-72 
28 

132 
-37 

13 
5 

-130 
24 1 
33 
-1 
25 

-67 
-20 

-1 15 
-1 7 
-2 1 
14 

-1 13 
369 
-7 1 
-67 
62 

-372 
-324 

71 
120 

7 
148 
150 
188 
-38 
377 

-160 
30 

-1 63 
-139 
1102 
-141 
-1 50 
4 5 4  

1 
-522 
-28 
52 

-171 

-58 
416 

-165 
-296 
-276 
269 
-64 

-169 
103 
42 
20 

-166 
304 
-80 
215 
-1 1 
83 

-256 
4 2  

-375 
-155 
-194 

40 

377 
532 
182 
345 
278 
307 
164 
284 
265 
381 
162 
170 
352 
162 

1129 
142 
1 73 
522 
121 
742 
173 
212 
187 

CERTIFICA- 
TION 

CRITERION 

* 420 
570 
320 
420 
570 
420 
320 
570 
420 
420 
320 
320 
570 
570 
570 
570 
320 
570 
570 
570 
320 
420 
570 

NUMBER OF 
TWO-TDRS 
SOLUTIONS 

PASSED/ 
TOTAL 

NUMBER 

7 1  7 
8 1  8 
7 1  7 
6 1  6 
7 1  7 
9 1  9 
8 1  8 
6 1  6 
7 1  7 
8 1  8 
6 1  6 
7 1  7 
5 1  5 
3 1  3 
3 1  5 
9 1  9 
6 1  6 
7 1  7 
4 1  4 
5 1  6 
8 1  8 
6 1  6 
6 1  6 

" ARC 1 WAS A POSTINSERTION ARC 

Table 6. Maximum Position Differences Between Two-TDRS BET and 
Reference BET Solutions for STS-29 (JSC) 

VENTING 
ACTIVITY 

LEVEL 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

ACTIVE 
ACTIVE 
QUIET 
MODERATE 
ACTIVE 
MODERATE 
QUIET 
ACTIVE 
MODERATE 
MODERATE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
MODERATE 
ACTIVE 

MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) 

TOTAL 
(RSS) 

246 
139 
66 

134 
123 
127 
39 
57 
26 
46 
86 
94 

132 
85 

234 
67 
28 
32 

182 
121 
45 
87 

373 

CERTIFICA- 
TION 

CRITERION 

- 420 
640 
280 
420 
640 
420 
280 
640 
420 
420 
280 
280 
640 
640 
640 
640 
280 
640 
640 
640 
280 
420 
640 

PERCENT 
PASSED 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
60 

100 
100 
100 
100 
83 

100 
100 
100 

PASS/ 
FAIL 

PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 

- ARC 1 WAS A POSTINSERTION ARC 
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solutions exceeded the certification criteria out of a total number of 15 1 solutions, corresponding to a 98-per- 
cent pass ratio. Arc 15 produced two failures and arc 20 produced one. The maximum total position differ- 
ence of 1129 meters occurred during arc 15, primarily due to cross-track position differences. 

Another measure of two-TDRS-only BTB solution accuracy is pro d by comparisons with the reference BTB 
chain. Two-TDRS-only BTB differences in inclination and ascending node estimates did not subside until the 
fifth TDRSS batch after OMS-2. Total position differences were less than 610 meters for the entire postinser- 
tion and deploy timeframe. During the deorbit preparation period, total position differences were below 
244 meters. 

The STS-29 reference and two-TDRS-only BET consisted of the 23 tracking data arcs described in Table 4. 
To more accurately model Shuttle trajectory perturbations, JSC Ground Navigation solved for 34 vents in both 
the reference and two-TDRS-only BET solutions. The first 32 vents had identical start and stop times. Com- 
parable vent forces and associated energy changes were obtained between the reference and two-TDRS-only 
solutions. The majority of the semimajor axis changes were positive in sign, ranging from 12 meters to 
1293 meters. This is normal for Shuttle fights due to translational effects from attitude control and attitude 
maneuvers. 

Minimum trajectory overlap position differences between successive BET solutions were usually less than 
360 meters. The two-TDRS-only BET produced comparable position differences relative to the reference 
BET. Comparisons were performed between the two-TDRS-only and reference BET solutions. Maximum 
position differences during the 23 data arcs are shown in Table 6. Every two-TDRS-only BET passed the 
certification criteria. Arc 23 produced the largest total position difference of 373 meters. 

3.1.2 GSFCIFDF Orbit Determination Results for STS-29 

The GSFC/FDF orbit determination results for STS-29 are presented in Table 7, which gives the maximum 
position differences between the two-TDRS and reference solutions (with along-track thrust modeling included 
in the solutions for arcs 1, 4, 5 ,  8, 13 and 19). The last column of Table 7 indicates whether the two-TDRS 
solution passed or failed the certification criterion for each arc. All the arcs passed the certification criteria 
except arc 8. The JSC vent solution for this arc showed that a large radial thrust component was applied, 
which explains why the application of an along-track thrust component in the FDF solution did not succeed in 
reducing the maximum position difference for this arc. Maximum overlap position differences between succes- 
sive two-TDRS solutions ranged from 153 to 2453 meters. In summary, the GSFC/FDF analysis showed that 
22 of the 23 arcs satisfied the two-TDRS navigation certification criteria. 

3.2 STS-30 

STS-30 was launched into a circular 28.85-degree inclination, 230-kilometer altitude orbit on May 4, 1989. 
The primary objective of the STS-30 mission was to deploy the Magellan interplanetary spacecraft. Nineteen 
tracking data arcs were used for navigation certification during this mission. The thrusting activity level, the 
start and stop times, and the number of GN and SN tracking passes for each tracking data arc are given in 
Table 8. 

The GSFC tracking data evaluation results for STS-30 are documented in Reference 6. A total of nine S-band 
on-orbit passes were evaluated. Anomalies were encountered in four of the S-band passes and four of the 
C-band passes. Approximately 80 percent of the TDRS-East view periods and 70 percent of the TDRS-West 
view periods had at least 70 percent usable data. With Doppler compensation and GN times deleted, the 
TDRS-East data were approximately 90 percent usable and the TDRS-West data were approximately 94 per- 
cent usable. 

The JSC and GSFC orbit determination results for STS-30 are presented in Sections 3.2.1 and 3.2.2, respec- 
tively. 

3.2.1 dSC Orbit Determination Results for STS-30 

STS-30 was the second of two low-inclination certification flights during which JSC and GSFC assessed the 
accuracy of two-TDRS orbit determination. This section describes the JSC two-TDRS BTB and BET certifica- 
tion results for each of the 19 data arcs. 
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ARC 
NO. 

_II_ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

or rack 

MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND I 

MODERATE 

MODERATE 
MODERATE 

MODERATE 

I REFERENCE SOLUTIONS (METERS) 

CROSS- 
TRACK 

1 86 
47 
45 

-1 7 
207 
104 
-60 

4 9 9  
-20 

0 
0 

-21 1 
-36 

-173 
77 

115 
-62 
165 
344 
-26 
-31 
-90 
-1 1 

* 420 
640 
280 
420 
640 
420 
280 
640 
420 
420 
280 
280 
640 
640 
640 
640 
280 
640 
640 
640 
280 
420 
640 

PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
FAIL 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 

* 

NOTE: 

ARC 1 WAS A POSTINSERTION ARC 

ALONG-TRACK THRUST MODELING WAS APPLIED FOR ARCS 1, 4, 5, 8, 13, AND 19. 

Table 8. Tracking Arc Definition, Thrusting Activity Level, and Number of Tracking Passes 
for STS-30 

ARC 
NO. 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

VENTING 
ACTIVITY 

LEVEL 

ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
MODERATE 
ACTIVE 
ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 

TRACKING INTERVAL NO. OF TRACKING PASSES 1 
START 

DATE - 
5/4/89 

5 1 5 ~ 9  

5/6/89 

5/7/89 

5/8/89 

GMT 
(HHMMSS) 

19:45:20 
22:52:00 
04 : 49 : 40 
10:09: 10 
15:56:10 
19:08:00 
00 : 0050 
04:49:40 
09:42:10 
12 : 56 : 50 
17 : 44 : 30 
22:24:50 
04:12:10 
10:35:00 
15 : 57 : 20 
20:56:50 
03:06:00 
09: 10:50 
12:28:50 

5/5/89 

5/6/89 

5/7/89 

5/8/89 

01 :01:50 
05: 09: 00 
10:59:50 
16:OO:OO 
20: 19:40 
01 :32:50 
05:21:40 
11 :13:10 
14: 15:50 
18:16:30 
23:49:00 
04 :47 :50 
11:26:20 
16:53:00 
22:26:00 
03:35:20 
10:01:30 
14:55:00 
18:40:10 

0 I 2 1  21 
0 1  7 7 
0 1  4 4 
0 1  4 4 
0 1  4 4 
0 1  7 7 
1 1  1 2 
0 1  4 4 
0 1  1 1 
0 1  3 3 
0 1  6 6 
I /  4 5 
0 1  5 5 
0 1  4 4 
0 1  7 7 
0 1  3 3 
1 1  5 5 
0 1  3 3 
0 I 12 12 

3 1  4 7 
5 1  4 9 
4 1  4 8 
3 1  4 7 
4 1  3 7 
4 1  6 10 
4 1  3 7 
4 1  4 8 
4 1  3 7 
4 1  3 7 
5 1  5 10 
5 1  5 10 
4 1  5 9 
5 1  5 10 
6 1  5 11 
5 1  5 10 
5 1  3 8 
3 1  5 8 
7 1  6 13 
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The maximum position differences between the two-TDRS-only and reference BET solutions are shown 
ese results satisfied the certification criteria 92 percent of the time. In many cases, however, 

the reference and two-TDRS-only ascending node estimates differed by about 0.005 degree. This caused large 
out-of-plane position differences, with the result that several arcs failed the TDRS BTB acceptance criteria. In 
addition, the two-TDRS BTB processing required several revolutions to recover from ascending node errors 
induced by the separation maneuver on revolution 5 and by several other orbit perturbations during the flight. 
The ascending node errors are not a general characteristic of two-TDRS postmaneuver processing, however. 
For example, the post-OMS-2 plane was fixed within three TDRS passes. Analysis of the failed two-TDRS- 
only realtime BTB processing revealed that the errors were probably due to over use of the (UV) kT, which so 
constrained the BTB solutions that actual plane changes were not allowed. 

Two-TDRS-only BTB processing met the postinsertion acceptance criterion with the exception of the first two 
solutions, which had significant (-0.0 12-degree) ascending node errors. The two-TDRS-only BTB chain was 
initialized on a one-orbit BET solution over the first two on-orbit TDRSS passes, which should not have 
changed the plane appreciably. The first TDRS-West pass outside of the initialization data arc corrected most 
of the plane error, and the two-TDRS-only BTB processing met the acceptance criteria throughout the rest of 
postinsertion. The large initial ascending node error highlights the weakness of TDRSS Doppler-only data in 
determining the orientation of the orbit plane. 

Two-TDRS-only BTB processing during the predeorbit phase compared favorably with the reference BET. 
Position differences were for the most part less than 300 meters and were at all times under the 570-meter 
certification criterion for active periods. None of the ascending node errors seen in earlier processing were 
evident during the deorbit preparation period. 

The STS-30 reference BET consisted of the 19 data arcs described above, within which JSC Ground Naviga- 
tion solved for vent forces to more accurately model trajectory perturbations. All two-TDRS-only BET arcs 
met the acceptance criteria, as shown in Table 10. The maximum position difference between the reference 
and two-TDRS-only BET solutions, seen in arc 12, was 536 meters. Minimum overlap position difference 
comparisons between successive BET solutions were normally less than 300 meters. Arcs 4, 5, 12, and 14 
initially failed the acceptance criteria but passed after postmission reprocessing. It is interesting to note that 
every failure was due to inclination and ascending node errors and the associated cross-track position error. 

The majority of orbital energy changes during the flight were positive. Solved-for vents accounted for semi- 
major axis changes ranging from 20 to 293 meters. The arc 2 solution also solved for the large OMS separa- 
tion maneuver following deployment of the Magellan spacecraft. 

3.2.2 GSFC/FDF Orbit Determination Results for STS-30 

The GSFC/FDF orbit determination results for STS-30 are presented in Table 11, which gives the maximum 
position differences between the two-TDRS and reference solutions (with along-track thrust modeling included 
in the solutions for arcs 2 and 15). The deployment of the Magellan spacecraft during arc 2 was also 
modeled. The last column of Table 11 shows that all the arcs passed the certification criteria. Except for 
arc 2, the maximum overlap position differences between successive two-TDRS solutions ranged from 100 to 
1560 meters. In summary, the GSFC/FDF analysis showed that all 19 of the 19 valid arcs satisfied the naviga- 
tion certification criteria. 

3.3 STS-32 

STS-32 was launched into a circular 28.5-degree inclination, 352-kilometer altitude orbit on January 9, 1990. 
The major objective of this mission was to retrieve the Long-Duration Exposure Facility (LDEF) spacecraft 
and return it to Earth. As the certification efforts for STS-29 and STS-30 had already certified the two-TDRS 
configuration for nominal STS support, the certification effort for STS-32 was focused on the period around 
the rendezvous activities. Consequently, there were only five tracking data arcs used for navigation certifica- 
tion during this mission. The thrusting activity level, the start and stop times, and the number of GN and SN 
tracking passes for each tracking data arc are given in Table 12. 

The GSFC tracking data evaluation is documented in Reference 6. A total of 167 C-band GN onarbit passes 
were evaluated. Anomalies were encountered in two of the C-band passes. Approximately 72 percent of the 
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NUMBER OF I TWO-TDRS 1 MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) VENTING 

ACTIVITY 
LEVEL 

ARC 
NO. 

_II 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

CROSS- 
TRACK 

RADIAL 

116 
-87 
41 

-61 
-19 

10 
-8 
33 

-56 
-37 
-98 
135 
4 
81 

-44 
-31 
-8 
4 
48 

ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
MODERATE 
ACTIVE 
ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 

4 8 8  
605 
136 
54 
14 

378 
433 
203 

-158 
-65 1 
181 

-187 
136 

-226 
79 

206 
-34 

4 2 9  
28 

-38 
-253 
-148 
217 

4 0 3  
386 
381 
126 
130 
-1 1 

-234 
505 
203 
399 

-342 
84 

-212 
460 
265 

503 
662 
205 
232 
404 
540 
577 
242 
213 
653 
31 1 
555 
245 
466 
354 
225 
215 
629 
270 

* 420 
570 
320 
570 
420 
570 
570 
320 
320 
570 
570 
570 
320 
570 
570 
570 
320 
570 
570 

5 1  7 
7 1  8 
8 1  8 
7 1  7 
4 1  4 
8 1  8 
6 1  7 
8 1  8 
3 1  3 
6 1  7 
8 1  8 
6 1  6 
9 1  9 
7 1  7 
8 1  8 
8 1  8 
8 1  8 
3 1  4 
5 t  5 

71 
88 

100 
100 
100 
100 
86 

100 
100 
86 

100 
100 
100 
100 
100 
100 
100 
75 

100 

' ARC 1 WAS A POSTINSERTION ARC 

Table 10. Maximum Position Differences Between Two-TDRS BET and 
Reference BET Solutions for STS-30 (JSC) 

I MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) VENTING 

ACTIVITY 
LEVEL 

ARC 
NO. 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

RADIAL CROSS- 
TRACK 

ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
MODERATE 
ACTIVE 
ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 

-8 66 
-23 172 

-30 -141 
20 -168 

-33 133 
-38 109 

-10 58 
-8 -95 

-56 -234 
-88 -202 

-135 62 
7 -194 
8 4 

16 -144 
4 -121 

49 
-208 
209 

4 8 9  

4 1 8  
-23 1 

113 

165 
112 

77 
228 
319 
536 

444 
302 
114 

220 
165 

280 
640 
640 
640 

640 
640 
640 

640 
640 

PASS 
PASS 
PASS 
PASS 

PASS 
PASS 
PASS 

PASS 
PASS 

I I I I 

* 

NOTE: 

ARC 1 WAS A POSTINSERTION ARC 

TWO-TDRS BET COMPARISONS WERE NOT PERFORMED FOR QUIET ARCS 3, 8, 13, AND 17 
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T 

ARC. 
NO. 

II_ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

VENTING 
ACTIVITY 

LEVEL 

ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
MODERATE 
ACTIVE 
ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 
ACTIVE 
QUIET 
ACTIVE 
ACTIVE 

I 

I MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) 

13 
9 
15 
-21 

1 
12 
24 
8 
2 
29 
4 0  
15 
-1 
6 
20 
1 
3 

-1 
-102 

147 
306 
-85 
-299 

4 
114 
279 
-29 
80 
410 
423 
254 
-2 

430 
1 72 
126 
-22 
-164 
65 

I 

ALONG- 
TRACK 

177 
370 
99 
362 
87 
-36 
4 2  1 
-38 
61 
476 
267 
222 
34 
420 
-398 
111 
58 
176 
461 

TOTAL 

231 
480 
132 
470 
87 
120 
506 
48 
101 
629 
501 
338 
34 
601 
434 
168 
63 
240 
476 

' 

QOTE: 

ARC 1 WAS A POSTINSERTION ARC 

ALONG-TRACK THRUST MODELING WAS APPLIED FOR ARCS 2 AND 15. 

420 
640 
280 
640 
420 
640 
640 
280 
280 
640 
640 
640 
280 
640 
640 
640 
280 
640 
640 

PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 
PASS 

I 

Table 12. Tracking Arc Definition] Thrusting Activity Level, and Number of Tracking Passes 
for STS-32 

VENTING 
ACTIVITY 

LEVEL 

1 ACTIVE 
2 QUIET 
3 QUIET 
4 ACTIVE 
5 ACTIVE 

TRACKIN' 

START 

DATE ~ (HAZSS)  

1111190 12:28:20 
17:22:50 
22: 1o:oo 

1/12/90 03:54:00 
09 :32 : 50 

INTERVAL NO. OF TRACKING PASSES 

END GROUND NETWORK TDRSS 

DATE 

1 I1 1 190 

1/12/90 

TDRS-E/ I TOTAL I TDRS-W 
S-BAND/ 

(HGZSS)  I C-BAND 

18 : 42 : 00 0 I 10 10 3 1  4 
23:36:30 I /  4 5 4 1  5 
O4:25 : 50 I /  3 4 4 1  5 
10:22:00 0 1  4 4 4 1  4 
15:04:30 0 I 10 10 3 1  5 

TOTAL 

7 
9 
9 
8 
8 
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TDRS-East view periods and 81 percent of the TDRS-West view periods had at least 70 percent usable data. 
With Doppler compensation and GN times deleted, the TDRS-East data were approximately 8 1 percent usable 
and the TDRS-West data were approximately 93 percent usable. 

The JSC and GSFC orbit determination results for STS-32 are presented in Sections 3.3.1 and 3.3.2, respec- 
tively. 

3. 

The maximum position difference comparisons between the two-TDRS-only BTB and reference BET solutions 
are shown in Table 13. One TDRSS BTB solution exceeded the certification criterion out of 25 total solutions, 
corresponding to a 96-percent pass ratio. Arc 5, which contained three attitude maneuvers, two rendezvous 
burns, and four midcourse correction maneuvers, produced the sole two-TDRS-only BTB failure; this failure 
occurred in close proximity to a rendezvous maneuver. 

Total position differences between the two-TDRS-only and reference BTB solutions were usually less than 
152 meters. Inclination and ascending node differences were acceptable, indicating that the two-TDRS-only 
BTB processing determined the correct orbital plane. 

The STS-32 rendezvous certification period included five reference and three two-TDRS-only BET arcs. 
Comparable vent forces and associated energy changes were obtained for the two-TDRS-only and reference 
BET solutions. Semimajor axis changes for the solved-for vents ranged from 62 to 5068 meters. Minimum 
overlap position differences between successive BET solutions were less than 150 meters. 

Maximum position differences between the two-TDRS-only and reference BET solutions for arcs 1, 4, and 5 
are shown in Table 14. Each arc satisfied the certification criteria. Arc 1 produced the largest total position 
difference of 439 meters. 

3.3.2 GSFC/FDF Orbit Determination Results 

The GSFC/FDF orbit determination results for STS-32 are presented in Table 15, which gives the maximum 
position differences between the two-TDRS and reference solutions (with along-track thrust modeling included 
for arcs 1, 4, and 5 ) .  The two quiet arcs (arcs 2 and 3) passed the certification criteria, but all three active 
arcs (arcs 1, 4, and 5) failed the certification criteria. Arc 1 showed the largest maximum position difference, 
which can be attributed to three large ventings in both the radial and cross-track directions. Arcs 4 and 5 also 
included large ventings in the radial and cross-track directions. This explains why the application of along- 
track thrust components in the GSFC solutions did not succeed in significantly reducing the maximum position 
differences for these arcs. Except for arc 1, the maximum overlap position differences between successive 
two-TDRS solutions ranged from 99 to 5066 meters. In summary, the GSFC/FDF analysis showed that two of 
the five arcs satisfied the two-TDRS navigation certification criteria. However, GSFCIFDF was unable to 
corroborate the JSC results for the three active arcs because of thrust modeling limitations. 

4.0 SUMMARY AND CO~CLUSIONS 

This section presents the JSC and GSFC/FDF conclusions from this certification study and discusses additional 
considerations. 

4.1 CERTIFICATION CONCLUSIONS 

During STS-29, STS-30, and STS-32, JSC Ground Navigation certified that the two-TDRS network is an 
effective tool for Shuttle navigation. Two-TDRS-only BTB processing satisfied the certification requirements 
for over 90 percent of the solutions obtained during each flight. BET processing met the acceptance criteria 
for every data arc considered in the three ffight certification efforts. The BET state vector and vent solutions 
were quite similar to those of the reference solutions, and direct comparisons showed that these results were 
uniform throughout the data arcs. 
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ARC 
NO. 

I 
I 

MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) VENTING 

ACTIVITY I 

LEVEL CERTlFlCA- 
RADIAL CROSS- ALONG- TOTAL TlON 

TRACK TRACK CRITERION 

I I I I I I 
I I I I I I 

ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 

-61 - 
- 

-10 
-1 46 

-35 - 
- 

55 
43 

363 239 439 750 PASS - - - N /A - 
- - - N/A - 

-1 1 24 28 750 PASS 
382 -67 415 750 PASS 

-164 - 
- 

88 
698 

-187 - 
- 

-34 
359 

25 1 - 
- 

109 
786 

700 
N/A 
N/A 
700 
700 

I I I I I I 

NUMBER OF 
TWO-TDRS 
SOLUTIONS 

PASSED1 
TOTAL 

NUMBER 

7 /  7 - 
- 

9 1  9 
8 /  9 

NOTE: TWO-TDRS-ONLY SOLUTIONS WERE NOT PERFORMED DURING THE QUIET PERIODS. 

Table 14. Maximum Position Differences Between Two-TDRS BET and 
Reference BET Solutions for STS-32 (JSC) 

ARC 
NO. 

VENTING 
ACTIVITY 

LEVEL 

1 

MAXIMUM POSITION DIFFERENCE BETWEEN THE TWO-TDRS AND 
REFERENCE SOLUTIONS (METERS) 

CERTIFICA- 
RADIAL CROSS- ALONG- TOTAL 

TRACK TRACK CRITERION 

PASS/ 
FAIL 

ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 

I I I I I I I 

NOTE: TWO-TDRS-ONLY SOLUTIONS WERE NOT PERFORMED DURING THE QUIET PERIODS. 

Table 15. Maximum Position Differences Between Two-TDRS and Reference Solutions 
for STS-32 (With Along-Track Thrust Modeling) (GSFCIFDF) 

MAXIMUM POSl 0-TDRS AND 

CERTIFICA- 

ACTIVE 
QUIET 
QUIET 
ACTIVE 
ACTIVE 

265 10,232 17,346 20,141 750 FAIL 
1 16 48 50 280 PASS 

20 -51 -32 64 280 PASS 
-25 1 -139 2,333 2,350 750 FAIL 

1,267 -1 822 5,596 6,020 750 FAIL 
I I I I I I I I 
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orbit determination results for S S-29, STS-30, and S 5-32 corroborated the JSC certifica- 
tion results. The GSFC/FDF analysis showed that 43 of the 47 certification arcs passed the certification 
criteria. GSFC/FDF was unable to corroborate the JSC results for the remaining four certification arcs because 
of thrust modeling limitations. 

The GSFC/FDF tracking data evaluation showed that approximately 80 percent of the TDRS-East and TDRS- 
West view periods had at least 70 percent usable data. With Doppler compensation and GN times deleted, the 
TDRS-East data were approximately 91 percent usable and the TDRS-West data were approximately 94 per- 
cent usable. 

The two-TDRS certification effort has established the ability of TDRSS to detect and correct for unmodeled 
orbital energy changes. In the JSC BET processing, the presence of TDRSS data results in more precise vent 
solutions, because of the close proximity of the TDRSS data to the solved-for events. In the JSC BTB mode, 
the effects on orbital energy from drag mismodeling, translational effects from Shuttle venting and attitude 
control, attitude maneuvers, and burn mismodeling are picked up faster and more accurately than was the case 
with the ground-only network. In addition, the increased communications coverage from the two-TDRS net- 
work allows more timely and accurate translational maneuver confirmation, which leads to faster recovery of 
the JSC Ground Navigation state vector solution. Finally, TDRSS data, used in conjunction with C-band 
ground data, give good early state vector solutions. This capability has been used several times in the recent 
past to update and significantly improve the onboard state vector in the revolution following OMS-2. 

4.2 CONCLUDING REMARKS 

The successful two-TDRS certification effort has already resulted in a significant reduction in on-orbit C-band 
radar support. In some circumstances, however, the processing of TDRSS Doppler data alone has proved to 
be insufficient. A normal TDRSS tracking pass duration ranges from 35 to 60 minutes. The JSC Ground 
Navigation software automatically splits TDRSS batches in the event of a modeled translational maneuver or a 
change in the telemetry bit rate or transmitter frequency. The resulting shorter TDRSS batches often give 
adequate results during quiet and moderate activity periods, but a short TDRSS batch often does not give a 
good BTB solution during very active periods, such as a multiburn rendezvous sequence. In addition, two- 
TDRS-only BTB processing sometimes needs extra time to recover from orbital plane errors induced by un- 
modeled or poorly modeled translational maneuvers. In a two-TDRS-only environment, the requirement for 
accuracy may, in some cases, have to be traded off against the need for a timely state vector. 

By comparison, a C-band ground pass will give at least a good local solution in under 10 minutes of tracking. 
As a result, C-band ground tracking is still required for periods having strict state vector accuracy requirements, 
for periods requiring state vectors soon after an event, such as a deployment, and for postmaneuver processing. 

Another consideration for future C-band scheduling is the availability of usable TDRSS tracking data. For 
example, TDRS stationkeeping maneuvers and Shuttle attitude-related antenna blockages can result in periods 
of unusable TDRSS tracking data. During the STS-32 mission, two TDRS-West maneuvers resulted in unus- 
able TDRS-West tracking data for two revolutions after the first maneuver and one revolution after the second 
maneuver. Consequently, the TDRS-East satellite tracking was augmented by ground C-band trackers during 
those periods. 
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NT 

ABSTRACT 

The influence of ionospheric refraction on orbit determination has been studied through 
the use of the Orbit Determination Error Analysis System (ODEAS). This paper presents 
the results of a study of the orbital state estimate errors due to the ionospheric refraction 
corrections, particularly for measurements involving spacecraft-to-spacecraft tracking 
links. 

In current operational practice at  the Goddard Space Flight Center (GSFC) Flight Dy- 
namics Facility (FDF) , the ionospheric refraction effects on the tracking measurements 
are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent 
ionospheric model. While GTDS has the capability of incorporating the ionospheric re- 
fraction effects for measurements involving ground-to-spacecraft tracking links, such as 
those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does 
not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft 
tracking links for measurements generated by the Tracking and Data Relay Satellite Sys- 
tem (TDRSS). The lack of this particular capability in GTDS raised some concern about 
the achievable accuracy of the estimated orbit for certain classes of spacecraft missions 
that require high-precision orbits. Using an enhanced research version of GTDS, some 
efforts have already been made to assess the importance of the spacecraft-to-spacecraft 
ionospheric refraction corrections in an orbit determination process. While these studies 
were performed using simulated data or real tracking data in definitive'orbit determina- 
tion modes, the study results presented in this paper were obtained by means of covari- 
ance analysis simulating the weighted least-squares method used in orbit determination. 

The current operational version of ODEAS has the capability to compute ionospheric 
refraction corrections for range and range-rate measurements for both GSTDN and 
TDRSS data using the Bent ionospheric model. Using this capability in ODEAS, this 
study demonstrates how the magnitude and the characteristics of the spacecraft-to- 
spacecraft ionospheric refraction depend on such factors as spacecraft altitudes, solar 
activity, tracking geometry, and the local solar times of measurements. This study also 
provides error analysis results showing how the ionospheric refraction affects the space- 
craft state estimate errors for routine orbit determination of spacecraft missions such as 
Gamma Ray Observatory (GRO), depending on the tracking geometries and the tracking 
pass lengths. ODEAS is a software system particularly convenient for analyses of this 
type. The results obtained from this study will provide a quick reference for ionospheric 
refraction effects on orbit determination and will be useful for assessing orbit accuracy 
requirements for many future spacecraft missions. 

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center 
(GSFC) , Greenbelt, Maryland, under Contract NAS 5-31500. 
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The Earth’s ionosphere extends from approximately 80 kilometers to beyond 1000 kilometers from the sur- 
arth and consists of ionized particles. As a tracking signal S gh this medium, the 

refraction or bending of the signal path occurs due to the presence of free electrons. The magnitude of 
refraction is dependent upon the electron densities along the path of the tracking signal and the frequency of 
the signal. To achieve high accuracy in determining a spacecraft orbit, it is therefore necessary to properly 
correct the tracking data for the refraction effects. 

In the current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility 
(FDF), the ionospheric refraction effect is computed in the Goddard Traje rmination System 
(GTDS) for ground-to-spacecraft tracking links using a global electron density model as the Bent model 
(References 1 and 2). However, no refraction correction is performed for spacecraft-to-spacecraft links for 
Tracking and Data Relay Satellite System (TDRSS) data; therefore, TDRSS tracking data are only partly 
corrected for ionospheric refraction. To circumvent this deficiency, a geometrical editing criterion can be 
employed in GTDS to reject the tracking data subject to significant ionospheric disturbance. This practice 
reduces the amount of tracking data actually used for the orbit determination process. It is therefore desirable 
to know the characteristics and the magnitude of the ionospheric refraction corrections and how they influence 
the accuracy of orbit determination. Such information will be useful to an orbit analyst in assessing the accu- 
racy requirements of the spacecraft missions and will provide insights into ways of achieving more accurate 
spacecraft orbits by minimizing the orbit errors associated with the ionospheric refraction corrections. Using an 
enhanced research version of GTDS, some efforts have already been made to assess the importance of the 
spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process (Reference 3). 
While these studies were performed using simulated data or real tracking data in definitive orbit determination 
modes, the study results presented in this paper were obtained by means of covariance analysis simulating the 
weighted least-squares method used in orbit determination. 

This paper presents results obtained by using the Orbit Determination Error Analysis System (ODEAS). 
ODEAS is a general-purpose linear orbit determination error analysis system which can be used as a covariance 
analysis tool to analyze the orbit determination errors resulting from various systematic error sources and 
random noises. Throughout the study, the Earth’s ionosphere was modeled as a nonhomogeneous medium 
based upon the Bent model. The study results can be divided into two parts. The first part presents the 
magnitude and the general characteristics of ionospheric refraction correction as a function of spacecraft-to- 
spacecraft tracking geometry, solar activity, orbit inclination, user spacecraft orbital height, and local times of 
TDRS and the user spacecraft at the time of measurement. The second part inv‘estigates the spacecraft orbit 
determination errors that can result from neglecting the ionospheric refraction effects in spacecraft-to-space- 
craft links. Due to the linearity assumptions involved in the orbit estimation process, the results obtained can 
also be extended to address the effects of inexact modeling of ionospheric refraction in spacecraft-to-spacecraft 
tracking links by simple linear scaling. The results for a spacecraft mission such as the Gamma Ray Observa- 
tory (GRO) are discussed. 

A brief background of the Bent model is provided in Section 1.1 of this paper. Section 1.2 describes the 
mathematical procedures used in ODEAS for modeling the ionospheric refraction correction for spacecraft-to- 
spacecraft links using the Bent model. Section 2 discusses the study results, and Section 3 presents conclu- 
sions and recommendations. 

1.1 BENT MODEL 

The Bent model is an empirical world-wide electron density model named after its original developers 
R. B. Bent et ai. (Reference 2). This model was derived in the early 1970s from analysis of the many 
thousands of satellite and ground-based ionospheric soundings and satellite electron density measurements 
available at the time. It was extensively evaluated before incorporation into GTDS (Reference 4). The model 
provides the electron density profiles (electron density as a function of altitude) derived by incorporating the 
effects of variations in latitude, longitude, solar activity, geomagnetic activity, seasonal variations, and local 
time. Using this model, an electron density profile similar to that shown in Figure 1 can be constructed for any 
geographic location around the globe. This profile is represented in the Bent model using seven curve sections, 
including two parabolic sections and five exponential tail sections. 
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Figure 1. Empirical Worldwide Electron Density Profile 

The computation of the electron density profile consists of evaluating parameters specifying the upper and 
lower parts of the parabolic section including the maximum density, N, , the corresponding altitude, h, , and 
the exponential constants specifying the five exponential tail sections. This model has been successfully used in 
GTDS for correcting the ground-to-spacecraft tracking links for ionospheric refraction. The detailed mathe- 
matical description of the model as implemented in GTDS is described in Reference 1. Although the model 
has been successful in correcting the ground-to-spacecraft tracking measurements, the validity of the model for 
correcting spacecraft-to-spacecraft measurements, especially for high-altitude regions, has yet to be thoroughly 
evaluated for application in GTDS. 

The following section discusses the ionospheric refraction corrections using the Bent model for the spacecraft- 
to-spacecraft links as implemented in ODEAS. Reference 5 provides the mathematical details of the model 
implementation. 

1.2 IONOSPHERIC REFRACTION CORRECTION FOR SPACECRAFT-TO- 
SPACECRAFT LINKS 

The ionospheric refraction effects can be characterized in terms of the variable local index of refraction, n, of 
the medium through which the signal is propagated. This index of refraction can be expressed as 

n = l - N I  (1) 
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where NE is the refractivity and is given in terms of the electron density, N (electrons per cubic meter), and 
the signal transmission frequency, f (hertz), as follows: 

For a given measurement, the signal frequency, f, is a constant, and the electron density, N, varies with the 
altitude, longitude, latitude, and local time of the signal path. The range correction due to ionospheric refrac- 
tion, AeI, can be computed by integrating N1 as expressed in Equation (2) along the signal path, as follows: 

Ael = - 40*3 N ds f2 (3) 

where ds denotes an infinitesimal ray path length. 

For a spacecraft-to-spacecraft tracking link, the integral expressed in Equation (3) must be evaluated by a 
numerical method, because the electron density, N, cannot easily be expressed as a function of the ray path, s. 
In ODEAS, this integral is evaluated using a 12-point Gaussian quadrature scheme. 

Figure 2 illustrates the two tracking configurations for a spacecraft-to-spacecraft tracking link that are relevant 
for the effects of ionospheric refraction. For configuration 1, ( p  > 90 degrees), the integral of Equation (3) 
is evaluated from the user spacecraft at U to the maximum ionospheric height at Q, which is set at 3000 kilo- 
meters. For configuration 2, ( p  < 90 degrees), the integral is evaluated in two parts divided at point P, the 
point of lowest approach for the signal path. One integration is done from point P to Q and the other from 
point P to U. 

T T 

! CENTER OF EARTH CENTER OF EARTH 

(a) CONFIGURATION 1 (f3 > We) (b) CONFIGURATION 2 (p c 909 f 
Figure 2. Spacecraft-to-Spacecraft Segment (Two Possible Configurations Shown) 

In the ODEAS implementation, to achieve computational efficiency, a new electron density profile may not 
always be recomputed at each integration point along the ray path. A new electron density profile is computed 
for point whenever the geographic longitude and latitude of this point are different from those of the 
previous integration point on the ray path, si-1, by more than a specified tolerance, Le., 
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where 

(@i, Ai) and (@i-l, = geographic latitude and longitude pairs for the points si and si-l, 
respectively 

To1 = user-specified tolerance level 

Therefore, by adjusting the tolerance level, the number of electron density profiles computed in the integration 
can be controlled. Throughout the study, the tolerance level for recomputing the electron density profile was 
set to 1 degree. This setting ensures recomputation of electron density profiles at each integration point along 
the ray path for most of the tracking geometries except for those where the integration points are very close to 
each other, such as in the case of large angles, in which case the range ionospheric corrections obtained by 
setting To1 = 1 degree and To1 = 0.001 degree differed by less than 2 percent. 

Range-rate corrections can be computed from range corrections as follows: 

where 

AeI(ti) and = two successive range corrections computed at time ti and ti-1 , respectively 

At = time difference between two measurements (usually the Doppler count 
interval) 

2.0 RESULTS 

The results of this study are presented in two parts. Section 2.1 discusses the general characteristics of iono- 
spheric refraction correction as a function of various parameters. Section 2.2 describes the orbit determina- 
tion error analysis results that can be expected by ignoring the ionospheric refraction effects in 
spacecraft-to-spacecraft tracking links using the routine orbit determination scenario of a GRQ-type spacecraft 
mission as an example. 

2.1 GENERAL CHARACTERISTICS OF IONOSPHERIC REFRACTION CORRECTIONS 

As stated earlier, the magnitude of ionospheric refraction correction is a function of tracking signal frequency 
and the electron densities along the signal path as it traverses the ionosphere. This is expressed mathematically 
in Equation (3). For a given measurement, the frequency, f, is a constant; and the ionospheric refraction 
correction is complicated due to the nature of electron density representation. This section presents the 
magnitude and the general characteristics of ionospheric refraction correction as a function of various parame- 
ters that affect the electron densities. The parameters studied were limited to spacecraft-to-spacecraft tracking 
geometry, solar activity, orbital height and inclination, and local solar times of TDRS and the user spacecraft at 
the time of measurement. Although the ionospheric refraction can also be affected by the seasonal variation, 
this effect was not studied parametrically. 

To study the effects of these parameters, 18 different specially designed circular orbits were investigated using 
ODEAS. These basic spacecraft orbits were constructed by the combination of six different orbital heights 
(350, 550, 750, 950, 1150, and 1350 kilometers) and three different inclinations (28.5, 63.14, and 99.03 de- 
grees). For each basic run scenario, a 24-hour definitive period was simulated using TDRSS two-way range 
and range-rate tracking. The tracking signals were modeled as S-band signals, with a frequency of 2 100 mega- 
hertz, and a data sampling rate of 30 seconds. As shown in Equation (3), the ionospheric refraction correc- 
tion is proportional to the inverse of the signal frequency squared; and, therefore, the results obtained can be 
scaled appropriately for different signal frequencies. For example, the ionospheric refraction correction value 
obtained with a K-band signal would yield a value approximately 50 times smaller than the S-band signal. 
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A measurement was scheduled whenever the user spacecraft s was done to ensure 
the collection of a fairly large sample of tracking data with a variety of tracking geometries. Ionospheric 
refraction corrections were computed for all the spacecraft-to-spacecraft range and range-rate data. The re- 
sults obtained are described below. 

The spacecraft-to-spacecraft tracking geometry can be characterized by the relative positions of the relay 
spacecraft (TDRS), the user spacecraft, and the Earth. In the TDRSS environment, the relay spacecraft is in 
geosynchronous orbit at a height of approximately 35,800 kilometers above the Earth’s surface. Figure 2 
illustrates the two tracking geometries. In Figure 2a, both the relay and the user spacecraft are on the same 
side of the Earth; whereas in Figure 2b, the relay and the user spacecraft are on the opposite sides of the 
Earth. 

The elevation angle of the relay with respect to the user, a , can be defined as the lie-of-sight elevation angle 
of the relay spacecraft as measured from the local horizontal plane at the user. This elevation angle can be 
computed by 

a = /I - 90 degrees ( 6 )  

With this definition, the elevation angle, a ,  assumes a positive value in Figure 2a and a negative value in 
Figure 2b. 

The height of ray path, ho , is the height of a point of closest approach on the ray path. For Figure 2a, ho is 
the same as the user spacecraft orbital height. The central angle, 6 , is defined as the angle between the 
position vectors of TDRS and the user spacecraft, subtended at the center of the Earth. 

It can be seen in Figure 2 that as the elevation angle, a ,  decreases, there is a greater possibility that the ray 
path will traverse a more “diverse” ionosphere, which consists of many different electron density profiles due 
to bigger possibility of variations in latitude, longitude, and local times. Conversely, as the elevation angle 
increases, the ray path encounters the ionosphere with less diversity. Figures 3a and 3b illustrate the average 
ionospheric refraction for range and range-rate data as a function of elevation angle for various orbital heights 
at a 28.5-degree inclination. The ionospheric refraction correction value plotted at a given orbital height at a 
given elevation angle was obtained as an average value in the case of range correction, or as a root-mean- 
square (RMS) value in the case of range-rate correction, from the collection of tracking data taken at that 
specified elevation angle during a 24-hour period. RMS values were used for range-rate data because the 
ionospheric refraction corrections for range-rate data could assume positive and negative values, and the RMS 
can represent the mean magnitude of the correction regardless of sign. 

Figures 4a, 4b and Figures 5a, 5b illustrate the same type of plots for orbital inclinations of 63.14 and 
99.03 degrees. To see the spread of ionospheric refraction correction values obtained at each elevation angle, 
Figures 6a and 6b iIlustrate the maximum, minimum, and average or RMS values of the ionospheric correc- 
tions for a 28.5-degree inclination, 350-kilometer altitude orbit. 

All these figures demonstrate the fact that the ionospheric refraction correction for both range and range-rate 
measurements decreases as the elevation angle increases. The elevation angle dependence is more pro- 
nounced for lower orbital heights (350 and 550 kilometers) and less pronounced for higher altitudes 
(1150 and 1350 kilometers). 

Figures 3 through 5 also illustrate the functional dependence of ionospheric refraction corrections on the 
orbital height. It can be seen from these figures that the magnitude of corrections are generally higher for 
lower orbital heights. At a 350-kiIometer altitude, the average ionospheric refraction corrections for range 
measurements are about 1.5 to 2 times as high as those values observed at a 550-kilometer altitude. As the 
orbital height increases, the correction values become smaller and its dependeue on the orbital height become 
less significant. For the spacecraft orbital heights of 950, 1150, and 1350 kilometers, the corrections are 
found to be in the same neighborhood. 
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Figure 3a. Average Range Ionospheric Correction Versus Elevation Angle for 
a 28.5-Degree inclination for Various Altitudes 
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Figure 3b. RMS Range-Rate lonospheric Correction Versus Elevation Angle for 
a 28.5-Degree Inclination for Various Altitudes 
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Figure 4a. Average Range Ionospheric Correction Versus Elevation Angle for 
a 63.14-Degree Inclination for Various Altitudes 
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Figure 4b. RMS Range-Rate Ionospheric Correction Versus Elevation Angle for 
a 63.14-Degree Inclination for Various Altitudes 
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Figure 5a. Average Range Ionospheric Correction Versus Elevation Angle for 
a 99.03-Degree Inclination for Various Altitudes 
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Figure 5b. RMS Range-Rate Ionospheric Correction Versus Elevation Angle for 
a 99.03-Degree Inclination for Various Altitudes 
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Figure 6a. Minimum, Maximum, and Average Range lonospheric Correction Versus Elevation 
Angle for a 28.5-Degree Inclination and a 350-Kilometer Altitude 
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Figure 6b. Minimum, Maximum, and RMS Range-Rate Ionospheric Correction Versus Elevation 
Angle for a 28.5-Degree Inclination and a 350-Kilometer Altitude * 
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As noted earlier, the upper bound of the ionosphere was set at 3000 kilometers. This choice is somewhat 
arbitrary. Although the contributions from altitudes above 3000 kilometers are not included in the results 
presented in this paper, their magnitudes can be estimated by evaluating the integral of Equation (3) all the 
way to the TDRS altitude. Analyzing these magnitudes obtained for a few sample tracking passes, it was found 
that they could vary significantly according to the altitudes of the user spacecraft. For a spacecraft at an 
altitude of 350 kilometers, for example, the contribution from above 3000 kilometers to the measurement 
correction was, in general, less than 5 percent of the contribution from below 3000 kilometers. However, for 
a spacecraft at 1350 kilometers, the contribution from above 3000 kilometers was found to be as high as 
40 percent of the contribution from below 3000 kilometers. 

olar Times of Measurement 

The ionospheric electron density for any location over the Earth’s surface is also a function of the local solar 
time. This effect has been incorporated in the Bent electron density model. Because of this functional de- 
pendence, it is conceivable that the ionospheric refraction corrections for a particular range or range-rate 
measurement can be dependent on the local solar times of the relay and user spacecraft. For the spacecraft 
orbits studied, the ionospheric refraction correction was found to be affected more significantly by the local 
times of user spacecraft, with maximum corrections occurring around local times of 12 to 16 hours. This effect 
was consistently observed €or all the spacecraft orbits studied. 

Figure 7 shows the average range ionospheric refraction corrections as a function of the local solar time of the 
user spacecraft at the time of measurement. The spacecraft orbits shown are at three different orbital inclina- 
tions-28.5, 63.14, and 99.03 degrees-at a fixed altitude of 350 kilometers. This figure indicates a big in- 
crease in ionospheric refraction correction values around the user spacecraft local times of 12 to 16 hours, 
peaking at approximately 15 hours. The same trend was also observed for RMS range-rate corrections. 

I I I I 
0 5 10 15 20 

Local User Solar Time (Hours) 

for a 350-Kilometer Altitude and Various Inclinations 
Figure 7. Average Range Ionospheric Correction Versus Local User Solar Time 

5 

If this phenomenon manifested by the Bent model closely matches the real ionospheric behavior, this may 
suggest that to effectively exclude the tracking data subject to high ionospheric disturbance, it might also be 
necessary to take into account the local time of the user spacecraft as a data editing criterion, together with the 
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tracking geometry considerations. A data editing criterion based on tracking geometry characterized by the 
height of ray path and the central angle is presently employed in the operational GTDS. In this practice, 
tracking data obtained at a height of ray path below a certain prescribed value and a central angle greater than 
a certain prescribed value are excluded. The prescribed values used are specific to mission requirements. 

To study the effects of solar activity on the ionospheric refraction correction, three sets of solar data were used, 
as summarized in Table 1. F l ,  F2, and F3 represent cases of moderately high, medium, and low solar activi- 
ties, respectively. 

Table 1. Solar Data Use for ~ o n ~ s p ~ e r i c  Refracti~n Sim~lations 

* UNITS = lom2’ WATTS/METER2/HERTZ 

Figures 8 and 9 illustrate the average ionospheric refraction correction of range data as a function of elevation 
angle and solar activity for 350-kilometer and 1350-kilometer altitudes, respectively, at a 63.14-degree 
inclination. It can be seen that the ionospheric refraction correction values increase as the solar activity 
increases. For range corrections as shown in Figure 8, the values for the F1 curve are about two times higher 
than the corresponding F2 curve, and F2 is about two times larger than the corresponding F3 curve. Similar 
trends were also observed for RMS range-rate corrections. 

To study the sensitivity of ionospheric refraction corrections to the daily and 12-month average or mean solar 
flux values, range corrections for two tracking passes, one for a 350-kilometer orbit and one for a 1350-kilome- 
ter orbit, were computed using different daily and mean solar flux values. The daily and mean solar flux values 
were varied in steps of 50 units. Whenever the mean solar flux was changed, the corresponding sunspot 
number was also changed according to an empirical formula that relates the sunspot number to the mean solar 
flux (Reference 3). 

The results are summarized in Table 2. The values in cases 1, 3, and 5 were obtained using a common daily 
solar flux level of 218.9 with different mean solar flux levels. The values in cases 2, 3, and 4 were obtained 
with the same mean solar flux level of 200.6 and different daily solar flux levels. These results indicate that, in 
general, the refraction correction depends more strongly on the mean solar flux than on the daily flux. This 
general trend, however, does not appear to hold for the part of a pass with lower elevation angles. 

2.1.4 Orbital Inclination 

From Figures 3 through 5, it can be determined that the average or RMS values of ionospheric refraction 
obtained at various elevation angles for low-inclination (28.5-degree) orbits tend to be higher than those of 
high-inclination (99.03-degree) orbits. This tendency is found to be more pronounced in the low-altitude 
region (350 kilometers). At the 1350-kilometer altitude, the ionospheric refraction corrections for all three 
orbital inclinations are in the same neighborhood. 

The observed dependence of the measurement refraction corrections on orbital inclination could be, at least 
partially, due to the strong dependence of the maximum electron density ( N, ) and the corresponding height 
(h,) on the latitude. Table 3 presents the values of these two parameters as a function of latitude. Thcse 
results were obtained using the Bent model at a longitude of 318 degrees and a local solar time of 15 hours. 
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Figure 8. Average Range Ionospheric Correction Versus Elevation Angle for a 63.14-Degree 
Inclination, a 350-Kilometer Altitude, and Various Flux Levels 
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Figure 9. Average Range Ionospheric Correction Versus Elevation Angle for a 63.14-Degree 
Inclination, a 1350-Kilometer Altitude, and Various Flux Levels 
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EPOCH: FEBRUARY 1, 1990; ohornos 
ORBIT: 350-KILO ETER ALTITUDE; 28.5-DEGREE JNCLlNATlO 

TIME 
(MINUTES 

FROM EPOCH) 

5 
10 
15 
20 
25 
30 
35 
40 
45 

EPOCH: FEBRUARY 1, 1990; OhOmOs 
ORBIT: 1350-KILOMETER ALTITUDE; 28.5-DEGREE INCLINATION 

TIME 
(MINUTES 

FROM EPOCH) 

ELEVATION 
ANGLE 

(DEGREES) 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

2.6 
16.4 
30.1 
43.3 
54.6 
60.5 
57.4 
47.4 
34.6 
20.9 

CASE 5 

24.42 
5.76 
2.52 
1.73 
1.55 
2.77 
5.12 
3.11 

10.01 

218.9 

250.6 

CASE 1 

0.61 
0.18 
0.10 
0.07 
0.07 
0.07 
0.08 
0.10 
0.12 
0.15 

I DAILY SOLAR FLUX* I 218.9 

12-MONTH MEAN SOLAR FLUX* 150.6 

*SOLAR FLUX UNITS = WATTS/METER2/HERTZ 

RANGE CORRECTIONS (METERS) 

CASE2 CASE3 

0.89 1.09 
0.26 0.29 
0.13 0.13 , 

0.09 0.09 
0.08 0.08 
0.08 0.08 
0.09 0.09 
0.12 0.14 
0.14 0.15 
0.18 0.19 

168.9 I 218.9 

200.6 I 200.6 

268.9 I 218.9 

200.6 I 250.6 

As can be seen from this table, both hm and N, , especially the latter, increase in the lower latitude region. 
The parameter Nm acts as a scale factor for the entire electron density profile, thus affecting the electron 
densities computed in all different height regions. The variation of the maximum electron density height ( h, ) 
can also contribute to an increase in the refraction corrections for orbits with lower inclinations. The values-of 
N m  and hm as a function of latitude were examined for several other longitudes, and all showed the trend 
similar to that described in Table 3. 
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LATITUDE 
(DEGREES) 

88.47 
82.38 
73.69 
61.99 
51.39 
44.31 
34.30 
21.03 
19.38 

382.13 
363.65 
342.92 
325.73 
319.81 
320.52 
328.01 
352.92 
398.08 

N m  
( 1 0 ' O  ELECTRONS/ 

METE*) 

60.708906 
49.976265 
65.968391 

11 8.187695 
170.900019 
192.604224 
201.218013 
2 1 3.455625 
272.91 6559 

LATITUDE 
(DEGREES) 

I 

hm 

-88.40 
-78.17 
-70.16 
-59.07 
-47.15 
-38.04 
-30.12 
-18.44 
-7.19 

379.49 
361.63 
352.95 
346.42 
345 * 39 
349.87 
361.66 
409.45 
464.41 

Nm 
(1  O'O ELECTRONS/ 

 METER^) 

33.860825 
45.700007 
54.5671 74 
79.233256 

124.64548 1 
164.401 967 
196.020009 
215.195575 
170.750405 

NOTES: EPOCH = FEBRUARY 1,  1990 
DAILY SOLAR FLUX = 218.9 ( WATTS/METER~/HERTZ) 
12-MONTH MEAN SOLAR FLUX = 200.6 ( 
LONGITUDE = 318 DEGREES 
LOCAL SOLAR TIME = lSh  

WATTS/METER2/HERTZ) 

2.2 EFFECTS OF NEGLECTING SPACECRAFT-TO-SPACECRAFT IONOSPHERIC 
CTlON ON ORBIT DETERMINATION ACCURACY 

As stated in Section 1, the current operational practice using GTDS ignores the ionospheric refraction effects 
for the spacecraft-to-spacecraft links of TDRSS measurements. It is therefore desirable to know for different 
types of spacecraft missions the magnitude and characteristics of the spacecraft orbit errors that can result by 
ignoring these effects. As the ionospheric refraction effect is functionally dependent upon various parameters 
that influence the electron density, a comprehensive study of this kind would require extensive investigations 
involving combinations of various mission scenarios and various parameters. This section presents the orbit 
determination error analysis results for the routine orbit determination scenario of a GRO-type spacecraft. 

Because the primary interest of the study was the ionospheric refraction effects, the study was limited to 
investigating how ionospheric refraction of spacecraft-to-spacecraft links influences the orbit determination 
accuracy. A detailed orbit analysis investigation for the GRO spacecraft mission using ODEAS can be found in 
Reference 6 .  

2.2.1 Error Analvsis Results 

The GRO spacecraft is scheduled to be launched in late 1990. In this study, the nominal operational orbit of 
the GRO spacecraft was modeled as a near-circular orbit, with an orbital height of 350 kilometers and an 
inclination of 28.5 degrees. The orbital period for this orbit was 91.54 minutes. Routine orbit determination 
of the GRO spacecraft was simulated by processing 30-hour definitive data arcs in which the orbital state of the 
GRO spacecraft and the atmospheric drag scaling factor (el ) were simultaneously estimated together with the 
orbital elements of TDRS-East and TDRS-West. To see the effects of ionospheric refraction on the spacecraft 
orbit errors for different tracking geometries and tracking pass lengths, four tracking scenarios (T1 through T4) 
were simulated; the details of these scenarios are given in Table 4. All four tracking scenarios involved one 
TDRSS tracking pass per GRO revolution, alternating between TDRS-East and TDRS-West. For scenarios T1 
and T2, tracking pass lengths were limited to 5 minutes each; whereas in scenarios T3 and T4, tracking pass 
lengths were limited to 20 minutes each. In scenarios T1 and T3, the tracking measurements are subject to 
relatively high ionospheric refraction effects; whereas in scenarios T2 and T4, the ionospheric refraction effects 
are relatively small. 
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For each of the error analysis simulations, the ionospheric refraction corrections for TDRS-East-to-GRO and 
TDRS-West-to-GRO tracking links were included as considered error sources, with their respective 3 0  errors 
set to be 100 percent of the spacecraft-to-spacecraft ionospheric refraction correction. Error analysis results 
obtained for the four tracking scenarios are summarized in Table 5 .  The contribution from the range and 
range-rate measurements are given separately for spacecraft-to-spacecraft trac 
and TDRS-West relay spacecraft. Total contributions from the range 
the table are obtained by treating these quantities as fully correlated par aximum position errors 
listed are the maximum errors encountered during the 30-hour data arc for each position component error, 
which may not necessarily occur at the same time. 

Error analysis results for scenarios T1 and T2 show that the GRO spacecraft position errors contributed by 
spacecraft-to-spacecraft ionospheric refraction can vary significantly, de ding on the geometry of the track- 
ing measurements included in the orbit estimation process. As shown in Table 4, the number of tracking 
passes and measurements included in T1 and T2 are the same, except that the measurements included in T1 
have substantially lower elevation angles than those of T2 and are therefore subject to higher ionospheric 
disturbance than T2. Because of this, the GRO spacecraft position errors contributed by the spacecraft-to- 
spacecraft ionospheric refraction are found to be substantially higher in T1 than in T2, as shown in Table 5 .  
In scenario Tl ,  the maximum root-sum-square (RSS) position errors contributed by the TDRS-East and 
TDRS-West tracking measurements are 57.82 and 9 1.90 meters respectively; whereas in scenario T2, the same 
position error contributions are only 3.78 and 9.76 meters, respectively. The results suggest that by properly 
selecting the tracking measurements with favorable tracking geometries, the maximum RSS position errors can 
be reduced by as much as 50 to 80 meters. The same trend can be observed by comparison of scenarios T3 
and T4. 

Comparison of scenarios T1 with T3 and T2 with T4 also show the effects of tracking pass lengths on the 
spacecraft position errors. In the tracking scenarios studied, the spacecraft-to-spacecraft ionospheric refraction 
effects on the GRO spacecraft position errors are found to be generally smaller for longer tracking pass lengths. 
It should be noted that in all the simulated cases, the tracking scenarios associated with the longer tracking pass 
lengths also have better tracking geometries. Therefore, the effects observed in the above scenarios may be 
due to the combined effect of longer tracking pass lengths and better geometries. 

To illustrate the relationship between the ionospheric refraction correction versus the resulting spacecraft posi- 
tion errors, Table 6 lists the ionospheric refraction corrections and the corresponding maximum RSS position 
errors contributed separately from the range and range-rate measurements. A general trend can be observed 
from this table indicating that an increase in the average value (for range measurement) or the RMS value (for 
range-rate measurement) of ionospheric refraction correction results in an increase ‘in the maximum RSS posi- 
tion errors. However, this general trend does not hold very well between scenarios T4 and T2, where the 
magnitudes of corrections are small. 

L~SIQNS AND R~CQMMENDATI 

The magnitudes of ionospheric refraction correction for spacecraft-to-spacecraft tracking links can vary de- 
pending upon the various parameters that affect the electron densities. The parameters studied include the 
local solar times of the measurements; solar activity; spacecraft inclination; and the tracking geometry, which is 
characterized by (1) the elevation angle of the TDRS with respect to the TDRS user spacecraft and (2) the 
orbital height. The following general conclusions can be made regarding the spacecraft-to-spacecraft iono- 
spheric refraction: 

0 The ionospheric refraction corrections for both range and range-rate measurements increase with 
the decrease in the elevation angle of the TDRS with respect to the TDRS user spacecraft. This suggests that to 
avoid high ionospheric disturbance in tracking data, data taken at very low elevation angles should be ex- 
cluded. For high spacecraft altitudes (950 kilometers and up), the magnitudes of ionospheric corrections are 
much smaller than those for the lower altitudes, but the overall trend of elevation angle dependence still exists. 

0 The ionospheric refraction correction is found to be a strong function of the local solar time of the 
TDRS user spacecraft at the time of measurement. It was found that measurements taken between 12 to 
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TRACKING* RELAY 
SCENARIO SPACECRAFT 

T1 TDRS-EAST 
T3 TDRS-EAST 
T4 TDRS-EAST 
T2 TDRS-EAST 

T1 TDRS-WEST 
T3 TDRS-WEST 
T4 TDRS-WEST 
T2 TDRS-WEST 

IONOSPHERIC 
CORRECTION 

RMS 
IONOSPHERIC 
CORRECTION 
RANGE RATE 

(MILLIMETERS/ 
SECOND) 

ERROR 
DUE TO 

RANGE RATE 
(METERS) 

98.66 
51.55 
3.95 
2.59 

84.99 96.17 
48.20 21.64 
10.08 
7.15 8.39 

60.09 
21 -93 
2.80 
2.95 

* T1 AND T2 = 5-MINUTE TRACKING PASS PER GRO REVOLUTION, ALTERNATING BETWEEN 
TDRS-EAST AND TDRS-WEST 
20-MINUTE TRACKING PASS PER GRO REVOLUTION, ALTERNATING BETWEEN 
TDRS-EAST AND TDRS-WEST 

T3 AND T4 = 

16 hours of local solar time tend to have significantly higher ionospheric disturbance than those taken at 
different local solar times. If this phenomenon manifested by the Bent model closely matches the real iono- 
spheric behavior, this may suggest a need to take into account the local time of the user spacecraft as a data 
editing criterion, together with the tracking geometry considerations, to effectively exclude the tracking data 
subject to high ionospheric disturbance. A data editing criterion based on tracking geometry, characterized by 
the height of the ray path and the central angle, is presently employed in the operational GTDS. To verify this 
local solar time effect, future studies should include assessing the orbit determination accuracy using real track- 
ing data to determine whether more accurate spacecraft orbits can be realized by using a data editing criterion 
that excludes those tracking data taken at a user spacecraft local solar time around ,15 hours and at very low 
elevation angles. 

0 The ionospheric refraction correction is found to be a strong function of solar activity. For a 
spacecraft orbit at a 350-kilometer altitude and 28 Sdegree inclination, the ionospheric refraction correction 
values obtained at a moderately high solar activity [average solar flux = 200.6, daily solar flux = 218.9 (units = 
lo-'' watts/ meters2/hertz)] can be twice as large as the corrections obtained at a relatively lower solar activity 
[average solar flux = 111.4, daily solar flux = 159.2 (units = lo-'' watts/meters'/hertz)]. It was also found 
that the ionospheric refraction effect is more sensitive to the 12-month average solar flux level than the daily 
solar flux level. 

e The maximum electron density value, N, , as defined on the Bent electron density profile, has a 
strong latitude dependence. It was found that N, values tend to be higher in low latitude (near-equatorial) 
regions than in the high-latitude (polar) regions. It is therefore conceivable that in a particular spacecraft orbit, 
the ionospheric refraction effects may tend to be high if many of the tracking measurements were taken when 
the user spacecraft was near the equatorial region. This may explain why the ionospheric refraction corrections 
observed in the study tend to be generally higher for the low-inclination (28.5-degree) orbits than those of the 
high-inclination (99.03-degree) orbits. 

From the error analysis results of the GRO spacecraft, the following conclusions can be drawn: 

ID The spacecraft position errors contributed by spacecraft-to-spacecraft ionospheric refraction can 
vary significantly, depending on the geometry of the tracking measurements included in the orbit estimation 
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process. In a routine orbit determination involving 30 hours of data with 5 minutes of TD 
GRO revolution, selecting the tracking measurements with favorable tracking geometries can reduce the space- 
craft maximum RSS position errors from 57.82 meters to 3.78 meters (in the case of TDRS-East-to-GRO 
ionospheric refraction contribution) and from 9 1.90 meters to 9.76 meters (in the case of TDRS-West-to-GRO 
ionospheric refraction contribution). 

An increase in the mean value of the ionospheric refraction correction is found to be associated 
with an increase in the maximum RSS position errors. However, this general trend does not hold very well 
where the magnitudes of the ionospheric refraction corrections are small or the geometric quality of the proc- 
essed data is appreciably altered. This general relationship also implies that parameters affecting the mean 
ionospheric refraction values, such as solar activity, will also affect the corresponding spacecraft orbit errors in 
a similar fashion. 
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ABSTRACT 

Operational orbit determination by the Flight Dynamics Division a t  the Goddard 
Space Flight Center has yielded a data base of orbit solutions covering the onset of 
solar cycle 22. Solutions for nine satellites include an estimated drag adjustment 
parameter (el ) determined by the Goddard Trajectory Determination System 
(GTDS). The el is used to evaluate correlations between density variations and 
changes in the following: 10.7-centimeter wavelength solar flux (F10.7).. the geomag- 
netic index Ap , and two exospheric temperatures ( Tc and T m  ) adapted from the 
Jacchia-Roberts atmospheric density model in GTDS. Tc depends on the daily and 
81-day centered mean F10.7; T m  depends on TC and the geomagnetic index Kp 
values. The highest correlations are between density and T m  . Correlations with 
TC and F10.7 are lower by 9 and 10 percent, respectively. For most cases, correla- 
tions with Ap are considerably lower: however, significant correlations with Ap 
were found for some high-inclination, moderate-altitude orbits. 

Results from this analysis enhance the understanding of the drag model and the 
accommodation of atmospheric density variations in the operational orbit determi- 
nation support. The degree of correlation demonstrates the sensitivity of the orbit 
determination process to drag variations and to the input parameters that character- 
ize aspects of the atmospheric density model. To this extent, the degree of correla- 
tion provides a measure of performance for methods of selecting or modeling the 
thermospheric densities using the solar F10.7 and geomagnetic data as input to the 
process. 

*This work was supported by the National Aeronautics and Space Administration (NASA) lGoddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31 500. 
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rbit determination by the Flight Dynamics Division ( DS) of the Cioddard Sp 
) using the Goddard Trajectory Determination System (GTDS) provides routine estimates 

density. This paper uses the atmospheric drag data derived from the estimated atmos- 
pheric density scaling parameters for the following nine satellites: Dynamics Explorer (DE)-1, Earth 
Radiation Budget Satellite (ERBS), Landsat-4 and -5 ,  Nimbus-7, National Oceanic and Atmospheric 
Administration (NOM)-9 and -10, Solar Maximum Mission (SMM), and Solar Mesosphere Explorer 
(SME). The study period extends from January 1, 1988, to August 3 89, and covers the onset of 
solar cycle 22. Each orbit solution is a seven-parameter orbital state r consisting of position and 
velocity vectors and an atmospheric density scaling parameter, el.  is estimated to accommodate 
differences between modeled and actual atmospheric density and corresponding drag effects. Data for 
three of the nine satellites cover the early study period. Data for the other satellites became available 
when drag forces became large enough to provide reliable estimates of el . 
The combined data bases of el solutions are analyzed to evaluate correlations between density variations 
and changes in the following parameters, which are associated with atmospheric density modeling: 
10.7-centimeter (2800 megahertz (MHz)) wavelength solar flux (F10.7), geomagnetic index A,, and two 
exospheric temperatures adapted from the Jacchia-Roberts (JR) 197 1 atmospheric density model as used 
in GTDS (References 1 and 2). The first exospheric temperature, T, , includes the contributions from 
daily F10.7 and a centered 81-day mean, F10.7. The second adjusted exospheric temperature, T, , 
includes the contribution from the 3-hourly geomagnetic index K, . Earlier work included only F10.7 and 
A, correlations with density data estimates for ERBS and SMM (Reference 3). 

When data from several satellite orbits are compared, the effect of orbital geometry, altitude, and orbit 
solution accuracy on density correlations with solar-geomagnetic activity can be assessed. In particular, 
the results offer a method of assessment of the merits of using the Harris-Priester (HP) (References 4 
through 6) or the JR atmospheric density model options available in GTDS without requiring extensive 
reprocessing of the orbit solutions using the JR model. Operational requirements to implement the JR 
model are now being assessed. 

This paper is organized as follows. Section 2 discusses solar and geomagnetic activity, the HP and JR 
density models, and methods of density determination. Section 3 provides the results for each satellite, 
including an overview of the satellite orbit and satellite-specific operational orbit support. Section 4 pro- 
vides conclusions and recommendations for further study. NOTE: Figures are included at the end of the 
text pages. 

2. BACKGROUND AND PROCEDURES 

The equivalent atmospheric densities are derived from the estimated el . The absolute accuracy of this 
density is subject to errors in the spacecraft ballistic coefficient, but the variations in these densities rela- 
tive to each other are expected to be accurate. The analysis is sensitive only to variations in the average 
ballistic coefficient over time intervals of 1 to 5 days, which are expected to be small. 

el variations are caused by variations in atmospheric density driven by solar and geomagnetic activity in 
addition to tracking errors, geopotential modeling errors, spacecraft drag coefficient ( CD) variations, and 
effective cross-sectional area (A) errors. The degree to which the density variations are not correlated 
with the solar and geomagnetic effects is a measure of the influence of these additional factors. 

A brief explanation of solar and geomagnetic parameters and their relationship to atmospheric density for 
the HP and JR models follows. 

2.1 SO~R-GEO~AGNETIC PHENOMENA 

F10.7 is a daily measure of solar activity and is used as an indicator of the intensity of extreme ultraviolet 
(EUV) radiation of the Sun, which heats the thermosphere. The degree of the correlation of F10.7 to 
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EUV flux is high, except for the minimum phase of the 11-year ycle (Reference 7). 
minimum occurred in September 1986, when the monthly mean 0.7 was 68.7 x 

lues for this study were obtained from the National Geophysical 
ysics Division in Boulder, Colorado. 

ata Center of the Solar- 

The 3-hourly geomagnetic index Kp is a quasi-logarithmic measurement of the geomagnetic field activity 
at geomagnetic latitude 50 degrees (deg) (Reference 8). The Kp values used in this study were obtained 
from the International Service of Geomagnetic Indices at the Institut fuer Geophysik, Goettingen, Federal 
Republic of Germany. 

The “daily equivalent planetary amplitude,” A,, is derived by converting Kp values to a linear index and 
averaging over one day (Reference 9). The A, values used in this study were provided by World Data 
Center A for Solar-Terrestrial Physics, National Oceanic and Atmospheric Administration E/GC2, 
325 Broadway, Boulder, Colorado 80303. 

The daily F10.7 is characterized by variations with a period of the 27-day solar rotation and is referred to 
in the literature as the rotational component of the solar flux. The centered 81-day average, F10 .7 ,  is 
associated with clear-disk solar radiance (Reference 10). The geomagnetic indices are characterized by 
short, intense bursts at various intervals. A,, F10.7,  and F10.7 for the 20-month period under study are 
shown in Figure 1. 

2.2 THE HARRIS-PRIESTER DENSITY MODEL 

The modified HP atmospheric density model is a set of 10 tables of atmospheric density versus altitude 
corresponding to ten F10 .7  levels. An atmospheric density scale factor (el ) is estimated in the differen- 
tial correction (DC) solution to accommodate variations relative to the modeled drag using a selected HP 
table. 

The acceleration due to drag, aD, at a point in time, is given by 

where m is the spacecraft mass, v is the spacecraft velocity, and eo is the density computed from the HP 
tables. eo is dependent upon the altitude, z, and the F10.7 HP level, Fi. eo is given by 

where $ is the angle between the spacecraft position and the apex of the bulge, n is an adjustable 
exponent, emin is the minimum density, and emax is the maximum density (References 11 and 12). 
Conventionally, n = 2 is used for equatorial orbits, and n = 6 is used for polar orbits. The average eo is 
calculated by integrating over all $ . 

Using this 0 0  and the el estimated in the orbit solution, an equivalent density, e (ZJ) , can be determined 
by the following equation for each satellite orbit solution. 
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The equivalent densities are calculated at a single P tabulated altitude, ZJ, for each spacecraft that has 
small altitude variations. 

The variation in altitude for each spacecraft over the study period was much less than the atmospheric 
scale height, except for S and DE- 1. To isolate changes in density that were not due to altitude, DE- 1 
and SMM densities were converted back to e1 (Fi), an equivalent e1 , for HP tables 7 and 4, respec- 
tively. The following equation was used for SMM: 

where eo (z, Fi) is determined using exponential scale heights from HP tables. 

2.3 JACCHIA-ROBERTS DENSITY MODEL AND EXOSPHERIC TEMPERATURES 

The Jacchia-Roberts 1971 (JR71) atmospheric density model option in GTDS gives the density at a given 
altitude from the F10.7, F10.7, and K, input data. In the JR71 model, the nighttime minimum global 
exospheric temperature for zero geomagnetic activity (T,) is computed from the daily F10.7 and the 
81-day mean F10.7, as follows (Reference 12): 

T, = 379" + 3.24' F10.7 + 1.3' (F10.7 - F10.7) 

There is an approximate 1-day lag (Reference 13) between solar flux change and a resulting change in 
exospheric temperature. 

For simplicity in this work, a geometrical factor, which varies T, with spacecraft geodetic latitude and the 
solar declination, was not accounted for in determining exospheric temperature T m  . The variation in the 
amplitude of this factor over a season is 30 percent of T, , but it is averaged over many orbits and is not 
tested in the correlations that were much shorter than the seasonal variation. 

The correction to the exospheric temperature for geomagnetic activity is 

ATm = 2 8 O . O  Kp + O O . 0 3  exp (Kp) 

The corrected exospheric temperature used here is 

T, = T, + ATm 

For a 6.7-hour lag in the response to K p  (Reference 12), T, and T m  are illustrated in Figure 2. 

3. DENSITY DATA AND RESULTS 

Tables la and l b  provide background information on the satellites studied. Table la provides the aver- 
age data arc length and the orbital parameters: altitude, eccentricity, and inclination. Table l b  provides 
the GTDS modeling characteristics: CD, A, mass, diurnal bulge model, and the maximum order and 
degree of the Goddard Earth Model (GEM)-9 geopotential model matrix. 

The standard solution tracking data arc length varies by several hours due to the granularity of the track- 
ing schedule. The F10.7, A,, T, , and T m  data were averaged for each satellite over the average tracking 
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spacecraft 

DE-1 

ERBS 

Ladsat-4 

Lgndmt-5 

Nimbus-7 

NOM-9 

NOM- 10 

SMM 

SME 

Average 
Data 

Arc Length 

3 days, 4.40 hours 

5 days, 6.62 hours 
4 days, 6.62 hours 

1 day, 3.09 hours 

1 day, 2.54 hours 

3 days, 8.79 hours 

7 days, 0.00 hour 

7 days, 0.00 hour 

2 days, 7 hours, 
1 day, 7 hours 

2 days, 14.54 hours 

4 7 0  to 23,W 

600 

700 

700 

950 

850 

81 3 

485 to 390 

503 to 482 

:ccentriaiy 

0.62 

0.0005 

0.0003 

0.0003 

0.0009 

0.0015 

0.0014 

0.0002 

0.0002 

lndination 
(deg) 

____. 
89.2 

57. 

98.2 

98.2 

99.2 

99.1 

98.6 

28.5 

97.7 

Table 1 b. GTDS Modeling Characteristics 

Spacecraft 

DE-1 

ERBS 

Landst-4 

Landst-5 

Nimbus-7 

NOM-9 

NOM-1 0 

SMM 

SME 

- 
CD - 
2.3 

2.2 

2.2 

2.2 

2.1 

2.3 

2.3 

2.2 

2.3 - 

A 
(m 2) 

3.05 

4.7 

12.2644 

12.664 

9.5597 

10.79 

10.79 

17.5 

1.129 

(ks) - 
W2.79005 

2116. 

1932.2669 

1943.538 

938.03 

1029.3 

1029.3 

2315.59 

415.5 

arc to be consistent with the density parameters estimated for the tracking arc. Correlation analysis results 
for each spacecraft are presented in the following sections. The correlation coefficients (r) from linear 
regressions are summarized in Table 2. 

3.1 DYNAMICS EXPLORER-I 

RE-1 is unique among the satellites studied because of its high eccentricity orbit. The DE-1 orbit is 
affected by atmospheric drag primarily near perigee. Operational estimation of 61 began on 
November 12, 1988. The equivaient el values were calculated using the HP table 7 and the DE-1 
altitude perigee. These values are plotted versus epoch in Figure 3a. The correlations of these data with 
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Spacecraft 

DE-1 

ERBS 
Landsat-4 

Landsat-5 

Nimbus-7 

NOM-9 

NOM-10 

SMM 

SME 

No. of 
Epochs 
_1_1 

148 

172 
351 
344 

132 

65 

65 

41 2 

234 

Density Correlation Coeff 

T- 

0.50 

0.90 

0.67 

0.70 

0.57 

0.83 

0.84 

0.88 

0.90 

I__ 

ents 

AP 
II__ 

0.58 

0.41 

0.68 

0.68 

0.72 

0.52 

0.55 
0.40 

0.52 

F10.7, T, , T,, and A, are shown in Figures 3b, 3c, 3d, and 3e, respectively. The highest equivalent el 
corresponds to an extreme geomagnetic storm on March 13, 1989. A large increase in T, and T, 
occurred in early December 1988 due to rapidly rising F10.7, evidenced by clumping or gaps in el versus 
temperature in Figures 3c and 3d. The low correlation of el with solar and geophysical parameters 
demonstrates that the measurability of density is small for DE-1. At each perigee passage the satellite 
samples many different altitudes. During the study period the perigee height decreased from 570 to 
470 km while the perifocal latitude decreased from 80-deg N to 20-deg N. Recent operational work has 
shown that a more consistent el is estimated using a 21 x 21 GEM-9 model. An improvement of 0.05 in 
the correlation coefficients for the F10.7, T, , and T, relations occurred when an equivalent el was used 
in place of an equivalent density. The two densities are compared in Figure 3f. 

3.2 EARTH RADIATION BUDGET SATELLITE 

Operational estimates of e1 for ERBS have been made since launch in 1984. Data from launch through 
October 31, 1987, were analyzed in Reference 3. The equivalent densities for ERBS were calculated with 
the HP altitude of 600 km. These are plotted versus epoch in Figure 4a. The correlations of these data 
with F10.7, T, , T,, and A, are illustrated in Figures 4b, 4c, 4d, and 4e, respectively. Except for TAP, 

these correlations are high, with rT, = 0.90. The low A, correlation corresponds to the averaging reduc- 
tion of those short-term phenomena by orbit estimation over long tracking data arcs. Corresponding 
Jacchia 1977 (577) density-temperature models (Reference 14), with a nonlinear curvature similar to that 
in Figure 4d, have a linear correlation coefficient of 0.94. Figure 4d includes the 577 densities corre- 
sponding to the average exospheric temperatures over the ERBS solution arcs. A polynomial fit was used 
to determine the density-temperature relationship in the 577 model at ERBS’s altitude. After converting 
each average temperature to a 577 density, the 577 densities were correlated with the equivalent densities. 
A zero-intercept linear regression of the two densities yielded a scale factor of 2.4 for the 577 densities to 
best match the equivalent densities. The scaled J77 density curve is plotted in Figure 4d. 

FYevious work for low levels of solar activity (October 1984 to October 1987) found rpl,,, = 0.24 and 
TAP = 0.56, using values averaged over the solution days, without time lags. Current F10.7 correlations 
are significantly higher. This is not surprising, since the previous work included data only during the solar 
minimum. The greatly increased density levels allow a far more reliable density estimation. 
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Operational estimates of e1 for Landsat-4 began on July 1, 1988. e equivalent densities were calcu- 
lated using the NP altitude of 700 km. These are plotted versus h in Figure 5a. 
months, el determinations were made only near solar flux peaks. correlations of density with F10.7 , 
T, , Tm, and A, are illustrated in Figures 5b, Sc, 5d, and 5e. Figure 5d includes a 577 density curve, 
described above, with a scale factor of 4.70. The correlations of density with Fl0.7, T, , and T, are 
lower for Landsat-4, with rTm the highest at 0.67. The A, correlation is 0.68, which reflects the high 
inclination orbit sensitivity that is enhanced by the shorter solution arc. Note the improvement in correla- 
tion with T, for the highest density point, corresponding to the March 13, 1989, geomagnetic storm. 

It has been demonstrated that errors in the geopotential model affect the determination of el for 
Landsat-4 (Reference 15). These may contribute to the low Landsat correlation coefficients. An attempt 
to remove these errors for Landsat-4 was made by averaging densities and corresponding solar-geophysical 
parameter values over a 5-day interval, which is near two beat periods of the Landsat orbital resonance 
with 15th-order geopotential harmonics. No change in correlation coefficients was observed. 

The density and correlations plots for Landsat-5 are not pictured. They are nearly identical to Landsat-4. 
Landsat-5 equivalent densities are plotted versus Landsat-4 equivalent densities in Figure 5 f. 

3.4 NIMBUS-7 

Operational estimates of el for Nimbus-7 began in October 1988. The equivalent density data for Nim- 
bus-7 were calculated using the HP altitude of 950 km. These are plotted against epoch in Figure 6a. 
The correlations of these densities with F10.7,  T, , T m ,  and Ap are illustrated in Figures 6b, 6c, 6d, and 
6e, respectively. The correlations are low for Nimbus-7, with TAP the highest at 0.72. This highest rAp 
corresponds to the highest altitude, and high inclination. The low value of rTm may be due to the trunca- 
tion of the geopotential model but also indicates that density is less measurable at that altitude. 

3.5 NOAA-9 AND -10 

Operational estimates of el for NOAA-9 and -10 have been performed since June 1988. The equivalent 
densities for NOAA-9 and -10 were calculated using HP altitudes of 850 and 800 km, respectively. These 
are plotted versus epoch in Figures 7a. The correlations of these densities with Fl0.7, T, , T,, and A, 
are illustrated in Figures 7b, 7c, 7d, and 7e. The correlations of density to F10.7, T, , and T m  for 
NOAA-9 and -10 are high, with rTm = 0.83 and 0.84, respectively. This correlation is more pronounced 
than that for Landsat-4 and Landsat-5 described in a previous section. Landsat-4 and Landsat-5 are at 
lower altitudes and use shorter tracking data arcs. This result demonstrates that drag perturbations are 
better measured using long tracking data arcs. Lower rAp for these spacecraft are a result of an increased 
tracking arc length. NOAA-9 density is plotted versus NOAA-10 density in Figure 7f. 

3.6 SOLAR MAXIMUM MISSION 

SMM was launched February 14, 1980, and reentered on December 2, 1989. Daily orbit solutions were 
performed after January 27, 1989. Before that, orbit solutions were performed every other day. The 
equivalent el relative to HP table 4 (to remove altitude-dependent variations) are illustrated in Fig- 
ure 8a. The correlations of el with F10.7, T, , Tm, and A, are illustrated in Figures 8b, 8c, 8d, and 8e, 
respectively. The correlations of density to F10.7, T, , and Tm are high for SMM, with rT, = 0.88 being 
the highest. Thus, the acceleration due to drag is dominating the solutions, as expected. This lowest rAp 
corresponds to the lowest altitude and inclination of the group. Previous results from launch to October 
1987 were comparable to current results, with = 0.86 and TAP = 0.25 (Reference 3). 

3.7 SOLAR MESOSPHERE EXPLORER 

Operational estimates of e1 were performed for SME until contact with the spacecraft was*lost on 
April 14, 1989. The equivalent densities for SME were calculated using the HP altitude of 500 km. 
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These are plotted versus epoch in Figure 9a. The correlations of density to F10.7, Tc , T m ,  and A, are 
shown in Figures 9b, 9c, 9d, and 9e, respectively. The correlations of the data with F10.7, T, , and T, 

E, with rTm = 0.90 being the highest. SME’s low altitude and polar orbit thus cause more 
sensitivity to solar and geomagnetic activity, respectively. The low rAp corresponds to low altitude and a 
moderate tracking data arc length. 

* 

The operational data base of estimated el values for nearly 2 years of orbit solutions has been presented. 
Correlations of estimated atmospheric density with solar and geomagnetic activity measurements have 
been evaluated. The highest correlations were with the exospheric temperature T m ,  adapted from the 
JR71 model. T m  includes a dependence on the daily F10.7, 81-day mean Fz0.7, and on 3-hourly Kp 
values. Lower altitude spacecraft (ERBS, SME, and SMM) densities correlate best with T,, T, , and 
F10.7, due to the larger drag at lower altitudes. At higher altitudes, longer arc solutions had correlations 
nearly as high as the low-altitude solutions. The correlation of density with T m  in each case is discernibly 
higher than with Tc or F10.7, showing that the K, correction improves the correlations more than does 
the Flo., component. 

A, affects estimated density more at high inclinations and high altitudes than it does at low inclinations 
and low altitudes. Shorter arcs are more sensitive to A,. The degree of correlation with A, is highest 
during severe geomagnetic storm conditions. A,, which accounts for the largest deviations in the T, and 
the F10.7 correlations, generally has a low correlation with density, except for Nimbus-7 and the Landsats. 

Lack of higher correlations for the Landsats may be a result of short arc lengths or orbit modeling errors 
due to resonance with geopotential harmonic coefficients of the 15th order and degree. The low correla- 
tions for DE-1 arise because its orbit solution is the least affected by atmospheric drag. 

Jacchia-Roberts modeling of exospheric temperature T, is a better monitor of variations in atmospheric 
density than T, , Fl0.7, or A,. el estimates using the HP model reflect the additional physical processes 
that are part of the JR model but are not included in the HP model. The correlations of density with 
solar-geomagnetic activity shown in this paper can be used to improve the use of the HP model in the 
predictive mode. 

This paper extends the work begun in Reference 3. A large amount of data for SME from launch in 1981 
to January 1988 has not been used. Other data during the previous solar maximum also exists for 
Landsat-4 and Nimbus-7. el estimations for most satellites were suspended during the solar minimum. 
Data continue to be accumulated during solar cycle 22. We recommend that these data be included in 
similar future analysis. 

The estimation of density from satellite data is a valuable extension of operational orbit determination. 
The correlations evaluated here provide only a survey of the information available. Higher resolution 
studies concentrating on measurements of the atmospheric response time to various solar-geophysical 
stimuli are possible. Archived tracking data can be used to obtain density estimates over shorter or longer 
time intervals. 
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Procedures for inimi~ing t igb Solar Activity 
te Tracking Generation" 

Gordon D. Bredvik 

ABSTRACT 

We are currently experiencing a period of high solar radiation 
combined with wide short-term fluctuations in the radiation. The 
short-term fluctuations, especially when combined with highly 
energetic solar flares, can adversely affect the mission of U.S. 
Space Commandls Space Surveillance Center (SSC) which catalogs and 
tracks the satellites in orbit around the earth. 

Rapidly increasing levels of solar electromagnetic and/or 
particle radiation (solar wind) causes atmospheric warming, which, 
in turn, causes the upper-most portions of the atmosphere to expand 
outward, into the regime of low altitude satellites. The increased 
drag on satellites from this expansion can cause large, unmodeled, 
in-track displacements, thus undermining the SSC's ability to track 
and predict satellite position. 

On 13 March 1989, high solar radiation levels, combined with 
a high-energy solar flare, caused an exceptional amount of short- 
term atmospheric warming. The SSC temporarily lost track of over 
1300 low altitude satellites--nearly half of the low altitude 
satellite population. Observational data on satellites that became 
lost during the days following the 13 March Itsolar event" was 
analyzed and compared with the satellites' last element set prior 
to the event (referred to as a geomagnetic storm ,because of the 
large increase in magnetic flux in the upper atmosphere). The 
analysis led to a set of procedures for reducing the impact of 
future geomagnetic storms. These procedures adjust selected 
software limit parameters in the differential correction of element 
sets and in the observation association process and must be 
manually initiated at the onset of a geomagnetic storm. Sensor 
tasking procedures must be adjusted to ensure that a minimum of 
four observations per day are received for low altitude satellites. 
These procedures have been implemented and, thus far, appear to be 
successful in minimizing the effect of subsequent geomagnetic 
storms on satellite tracking and ephemeris computation. 

Introduction 

On 13 March 1989, one of the stations which report three-hourly 
values of geomagnetic flux (Ap), Fredricksburg, Virginia, reported 
a level of flux averaged over all eight three-hourly measurements 
which was the highest recorded value since 1960 (Reference 3). 
This major geomagnetic storm was believed to be linked to a very 
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strong solar flare observed on the surface of the sun three days 
earlier, on 1 was pointed almost directly at Earth, 
Also on 13 er strong flare occurred; the x-ray 
radiation from this flare, classified as an x-level, or highest 
energy-level flare, undoubtedly contributed to the intensity of the 
geomagnetic storm alreadg in progress. Additional x-level flares 
occurring on the 14th, 16 , and 17th of March extended the duration 
and effects of the storm, which included dramatic displays of the 
aurora borealis as far south as the Caribbean (Reference 1). 
Other, much publicized effects of the storm included disruption of 
shortwave radio communications, power outages such as the one which 
blacked out parts of Montreal and the province of Quebec for as 
long as nine hours, and the spurious opening and closing of 
automatic garage doors (Reference 2). The storm had an even more 
dramatic effect on US SPACECOM's Space Surveillance Center ( S S C ) ,  
which lost track of over 1300 low altitude satellites--over half 
of the low altitude satellite population. Several days of 
intensive around-the-clock manual analysis effort was required to 
"catch-up" with the lost satellites and reduce the " l o s t  list" to 
a marginal level. Several more weeks of manual effort was required 
to reduce the list back to nominal levels. 

Rapid changes in solar radiation, such as occurred on 13-17 March, 
1989, produce large unmodeled drag effects on low altitude 
satellites and can defeat automatic observation processing and 
element set maintenance. Prediction accuracy is thereby degraded, 
thus causing problems in identifying and tracking low altitude 
satellites. 

Analysis of satellite observations and the SSC's observation 
processing during and after the March Event led to a set of 
software procedures for minimizing the effects of future such 
events (large changes in solar radiation) on the SSC.  A summary 
of the analysis and a description of the procedures themselves 
follows, preceded by a brief discussion of the effects of changes 
in solar radiation on the orbits of low altitude satellites. 

Effects of Solar Radiation on Earth's Atmosphere and Low Altitude 
Satellites 

Solar radiation warms the Earth's upper (tenuous) atmosphere 
through two primary effects: photoionization, caused by 
electromagnetic radiation, and ionization caused by collisions 
between solar wind particles (mostly electrons and protons), and 
air molecules. Increases in solar radiation increase atmospheric 
warming, which in turn causes the tenuous atmosphere to expand 
outward. This expansion increases atmospheric density in the realm 
of low altitude satellites, producing increased drag. Conversely, 
reductions in solar radiation cause the tenuous atmosphere to 
contract, thus reducing drag on low altitude satellites. 
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The SSC measures the amount of drag recently encountered by low 
altitude satellites and assumes this value remains constant as it 
predicts future satellite 
rule, such as 
special pert 
measurements of solar radiation are incorporated in ephemeris 
prediction). If changes in drag are gradual and drag measurements 
are taken frequently enough, the assumption of constant drag 
provides satisfactory accuracy. 
in solar radi ion produce s 
atmospheric dr measurement o 
what is actually being experienced, and orbit prediction accuracy 
can deteriorate. 

There are both long and shart-term variations in solar radiation. 
The 11-year solar cycle is an example of long-term variation. A 
solar flare, which can last from minutes to hours, is an example 
of a short-term variation. Another example of short term variation 
is the fluctuation in total solar radiation that occurs during the 
peaks in the eleven-year cycle: these fluctuations can run their 
course in as little as a few days. The SSC's method of satellite 
drag prediction easily accommodates long-term fluctuations in solar 
radiation. However, solar conditions such as those which occurred 
10-17 March, 1989, in which the solar wind from a major flare 
arrived at the earth at the same time that a peak in the short- 
term fluctuation in total radiation was occurring, can cause drag 
to change significantly in a matter of half a day or less. For 
example, a spike in Ap, such as occurred in 10-17 March 1989, can 
cause a 45 nm displacement in a near earth satellite's predicted 
position in just 12 hours (perigee = 185 km). It was this rapid 
increase in drag on low altitude satellites (generally, satellites 
with periods less than 110 minutes) which caused the SSC to 
temporarily lose track of over 1300 satellites. 

Overview of the SSC's Satellite Observation Processins and 
Satellite Element Set Maintenance Sesments 

The SSC maintains the element sets of nearly 7000 satellites in a 
file called the SATF. The element sets are updated each time 
observations are received through a process called differential 
correction, similar to a Kalman filter or, in effect, a seven 
dimensional least squares fit. A complete differential correction 
(DC) is not performed each time an observation is received; 
instead, a simpler ttsequentialBt DC is performed until a preset 
period of time expires, at which time a full DC is performed using 
all of the observations received during a period of time referred 
to as the Length of Update Interval (LUPI). The LUPI varies from 
5 to 14 days for low altitude satellites, depending on the apogee 
and perigee heights of their orbits. The sequential DC permits 
only relatively small changes to the satellite's element set but 
has the advantage that it is much faster than a full DC, since it 
does not attempt to do a "least squarest8 fit of all LUPI 

191 



a minimum of seven observations. 

Element sets from the SATF are periodically transmitted to 

predicted positions of the satellites using the latest element set 
received from the SSC. If the comparison is within established 
association criteria, the sensor will tag the observation with the 
requested satellite number and send it to the SSC as a routine 
observation. If it does not meet the association criteria, the 
sensor will tag it as an Unknown Object (UO) and send it to the SSC 
tagged with a 9XXXX number in place of the satellite number- The 
processing of UO observations within the SSC is much more tedious 
and time consuming because they have to be compared against every 
satellite in the SATF file. 

Deterioration in the Observation Processins and Element Set 
Maintenance Sements durins the March 1989 Solar Event 

Prior to the Solar Event of March 13-17, 1989, Air Force Space 
Command (AFSPACECOM) had anticipated that problems might be 
encountered during the upcoming peak in the solar cycle and had 
tasked Kaman Sciences (on contract to maintain the SSC software) 
to examine ways to minimize the effects of changing solar radiation 
on the SSC’s mission of satellite tracking and ephemeris 
prediction. Thus, at Kamanls request, satellite,obsewation data 
taken before, during, and after the March Solar Event was saved for 
analysis. Using this data, Raman recreated the March Solar Event 
scenario in AFSPACECOMls Off-Site Test Facility using computers and 
software similar to the SSC’s. The analysis showed that 
deterioration occurred in three chronological phases. 

Phase 1. During the initial phase, low altitude satellites 
began reflecting the effects of the increased drag, caused by 
the solar flare-induced geomagnetic storm, through relatively 
large differences between their observed and predicted 
positions. Although still within SSC and sensor association 
limits, the magnitude of the difference caused the satellites 
to fail sequential DC updates or fail the SSC’s internal 
accuracy check; they were then scheduled for a full DC update. 
During normal periods, this process is able to llcatchll and 
update delinquent element sets before they degrade further. 
However, during this solar event, the full DC typically either 
rejected the latest observations because they were too far 
from *‘nominal8”, or, when too many recent observations were 
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available to i In either 
th the new 

drag and mean 
the full DC 

could not meet convergence criteria, or both, The convergence 
criteria could not be met because the disparity between the 
old (before flare) and new (post flare) observations prevented 
an acceptable @@f itf8. 

Phase 1 - Suaaested Fixes. To correct the problems in this 
phase, the following steps suggested themselves. 

0 Reduce LUPI. If the Length of Update Interval (LUPI) 
were reduced to the point where most or all of the 
observations to be used in the DC update were new (post 
flare), then the DC would not be permitted to ignore the 
post flare observations. Further, convergence criteria 
could be achieved since the preponderance of the 
observations were post flare. Testing showed that 
convergence could be achieved with a LUPI of three days 
in nearly every case. Any further reduction greatly 
increased the likelihood that less than the minimum 
number of observations (seven) would be available for the 
full DC. 

0 Increase Parameter Chanqe Limits for Full DC. To prevent 
full DCs from failing because drag and mean motion 
changes exceeded normal limits, these limits were 
increased. Typically, the effects of the increase or 
decrease in satellite drag caused by changes in solar 
radiation are in-track. For example, the effect of 
increased drag is to drop the satellite to- a lower orbit, 
thus reducing the semi-major axis of the orbit and 
increasing mean motion. Other orbit parameters will 
remain largely unchanged. The orbit plane will remain 
the same, and only very slight changes in altitude and 
eccentricity will occur. To the spacetrack sensor, the 
orbit will appear the same, except the satellite will be 
ahead of its predicted position (case of increased drag), 
or behind its predicted position (case of decreased 
drag). 

Thus, during periods of high solar activity, the full DC 
should be permitted to accept wider changes in drag and 
the parameter which describes in-track motion, mean 
motion (n, revolutions per day). Testing indicated that 
the limit to changes in drag should be increased by a 
factor of ten and the limit for changes in mean motion 
increased by a factor of six. 
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0 
reased to 

below the minimum of seven. To 
failing because of a lack of 
observations, and to maintain an acceptable level of 
accuracy in the full DC, sensor tasking must be increased 
to ensure that a minimum of four observations per day are 
received for all low itude 
higher number of obs tions 
could approach that of normal solar conditions with 
normal LUPI values. 

Phase 2. During Phase 2, the satellite element sets were so 
inaccurate that the SSC could no longer associate routine 
observations with their element sets. Duringthis phase, many 
of the sensors were still able to associate the observations 
with the drag-displaced satellites because the sensors have 
considerablywider association criteriathan the SSC. In this 
phase, the SSC typically detags properly tagged routine 
observations and places them in an Unassociated Observations 
File as unknown observations. 

Phase 2 - Sucmested Fix: Increase In-Track Multiplier. This 
problem can be corrected by increasing the association 
criteria of the SSC to equal that of the sensors in the in- 
track direction. Analysis showed that if the in-track 
association multiplier were doubled, i.e. increased from 3 to 
6 for low altitude satellites, the SSC’s in-track association 
criteria would approximate that of the Eglin phased array 
sensor. (Association criteria is not the same for every 
spacetrack sensor. Eglin was selected because, as a dedicated 
spacetrack sensor, it provides more observations than any 
other phased array sensor). 

Phase 3 .  During Phase 3 ,  the element sets are so old that 
neither the SSC nor the spacetrack sensors can associate the 
observations with the drag-displaced satellites. Thus, all 
of the observations on these satellites are tagged as Unknown 
Objects by the sensors. When they arrive at the S S C ,  they 
eventually wind up in the Unassociated Observations File. At 
this point, trained Orbital Analysts must manually retrieve 
the observations from this file and attempt to associate them 
with element sets in the SATF using various software tools 
currently available. This process is very tedious and time 
consuming and greatly increases CPU usage. However, this 
intensive manual interaction was necessary 24 hours a day for 
several days after the March Solar Event. Once this phase is 
reached, there is no known method for enhancing the manual 
recovery processes already known to SSC analysts and crew 
personnel. The objective of the fixes recommended in the two 
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revious phases is to prevent Phase 3 from ever being reached. 

Event 

During the three phases described above, post-event analysis 
revealed that the percentage of observations that were tagged as 
Unknown Objects increased from 18% to over 40%; satellite catalog 
accuracy dropped drastically; the success rate for full DCs dropped 
sharply; total observation flow rate incre d dramatically; CPU 
usage rose to the point of saturation; and, as was previously 
mentioned, the satellite "lost list" increased to over 1300 
satellites. The normal level for this list is below 100 
satellites. 

Summary of Recommended Software Procedures 

The following procedures were recommended for implementation in the 
SSC.  They apply to low altitude satellites (non-payloads) with 
periods less than 110 minutes: 

1. Increase spacetrack sensor tasking to ensure a minimum 
Maintain this tasking flow of four observations per day. 

until solar maximum subsides in late 1994. 

2. When Ap rises over 100, or a sharp change in F,, ,(solar 
radiation measured at 10.7 cm wavelength, in units of 

watts/M2/Hertz) occurs, implement the following 
steps: 

a) Decrease LUPI to three days; 

b) Increase the in-track multiplier for'each satellite 
to 6 ;  

c) Increase DC change limit multiplier for drag to 10; 

d) Increase the DC change limit multiplier for mean 
motion to 6. 

Return the above parameters to normal approximately three 
days after solar activity returns to normal. 

Conclusion 

The software procedures described in this paper have been adopted 
by USSPACECOM's Space Surveillance Center (SSC) as standard 
operating procedures during periods of high solar activity since 
late June, 1989. Their objectives are to maintain the satellite 
"lost listt1, the Unknown Object (UO) rate, and CPU (Central 
Processing Unit) usage at near normal levels during such periods. 
Thus far, these objectives have been achieved. 
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ABSTRACT 

The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude 
profile for Freedom. The process for determining an altiiude profile incorporates several factors such as where the 
Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist 
causing decay. 

The altiiude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy 
directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space 
Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the 
Space Station Program. 

Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude 
strategy in turn has emphasized a different consideration, examples include a constant Space Shuttle rendezvous 
altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or 
lifetime altitudes to provide a safety buffer to loss of control conditions. 

Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery 
optimization. Since propellant is counted against Spcae Shuttle payload-to-orbt capacity, lowering the rendezvous 
altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This 
altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected 
worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation 
levels will define upper altiiude constraints. 

This paper will discuss the evolution of past and current SSF altitude strategies and the development of a new 
altiude strategy which focuses on operational issues as opposed to design. 

MDSSC- VICES DIVISION ~CDONNELL DO~GLAS 
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roductive utilization of the Space Station 
(SSF) will depend on a careful blend of many operational 
factors. One of the most influential of these factors is 
to determine what operational altitudes SSF should fly. 
This paper discusses the current program altitude 
strategy used for system design and introduces 
modifications to this strategy intended to transition 
altitude related considerations into the operational era. 

The organization of the remaining portion of this paper 
is as follows: Section II familiarizes the reader with the 
background necessary for a basic understanding of 
SSF altitude strategies. Section 111 presents a 
historical perspective of SSF altitude strategy 
evolution. The primary drivers as well as advantages 
and disadvantages of each strategy are discussed. 
Section IV presents the current program altitude 
strategy used to design and size systems. Section V 
discusses considerations for an operational altitude 
strategy. Only through careful evaluation of such 
considerations can an altitude strategy be developed 
which optimizes the key performance parameters. 
Finally, Section VI presents conclusions regarding the 
operational altitude strategy and future altitude work. 

II BACKGROUND 

The term altitude strategy is used throughout this 
paper and must be defined at this point. An altitude 
strategy refers to a set of guidelines and assumptions 
necessary to determine where SSF will operate. 
Altitude planners will use the altitude strategy to 
generate a set of lower (Space Shuttle/SSF 
rendezvous) and upper (reboost) altitudes. 
Specifically, the guidelines presented in the altitude 
strategy will provide a methodology for computing both 
lower and upper altitudes while the assumptions provide 
the necessary conditions to perform the analysis. From 
the altitude strategy, mission planners can estimate 
Space Shuttle delivery capability for manifest planning 
and reboost requirements for propulsion system sizing 
and resupply. 

Currently, the lower (rendezvous) altitude is 
constrained by lifetime to a loss of control altitude. At 
the loss of control altitude (assumed to be 150 nmi [278 
km]), the atmospheric torques would quickly overwhelm 
the SSF control system, making rescue impossible and 
catastrophic re-entry inevitable. This lifetime altitude 
was chosen to give the SSF Program adequate 
response time (90 days) in case of a total propulsion 
system failure. Thus, the lowest allowable altitude at 
which SSF may operate is defined as 90 days of decay 
to 150 nmi and is herein referred to as the lifetime 
altitude. System designers use the lifetime altitude 
as a design point since it represents the highest 
atmospheric densities the SSF will encounter. During 
the operational era, SSf altitude planners will choose 
rendezvous altitudes based on numerous factors. 
These factors include SSF safety, life cycle costs, 
delivery system utilization, radiation limits, mission 
planning, orbital debris density, mission requirements, 
and launch window considerations. Even after 

s from the lifetime 
able, yet expe~ed, 
slips or atmospheric 

The upper (reboost) altitudes are determined from the 
rendezvous altitudes and the Space Shuttle flight 
schedule. The SSF will reboost to an altitude such that 
at the end of the flight interval, SSF will have decayed 
down to the chosen rendezvous altitude by the next 
planned Space Shuttle visit. Figure 1 depicts a 
segment of an altitude profile. It is assumed SSF will 
reboost as soon as operationally possible after Space 
Shuttle departure to ensure Space ShuttWSSF 
rendezvous at the lowest point possible, thus 
maximizing Space Shuttle delivery capability. 

Reboost 
Altitude 

a! 

A A 
Flight Interval -f 

Figure 1: Space Shuttle/SSF Rendezvous and SSF 
Reboost Profile 

Determining both the rendezvous and reboost SSF 
operating altitudes is dependent on SSF rate of decay 
for a specified period of time, the Space Shuttle flight 
interval. The rate of decay is primarily tied to two 
parameters: the atmospheric density and the ballistic 
number (BN, characterizing a vehicle's resistance to 
orbtal decay). 

Atmospheric Density and Solar Cycle 
PredictiQns 

Density is the key atmospheric parameter used by 
trajectory analysis programs and represents the 
greatest uncertainty for altitude planners. The rate of 
vehicle altitude decay is proportional to the 
atmospheric density and inversely proportional to the 
BN: 
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e h is the SSF altitude. p is the atmospheric 
ity as a function of h, r is t 

earth, and C is a co 
calculations are based 
sun, which varies over an eleven year solar cycle. 
During peak solar energy output, the Earth’s 
atmosphere expands outward, similar to a balloon when 
heated. Likewise, during minimum solar energy output, 
the atmosphere contracts. The net result is that any 
vehicle maintaining a relatively 
experiences widely varying density I 
cycle. 

There are numerous methodologies available for 
determining atmospheric density. The model accepted 
by the SSF Program is the Jacchla 1970 
atmospheric model [Reference 1). This model 
primarily uses two solar parameters to calculate 
density, solar flux (F10.7) and geomagnetic index (A ). 
Given the variation of both measurements over a so P ar 
cycle, the Jacchia atmosphere model will predict the 
atmospheric density for any given date and orbital 
position (altitude, latitude, and longitude). 

Predictions for both F10.7 and Ap are provided by the 
Mission Analysis Division at the Marshall Space Flight 
Center (MSFC) (Reference 2). Predictions for both 
mean (statistically, the actual value should be below 
the predicted value 50% of the time) and +20 
(statistically, the actual value should be below the 
predicted value 97.7% of the time) atmospheres are 
provided by MSFC and are shown in Figure 2. 
Generally, the +20 atmospheric predictions are 
considered conservative, used mainly during system 
sizing and critical operational periods such as 
assembly. The mean atmospheric predictions are used 
when estimating resupplyheturn requirements during 
nominal SSF operations after assembly complete (AC). 
Solar cycle predictions have been normalized to an 1 1 - 
year cycle. Actual past solar cycles have ranged from 
9 to 13 years. Because actual F10.7 and Apvalues 

k 
s o l . .  , , I , I , ,  , , 
am am H)I am ms ana ani 

YEAR 

Figure 2: MSFC Solar Flux Predictions 

the following relationship: 

where Area equals the area exposed in the direction of 
motion(+xLvLH), and cd equals 2.3 (a typical drag 
coefficient for orbiting spacecraft). 

The exposed area in the +XLVLH direction varies over an 
orbit due to articulating elements such as the solar 
arrays and thermal radiators. The exposed area also 
varies with SSF attitude. While torque equilibrium 
attitudes are maintained, the exposed area varies over 
an orbit since these attitudes are adjusted to account 
for atmospheric density changes. Therefore. even the 
best predictions for BN are an average for one orbit. 
During assembly, the BN varies significantly as SSF 
elements are added to the growing configuration. This 
fact produces uncertainty in determining SSF orbit 
lifetimes and precise rendezvous altitudes. 

Altitude Strategies 

There are four basic approaches to defining 
rendezvous altitudes as part of an altitude strategy. 
Each approach is centered around an operational 
preference considered to be of paramount importance 
(i.e., planning simplicity, disturbance levels, safety, or 
life cycle costs). Development of an operational 
altitude strategy will consider both the virtues and 
failings of each approach. 

1. Constant altltude maintenance requires 
varying the magnitude of the reboost with 
changing density levels over the course of a solar 
cycle. A constant rendezvous altitude has an 
obvious benefit, i.e., mission planning simplicity. 
Design of standard Space Shuttle rendezvous 
profiles and long range payload-to-orbit estimates 
for manifest planning are definite advantages. 
However, the rendezvous altitude selected must 
not violate lifetime considerations at any time 
during the solar cycle. This forces the altitude 
selection to be based on predicted conditions at 
the solar cycle peak. The solar cycle peak 
represents a relatively small segment of the entire 
solar cycle, lasting only 6 to 18 months. At off- 
peak times during the solar cycle, the rendezvous 
altitudes are considerably higher than dictated by 
lifetime considerations, thus representing a 
Space Shuttle delivery penalty. Therefore, a 
constant rendezvous altitude profile trades Space 
Shuttle payload-to-orbit capability for operational 
planning simplicity. 
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lowering rendez 
atmosphere contracts. In this way, Space Shuttle 

For the constant pg altitude strategy, each Space 
ShuttleBSF rendezvous occurs at the same 
atmospheric pg level or decay rate. Therefore, 
the decay rate varies little over the solar cycle. 
Since both the rendezvous and reboost altitudes 
are tied to decay, any change in parameters which 
influences decay, such as the BN or atmospheric 
conditions, will cause the entire altitude profile to 
be biased, but result in relatively constant SSF 
propellant requirements. This aspect of the 
constant pg altiude strategy simplifies the design 
of the propulsion system and propellant resupply 
planning since requirements are not affected by 
major changes in SSF configuration or 
atmospheric predictions. 

This approach has the apparent benefit of 
providing users with a maximum expected pg 
environment during nominal operations (except 
during planned perturbations such as Space 
Shuttle docking and SSF reboost). Although this 
strategy was accepted by the SSF Program for 
many years, the basic premise is very misleading. 
The specified pg limits the aerodynamic torques *. Gravity gradient torques are considerably 
higher, as much as an order of magnitude within 
the laboratory modules. Gravity gradient torques 
vary with distance from the SSF center of gravity 
(CG). The farther from the CG, the greater the 
gravity gradient torque. Only at the CG are €he 
gravity gradient torques equal to zero and the 
aerodynamic torques alone determine the overall 
SSF pg environment. Since few, if any, 
experiments could be located at the CG, users 
should no! assume maximum disturbance levels 
are limited by attitude. 

3. Constant lifetime altitude maintenance sets 
rendezvous altitudes at the minimum allowable 
lifetime level. This approach attempts to 
maximize the Space Shuttle payload-to-orbit 
capability by rendezvousing as low as possible. 
There are two major drawbacks to this approach. 
First, there is no altitude margin for unplanned or 
unexpected events such as a Space Shuttle 
launch slip or atmospheric worsening. Second, 
any change to SSF BN or atmospheric predictions 
will significantly change previous estimates for 
Space Shuttle payload-to-orbit and propellant 
requirements. The rendezvous altitudes are 

4. Opt imala l  nance sets the 
rendezvous a which maximizes 
net payload-to-orbit (total Space Shuttle delivery 
capacity minus SSF reboost propellant 
requirements). Both the reboost propellant usage 
and Space Shuttle delivery capability are directly 
related to altitude. The lower the Space Shuttle 
rendezvous with SSF, the more Space Shuttle can 
deliver to orbii (a rule of thumb is an additional 100 
Ibmhmi). However, the lower SSF operates, the 
more propellant required for reboost since the 
atmosphere is more dense, thereby causing 
greater decay. The altitude which maximizes 
Space Shuttle net payload-to-orbit is called the 
optlmal (optimum) altitude (shown in Figure 
3). The optimal altitude defines the altitude at 
which flying lower would cause more additional 
propellant to be used than gained in Space Shuttle 
payload-to-orbit, and flying higher would cause 
more Space Shuttle payload-to-orbit lost than 
would be saved in reduced propellant needs. 

= SSF Reboost Prop 
= Net Payload to Orbit A 

~ E N D ~ O W S  A ~ ~ T W D E  (nmi) 
Figure 3: Optimal Altitude Definition 

An altitude strategy based on optimal attitudes 
has the advantage of being relatively insensitive 
to changes in configuration and atmospheric 
predictions. Although these changes will cause 
the optimal point to move, the resultant loss in 
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The SSF altitude strategy has evolved with program 
maturity over the past several years. Beginning simply 
with a constant altitude strategy ear@ in Phase B, the 
altitude strategy has evolved to its present state where 
it is in transition from a system design emphasis to an 
operational emphasis. Although this process of change 
appears simple enough, it has been a long and arduous 
road. As the SSF Program evolved, various altitude 
related issues were rearranged in relative importance. 
Each priority change represented a new altitude 
philosophy or strategy. To date, altitude strategies 
have been used to identify operational envelopes for 
system design. Although these altitude strategies 
have been used as a basis for operational cost studies, 
it is understood that these altitude strategies have not 
adequately addressed operational issues which will 
ultimately drive the operational altitudes. A brief 
description of each altitude strategy as they evolved 
from early Phase 5 concept studies to the present is 
provided below. 

t Rendezvous Altitude 

Early Phase 5 rendezvous altitudes for the SSF were 
set at a constant 270 nmi. The 270 nmi altitude served 
to minimize the drag and thus the propellant 
requirements for resupply. This was the highest the 
SSF could fly and maintain safe levels of crew radiation 
exposure. Although the 270 nrni altitude was chosen 
without explicit concern for the SSF lifetime, it did 
provide sufficient safety at the peak of the solar cycle 
in terms of a catastrophic re-entry into the atmosphere. 
Maintaining a constant lower altitude meant that the 
reboost sizes needed to be varied throughout the solar 
cycle in order to decay to the same altitude for the next 
Space Shuttle rendezvous, Figure 4 clearly shows the 
variation of the reboost sizes with the changes in the 
solar activity. 

At this time in program history, the standards used to 
determine acceptable crew radiation exposure levels 
were re-evaluated. Radiation standards established by 
the Occupational Safety and Health Administration 
(OSHA) were adopted in lieu of more liberal NASA 
standards. As a result. many of the reboost altitudes 
violated OSHA radiation exposure levels for both the 
eyes and skin. This forced a program requirement 
which set the upper bound for SSF operations at 270 
nmi. To accommodate this new requirement 
rendezvous altitudes were lowered to 250 nmi (463 km) 
which ensured that operational altitudes would remain 
within the 270 nmi radiation limit. 
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FIGURE 4: 270 nmi Constant Altitude Strategy with 
Solar Flux Data 

A constant altitude strategy provides mission planners 
with a relatively constant target altitude and thus 
constant payload-to-orbit capability. Standardized 
Space Shuttle/SSF rendezvous profiles are also 
possible with a constant altitude strategy, thus 
simplifying such planning. 

Maintaining a constant altitude profile has several 
disadvantages that severely impact the program. 
Although Space Shuttle payload-to-orbit remains 
constant over a solar cycle, large variations in the 
reboost complicate the overall Space Shuttle manifest 
planning. Another disadvantage is that a system 
designed using a constant altitude strategy severely 
limits operational flexibility. Several space station 
systems are sized based on constraints set by the 
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smaller reboosls. This would result in propellant tanks 
inadequately sized lo operate at lower altitudes. 

200 
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FIGURE 5: 250 nmi Constant Altitude Strategy with 
Solar Flux Data 

Near the end of Phase 6 conceptual studies, assembly 
concerns began to surface. Additional assembly flights 
or additional payload-to-orbit are required to make 
assembly even possible. Since the constant altitude 
strategy was determined by choosing an altitude at the 
worst point in the solar cycle, altitudes at off-peak 
times could be lowered to gain significant Space Shuttle 
delivery performance while maintaining acceptable orbl 
lifetimes. At this point, payload-to-orbit was a 
paramount concern, and a new altitude strategy had to 
be developed in which the rendezvous altitude varied 
with the solar cycle. 

Constant Micro-Gravjta~~~nal Level 
The constant pg altitude strategy was developed to 
take advantage of solar cycle changes by defining the 
rendezvous altitudes at a specified constant pg. The 
acceleration experienced by SSF is a function of the 
atmospheric density; however, the atmospheric density 
varies over the solar cycle. For this reason, and also 

The PDRD (JSC 30000) baselined the constant pg level 
at .3 pg (.3x106g) later in Phase B, around 1986. 
Variations in the lower alt caused by the solar 
cycle can be seen in Figure 6. The .3 pg altitude 
strategy introduced a concept referred to as the 
minimum controllable altitude (the point at which SSF 
was deemed uncontrollable and catastrophic re-entry 
was inevitable). However, this altitude could not be 
defined because the SSF Program was unable to agree 
upon the conditions which would describe this point. As 
it turned out, several of the lower altitudes defined by 
this strategy did not meet acceptable orbit lifetime 
limits. Therefore, to alleviate this concern, the pg level 
was lowered from .3 to .2 pg. This change increased 
the safety margin or lifetime, decreased the size of the 
reboosts since the new altitude profile was higher in the 
atmosphere, decreased the atmosphere disturbance 
level, and also decreased Space Shuttle delivery 
capability. 
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FIGURE 6: Constant -3 pg Altitude Strategy with 
Solar Flux Data 

202 



altitude profile for a .2 pg altitude strategy. While this 
new y placed SSF above the illdefined minimum 
cont e altitude and had acceptable flight 
configurations, it had its p 
SSF got worse due to a 
configuration, the .2 pg strategy put SSF at altitudes 
that violated radiation requirements. The strategists 
also realized that the emphasis of an altitude strategy 
was really directed towards system sizing. Therefore, a 
strategy was needed that forced the designs to meet 
the maximum requirements on the station's systems. 
That concept evolved into the lifetime variable altitude 
strategy. 

YEAR 

FIGURE 7: Constant .2 pg Altitude Strategy with 
Solar Flux Data 

By taking advantage of the changing energy output of 
the sun, a constant pg strategy allows for increased 
payload-to-orbit during times of lower solar activity. 
This is a significant savings in terms of payload 

able to survive wi 
visit was identified. Using a .3 pg level, the lifetime 
varied from 50 to 160 days of orbital lifetime to 150 nmi. 
A .2 pg level varied from 90 to 330 days of orbital 
lifetime to 150 nmi over a solar cycle. Although the .2 
pg strategy altitudes were an improvement over the .3 
pg level's lifetime, it was determined that several .2 pg 
altitudes had unacceptable orbit lifetime margins and 
thus the lifetime variable altitude strategy was 
developed. 

Lifetime Altitude 

It was determined that the altitude strategy needed at 
this point in the program must emphasize system 
design for SSF, thus defining the minimum design 
altitude. The strategies discussed thus far all 
recognized the concept of minimum orbit lifetime. 
Although the pg strategies were aware of a minimum 
controllable altitude, orbital lifetime to this altitude was 
the underlying concern. How much time does SSF have 
before it decays and enters the earth's atmosphere? 
What time frame would a contingency scenario require 
to rescue SSF after a catastrophic failure? This idea of 
the time necessary to save SSF resulted in an altitude 
strategy that defined the minimum design altitude 
(operational altiiude limit) and based it on orbit lifetime. 
The strategy calls for SSF to be able to survive a total 
failure of its propulsion system for a period of at least 
90 days without a loss of attitude control. It is felt that 
a rescue and repair mission for saving SSF could be 
made ready and launched within this amount of time. 
Therefore, the minimum design altitudes are defined as 
the altitudes which give SSF 90 days of lifetime to 150 
nmi. The 150 nmi loss of control altitude was 
determined to be the altitude where the aerodynamic 
torques would overwhelm the attitude control system 
and a loss of control would result. The altitudes 
resulting from the lifetime altitude strategy can be seen 
in Figure 8. 

Presently, the lifetime strategy is incorporated in the 
latest revision of JSC 31000 (Reference 3). At the time 
of this writing, a change request submitted in 1988 to 
the program (Reference 6) is awaiting final approval 
before acceptance into the Space Station Program 
Definition and Requirements Document (PDRD) 
(Reference 4). JSC 30000. However, the idea of 
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e lifetime altitude strategy incorporates and corrects 
several of the ideas and problems identified in previous 
strategies. While the .3 pg strategy mentioned a 
minimum controllable altitude, the lifetime altitude 
strategy defines one. As in the pg altitude strategy, 
lifetime altitudes vary with the solar cycle, taking 
advantage of the changing energy output of the sun. 
Lifetime altitudes represent the lowest operating 
altitudes allowable, thus providing two very important 
parameters: maximum payload-tosrbit and system 
design requirements. As mentioned earlier, the 
minimum altitude represents the maximum requirement 
imposed on several SSF systems. Sizing to these 
altitudes provides for the most flexible operation of 
those systems. 

7 m +---+-A mn 200( YEAR 2m an0 

FIGURE 8: 90 Day Lifetime Altitude Strategy with 
Solar Flux Data 

Operationally, lifetime altitudes provide a reference to 
safety. However, they are difficult to plan, since they 
are based on SSF characteristics and solar flux 
predictions which both may be updated as the actual 
flight date approaches. Additionally, the varying pg 

that emphasized system design while providing 
adequate safety margins for SSF and its crew. The 
current altitude strategy defines an operational altitude 
envelope. Since this strategy ational 
limits, systems are d to t of this 
range. The current altit levies 
requirements on the SSF Program and has been 
submitted for final approval into the SSF PDRD, JSC 
30000. 

SSF shall orbit between a minimum 
operational altitude, defined by operational 
lifetime to 150 nmi, and a maximum 
operational altitude, defined by radiation 
limits. (Reference 6, Sec. 3.1.1 .l) 

Assembly 

The minimum operational altitude is further divided into 
the two identifiable regions of SSF operations, 
assembly and post-AC. 

The minimum operational altitude for assembly 
is defined as the altitude that provides 180 
days of orbital decay to 150 nrni prior to a 
verified, dual fault tolerant reboost system, 
and 90 days of decay to 150 nmi thereafter. 
The decay shall be calculated using +20 solar 
flux predictions. (Reference 6, Sec 3.1.1.1.1) 

Dual fault tolerance ensures that SSF has adequate 
lifetime prior to its propulsion system being completed. 
Once the system is dual fault tolerant, SSF can 
maintain the minimum altitude of 90 days to 150 nmi. 
While the present baseline assembly altitudes 
attempted to satisfy these minimum operational altitude 
requirements, they were chosen with more emphasis 
placed on planning simplicity. The present baseline 
assembly sequence is contained in the Space Station 
Stage Summary Databook 12/15/89 (Reference 7). The 
Databook defines 220 nmi (407 km) as the rendezvous 
altitudes for flights 1 through 5 (MB-1 - MB-5) and 190 
nrni (352 km) for flights 6 through 29 (MB-6 - L-11). 
These defined assembly rendezvous altitudes do not 
take advantage of the variations in the atmosphere but 
act as placeholders to simplify long range Space 
Shuttle manifest planning. 

Figure 9 shows the Databook defined rendezvous 
altitudes and the minimum design rendezvous attitudes 
for the baseline assembly sequence. Recent studies 
have shown the 220 nrni altitudes to be conservative 
compared to the required 180 days to 150 nmi lifetime 
altitudes (-15 nmi. or 350 extra days of lifetime). 
However, the 220 nmi altitudes are being used as the 
design-to altitudes for Space Shuttle planning since 
historically it is easier to give capability back to the 
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ime violations occur at the transition from 220 nmi to 
190 nmi altitudes. These violations stem from dramatic 
changes in SSF configuration (solar photovolt 
arrays are delivered and deployed on flight 6 
Lifetime violations also occur later in the sequence at 
flights 20 (MB-13) through flight 29 (L-11). These 
violations occur as a direct result of increasing solar 
activity. Figure 9 also depicts the solar flux values 
predicted for during assembly. Significant resistance to 
change the assembly altitudes exists in the Space 
Station program. However, these lifetime violations are 
significant and need to be addressed. The authors 
recommended to the Mission Planning and Analysis 
Division (MPAD NASA) at the Johnson Space Center 
(JSC), and to the Assembly Planning Review (APR), 
that the minimum lifetime altitudes be used as the 
planning altitudes for Space Shuttle manifest planning 
on those flights with lifetime violations. The long range 
planning altitudes and manifests must be reworked to 
correct these problems. 

the effects of a +2 sbma solar flux prediction 
a 2 year first element launch 

slip and a 9 year solar cycle 22. (Reference 6, 
Sec 3.1.1.1 .l) 

Analysis of the defined assembly altitudes with a 2-year 
first element launch (FEL) slip in conjunction with +2a 
solar flux predictions show the 220 nmi altitude to have 
approximately the same conservative margin, although 
significantly greater lifetime violations m u r  at flight 8 
(OF-1) through flight 29 (L-11). (See Figure 10.) 
Analysis results show that there are 11 additional 
lifetime violations when compared to the results of just 
the +20 atmosphere study. These additional lifetime 
violations arise from moving the assembly sequence 
forward two years into a region of higher solar flux 
values. The shift in the solar cycle is clearly shown in 
Figure 10 when compared with that in Fgure 9. 

DATE 

FIGURE 9: Minimum Design Altitude vs. the Databool 
Defined Altiiudes with Solar Flux Data 

Additional requirements must be met by the assembly 
altitudes that were not considered in the previously 
mentioned study: 

SSF shall be capable of maintaining the 
minimum operational altitude under 

FIGURE 10: Effects of a 2-Year First Element Launcl 
Slip on the Minimum Design Altitudes Showing the Solar 

Cycle Shift 

The requirement for a 9-year solar cycle has not yet 
been analyzed at the time of this publication. However, 
this only increases the solar flux values towards the 
end of assembly since the solar minimum would shift 
back toward the FEL point. A 9-year solar cycle 
analysis would result in lifetime violations of greater 
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year solar cycle are necessary biases, and, if so, to fly 
the minimum design altitudes in place of defined 
altitudes for each assembly flight which violate the 
lifetime requirement. 

The altitude requirements for assembly complete (AC) 
are slightly different than those for assembly. 

The minimum operational altitude for assembly 
complete shall be the altitude that provides 90 
days of orbital decay to 150 nmi using the 
most current solar flux values. (Reference 6. 
Sec 3.1.1.1.2) 

The lifetime altitude defines the minimum altitude that 
the SSF can fly during post-AC. Presently, the post-AC 
rendezvous altitudes are set at this minimum 
operational altitude. The SSF will rendezvous at this 
altitude and SSF will reboost as soon as operationally 
possible after the Space Shuttle departure. SSF will 
reboost to an upper altitude such that it decays to the 
next scheduled Space Shuttle rendezvous altitude. 

System Design 

The present altitude strategy has been a major driver 
for determining system design related requirements. 
The current lifetime altitude strategy represents the 
absolute minimum allowable altitudes for SSF 
operations. This will cause SSF to operate in a more 
dense region of the atmosphere, resulting in maximum 
reboosts and aerodynamic torques. Designing 
systems to meet the needs of SSF at this minimum 
altitude will ensure the most flexible system design 
capable of surviving a variety of real world operational 
contingencies. 

Several influences on SSF system design are 
incorporated into the lifetime strategy. For example, 
the rendezvous altitudes follow the solar activity. This 
takes advantage of the solar cycle not only in terms of 
increasing Space Shuttle payload-to-orbit, but also in 
varying the SSF reboost. The current altitude strategy 
is employed to support design studies and size the 
propulsion system, specifically, the size of the on- 
board propellant storage tanks. In a recent trade study 
it was determined that the propellant tanks could be 
sized to reduce life cycle costs. This would be 
accomplished by using the largest tanks that would fit 
in the cargo bay of the Space Shuttle as well as fulfill 
the requiremenfs for the largest reboost. The maximum 
reboost occurs during the rise in the solar cycle curve, 
six to eight months prior to peak solar activity. The 
propulsion system has been designed to the maximum 
reboost of a +20 atmosphere at SSF maturity, since 
SSF mass has a direct influence on the amount of 
propellant required for reboost. 

Propellant specific impulse (Isp) also has an influence 
on propulsion system design; the lower the Isp. the 
more propellant required for a particular reboost. As a 

result of the SSF recon~igu~a~ion effort (1 989), 

in larger propellant requirements and higher life cycle 
costs than for the previously baselined 
hydrogenloxygen propellant ( isp = 370 sec lor H2/02). 

The BN affects system sizing as well. The smaller the 
BN, the greater the orbital decay, and thus larger 
reboosts are required to decay to the same point. 

Other systems are indirectly influenced by the altitude 
selection. The electrical power system batteries are 
sized to provide power during orbital nighttime. a 
function of altitude. Some operations are also 
influenced by altitude: extra-vehicular activity (EVA) 
planning flexibility goes down as the South Atlantic 
Anomaly grows in size (which grows larger with 
increasing altitude). Many payloads are sensitive to 
the pg environment induced by altitude choice. Finally, 
altitude selection plays a key role in the utilization 
efficiency of the delivery system (Le., Space Shuttle). 
Decreasing Space Shuttle payload-to-orbit capability 
by rendezvousing higher may cause carriers to be 
manifested at less than 100% capacity. This indirectly 
affects all SSF operations since Space Shuttle will 
deliver all resupply requirements for SSF operations. 

Operationally, the SSF must nevec violate the lifetime 
altitude limit. While SSF systems have been designed 
to operate at or above this altitude limit, the lifetime 
altitude represents the point where a deviation from 
nominal operations must occur. An operational altitude 
strategy will need to provide an altitude safety margin 
based on possible operational deviations. These 
deviations could include such scenarios as a Space 
Shuttle launch slip, missed rendezvous, atmosphere 
worsening, or solar cycle phase shifting. While the 
lifetime altitude strategy provides design-to altitudes 
for system sizing with inherent concerns for SSF 
safety, an operational altitude strategy must provide an 
additional lifetime margin to allow for the unpredictable 
yet expected real world occurrences. The operational 
altitude strategy must also incorporate several other 
operational considerations as well. These 
considerations as well as the factors that influence the 
lifetime buffer will be discussed in the next section. 

V OPERATIONAL ALTITUDE 
STRATEGY 

The emphasis of an Operational Altitude Strategy 
(OAS) is overall operations cost, whereas the emphasis 
of the current lifetime altitude strategy is system 
design. Development of an OAS must consider all 
aspects of SSF operations: 

0 On-orbit operations - aerodynamic disturbance levels - radiation exposure levels - contamination - orbital debris density 
- safety (lifetime) 
- satellite servicing 
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- planning simplicity - payload-to-orbit capability 

Developing an altitude strategy based on any one of the 
influences listed above would result in off-nominal 

that the operational altitudes may be chosen anywhere 
between an upper and lower altitude limit. The upper 
altitude bound is defined by radiation concerns and the 
lower limit is defined by orbit lifetime. Flying SSF as low 
as possible would maximize the Space Shuttle delivery 
capability. However, this does not necessarily 
represent the most efficient use of the delivery system. 

Given acceptable safety levels, delivery system 
utilization efficiency (in the opinion of the authors) 
should be considered the primary performance indicator 
of any OAS. The Department of Defense estimates that 
35-40% of the total operational cost for the military is 
logistics. Delivery of resupply from the ground to SSF 
is a significant part of the overall logistics cost and 
represents an area in which operations cost could be 
significantly reduced through careful application of an 
OAS. 

Optimal Altitudes 

Eventually, all operational influences will be 
accommodated through biasing optimal altitudes to 
the extent required. initially however, optimal altitudes 
must be investigated and understood. 

In order to reduce resupply costs, optimal altitudes 
must maximize Space Shuttle delivery capability. As 
part of resupply, propellant must be delivered. 
However, propellant usage is tied directly to altitude 
selection. Increasing rendezvous altitudes results in 
decreased propellant requirements (reboosts are 
smaller since the SSF operates in a less dense region 
of the atmosphere), but at the same time, the Space 
Shuttle delivery capabilities are also reduced. The 
optimal altitude is therefore a balance between SSF 
propellant usage and Space Shuttle delivery capability 
and can be defined as maximizing the net Space 
Shuttle delivery capability on a flight by flight basis 
(net = total Space Shuttle delivery capability - SSF 
reboost propellant requirements). 

The reboost propellant requirements must include 
support hardware (tankage and attachments) as part of 
the net payload-to-orbit determination. Final propellant 
selection will greatly influence the support mass 
required. For example, a hydrogenloxygen propulsion 
system has relatively small support mass requiremerts 
since propellant is delivered as water in either a simple 

over all flights for purposes of determining a smoother 
optimal altitude profile. In order to accomplish this 
distribution, each pound of propellant needed to 
perform a reboost will require some amount of support 
mass. The ratio of support mass to propellant is termed 
the mass fraction and is different for each type of 
propellant or PM. The currently designed PM requires 
approximately 0.7 Ibm of supporting hardware for each 
pound of hydrazine delivered. . 

Optimal Altitude Influences 

Optimal altitudes are driven by propellant requirements 
which in turn are driven by the SSF BN, SSF mass, 
Space Shuttle flight interval, lsp, solar flux (F10.7) 
predictions, and propellant mass fraction. In general, 
larger propellant requirements result in higher optimal 
altitudes. 

Currently, working values for each of these influences 
are baselined within the SSF Program. However, the 
actual value may turn out to be considerably different. 
An understanding of how each of these influences 
drives the optimal altitudes and how sensitive optimal 
altitudes are to these influences is essential for OAS 
development. 

SSF Ballistic Number 

BN characterizes the aerodynamic configuration and 
weight of the SSF. Low BNs result in high decay rates, 
while high BNs  imply low decay rates. Lower BNs result 
in higher propellant usage since SSF decay is greater. 
Figure 11 shows the optimal altitude sensitivity to BN 
changes. This figure plots altitude (x-axis) vs Space 
Shuttle delivery Capability. The slanted line at the top 
represents the total Space Shuttle lii capacity. As the 
rendezvous altitude increases, the total Space Shuttle 
delivery capacity decreases. The curved lines indicate 
the net payload-to-orbit for three values of BN. The 
optimal altitude occurs at the highest point on each 
curve (the maximum net payload-to-orbit) and is 
represented with a A on the graph. Since net payload- 
to-orbit is defined as the total Space Shuttle delivery 
capacity minus the SSF reboost propellant 
requirements, the vertical distance from the total Space 
Shuttle lift capacity line to the net payload-to-orbit line 
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is identified by a bold line. The conditions for this 
standard case are: 

BN = 12 Ibt/Tt2 
SSF Mass P 500000 Ibm 
Flight Jnterval3~ 90 days 
bp= 230 sec 
Solar Flux P Maximum (+20 peak) 

and can be used as reference between the various 
influences. 

190 ico Im IM 190 am ao 220 m mo m 260 m 
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Figure 11: Ballistic Number Influence on the Optimal 
Altitude 

SSF Mass 

The more massive the SSF. the more propellant 
required for reboost. Although continuous low thrust 
burns will actually be used to reboost SSF, the 
propellant required to reboost SSF impulsively (infinite 
thrust in an instant of time) is very close (c 1%) to the 
propellant required using a continuous low thrust burn 
and is given by the following relationship: 

Prop = SSF Mass * Ge * (1 - exp(-AV / (Ge * Isp))) 

where Ge is the acceleration of gravity at the earth's 
surface, AV is the velocity change required to achieve 
a circular target orbit based on the height of the 
reboost, and Isp is the propellant specific impulse. 

Figure 12 shows the optimal altitude sensitivity to SSF 
mass. The optimal altitude increases with mass since 
propellant requirements are proportional to SSF mass. 
AKiudes based on the .2 pg, .3 pg and lifetime altitude 
strategies are not affected by SSF mass changes. 

(3) 
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Figure 12: SSF Mass Influence on the Optimal 
Altitude 

Space Shuttle Flight Interval 

Operationally, SSF is assumed to reboost soon after 
Space Shuttle departure. The size of the reboost is 
determined such that the SSF orbit will decay down to 
the appropriate rendezvous altitude by the next Space 
Shuttle visit. A longer flight interval results in a longer 
decay time and consequently larger reboosts. Figure 
13 shows the optimal altitude sensitivity to Space 
Shuttle flight interval. The optimal altitude increases 
with flight interval. Rendezvous altitudes based on the 
.2 pg, .3 pg and lifetime altitude strategies are not 
affected by flight interval changes. 

Multiple reboosts between Space Shuttle visits tend to 
decrease the size of each reboost, yet increase the 
total propellant requirements for the interval. This is a 
direct result of SSF spending more time at lower 
altitudes where the atmosphere is more dense. Multiple 
reboosts within a flight interval will increase the optimal 
altitudes as well as the operational work loads for the 
SSF crew and mission support teams. Therefore, a 
single reboost is assumed between each rendezvous. 
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Figure 13: Space Shuttle Flight interval Influence on 
the Optimal Altitude 
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propellants having higher 
pellants increase the 
peilant requirements ar 

as compared to water. As expected, the optimal 
altitude for an ISP of 230 sec is considerably higher 
than for an Isp of 370 sec. Reboost propellant for a 
given Isp is shown in equation (3). 

Figure 14 shows the optimal altitude sensitivity to ISP. 
The optimal altitude increases as Is decreases. 
Altitudes based on the .2 pg, .3 pg and tetime altiiude 
strategies are not affected by Isp changes. 
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Figure 14: I,, Influence on the Optimal Altitude 

Solar Flux (F10.7) 

Atmospheric density is derived from F10.7 values. 
Larger F10.7 values increase the derived density and 
consequently increase the rate of orbital decay. F10.7 
values change with date and atmospheric predictions 
(+20 or mean). if all influences discussed above were 
to remain constant, optimal altitudes would vary with 
the solar cycle. 

Figure 15 shows the optimal altitude sensitivity to 
F10.7. The optimal altitude increases with increasing 
F10.7. Altitudes based on the .2 pg, .3 pg and lifetime 
altiiude strategies also vary with F10.7 changes. 

19) im IR im 140 an 210 m 23) zu) 211) m zm 

Figure 15: Solar Flux Influence on the Optimal 
Altitude 
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As shown in Figures 11 - 15, the net payload-to-orbit 
curves are relatively flat near the optimal points. This 
indicates that altitude biases due to other operational 
considerations could be accommodated without 
significantly impacting net payload-to-orbit. In fact, 
assuming average values for each influence, the 
rendezvous altitude could vary by +/- 10 nmi with a very 
small variance in the net payload-toorbit. Within this 
20 nmi band around the optimal altitude, less than a 500 
Ibm net payload bss is experienced. Given the choice 
of flying 10 nmi higher or 10 nmi lower, rendezvous 
altitudes would be adjusted upward, if possible, to 
increase SSF lifetime. 

Reaction to Unpredictable Events 

An OAS must specify (or levy requirements on SSF 
operational concepts) when and how the SSF reacts to 
real time changes which drive altitude selection, for 
example, Space Shuttle launch delays. Operationally, 
SSF lifetime should never drop below the minimum 
lifetime level of 90 days to 150 nmi. Depending on the 
reasons for the slip, SSF may react before ever 
reaching this limit. 

Additionally, real time changes in the solar flux could 
result in current altitudes with undesirable lifetimes or 
which are significantly off-optimal altitudes. Current 
thinking suggests that the operational altitudes will be 
determined using mean solar flux predictions. As can 
be seen in Table 1, recently observed solar flux data 
are appreciably greater than the mean predictions for 
those dates (Reference 8). Again, how and when 
should SSF react to a situation which significantly 
deviates from the predicted conditions? 
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What circumstances (SSF system failures, Space 
Shuttle launch slips, atmosphere worsening, etc.) will 
cause SSF to adjust altitude and depart from nominally 
planned profiles? How should SSF maintain altitude 
under contingency conditions? Such issues must be 
addressed in an OAS. 

VI CONCLUSIONS 

Defining an operational altitude strategy poses 
significant challenges by attempting to incorporate and 
blend numerous operational considerations. Only 
recently has the SSF Program reached a maturity level 
to where altitude strategy planners could begin 
assimilating and integrating many of the influences and 
considerations necessary to develop an operational 
altitude strategy. In addition to providing the guidelines 
for computing nominal operational altitudes for long 
range and near real time planning, an operational 
altitude strategy must also be adaptive, providing 
procedural road maps as to how and when SSF must 
react to real time off-nominal conditions, such as, 
Space Shuttle launch slips and unexpected deviations 
in atmospheric parameters. 

It is important to note that any altitude strategy 
ultimately proposed will inherently favor certain 
operational aspects over others. This paper has not 
attempted to produce a final altitude strategy to be 
used for the 30-year operational lifetime of SSF; rather 
it attempts to identify and put into perspective the 
associated issues and influences which will drive the 
development of a final operational aitiiude strategy. 

implement any strategy. ~nfo~unate ly ,  such a 
strategy could be of great use in the near term lo 
efficiently design logistics elements and estimate user 
and SSF core irements. The authors of 
this paper feel altitudes are an excellent 
first cut at an operational altitude strategy providing 
considerable flexibility to accommodate future 
operational considerations as they become pertinent. 

The authors would like to recognize and express their 
appreciation to Lauri Norton of MPAD at Johnson Space 
Center for her input and guidance on this paper as well 
as all of their SSF altitude related endeavors. 
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ABSTRACT 

Propagating attitude by integrating Euler’s equation for rigid body motion has long 
been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has 
not been implemented. Because of limited Sun visibility, propagation is necessary 
for yaw determination. With the deterioration of the gyros, dynamic propagation 
has become more attractive. Angular rates are derived from integrating Euler’s 
equation with a stepsize of 1 second, using torques computed from telemetered con- 
trol system data. I t  included 
gravity gradient and unshadowed aerodynamic torques. Knowledge of control 
torques is critical to the accuracy of dynamic modeling. Due to their coarseness and 
sparsity, control actuator telemetry were smoothed before integration. 

The environmental torque model was quite basic. 

The dynamic model was incorporated into existing ERBS attitude determination 
software. Modeled rates were then used for attitude propagation in the standard 
ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dy- 
namically propagated attitude matched the attitude propagated with good gyros well 
for roll and yaw but diverged up to 3 degrees for pitch because of the very low 
resolution in pitch momentum wheel telemetry. When control anomalies signifi- 
cantly perturb the nominal attitude, the effect of telemetry granularity is reduced 
and the dynamically propagated attitudes are accurate on all three axes. 

*This work was supported by the National Aeronautics and Space Administration (NASA) /Goddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31500. 
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This paper is based on work performed in the Flight Dynamics Division by the Earth Radiation Budget 
Satellite (ERBS) attitude support team. It describes the development and evaluation of a model of the 
ERBS attitude dynamics, based on direct integration of Euler’s equation of motion, using telemetered 
control system information and estimated disturbance torques, Knowledge of the ERBS dynamics is im- 
portant for accurately propagating the attitude over an entire orbit between occurrences of Sun data. The 
ERBS fine attitude determination system (FADS) was designed to use onboard inertial reference unit 
(IRU) measurements of spacecraft motion as a model for attitude motion. With the deterioration of the 
IRUs, an alternative method for deriving spacecraft body angular rates is necessary to utilize the existing 
FADS software and retain the fine attitude determination capability. Comparison of FADS attitudes 
propagated using rates from this alternative method to those using valid IRU rates provides a good assess- 
ment of the accuracy of the dynamic model. 

The dynamic model presented here exploits available telemetered attitude control system data for compu- 
tation of the control torques. However, since the control system engineering data were intended for 
spacecraft health and safety monitoring and trend analysis, the data have coarse digitization and are less 
frequent than is necessary for an accurate dynamics determination. Extensive preprocessing of the data 
is, therefore, required to approximate real control actuator behavior. The low quality of the telemetered 
control system data dominates the effects on solution accuracy of unmodeled disturbance torques, nu- 
merical integration error, and uncertainties in spacecraft mass properties. 

The dynamic model is integrated into the Data Adjuster subsystem of the ERBS Attitude Determination 
System (ADS) and takes advantage of existing subroutines for data processing. This method of imple- 
menting the model is extremely efficient by eliminating redundant software development and allows the 
autonomy of the ADS to be preserved. Previous attempts at dynamic modeling have coupled the solution 
of the dynamics with complex state estimators, which solved for unmodeled parameters and propagated 
the attitude in one algorithm (References 1 through 3). In this work, every effort was made to keep both 
the mathematical detail and the solution method as simple as possible. The model demonstrates the 
feasibility of applying a simplified dynamics determination to real spacecraft data. 

ERBS OVERVIEW 

The ERBS was launched in October 1984. It is in a 600-kilometer, near circular orbit of 57-degree (deg) 
inclination. The ERBS is an angular momentum biased spacecraft, with attitude referenced to a geodetic 
coordinate system; yaw is defined about the local unit nadir vector (+z body axis); pitch is defined about 
negative orbit normal (+y body axis); and roll is defined about the remaining right-handed orthogonal unit 
vector. Pitch is controlled to within 1 deg of geodetic null with a y-axis angular momentum wheel using an 
analog control loop. Roll is controlled to within 1 deg of null by a pair of y-axis mounted electromagnets. 
Yaw is controlled to within 2 deg of null through roll/yaw kinematic coupling with electromagnets and 
active yaw angular momentum control by a pair of differentially driven ITHACO Scanwheels, mounted in 
the y-z plane. The Infrared (IR) Scanwheels, which measure geodetic pitch and roll, also serve as the sole 
input to the pitch and roll/yaw control loops. Figure 1 illustrates the ERBS body coordinate system and 
attitude actuator hardware. Table 1 summarizes the ERBS orbit and attitude characteristics. The remain- 
ing components .of the Magnetic Control System (MCS) include a three-axis Schoenstedt magnetometer 
for electromagnet control input and attitude determination, one roll axis and one yaw axis electromagnet 
dipole torque rods for pitch momentum management, and the associated control electronics. Besides the 
Scanwheels and the magnetometer, the remaining attitude determination sensors are a pair of ADCOLE 
two-axis fine Sun sensors and two redundant three-axis Northrop IRUs (Reference 4). 

ERBS ADS OVERVIEW 

The ERBS Attitude Determination System computes single-frame coarse attitudes to within 5 deg, fine 
attitudes to within 0.25 deg, attitude rates to within 0.005 deghecond, and monitors control system 
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igure 1. ERBS Attitude Hardware and Body Coordinate System 

performance (Reference 5 ) .  Attitude telemetry data are unpacked and converted to engineering units in 
the Telemetry Processor. The Data Adjuster subsystem applies sensor biases and misalignment correc- 
tions, generates reference vectors from ephemerides, and smooths raw data on option. The Coarse Atti- 
tude Determination System (CADS) computes single-frame attitudes using the Quaternion Estimator 
(QUEST) algorithm. QUEST requires no dynamics information for attitude propagation and has inherent 
accuracy much greater than the specified accuracy of 5 deg when accurate observations (Sun data) are 
available. The FADS uses IRU measurements as a mechanical motion model for attitude propagation to 
model sensor data. It then applies a batch least-squares optimization of observed to modeled sensor data 
to estimate a state vector of epochal attitude angles and gyro calibration parameters. The FADS is very 
sensitive to the quality of the input rate data. 
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ORBIT: 

SEMIMAJORAXIS 68Sl km 

INCLINATION: 57 deg 

ECCENTRICITY: 0.0014 (NEAR-FROZEN m q  

ATTITUDE PARAMETERS: 

ANGULAR MOMENTUM BIASED, EARTH ORIENTED. 1 REVOLUTION PER ORBIT 

NOMINAL GEODETIC PITCH AND ROLL I 0.0 deg 

NOMINAL YAW = 0.0 OR 180.0 deg FOR SOLAR ARRAY ILLUMINATION 

SPACECRAFT PRINCIPAL MOMENTS OF INERTIA; 1, - 28M) kgm2 
ly - 4590 kgm' 
I, I 3040 kgm' 

ATTITUDE SENSORS: 

TWO ADCOLE FINE SUN SENSORS 64x64 deg 0 004 deg (1.8 b.) @ 1 Hz 

TWO ITHACO SCANWHEEL IR SENSORS 0.025 deg (Is b.) @ 1 Hz 

ONE SCHOENSTEDT THREE-AXIS FLUXGATE MAGNETOMETER 4.68 mg (I sb ) @ 118 H 

TWO IRUs WITH THREE NORTHROP RATE GYROS 0.W1 deglsec (I s b.) @ 1 Hz 

MADNETIC CONTROL SYSTEM ACTUATORS 

ONE PITCH MOMENTUM WHEEL 50 tpm (1.s.b.) @ 1iE Hz. Iw = 0.0861kg-d 

TWO ITHACO SCANWHEELS 12 tpm (l.8.b.) @ 1iE Hz, Isw .I 0.0271 kgm 

ONE ROLL AXIS AND ONE YAW AXIS, 50AMPEFE TURN METER SOUARED 
MAGN€llC DIPOLE TORQUE RODS FOR PITCH MOMENTUM COMROL 
4.7ATm2 (1.s.b.) @ l n 6 H z  

TWO PITCH AXIS 50 ATm2 DIPOLE TOROUE RODS FOR ROLL CONTROL 
0.4 ATm ' (Lab.) @ 111 6 Hz 

MATHEMATICAL BACKGROUND 

Culer's equation for rigid body rotation, including the contribution of internal wheel angular momenta, 
h(t), is written as 

do'(t) 
(I] = G(t) - - 

-t 

where o'(t) is the body angular velocity vector, [I) is the body moment-of-inertia tensor, and N(t) is the 
sum total external torque acting on the-body. This equation is solved for the angula; velocity siate, o'(t) 
in body coordinates. For the ERBS, h (tJ is the sum of the Scanwheel momenta (hsw, and hsw,) and 
momentum wheel angular momentum ( h w )  resolved in body coordinates: 

The Scanwheels are differentially driven ( WSW, + WSW, = constant) so that they produce no y-axis+ com- 
ponent of torque. The momentum wheel exerts very strong control over the pitch axis. The dh(t)/dt 
term in Equation (1) is approximated by the difference in wheel speed over the sampling interval. 
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The sum total external torque, G(t) in Equ$tion (I), is approximated as the contributions from %onwheel 
control torquesJmagnetic dipole torques, N ~ G )  and environmental torques (gravity gradient, NGG, and 
aerodynamic, NAERO) 

Solar radiation pressure is not included; it is expected to be one order of magnitude less than gravity 
gradient or aerodynamic forces, and its variability and attitude dependence over an orbit would unneces- 
sarily complicate the environmental torque model. Also excluded is the residual dipole moment torque 
that is easily modeled as a constant torque bias, but it was never determined for the ERBS mission (Refer- 
ence 6). The disturbance torques arising from science instrument activity are also neglected, and an 
estimate of their magnitude is not available. Both the residual dipole moment and the science instrument 
torques are assumed to be small. The magnitude of the gravity gradient torque is a maximum of 1 x 

N-m in roll for a 1-deg offset from null attitude and two orders of magnitude less in pitch and yaw. 
The aerodynamic torque is important only for pitch and can be as high as 1 x 

It should be noted that the gravity gradient and aerodynamic torques are low frequency phenomena that 
are observable only over long timespans (on the order of one orbit), while the magnetic dipole and wheel 
control torques are high frequency components of the spacecraft dynamics. 

Equation (1) is integrated as a system of three coupled equations for each component of G(t) using a 
second-order Runge-Kutta method, with a fixed stepsize corresponding to the data discretization interval 
of 1 sec. The stepsize is made as small as possible to keep the frequency response of the modeled torques 
high relative to the actual dynamical response of the spacecraft. The coarseness of the telemetry data and 
uncertainty in disturbance torques and mass properties preclude the need for a higher order numerical 
integration method. 

The integration for each component of &(t) is begun at the nominal values of zero for roll and yaw, and 
the one revolution per orbit rate of 0.062 deghec for pitch. It is possible to start the integration from an 
anomalous state relative to the orbital frame only if a priori estimates of the body rates are available. 

N-m. 

ERBS TELEMETRY DATA 

The data required to compute the state of the ERBS dynamics consist of Scanwheel and momentum wheel 
speeds, magnetic dipole moments, sensed magnetic field, and IR scanner pitch and roll angles for use in 
the gravity gradient and aerodynamic torque expressions. In addition, Sun sensor data are used for 
attitude determination, and the IRU rates provide the reference for evaluation of the dynamic model. 

Reconstruction of the ERBS attitude dynamics from control system telemetry is complicated by the coarse- 
ness and sparsity of the telemetry data from the principal control actuators. Ideally, the telemetered data 
frequency should be high relative to the characteristic frequency of the actuators. The resolution in 
magnitude should also be high relative to typical trends in the data. The pitch momentum wheel telemetry 
satisfies neither of these criteria. 

The ERBS pitch axis control is dominated by the momentum wheel. Momentum wheel telemetry conver- 
sion is nonlinear and the least significant bit at nominal speed (approximately 2500 revolutions per minute 
(rpm)) is approximately 50 rpm over an 8-sec interval. This corresponds to a resolvable change in wheel 
angular momentum of about 0.46 N-m-sec over 8 sec. Since the resolution in onboard deliverable mo- 
mentum wheel torque is 4 x N-m (Reference 4), observability of the momentum wheel control 
torque in the downlink telemetry is very poor and limits accurate modeling of the pitch-axis dynamics. 
The maximum deliverable torque of the momentum wheel is 0.054 N-m so that more than one time 
interval is necessary to resolve even the maximum rate of change in wheel speed. 

Yaw axis control is dominated by the differentially driven Scanwheels. Resolution in the Scanwheel speed 
is much better, about 12 rpm at nominal speed (approximately 2000 rpm). Because the Scanwheel 
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moments of inertia are smaller than the momentum wheel moment and because the component of 
Scanwheel yaw control is small (sine 10 deg), observability of the yaw axis control torque from telemetry 
is good. 

Magnetic dipoles are used for roll axis control and for pitch angular momentum management. Although 
the resolution in the magnitude of the dipole moments is good, the period of the telemetered data is 
16 seconds. Due to the relatively weak contribution of the dipoles to the ERBS dynamics (maximum 4 x 

N-m in roll), the lack of time resolution in the dipole telemetry is less important. Also, the digitiza- 
tion of the magnetometer data contributes a smaller error to the dipole torques. 

DATA CONDITIONING TECHNIQUES 

To accurately represent the ERBS dynamics, the control system telemetry data require extensive prepr- 
ocessing. Interpolation between low-frequency data points is necessary for the control torques to be 
evaluated at each integration point. As a benefit of a properly chosen smoothing or interpolation method, 
increased accuracy may be synthesized from coarse data. The behavior of different smoothing and inter- 
polation techniques varies with data characteristics. 

Incorporated in the ERBS ADS is a polynomial smoothing algorithm that fits a Chebyshev polynomial of 
user-specified order to a set of data (Reference 4). The smoother provides interpolation between low- 
frequency data points. For the Scanwheel data, the Chebyshev polynomial smoothing algorithm may be 
tuned to approximate actual Scanwheel activity. The fit is limited by array size to a maximum of 600 sec 
through one cycle of the Data Adjuster. Problems can arise at the endpoints of high order fits. Since a 
high-order fit is necessary to match peak-to-peak trends, a modification to the algorithm allows extrapo- 
lated beginning and endpoint divergences to be replaced with the constant values from the first and last 
raw data points, respectively. Figure 2 illustrates an 18th-order Chebyshev fit to raw Scanwheel data. 

The coarseness of the raw momentum wheel data, resembling a series of step discontinuities about a 
mean, exacerbates the representation of realistic wheel behavior using a simple smoother. The raw 
momentum wheel data of Figure 3 most likely results from transitions near a telemetry digitization bound- 
ary. An 18th-order Chebyshev fit to the data is represented by the smooth line. A high-order polynomial 
follows the step discontinuities too closely while causing boundary matching problems for multiple Data 
Adjuster cycles. For a low-order polynomial, this problem is reduced, but detail is lost. Trends are 
represented by two or more steps in the same direction. Matching the step values exactly considerably 
overestimates the change in momentum wheel speed and drives unrealistic momentum into the model of 
pitch axis rates. 

A more realistic fit to the momentum wheel data is obtained by preprocessing the raw data in a simple 
running average algorithm to reduce discontinuities. A Chebyshev polynomial is then fit to the averaged 
data to interpolate between the 8-see data points. The polynomial fit also permits additional tuning to 
mimic real wheel behavior. Figure 4 illustrates averaged and smoothed momentum wheel data. Problems 
still exist in extracting actual wheel behavior from the coarse data. 

Good results are achieved using the Chebyshev fit for the low-frequency magnetometer data because the 
telemetry digitization is small relative to the magnitudes of the trends in the data. Figure 5 illustrates a 
12th-order fit to magnetometer data. Typical magnetic dipole moment telemetry is represented by the 
points in Figure 6 .  Polynomial smoothing of dipole data is inappropriate because of the large discontinui- 
ties. The dipole moments are interpreted as constant valued between 16-sec data points. This assumption 
is made because the chance of the subcommutator interrogating the dipole at a particular value is propor- 
tional to the amount of time the dipole moment maintains that value. The solid line in Figure 6 repre- 
sents the interpolated dipole moment values. Error imparted to the dynamic model by the low frequency 
of dipole telemetry is acceptable because of the small magnitude of the dipole control torques. 

RESULT 

Two criteria are used to assess the accuracy of the modeled dynamics: comparison of the modeIed rates 
to valid IRU rates from the same data span and comparison of FADS attitudes propagated by modeled 
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Figure 2. Raw Scanwheel Speed Data (Points) and 18th-Order Chebyshev Polynomial 
Fit (Smooth Line) 

rates with FADS attitudes propagated by valid IRU rates. For the evaluation, telemetry data were chosen 
from periods when all three IRU axes were functioning and gyro noise was minimal. Full orbit timespans 
of data were processed with the model. Figure 7 shows the results of one run with the modeled rates 
represented by the smooth line together with raw IRU telemetry. The IRU data are considered an abso- 
lute reference. Root mean square noise in the IRU telemetry for this period is about three digitization 
steps (0.003 deg/sec). 

Agreement between the modeled and measured rates is good for roll and yaw, in most cases within 
0.002 deg/sec of the mean of the IRU signal, but poor for pitch. Although some trends are seen in the 
modeled data, much of the pitch dynamics information is not resolvable in the large momentum wheel 
telemetry digitization. The constant offset between the modeled and measured rates in Figure 7 is due to 
the arbitrary integration starting point and may be corrected with an appropriate initial value correspond- 
ing to the constant of integration. The FADS is able to estimate these values as rate biases. 

The most significant test of this method of dynamic modeling is its ability to accurately propagate attitudes 
over a full orbit. The FADS was used to produce one-orbit attitudes using modeled rates in place of 
measured IRU rates. Figures 8 through 13 show the FADS roll, pitch, and yaw derived from modeled 
rates of Figure 7 together with the reference FADS angles derived from IRU measured rates. In this 
example, only the epochal angles and rate biases were included in the estimated state. The modeled roll 
and yaw match the reference to within 0.2 deg. Pitch, however, diverges up to 3 deg. 

To demonstrate the effect of environmental torques on the model, the data of Figure 7 were reprocessed 
with no environmental torques included. Figure 14 shows the results of this run. No change in the roll or 
yaw rates was observed, but lack of the constant component of the aerodynamic torque causes the pitch 
axis rate to gradually diverge. Although it is difficult to resolve the environmental torques because of the 
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coarseness of the control telemetry, their effect on the actual spacecraft dynamics is diminished due to 
gyroscopic stiffness from the strong angular momentum bias of the ERBS. 

Beginning November 27,1989, the ERBS was configured under dual scanner MCS control during a period 
when the field of view trace of one Scanwheel viewed the Sun during sunrise and sunset events. The Sun 
pulse resulted in control anomalies of about 2 deg on all three axes. During this period, the pitch axis 
gyro was failed, and the roll axis gyro was severely degraded, precluding use of the FADS for reference 
attitudes to evaluate the dynamic model. The CADS was used for reference attitudes but gave accurate 
solutions only when Sun data were available following sunrise. Figures 15 through 20 show CADS angles 
computed with Sun, magnetometer, and uncorrupted IR Scanwheel data with corresponding data from 
modeled rates through a Sun interference occurrence. Agreement between the CADS attitudes and 
modeled FADS attitudes is within 0.2 deg even for pitch. The large change in momentum wheel speed 
reduces the effect of telemetry digitization and allows the pitch dynamics to be more accurately deter- 
mined. Figure 21 shows the raw momentum wheel data from this period. The Sun interference occur- 
rence demonstrates the accuracy of the dynamic model when large trends in control system activity make 
control torques more observable. 

CONCLUSlONS 

It has been demonstrated for the ERBS that dynamic modeling for attitude determination is feasible when 
control system data of sufficient frequency and resolution are available. Insufficient knowledge of control 
torques limits the accuracy of the modeled attitude dynamics. Poor resolution in the ERBS momentum 
wheel downlink telemetry results in poor pitch rate determination. It was found that improved granularity 
of the momentum wheel data was more important than increased time resolution, since the telemetry 
frequency provides sufficient input to the model relative to the timescale of the onboard control processes. 
When a significant perturbation to the nominal state occurs, the effect of telemetry resolution is reduced. 
The dynamic processes on all three axes are then observable in downlink telemetry, and the model per- 
forms well. 

The dependence of the modeled dynamics on accurate control system information dominates the effect of 
environmental torques on the system. Better telemetry resolution is required to assess the accuracy of the 
disturbance torque models. The high momentum bias of the ERBS may diminish the effect of environ- 
mental torques on the actual dynamics, however. More detailed environmental torque models may be 
necessary for zero angular momentum spacecraft using this method. 

One recommendation for further improvement in the model is to increase resolution of the momentum 
wheel control torques. Efforts to derive actual wheel behavior by preprocessing momentum wheel teleme- 
try data resulted in limited accuracy. An alternative method would extract the commanded momentum 
wheel speed from a model of the onboard MCS pitch control law based on IR Scanwheel pitch angle 
input. Resolution in the Scanwheel fine pitch angle is 0.025 deg, which corresponds to a step change in 
pitch axis angular momentum of 0.25 N-m/sec, or a momentum wheel step of 27 rpm over the 8-sec 
interval. Since the Scanwheel pitch angle results from the sum total torques acting on the spacecraft pitch 
axis, this method would attribute all pitch motion to momentum wheel control. This would preclude 
estimation of the y-axis disturbance torques but could cause problems with magnetic dipole coupling in 
pitch axis control. 

Another method for improving momentum wheel speed resolution would derive the analog tachometer 
input to the onboard analog to digital converter from the digitized telemetry data. A least-squares fit 
would be applied to the raw data, subject to known constraints on the control system. The success of this 
method would depend on the uniqueness of the analog input function. 
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Figure 15. CADS Roll Angle During Sun Interference Anomaly 
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Figure 17. CADS Pitch Angle During Sun Interference Anomaly 
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Figure 19. CADS Yaw Angle During Sun Interference Anomaly 
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Integration of the dynamic model in the E S Attitude Determination System is very efficient. This 
approach exploits many capabilities of the existing ground support software, such as telemetry processing, 
data smoothing, graphic displays, and the fine attitude determination algorithm. For future work, incor- 
porating this simple dynamic model into a state estimation algorithm using attitude sensor data would allow 
additional parameters, such as unmodeled torque biases, to be estimated. Improvement in the accuracy 
of attitudes propagated in this way could be expected. 
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Figure 21. Raw Momentum Wheel Speed Data During Sun Interference Anomaly 
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This paper presents the t e s t i n g  and comparison o f  two Extended Kalman F i l t e r s  (EKFs) developed f o r  the 
Earth Radiat ion Budget S a t e l l i t e  (ERBS). 
addi t ive e r r o r  quaternion . This technique i s  compared t o  tha t  o f  a second EKF, which uses a m u l t i p l i c a t i v e  
e r ro r  quaternion. 
development of the add i t i ve  EKF was presented in the 1989 F l i g h t  Mechanics/Estimation Theory Symposium along 
wi th  some pre l iminary t e s t i n g  r e s u l t s  using r e a l  spacecraft data. A sumnary o f  the a d d i t i v e  EKF a lgor i thm i s  
included. The convergence propert ies, s i n g u l a r i t y  problems, and normalization techniques o f  the two f i l t e r s  
are addressed. Both f i l t e r s  are tested wi th  simulated ERBS sensor data i n  add i t i on  t o  r e a l  ERBS sensor data. 
The r e s u l t s  o f  the two f i l t e r s  are also compared t o  those from the ERBS operational ground support software, 
which uses a batch d i f f e r e n t i a l  correct ion a lgor i thm t o  estimate a t t i t u d e  and gyro biases. 
studies are performed on the  estimation o f  sensor c a l i b r a t i o n  states. 
f o r  r e a l  t ime and non-real t ime ground a t t i t u d e  determination and sensor c a l i b r a t i o n  f o r  f u tu re  missions such 
as the Gama Ray Observatory (GRO) and the Small Explorer Mission (SMEX) i s  also presented. 

One EKF updates the a t t i t u d e  quaternion using a four component 

A b r i e f  development o f  the m u l t i p l i c a t i v e  a lgor i thm i s  included. The mathematical 

S e n s i t i v i t y  
The po ten t i a l  app l i ca t i on  o f  the EKF 

I .  INTRODUCTION 

The purpose o f  t h i s  study was t o  tes t  and compare two EKFs developed f o r  ERBS. ERBS i s  equipped w i th  the 
fo l lowing sensors that  are used f o r  a t t i t u d e  determination: 2 redundant I n e r t i a l  Reference Uni ts  (IRUs) each 
containing 3 s ing le-ax is  gyroscopes, 2 d i g i t a l  f i n e  Sun sensors (FSSs), 2 i n f ra red  ( I R )  horizon scanners, and 
1 three-axis magnetometer. The s t a t e  estimated by both EKFs consists o f  the a t t i t u d e  parameters, sensor 
misalignments f o r  the Sun sensor, magnetometer and gyros, biases f o r  the Sun sensor, hor izon scanner, 
magnetometer and gyros, and scale factors  f o r  the Sun sensor, horizon scanner, magnetometer and gyros. 
time EKF was a l so  developed which estimates on ly  the a t t i t u d e  parameters and the gyro bias. 

tested w i th  on l y  rea l  data over short timespans. 
presented i n  Reference 2. 
add i t i ve  EKF t o  a m u l t i p l i c a t i v e  EKF adapted from tha t  presented i n  Reference 2 .  The two f i l t e r s  are a l so  
compared, when possible, t o  the current ERBS batch algori thm which i s  used f o r  f i n e  a t t i t u d e  and gyro b ias  
estimation. 

correct quaternion. 
need f o r  f i l t e r  tuning. 
algorithm. 
algori thm had t o  be modi f ied t o  incorporate the p a r t  o f  the s t a t e  estimate that  was l o s t  i n  the normalization. 
The r e a l i z a t i o n  o f  the normalization process as an update using a pseudo-measurement blends n a t u r a l l y  i n t o  the 
EKF a lgor i thm and does not  requi re  any modi f icat ion o f  the EKF i t s e l f .  
add i t i ve  EKF and compared t o  the o r i g i n a l  normalization process. 
m u l t i p l i c a t i v e  EKF i s  a l so  presented. 

A rea l  

The development and i n i t i a l  t es t i ng  o f  the add i t i ve  EKF was presented i n  Reference 1. This f i l t e r  was 
A m u l t i p l i c a t i v e  EKF was designed and tested and i s  

This work presents fur ther  tes t i ng  o f  the add i t i ve  EKF and comparison o f  the 

Both simulated data and rea l  data are used f o r  the t e s t i n g  and comparison. 
In the add i t i ve  EKF, the estimated quaternion i s  not necessari ly normal unless i t  converges t o  the 

Reference 3 shows’ t ha t  normalization speeds convergence o f  the f i l t e r  and e l iminates the 
The normalization techniques used in References 1 and 3 were external t o  the  EKF 

The covariance computation was no t  a f fected by the normalization, but the s t a t e  est imat ion 

This technique i s  tested on the 
The need f o r  normalization i n  the 
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11. THE EXTENDED KALMA~ FILTER ALGORITHM 

The EKF algori thm i s  based on the fo l lowing assumed models 
System model Measurement model 

x = f(x(t),t) 4- w ( t )  (2.1) Zk = hk(x(tk)) + gk ( 2 . 2 )  

where: g(t) = s t a t e  vector 
y(t) = zero mean white process 
xk = zero mean white sequence 

The measurement update and the propagation o f  the s ta te  estimate and o f  the e r r o r  covariance are performed as 

where the gain matrix, K, i s  evaluated as 

Propagation: 

X ( t )  = f(Ll.(t),t) (2.6) - 

Pk = estimation er ro r  covariance matrix 
Rk = covariance matrix of the white sequence xk 
Qk = spect ra l  density matrix o f  w ( t )  

The s t a t e  vector was selected t o  be r i  
I g I 

s I 
0 I 

I bgl 3 gyro biases 

I gsl 

1 bsl 2 FSS biases 

I t+l 
I 
I 6 magnetometer misalignments 
I $1 3 magnetometer biases 

4 quaternion components 
3 gyro scale factor  er rors  
6 gyro misalignment angles 

3 FSS misalignment angles 
- X = I “S S I 2 FSS scale fac to r  e r ro rs  

I -9 
I -9 

2 I R  horizon scanner biases 
3 magnetometer scale factor  e r ro rs  

L J  

The e f fec t i ve  measurements used t o  update the f i l t e r  are defined as 

(2 .9)  

(2.10) 

where: y = e f f e c t i v e  measurements (or residuals) 
MAT = transformation matrix from nominal (nonmisaligned) sensor t o  body coordinates 

= u n i t  vector as measured by the sensor i n  the sensor misaligned coordinates , meas 
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A(q)  = transformation matr ix  from i n e r t i a l  t o  body coordinates as a funct ion o f  the estimated quaternion 
V = measured unit vector as known i n  i n e r t i a l  coordinates -I 

While the t r a d i t i o n a l  EKF a lgor i thm updates the s t a t e  estimate according t o  (2.31, we use y (as computed in  
(2.10)) t o  update the s t a t e  estimate as 

x (+) = &(-> + x(tk) (2.11) where: x(tk) = Kkyk (2.12) -k 

It can then be shown (Reference 1) that  gk - hk(gk(-)) i s  l i n e a r l y  re la ted  t o  x(tk). 
and then adds the estimate gtk) t o  E,(-), the best estimate o f  g(tk). 
and yk w i l l  be shown in Section IV.  

by the EKF, denoted as bg.  
elements in x(tk) are the correct ions t o  the c a l i b r a t i o n  states which are also then added t o  the current  best 
estimate o f  those states. 

- x(tk) i s  given as 

The EKF estimates x(tk) 
The l inear  re la t ionsh ip  between x(tk) 

In the addi t ive EKF, the f i r s t  four components o f  g(tk! are the corrections t o  the quaternion estimated 
These corrections are added t o  g ( - ) ,  the best estimate o f  g. The remaining 

In the m u l t i p l i c a t i v e  EKF, the quaternion elements o f  g(tk) are t reated d i f f e r e n t l y .  The d e f i n i t i o n  o f  

r i  where: r i  
I Q I  Q = I $ I = three small angles based on the 

I a71 
L J  L J vector por t ion)  and 1 (scalar por t ion)  

x( tk)  I I (2.13) I n I assumption tha t  the er ro r  quaternion 

I p I i s  composed o f  three small angles (as the 

e = corrections t o  the c a l i b r a t i o n  parameters given i n  (2.9) 

The correct ion t o  the quaternion, given as 69, i s  then constructed according t o  

(2.14) 

The quaternion i s  updated as 

The c a l i b r a t i o n  components are updated according t o  (2.11). 

and gk+l(+) are augmented i n t o  (2.9) and are propagated in  time using (2.6). 
w i l l  be presented in  the next section. 

The updated values o f  the c a l i b r a t i o n  components 

The dynamics of  the two EKFs 
For fu r ther  discussion o f  the algorithms see References 1 and 2. 

111. THE DYNAMICS MODEL 

The states that  vary i n  time are the a t t i t u d e  parameters and "bias" states tha t  are modeled as Markov 
rather than t r u e  bias states. 
elements o f  g(tk) f o r  the add i t i ve  f i l t e r  are the same as those shown in (2.9) w i th  the quaternion error ,  6q, 
replacing g. 
d i f f e r e n t i a l  equations o f  the components of  the a t t i t u d e  augmented s ta te  vector. 
the form 

The scale fac to rs  and misalignments are assumed t o  be constant in  time. The 

The d i f f e r e n t i a l  equation which governs the propagation o f  i s  obtained by combining the l inear  
This y ie lds  an equation o f  

- x = F(g)g + (3.1 1 

- A _ -  

This equation i s  presented below with F and !! given. 
and defined i n  Reference 1. 
covariance matr ix  in  (2 .7) .  

The matrices P, B, U, U, and T which form F are derived 
F given below and i n  (3.1) i s  defined i n  (2.8a). It i s  used t o  propagate the 
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d 

dt 

- 
-g b5 I 
8, I 

I I 
I I I I  
I I I I  
I I I I  

1 1 1  
1 1 1 1  
1 1 1  

i r  i r. i 

I I 9-1 I I 

I I k-1 Pngq I 
I I q  I I 

I 
I 
I 

I I  
I I  
I 1  
I I  
I Tml 

J 

!?;I I 
gsI I I 
ssl + I I 
bsl I Ds I 
41 Is1 
%I I I 
% I  I I 
%I I 

J L J  

(3.2) 

In  the mrI.-iplicative EKF, E i s  replaced with (2.13) and the f i r s t  row o f  F(X) i s  replaced with 

r ,  1 

I Q l - u I w l I I  I I I I I I I 

where: " r " " 1  
rl = I 0 wz -wy I 

I "  - 1  
l -wz  0 wx I 
I "  - I 
1 wy -w)( 0 I 
L J 

(3.3) 

(3.4) 

I = 3x3 ident i t y  matrix 

The f i r s t  row of 5 i n  (3.1). defined in  (3.2), i s  replaced by 
the white noise dr iv ing  the Markov states i n  5 in  both EKFs i s  related t o  the individual states they dr ive 
according t o  the well known re la t ion  Qi = 2~7~~ ,~ /T~(Re fe rence  4) where Qi i s  the spectral density of the 
white noise dr iv ing state i, Ti i s  the time constant of t h i s  Markov state and u- i s  the i n i t i a l  standard 
deviat ion of the state. 

system dynamics can be augmented t o  obtain an equation of the form (Reference 1)  

The spectral density of the elements of 

' 8 0  

The estimation problem dealt with in t h i s  paper i s  characterized by a l inear dynamics equation. The 

where g i s  given in (2.9) ( fo r  both EKFs) and the f i r s t  row o f  F ( t )  i n  (3.2) i s  replaced with the fol lowing 
t o  define f( t)  

hi I I I I I I I I I 1 (3.6) 

The white noise-vector 
propagation of 

i n  (3.5) i s  of no consequence in  the estimation process since according t o  (2.6) the 
requires only the evaluation of f(t). 

IV .  THE MEASUREMENT MODEL 

As mentioned i n  Section I 1  the e f fec t i ve  measurements used t o  update the f i l t e r  are defined as 

Y = M ~ ~ Y  I , meas - A W V I  (4.1) 

Incorporating the sensor misalignments, scale factor errors, and biases in to  (4.1) the l inear relat ionship 
between y and E can be derived. This y ie lds the following 
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The terms introduced i n  (4.2) are derived and defined in  Reference 1. 
replacement o f  the cross product with the mul t ip l i ca t ion  of an anti-symmetric matrix, composed of WTl,meas. 
Equation (4.1) shows how t o  generate the e f fec t i ve  measurement y which updates the estimate and (4.2) 
indicates the Linear relat ionship between y, the a t t i tude  errors, the misalignment errors of the sensor being 
used and a,,, the to ta l  e r ro r  generated by the sensor. 
measurement matrix, H, (defined in  (2.8b)) f o r  each sensor used onboard ERBS. 

replacing AQ). 
The f i r s t  term of (4.1) i s  manipulated the same as in  Reference 1, but the second term i s  expanded i n  a 
d i f fe ren t  manner. 

The term CHT,,meas XI represents the 

Equation (4.2) i s  the f i r s t  stage i n  f inding the 

c ! The ef fect ive measurement (4.1) for  the mul t ip l i ca t i ve  EKF i s  computed in the same manner with A 
ACI i s  the transformation from the i ne r t i a l  t o  the computed (estimated) body orientation. 

This process i s  outlined below. The matrix ACI can be wr i t ten  as 

ACI = A CA A AI 

The matrix ACA can be wr i t ten  as 

(4.3) where: ACA = transformation matrix from the true body t o  the estimated body system 
AAI = transformation matrix from the i n e r t i a l  t o  the trUe body system 

ACA = I - [gxl (4.4) 

where g are defined in (2.13). Using (4.4) i n  (4.3) gives 

ACI = ( I  - Cgxl)AAI (4.5) 

Substi tut ing (4.5) i n to  (4.1) with the expansion of the f i r s t  term of (4.1) from Reference 1 gives 

Y = [gXlAAI!!I MATCHTI ,measx34! + MATdWTI (4.6) 

Note that yA = AAIVI but since we don't know AAI we use the estimated matrix, i.e. Vc = ACI!!,, therefore we can 
write (4.6) as 

The models fo r  each o f  the sensors w i l l  now be given. From these models, the H matr ix fo r  each sensor i s  
obtained. The derivation i s  shown i n  Reference 1. 

IR: r 1 

I I O  .... 0 1  I o  .... 0 1  r i  
y =  I Hq I O  .... 0 I Wh I O  .... 0 I g + W h  I nhr I 

I I o  .... 0 1  I O  .... 0 1  I n  I 
L J L h p J  

(4.9) 

Magnetometer: r 1 r i  
I "xm I 

1 "zm I 
(4.10) 

0 1  I I I 0 ..... * .... 
I 0 1  I I 0 .......... 

y = I Hq I 0 .... . ..... 
L 

I M ~ ~ B '  I I! + "h I nym I 
L J  J 

In 4.8, 4.9, and 4.10 [-Vcxl replaces H i n  the mult ip l icat ive f i l t e r .  
4 

V. QUATERNION NORMALIZATION 

The quaternion that represents a t t i tude  i s  normal. Reference 3 shows that forcing normalization on the 
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estimated quaternion i s  advantageous since i t  speeds up convergence and e l iminates the need f o r  f i l t e r  tuning. 
Reference 1 describes the  forced normalization o f  the add i t i ve  f i l t e r .  
equivalent t o  removing a p o r t i o n  o f  the estimate. 
algorithm. 
The idea i s  t o  use the normalized quaternion as a “pseudo-measurement1g. 
very small noise ( i d e a l l y  zero) on the %easurementag then pushes the quaternion p o r t i o n  o f  the s t a t e  t o  be the 
normalized quaternion. The a lgor i thm i s  

That normal izat ion technique i s  
That method o f  normalization i s  external t o  the  EKF 

A new normatization method was der ived tha t  blends n a t u r a l l y  i n t o  the K a h n  f i l t e r  algorithm, 
Performing a measurement update wi th  

gk(+) 
- -  z = -  (5.1) where: gk(+) = the upper four  elements o f  Xk i n  (2.9) 

I gk(+)l 

The lgmeasurementlg covariance matr ix  can then be defined as: 

r 1 
l l O 0 O l  

l O 0 l O l  
l o o 0 1  I 

R =  I O 1  0 0  1 6  (5.2) where: 6 = a very small dimensionless number 

L J 

The measurement matrix, H, i s  defined as 

r 1 ...... I 1 0 0 0 I 0 
H = I 0 1 0 0 I 0 

I 0 0 1 0  I 0 
1 0 0 0 1 I 0 

0 1  
0 1  
0 1  
0 1  

...... 

...... 

...... 
L J 

The gain i s  computed according t o  (2.4). The s t a t e  i s  updated as 

- *  
- Xk (‘1 = &(+) + K C I  HX(+)I 

(5.3) 

(5.4) 

The covariance i s  updated w i th  (2.5). 
and no t  the extended Kalman f i l t e r  since i t  handles the s t a t e  8 d i r e c t l y  i n  the update and not  the e r r o r  
state, &. 

The normalization process used was a forced normalization. 
compensa t i on performed. 

This measurement update process i s  according t o  a l i nea r  Kalman f i l t e r  

The quaternion i s  a l so  normalized i n  the m u l t i p l i c a t i v e  EKF f o r  the same reasons as the a d d i t i v e  EKF. 

The quaternion was simply normalized w i th  no 

V I .  COMPENSATION 

When propagating the s t a t e  estimate and the covariance, we use the measured angular ve loc i ty .  We know, 
Ue can be t te r  however, t ha t  the propagated values are no t  accurate because the gyro output contains errors. 

estimate those e r ro rs  i f  we correct  the gyro output f o r  estimated errors. 
ca l i b ra t i on .  

We a l so  want t o  compensate the measurements obtained from the FSS, the I R  hor izon scanner, and the 
magnetometers which are a l l  o r i en ta t i on  measuring devices whose output are used t o  update the f i l t e r .  
reason we want t o  compensate the output from these sensors i s  d i f f e r e n t  in  nature than the reason f o r  
compensating the gyro output. I n  (2.11) we estimate the d i f f e rence  between the t r u e  value o f  
l a t e s t  estimate, and add the estimate o f  the d i f ference t o  the l a t e s t  estimate o f  
estimate. 
p a r t  o f  gTl,meas and, thus, as indicated i n  (4.1) bears i t s  signature on y. 
observab i l i t y  condit ions a re  met, i t  i s  estimated and added t o  the s t a t e  estimate as ind icated in (2.11). 
no compensation takes place, t he  next t ime the measurements o f  t h i s  sensor are processed the b ias  i s  again 
estimated and added t o  the previous estimate o f  t h i s  bias, thus creat ing an estimate tha t  i s  too large and 
incorrect. The proper way t o  handle t h i s  case i s  t o  e l iminate the estimate o f  the b ias from 
on ly  the  residual bias, which has not been estimated yet, i s  present i n  y as shown i n  (4.1). 

This operation i s  known as 

The 

and i t s  
t o  form i t s  updated 

Let us consider an e r ro r  term i n  one of the sensor measurements (say a bias). This b ias  i s  a 
Consequently, i f  c e r t a i n  

I f  

so that 
Only the 

238 



estimate of this residual i s  added to the existing estimate of the bias, which is a part of 3, 
yielding a correction to the previous estimate. 
1 outlines this method. The compensation was applied to the multiplicative EKF in the same manner. 

This logic holds for the other error states, too. Reference 

VII. SINGULARITIES 

It was found that the models for both the additive and multiplicative EKFs presented in Section IV contain 
singularities. 
measurement based on the IR and FSS measurements constitutes a projection of two-dimensional information on a 
three dimensional space. 
exists in the additive EKF. Adding 
a fourth parameter results in the computation of HPH being singular. 

2x2 matrices. 
independent components, and no alterations of its noise covariance and H matrices are necessary. 
additive EKF, the singularity of HPH 
computation of (HPH + R) in equation (2.4) from becoming singular. 

uncertainties in the measurement noises were reduced on the FSS and IR, the singular HPH 
cannot be compensated for by the noise covariance matrices. 
noises were kept at 0.01 degrees or higher to avoid this. 
singular conditions can exist initially with a large initial attitude error. 
singularity as the state is updated. This singularity exists because the assumption given by (2.141, that the 
first three elements of 6q are small, is violated. 

The IR and FSS measure only two quantities (direction). Artificial generation of a vector 

Such projection yields a singular noise covariance matrix. Another singularity 
This is because only three parameters are necessary to specify attitude. 

T 

To compensate for the first singularity, the noise covariance matrices for the FSS and IR were reduced to 
This forced the elimination of the third row of H. Note that the magnetometer measures three 

In the 
T is not removed by this operation. The nonsingular R keeps the 

T 

Several tests were run to verify that the singularities were eliminated. It was found that as the 
T in the additive EKF 

The uncertainties in the FSS and IR measurement 
It was found in the multiplicative EKF that near 

The filter overcomes the 

VII. RESULTS 

Several scenarios were run with both filters to study the characteristics of the two filters. Simulated 
data were used for most of the tests. 
pitch. 
the orbit. During the latter portion of the orbit when the FSS had coverage, the y bias was approximately 
-2.6 deg/hour for a short time period (around 200 seconds) and then it changed back to 1.2 deg/hour. 
bias flipped in the simulated data due to the orbit eccentricity.) Other than the gyro bias the data were 
clean with no noise. 
seeing how well the two filters could estimate these errors. 
and the results will be presented after the simulated data test results. 
batch estimator are also provided. 
coordinates. 
batch solutions. 

The simulated data had an attitude solution of 0 degrees yaw, roll, and 
The x, y, and z gyro bias were approximately -1.7, 1.2, and 1.5 deg/hour during the first portion of 

(The y 

Other sensor calibrations were studied by applying errors to the different sensors and 
Real data were also used for some of the tests 

When possible, results from the 
The quaternion given in (2.9) defines the attitude in inertial 

It was converted to geodetic pitch, roll, and yaw solutions for display and comparison to the 

Simulated Data 

The first study performed was a sensitivity study of the gyro bias to determine the best value for the a 
priori covariance. 
attitude and gyro bias solutions. As mentioned in Section 1 1 1  the gyro bias was modeled as a Markov process. 
It was found in this scenario that, since the bias does not change, both filters behaved better when the time 
constant on the Markov was set very high. The time constant 
was set to 1x10 seconds. 

The a priori covariance was varied to determine what value gave the lowest error in the 

This essentially models the bias as a constant. 
The results of the sensitivity study showed that the best a priori value for the 5 

Table 1. A Priori Values for Both Filters 

Attitude - specified for run 
Other states - 0 
Po attitude (quaternion) - 0.0625 
P gyro bias - I x I O - ~  radz/sec 

Po other states - 0 unless specified 
P attitude - ~ x I O - ~  radZ/secz 
P Markov - see Section 1 1 1  
time constants - 1x10 5 sec 

FSS measurement u- 0.01 degrees 
I R  measurement u- 0.01 degrees 
Magnetometer measurement 

Q- 3 milliGauss 
0 
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gyro bias covariance was & = 1 ~ 1 0 - ~  radz/secz. 
were used in all runs except where noted. 

50 degrees. 
multiplicative EKF yaw solution has the same shape as the additive EKF with the same final value. 
three sensors were used in the estimation. 
solution converged onto the wrong solution. 
and roll solutions converge very quickly, reaching values of 0.008 deg for roll and -0.001 degrees for pitch 
(both filters). 
residuals for the two filter solutions were very small, but not for the batch due to the large error in the 
solut i on. 

The next case involved adding the estimation of gyro bias to the baseline run. 
given such a large error in order for the solutions to converge. 
(the limit was around 20 degrees). 
Figure 1. 
and roll solutions also converge very quickly for the filters with nominal final results. 
show the estimation of the gyro bias for the two filters (in the span of data used the FSS had coverage so 
the y gyro bias was approximately -2.6 deg/hr). 
figure as well. 
general, needs more than 100 seconds (typically 200 or more) to converge to the gyro bias solution. 
seconds the additive and multiplicative filters give 

All other a priori values are given in Table 1. These values 

The first case examined was a baseline case, solving only for attitude. The a priori attitude error was 
Figures la and lb show the yaw solutions from the additive EKF and batch algorithm. The 

A t l  

The filter pitch 
Both filters show similar behavior, converging quickly. The batch 
The a priori error of 50 degrees was too high. 

The batch epoch solution for roll was -2.8 degrees and 4.5 degrees for pitch. The sensor 

The attitude could not be 
The a priori error was set to 10 degrees 

The yaw solutions for the two filters were similar to those shown in 
The batch algorithm converged for all angles with final values similar to the filters. The pitch 

Figures Za and 2b 

The batch epoch gyro bias solution is listed on the 
The batch algorithm gives a slightly better estimate of the gyro bias. The filter, in 

After 200 

Additive (deg/hr) Mui t i D l  i ca t ive (deq/hr) Batch (deg/hr) 
x = -1.22 x = -1.54 x = -1.7 
y = -1.71 y = -2.16 y = -2.6 
z = 2.25 z = 1.40 z = 1.5 

The multiplicative shows a little quicker convergence to the gyro bias solution. 
seconds and remain stable. 

normalization technique outlined in Section V was implemented into the additive filter. It was found that it 
did not give good results when the noise covariance matrix was quite small. 
quaternion was almost completely replaced by the normalized quaternion and the covariance matrix converged to 
a very small value. 
quaternion is not necessarily the correct quaternion. 
values of 6, the diagonal element of the noise covariance matrix (see Equation 5.2). Table 2 also gives the 
result from the baseline case above, starting with an a priori error of 10 degrees and estimating gyro bias. 
The pseudo-measurement normalization has the most effect on the pitch solution. 
solution eventually diverges beyond what is given in Table 2. 

Both converge beyond 200 

The next iteration in the baseline study examined the effects of normalization. The pseudo-measurement 

In this case the estimated 

The filter then goes to the normalized quaternion with huge confidence but the normalized 
Table 2 shows the results at 100 seconds for various 

As 6 i s  decreased, the pitch 

Table 2. Pseudo-Measurement Normalization Results for Different 
Noise Levels (A Driori attitude = 10 degrees, gyro bias estimatedl 

- 6 Yaw (des Roll (des) Pitch CdeQ 
I x ~ O - ~  0.0031 0.0077 -0.0073 
I ~ I O - ~  0.0030 0.0075 -0.0073 
IxIO-~ 0.00037 - 0 I 0078 0.084 

baseline 0.0039 0.0078 -0 -00058 

Another characteristic of the pseudo-measurement technique is the increased use of computer processing time. 
It took approximately 15 percent more computer time with the pseudo-measurement technique than the original 
technique to process 1000 seconds. 
critical for attitude determination in this scenario. 
the pseudo-measurement normalization technique are similar to those in the baseline cases discussed above. 
Figures 3a, 3b, and 3c show the gyro bias estimates from the additive and multiplicative EKFs with no 

(This is due to the inversion of a 4x4 matrix.) Normalization is not very 
The attitude solutions without normalization and with 
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normalization and from the addi t ive EKF 
somewhat i n i t i a l l y ,  but eventually the solutions converge. I t  was mentioned previously that Reference 3 
shows normalization eliminates the need fo r  f i l t e r  tuning. Even though i t  i s  not crucial  here i t  would be 
expected t o  have an ef fect  s imi lar  t o  that found previously i n  other scenarios, perhaps cases that are not as 
nominal 

The next area examined was a yaw maneuver. 
The gyro biases are d i f fe ren t  in  t h i s  case.. 
af ter  the maneuver they change t o  approximately 2.1, 1.2, and 1.6 deg/hr, respectively (due t o  geometry). 
Again a t t i tude  and gyro bias were estimated. 
was used. Figure 4a shows the yaw solut ion from the mul t ip l i ca t i ve  EKF. The addi t ive EKF and batch yaw 
estimates have the same shape with a f i n a l  yaw values of 179.91 and 180.77 degrees. 
the batch estimate fol low the maneuver very closely. 
and the residuals are extremely small. 
After 100 seconds they have not qu i te  converged due t o  the larger i n i t i a l  a t t i tude  error. 
run (approximately 3000 seconds) the gyro bias has become qui te stable with the values given below. 
epoch gyro bias i s  also given below (using approximately 3000 seconds o f  data as well). 

i t h  the pseudo-measurement normatiration. The gyro bias i s  affected 

The yaw was changed from 0 t o  180 degrees a t  a constant rate. 
The values fo r  x, y, and z s ta r t  out with the or ig ina l  biases but 

This time an upper l i m i t  of 20 degrees i n i t i a l  a t t i tude  error 

Both f i l t e r  estimates and 
The p i tch  and r o l l  solutions exhibi t  nominal behavior 

Figures 46 and 4c show the gyro bias estimates fo r  both f i l t e r s .  
A t  the end of the 

The batch 

Additive (des/hrl Mu l t ip l i ca t i ve  (deg/hr) Batch (deg/hrl 
x 1.712 x = 1.719 x = -0.442 
y = 1.988 y = 1.467 y = 0.442 
z = 1.446 z = 1.475 z = -0.050 

The batch cannot follow a change i n  the gyro bias since i t  gives only one solut ion a t  the epoch. 
f o r  biases are influenced by the i n i t i a l  bias and the bias a f te r  the maneuver and thus are somewhat between 
the two. 

combinations, as opposed t o  using data from a l l  three sensors concurrently. 
FSS/MAG, I R  only, and MAG only. 
those cases with magnetometer data. 
too coarse t o  estimate gyro bias. 
estimation a b i l i t y .  

canbination. 
yaw o f  -0.664 degrees. 
similar values fo r  att i tude. It was found when using two sensors, one being the magnetometer, that better 
results were achieved when the FSS or I R  measurement uncertainties were increased t o  0.1 degrees. A t  0.01 
degrees there was too much d ispar i ty  between the uncertainties and the f i l t e r  exhibited more fluctuations. 
Figure 5c shows the gyro bias estimation from the addit ive EKF with the batch epoch solut ion l is ted. The 
mul t ip l i ca t i ve  gyro bias estimates look Like the addit ive with f i n a l  x, y, and z values of -4.413, 0.852, and 
-2.090 deg/hr, respectively. The f i l t e r  solutions show qui te a b i t  of fluctuation. Between the three 
algorithms the f i n a l  resul ts are s imi lar  f o r  x and y, but d i f f e r  fo r  z; the batch algorithm giving a much 
better estimate. 
due t o  the magnetometer inaccuracy. The batch algorithm also weights the sensors d i f f e ren t l y  which could 
account fo r  the differences i n  the f i na l  solution. 
not observable i n  the I R  sensor) i s  shown i n  Figure 5a. 
pi tch and r o l l  behave nominally since they are estimated mainly by the I R  sensor. 
very small. 
in the residual curve. Also shown are the expected values (plus and minus) of the residual (dashed l ines). 
The magnetometer residual se t t les  near these values. 

An attempt was made t o  improve the gyro bias var iat ion by increasing the uncertainty on the magnetometer 
from 3 t o  50 milliGauss. This did not improve the results a t  a l l .  

Without the gyro bias estimation, the IR/MAG solutions w i l l  converge f rom a much larger i n i t i a l  a t t i tude  
error. Figures 5e and 5 f  show the yaw solutions fo r  the mul t ip l i ca t i ve  EKF and the batch algorithm with a 50 
degree i n i t i a l  a t t i tude  error. The addit ive EKF yaw solut ion has the same shape as the mul t ip l i ca t i ve  EKF 
with a f i n a l  yaw of -0.123 degrees. A l l  three algorithms have f i n a l  solutions that are qui te similar. 

The solved 

In the following cases both f i l t e r s  were used t o  study the characterist ics of using d i f fe ren t  sensor 
The combinations were IR/MAG, 

In a l l  cases both f i l t e r s  showed poor estimation of gyro bias, par t i cu la r ly  i n  
The magnetometer, which suffers from a d ig i t i za t i on  of 6 milliGauss, i s  

This d ig i t i za t i on  results i n  the magnetometer having only coarse a t t i tude  
Without the ava i l ab i l i t y  o f  a f i ne  at t i tude solut ion the gyro bias i s  not observable. 

Figures Sa and 5b show the estimation of yaw by the addit ive EKF and the batch algorithm fo r  an IR/MAG 

The mul t ip l i ca t i ve  EKF yaw solut ion again had the same shape as the addi t ive EKF with a f i n a l  
The a p r i o r i  at t i tude was set t o  0 degrees and the gyro bias was estimated. A l l  show 

The x value fo r  a l l  three algorithms and the z f o r  the f i l t e r s  i s  not estimated very w e l l  

The coarse estimation of yaw by the magnetometer (yaw i s  

The I R  residuals are also 
The d ig i t i za t i on  i s  apparent 

These errors corrupt the gyro bias solution. The 

A sample of the magnetometer residual i s  also shown i n  Figure 5d. 

The 
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p i tch  and r o l l  solut ions are nominal. 
s im i la r  behavior t o  that  shown in  Figure 5.d. 

poorly estimated f o r  the same reasons stated above. 
a t t i tude.  
so lu t ion  again has the same shape as the add i t i ve  but with a f i n a l  yaw o f  0.162 degrees. 
exh ib i t  q u i t e  a l o t  o f  f luc tuat ion.  
in  the so lut ion.  
shows t h i s  behavior because the FSS does not  d i r e c t l y  measure the r o l l  as the I R  sensor does). 
values are 1.64, 1.63, 0.7 degrees f o r  the additive, mul t ip l icat ive,  and batch algorithms, respectively. The 
p i t c h  shows a s l i g h t l y  more nominal behavior. The 
m u l t i p l i c a t i v e  gyro b ias estimates look the same wi th  f i n a l  x, y, and z values o f  -5.786, -0.582, and -26.219 
deg/hr. The gyro b ias z 
solut ions f o r  the f i l t e r s  are be t te r  before the loss o f  the FSS. Near 750 seconds, the m u l t i p l i c a t i v e  gives a 
gyro b ias  so lu t ion  o f  -1.3, 1.7, 1.3 deg/hour. The addi t ive f i l t e r  i s  s imi lar .  Once the FSS i s  lost, though, 
the f i l t e r  i s  re ly ing  s o l e l y  on the magnetometer. The residuals i n  t h i s  case are s i m i l a r  t o  previous results. 

As i n  the case of  the IR/MAG solutions, an attempt was made t o  s t a b i l i z e  the gyro b ias  estimation by 
increasing the measurement noise on the magnetometer from 3 t o  50 milliGauss. 
f o r  the add i t i ve  f i l t e r  ( the m u l t i p l i c a t i v e  f i l t e r  i s  similar).  
increasing the magnetometer measurement noise. The f i n a l  resu l ts  are much closer t o  the actual values. The x 
gyro b ias estimate i s  now bet te r  than the batch estimate. 
combination since the FSS gives some estimate o f  the yaw solut ion, and thus the problem of  re ly ing  only  on the 
magnetometer f o r  yaw estimation i s  avoided. 

As in the case of  the IR/MAG solutions, without the estimation o f  gyro b ias  the f i l t e r s  converge from 
much larger i n i t i a l  a t t i t u d e  errors. 
the batch. 
f i n a l  values o f  1.94, 1.19, and 0.46 degrees f o r  the additive, mu l t ip l i ca t i ve ,  and batch algorithms, 
respectively. 
a t t i t u d e  er ro r  was used, f o r  the m u l t i p l i c a t i v e  and the batch algorithms the maximum i n i t i a l  a t t i t u d e  er ro r  
was 30 degrees. 

Figures 7a and 7b show the m u l t i p l i c a t i v e  
EKF and the batch yaw so lut ions using only magnetometer data. The add i t i ve  EKF yaw so lu t ion  i s  s i m i l a r  t o  the 
m u l t i p l i c a t i v e  with a f i n a l  value of  -1.254 degrees. The a p r i o r i  a t t i t u d e  er ro r  was set a t  50 degrees and 
gyro b ias was not estimated. A l l  three converge t o  less than 1 degree (the add i t i ve  eventual ly converges t h i s  
fa r  as wel l )  e r ro r  using approximately a h a l f  o r b i t  o f  data. 
resul ts  with the p i t c h  s o l u t i o n  converging w i t h i n  approximately 300 seconds. 
from the m u l t i p l i c a t i v e  f i l t e r  using only I R  data. 
using on ly  I R  data with an i n i t i a l  a t t i t u d e  e r r o r  o f  50 degrees. 
eventual ly converges wi th  on ly  I R  data due t o  quarter o r b i t  coupling ( re la ted t o  the geometry o f  the ERBS 
at t i tude) .  

The I R  residuals are very small and the magnetometer residuals show 

As i n  the IR/MAG case, so lut ions using an FSS/MAG combination were generated. Again the gyro b ias  was 

The m u l t i p l i c a t i v e  EKF yaw 
The algorithms were again s ta r ted  w i th  a 0 degree i n i t i a l  

Figures 6a and 6b show the addi t ive EKF and the batch yaw solutions. 
Both f 

?he FSS loses coverage a t  980 seconds. This causes more divergence 
The r o l l  s o l u t i o n  exh ib i ts  s i m i l a r  behavior, with considerable f l u c t u a t i o n  ( the r o l l  also 

The f i n a l  r o l l  

Figure 6c shows the add i t i ve  gyro b ias  estimates. 

The batch again gives a much be t te r  estimate of  gyro b ias  f o r  z than the f i l t e r s  do. 

Figure 6.d shows t h i s  r e s u l t  
In t h i s  case, the gyro b ias i s  improved by 

This technique may work be t te r  i n  the FSS/MAG 

The yaw solut ions are shown in Figures 6e and 6f f o r  the add i t i ve  and 
The m u l t i p l i c a t i v e  i s  s i r t i ta r  with a f i n a l  yaw o f  -0.647 degrees. The r o l l  solut ions converge t o  

The p i t c h  so lut ions show a nominal behavior. For the addi t ive f i l t e r  a 50 degree i n i t i a l  

The so lut ions converge qu ick ly  and the three algorithms g ive s i m i l a r  solut ions. 
The f i n a l  two cases invest igate the use o f  on ly  one sensor. 

The p i t c h  and r o l l  so lu t ions show s i m i l a r  
Figure 8 shows the yaw so lu t ion  

The addi t ive f i l t e r  and batch a lgor i thm did not  converge 
Figure 8 shows tha t  the yaw so lu t ion  

The p i t c h  and r o l l  solut ions converge w i th in  10 seconds t o  values less than 0.05 degrees. 

Sensor Ca l ib ra t ion  

A fu r ther  tes t  o f  gyro b ias estimation was performed t o  determine i f  the f i l t e r  could fo l low a change in  
the bias. 
switched t o  -3.6 deg/hour. 
f i l t e r  fo l lows the change and converges again w i t h i n  200 seconds. 
behavior. 
the epoch (and then the epoch a t t i t u d e  i s  propagated using the gyro data corrected f o r  the epoch gyro bias). 

were used and biases were applied t o  the sensors being studied. 
lX10-7 (un i ts  f o r  p a r t i c u l a r  b ias)  f o r  biases based on the s e n s i t i v i t y  study performed on the gyro bias. 
the future, s e n s i t i v i t y  s tud ies should be performed on each sensor c a l i b r a t i o n  t o  determine the best a p r i o r i  
covariance. 
Several c a l i b r a t i o n  er ro rs  were then applied t o  study the capab i l i t y  o f  the f i l t e r s  t o  estimate several 

I n  t h i s  case the gyro bias was s ta r ted  a t  3.6 deg/hour on a l l  axes, and a f t e r  300 seconds i t  was 
Figure 9 shows the estimation of  t h i s  gyro bias by the add i t i ve  f i l t e r .  The 

The m u l t i p l i c a t i v e  f i l t e r  exh ib i ts  s im i la r  
The batch a lgor i thm cannot estimate a gyro bias change since i t  estimates on ly  a s ing le  so lu t ion  a t  

The remaining c a l i b r a t i o n  study focuses on the FSS, I R ,  and magnetometer. The same clean simulated data  
A p r i o r i  covariances were selected t o  be 

In 

The f i r s t  s tud ies involved applying a s ing le c a l i b r a t i o n  er ro r  t o  on ly  one sensor a t  a time. 
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calibration parameters at once. 

multiplicative and additive filters. 
indicating the least observable component, 
Table 3 shows that the multiplicative filter estimates the pitch bias quite well. 
multiplicative filter is not observable. 
vector due to the georrretry in this case. 

The first calibration parameter to be studied was the IR bias. Table 3 shows the IR bias for the 
The final entry in the table is the highest correlation coefficient, 

A 0.1 degree bias was applied to both the measured pitch and roll 
The roll bias in the 

It is highly correlated with the first angle in the error state 
The FSS does not supply enough roll information, With 

Table 3. Estimation of IR Horizon Scanner Pitch and R o l l  Bias 
(A priori attitude = 0 degrees) 

Bias (deg) Uncertainty (deg) Highest 
Filter Length Ro(L Pitch Roll Pitch Correlation 

Mult. 200 sec -0.177 0.103 0.014 0.0006 (~3~,r)=0.989 
Add. 200 sec -50.01 3.528 0.003 0.0105 all high 

different geometry (the sun in a different location in the FOV or sun in the other FSS) the roll bias should 
be estimated as well as the pitch bias in the present example. 
the pitch or roll bias well. 

appl i ed . 

The additive filter does not estimate either 

The next bias studied was an FSS bias. Table 4 shows the estimated values when a 0.1 degree bias was 

Table 4 .  Estimation of FSS Alpha and Beta Bias (A priori attitude = 0 degrees1 

Bias (deg) Uncertainty (deg) Highest 
Filter Lenqth alpha beta alpha beta Correlation 

Mult. 200 sec 0.208 0.110 0.012 0.0011 (O1,a)=O.986, (%,a)=0.982 
Add. 200 sec 53.38 124.3 0.0005 0.0001 (ql,a)=0.873 

Again the multiplicative filter estimated one of the biases (beta) quite well. 
bias converges to approximately 0.1 degrees. 
additive filter shows poor estimation without significant observability problems as reflected by the 
correlation matrix. 

shows that both filters estimate the bias quite well. 

With a longer run, the beta 
The alpha bias is not observable again due to geometry. The 

The next bias estimated was magnetometer bias. A 10 milliGauss bias was applied on all axes. Table 5 

Table 5. Estimation of Magnetometer X, Y. and Z Biases (A Driori attitude = 10 desrees, gyro bias 
estimated) 

Bias (mG) Uncertainty (mG) Hi ghest 
Filter Length - Y - z - X - Y - Z Correlation 

Mult. 200 sec 13.46 12.87 13.68 0.173 0.173 0.173 small 
Add. 200 sec 13.48 12.90 13.72 0.173 0.173 0.173 small 

The correlations were all very small. 
magnetometer) of the applied biases. 

FSS misalignment was the final calibration error studied with the multiplicative filter. 
filter was not studied because of its poor performance estimating the previous calibration errors.) 
degree misalignment was applied to the FSS x and y axes and a 0.05 degree misalignment was applied to the FSS 
z axis. The misalignment uncertainty was 0.18 degrees. After 200 seconds the estimated misalignments were 
-0.070, -0.22, -0.51 degrees for the FSS x, y, and z axes, respectively, with uncertainties of 0.032, 0.043, 
and 0.093 degrees. 
coefficient was 0.998) but the three misalignments are not highly correlated to the attitude. Next, the 
filter was run with the same misalignments applied, but alpha and beta biases were solved for instead of 

The estimated biases are all within 6 milliGauss (the resolution of the 

(The additive 
A 0.1 

The x and z misalignments are highly correlated to one another (the correlation 
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misalignments. 
bias, which corresponds to a y misalignment, Mas estimated ell but the alpha bias Mas not since it is not 
observable at this attitude (this means that the x and z misalignments are also not observable). 
estimated biases after 200 and 400 seconds were 

This revealed that the filter could not distinguish the misalignments from biases. The beta 

The 

a = 0.12 fl = 0.09 u = 0.005 degrees (200 seconds) 
Q =-0.01 B = 0.09 u = 0.0006 degrees (400 seconds) 

Data from different attitudes would be necessary to estimate the alpha bias and also to try and estimate 
the misalignments and distinguish them from biases. 

components consisted of attitude, gyro bias, FSS y misalignment, FSS beta bias, IR pitch bias, and 
magnetometer bias. 
filter gave estimates of gyro and magnetometer bias like those given above (in the nominal cases). 
did not give good estimates of the other calibration errors. With all the errors combined the FSS y 
misalignment and beta bias and the IR pitch bias were not observable, even though the beta and pitch biases 
were observable to the filter when applied alone. 
to solve for all the parameters together. Again, data from several attitudes should be used and perhaps the 
state should be kept smaller when performing sensor calibration. 
for all the sensor errors. 

The gyro scale factor and misalignments were not estimated because a single attitude would not give 
sufficient observability. This is also true for the FSS scale factor. 
The magnetometer misalignment or scale factors were not estimated in this initial study as they are likely not 
to be observable with the coarse ERBS magnetometer data. 

The multiplicative filter was set up to solve for several calibration errors in one run. The estimated 

After 400 seconds the The sensor errors applied were the same as those used previously. 
The filter 

The geometry in this case does not give enough information 

I t  would be necessary to iterate to solve 

Attitude maneuvers would be necessary. 

Real Data 

The last test studies the behavior of the filters when using real ERBS data. The orbit of data 
selected contained approximately 10 minutes of FSS data at the beginning and end of the orbit. 
and 10b show the multiplicative EKF and the batch algorithm estimates of yaw. 
looks like the multiplicative with the same final value. Figure 1Oc shows the multiplicative gyro bias 
estimates. The additive has final x, y, and z gyro bias estimates of -7.393, -4.795, and 1.627 deg/hr, 
respectively. 
0.10 degrees roll and 0.30, 0.30, 0.30 degrees pitch for the additive, multiplicative, and batch algorithms, 
respectively. 
values for pitch and roll. 
two filters than for the batch (comparing the final filter results with the batch epoch). 
exhibit very similar behavior. 
for the batch algorithm. 
similar to that shown in Figure 5.d. 
smaller residuals in the filters tend to give those solutions more credibility. 

Figures 10a 
The additive EKF yaw sotution 

The roll and pitch solutions look similar to the yaw solution with final values of 0.07, 0.07, 

The filters have slightly smaller estimates of yaw, and the three algorithms have similar 
The gyro bias estimates are similar in y, but x and z are somewhat smaller for the 

The two filters 
The residuals for the FSS were considerably smaller for the two filters than 

The IR residuals were similar and the magnetometer residuals exhibited behavior 
The In the case of the real data, the true reference is not known. 

VIII. POTENTIAL APPLICATION 

A version of the additive filter was created in which only attitude and gyro bias are solved for (the 
dimension of Equation 2.9  was reduced to 7 ) .  This filter was then tested with simulated ERBS data in a real- 
time attitude determination system (Reference 5). 
attitude and gyro bias solutions shown in Figures 1 and 2 (baseline) in real time (the nominal ERBS data rate 
is 1 set of measurements every second). 
is performed with single-frame estimators that solve only for attitude. 
capability of giving much m r e  accurate solutions in a relatively short period of time (see Figures 1 and 2 
for the length of time to converge). 
coverage is available. 
requires considerably m r e  processing time and memory. 
prototype system to be used by the GRO. 

The filter was able to process the data and generate the 

Currently, real-time attitude support in the Flight Dynamics Division 
The real-time filter has the 

Gyro bias estimates could also be generated when sufficient data 
This real-time filter gives results comparable to the ERBS batch algorithm, which 

This real-time filter is currently being adapted as a 
Future missions, such as the SMEX series, are also planning to 
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implement a real-time filter, based on that developed for ERBS. 
The initial test results 

given in Section VI1 demonstrate that it can give solutions comparable to the batch algorithm (in certain 
scenarios, others need further investigation as to why the filter solutions differ from the batch). It is 
also advantageous to combine the attitude estimation with the sensor caiibration since the correlation matrix 
provides valuable information on observability conditions. The combined attitude determination and sensor 
calibration can be implemented into a batch algorithm. The batch algorithm, though, requires much more memory 
and has no means of compensating for dynamic noise which can affect an epoch attitude solution propagated over 
a long period of time. 

The full-state filter has potential application for non-real-time support. 

IX. CONCLUSIONS 

In the scenarios presented (using nominal simulated data) both filters, the additive and multiplicative, 
are very robust in attitude estimation. The filters can be started with large initial errors and still have 
quick convergence. 
filters also exhibit good estimation of gyro bias (when the optimal sensor data are available), although the 
batch converges with less data. The filters follow changes in attitude and gyro bias closely; the batch 
algorithm also follows an attitude maneuver closely but it cannot follow changes in gyro bias. When the 
optimal sensor combinations are not available, the filters must rely on the magnetometer data. The attitude 
solutions are still estimated well, but the gyro bias is not estimated as well. 
the coarseness of the magnetometer data. 
cases. 
(the results would also be improved with a more accurate magnetometer). 
results when using real ERBS data. 
Since the true solution is not known, the residuals are the only real figure of merit. 

The pseudo-measurement normalization technique is an acceptable normalization method when computer 
processing time is not critical. 
gives results comparable to the original normalization technique. When the noise level is not selected 
properly, the attitude solutions converge to the wrong value. 
significant impact on the pitch solution. 

reasons why are not clear as of this writing. 
an affect on the ability of that filter to distinguish and estimate sensor errors. 
many calibration errors are not observable. 
spans, giving different sensor coverage, is necessary to fully determine the capabi'lities of the 
multiplicative filter. 
data dropout. 

The batch algorithm is more sensitive to large initial attitude errors in some cases. The 

For ERBS this is a result of 
The batch algorithm does a better job estimating gyro bias in these 

Further investigation into the weighting is necessary to find ways of improving the filter results 
Both filters also gave reasonable 

The filters had slightly smaller residuals than the batch algorithm. 

When the noise level is se1:cted properly, the pseudo-measurement technique 

In the scenario presented this had a 

The multiplicative filter has better sensor calibration characteristics than the additive filter. The 
Perhaps the attitude singularity in the additive filter has 

With a single set of data, 
Further study of the sensor calibration with different data 

Additional studies should also be performed with sensor corruption, such as noise and 
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Abstract 

Kalman filter technniques are widely used in the areas of attitude and orbit 
determination, prediction and calibration. These techniques work well if the 
system dynamics are well-defined. Problems arise, however, when the system 
parameters are unknown ahead of time or changing over time. 

This paper discusses an adaptive Kalman filter design that utilizes recursive 
maximum likelihood parameter identification. At the center of this design is the 
Kalman filter itself, which has the responsibility for attitude determination. At 
the same time, however, the identification algorithm is continually identifying 
the system parameters. The approach is applicable to nonlinear as well as linear 
systems. This adaptive Kalman filter design has much potential for real-time 
implementation, especially considering the fast clock speeds, cache memory 
and internal RAM available today. 

The recursive maximum likelihood (RML) identification algorithm is dis- 
cussed in detail, with special attention directed towards its unique matrix for- 
mulation. Next, the procedure for using the algorithm is described along with 
comments on how this algorithm interacts with the Kalman filter. 

Finally, a spacecraft attitude determination/calibration example is pro- 
vided. In the development of the dynamics for this example, the angular veloc- 
ity of one of the axis is assumed to be constant. In the simulation, however, this 
velocity varies slowly. The RML identifier is used to continually identify this 
changing velocity. This AKF-RML method may be used to identify multiple 
parameters such as sensor biases or external torques. 

*Hughes Aircraft Company, Aurora, Colorado 
tMechanica1 and Aerospace Department, North Carolina State University 
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A problem that has received recent attention is the estimation of systems whose 
dynamics are unknown or changing. In these situations, it is often neccessary to 
utilize an estimation algorithm that is able to adjust the system dynamics model au- 
tomatically. Self-adjusting estimation schemes are known as adaptive filters. There 
are many examples of systems with unknown or changing dynamics, several of which 
have just recently become more of a concern. 

Spacecraft attitude and orbit estimation are two such areas. Many current 
operational spacecraft do most of the attitude estimation) prediction and calibration 
on the ground using large mainframe computers. Recent literature, [19] and [23] for 
example, has suggested on-board attitude prediction and calibration using adaptive 
filtering techniques. Adaptive filtering methods have already been used for some 
time in spacecraft orbit estimation [27]. 

Adaptive filter techniques have also been applied in the steering of ships [28] 
and has been suggested for use in calibrating ocean navigational gyros [21]. Indus- 
trial processes research has led to the development of adaptive filter algorithms for 
monitoring chemical processes. Chen, Wadhwani and Roberts [3], for example, offer 
an adaptive filter technique for monitoring changes in raw material composition. 

Adaptive control methods often utilize adaptive filters. An extensive amount of 
literature has surfaced within the last fifteen years in the field of adaptive control of 
robotic manipulators alone. An example of a robotic manipulator adaptive control 
scheme is discussed in detail in an article by Lee, Kelly and Karim [15]. 

A relative newcomer to the field of adaptive filtering is large space structures 
(LSS). Larger spacecraft offer several advantages over smaller spacecraft including 
longer on-orbit lifespans (thus, fewer launch vehicles are required), on-orbi t refueling 
(for lower orbit spacecraft) and more or larger payloads. As theseapacecraft increase 
in size and complexity, some problems arise. A larger, more complex spacecraft will 
have lower bending frequencies, more fuel slosh, larger disturbances [ll] and the 
possibility of greater interaction between multiple payloads [lo]. Adaptive filtering 
techniques have been proposed for use in identifying parameters such as vibrational 
frequencies, damping coefficients, and attitude estimation. 

Accurately estimating the states of a system whose dynamics are time-invariant 
and known is often easily accomplished. There are numerous estimation methods 
for accomplishing this task, depending on the particular application. New problems 
are created, however, when the system has unknown or time-varying dynamics. If 
estimation is attempted for system dynamics that are incorrectly modelled, large 
errors in the estimated states are likely. Even more problems may arise if control 
is to be applied based upon the estimated states. It is clear that a state feedback 
regulator applying control to a system based upon these incorrect states may have 
problems determining the correct amount of control to apply, possibly causing the 
system to go unstable. 
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This paper discusses an adaptive filter technique that utilizes a Kalman filter. 
Adaptive filters based upon Kalman filters are known as adaptive Kalman filters 
(AKF). This AKF design is developed in the second and third sections, then applied 
to a satellite attitude determination problem in Section 4. 

ti ti0 C U€? 

2.1 Motivation for ~ e v e l o ~ ~ e n t  
Using a Kalman filter-based adaptive filter offers several advantages over other adap- 
tive filter techniques. Even though it may be computationally intense depending 
upon the application, the adaptive Kalman filter design provides the capability to 
easily provide the system states where and when they may be needed. A large space 
structure system could be designed so that the states are the structure’s attitude 
(pitch, roll, yaw and their rates). For this example, the AKF could serve as not only 
the state estimator, but the provider of these estimated states to other payloads as 
well. 

To be adaptive, however, the AKF must be able to accurately identify unknown 
or time-varying system parameters. The burden of this task falls upon the identifier. 
Since it may be desireable to use a Kalman filter-based adaptive filter, it seems 
reasonable that the identifier algorithm chosen should be one that works well with 
a Kalman filter. This chapter will cover the development of such an identifier. 

Maximum likelihood techniques have been used for parameter identification 
for many years. Lee [18], in his book published in 1964, claims that Fisher [8] 
first developed identification using maximum likelihood techniques. The concept 
of recursive maximum likelihood identification using a Newton-Raphson type opti- 
mization technique and Kalman filter equations was originally conceived by Stepner 
and Mehre [25] in 1973. Their algorithm, which was designed to handle nonlinear 
as well as linear dynamics, was very computationally intensive. In 1986, Fermelia 
[7] further expanded the concepts, and Sjodin and Fermelia [24] developed working 
code for a first order dynamics model in 1987. Sjodin and Fermelia’s algorithm was 
much simpler in concept, thus giving it a much better chance for real-time imple- 
mentation. Kelly [14] and Fermelia extended this work to multiple second order 
dynamic models in 1989. 

2.2 System Model 
This dissertation discusses an adaptive Kalman filter design where the system model 
is defined in state-space form. Consider a system described by 
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The noise vectors, 2 and 2, are assumed to be normally distributed with a mean 
of zero. 

In order to obtain a discrete-time model of the above system model, it is as- 
sumed that the set of discrete-time points (0, 1, . . . , k, k + 1} are sufficiently 
close together that piecewise constant approximations may be made. The solution 
of 2 = Fg + Gu for such an interval may be expressed as 121 

2.3 Defining the Performance Index 
In this section, a performance index is defined for RML identification. Since the 
identification technique is a recursive maximum likelihood method, the log likeli- 
hood function must first be defined. To identify the system parameters, the log 
likelihood function must be maximized. This function is maximized by minimizing 
its negative term. This negative term is chosen as the performance index. 

2.3.1 The Log Likelihood Function 

The identification method that is developed in this section is a recursive maximum 
likelihood method. Variables that are vectors rather than scalars are underlined. 
Variables that are estimated or identified have a hat, such as 2. First, define a log 
likelihood function, ,C( e), as 

where e is a vector of unknown parameters and p(Zl0) is the conditional probability 
density function of the observations, z, given e. The maximum likelihood estimate, 
-7 8 is the parameter vector that most likely caused the observations [24]. 

Repeated use of Bayes’ Law is used to derive an expression for L (8). Let &+I 

be the set of all observations at time k + 1, or 

Now, p ( Z , + , ( @ )  may be expressed as 

L(8) may now be written as 
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If the noise values, t u k  and gk+l , are normally distributed, p ( ~ l z ~ - ~ , @ )  is 
normally distributed. From [24], 

where 
def 

def 

def 

m = dim[z] 
B = E ( v g T )  

LFi - & - 4;. 
Substituting this into the Equation 8 gives 

1 
2 

k+l 

i=l 
G(@) = In( n[(27r>" det B] -1 /2ezp ( - -  z: B - l z i ) )  

1 
2 

- - -- m ( k  + 1) In (27r) 

2.3.2 The Performance Index 

Now that the log likelihood function has been defined, an expression for the perfor- 
mance index must be found. In Equation 9, L(@) is maximized if the summation 
expression is minimized. Consider the following performance index, 

k + l  1 

2 i=l 
Jk+,(@) = - ( In (det  B )  + E? B-' ~ i )  

to be minimized. 
If J k + l ( @ )  is expanded using a Taylor Series expansion, one obtains 

where 
If third and higher order partial terms are assumed to be negligible, the above 

expression can be solved for S@, the parameter error. At steady state, it is desired 
that Jk+1(@) - Jk+1(8*) = 0. What remains of the Taylor Series expansion is 

is the current value of the parameter, e. 
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Solving for the parameter update, the following expression is obtained: 

The parameter update, en,, is found by adding the error in the parameter, be, to 
the current vdue of the parameter, &ld. 

Equation 13 is very similar in form to the recursive Newton-Raphson algorithm. 
The first and second partials are found by differentiating J k + l ( @ )  from Equa- 

tion 10. The error covariance matrix, B,  is assumed to be constant once steady 
state has been reached. Thereby, the first term of Equation 10 may be ignored 
when the partial is taken, giving [l] [24] [25] 

The error covariance matrix B is defined as [20] [25] 

The error covariance matrix B contains a vector, E ,  multiplied by its transpose, 
- u. Because of this, B will tend to be singular for the first and second iterations. 
This singularity will cause difficulties in solving for B-'. Depending upon the 
dynamics of the system, the identifier generally works well if B-' is reinitialized 
on or about the third iteration. Hence, one solves for B on the first two iterations, 
but not for B-' , . Then on the third iteration, begin solving for all 
identifier values. 

or 

2.4 RML Identification Algorithm 
The next two sections of this chapter discuss the matrix (multiple identified pa- 
rameters) form of RML identification. The first section covers the details of the 
derivation of the matrix form of RML identification. This is followed by a section 
describing the procedure for matrix RML identification. 
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The recursive identification parameter update algorithm is described by Equa- 
8 U T  tions 13 through 17. Equation 13 is comprised af Equations 15 and 16. The @ 

term of these last two equations is now described. Since the following derivations 
rely heavily upon the Kalman filter equations, Table 1 [9] is presented as an quick 
reference of the set of Kalman filter equations. 

Table 1: Summary of Ka lman  Filter Equations 

I I 

First, define a variation in yk+l as the error between the desired innovations, 
Z ~ + ~ ( D ) ,  and the incorrect innovations, a+l(I). 

b c + 1  = Vk+l(D)  - Vk+l(O (18) 

The desired innovations can be viewed as the innovations expected for a Kalman 
filter whose dynamics match those of the system being modeled. The incorrect 
innovations can be viewed as the innovations expected from a Kalman filter whose 
model dynamics do not match those of the system being modeled. 

In order to obtain an expression for Svk+l , begin with the Kalman filter 
expression for the innovat ions. 

Then, observing the variation of both sides, 
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Since there is no error in a+l due to errors in the system dynamics or modeling, 
= 0 .  Thus, 

6 g k +  1 = - & ( i k + l / k )  (21) 
Assume that the unknown or changing parameters exist only in & k + l , k ,  the 

Kalman filter state transition matrix. Using the Kalman filter equation for ,&+l/k 

from Table 1, expand to get 

6&+1 = -6 [ H k + l & k + l , k g k / k ]  - (22) 

The parameters to be identified occur only in & k + l , k ,  the state transition matrix. 
Therefore, 

&&+I = - [ H k + l 6 @ k + l , k $ k / k  + H k + l @ k + l , k 6 k k / k ]  

where 

Let the terms contained by the brackets in Equation 23 be represented by a 
matrix A k + l .  

(26) 

Then, 

The first term of A k + l  may be realized by the following algorithm [5]: 
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or 

where 4a.j are elements of 6 k + l , k  and 

An expression must now be found for the second term of &+I. If an expression 
can be found for a2k+1 6, k+l then 'tk/k 7 is simply the value of %k+l asT /k+l from the last 
iteration. Let a matrix B k + l  be defined as 

as as 

Then, B k + l  from the last iteration is defined as 

Again, using the Kalman filter equation for &+l/k+1 from Table 1, the following 
expression is derived 

Thus, B k + l  may be written in terms of M k + 1 ,  B k  and &+I as 

Let a matrix c k + 1  be defined such that 
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An expression for aGk 1 is found next. Again, expand using the Kalman filter 

equation for G k + l  from Table 1. 

Expand the same way. ae 

Letting 

Equation 37 becomes 
r k + l  = I - G k + l H k + l  

Thus 

Now, may be described as aa 

and substituting 6 P k + l / k + l  into Equation 36 yields 

[I + H k + l P k + l / k H ~ + 1 f i ~ ~ 1 ]  (42) 

Introduce the matrix v k + 1  where 

f i + 1  = H f + 1 R ; t l  [I + Hk+lPk+l/kHkT+1Rk-:i]-l g k + l .  (43) 

Then, post multiplying Equation 42 by a+1 , an expression for c k + 1  is obtained 
as 
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Letting 

allows c k + l  to be expressed in terms of a matrix D k + 1  . 

c k + l  = r k + l D k + l  (46) 

Next, an expression for D k + l  is found as 

D k+l = b p k +  1/ k v k + l  

= b & k + l , k w k + 1  + +k+l,k b p k / k  u k + l  

+ $ k + l , k p k / k  b6$+1,kvk+1 (47) 

where 

w k +  1 = P k / k  &$+I ,k &+I (48) 

u k + l  = 6:+1,kVk+l- (49) 

Using the same technique as in Equation 28, the first term of the D;+1 expres- 
sion may be writ ten as 

The third term can be written as 

where 

4; = [ 4172 $272 * - -  $7272]T. 

265 



Let the second term of the D k + l  expression be written in terms of a matrix &+I, 

4 k+1, k b P k / k U k + l  == '$ k+l , k E k +  1 (52) 

(53) 

E k + i b @  = b P k / k U k + l .  (54) 

Combining all three terms for D k + l  gives 

D k + l  = &k+l , kEk+l  + s k + l  f & k + l , k p k / k N k + l *  

An expression for must now be found. Equation 52 defines E k + 1  as 

Using the Kalman filter equation for P k / k  yields 
T -1 T -1 

b p k / k  = b P k f k - 1  - h p k / k H k  R k  H k P k f k - 1  - P k / k H k  R k  H k b P k l k - 1 .  (55) 

Solving for b P , / k  and postmultiplying by u k + 1  yields 

h P k / k u k + l  r k b P k / k - l & + l  (56) 

or 
E k +  1 b!? = r k h p k / k -  1 yk+1  

where 
(57) 

The matrix Fk+1 is expressed in terms of D k ,  the previous value of the D k + l  matrix. 
Since b p k f k - 1  is symmetric, 

F k + l s @  = & P k / k - l Y k + l  

= v,* v z b p k /  k- 1 y k +  1 

= v,* (Dkse>T &+l 

where V i  is defined as the pseudo-inverse of V z  [26], or 

v,* = & [vzv,]-l. 
This allows Fk+1 to be expressed as 

Fk+1 = [ V'Y&,dl V;Y&,d2 ViYLd3 3 
where d j  is defined as the f h  column of D k .  
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The identification algorithm has now been derived for the matrix (multiple 
parameter) case where only the state transition matrix, & k + l , k ,  is a function of the 
parameters. The procedure for using the matrix form of RML identification is now 
explained. There are six major steps, with steps five and six having several substeps. 

If this is the first 
iteration, set it equal to some small reasonable number. The user may have 
to try several different starting values in addition to letting the identifier 
iterate several times in order to determine a reasonable initial value. 

1. Set B k  equal to B k + l  of the last identifier iteration. 

2. Calculate using Equation 27. 

3. Calculate the error covariance, B , using Equation 17. 
as 

4. Calculate the first and second partials of J k + l  using Equations 15 and 16. 

5. If ready to update, 

0 Calculate the parameter error vector, S@ , using Equation 13. 
0 Update the parameter vector, e ,  using Equation 14. 

6. If not ready to update, solve for B k + l  to be used as B k  in the next iteration. 
To do this, 

0 Set D k ,  T k ,  v k  and r k  equal to D k + l ,  T k + 1 ,  &+I and r k + l ,  respectively, 
from the previous iteration. From the last iteration of the Kalman filter, 
get the values for p k / k ,  & / k ,  p k + l / k ,  Gk-j-1, H k + 1  and R k + l *  

0 Calculate: 
(a) Vc from Equation 63 
(b) v k + 1  from Equation 43 
(c) u k + 1  from Equation 49 
(d) Y k + l  from Equation 58 
( e )  F k + 1  from Equation 64 
(f) E k + l  from Equation 61 
(g) N k + ,  from Equation 51 
(h) w k + 1  from Equation 48 
(i) s k + l  from Equation 50 
(j) D k + l  from Equation 53 
(k) r k + l  from Equation 38 
(1) Ck+l from Equation 46 

(m) B k + l  from Equation 33 
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This section discusses an application of AKF-RML to a spacecraft attitude 
scenario. First, the dynamic equations are developed. Next, the state space model 
for the dynamic equations is explained. Finally, results are shown using simulated 
data. 

4.1 Dynamic Equations 
Assume the attitude of a spacecraft may be described using Euler's equations [12], 

where Ii represents the inertia about the ith axis, w; is the angular velocity about 
the ith axis and N; is the applied torque about the ith axis. 

If torque-free motion (Ni = 0)) symmetry of two of the inertias ( Il = I2 = IT)  
and constant velocity in the third axis (w3 = n )  is assumed, then the above equations 
become 

I T k  S t  - ( I3-IT)wZw3 (68) 

1.2 = 0. 

Differentiating Equation 68 yields 

IT& = - ( I3 - IT)  W 2 ~ 3 .  (71) 

I;w1 = - ( I3 - IT)  w3 ITw2 (72) 
= - (I3 - IT)w3 (13 - IT) w3w1 (73) 
= - (13  - IT)2 w;wl (74) 

Multiplying by IT and substituting in Equation 69 gives 

or 
2 

13 - IT 
6.1 = - ( IT ) w1. 

Integrating Equation 70 then yields an expression for w2 as 

(75) 

(76) 

where t is the step size. 
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Equation 75 is in the form of a simple undamped harmonic oscillator. Therefore, it 
may be expressed in continuous state space form as 

or in discrete state space form as 

where 

COSW,~  w, 1 sinwnt ] [ ;; ] [ 1: ] k + l  [ -wn sinw,t cosw,t k 

4.3 Attitude Determination Results 
The example described in Sections 4.1 and 4.2 were implemented on a XT-compatable 
PC. The true natural frequency, w,, was set to -6.0 radians. The natural frequency 
in the Kalman filter dynamics was assumed to be unknown, and the identifier set 
up to solve for the true value. 

In the first test case, AKF-RML was set up to operate in a pseudo-batch mode. 
In this mode, the identifier is actually solving for the unknown parameter at each 
iteration, but the parameter is updated every k iterations. Figure l(a) shows the 
results of this test case with k set to 70 iterations and the initial guess on w, equal 
to -6.3 radians. 

While this pseudo-batch mode is useful for analysis and to gain insight into 
the operation of the AKF-RML algorithm, the goal is still to operate recursively. 
Figure l(b) shows the results of recursive AKF-RML with the initial guess of w, at 
-6.6 radians. 

5 Summary 
Adaptive filtering is rapidly gaining popularity as a method of estimating sys- 

tems with unknown or changing dynamics. This paper offers a recursive identifica- 
tion algorithm that is designed to be used in conjunction with a Kalman filter. 

In [ 141) the recursive maximum likelihood identification algorithm is developed 
and tested. Extensive testing is accomplished using simulated data, beginning with 
the simple first order, decaying exponential case. This is extended to second order 
spring-mass dynamics, with excellent results obtained for both of these cases. Next, 
damping is added to create the well-known spring-mass-damper dynamic case. Very 
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Figure 1: AKF-RML Results in (a)  Batch Mode and ( b )  Recursive Mode 
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good results are obtained when identifying the natural frequency or damping coef- 
ficient individually. Problems arise, however, when both parameters are identified 
concurrently. This problem presents itself whenever the parameters to be identified 
are not of the same magnitude, and is solved by the addition of a scaling matrix to 
the parameter update equation. 

The identification algorithm developed in this paper may be computationally 
intense in some applications. As with all Kalman filter algorithms, the computa- 
tional needs rise quickly as the number of states and observations increase. The 
identification algorithm computational needs will rise not only with an increase in 
the states and observations, but with an increase in the number of identified pa- 
rameters as well. Another possible disadvantage is the trial and error method that 
is currently used to find the parameter scale factors. The use of scale factors is 
actually not a disadvantage against this identification algorithm alone, as similar 
scaling or weighting matrices are used in many current identification algorithms 
when identifying parameters of different magnitudes. In addition, maximum likeli- 
hood techniques tend to converge poorly when the initial conditions are far away 
from the true conditions. In most practical applications the users should be able to 
arrive at reasonable initial conditions. 

The advantages of using this adaptive filter design are many. Incorporation 
of a Kdman filter estimator in AKF-RML allows the designer to choose system 
states that relate to real-world entities such its position, velocity and acceleration. 
In the case of aircraft or satellite applications, for example, those states can then 
be passed on to various payloads for pointing requirements. RML identification is 
designed specifically to be used in conjunction with the Kalman filter. Therefore, 
this adaptive Kalman filter design may be implemented for systems whose dynamics 
are unknown or varying. 

In addition, the RML identification algorithm described in this paper is able to 
handle relatively high levels of noise. The common problem of insufficient excitation 
prevents parameters from being identified at very low noise levels, but this problem 
disappears as noise levels are brought up enough to provide sufficient excitation. 

Results are shown for a simple spacecraft attitude determination example. 
Plots are presented for two cases. The first case shows the results of AKF-RML 
in batch mode where the parameter is updated after a series of iterations. Next, 
results are provided of AKF-RML in recursive mode. More research needs to done, 
especially in the area of choosing initial conditions, in order to get AKF-RML to 
operate efficiently in recursive mode. 
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Abstract 
A technique for robust identification of nonlinear dynamic systems is developed and 

illustrated using both digital simulations and analog experiments. The technique is based 
on the Minimum Model Error optimal estimation approach. A detailed literature review 
is included in which fundamental differences between the current approach and previous 
work is described. The most significant feature of the current work is the ability to 
identify nonlinear dynamic systems without prior assumptions regarding the form of the 
nonlinearities, in contrast to existing nonlinear identification approaches which usually 
require detailed assumptions of the nonlinearities. The example illustrations indicate that 
the method is robust with respect to prior ignorance of the model, and with respect to 
measurement noise, measurement frequency, and measurement record length. 

The widespread existence of nonlinear behavior in many dynamic systems is well- 
documented, e.g, Thompson and Stewart [l]; Kayfeh and Mook [2]. In particular, 
virtually every problem associated with orbit estimation, flight trajectory estimation, 
spacecraft dynamics, etc., is known to exhibit nonlinear behavior. Many excellent 
methods for analyzing nonlinear system models have been developed. However, a key 
practical link is often overlooked, namely: How does one obtain an accurate mathematical 
model for the dynamics of a particular complicated nonlinear system? 

Accurate dynamic models are necessary for analysis, filter design, and/or control 
system design. For example, most filter design assumes white process noise, yet many 
nonlinear effects are inherently non-zero mean; e . g ,  quadratic nonlinearities are always 
positive. In order to obtain a model with truly zero mean process noise for filter design 
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a reasonable approximation, the app~ximation is normally limited to a small region about 
the operating point of linearization. Consequently, there is a real need for nonlinear 
identification algorithms. If nonlinearities are a predominant part of a system’s behavior, 
using a linear model to describe such a system leads to inconsistencies ranging from 
inaccurate numerical results to misrepresentation of the system’s qualitative behavior. 
Since nonlinearities are seldomly easily characterized, identification techniques may prove 
beneficial in developing accurate mathematical representations of nonlinear systems. 

Numerous methods for the identification of nonlinear systems have been developed 
in the past two decades @lake, Juang and Gawronski [3]). Most methods fall into one 
of the following categories: 

1, describing the nonlinear system using a linear model 
2. the direct equation approach 
3. representing the nonlinear system in a series expansion, and obtaining the respective 

coefficients either by using a Egression estimation technique, by minimizing a cost 
functional, by using correlation techniques, or by some other approach 

4. obtaining a graphical representation of the nonlinear tenn(s), then finding an analytical 
model for the nonlinearity 

With such diversity of nonlinear identification techniques, the choice of an algorithm 
may be based on criteria such as: iterations required, robustness in the presence of mea- 
surement noise, number of measurements needed, robusmess with respect to knowledge 
of the inital conditions, and robustness with respect to initial assumptions regarding the 
form of the nonlinearity, depending on the needs of the particular application. 

Among the methods which linearize the nonlinear system are those presented by 
Jedner and Unbehauen [4] and Ibanez [5].  Jedner and Unbehauen [3] represent a nonlinear 
system, which may often function at a number of operating points, by an equivalent 
number of linear submodels. It is assumed that the system operates at only a few points. 
Although the model is good for controller design, the point at urhich the system is 
operating must be known and the linear models apply only within the operating regions. 
lbanez [5] takes a slightly different approach by assuming the system response to be 
periodic at the forcing frequency. An approximate transfer function is constructed. The 
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model. Then a m r  algorithm provides optimal estimates of the final m a l  

estimation is e m ~ l o y  obtain the final analytical model. 
Kortman and U n ~ h a u e n  [lo] and Distefano and Rath [ll] use the minimi~t ion  

of an error cost function as a means of obtaining the coefficients of the functions used 
to represent the nonl ties. The method presented by Kortman and Unbehauen [lo] 
uses only system input and output information to estimate the polynomial representing 
the nonlinearities and eters of the linear components. It is robust in the 
presence of noise, al on is necessary. Distefano and Rath [11] present two 
techniques, a non-iterati ect identification and an iterative direct identification. In 
the first technique, m e ~ u ~ m e n t  of all variables is required and the model parameters 
are obtained through the ization of an error function. In the second technique, 
iteration is used ost  unction yielding the system parameters in addition 
to the state trajectories. stefano and Rath [ 111, the nonlinear model form is also 
taken to be known. 

In other techniques s in statistical linearization, a nonlinear relation is replaced by a 
linear equivalent gain. sen 1121 extends the technique of statistical linearization by 
representing the nonlinearity as a linear combination of a number of arbitrary functions. 
Correlation techniques are then used to determine the coefficients of these functions. 
number and type of functions selected depends on the desired accuracy as well as some 
knowledge of the system nonlinearity. Reasonable accuracy is obtained in the presence 
of noise and no iterations are necessary. Although some of the basic properties of the true 
nonlinear output are preserved, it is limited to only random excitation, and knowledge 
of all states and forcing terms is required. 

In the method of multiple scales ( anagud, Mayyappa and Craig (13]), a perturbation 
solution to the nonlinear equation of motion is obtained. An objective function is built 
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only valid for a particular assumed nonlinear form. If the assumed nonlinear form is 
changed, the algebra must be repeated. 

Another popular approach is to describe the nonlinear system using the Volterra or 
Wiener kernels. The Volterra series consists of the summation of impulse responses 
of increasing dimensionality. The Wiener series is also a set of orthogonal functions 
in which the input is white gaussian noise. Marmarelis and Udwadia [ 141, for example, 
estimate the first and higher order kernels appearing in the Vofterra series using correlation 
techniques. Chen, Ishii and Suzumura (151 use cross-correlation functions in addition to 
the Volterra and Wiener series to describe nonlinear models and to show the relation 
between the system inner structure and the series. Although weakly nonlinear systems 
can be described by the first few kernels, for strongly nonlinear systems these series give 
accurate numerical results only at the expense of an excessive number of coefficients. 
This renders the analytical model impractical for control applications. 

Other popular series are orthogonal polynomials such as Legendre (Wang and Chan 
[16]), Chebyshev, and Jacobi (Horn and Chou [17]). Horn and Chou E171 expand the 
variables of the system into a shifted Jacobi series, reducing the nonliiear state equation 
into a linear algebraic matrix equation. The unknown parameters of the nonlinear system 
are then estimated using least squares. Even though the algorithm works well in the 
presence of noise, the nonlinear form must be known a priori. 

Another technique used for the identification of nonlinear systems is the extended 
Kalman filter. The extended Kalman filter is the linear Kalman filter applied to nonlinear 
systems by linearizing the nonlinear model into a Taylor series expansion about the 
estimated state vector. Yun and Shinozuka E181 apply the extended Kalman filter for the 
parameter estimation of a quadratic term. The state vector is augmented by including 
the unknown parameters in addition to the state variables. Through a series of iterations, 
the response, as well as the unknown parameters, are estimated by the Kalman filter. 
Among its disavantages are high sensitivity to initial conditions, in particular if the initial 
conditions are barely known. 

Hammond, Lo and Seager-Smith [19] use an optimal control technique based on 
optimal control methods employed for linear system deconvolution. The form of the 
linear model is assumed to be known as well as the input and the output. A cosr functional 
consisting of the weighted sum of the square of the error (between the actual and estimated 
output) yields an optimal estimated input. The estimated input and the actual input are 
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nonlinearities using experimental data. An analytical model representing a harmonic 
oscillator with quadratic position feedback is studied First, output data is obtained from 
a digital computer simulation of the nonlinear system and the quadratic term is identified 
to illustrate the accuracy of the technique on a known system. Second, an attempt is made 
to duplicate the nonlinear model using an analog computer. It is shown that despite the 
inability of the analog computer to produce a true quadratic term, the Minimum Model 
Error algorithm is capable of identifying a nonlinear model which accurately reproduces 
the analog output. The Minimum Model Error method produces a numerically stable 
identification regardless of the analog data initial conditions or record length. 

MME Algorithm 
In this section, we review the MME algorithm and how it is used to identify nonlinear 

dynamic systems. A more detailed explanation may be found in Mook and Junkins [20], 
Mook 1211, and Stry and Mook [22]. 

The MME may be summarized as follows. Suppose there is a nonlinear system 
whose exact analytical representation is unknown, but for which output measurements 
are available. Using "normal" means (analysis, finite elements, etc.), a system model is 
constructed. As shown in [21]-[22], the MME will work well even if this system model 
is poor. The MME combines the assumed model with the measurements to determine the 
correct form of the nonlinear system. A correction term which represents the error in the 
model is added to the assumed model and a cost functional is formed. Minimization of 
the cost functional yields the model error. Subsequently, a least squares fit is performed 
on the error term to determine the correct form of the nonlinear system. 

Consider a forced nonlinear dynamic system which may be modeled in state-space 
form by the equation 

where ~ ( t )  is the n x 1 state vector consisting of the system states, -4 is the n x n state 
mamx, F(t)  is an n x 1 vector of known external excitation, and f(~(t),&(t)) is an 
n x 1 vector which includes all of the system nonlinearities. Stare-observable discrete 
time domain measurements are available for this system in the form 
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E uses the assumed linear model in (3) 

e model emr, which includes the unknown nonlinear term(s) of the system, is 
represented by the addition of a correction tern to the assumed linear model as 

&(t) = &(t) + E(t)  + d( t )  (4) 

where d(t)  is the n x 1 correction term (dynamic model error) to be estimated later. 
A cost functional, J ,  that consists of the weighted integral square of the correction 

term plus the weighted sum square of the measurement-minus-estimated measurement 
residuals, is formed: 

&(tk) - & ( f ( t k ) l t k ) l T  k1 [ $ ( t k )  - &(&.(tk), tk)I 

where M is the number of measurement times, g(tk) is the estimated state vector and 
is a weight matrix to be determined. 
J is minimized with respect to the correction term, &t). The necessary conditions 

for the minimization Iead to the following two point boundary value problem (TPBVP), 
(see Geering [23j), 

&( t ) = A:( t )  + F(t ) + d( t ) 
i ( t )  = -ATA(t) 
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ment residual cov 
ance matrix. This may be written as 

&(tk) - & ( k ( t k ) , t k ) l T @ ( t k )  - &(&(tk), t k ) ]  Bk (6) 

During the minimization, the weight W is varied until the state estimates satisfy the 
covariance constraint, Le., the left hand side of Eq. (6) is approximately q u a l  to 
the right hand side. The correction term or model error is, therefore, the minimum 
adjustment to the model required for the estimated states to predict the measurements 
with approximately the same covariance as the measurement error. 

The TPBVP represented by Eqs. (5a) to (50 contains jumps in the costates and, 
consequently, in the correction term. As evident from Eq. (5d), the size of the jump is 
directly proportional to the measurement residual at each measurement time. The noisier 
the measurements, the larger the jump size. A multiple shooting algorithm, developed 
by Mook and Lew 1241, converts this jump-discontinuous TPBVP into a set of linear 
algebraic equations which may be solved using any linear equation solver. Multiple 
shooting also facilitates the analysis of a large number of measurements, by processing 
the solution at the end of every set of jumps. 

After W has been determined such that the state estimates satisfy the covariance 
constraint, the final step in the identification procedure is to use a least squares algorithm 
to fit the model error d ( t )  to the unknown dynamic term(s). The error is expanded into 
some combination of linear and nonlinear terms, for example, 

d ( t )  = az ( t )  + pzZ(t) + 7z3(t) + . m . (7) 
where a, p, 7, . . . are unknown coefficients to be determined by least squares. Pre- 
sumably, the least squares fit of Eq. (7) will find zero Coefficients for the terms in the 
expansion which are not part of the true model, and nonzero coefficients for the actual 
model terms. Eq. (7) may be sampled repeatedly to obtain 

d(ti) = az(ti) + Pz2(ti) + p 3 ( t i )  + . - . 
d( t2 )  = az ( t2 )  + pz2(t2) + yz3(t2)  + . . . 

d(t2) = az(t2) + P Z 2 ( t l )  + 7 Z 3 ( t l )  + . . . 
. -  . -  

or, in matrix form, 

D ’ x l  = M l x p E p x 1  
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other than the m e a s ~ m e n t  
times. The least squares e s ~ a ~  is found by minimizing the following cost functional 
with respect to p: 

The solution is given by 

The multiple shooting algorithm presented by Mmk and Lew [24] was used to 
obtain the MME solutions used in the tests presented in this paper. It was assumed 
in the examples that MME obtained the dynamic error term without knowledge of the 
boundary conditions on IE, so some distortion of the correction term at the initial and 
final times was expected due to the constraints of Eqs. (Se-Sf), i.e., by assuming no state 
knowledge is available at to  or t f ,  we constrain X ( t 0 )  = 0 and X(t,) = 0. Themfore, 
in all test cases, the initial and find ten percent of the correction term data was ignored 
in the least squares fit. 

Application Examples 

TWO nonlinear equations of motion were studied, which represent the motion of 
an undamped harmonic oscillator with different amounts of quadratic position f d b a c k  
(identical equations may arise in other physical systems as well). The equations in state 
space form are 

0 (i) = (-4 :> ( i )  + (-0.5262') 

0 (%) = (-"I ;) (s> + (-1.1372) 

where z is position, and the dot indicates differentiation with respect to time. No forcing 
was applied. 

In the following discussion, Eq. (11) is denoted Model A and Eq. (12) is denoted 
Model €3. Different initial conditions were used for each system, for a total of five 
different tests. These are shown in Table 1. 
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To utilize MME, the linear part of Eqs. (11) and (12) was assumed to be known, 
rendering the model error equivalent to the nonlinear term, c * x2.  Data for the 
MME nonlinear identification was generated from two different sources. First, noiseless 
position measurements were gathered from a digital computer simulation for all five tests. 
Application of MME to the measurements yielded an accurate estimate of the nonlinear 
term in each case. Then, an attempt was made to duplicate each system on an analog 
computer. Even though the analog computer did not reliably reproduce the quadratic 
term, the position measurements €or all five tests were recorded and nonlinear models 
identified. MME proved capable of identifying accurate nonlinear models for the analog 
output. 

Digital computer simulation results 
One hundred noiseless position measurements were generated on a VAX 780 for the 

five test cases shown in Table 1.. A sampling rate of 4 Hertz was used. Three terms 
were employed in the least squares fit: x, i and x2. The resulting numerical values 
are shown in Table 2. 

Table 2. Least Squares estimates of the dynamic model error employing analyt- 
ically generated measurements in the MME algorithm. 
I 

Tesr 
# 

A1 
A2 
A3 
B1 
B2 

- 
_I 

_II 

I_ 

- 

MME 
X I MME 

X 2  

-0.526 
-0.527 
-0.528 
-1.138 
-1.138 

Analytic 
X 

0.0 
0.0 
0.0 
0.0 
0.0 

Analytic 
i: 
0.0 
0.0 
0.0 
0.0 
0.0 

MME identifies the quadratic term with great accuracy in all five tests. A plot of 
the estimated, analytical and measured position is shown in Figure (la) for test case Al. 
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Figure 1 (a) Analytical, measured (A), and MME estimated position 
for test A1 using digital computer simulated measurements. The 
analytical and MME estimates are essentially identical (solid line). 

(b) MME estimate (+) and actual model error. 

Analog computer results 

Three hundred fifty position measurements were generated on a Comdyna GP-6 
analog computer for all five test cases. One hundred measurements with a sampling rate 
of 4 Hertz were used in the analysis. The identification procedure yielded the numerical 
values shown in Table 3. 
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The numerical results for the least squares fit of the error term did not match the 
analytically predicted coefficients. The reason for the numerical discrepancy was the 
analog’s failure to produce a dependable quadratic term. Table 4 shows some position 
values squared by the analog. The analog consistently produced an error in the quadratic 
term. The recorded data, although containing errors due to quadratic term, is believed 
to be practically noiseless. 

~ 2.50- 
3.00 

Table 4. Quadratic term produced by the analog computer. 

~ - ~ 

6.25 7.00 
9.00 9.50 

I I X X2 I Analog 
I 2.00 I 4.00 I 4.30 I 

Figures (2)-(6) show the analytical position, analog measurements and position 
predicted by the MME analysis for all analog tests. The MME identification produced 
good state estimates and a model which matched the measured data much better than the 
analytical models in Eqs. (11) and (12). 

Note, these results were obtained without knowledge of the initial or final state vector 
value. As shown in Eqs. (5e) and (33, by setting the initial and final costate values to 
zero, no knowledge of the initial or end conditions are necessary. Also, the same results 
presented in Table 3 were obtained when using all three hundred and fifty measurements 
instead of one hundred measurements in the MME algorithm. 
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Figure 2 Analytical, measured (A), and MME estimated position 
for test A I  using analog computer measurements. The 

MME estimates are essentially identical to the measurements 

0 3 2 0 ' .  . . ! .  , . ! ,  I .  ! ,  v I ' 

0.o0O~+00 6.25 12.5 25.0 
TlUE(S) 

Figure 3 Analytical, measured (A), and MME estimated position 
for test A2 using analog computer measurements. The 

MME estimates are essentially identical to the measurements 

286 



0 6 2 0 ; .  . , ! ,  , I ! , . , ! . . , 

O.oooE+OO 6.25 12.5 18.8 25.0 
TlUE(S) 

Figure 4 Analy ..si, measured (A), and MME estimate6 pos on 
for test A3 using analog computer measurements. The 

MME estlmates are essentially Identical to the measurements 

~ 

0.175 

I 

0 OC3E+00 6.25 12.5 18.8 25 c 
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Figure 5 Analytical, measured (A), and MME estimated position 

MME estimates are essentially identical to the measurements 
for test B1 using analog computer measurements. The 
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Figure 6 Analytical, measured (A), and MME estimated position 
for test 82 using analog computer measurements. The 

MME estimates are essentially identical to the measurements 

Conclusion 
In this paper, an MME-based algorithm was used to identify the quadratic term of a 

nonlinear harmonic oscillator. For demonstration purposes, data was obtained from two 
sources. Output data obtained from a digital computer simulation was used to verify the 
accuracy of the method. Then, data from an analog computer was used as a test of the 
method on "real" data. It was shown that despite the inabiIity of the analog computer 
to reproduce a true quadratic term, the MME algorithm was capable of identifying a 
nonlinear model which accurately reproduced the analog output. This result indicates 
that the method is robust with respect to (lack of) a priori knowledge of the system 
dynamics. The identification was accurate regardless of initial conditions or data record 
length, indicating that the method is also robust with respect to those variables. 
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Abstract 

A new method to efficiently downdate an estimate and covariance generated by a discrete time 
Square Root Information Filter (SRIF) is presented. The method combines the QR factor down- 
dating algorithm of Gill [3] and the decentralized SRIF algorithm of Bierman [4]. Efficient removal 
of either measurements or Q priori information is possible without loss of numerical integrity. More- 
over, the method includes features for detecting potential numerical degradation. Performance on 
a 300 parameter system with 5800 data points shows that the method can be used in real time and 
hence is a promising tool for interactive data analysis. Additionally, updating a time-varying SRIF 
filter with either additional measurements or Q priori information proceeds analogously. 

Introduction 

A typical 24 hour data arc for the GPS demonstration on TOPEX/POSEIDON [6] will contain 
M 30,000 data points. To process these data points on a VAX 8530, a sequential SRIF filter will 
require nearly 3 hours of CPU time. Upon processing, should outliers be discovered in the data, due 
to cycle slips, atmospheric fluctuations, multipath, etc . . ., they must be removed from the data arc 
and another 3 hours of CPU time would then be needed for reprocessing. The method presented 
here permits efficient removal of these outlying data points without reprocessing the entire data 
set. 

The discussion is organized in the following manner. First, a decentralized approach to up- 
dating a time-varying SRIF with a single measurement is presented. From this development, it 
is evident how to  remove a measurement from a time-varying SRIF. Next, the one-component- 
at-a-time process noise methodology is applied in the actual implementation. The necessary linear 
combination of the data equation and the smoothing coefficients is then presented. Finally, the 
efficiency and the numerical integrity of the method is discussed. 

Updating a Time-Varying SRIF with a Single Measurement 

The goal is to find estimates (zo,z~,. . . ,ZN) to minimize the the least-squares performance 
functional 

N-1 

j=o  

f Member of Technical Staff, Navigation Systems 
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for the linear discrete-time dynamic model 

with measurements 

and the single measurement 

- 
where (),(j) represents a priori information between time updates j and j+l. The data noise uj 
and process noise wj are independent mean zero white Gaussian noise processes with covariances 
I and RtI,(j)-' RTIJ(j)-T, respectively. Of note, when a pseudo-epoch state formulation is used 4j  
and G have a simplified structure. 

Ignoring the additional data equation Y k  = H p k  -4- V k ,  the SRIF alternates between measure- 
ment updates 

i-1 N-1 

i-1 N-1 

for j = 0, N and time updates 
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i=j+l i=O 

= l~Rz(j  + l)zj+l - zz(j + 1)/12+ 
j N-1 

IIRt,(i)wi + ~*,,,(i + l ) Z i + l  - z;,(i)1l2 + I IR,, (i)w I I2 + 
i=O i= j+l 

IlAizi - .ill2 + I l H k Z k  - Yk1I2 + (9) 
i=j+l i=O 

for j = 0, N - 1. The ei term represents the residual sum of squares from the i'th mesurement 
update; the ()* terms represent the smoothing coefficients. Additionally, the notation () represents 
quantities that include data up to time j + 1. 

h 

To update the filter with the additional data equation Yk = H k x k  + vk, it is necessary to 
express this equation in terms of Zk+1 and Wk. 

This equation is then merged with the smothing coefficients of the SRIF 
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The ()** terms replace the old smoothing coefficients and yk+l = Hk+lzk+l  + vk+1 is the ensuing 
additional data equation. The time updates in equation (10) and the merges in equations (11) 
and (12) are then repeated for k + 2,k + 3 , .  . . , N .  In the end, the terminal data equation y p ~  = 
H N X N  + Y N  is then merged with the terminal SRIF array. 

k-1 

J N ( Z O , %  ...,w)= IIREt(j)wj + R:I)Z(j + l)zj+t - z;,(j)1I2+ 

IIR::Cj)wj + K ? Z ( j  + l )zj+l  - z;:(j)I12+ 
N-1 

j=k 

N 

II (2) - (;;) 112 + j = O  llei1I2 (13) 

The notation (”), represents quantities resulting from merging the terminal data equation with the 
terminal SRIF array. The filter estimate and covariance are then f i G 1 , Z ~  and R ,  RGT, respectively. 
To obtain the smoothed estimates and covariances, the Dyer-McReynolds smoother [Z] would then 
operate with the ()* terms for j = 0, IC - 1 and with the ()** terms for j = k, N - 1. 

- - I  ” 

Downdating a Time-Varying SRIF with a Single Measurement 

The last lines of equations (11) and (12) contain the key to reversing this process. If the 
data equation yk = H k z k  + vk has been included in the SRIF, then the (>** terms of (12) are 
available. Additionally, the data equation y*(k) = H:,(k)tuk + H;,,(k + 1)z,+1 + v k  in (11) can 
be generated from the measurement that is to be removed. It is possible, as shown below, to solve 
for a transformation to produce the upper ()* terms of (11) and the ensuing data equation yk+l = 
Hk+l z k + l  + Y ~ + T  in (12). The upper ()* terms of (11) are then the downdated smoothing coefficients 
and replace the old smoothing coefficients. This process is repeated for j = k + 2, k + 3, . . . , N .  The 
terminal data equation y~ = H N Z N  + U N  is then downdated from the terminal SRIF array [3]. 

Implementation 
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where the ()** terms are a reminder that a11 data has been processed in the SRIF. 
update order of the process noise parameters is p l ,  p2, p3. 

The first step is to express the data equation to be removed in terms of Zk+1 using equation 
( 5 ) .  

H,*(k + 1) := Hxk+l 

H&(k)  := Hpnk 

H;, (k: + 1) := 
H;*(k) := HPzk 

y*(k) := Yk 

Next, the smoothing coefficients associated with p2 are then downdated. 

Again for the sake of notation, the foIIowing variable (re)assignments are necessary: 
- 

H,*(k 1) := H X k + f  
- 

Hi1 (k + 1) := Bpik+, 
- 

H;2(x: + 1) := H p 2 , + ,  

H&(k.) := Hp?, 
- 

y*(k) := c k  
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Finally, the smoothing coefficients associated with p 3  are downdated. 

Note that a11 smoothing coefficients before time update k + 1 remain unchanged. The ()* terms 
are the downdated smoothing coefficients and replace the old smoothing coefficients. The ensuing 
data equation yt+l = Hk+1x2+1 + vt+l is then used to continue this process to downdate the 
smoothing coefficients from time updates E + 2 through N. In the end, the terminal data equation 
Y N  = H N X N  + UN is then downdated from the terminal SRIF array [3]. 

Constructing the Orthogonal Transformation 

The orthogonal transformation in equations (17), (19), and (21) operates as 

where the ( ) ( k )  terms are scalars and the Of terms represent row vectors. As usual, let the 
orthogonally packed measurement be stored in the last column of the row vectors. To solve for the 
transformation T ,  multiply equation (22) by T-' and take transposes. 

Let At = ( A ,  a), where a! = d m  and A is a scalar to be determined. Note that the norm of 
is 1. The transformation T is then constructed as an elementary Givens reflection. 

With T constructed as such, equation (23) is then post-multiplied by A. 

The scalar A and vector H can now be determined. 

H*k A=- - - -  
R** ( k )  
H* - AR** H =  

a! 

If instead of downdating, it is desirable to update the filter solution with an additional mea- 
surement, an elementary Givens reflection would be applied to the right side of equation (22). 
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The discussed method was implemented on a $530, The filter test case required 30 minutes 
of CPU time to ints in a 5.5 hour data arc of a typical GPS data processing 
scenario for the demonstration [e]; the filter estimated nearly 300 p 
Downdating points from the resulting filter output required on average 10 seconds of CPU time per 
point. It proves that the linear combination of the data equation and the smoothing coefficients 
is relatively fast compared with downdating the terminal data equation from the terminal SRIF 
array. 

5800 d 
/POSE 

Numerical Integrity 

Stewart [5] has shown that downdating is stable in the presence of rounding errors. However, as 
he has also shown, if the spread of singular values is greater than half the computational precision, 
the precision of the smaller singular values may be lost. Fortunately, the downdating algorithm 
provides a way of detecting such ill-conditioned problems; the value of a (above and a similar 
quantity in the terminal downdating algorithm) is a reliable indication of trouble. Experience 
has shown that if a is less than on a machine with a 15 digits of precision, the results 
of particular estimates may be inaccurate. This situation occurs when all information is removed 
from an estimated parameter. However, in an operational environment there are generally sufficient 
measurements or a priori information to avoid such situations. In these cases, experience has shown 
that the estimates are accurate to better than 10 digits. 

Applications 

In spacecraft orbit determination, often critical measurements, such as Very Long Baseline 
Interferometry (VLBI) measurements, are not available until long after the usual radio-metric data 
(e.g. doppler, range ) has been obtained. Using the discussed method, these critical measurements 
may be efficiently added after the usual data has been processed. When using optical data for orbit 
determination, camera pointing is often modeled as a white noise stochastic process. The discussed 
method permits the analyst to efficiently remove optical frames and replace them with others as 
desired. For large state systems with many stochastic parameters, such as GPS applications, outliers 
may be removed more efficiently and just as effectively by downdating rather than reprocessing the 
entire data set. 

Conclusion 

A new method to downdate a time-varying SRIF filter is presented. The method combines 
the algorithm of Gill [3] to downdate a matrix factorization and the decentralized SRIF algorithm 
of Bierman [4] to combine the results of independent time-varying SRIF filters. This method 
permits efficient removal of either measurements or a priori information. Additionally, updating 
a time-varying SRIF filter with either additional measurements or a priori information proceeds 
analogously. In both cases, a data equation is propagated by alternating between time mapping 
the equation and forming a particular linear combination with the SRIF’s smoothing coefficients. 
The terminal data equation that results can then be merged with or removed from the terminal 
SRIF array. Smoothing then proceeds as usual [2]. For large state systems with many stochastic 
parameters, the discussed method is expected to be a critical component in the real-time reduction 
and analysis of large volumes of tracking data. 
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The llavstar Global Posi 
hour-a-day senice to both ai 
four satellites, each providi 
towards the full 24 satellite ~nstellation. 

ephemeris and clock parameters for upload into the vehicle's ~vigation neesage. This paper briefly describes the 
Navstar system and the K a h n  Filter estfaation process used by the ES to deternine, predict, and quality control each 
satellite's ephemeris and e10 tates. Boatino perforaance is shorn. K a h n  Filter reaction and reapnse is discussed 
for a~maloua clock behavior trajectory ~ r ~ ~ ~ t i o ~ .  

Particular attention I s  given to KS effortt to improve orbital adjust rodeling. The satellite out of service time 
due to orbital maneuvering has been reduced in the past year from four days to under twelve hours. The planning, 
reference trajectory model, and K a l m  Filter ranaguent irprovtrcnts are explained. 

Finally, this pape 11 summarize the future work t Filter apd orbital adjust performance. 
X e c c ~ e ~ a t i o ~  will be e for futare oprttrs r q u ~ r i ~  des. 

ed navigation system providing all veather, 24 
sition solution ulth 
y, GPS is building 

The GPS Haster Control Station (HE) is charged with tracking each llavstar apacecraft and precisely defining the 

The Lvstar Global  position^^ Systea (GPS) is a ~ t e ~ l i t e  
weather coverage to both ciTilf~ and ailitary users. The loars 
requiring precise ~vigation or psi 
users of 16 meters spherical error pr 
service customers. The standad psi 
interests. GPS is made up of three segments, The space segHnt consirts of the orbiting satellites and provides L-Band 
signals with modulated data to the world. The User s 
navigation data. Ffnally, the control segHnt coapri 
a control center to monitor the satellites health and per 
the largest satellite co~tellation dedi 
constellation co~isting of 21 satellit 
Air Force Base is responsible €or the 
each satellite is regularly updated vith orbital 
broadcast to the user comunlQ. This paper ulll 
of the HCS, and the Filter algorithms 011 
manages those algori Nominal perfomce er ~ 0 ~ 1 0 ~  con 
The improvement in orbital adjust rodeling will be explained. 

r~ioMvigation system p ~ v i d ~ n g  worldwide all 
tea praises a revolution in all activities 
the precise pwiitiodnq senice to authorized 

r circular error probable ICEP) to ~tagdard positioning 
t to change according to United States national 

planned 24 satellite 

The navigation payload of 
tea, and a h c  data €or 

e vays in vhich the HCS 

TEE ~ V S T ~  SYS 

The GPS satellltes 
semisynchronous orbit. 

at an altit~e of 
Orbit inclination €or the 

orbit with a 12 hour 
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offsets fror GPS tire, the satellite's precise ephemeris, and course almanac infonation for the entire operational GPS 
constellation. Other parameters are included in the navigation message to indicate the health of the GPS ratellite, give 
single frequency users ionospheric correction inforration, and provide Universal Tire. Users can either receive the 
single CIA code, or w e  the CIA code to acquire the P codes on I1 and 12. All clocks in the Havstar Systm are 
synchronized to GPS tire. 

hi6 time to CPS tirc, calculate the apparent range to the tatellite, and solve for poeition using the formla: 
Once the user reads the navigation reusage from each of the visible tracking satellites, the user can synchronize 

2 J 2  ' ' c42u ( 1 )  
+xi - X,)2 * (Yi - Y " )  2 * (Zi - 

PRI 

Where, 

(xiayi,zi)T - Satellite Iner t ia l  Position 

(X,,.Y,,,Z~)~ * User Inertial Position 

PR; - Ionospherically Corrected User Pseudorange Measurement 
From The i'th satellite 

C = The Speed of Light - User Clock Offset from CPS Tinu 

Since the satellite lnertial positions at a given GPS tire are derived from the navigation message and pseudorange 
reasured from the PBW code the differences, the only pnltnonts are the user's inertial position and the user's clock 
actual offset from GPS time. Since their are four Mtnovns, four pseudorange measurements from four different satellites 
are rquired to find the user's inertial position and clock offset. Table I show the specifications for GPS user 
accuracy compared vith other navigation systw. Obvioosly for this system to vork properly, knovledge of the 
satellite'r ephemeris and clock offsets vith respect to GPS the must be precise. "be GPS Operational Control Segrent 
(OCS) is charged with keeping the navigation ressage a m a t e  and the spacecraft in good operating condition. 

The Operational control sccpent consistr of five L-Band lonitor Stations (E), tbree-S-Baed Grouad A p t e m 8  Wtb 
tvo additional antennas available on a part time basis), and the llaster Control Station (IICS). The locations and 
coverage of these ground stations is shown in Figure I. The L-Band tracking data is transmitted from the lonitor 
stations to the WCS. The E S  uses this information to generate nev orbital elements and clock states which are 
tranmitted through the ground antennas to the satellite. Inforpation on the satellite's statu$ is also gained from the 
ground antaaiDa S-Band telenetry. This system is pictured in Figure 11. "he GPS HCS is the hub of all the activity in 
the c o m n d  aad control of the Havstar system. 

THE WSTEB CONTROL STATIOll HAwlllllG 

The GPS llaster Control Station's operations center is rtaffed vith seven mcrbers of Nr Force Space Corand's Second 
Satelliite Control Squadron. Thir group of seven people comprise the basic space operations crev. There are five crew, 
each wrking for a period of six days folloved by four idle days. The off days provide for crev rest, as vel1 a8 training 
and standby days. These operations crevs urintain the Havstar constellation's state of health and navigation perfoMnce 
around the clock, every day of the year. 

There are currently six positions in the operatlons center filled by the seven crev members. The Ground Controller 
is responsible for the cmunication link$ betveen the HCS and each of the four ground antennas and five monitor 
Btations. The Satellite Operations Officer is the position tasked vith &ing contact vith a glven 8atellite from the 
llCS through a ground antenna to monitor a given vehicle's state of health and tramit any necessary coraads. The 
Satellite Engineering Officer Is responsible for ensuring that a spacecraft is in good operating condition, all corands 
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GA VlSlBIUTlES (5' ELEVATlON) MS WSIBIUTIES 

1. 
'1 
T 
I 
T 
U 
D 
E 

LONGITUDE Ea$t 

CTS - Colorado Springs Tracklng Station COSPM - Colorado Springs Monitor Station 
CAPEG - Cape Canaveral Ground Antenna ASCNM - Ascension Island Monitor Station 
ASCNC - Ascension Island Ground Antenna 
DIECOG - blego Garcia Grand Antenna 
KwAlG 

NOTE: 

DXECOM - Diego Garcia Monitor Statlon 
WA.M 
HAWAIN - Hawaii Monitor Station - Kvajalein Atoll ?(onitor Station - Kvajalein Atoll Ground Antenna 

CTS and C M E C  give coverage over thc Continental United States on a part-time basis. 

FIGURE I: The GPS Ground Antenna and Monitor Station Locations nnd Their Respcctlve Visibilitlcs 
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ion producer a daily 

proficiency In their job. There’s also an engineering 8uppor-t grow hick ir broken dm Into rcctions nrpon8ible for 
the analysis of the spacecraft bus, navigation payload, ground systea, apd systm databare. Finally there ir a section 
dedicated to interfacing vith various users and a C o d  Section. All in all, there we approxfmtely 198 people in the 
Second Satellite Control Squadron responsible €or the operation of the CPS constellation. 

group which vork vith the contents of this paper. This group of people w a g e s  the X a h  filter algorithms and results, 
guaranteeing the end product to the CPS positioning/tfring users is asable, accurate, and ritbin all published 
specif ications. 

It’s the Satellite Analysis Officer crev position and the navigation payload section of the engineering analprsis 

OPERATIONAL CONTROL SYSTEM 

L1 AND L2 
N A V I ~ T I O N  SIGNAL 
L1 AND L2 
N A V I ~ T I O N  SIGNAL 

E 

n N A V ~ ~ l l O N  SUPPORT 

NITOR  STATIO^ 

FIGURE 11: The GPS Operational Control Segment. 
by the Monitor Stations.  
tiround Antennas. The Master Control S t a t i o n  is the central processing location. 

L-Rand signal> transmitted by each satellite are tracked 
h’avlgation Uploads. Telemetry, and Commands are routed through the 
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Where, 

%s - tTS PR c 

PR - Pseudorange Measurement 
c - Speed of Light 
t - Time Signal Received by Monitor Station 

%S 

TSV 

Time Signal Transmitted By Satellite t =  

The trammission time is represented by an integer number of r-counts where one z-count is 
satellite and ronitor station times are referenced to GPS time for synchronization. 

AccPmlated delta range (IIDI)) is a w m m e n t  of total pbage accumulated betveen the 
the carrier signal. AccPmlated delta range ir given by the exprerrlon: 

Whefe, ADR = Accumulated Delta Range - Carrier Frequency - Monitor Station Phase Measurement kS 
@T, = Transmitted Satellite Phase 

equal to 1.5 seconds. The 

transrision aod reception of 

The only use for ADP8 rithin the GPS control regwnt is t o  d d  in the aootbing of psePdoraage data. ADBts are 
available prirarily for the GPS user conunity to calmlate relative velocities. 

Tht lhrter Control Station wntlnuously tracks and collects peendorange data from each satellite visible to the 
monitor stations. A prepdorange neasure8ent is lade every 2-coat on both the 11 aad It2 signals received. Data 
processing occur8 at fifteen minute intervals. As rhm in Figure 111, the HCS beg- to store data at each fifteen 
minute point. Over each fifteen minute interval the catellite tranaiesions are checked for correct parfty and C/A to P 
code Handover Word. Each aeme8ent rmet a180 be vlthin limits for sigmllnoise ratio, code and phase slips, code and 
carrier lock, and firat aiid second difference te8ts. A t  the end of the fifteen rfnute interval there is a five rinute 
waiting period. This vaiting period ir mad to retrieve any data which MY reside in a aonltor 8tatiOP'S data buffer due 
to short comunlcations outages. After the five dnute wait, the data which passed all editing critertia for ray 
pseudorange neawrcIcpts during the fifteen rinute interval are par ready for processing. 

pseudorange. The layer6 of the €artb's atPosphere approxirately betueen 68 and 648 I(n altitude constitute tbe 
ionosphere. The iono6phere can vary gnat17 over the amface of the Earth for mch reasons as solar activity, the 
effects of m, and the variation between day and night. The ionosphere affects GPS by bending the transient carrier 
signals. Fortunately, the L-Bard signal frequencies used bt the Navstar system exhibit the property that the index of 
refraction ir proprtional to the inverse quare of the frquency. Since the tvo different carrier frequencies, I1 and 
12, aea:ure the lllpt distance bewen the aatellltc and the mnitor station, the proportionality constant can be 
detenined independent of the actual ionospheric condition8 or the elevation of the satellites. The proporionality 
constant f6 given by: 

Each 11 and L2 rtasprerent pasring the editing criteria is nw osed to detenine the ionospherically corrected 
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e 
PR1 = Direct 
PR2 Direct 
f8 = L1 carrier frequency = 1575.42 mz 
f2 L2 carrier frequency 1227.60 ~ M Z  

Using the I1 w m e m t ,  the ionospheric the delay nov becores: 

KT 

= 2cr: 0) 

So each palt of L1 apd 12 pseudorange measureaents received at every r-count is used to transform tbe zav pseudorarqes to 
an ionospherically corrected pseudorange with the equation: 

The ionospherically corrected prrewlorange is the only calculation which occurs to the signal before filter 
processing. Other phenomenon vhich affect the signal, such as troposheric delay, relativity, and the free space delay 
are accosted for rithln the filterlng system. 

The ionospherically corrected pseudoranges are nor smoothed over the 15 minute collection interval to reduce the 
measument noise before Kalran Filter processing. A polynomial fit is rade to the ionospherically corrected 

. pseudoranges for each satellite-monitor station rneasureaent pair. The sroothed pseudorange is detenined directly from 
the plynostla1 aod is set at the beginning of the fifteen rlnute interval. 

The rector contahlq aootbed peeudoranges for each atellite-mltor Station palr is defined M the ohenation 
vector. This observation vector vi11 be processed by the HCS Kalaan Filter to produce a state vector for each satellite 
and monitor station as shown in Figure IV. The state vector for each satellite includes its inertial position and 
velaclty, a scaling parameter (K1) and an acceleration parameter (K2) for a Solar pressure force rodcl, and clock bias, 
drift, and M f t  rate. The wnltor station state rector inclndes clock bia8 and drift, and tropoepherlc height. 

To reduce the magnitude of the estimation probler, the HCS uses an independent partitioning schme. Each partition 
is rade of atate recton for up to six spacecraft and ioclpdes all monitor station stater., Phis scheme reducer the 
procelrsing load of the HCS, allors for isolation of satellites with poor perfoMpce, and gives the operator insight into 
the ground stations' states betveen partltions. 

00 

A - 15 Minute Data Collect ion 
Period (600 PR Measurements) 

B - 5 Minute Wait Period 
15 

C - Approximately 2 Minute 
Processing Interval 

45 

30 
FIGURE 111: Clock Representing The Time Intervals 1- Which The !4CS Collects  And Processes PseiidoranRe 

Deta. The Cycle Shoni Above Starcs Ever!: 15 X i n u t c s .  
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5pR61 
SPRIZ 

5PR35 

RASTER CONTROL STATION 

lulllAN FILTER 

- Monitor Station State Vector - ~ a t e ~ l i t e  Inertial  Position - s a t e i l i t e  Inertial  Velocity 

= Atomic Clock Bias. Drift. and Drift Rate 

= S a t e l l i t e  Solar Pressure Sratea 

L .  

(x. Y. zlT 

(f. u’, i ) T  

(AO. A I .  AZ) 
(KI. K2) 

% - Tropospheric Height 

FIGLTE IV: The MCS Kalman Fi l ter  Uses Smoothed Pseudoranges To Determine The Sate l l i te  And Monitor Station States  
Show Above. 

The purpose of the ES Kalaan Filter is to estimate the current states in a partition given the available 
aeasurements in the observation vector. In the MCS manifestation of the X e l m  Filter, the current state process is 
linearized with respect to a reference system and then related to an epoch state residual process. The observation 
process is linearized about an apriori estimate of tbe state vector and likewise related to to the epoch state residual 
process. The formlation of tbe HCS K a l m  Filter is described in tbe follouing paragraphs to give some context to the 
subsequent discussion of GPS K a h n  Filter operations. 

exist. A sirple relation is dram betveen each state and the reference states at a specified tire. For example, the 
ment state residual is defined as the difference betveen the current state and the reference state at a current tire: 

In the MCS irplewntation of the Kahn Filter, a predicted reference trajectory and a set of reference clock states 

The epoch state residual is defined as the difference betrecp the epocb state and the reference epoch state at the 
epocb tire: 

62, = & - -refto) x (8) 

The epoch states are mapped to tbe m e n t  states tbrougb a nonlinear state propagation rodel LFI , . . I )  such tbat the 
reference state at current tirt cap k ‘ound from the reference epoch state at epoch tire: 

The current state can be found from the epoch state and tbeir associated tires ritb: 
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t 

Where, State Vector 

v - State Process Noise 

Tk - Time of Current Data Snterval 
w 

Tk+r= Time of Next Data Interval 

The state and state process noist vectors are dim6ioncd by the number of rtates in a partition. Titis current 
&ate process is linearized by 8Pbstitating Equation 7 ,  at the discrete tire, into Equation 11 and then perfonirq a 
first degree Taylor Series expansion on the current state realdual t e n .  With tbe snbstitation of Equation 9 at 
discrete time into the expansion, the current state residual is found to be: 

L 
' 0  

t 

(Epoch States) (Current Stares) 

FIGCRE V: in terre le t tonsh ip  Beeveen The Current State Residuals. The Epoch State Residuals. And Their 
Mapping Functions. 
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If the two dis~ete tire f of ~uation 13 are tituted back into 4 ~ t l o n  12 cally raafpulated, the 
final result is the epoch state residual process wed by the HCS: 

The state process noise is assumed to be a white gaussian process with zero wm such that the expected values of 
the state process noise have the fora: 

5,, - Kronecker Delta 
TL - Any Other Data Interval 

where Q represents the covariance aatrlx for each state, The covariances have a constant valw defined in the llcs 
database, and are added at each Walmn Filter data interval. 

The observation process is modelled in discrete tire with the nonlinear eqution: 

The observation vector and process noise are dh?Ib6fOned by the total nrrrber of ohemations lade & .a partition. 
This equation relates the current state vector to the smoothed pseudoranges rith the state transition mtrlx, h l l  with 
the addition of measurenent process noise. This observation process Is linearized about an apriori state estirate and 
then expressed in tens of the epoch state residual. The resulting linearized equation Is: 
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TT - 
T, - 

Where e 

TFS 

+l4s * 
*sv - 

Tk 

TR 

Tropospheric Delay 
Free Space Delay 

Relativistic Delay 

Honitor Station Clock Offset 
Satellite Clock Offset 
Signal Transmit Time 
Signal Reception TLme 

- Data Interval Time 

The last three term inside the bracket8 give the tising offsets between the monitor 8tation and satellite clocks. The 
first two terms represent the propogation delay between the satellite and monitor station. Beaerber that the ionospheric 
delay has already been accounted for in the dual frequency corrections made before aaothing, The clock offsets are 
simply the tire bias between either the satellite or ronitor station clock and GPS time. The free space, tropospherlc 
and relativistic delays vi11 briefly be dercribed. 

in vacuum. The free space delay is given ats: 
The free space delay is experienced by a satelllte's traumitted signal due to the physical propogation path length 

kSV .I Satellite Inertial Range 

The ronitor station reception tile and the porition vector for the ronitor rtatlon phare center are 
iterative process given the known transmit tire. 

The troposphere Is the portion of tbe atmorrphere rhich fills the volume between the Earth's surface to an altitude of 
about 12 kilometers. The Mlor effect of tbe troposphere is to give an apparent incream in the signal path length. To 
help In the evaluation of tropospheric delay, three atmospheric parareters are reaspnd at the nonitor etation recleving 
the signal. These parareters are atmospheric pressure, teaperatwe, and der point. 'Since different locations around the 
world can have ridely varying conditions of the troposphere, the tropospheric helght is modeled as a state variable in 
the estiration process of the Kahn filter. The tropospheric height is the actual altitude of the troposphere at the 
monitor station. The tropospheric delay is found rith the eqmtion: 

P, = 

Tk 
r,,,,,, = 

%a 
'd = 

'T 
e =  

Eo - 
T z  
1: = 

Monitor station Odrometric ~ r e s 5 u r e  converted t o  
Kilopascals 
Monitor stat ion measured temperzture Ccnvartea f 6 t l - e  
uelvtn x a l e  
The radirl oistcnce from the Earth's center 1 3  tne 
meteorological Sensors. 
The radial  distance from the E a r t h ' s  c m t e r  t o  tno 
monitor s t a t i o n  sntcnna 
Troposohertc urv r z d w s  
Satellite elevation 
TrooosOheric neiunt 

water v f ~ o r  pressure 
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where 
e O r B i t  rccentricitv 
p = Universal  3 i a v i  tationdl pdC3r lr ter .  
3 Semi-major 3 x 1 s  O f  o r b i t  
r, = The Z S P ~ ¶  of I i y h t  
E = Ecccnlric Anomaly From Kepler 's  Equation 

At the end of each data collection interval, a Kalman Filter solution is used to flnd the current state vector with 
the linearized whitened epoch state process (Equation 10 and observation proceeo (Equation 111, A time update omm 
first. In the time update, the aposteriori state estimates from the previous data interval become the apriori state 
estimates €or the current data interval. Process noise is added to the aposteriori covariance matrix to define the 
apriori covariance matrix for the current data interval. The equations dictating the tlrae update are: 

Where, &,(TK) = Apriorf estimate of epoch state residuals given past observations. 

&,(Tk) = Aposterfori estimate of epoch scate residuals given past and current 
A 

Ob6erVatiOnS. 
&(Tk) = Covariances of the epoch state residuals. 

Q(Tk) - Process Noiee 

[B(Ty)] - [@(Tk+l,To) r l [G(Tk) ]  where: P(Tk) ]  is a vieghcing matrix. 

After the time update occurs, a Kalean Gain is calculated using the apriori states and expected covariance ratrix: 

The aposteriori estimate of the epoch state residuals for the current data interval is now found from the equation: 

Using Equations 8 and 10, the current states can be found from the epoch state residuals. 

large, the quality of the HCS K a h n  Filter solution can degrade. To avoid this problem, the nCS updates reference 
trajectories every four weeks and whenever linearity limits are exceeded. 

With the linearized epoch state process, if the current state deviation fror the reference states becomes too 
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C r o s s  Track Current State  Residual  

DAYS SINCE REFERENCE TILLJECTORY EPOCH 

FIGURE VI-A: Typical Ephemeris State  Performance. Inert ia l  Positfon Offsets  Have Been Transformed 
Into Body Radial, Along-Track, and Cross Track Deviations. The Offsets  a t  Reference 
Epoch are Zero. On the 28th Day, The Current Reference Trajectory is Replaced w i t h  a 
Nev Reference Trajectory Based on the Current State Estimates at  the New Epoch. 
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FIGURE VI-B: S a t e l l i t e  Cesium A t d c  Clock S t a t e  B i a s  and D r i f t  Offse ts  From GPS Time. 
are a l s o  Typical of Normal Performance. 
System are Determined from CPS Time. 
"Haster Clock" or a Compoeition of All the  Clocks i n  t h e  GPS System. 
i s n ' t  any Apparent Influence on Clock States From Ephemeris S t a t e s  o r  Vice Versa. 

These P lo ta  
The Reference S t a t e s  f o r  Clocks i n  the CPS 

CPS Time is Derived from Ei ther  a Single  Designated 
Note That There 

HCS KALW FILTER OPEBATIONS 

figare VI-A indicate6 the typical perforarance of current state residuals aver a period of one week, approximately 
three weeks after a reference epocb. Aging of the reference trajectory states is evident over this period. The aging 
occurs became only malor orbital perturbations are modeled by the Waster Control Station. Figare VI-B shows typlcal 
cesium atomic clock perfonnance compared to GPS time over the same period as the ephereris states. 

Epoch State Beslduals, Current State Residuals, Epoch States, and Current States, as well as plots over a twenty- 
four hour period are all available for viewing to the Satellite Analysis Officer (SA01 at the end of each data Interval. 
Though always available to the SAO, this information is usually only accessed when additional data on a given situation 
is needed. 
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time involved or the size of the rejected measurement. If the error can be attribated to a satellite or m i t o r  station 
clock state, the SA0 is capable of specifically @ ~ i f y i ~  the clock sta 
Another option left to the SA0 is to change the value of the covariance 
inappropriately called the "0-Bump". It's possible to modify either monitor statio ellite, clock, ephemeris, or 
solar pressure state covariances. Any subset of these state covariances can be *a- " at the me time. The value 
of the "a-Bumped" covariances is prescribed in the HCS database and can vary with different situations. It's also 
possible to reinitialize the estimation problem, but this action is llsoally a drastic atep. In am situations, various 
HCS database parameters can be changed which affect the behavior of the K a l m  Filter algoritbrs. 

There are two other tools used by the ShO. The first tool is the capability to MSk the Kahn Filter. Masking 
prevents the update of the Kalman Filter state estimates with new data, thereby forclnq only a tire update to occur each 
data interval. The second tool is the capability, OR a non-interference basis, to reprocess the K a h n  Filter over a 
twenty four hour period ritb varying conditions. This reprocessing capability is quite parerful and chiefly responsible 
for the resolution of many problems. 

The navigation data providing the GPS user community the precise ephemerides needed for accarate positioning are 
based on the Kalman Filter State estimates. When a navigation data upload is generated for translaisslon to a Navstar 
spacecraft, the satellite's ephemeris is predicted by using the aposteriori state estiratee to differentially correct 
the reference trajectory. The clock states are predicted merely by propagating the aposteriori clock state estimates 
into the future. These ephemeris and clock state predictions are transmitted to the spacecraft with 5-Band and, through 
the satellite, transmitted to the user community L-Band at the appropriate tbe. 

The hster Control Station's insight into the quality of the upload prediction is performed with two statistical 
measures using the Kalran Filter state estimates. The first measure is the Estimated Range Deviation (ERD). The WD is 
the difference between the aposteriori estimate of pseudorange and the pseudoranqe derived fror the upload prediction 
for a particular vehicle. The EBD is calculated for a mathematically determined set of locatlone around the world and 
each GPS satellite visible to.those locations. Normally EIID's grow over time indicating a slow degradation of the 
upload prediction. Figure VI1 shows this aging process. The need to upload each Navstar spacecraft rith new navigation 
data on a daily basis is apparent in Figure VI1 to raintain the specified navigation perfornance. ERD's usually vary a 
little more than shown in Figure VI1 due to such aspects as monitor station visibility, timing of the upload creation, 
and clock movement. The second measure of perfowance is the Observed Range Deviation (OBD). The OltD is the difference 
the ionospherically corrected smoothed pseudorange and the aposteriori pseudorange detenined by the navigation upload 
state prediction. An OED is produced for each satellite visible to a monitor station. The OED can be a good indicator 
of navigation perfomce, Should the ERD's and ORD's rise above a tolerance, set by the HCS a6 It  Heters, a 
contingency navigation data upload will be accomplished to maintain wer specified accuracy. Equation8 describing the 
Pseudorange residual, EBD, and ORD are given belw: 

c 
PRR - SPRij - PR(ZIi5 = Pseudorange Residual 

) - Estimated Range Deviation ERI) PRe)if - PR(&pload prediction ij 

ORD SPRij - PR(%pload prediction 1 i 5  Observed Range Deviation 
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HOURS OF THE DAY 

FIGURE VII: Typical Upload Prediction Performance 8s Reported by EBD's. PerforPunce is Heasured 
Against Range Based on Current State Estimates. Navigation uploads Contain Ephemeris 

and Clock s tate  Predictions Baaed on the War Currmt State EstlMtea. 

RESPONSE TO ANOHALOUS EVMTS 

In January 1989, a Cesium atomic clock aboard Navstar vehicle number 11 failed. This failure necessitated a clock 
switch on board the spacecraft to a Rubidium atomic clock. A "Q-Bump" on the satellite's clock states was perfoxmed 
after the hardware failed. The Kalman Filter estimates had stabilized to new clock states in approximately six hours. 
This performance is shown in Figure VIII. The transient during this twelve hour period is readily observed. One month 
prior to the clock switch, the spacecraft bus section of the 2SCS engineering support group, predicted the cesium clock 
failure. As the time of the predicted failure approached the bad clock's perfomace was deteriorating. This 
deterioration is barely discernible in the clock drift plot shown in Figure VIII. Even with the deteriorated clock, 
performance of the satellite's navigation payload was maintained through a series of K a l m  Filter clock state 
modifications and contingency navigation data uploads, On the fifth day of the year, raintaining performance through 
this means became impractical, so the satellite was set "Unhealthy" to the user cornunity and the atomic clock was 
switched. At this time, the Kalman Filter was masked to prevent update of the eatellite's clock and ephemeris states 
and the new Rubidium clock vas allowed to "ware up". On the sixth day of the year, the clock state "0-Bump" was 
perfomed, Clock performance was observed over the next several days and Havetar 11 was set back "Healthy". on the 
tenth day of the month. 

F i p e  IX illustrates the impact of a sa'ellite trajectory perturbance. In this case, Navstar 18 came out of a 
solar eclipse with an attitude error. This error was sensed by the spacecraft's Attitude and Yelocity Control SPbsgstem 
(AVCS), and cumpensated with an attitude thrnster firing. Tbe impact on the trajectory in this instance was readily 
followed by the Kalmn Filter State estimation process. In the situation shorn in Figure IX, only a contingency upload 
was required to maintain navigation perfomce aad a nev reference trajectory as built approximately one week after 
the event to prevent linearity failures. 

satellite vi11 reduce reaction wheel momentum through variable setting ragnets vhich torque the vehicle. OCCaSiOMll~, 
momentum will saturate the satellite's reaction wheels at which tire the vehicle's AVCS d l 1  coxmand a thruster momentmn 
dump. Sometimes this event may not be seen by the HCS due to visibility constraints. The momentum dump will ranifest 
itself rith growing EBD's and OBD's with respect to the ephemeris estiptate aod after twenty four hours, the pseudorange 
residuals will be rejected since the resulting states are above the calculated limits, indicating a mismodelling 
problem. In this situation, the Kalman Filter is reprocessed rith 811 ephemeris covariance "0-Bump" near the expected 
time of the thruster momentum dump. Usually only a contingency upload is needed to wintain navigation performance 
followed up later with a new reference trajectory based on the changed state estimates, If the pseudorange residuals, 
ERD's and ORD's are over tolerable limits the satellite is set "Unhealthy" to the user comunity. 

Satellite Vehicle thruster momentum dmps look very h i l a r  t o  Figure IX, but ray be more severe. Homlly the 
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FEGGRE VIEI: The Satellite Clock State Reaction to a "0-Bump" After a Clock Failure and Switch on 
NAVSTAR 11. The Determination of the Nev Clock States vas Relatively Quick. Very Small 
Perturbations Affected the Ephemeris States. A Full Description of This Anomaly i s  in the 
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G-TRACK 

DAY OF YEAR 1989 

FIGURE IX: The Affect on Ephemeris State Estimates After an Attitude Thruster Firing on NAUSTAR 10. 
Satellite Thruster Momentum Dumps and Clell-Modeled Delta-V Hanuevers Show the Same 
Characteristics as this Plot. 
There wasn't any Noticeable Clock State Perturbations due to this Ephemrls Change. 

Radial and Cross-Track Deviations are not Shown for Brevity. 

Prior to 1989, satellites ~ e r g o i n g  Delta-V orbital meuvers were usually set "Unhealth~" to the user c ~ ~ i t y  
for a period of four days after the trajectory change. The engineers and the analysts in the 2 SCS didn't believe that 
thls type of ~ e r f o ~ a n c e  was acceptable. There were several efforts rade to shorten the total "Unhealthy" time due to a 
Del ta-V . 

The first improvements were in the area of Delta-V planning. The location of a GPS satellite is required to 
be at a specific longitade of as ng node with a toler~ce of ti- 2 degrees. When a sat ell it^ origiMlly  approach^ 
this tolerance boundaq, a station ~ f n t e ~ c e  Delta-V was ~ r f ~ ~ ~  to return the satell~te to i t 6  t ~ e t ~  geograp~i~ 
node. Since 1ongit~iMl acceleration always has a constant direction witb r e g ~ c t  to a specific geographic node, it 
was recognized that targeting for the far limit boundary would increase the time between station ~ i n t e ~ c e  maneuvers. 
Figure X pictures the difference bctveen these two targeting scbws. But there was one complication. Due to the 
conflguratlon of the first generation GPS spacecraft, Delta-V's had to occur within specific beta-angle windows, This 
led into research directed at characterizing the p e r f o m c e  of the 9.1 lb thrusters used €or station ~ i ~ t e ~ c e  
maneuvers in CPS. Previous Delta-V pl 
thrust followed by a linear decrease i 
up to a peak followed by a decr 

maneuvers with accurate beta-angle windov placement redu 
to station keeping. 

ng tools modeled the thrust produc~ by the 8.1 lb rocket engine as an initial 
rce. Data from the ~ u f ~ c t u r e r  of the rocket engines shoved a thrust build 

ng force. The differeRce between theae two thr 1s is shown In Fiqare XI. 
era1 ~ o n t h ~  down the 
tween station keeping 

s and the total " ~ ~ ~ a ~ ~ h y "   ti^ due 
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FIGURE X: Piccoral Reprasentetion Showing The Dlffcrence Between the Old and Nev Hethods of Station Flaintwnnce 
Manuever Planning. 
Needed To Precisely Target a Eeta-Angle Window. 

For The New Hethod To Work. Accurate Knowledge of Thruster Characterihtics is 
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Delta-V, Unfortunately, Delta-V efficiency doesn't only vary from vehicle to vehicle, but between Delta-V's as well. 
Delta4 maneuvers are rodeled in the K a l m  Filter's reference trajectory for the satellite mdergoing the 

inaneuver. Before 1989, an impulse model was used to account €or the Delta4 in the reference trajectoq. The iapulse 
model instantaneously changes the reference trajectory at the midpoint tine of the orbital maneuver. Though the impulse 
model was adequate for short duration naneuvers, Delta-Y's of varping, and greater lengths than a few minutes were not 
well modeled. A thrust model was implemented which integrates the force of the rocket engines over the duration of the 
barn. This thrust model still uses the old linear force model mentioned above, but the prediction accuracy was still 
better than the impulse model. The thrust model had another advantage; the effects of attitude mtion could be 
approxlaated with the available thruster misalignment inputs. Uhen rocket engine characterization work began, a 
database of attitude motion during maneuvers also was started. This data could now be incorporated into the thrust 
model to better improve Its prediction accuracy. 

f X  
THRUSTER POD f-  

+ 

+ 
FIGL'RE X I  I : 
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ty for up to four days after a 

a typical Delta4 will be made. 

CON~USrON AND REC IOHS 

Overall, The HCS Kalman Filter is quite robust. The bottom line is that highly accurate navigation data is 
routinely transmitted to a worldwide c o m i t y  of military and civilian users vith minimal Interruption in service. 
The online monitoring and control of the Xalman Filter is relatively simple. Hovever, some improvements in the 
operation of the HCS Kalman Filter could be made. For exaple, many parameters vhich reside in the HCS database, such 
as the [PI matrix value for "O-BUB~S" or Delta-V process noise would yield more control if they were updatable on the 
online system. The aging of the reference trajectory would be less and epheaeris upload prediction would be better if 
more orbital perturbations were modeled. Better clock predictions should be possible. 

The HCS should have a capability to monitor user accuracy that is independent of the Kalman Filter. The way ERD's 
and OD's are calculated assumes that the Kalman Filter solution I s  truthful, It's easily possible for the HCS 
operators to see large ERD's and ORD's on a satellite which is a result of K a h n  Filter corruption. Thanks to the HCS 
partitioninq scheme this error can be caught rather quickly as the earmptian starts to affect otber etates in the 
partition. Unfortunately it's still possible to be fooled and ristakenly upload satellites with corrupted data, 
therefore an independent check is needed. 

For Delta-V's, it's apparent with the proper engineering data on a vehicle system and associated rocket engines, 
highly accurate trajectory predictions are possible. Though relatively late for the GPS system, satellite attitude 
motion and attitude thruster firings during a aaneuver could have been accounted for real tire with data from rate 
gyroscopes on board the satellite. This data could have been used in a specialized Kalnan Filter routine designed for 
maneuvering spacecraft. To counter the variability in Delta-V efficiencies, it is highly recornended to have 
thrusters located on a satellite 6UCh that their thrust is directed outvards, rinimfzing any potential body 
impingement. 

Finally, designers 6h011ld be carefol not to oversimplify the data available to the operator of qstems 
incorporating a Kalman Filter, while not making the operation of the Filter overly corplex. The full potential of a 
system should also be realized given the design constraints If at all possible. I believe the HCS Kalman Filter 
experience shows what operations personnel can pull off given the relative freedom to sake improveaents. 
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ABSTRACT 

This analysis involves an in-depth look into 

Center 

the OBC attitude 
determination algorithm. A review of TRW error analysis and 
necessary ground simulations to understand the onboard attitude 
determination process are performed. In addition, a plan is 
generated for the in-flight calibration and validation of OBC 
computed attitudes. 
and sensitivity of onboard algorithms to sensor anomalies and filter 
tuning parameters are addressed. 

Pre-mission expected accuracies are summarized 

1.0 INTRODUCTION 

The Gamma Ray Observatory (GRO) (see Reference 10) is a three axis 
stabilized spacecraft scheduled to be launched into a 350-450 Km 
orbit 1990 by the Space Transportation System (STS). The GRO 
science instruments study gamma ray sources between 0.1 to 30000 
mega-electron-volts (MeV) before they are absorbed by the Earth's 
atmosphere. The spacecraft is designed to stay inertially pointed, 
using reaction wheel control, for two weeks at a time before 
maneuvering to the next gamma ray target. 

GRO has an onboard attitude determination accuracy requirement of 
86.4 arcseconds per axis (3 sigma) during the normal science 
observation mode. This accuracy is accomplished by the use of two 
Fixed Head Star Trackers (FHSTs) and an Inertial Reference Unit 
( I R U ) .  Both of these attitude sensors have been used on the Solar 
Maximum Mission (SMM), LANDSAT 4 ,  and LANDSAT 5 spacecraft. As a 
backup, the Fine Sun Sensor (FSS) can take the place of a FHST with 
the resultant attitude accuracy of 167.5 arcseconds/axis (3 sigma). 
In both cases, the attitude is propagated using the IRU data and 
updated after a FHST or FSS measurement by using an extended Kalman 
Filter. 

2.0 GRO ONBOARD ATTITUDE ESTIMATION (Reference 1) 

Time Propasation 

In GRO, the attitude computations are contained in two modules: 
kinematic integration module and attitude estimation module. The 
kinematic integration routine uses the previous cycle OBC quaternion 
and the current gyro output to update the OBC quaternion. The 
kinematic equation for updating a quaternion is (Reference 2): 

- 
0 -W 
-wZ 2 wyx 

.. 
wy -wx 0 
TWX -wY -wz 
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2 2 1/2 where w = ( w$ + w i- w, 1 
T = time intXrva1 
I = 4x4 identity matrix. 

Since the gyro output consists of three angles ex, ey, 8, 
following substitutions can be made: 

the 

ex = wx T, ey = wy T, e ,  = wz T 

Equation 2.1 then becomes: 
4 

Every 32.768 seconds, the attitude estimation routine (ATTEST) 
generates roll, pitch, and yaw errors. These errors are fed into 
the kinematic integration routine in place of the normal gyro data 
that is used between 32.768 second updates. 

The attitude estimation routine (ATTEST) itself consist of an 
extended Kalrnan filter (KF). Reference 1 contains an outline of 
ATTEST. The KF is implemented in two steps. First, the propagation 
of the internal statistics based on the Dynamics Model and second, 
updating the state vector based on the Observation Model, the 
measurements, and the internal statistics. ATTEST alternates 
between the two sensors (FHST/FHST or FHST/FSS) being used for 
attitude estimation every 32.768 seconds. 

Dvnamics Model 

The gyro rate measurement is assumed to have the following form: 

- e =  E + % + & - &  

- b = nu 
where, 9 - gyro rate measurement 

w - true spacecraft rate 
&- gyro bias error 
- b - gyro random walk error &,- float torque noise (gaussian white noise) 
nu- float torque derivative noise (gaussian white noise) 

The gyro drift error, e, is defined as follows: 

- e = y - g  

It then becomes the following equation: 

- e = -bo - & + nv 
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The gyro bias &, 
above equation, 

to be known and can be taken out of the 

- e = --h + -% 
k! = &J 

The attitude error, $, is computed as follows: 

e i + E X $  = - e 

i = - b + &  

However since is neglible, the dynamic model is reduced to the 
following form: 

- b = gu 

If these two equations are put into a linear state space formulation 
equations (2.3) and (2.4) are derived: 

- X(t) = F x(t) + E(t) (2.3) 

where, Q - attitude error 
- b - gyro random walk error 
-&- float torque noise (Gaussian) 
nu- float torque derivative noise (Gaussian) 

The state equation is discretized to the following form: 

- X(tk) = pk X(tk-1) + W(tk) 

where plk = eATk and T~ = tk - tk-1. 
The two characteristics of g(t) are the mean: 

E _W(t) 1 = 0 

And the covariance: 

n 03x3 nT [J(t-t#) (2.5) 
-u-u - 

where rcTtc denotes the transpose. Note that the off diagonal 
elements in (2.5) are zero since it is assumed that there is no 
correlation between r?, and nv. 
The Spectral Density Matrix is defined as follows: 
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Thus the covariance is given as 

Q(t) $(t-rt") (2 * 7 )  

The discrete Dynamics Noise Covariance matrix, Q , is obtained using 
the state transition matrix, pk, and the Spectraf Density matrix, 
Q(t), in the following manner: 

Once Qk is computed, it is used to propagate the state covariance 
matrix as follows: 

pk (-1 = pk pk-l(+) 9; + Qk (2.9) 

where Pk (-) 

Observation Model 

is the Propagated Covariance Matrix at time k and, 
Pk-1 (+) is the updated Covariance Matrix at time k-1. 

-- FHST Model 

In the GRO Flight Software, the FHST measurements are used to 
create an observed star unit vector, os, in the Sensor Coordinate 
frame. The identified star position in the star catalog is used to 
create an expected or computed unit star vector, s, in the Sensor 
Coordinate Frame. We then define 

Zk(i) = OS,(i) - CSk(i) for i=x and y (2.10) 

where zk is the measurement residual. 

From this definition of zk , Hk is shown to be 

(2.11) 

where skis the observed star vector in the spacecraft body frame, 
- X is the X axis of the FHST in the spacecraft body frame, 

and X is the Y axis of the FHST in the spacecraft body frame. 
In the observation model 

& = Hk x + yk (2.12) 

where 
noise (Gaussian). 

The sensor noise characteristics are the following: 

& is the observation defined in (2.9), and v, is the sensor 
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(2.14) 

It is further assumed that the initial state vector & 
and & , 
assumed zero mean and Gaussian, this is equivalent to assuming they 
are uncorrelated with each other. 

-- FSS Model (Reference 10) 

As with the FHST, the FSS model uses an observed Sun position, os, 
and a computed Sun position, m, to compute measurement residuals, 
- Z, as follows: 

is Gaussian 
,and Pk are independant of each other. Since all are 

Zk(i) = OSk(i) - CSk(i) for i=x and y. 

The measurement equation is the same used for the FHST (2.12). For 
the FSS, the Hk is shown to be: 

(2.15) 

where sk is the computed sun vector. xMp and xMp are as follows: 
'MPx 

'MPZ 
'MPX 

'MPz 

xMpY 

YMpY 

where xF is the FSS X-coordinate axis 
XF is the FSS Y-coordinate axis - Z is the FSS Z-coordinate axis 
EP and YP are the FSS expected 

The FSS noise characteristics are the 

Update Alsorithms 

in the spacecraft 
in the spacecraft 
in the spacecraft 
measurements. 

same as those for 

The state vector is updated by processing the following 
with the inputs Pk(') 
observation vector zk (2.12) : 

(2.9), Hk (2.11 and 2-15), Rk (2.14), and the 

frame , 
frame, 
frame , 

the FHST. 

ecruat ion 

is the updated Covariance Matrix. 
the Kalman Gain Matrix. 
i s  the updated State Vector. 

(2.16) 
(2.17) 
(2.18) 
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The GRO Flight Software employees a scaler implementation method 
which requires the sequence of equations (2.16-2.18) to be executed 
twice. 
the FHSTs (similarly for the FSS): 

In the first pass the following substitutions are made for 

The resulting Kalman Gain Matrix Kk,l 
govariance matrix (2.17) where Pk = P and the update (2.18) where 
&(-) = 0 .  

= Kk 
The equations are listed befow: 

is used to update the 

where Zk,l is the x component of &. 
In the second pass, there are the following substitutions: 

where gk,l(+) is the state vector update from the first pass. 

The final Kalman Gain Matrix Kk' Kk 
covariance matrix and the state vector. 
below: 

is used to update the 
The equations are listed 

where Zk,2 is the Y component of &. 
3.0 ADEAS 

The Attitude Determination Error Analysis System (ADEAS) was the 
attitude tool used in this analysis. It models state estimation 
using either a batch filter or a Kalman filter. The ADEAS Kalman 
filter is the same two pass filter implementation as described for 
GRO in Section 2.0. Thus, ADEAS provides a convient method for GRO 
onboard attitude error analysis. 

ADEAS models an attitude system by use of consider and solve-for 
parameters. The solve-for parameters are those the onboard filter 
uses in its state vector. For GRO, the solve-for state components 
are the three attitude errors and the three gyro drift errors. The 
consider parameters are those that the onboard filter does not take 
in account such as misalignments and scale factor errors. 
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4-0 ONBOARD ATTITUDE ACCURACY 

.1 Attitude Accuracy Requirement 

Using the above attitude estimation algorithm, the overall attitude 
determination requirement and the TRW stated capabilities are as 
follows (Reference 3): 

Requirement Capability 
(arc-sec) (arc-sec) 
( 3 -sigma 1 (3-sigma) 

Attitude determination accuracy 86.4 71.2 

Attitude determination accuracy 167.5 143.8 
using two FHSTS 

using 1 FHST and 1 FSS 

The FHST/FHST algorithm errors were the largest single contributer 
to the error budget at 53.3 arcseconds/axis. The FSS alignment 
error of 97.5 arcseconds/axis was the largest contributer to the 
FHST/FSS error budget. According to TRW error budgets, the absolute 
attitude determination requirement is met for both cases with a 
reserve. 

ADEAS simulations were conducted to independantly verify that the 
Onboard attitude determination requirement could be met. 
to TRW analysis, the update filter required 3 hours to converge 
(Reference 3). The simulation length consisted of the three hour 
convergence time plus one orbit of data. 
parameters used in these simulations are listed below: 

Inmt parameters 

According 

The primary error 

Dynamic Noise (Reference 3 )  
White 4.2459E-2 arcseconds/sec1/2 per axis 
Random walk 4.44133-5 arcsecond~/sec~/~ per axis 
Misalianments 
FHST # 1 32 arcseconds/axis (Table 1) 
FHST # 2 32 arcseconds/axis (Table 1) 
FSS 97.5 arcseconds/axis (Table 2) 
Gyro 56 arcseconds/axis (Reference 4) 
Measurement Noise 
FHST #1 32.3 arcseconds (Note 1) 
FHST #2 32.3 arcseconds (Note 1) 
FSS 82.1 arcseconds (Note 2) 
Gyro Scale Factor Error (3000 PPM) (Reference 5) 
Initial Attitude Error (1800 arcseconds/axis) 
Initial Gyro Drift Error ( 0 . 5  arcseconds/second/axis) 
Systematic Calibration Errors (FHST #1 and FHST #2) 
H and V measurements - 7 arcseconds (Reference 6) 
Attitude Stabilization Errors 0.096 degrees (Reference 3 )  
Simulation Lensth (273.58 minutes) 

For each simulation, the algorithm uncertainties and the jitter due 
to reaction wheel disturbances were RSS'd with the resultant 
simulation attitude errors in order to compare the simulation 
results to the error budget. 
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4.2 FHST/FHST CASE 

This case is the nominal configuration for attitude estimation 
onboard and the most accurate. After the three hour convergence 
period, the maximum filter roll, pitch, and yaw attitude errors were 
64.11, 64.74, and 60.80 arcseconds respectively. The g ro drift 
errors fo5 the roll, Qitch, and yaw axes were 3.335~10 
3.356~10- , 3.899~10- arcseconds/second respectively. The onboard 
attitude accuracies are well within the 86.4 arcsecond/axis 
requirement. From Figure 4.1, steady state convergence occurs 
approximately 6200 seconds into the simulation. 

4.3 FHST/FSS Case 

This case is used only if one FHST fails, and the resultant accuracy 
degrades considerably. After the three hour convergence period, the 
maximum roll, pitch, and yaw attitude errors were 126.85, 120.13, 
and 80.12 arcseconds respec ively. The roll, pitch, ang yaw gyro 

arcseconds/second respectively. The attitude accuracies are well 
within the 167.5 arcsecond/axis requirement. From Figure 4.2, the 
steady state convergence occurs at approximately 8800 seconds. 

4.4 1 FHST With Two Guide Stars Case 

A simulation of 56000 seconds was made using FHST #2 and two guide 
stars within one degree of the FHST boresight. 
measured alternately every 32 seconds. The attitude estimation 
errors were smaller for this case than for the FHST/FSS case. From 
Figure 4.3, the convergence time for this simulation was 
approximately 48000 seconds which is about eight times that of the 
FHST/FHST case and six times that of the FHST/FSS cas.e. The longer 
convergence time is understandable from observability reasons alone. 
The maximum roll, pitch, and yaw attitude estimation errors over the 
last 8000 seconds of the simulation were 100.34, 100.03, and 64.38 
arcseconds res ectively. 
were 5 e 378x10-', 5.375~10- , and 3.382~10-~ arcseconas/second 
respectively. 

-Y , 

drift errors were 4.046~10- 3 , 3.379~10-~, and 6.376~10- 

The stars were 

The roll, pitch, and yaw gyro drift error 

5.0 SENSITIVITY ANALYSIS 

For the sensitivity analysis, the consider parameters used for the 
ADEAS simulations were increased by a factor of two. The resulting 
ADEAS attitude errors are RSS'd with the algorithm implementation 
error and jitter due to the reaction wheels. The case designations 
were as follows: 

'From reference 7, the FHST calibration error is 30 arcseconds 
(3-sigma), and the noise equivalent angle (NEA) is 24 arcseconds 
(3-sigma). The NEA is reduced to 12 arcseconds by data averaging 
onboard. The resultant measurement error is the RSS of 30 and 
12 arcseconds. 

(3-sigma), and the noise equivalent angle is 21.6 arcseconds. 
The resultant measurement error is the RSS of 79.2 and 21.6 
arcseconds. 

'From reference 8, the calibration error is 79.2 arcseconds 
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Case 
1A 
2A 
3A 
4A 
5A 
6A 
7A 
8A 

Case 
1B 
2B 
3B 
4B 
5B 
6B 
7B 
8B 
9B 
108 

1 
Case 
1c 
2c 
3c 
4c 
5c 
6C 
7c 

FHST/FHST Configuration 
Error Description 
Baseline 
2x Gyro white noise about each gyro axis 
2x Gyro random walk noise about each gyro axis 
2x Gyro scale factor error about each gyro axis 
2x Gyro misalignment about each gyro axis 
2x FHST #1 misalignment about each FHST #1 axis 
2x FHST #2 misalignment about each FHST #2 axis 
2X FHST noise 

FHST/FSS Configuration 
Error Description 
Baseline 
2x Gyro white noise about each gyro axis 
2x Gyro random walk noise about each gyro axis 
2x Gyro scale factor error about each gyro axis 
2x Gyro misalignment about each gyro axis 
2x FHST #1 misalignment about each FHST #1 axis 
2x FSS misalignment about each FSS axis 
2x FHST noise 
2x FSS noise 
2x FHST and FSS noise 

FHST with Two Guide Stars Configuration 
Error Description 
Base1 ine 
2x Gyro white noise about each gyro axis 
2x Gyro random walk noise about each gyro axis 
2x Gyro scale factor error about each gyro axis 
2x Gyro misalignment about each gyro axis 
2x FHST #2 misalignment about eac.h FHST axis 
2x FHST noise 

The attitude error results for the FHST/FHST case are as follows: 

Attitude Determination Errors (arcseconds) 
case 

lA 
2A 
2A 
2A 
3A 
3A 
3A 
4A 
4A 
4A 
5A 
5A 
5A 
6A 
6A 
6A 

Axis 

X 
Y 
Z 
X 

Z 
X 

Y 

Y 
Z 
X 
Y 
z 
X 

z 
Y 

Roll 

64.11 
64.24 
64.23 
64.11 
65.39 
64.18 
64.11 
64.11 
64.11 
64.11 
64.11 
64.11 
64.11 
74.80 
64.00 
64.12 

Pitch 

64.74 
64.75 
64.86 
64.74 
64.80 
66.04 
64.74 
64.74 
64.74 
64.74 
64.74 
64.74 
64.74 
76.02 
64.74 
64.74 

Yaw 

60.80 
60.80 
60.80 
60.92 
61.22 
61.22 
61.74 
60.80 
60.80 
60.80 
60.80 
60.80 
60.80 
61.22 
74.35 
60.80 
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7A x 74 77 76-05 61,22 
7A Y 64 e 12 64 ..73 75 42 

8A 65 e 39 66.10 60.47 
7 z 64 e 12 64 e 74 6oea1 

The gyro drift error results for the FHST/FHST case are as follows: 

Gyro Drift Estimation Errors ( arcseconds/second) 
Case Axis Roll Pitch Yaw 

1A 3 * 335 3.356 3.899 
2A X 3.414 3.352 3. a99 
2A Y 3.332 3.432 3. a99 
2A 2 3.335 3.356 3.982 

3A Y 3.385 6.260 4.414 

4A x 3.335 3.356 3. a99 
4A Y 3.335 3.356 3. a99 
4A z 3.335 3.356 3. a99 
5A x 3.335 3.356 3. a99 
5A Y 3.335 3.356 3 .a99 
5A 2 3.335 3.356 3.899 
6A X 3.356 3.374 4.414 
6A Y 3.165 3.201 6.250 
6A 2 3.335 3.356 3.899 
7A x 3.356 3.374 4 -414 
7A Y 3.356 3.376 5.774 
7A 2 3.335 3.356 3.899 
8A 3 .a05 3.859 3.420 

The increased gyro white noise and random walk noise about an axis 
primarily affects that axis as expected. There is sqme correlation 
between the X and Y axes but not enough to be significant. Of the 
two errors, the random walk component proves to affect the attitude 
errors the most. As expected, the random walk errors contribute the 
most to the gyro drift estimation errors (see equations 2.4-2.9). 
Between updates, this higher gyro drift error would degrade the 
attitude solution since the gyro data would compensated’with an 
incorrect gyro drift estimate. The gyro scale factor errors and 
misalignments have no significant affect on the attitude solution 
since the spacecraft is inertially pointed and has no significant 
angular rates. As expected, the FHST misalignments have the largest 
affect on attitude accuracy. For both FHST #1 and #2, the 
misalignment of the X and Y tracker axes result in attitude 
estimation errors of over 70 arcseconds. Both FHSTs had a maximum 
attitude estimation error of 76 arcseconds when their Y-axis was 
misaligned. The increased FHST noise has only a small effect on the 
attitude error since there are sufficient measurements to reduce the 
scope of the error, and the system has good observability. 

The attitude error results for the FHST/FSS cases are as follows: 

3A X 6 228 3.404 4.414 

3A z 3.335 3.356 6.185 

Attitude Determination Errors (arcseconds) 
Case Axis Roll Pitch Yaw 
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1B 
2B 
2B 
2B 
3B 
3B 
3B 
4B 
4B 
4B 
5B 
5B 
5B 
6B 
6B 
6B 
7B 
7B 
7B 
8B 
9B 
10B 

X 

z 
X 

2 
X 

z 
X 

z 
X 

z 
X 

Y 

Y 

Y 

Y 

Y 

Y 
2 

127 21 
127 e 24 
127 e 24 
127.21 
128.04 
127.43 
127.21 
127.21 
127.21 
127.21 
127.21 
127.21 
127.21 
149.19 
127.21 
127.21 
208.19 
127.24 
127.21 
128.35 
131.64 
132.30 

121,30 
.121.30 
121.40 
121.30 
120.13 
122 s 02 
121.30 
121.30 
121.30 
121.30 
121.30 
121.30 
121.30 
121.30 
121.30 
121.30 
209.49 
121.36 
121.33 
120.32 
126.30 
126.36 

74.65 
74.65 
74 65 
74.69 
80.12 
74.65 
74.91 
74.65 
74 65 
74.65 
74.65 
74.65 
74.65 
74.66 
91.91 
74.65 
74.76 
74.85 
74.65 
94.66 
74.93 
74 f 97 

The gyro drift error results for the FHST/FSS case are as follows: 

Case 

1B 
2B 
2B 
2B 
3B 
3B 
3B 
4B 
4B 
4B 
5B 
5B 
5B 
6B 
6B 
6B 
7B 
7B 
7B 
8B 
9B 
10B 

Gyro Drift Estimation Errors ( arcseconds/second) 
Axis Roll Pitch Yaw 

4.093 
X 4.147 
Y 4.108 
2 4.093 
X 7.139 
Y 4.277 
z 4.093 
X 4.093 
Y 4.093 
z 4.093 
X 4.093 
Y 4.093 
z 4.093 
X 4.093 
Y 4.093 
z 4.093 
X 4.093 
Y 4.093 
z 4.093 

5.195 
6.073 
6.343 

4.187 
4.183 
4.262 

3 * 399 
6.653 
4.187 
4.187 
4.187 
4.187 
4.187 
4.187 
4 187 
4.187 
4.187 
4.187 
4.187 
4.187 
4.187 
3.838 
6.268 
6.329 

4.187 

4.169 
4.169 
4.169 
4.. 248 
6.376 
4.169 
5.962 
4.169 
4.169 
4.169 
4.169 
4.169 
4.169 
4.169 
4.486 
4.169 
4.172 
6.534 
4.172 
5.767 
2.968 
3.533 

As with the FHST/FHST simulations, an increase of gyro white noise 
or random walk about an axis primarily affects that axis. Not only 
does a correlation of the X and Y axes exist as in the FHST/FHST 
case, but a X and Z correlation exits. Of the two gyro noises, the 
random walk error has the largest affect on the attitude errors due 
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to attitude computations between meas nt updates as mentioned in 
revious case. The gyro scale fac and misalignments have no 
ficant affect on the attitude or bias errors due to the 

spacecraft being inertially pointed. The FHST #2 and FSS 
misaligninents are the greatest contributors to attitude errors as 
expected since they define the attitude. 
attzitude errors more due to the greater alignment errors as compared 
to FHST # 2. Increasing the FHST noise results in the roll error 
increasing by 1 arcsecond, the pitch error decreas 
arcsecond, and the yaw estimation error increasing 
The increased FHST noise to 64 arcseconds is much closer to the FSS 
measurement noise of 82 arcseconds. Thus, the FSS measurements 
would be weighted almost as much as the FHST measurements. The 
large FSS alignment uncertainties are then fed into the yaw 
estimation errors. The above maximum error occurs when the FHST is 
occulted which further degrades the yaw solution. 
FSS noise increases the roll, pitch, and yaw estimation errors due 
to the limited memory of the filter to measurements. Thus, the 
measurement noise cannot be averaged out totally. The yaw error is 
only slightly higher than the baseline since any FSS is weighted 
much less than in the baseline while the FHST measurements are 
weighted the same. When the noise on the FSS and FHST are 
increased, the total error is due totally to the increased noise and 
the limited memory of the filter mentioned above. 

The attitude error results for the 1 FHST with 2 Guide Stars are: 

The FSS affects the 

Increasing the 

Attitude Determination Errors (arcseconds) 
Case Axis Roll Pitch Yaw 

1c 
2c X 
2c Y 
2c Z 
3c x 
3c Y 
3c Z 
4c x 
4c Y 
4c z 
5c X 
5c Y 
5c z 
6C X 
6C Y 
6C Z 
7c 

100.34 
100.43 
100.40 
100.34 
109.61 
108.02 
100.34 
100.34 
100.34 
100.34 
100.34 
100.34 
100.34 
107.77 
100.34 
107.77 
155 e 73 

100.03 
100.07 
100.13 
100.03 
107.65 
109.23 
100.03 
100.03 
100.03 
100.03 
100.03 
100.03 
100.03 
107.46 
100.03 
107.43 
154.99 

64.38 
64.. 38 
64.38 
64.56 
64.38 
64.38 
65.98 
64.38 
64.38 
64.38 
64.38 

64.38 
64.38 
84.97 
64.38 
65.19 

64.38 

The gyro drift error results for the 1 FHST with 2 Guide Stars is: 

Gyro Drift Estimation Errors ( arcseconds/second) 
Case Axis Roll Pitch Yaw 

1c 5.378 5.375 
2c X 5.407 5.393 

3.382 
3.382 
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2c 5,396 3.382 

3c x 8.856 6,653 3.382 
3c Y 6.660 8.845 3.382 
3c 2 5.378 5.375 6.394 
4c x 5.378 5.375 3.382 
4c Y 5.378 5.375 3.382 
4c z 5,378 5.375 3,382 
5c x 5.378 5.375 

5.378 5.375 3.382 
5c 2 5.378 5.375 3.382 
5c Y 
6C x 5.378 5.375 3.382 
6C Y 5.378 5.375 3.382 
6C Z 5.378 5.375 3.382 
7c 6.811 6.804 3.694 

2c 5,378 5.375 3,503 

As in the FHST/FHST case, an increases in the white and random walk 
noise about an axis primarly affects that axis. 
between the X and Y axes still exists. 
random walk has the largest affect on the attitude due to the 
increased gyro drift estimation error as mentioned above. 
scale factor error and misalignments as expected have no affect on 
the attitude estimation error. Also as expected, the added FHST 
alignment errors have a significant affect on the attitude 
estimation errors. The maximum attitude estimation error from the 
FHST misalignments is 107 arcseconds. The primary source of 
attitude estimation error is from the FHST noise. This results from 
the small separation of the guide stars in the FHST (2.8 degrees). 
The attitude estimation errors due to the measurement noise is an 
arctangent relationship seen in the following diagram (Reference 9): 

The correlation 
Of the two noises, the 

The gyro 

..e-- ..-.- ..-- ,..... 
For this simulation, this error was approximately 1290 arcseconds. 
The RSS attitude estimation error for the noise simulation is 
approximately 229 arcseconds. The filter was able to improve the 
solution by 1061 arcseconds. 
measurements was not long enough to average out the measurement 
noise further. 

Of the three cases simulated, the FHST/FHST case is by far the most 
accurate as expected. The choice for the backup case is not as easy 
to choice. The disadvange of the FHST/FSS case is the FSS alignment 
errors. Unless the FSS alignment is updated often, alignment errors 
due to thermal effects could degrade the attitude accuracy 
significantly. From an alignment point of view, the 1 FHST case is 
the most preferable due to the FHST being mounted on a fairly stable 
platform which is beside the gyros. From a noise point of view, the 
1 FHST case is worse than the FHST/FSS case. 
improved if more than two guide stars were available or the angular 
separation was larger. A possible solution to the problem is to use 
the.1 FHST case as a backup provided at least two guide stars are 
available and the FHST noise has not increased significantly from 

The filter's memory for the 

The accuacy could be 
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launch. 
FHST/FSS case and more of the sky would-be open for viewing due to 
the limited FOV of the FSS. 
increased significantly since launch or there are not enough guide 
stars, use the FHST/FSS case. 

The alignment errors would be less than that for the 

Otherwise, if the FHST noise has 

6.0 OBC ATTITUDE ESTIMATION CALIBRATION AND VALIDATION 

Nominal ODerations 

After the spacecraft has completed inorbit checkout, there are two 
phases for validating the onboard calculated attitude: 
maneuver mode phase and normal pointing mode phase. Once the normal 
maneuver is performed, the onboard filter convergence needs to be 
validated. This convergence is defined as steady state operation 
and should occur within 3 hours of filter initialization (Reference 
3). Once the filter has converged, the mission is in the normal 
pointing mode phase. According to Teledyne documentation, the 
acceleration insensitive drift rate (AIDR) peak over six hours is 
0.0006 arcseconds/second (Reference 4). Assuming the update filter 
was disabled, the attitude errors due to the AIDR alone could be 
51.84 arcseconds in 24 hours. This requires the onboard attitude 
estimation to be checked a minumum of once/day. 

Before the procedure for validating the onboard attitude estimation 
process is discussed, the error comparison limits need to be 
determined. The GRO requirement for attitude determination is an 
absolute requirement. This absolute requirement references the 
attitude to the spacecraft body. An attitude sensor alignment can 
be determined relative to an optical cube on the ground. However 
once the spacecraft is placed on orbit, this alignment is unknown 
due to launch shocks. A ground system can align the attitude 
sensors relative to a reference attitude sensor. The attitude can 
be determined relative to the reference attitude sensor. The 
resulting attitude estimation error would be a function of the 
attitude sensors and attitude determination algorithm accuracies. 
This *'relativew attitude estimation is what will be checked by the 
ground system since the alignment relative to body necessary for an 
"absolute" attitude estimate is unknown on the ground as well as 
onboard. 

The portion of the TRW error budget devoted to algorithm errors is 
53.3 arcseconds for FHST/FHST case and 66.3 arcseconds for the 
FHST/FSS case. The FHST and FSS noise allocations in the error 
budget are 10 and 24.1 arcseconds respectively. After RSSing the 
appropriate sensor noises with the associated algorithm errors for 
each case, the following comparison accuracy limits are obtained: 

post normal 

GRO ONBOARD ATTITUDE ESTIMATION ERROR COMPARISON LIMITS 

FHST/FHST 55.1 arcseconds/axis 
FHST/ FSS 71.2 arcseconds/axis 

Figure 6.1 
--------------------__________________o_--------------------------- 

The onboard attitude estimate will be compared to the attitude 
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estimate from the Code 550 Fine Attitude Determination System 
outline for the comparison.procedure is as follows: 

Select an orbit of data. 
Process the sensor data through a batch least squares 
filter to obtain a ground attitude estimate. 
Compute errors between the ground attitude estimate 
and the OBC estimate. 
Compare these errors to the comparison numbers in Figure 
6.1. 
If the attitude errors are less than those in Figure 6.1, 
then the OBC attitude estimation function is operating 
properly, and the validation process is complete. 
If the attitude errors are greater than those in Figure 
6.1, follow steps 7-9 since the the OBC may not be 
functioning properly. 
Check to see if the attitude estimate is diverging from 
the ground solution. If not, then the filter needs 
tuning. 
Check to see if any of the following attitude sensors have 
failed or if the sensor data is degraded: 

a) Gyros 
b) FHSTs 
c) FSS 

Check to see if the FHST(s) are tracking stars for less 
than 32.768 seconds. If this is happening, then there 
could be a star match problem. This could mean a bad 
onboard covariance (filter tuning probably required), 
failure of the FHST, or a bad uplink of guide stars. 
update filter validates an observed star only if matches 
with one uplinked guide star. A lack of a guide star 
match or a match with more than guide star.causes the 
update filter to send a break track command to search for 
a new star. 

The 

At the time these tests are being performed, all update filter data 
base parameters need to be checked for the previous-24 hour period. 
Bad data base updates could easily upset onboard attitude 
estimation. 

Continaencies 

If the attitude estimation errors equal or exceed comparison limits 
and the possible problems discussed above have been eliminated, OBC 
attitude determination calibration may be required. 
filter can be calibrated by the following methods: 

The Onboard 

a) tuning parameter adjustment 
b) 
c) changing measurement frequency 

changing update frequency of covariance matrix 

Onboard filter calibration can most easily be performed by tuning 
parameter adjustment. Short of modifying the Onboard filter, the 
tuning parameters are the following: 
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a) 

b) 

c) FHST noise variance 
d) FSS noise variance 
e) G y r o  white noise estimate. 
f) Gyro random walk estimate. 

Initial Attitude errors along the covariance 

Initial Gyro Drift errors along the covariance 
diagonal 

diagonal 

The initial attitude and gyro drift errors in the state covariance 
matrix occupy the first six diagonal elements. 
constants that are used to initialize the state covariance matrix 
when the filter is initialized. The more accurate these numbers 
are, the faster the filter will converge to the correct solution. 
Since the largest value of the upper lefthand 3x3 matrix are used 
for star selection criteria, a good estimate of the initial attitude 
and gyro drift errors will decrease the possibility of a 
misidentification of a star. 

The sensor noise variances are used in determining the weight of a 
particular measurement. 
equation: 

These are data base 

This can be seen in the GRO Kalman gain 

where Rk i is the sensor noise for a particular measurement. If 
Rk i is increased, then the Kalman gain Kk will be decreased and 
mofie emphasis will be placed on the estimate Xk(-): 

This allows the filter to place emphasis oh more accurate 
measurements. In the FHST/FSS case, the FHST measurements would be 
given more confidence by the filter than the FSS measurements since 
FHSTs are more accurate. The estimated dynamic noise for the filter 
(white noise and random walk) come into play with the propagation of 
the state covariance matrix. The spectral density matrizx is defined 
as follows: 

where E ( t )  
is used to 
follows: 

is white noise vector in the state equation (2.3). Q(t) 
form the discrete dynamics noise covariance matrix as 

( 6 . 4 )  
J 
tk-l 

which is used in the propagation of the covariance matrix as follows 

+ Qk (6.5) 
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L'UNING PARAMETERS 

FHST Noise Var. 

FSS Noise Var. 

Initial attitude 
errors 

Initial gyro 

White noise 

drift errors 

Random walk 

Related Parameters 

%timated attitude 
errors 

Zstimated gyro 
drift errors 

kttitude quaternior 

3THER METHODS 

Covariance Update 
Frequency Change 

Measurement Update 
Frequency Change 

Table 37 

Table 42 

Table 4 2  

Table 42 

Table 36 

Table 36 

Table 42 

Table 42 

Table 59 

N/A 

N/A 

YES 

NO 

NO 

NO 

YES 

YES 

NO 

NO 

NO 

N/A 

N/A 

Useful if FHST data is 
noisy or to add weight 
to the FSS measurements 

Useful if FSS data is 
noisy or to add weight 
to the FHST measurements 

Useful for the 
convergence of the filter 

Useful for the 
convergence of the filter 

Needed if gyro white 
noise increases or if 
less emphasis on the 
dynamic model is desired 

Needed if gyro random 
walk noise increases or 
if less emphasis on the 
dynamic model is desired 

Useful for.smal1 onboard 
attitude quaternion 
corrections. 

Needed to insure the 
onboard attitude is 
propagated correctly. 

Needed if onboard 
quaternion is bad 

Requires code changes 
in ATTEST and probably 
the EXEC routine. Not 
an easy modification. 

Requires changes in the 
EXEC routine. Probable 
OBC loading problems. -------------------------- 

Table 6.1 Update Filter Calibration Method Summary 
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computed. 

The second possible calibration method is changing the update 
frequency of the state covariance matrix (6.5). Currently, the 
onboard filter updates Pk(-) every 32.768 seconds before the star 
identification process occurs. Increasing the update frequency 
could assist in state estimation as well as star identification. 
The state covariance matrix update is embedded in ATTEST which makes 
this possibility difficult to implement due to the software mods 
needed. 

The last calibration method mentioned deals with measurement 
updates. 
and gyro drift errors. 
between measurement updates. 
updates, the onboard quaternion would be updated in the kinematic 
integration routine which uses slowly degrading gyro data. 
data used requires an accuate estimate of the gyro drift error to 
compensate the incremental angles. Without accurate gyro drift 
compensation, the onboard attitude quaternion would slowly diverge 
from the proper attitude. Now if measurement updates were made more 
frequently, the attitude would be compensated before it could 
degrade significantly. This modification would be easier to perform 
than changing the propagation frequency of the state covariance 
matrix since little coding changes would be required. The resulting 
OBC loading would need to be studied to determine whether this 
modification is viable. 

Stellar updates very accurately pin down attitude errors 
Gyro drift errors affect the attitude 

During periods of no measurement 

The gyro 

7.0 CONCLUSIONS 

For both the FHST/FHST and FHST/FSS configurations, the GRO onboard 
attitude determination accuracies can be met with significant 
margins (assuming nominal on-orbit conditions). For the FHST/FHST 
configuration, the roll, pitch, and yaw predicted attitude 
estimation errors are 64.11, 64.74, and 60.80 arcseconds 
respectively, The requirement is 86 arcseconds/axis. For the 
FHST/FSS configuration, the roll, pitch, and yaw predicted attitude 
estimation errors are 127.21, 121.30, and 74.65 arcseconds 
respectively. The requirement is 167.5 arcseconds/axis. For the 1 
FHST with 2 guide star case, the attitude estimation errors were 
100.34, 100.03, and 64.38 arcseconds respectively. 

As expected for the FHST/FHST and FHST/FSS cases, the attitude 
estimation accuracies are most sensitive to FHST and FSS alignment 
errors. 
errors in both cases, but alignment errors provide the second 
largest component of gyro drift error. 
importance of proper attitude sensor alignment determination. 

The single FHST case demonstrated that onboard attitude estimation 

The gyro drift errors are most sensitive to random walk 

These results emphasize the 
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rivalling that of the FHST/FSS combination is possible. However, 
this choice is highly sensitive to measurement noise. 
measurement noise is nominal and two guide stars are available, it 
is recommended to use this case over the FHST/FSS case due to high 
FSS alignment errors and the FSS FOV limitation on target attitudes. 

A procedure was outlined for GRO OBC attitude estimation validation. 
It was pointed out that the accuracy check is a relative check and 
not an absolute check. 
FHST/FHST case is 55.1 arcseconds/axis and 71.2 arcseconds/axis for 
the FHST/FSS case. 

When and if problems with the onboard attitude estimation process 
are detected, three onboard filter calibration techniques are 
available: filter tuning, increased state covariance matrix update 
frequency, and increased ATTEST frequency. O f  the three techniques, 
filter tuning parameter adjustment is the easiest. In extreme 
situations where filter turning is not sufficient, an increased 
measurement frequency for ATTEST would require the least software 
modifications. OBC loading would need to be studied though since 
ATTEST is the largest function in the Attitude Control and 
Determination (ACAD) portion of the OBC flight software. 

If the 

The attitude error comparison for the 

1. 

2. 

3. 

4. 

5. 

6. 

7 .  

a. 
9. 

10. 
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ABSTRACT 

The TAPS is a 2 axis gimbal system designed to provide fine 
pointing of STS borne instruments. It features center-of-mass 
instrument mounting and will accommodate instruments of up to 1134 
kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 
40 by 166 inch) envelope. The TAPS system is controlled by a 
microcomputer based Control Electronics Assembly (CEA), a Power 

DRIRU-I1 inertial reference unit is used to provide incremental 
angles for attitude propagation. A Ball Brothers STRAP star 
tracker is used for attitude acquisition and update. 

The theory of the TAPS attitude determination and error computation 
for the Broad Band X-ray Telescope (BBXRT) are described. The 
attitude acquisition is based upon a 2 star geometric solution. 
The acquisition theory and quaternion algebra are presented. The 
attitude control combines classical position, integral and 
derivative (PID) control with techniques to compensate for coulomb 
friction (bias torque) and the cable harness crossing the gimbals 
(spring torque). Also presented is a technique for an adaptive 
bias torque compensation which adjusts to an ever changing 
frictional torque environment. The control stability margins are 
detailed, with the predicted pointing performance, based upon 
simulation studies, presented. Finally the TAPS user interface, 
which provides high level operations commands to facilitate science 
observations, is outlined. 

Distribution Unit (PDU), and a Servo Control Unit (SCU). A 

NOTATION AND NOMENCLATURE 

Matrices will be written as bold faced capital letters, e.g. A. 
Vectors will be written as a lower case letter e-g. 9. The vector 
inner product will be written as <a',,> (i.e. a" dot 5) . Quaternions 
will be written as lower case barred letters, e.g. q. A quaternion 
is used to represent a the TAPS coordinate system with respect to 
an inertial coordinate system. It may be expressed as a vector 
part and a scaler part. If we define a rotation about a unit 
vector, Ê  of angle @ , it may be written as: 

- 
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The inverse 
vector part - of @. For every attitude quaternion, q, there is a 
unique equivalent a itude direction cosine matrix, . For our 
purposes, @ and represent inertial to TAPS coordinate 
transformations. The column vectors of A are the inertial basis 
vectors expressed in TAPS coordinates. It follows that the row 
vectors of A are the TAPS basis vectors expressed in inertial 
coordinates. 

ATTITUDE DETERMINATION 

When the TAPS is in parked or stowed position, its coordinate 
system is defined to be nominally parallel to the STS coordinate 
system. The x axis is the shuttle roll axis, positive forward. 
The z axis points downward through the floor of the orbiter bay. 
The y axis points to starboard, forming a right handed Cartesian 
frame. The inertial reference frame is the geocentric inertial 
coordinate system, 1950 mean (M50). The components of the TAPS and 
its coordinate system are shown in figure 1. 

The attitude quaternion is initialized from the STS state vector. 
An attitude acquisition sequence is performed to remove the 
misalignments .and uncertainties in the STS state vector. This 
sequence is discussed in the section on attitude acquisition. 

The quaternion is then propagated using a closed form solution to 
the kinematic equations of motion. 

(I) g ( t + ~ )  = e F(t) 
where, T is the propagation sample period, and B is the skew 
symmetric matrix, 

QT - 

This solution assumes that the rate vector over the propagation 
interval is constant. By using the average rate over this 
interval, this approximation is close to ideal, The equivalent 
attitudedirection cosinematrix, A, is computed each control cycle 
(16 Hz). The input to these computations are the scaled, drift 
corrected gyro rates. 
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tor is tra 

The required rotation vector is computed by taking the cross 
product : 

where 6 is the reference unit vector in the TAPS coordinate frame, 
(the vector we are trying to point). 
the BBXRT instrument boresight unit vector. During acquisition, 
6 = 6s the star tracker boresight unit vector. In all cases 6 is 
nominally aligned with the -zTAps axis. 

e'= i?msxb  ̂ (3) 

In normal operations, 6 = 

The magnitude of e' is given by: 
14 = &Ms~~Qsin$ = sin8 

where 8 is the angle between gTPs and 6. 
of 8 on the x and y axes. 

We want the projection 
One way to do this is to normalize e' as: 

Now, 6 is the unit rotation vector, The projection of 8 on the x 
axis is then: 

and for small 8 ,  sin8 * 8 and: 

similarly, 

-%-ex 

ye - ey  

( 4 )  

( 5 )  

For TAPS, 8 can be as large as 56 degrees. However, the control 
law limits the position error to a much smaller value which allows 
us to use this approximation. This is discussed in the attitude 
control section, 

ATTITUDE ACOUISITION 

The attitude acquisition sequence is designed to eliminate the 
alignment and other errors inherent in using the STS state vector 
to initialize the TAPS attitude quaternion. The sequence assumes 
that the TaPS has been deployed to parked index position, nominally 
along the shuttle -2 axis, and that the shuttle state vector has 
been used to initialize the attitude quaternion. From that point 
the following steps are taken. 
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air of stars: 

to the first star, 
Store attitude 31 re g1 is the 

matrix). 
Null on the star using star tracker position. 
Replace the attitude quaternion by the stored quaternion. 
Slew on gyros to the second stard, 
Store attitude information 3, g3. 
Null on the star using star tracker position. 
Store attitude information &,34. 
Compute updated attitude quaternion from the stored 
information. 

e 

If there are more than two stars, we may repeat the sequence using 
subsequent pairs. In this case, we repeat steps 1) through 4) for 
the last star to remove residual roll and pitch errors caused by 
numerical computational errors. 

The mathematics of this acquisition sequence will now be explored. 
This analysis assumes perfect control, alignment (b^= -Z?TMs), and 
sensors. We will use the subscript, t, to represent true attitude. 

At the start of the sequence, 

Let Fto be the true attitude and let To be our on-board 
- - -  attitude, such that 
q t o  = 4 0  q * o  

where Fe0 is the error in initializing go. The slew of step 1) of 
our attitude sequence defines an attitude rotation, qsl, after 
which, 

q1 = 4 0  qs1 

- 
- - -  

and, 

The values of Zl and g1 are stored in step 2). 
It is important to note that the first slew results in, 

e'= 0 - * A & x $ =  0 =+ 

Step 3) of our sequence produces the rotation cd, after which, - - -  
4 2  = Irr Qnz 

and I 
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i 

From equations (6) a 

SO, 

B = A ' ( Z )  A(ct,) B = A(zt2& B 
and, 

where z-, is some rotation about the B vector or, equivalently, the 
-;fTAps vector expressed in inertial coordinates. 

- 5tZZ = 58 = 4-a 

Step 4) replaces the on-board quaternion 
quaternion zl. 

- 
q2 by the stored 

- The quaternion, q,, and 2, are stored in step 6) e 

In step 8) we store 5 and g4. 

- We can compute the correction quaternion, q-a, from the stored 
attitude information at the three corners of the spherical triangle 
defined by our sequence. Figure.2 shows the acquisition sequence. 
The angle I' is the gyro slew from the star 1 to star 2 and the 
angle r' is the angle between g1 and if4. The angle p is the slew 
produced by nulling on star 2. The angle a is the error aboutgl 
in 41. 
The quaternion &. is computed as follows. 
a is given by: 

From figure 2 the angle 

cos p - c o s r c o s ~  cosa = 
sinr si& 

By assuming that I? m p  we can make the simplification, 

345 



cos 

here, 

and, 
cos p = <23,24> 

We compute the quaternion & as: 

where, 

and, 

a a - 
Q-, = (*sin - 2 2?l,cos -) 2 

cos- = 
a 2 

11 I. + zosa 
sin- = 

2 

The sign ambiguity in ( 8 )  is resolved by setting the sign equal to: 
sgn(<S1, (Z4 - 21)x(23 - Z1)>3 = ~gnI<2?~,2~x2~>3 

Note that the order of the cross product is chosen to provide the 
correct sign, since we are pointing the -z  axis but storing the +z 
axis for use in these computations. The on-board attitude 

( 9 )  
quaternion is then computed as: - -  s= q - z q q  

This computation eliminates the z axis error. 

The effects of misalignments, gyro and star tracker quantization 
and noise, control errors, and STS inertial hold limit cycle motion 
have all been evaluated in simulation studies. These studies show 
that the worst case attitude acquisition error is approximately 2 
arcminutes. 

ATTITUDE CONTROL -- BASIC 
In the x axis, the classic second order control law is, 

T, = - ( K p X e + K I O x )  (10) 

where T, is the x axis gimbal motor torque, and o x  is the drift 
corrected, measured gyro rate about the x axis, Here, Kp is the 
position gain and ICr is the rate gain. They are chosen to achieve 
the desired control bandwidth, o, and damping, c .  The relations 
are: 
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and, 

where I= is the inertia about the x axis. 

For large rotations, we wish to limit the rate, a,, to 

1 degree/sec ( -!!- rad/sec) . From equation (10) notice that when 
180 

Tx = 0 

where , 
Kr x Xlim = -- 
Kp 180 

F0.r typical 
small angle 

When we are 

values of Kr and Kp, xlim is less than 1 degree and our 
approximation is acceptable. 

in the normal pointing mode, and the position and rate 
errors are small, we add an integral control term to compensate for 
torque hangoff effects. The TAPS basic control law is then, 

(11) 

where , 
T, = - ( K p Z e  + K,O,+  K i Z z )  

Note that ICi must be adjusted from 
multiplying by the control interval, 
because of the way we are approximating 

nT 

the continuous case by 
T, in seconds. This is 
the integral of position. 

By the mean value theorem, 

The development for the y axis follows the above exactly. 

In order to allow slewing and to avoid stability problems, the 
integral compensation must only be added when we are truly holding. 
To accomplish this we compute the boolean variable: 
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and to zero and do not add the integral term. 

During attitude acquisition and update, we must be able to control 
the TAPS pointing based upon the star tracker error signals. To 
accomplish this xe and ye in equations (4) and (5) are replaced by 
x, and y,, the star tracker error signals. The rest of the control 
law is unchanged. 

The basic control law is also modified to limit the range of 
motion. We achieve 
this by providing a software limit of 19 degrees from the gimbal 
index position. When the position error exceeds 19 degrees minus 
our current gimbal encode position, in the direction we are moving, 
we replace the position error by this difference. For the x axis 
the logic is, 

We must avoid gimbal contact with limit stops. 

i f  g ratex>O then 
i f 3 g  - l i m i t  - gjos i t ion , ) txe  then 

i f  (-g - l i m i t  - gjosi t ion,? >x,then 

xe : = g - l i m i t  - g_positionx 

xe := -g - l i m i t  - g_position, 

e l se  

where g rate,, g l i m i t ,  and g j o s i t i o n ,  are the x axis tachometer 
rate, t?;e gimba'i software limit, and the x axis encoder angle 
respectively. 

ATTITUDE CONTROL -- FRICTION AND SPRING TOROUE COMPENSATION 

The modelling and early operation of the TAPS gimbal provided 
insight into the frictional torque characteristics of the gimbal. 
The gimbal physically exhibits friction, which may be approximated 
by a coulomb friction model, and a spring torque, due to the 
bending of the cable harnesses, which may be approximated by an 
angular hook's law spring, 

Early simulation studies demonstrated that we could not maintain 
the required 0.5 arcminute pointing jitter, during vernier thruster 
firings, with the basic control law alone. In order to improve 
this transient performance, 3 additional compensation terms are 
optionally added to the basic control law. These terms were a 
constant torque bias in the direction of motion, a spring torque 
term proportional to the gimbal encoder angle, and an adaptive bias 
torque term to correct for errors in the modelling and parameters 
of the other two terms. 

The bias torque term is given by, 
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e s  I 

T x  spring Kx ( gJosi ti on, - g-zero,) 
where g - zero, is the encoder reference point for zero spring 
torque. 

The adaptive bias torque term is computed as follows, 
Txadapi+l = Kadap Txadapi + & Txbasici (14) 

which is a first order difference equation in TxadBp. In this 
equation, Kaaap is chosen to be less than one for stability, andK, 
if chosen as the inverse of the desired time constant to reach 
steady state, The torque, Txbasfcf, is the torque computed by the 
basic TAPS control law. A separate adaptive term is computed for 
each direction of motion, for each axis. If we assume a constant 
motion in one direction, 

where Tfriction is a constant frictional torque to be overcome. 
steady state solution of equation (13) is then given by, 

where, 

- Txbasici - Tfriction - Tadapi 

The 

Txadapas = Kf Tfriction 

By proper specification of the gains, Kf, the fraction of the 
frictional torque which will be removed by the adaptive torque 
term, can be selected. 

The final control law is then given by, 
Tx = - ~e +Kr xi-Ki xZ) Txbias + Txspring + Txadaptive (15) 

ATTITUDE CONTROL -- ANALYSIS 
Both the roll and pitch control loops are analyzed with appropriate 
rate, position and integral gains selected to provide at least 6 db 
of gain margin and approximately 30 degrees of phase margin. The 
analysis was performed using the Interactive Controls Analysis 
(INCA) program. The Nyquist frequency responses of the system are 
shown in figure 3 and 4. From the plots, the gain and phase 
margins are, 

Roll Axis 

Upper Gain Margin: 
Lower Gain Margin: 
Phase Margin: 

7.89 db at 11.7 radians/second 
11.5 db at 1.83 radians/second 
28 degrees at 5-05 radians/second 
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rgin: 7.76 db at 
rgin: 11.6 db at 

Phase Margin: 28 degrees at 5.12 radians/second 

'X- 
z 
80 

x =  
9- 

Once the gains were selected, planer simulations representing the 
shuttle and experiment interconnected via the TAPS were 
The desire was to show that the pointing stability requirements of 
maintaining a peak pointing error of less than 0.5 arcminutes could 
be achieved in the presence of vernier jet firings. 

The MODEL translator was used to generate the FORTRAN rigid body 
simulations to evaluate the performance of the control laws 
developed in the above analysis. The x-z planer plant model 
equations, cast into matrix form, is given by, 

%- 
Fz 
TO 
,T9* 

P =  

dX 
dt M- = T 

Y =  

In this equation, 

- Ma+% 0 ~&aECOSB ai  %?$=e Vi 

0 Ma+% - % w ~ n e  ai -M&#inevi 

Hdc,cos9 ai -M'&i& ai M#da+& M & j v  (cos9 ,cosevI+sin9 oisin9 

&€&pose gi -Mg#ine ~i M g f d v (  cos9 aicos9 ,+sine ,sin9 W:+% 

where, 
Mo A Orbiter mass 
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P Initial shuttle y axis angle 
A Initial instrument y axis angle 0 gj 

A similar set was developed for the Y-2 plane. 

For the simulation, a simple orbiter limit cycle was developed to 
illustrate the performance of the controller when the relative rate 
between orbiter and experiment changed sign. 

The initial conditions were established so that the orbiter was in 
a limit cycle at a rate of 0.02 degrees/sec with a dead-zone of 
k 0.5 degrees, The experiment was held inertially fixed while the 
orbiter was rotated underneath it. As can be observed in Figure 5, 
the experiment position error (top channel) exceeded 4 arcminutes, 
which is well beyond the 0.5 arcminutes pointing requirement, 
during the vernier jet firings. 

The same initial conditions as above were established for the 
results shown in Figure 6 with the adaptive bias logic enabled. 
Initially the position error peaks well beyond the 0.5 arcminutes 
pointing requirement whenever a vernier jet fires, However, after 
several jet firings the bias term has adjusted to the point where 
the friction level is compensated by the bias term and not the 
integrator. 

Illustrated in Figure 7 is the effect of a bias level nearly twice 
as high as required, The result is a temporary oscillation of the 
position error at the very beginning of the simulation run. The 
bias term being too high overdrives the experiment resulting in a 
switching between the positive and negative bias levels until they 
are adjusted to the appropriate value. 

The curves shown in Figure 8 illustrate the adaptive changes that 
are occurring in the positive and negative bias terms. Since the 
bias levels were selected to be nearly twice as high as required, 
the positive adaptive term must adjust to decrease the positive 
term. Similarly the negative bias term must adjust to decrease the 
negative bias. In order to avoid this temporary oscillation an 
initial bias level lower than the anticipated friction should be 
selected and allowed to adjust upward. 

Ideally the adaptive bias term is used to generate a torque that is. 
equal to the friction level opposing the motion. Any torque 
opposing the motion that appears as a spring contaminates the bias 
capability. If such a spring torque exists in orbit, it will be 
possible to compensate for this torque by using the spring torque 
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has shown that the pointing requirement of 0.5 arcminutes can be 
met with the additions to the basic control law. 

TAPS USER INTERFACE 

One of the design goals of the TAPS system was to provide science 
experimenters a user interface which allows them to control the 
pointing of their instrument. The TAPS Ground Support Equipment 
(TGSE) provides a complete command and telemetry interface to the 
user, Commands may be composed and processed in real time, 
processed from a command disk file, or stored in on-board command 
timelines for timed, sequenced execution. Telemetry is captured, 
processed, and displayed in real time. 

The commands, called TAPS Mission Operations Commands (TMOCs), are 
of high level with a descriptive, English-like syntax. A sampling 
of commands which are of interest to an experimenter illustrates 
this. 

Perform and inertial slew to a given M5O target vector: 

OPER ISLEW S1, s2, s3 

Perform an inertial slew to a catalogued target vector: 

OPER CSLEW CAT - NO 

Note that experimenters need not be concerned with slew sequences 
about gimbal axes to acquire a target. Rather, they may specify 
targets in inertial coordinates. The TAPS takes care of the rest. 

CONCLUSIONS 

The TAPS has been designed to provide pointing of the BBXRT 
instrument to an absolute accuracy of better than 4 arcminutes, 
with a pointing stability of better than 0 . 5  arcminutes. The 
design of the attitude error computation provides for simplified 
user control of observations. The control law provides rate 
limiting to avoid gyro saturation and position limiting to keep the 
gimbals within an acceptable range of motion. 

It is our belief that the TAPS provides a flexible pointing 
capability which may be used for a variety of instruments. The 
system software has been designed in a highly modular fashion to 
allow the TAPS to accommodate other instruments and mission 
profiles. In particular, the architectural and algorithmic design 
required to point the Wide Angle Michelson Doppler Imaging 
Interferometer (WAMDII) instrument, which is an Earth limb pointer, 
had been completed prior to the suspension of the WAMDII program. 
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TWO AXIS POINTING SYSTEM 

BROAD BAND X-RAY TELESCOPE 

FIGURE 1 
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ATTITUDE ACQUISITION GEOMETRY 

FIGURE 2 
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” ABSTRACT 

using only 
magnetometer data under the following conditions: (1) internal torques 
are known and (2) external torques are negligible. Torque-free rotation of 
a spacecraft in thruster firing acquisition phase and its magnetic despin in 
the B-dot mode give typical examples of such situations. A simple analyti- 
cal formula has been derived in the limiting case of a spacecraft rotating 
with constant angular velocity. The formula has been tested using low- 
frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) 
under normal conditions. Observed small oscillations of body-fixed com- 
ponents of the angular velocity vector near their mean values result in 
relatively minor errors of approximately 5 degrees. More significant 
errors come from processing digital magnetometer data. Higher resolu- 
tion of digitized magnetometer measurements would significantly improve 
the accuracy of this deterministic scheme. Tests of the general version of 
the developed algorithm for a free-rotating spacecraft and for the B-dot 
mode are in progress. 

*This work was supported by the National Aeronautics and Space A 
Space Flight Center (GSFC) , Greenbelt, Maryland, under Contract 
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The idea of developing an attitude determination system using only three-axis magne- 
tometer measurements has been attracting attention for many years, despite its relatively 
low accuracy. The light weight and low cost of such a system are usually considered its 
main advantages. For a spacecraft in low-attitude Earth orbit, Kalman filtering has been 
proven to be an effective tool to derive the attitude from magnetometer measurements 
with a 2-degree (deg) accuracy (see References 1 and 2). 

This paper is intended to develop an attitude determination algorithm using only magne- 
tometer measurements under contingency conditions such as loss of attitude control of 
spacecraft. Due to high-speed rotation of a spacecraft, all other sensors, such as Sun 
sensors or star trackers, would become unreliable. Our research was inspired by studies 
of the attitude motion of the Earth Radiation Budget Satellite (ERBS) during the July 2, 
1987, control anomaly. An analysis of the playback data (see Reference 3), revealed that 
the stimulation of the Sun sensor by bright Earth during one of the real-time passes led to 
an initially incorrect conclusion about the spacecraft orientation in the post G-Rate mode. 

Although the attitude control system does not utilize gyro measurements under normal 
conditions, our analysis showed that these measurements can be effectively coupled with 
the magnetometer data to determine the attitude when angular rates are lower than the 
saturation limits on gyro output. Nevertheless, to give a worst case, we also assume a 
gyro failure either because of exceeding the telemetry limit or like that recently experi- 
enced by the Cosmic Background Explorer (COBE) . 

Therefore, the problem is to determine the attitude using only magnetometer data with no 
a priori knowledge of the spacecraft orientation. The latter requirement makes this re- 
search essentially different from the previous studies of attitude determination from mag- 
netometer-only data via the Kalman filtering (see References 1 and 2). This is because 
the dynamical equations must first be linearized near their approximate solution. The 
solution was assumed known in References 1 and 2, which discussed a spacecraft under 
normal conditions, whereas this paper is focused on development of a deterministic algo- 
rithm for making the first guess in a situation when the attitude of the spacecraft deviates 
substantially from the expectations. After an approximate solution is found through a 
deterministic algorithm, it could be improved using the filtering technique (see Refer- 
ences 1 and 2). 

We have identified the two most typical attitude acquisition phases likely to be encoun- 
tered under the contingency conditions: 

(1) No thruster firing acquisition phase (angular rates ~ 0 . 2  degreehecond (deghec)) 

(2) Thruster firing acquisition phase (spinning rates within 10-50 deg/sec) 
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ue to re~at~vely small a n g ~ ~ a r  rates i 
the spacecraft tumbl~ng and, as a result, s 
ing operational modes have been identified as the most representative choices: 

agnetic despin of a spacecraft (the -dot mode) (see ferences 4 and 5) 

(lb) Control system turned-off 

(IC) 

(Id) 

A “blind” control system randomly rocking the spacecraft 

Stabilization of the spacecraft by means of nutation damping 

For Phase 2, the control system is expected to play a relatively minor role, and, conse- 
quently, spacecraft tumbling is expected to be predominantly governed by the torque-free 
Euler equations. 

The paper presents a new deterministic algorithm, which works under the conditions that 
(1) internal torques are known and (2) external torques are negligible. Environmental 
torques are expected to be negligible either because of large angular momentum of the 
spacecraft or when compared with internal torques. Thruster firing acquisition phase and 
the B-dot mode give typical examples of such situations. Also, the algorithm can be used 
(at least in principle) to determine the attitude of a spacecraft governed by a “blind” 
control system (operational mode (IC)), when momentum wheel and scanwheel speeds 
and electromagnetic dipole moments are available from the telemetry data. 

ULAR RATE UNCERTAINTY CIRCLE (ARUC) 

Let ]iijA and fiR be the vectors of geomagnetic field ,measured in the body-fixed and refer- 
ence frames, respectively: 

The time derivatives SA and $R of two vectors are connected by the relation 

(2-lb) 

where ZA is the angular velocity vector referred to the body-fixed frame and the attitude 
matrix & represents the orientation of one frame with respect to another. The vector gA 
can be computed from two sequential magnetometer measurements g t  and f$ by us- 
ing the finite-difference approximation. The vector gR, like the vector gR itself, is found 
from the geomagnetic field model, assuming that the position of the spacecraft in space is 
known. 

If the angular velocity vector GA can be extracted from gyro measurements, Equa- 
tions (2-la) and (2-lb) can be directly used to determine the attitude via the TRIAD 
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algorithm (see 
axis attitude determination (see 

ference 6), which implements the so-calle 

eter measurements are used, the set o 
cular, the projection of the an 
rily changed without violating 

quations @-la), (2-lb) is in- 
GA on geomagnetic 
is shown below that 

the projection of GA on the plane perpendicular to the vector gA is restricted by Equa- 
tions (2-la), (2-lb) to a circle, referred to below as the Angular Rate Uncertainty Circle 
(ARUC). To determine the attitude, it is necessary to know the position of the latter 
projection on the ARUC (i.e., the angle @in Figure 1, explained below). This requires 
the third sequential magnetometer measurement, which makes it possible to compute the 
second derivative of the vector gA with respect to time. The algorithm that allows one to 
unambiguously determine both the attitude matrix & and the angular velocity error GA is 
outlined in Section 3. 

Figure 1. Angular Rate Uncertainty Circle (ARUC) 

This section is focused on the information that can be extracted only from two sequential 
magnetometer measurements, giving rise to the particular ARUC. Calculating the square 
of magnitude of the vectors in the left- and right-hand sides of Equation (2-1) to exclude 
the attitude matrix, we come to the equation 
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perpendicular to the geomagnetic field. 
transverse angular velocity.) 
lar vectors 

e projection 6t of the a n g ~ l a ~  velocity vector GA on the plane 
he vector 6t is referred to below as the 

enoting the projections of GA on the mutually perpendicu- 

by 01, 0 2 ,  0 3 ,  one can easily see that the projections 0 2  and 0 3  lie on the circle: 

(See Figure 1). The parameters f ,  AA, and AR are defined as follows: 

where 

and VK (K = A, R) is the angle between the vectors gK and gK (K = A, R). The center of 
the ARUC always lies in the left semiplane of the 02 0 3  plane. Depending on the value 
of the parameter a , the ARUC either lies completely in this semiplane (ifa > 1) or 
crosses the ordinate at two points (if a < 1). For a = 1, the ARUC is tangent to the ordi- 
nate at the origin, and this is the only case when zero angular velocity is among the 
allowed solutions; otherwise, the spacecraft must rotate. The projection of angular veloc- 
ity along the vector gA remains completely unrestricted unless the second derivatives of 
the geomagnetic field with respect to time are taken into account. 

By analogy with the TRIAD algorithm (see Reference 6) ,  we introduce three normalized 
reference vectors: 

The crucial difference, however, comes from the fact that they can be transformed into 
their counterparts, 91, 92, f j 3  by the rotation A - only when the angular velocity vector 
is directed along the geomagnetic field. 
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ation (2-7) that the unit vectors 
the same is true for the unit v 

ally orthogonal vectors are 

re both orthogonal to 
by definition, these 

bo," = cos~,16,  + sin<Pb, (2-8a) 

A 
= -sin@ D, + cos@ 16, (2-8b) 

where the angle@ ranges between 0 and 2n. Introducing the 3-by-3 orthogonal matrix, 

0 
cos Q, -sin i9, 

0 sin Q, cos @ 
(2-9) 

Equations (2-8a) and (2-8b) can be represented in the matrix form 

where and 
respecGely, as their columns, 

are 3-by-3 orthogonal matrixes having the vectors bj and Oj (j = 1, 2, 3), 

(2-1 1) 

Therefore, 

A = = g T , ( @ ) U - '  E (2-12) 

The angle@ has a simple physical meaning; namely, it determines the position of the 
transverse angular velocity 69 on the ARUC. To prove this assertion, the vector ]EiA is 
written in terms of b1 and 6, using the relation 

(2-13) 
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which directly follows from the definition of the vector is leads to the expression 

A (2-14) 

in the right-hand side of Equation (2-lb) and representing 

(2-15) 

The vector sR in the left side of Equation (2-15) is expressed in terms of 6:, 6; by 
analogy with Equation (2-14): 

(2-16) 

Using Equation (2-8b) and comparing the coefficients of the vectors Is2 
of the resulting equation, we get the relation: 

f& in both sides 

fa2 + a A  = AR cos@, fog = AR sin@ (2-1 7) 

that uniquely determines the transverse angular velocity 61 after the angle @ is found. 
Coupled with Equation (2-12) for the attitude, this relation completes the information that 
can be extracted simply from Equations (2-la), (2-lb), exploiting only two sequential 
magnetometer measurements. 

3. USE OF THE SECOND DERIVATIVE OF GEOMAGNETIC FIELD WITH 
RESPECT TO TIME 

In this section, we show how the position of the transverse angular velocity on the ARUC 
can be determined by using the second derivative of the geomagnetic field with respect to 
time in the case when body-fixed projections of the total torque acting on the spacecraft 
are known. To do it we differentiate Equation (2-lb) with respect to time and represent 
the resulting relation between second derivatives of the geomagnetic field measured in 
body-fixed and reference frames as 
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To calculate the second derivatives of the geomagnetic field, at least three measurements 
are needed: @, f3ty 6$. To close the set of equations, it is also necessary to have an 
equation for GA. As explained below, this equation can be easily included in the case of 
negligibly small external torques. Otherwise, it explicitly contains the unknown attitude 
matrix. The external torques can thus be taken into account only through an iterative 
procedure, which is vulnerable to measurement accuracy and may diverge. 

For the particular case of constant angular velocity, (GA = 6) projecting vector Equa- 
tion (3-1) on the plane perpendicular to makes it possible to exclude 01. It is conven- 
ient to use the same computation for the general case of nonzero zA. The final equations 
are thus obtained by projecting vector Equation (3-1) on two mutually orthogonal unit 
vectors 

and 

(3-4) 

with 

(To derive Equation (3-3) from Equation (3-2) we used Equations (2-14) and (2-17) to- 
gether with the definition of the vectors GI, &, 6 3  (see Equation (2-3)). Note that there 
is no need to consider the equation obtained by projecting Equation (3-1) on the direction 
bA of the magnetic field. In fact, Equation (2-2) shows that the projected equation can be 
represented as 

Hence, it is equivalent to the first derivative of the equality gR gR = GA 0 gA with 
respect to time. Therefore, this projection simply describes the change in the parameters 
of the ARUC with time. 
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To compute the projections of the left- 
(3-3) and (3-4) in terms of A - 
equations have the form 

first expresse 
uations (2-8a) and (2-8b). The final 

(3-7a) )&A e e3 + w1(@)1B 'R IC 2 ( 

S3(@) - s3 = - Iiilc(@)&A . e2 (3-7b) 

where 

(3-8a) 

(3-8b) 

.. 
A t  sz bj o g A ,  j = 2 , 3  (3-loa) 

.I 

AjR E 6; 0 G R ,  j = 2 , 3  (3-lob) 

The most important feature of Equations (3-7a), (3-7b) is that they do not contain the 
attitude matrix. The derived equations must be solved together with the dynamic equa- 
tions of motion which make it possible to express GA and I$* in terms of torques. The 
full set of equations is closed provided that the torques are known. 
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or constant angular velocity, the right-hand side of quation (3-7b) vanishes and the 
equation is transformed to a quadratic equation: 

a. + 2alx + a2x2 = o (3-11) 

by the substitution x = tan (@/2). The coefficients ay (y = 0,1,2) in Equation (3-11) are 
defined as follows: 

a2 E (& - LA) (A; + At)  - ~3 (3-12~) 

After calculating two roots xi and x2 of quadratic Equation (3-11) and substituting the 
appropriate values @I = 2 arc tan XI, @2 = 2 arc tan x2, of the angle @ in Equation 
(2-12), two possible solutions A (al) and A (Q2) for the attitude matrix are found. To 
select the correct solution it is n7cessary to Falculate the angular velocity vector zA(@) for 
@= @k, (k = I, 2), using Equation (2-17) for #2(@k), oh(%) and Equation (3-7a) for 
ml(@k): 

Taking into account that bA = 6 (@) bR for any point @ on the ARUC (regardless of any 
error in data), the loss functioris written as 

+ 
where the matrices &-(%I and & (@k> are obtained by analytical propagation (see 
Equation (12-7b) in Reference 8) of the attitude backward (t = -dt) and forward (t = dt) in 
time t with constant angular velocity GA(@d, starting from the matrix (@d and assum- 
ing an equal time step dt between each sequential measurement. The correct root of 
Equation (3-11) is expected to give a smaller value for function (3-14), if all the time 
derivatives used in the algorithm are calculated accurately enough. 

368 



Assuming that external torques are negligible, dynamic equations of motion are written as 

(3-15) 

where is a known function 
either of time or of the geomagnetic field. Two most important examples are torque-free 
rotation (fi E 6) and the B-dot mode (see References 4 and 5). Expressing the compo- 
nents of the vector dA as quadratic polynomials of ol(@),o~(@),o~(@) from Equa- 
tion (3-15) and substituting the resulting expressions in Equation (3-7a) gives the 
quadratic equation for 01 with coefficients dependent on @ .  Each of two roots 
0'1(@) and o"l(@) of this quadratic equation is then substituted in Equation (3-7b), giv- 
ing rise to two transcendental equations. After all possible solutions @k of both transcen- 
dental equations are found, together with the appropriate vectors iijA(@k) and GA(@k), 

they are tested using loss function (3-14), where the matrices b-(@k) and & (Qk) are 
obtained by propagating numerically both the attitude and the angular velzcity vector 
backward and forward in time, starting from the matrix & - (@,I and assuming the vector 
GA(@k) to be constant. Again the solution sought is expected to give the smallest value 
for loss function (3-14). 

is the moment of inertia tensor and the internal torque 

i. 

F THE ALGORITHM 

Both the algorithm and its software implementation have been tested for the ERBS in the 
arbitrarily selected time interval from 890115.000025 to 890115.005937. Geocentric iner- 
tial coordinates (GCJJ were used as the reference frame. The observed attitude matrices 
- were constructed with the same time step of 8 sec as that used in the processed engi- 
neering data (low-frequency format) containing both the magnetometer measurements gA 
and the model geomagnetic field fjR in the GCI. The angular velocity GA was calculated 
by numerically differentiating the matrix function & - (t) with respect to time t. 

As the first step, oscillations of the body-fixed components of the angular velocity vector 
near its average value of [-0.018, 0.049, -0.0341 degkec were neglected and propagation 
of the attitude matrix was performed analytically, assuming constant angular velocity. 
The body-fixed projections of the geomagnetic field were computed by means of Equation 
(2-1a), using the analytically calculated attitude matrix and the model geomagnetic field 
read with a time step of either 8 or 16 sec. 

In Figure 2, we present two solutions of Equation (3-11) as functions of time t. The small 
plateau in the upper curve represents. the region where discriminant becomes negative due 
to numerical errors in the vectors GA and gR evaluated using the finite-difference ap- 
proximation. At these points, the program simply sets the discriminant equal to zero (see 
Figure 3) and picks up both solutions from the previous time step. The small spike in the 
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Figure 2. Test for Constant Angular Velocity (Step = 16 see) 
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Figure 3. Test for Constant Angular Velocity (Step = 16 sec) 

370 



igure 2 at approximately 900 se takes place where the discriminant 
re 3 first touches the abscissa. e values of loss function (3-14) for 

each solution are presented in ue to errors in the time derivatives, two curves 
cross each other, and as a re ction (3-14) can be used to select the correct 
solution only in the region where the discriminant of quadratic quation (3-11) is large. 

time (sec) 

Figure 4. Test With Constant Angular Velocity (Step = 16 sec) 

The attitude matrix A is described here by a (212') sequence of Euler rotations, using 
analytical formulae sTmilar to Equations (12-21a) through (12-21c) in, Reference 8. The 
values of the Euler angles determined by means of the developed algorithm are repre- 
sented in Figure 5 by solid lines. The dot-dashed lines in Figure 5 represent the expected 
values in the limit of an infinitely small time step (the Euler angles were obtained from 
the analytically calculated attitude matrix). The agreement is reasonably good, except for 
the spikes in the region of significantly negative discriminant. It is worth mentioning that 
the small spikes observed in two upper curves in Figure 5 at approximately 900 sec com- 
pletely disappeared when the smaller step of 8 sec was used to calculate the time deriva- 
tives of the geomagnetic field. This observation is in agreement with our statement that 
the observed errors are caused by a relatively large time step used for evaluating these 
derivatives. 

The solid lines in Figure 6 present the components of the angular velocity vector obtained 
by numerically differentiating the attitude matrix derived from the low-frequency teleme- 
try data. The dot-dashed straight lines show the average values that were used for propa- 
gation of the attitude matrix in the tests discussed above. Despite the fact that 
high-frequency oscillations are relatively small, they essentially affect the attitude, as 
clearly seen from Figure 7, where the solid lines are the observed values of the Euler 
angles, and the dot-dashed curves are from Figure 5. The physical significance of the 
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Figure 5. Test for Constant Angular Velocity (Step = 16 sec) 
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Figure 6. ~easured/Averaged Angular Velocity 
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Figure 7. Effect of Averaging Angular Velocity 

oscillations can be understood by analyzing behavior of the Euler anglzs 1 anc 2, which 
determine the direction of the pitch body-fixed axis in the GCI (cf. Equation (12-20) in 
Reference 8). The oscillations simply force this direction to remain unchanged. It is 
remarkable that no oscillations are seen in the solid curves in Figure 7, despite the fact 
that the oscillations in angular velocity significantly affect the attitude. 

In Figure 8, the magnetometer measurements taken from the low-frequency telemetry 
data are plotted versus the calculated body-fixed components of the geomagnetic field. 
The latter were obtained by rotating the geomagnetic field from the GCI frame to the 
body-fixed axes by means of the observed attitude matrix derived from telemetry data. 
The agreement looks reasonably good, except for the stepwise behavior of the measured 
data due to their analog-to-digital conversion with the increment of -6.44 milligauss (mG) . 
The coarse digitization of the magnetometer measurements creates an obstacle in calcu- 
lating the second derivative 6* of the geomagnetic field. This is illustrated by Figure 9, 
where the zigzag lines were obtained by processing the magnetometer measurements and 
the dash-dotted lines represent the second derivative of the calculated geomagnetic field 
with the same finite-difference scheme and the same time step of 240 sec used in both 
cases. The digitization results in relatively large errors of 220-deg in attitude determina- 
tion. In Figure 10, we plot the determined Euler angles (solid lines) versus their observed 
values (dot-dashed lines) selected at a time step of 240 sec. In Figure 11, for compari- 
son, we give a similar plot for the Euler angles which were determined by utilizing the 
attitude information in the .telemetry data to model a field measurement in the body-fixed 
frame and then using this in the algorithm to show the upper limit on accuracy. In 
addition to the curves exploiting the time step of 240 sec (solid lines) to calculate the 
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Stepwise lines show the magnetometer data; smooth curves were calculated by using 
Equation (2-la) . 

-8 

Figure 8. Measured Versus Calculated Geomagnetic Field 

- j 

time (sec) 

Zigzag lines obtained by processing the magnetometer data: smooth curves represent 
the second derivative of the calculated geomagnetic field with respect to time. 

. Second Derivatives of Measured Versus Calculated Geo- 
magnetic Field With Respect to Time (Step = 240 sec) 
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Zigzag lines show the Euler angles determined from the magnetometer data; dot-dashed 
lines show the Euler angles determined using the calculated body-fixed components at the 
geomagnetic field. 

Figure 10. Use of Measured Geomagnetic Field (Step = 240 sec) 
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igure 11. Use of Calculated Geomagnetic Field (Steps = 120, 240 sec) 
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necessary time derivatives, 
the time step of 120 sec (do 
use of the large step was n 
systematic errors clearly se 
compute the time derivatives of the calculated geomagnetic field results in accumulation 
of errors caused by oscillations of angular velocity, which are disregarded in the algo- 
rithm. Therefore, the time step of 120 sec turns out to be an optimum compromise, 
providing accuracy of -5 deg for each angle. 

The observed oscillations of the angular velocity vector significantly affected the ability of 
the algorithm to determine its body-fixed components. In Figure 12, the dashed and 
dotted lines show the values of these components determined using a time step of 
120 sec, and the solid lines show the observed values selected at the same time step. The 
total angular rate of 0.062 degkec is reasonably well reproduced by the dominant 
y-component of the determined angular velocity vector, whereas the two remaining com- 
ponents are too small to contribute and are thus in obvious disagreement with the obser- 
vations. 
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Zigzag lines show the values determined using the developed algorithm; solid lines 
show the observed values. 

se of Calculate = 120 sec) 

The reported preliminary analysis demonstrates that the deterministic approach to coarse 
attitude determination, using only magnetometer data, is feasible. A successful 
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implementation could benefit significantly from more accurate representation of magne- 
tometer measurements in telemetry records than is provided for the 
Our study of the applicability of the algorithm to attitude determination under normal 
conditions is mostly methodological and illustrative. As mentioned in the introduction, 
the main objective is to develop an attitude determination system for application under 
contingency conditions when only magnetometer data are available. In particular, the 
analytical formula derived here for the limiting case of constant angular velocity could be 
applied to a spacecraft rotating around its major principal axis after it was stabilized 
using nutation damping. At this time, we are studying applicability of the developed 
algorithm to a spacecraft in the B-dot mode and to a spacecraft freely rotating with high 
angular speeds caused by thruster firing. The errors from neglecting environmental ef- 
fects in both cases are now being investigated. 
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Algorithms for onboard attitude determination and control of the Solar, 
Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been 
developed. The algorithms include: spacecraft ephemeris and geomagnetic 
field models, attitude determination with 2 degree accuracy, control of pitch 
axis pointing to the sun and yaw axis pointing away from the earth to achieve 
control of pitch axis within 5 degrees of sunline, momentum unloading, and 
nutation damping. The closed loop simulations were performed on a VAX 
8830 using a prototype version of the on-board software. 
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spacecraft. The SAMPEX software algorithm design philosophy is to develop the 
common aspects of the attitude determination and control (ADC), such as sensor 
data processing, attitude determination, ephemeris propagation, and command and 
telemetry processing, in as generic a form as possible. 

SAMPEX, a 169 kg payload, will be launched into a 580 km circular orbit 
with 82 degrees inclination by a Scout launch vehicle. The spacecraft attitude must 
simultaneously satisfy a variety of on-orbit pointing requirements. The scientific 
instruments are located on the +z side of the spacecraft (Figure l), and detect the 
impingement of magnetically aligned solar and cosmic particles. The spacecraft z- 
axis (instrument boresight) should therefore point within 15 degrees of local vertical 
(zenith) in the polar regions. Due to damaging space dust and orbital debris, the 
experiment boresight is required to point at least 45 degrees away from the spacecraft 
ram velocity vector. The spacecraft has fixed solar arrays with all cells on the +y 
side. Pointing of the +y axis to within 5 degrees of the sun line is desired during the 
entire mission. Attitude knowledge to 2 degrees or better is also required. [I] 

YAW. 2 I 
ON ORBIT 

CONFIGURATION 

Figure 1. Spacecraft Mechanical Configuration 

The ADC sensors include a two-axis fine digital sun sensor, five coarse sun 
sensors , and a triaxial search coil magnetometer. All sensor data are acquired and 
processed at the ADC sampling frequency, 2 Hz. Three magnetic torquer bars and a 
pitch axis momentum wheel are used as control actuators. The sensor data 
processing algorithms are presented in Section 11. 

There are two science pointing modes - vertical pointing and orbit rate 
rotation. The computation of the pitch error angle is different for the two modes. 
The on-board attitude determination algorithm is based on the sun and magnetic 
field data only. The rate information will be generated without gyros and the nadir 
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axis and the zenith vector within the sun pointing constraint. However, this mode 
has the undesirable property of pointing the experiment boresight directly into the 
ram vector twice per orbit when the orbit plane is parallel with the sun vector. The 
orbit rate rotation mode does not maintain the instrument boresight as close to the 
zenith vector as the vertical pointing mode, but it satisfies the spacecraft pointing 
requirement as well as the velocity vector avoidance criterion. The control scheme 
for each of these modes is described in Section N. The digital sun pointing only 
mode, which does not perform pitch axis control, is used for reacquisition and is 
also described in this section. 

This paper also discusses the attitude dynamic simulator and results used 
for analysis in Section V, and presents a summary in Section VI. 

II. SENSOR DATA PROCESSING 

Sun Sensor Data Processing 

The fine sun sensor (FSS) is used for on-board attitude determination and 
sun pointing. It is a two-axis sun sensor with a field of view of f 64 degrees. It 
outputs 8 bits of data in gray code for each axis with a resolution of 0.5 degrees. After 
the gray coded data is converted to binary, the two binary counts (Na and Nb) are 
converted into coordinates of the sun's image within the sensor, i.e. 

x = 0.002754 Na - 0.350625 
Z = 0.002754 Nb - 0.350625 

A sun vector (s) in the spacecraft body frame is computed using the following 
equations [2]: 

-n x 1 

I -n z 1 
Where: n - the refraction index of the FSS glass 

t 
x,z 

- the glass thickness (cm) 
- measurements in the sensor frame (cm) 

The above equations are derived based on the assumptions : 1) the sensor frame x, y, 
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itch axis is normal 
and 180 degree 

The coarse sun sensor (CSS) is used for initial acquisition, reacquisition, 
and on-board attitude determination when the sun is out of the field of view of the 
FSS. The CSS system consists of five eyes: one pitch eye mounted on the center of 
the spacecraft facing the negative pitch(y) axis, two roll(x) eyes and two yaw(z) eyes. 
Each pair is mounted on the solar array panels facing 180 degrees apart along the 
axis. The roll and yaw eye outputs are differenced. All outputs are converted to 12 
bit words. When divided by the maximum expected output these signals represent 
the x, y, and z components of the sun vector in body frame. When the negative 
pitch eye is illuminated, the normalized coarse sun vector (sc) in body frame is 
given by the following equation: 

and when the negative pitch eye is not illuminated, sc is given by the following 
equation: 

X 

1- 1 
when x%z2 >= 1, the above equation will become: 

Mametometer - Data Processing 

The triaxial search coil magnetometer is used for on-board attitude 
determination and momentum management (sun pointing and momen tum 
unloading). It outputs 12 bit words for each axis. Its resolution is 0.3125~10-~ tesla 
and its range is f 640x10-7 tesla. The earths magnetic field in the body frame is 
computed using the following equation 121: 

B = [ScaleIV + Bias - [Cldm 

where: B - magnetic field vector (tesla) 
[Scale] - scale factor matrix with all off-diagonal elements being 
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etic field bias (tesla) 
~e tometer  coupling matrix (tesla/ 
torque rods computed from the 

torque magnetic assembly current feedback (A-m*). 

The SAMPEX algorithm contains a procedure to calibrate the torque-rod/ 
magnetometer coupling matrix ([C]). This procedure is excited periodically via 
ground command. It turns off all torquer bars first and obtains the uncontaminated 
magnetometer readings (Bo). Then it sequentially turns on each torquer bar with a 
10 A-m2 excitation and obtains the contaminated magnetometer reading (BJ.  
Finally [C] is computed using the following equation: 

B, = Bo + [Cldm. 

This technique enables attitude determination to be performed in the presence of 
significant contamination of the magnetometer signal during magnetic actuation. 

Momentum Wheel SDeed Processing 

The momentum wheel is used for pitch error angle control. The 
momentum wheel speed is used to generate the system momentum vector for 
momentum management. The processing of momentum wheel speed simply 
multiplies the raw tachometer signal by a scale factor and corrects it with a constant 
bias if necessary. 

m. ATTITUDE DETERMINATION 

The objective of on-board attitude determination is to produce an estimate 
of the inertial-to-body transformation matrix for the system, a representation of its 
three-axis attitude. The attitude determination process includes: generation of the 
spacecraft position vector, sun vector and earth's magnetic field vector in the 
inertial frame, construction of the transformation matrix, and computation of the 
pitch error angle, error rate and body angular momentum for control. 

The attitude determination algorithm is disabled when the sun vector 
aligns with the earth's magnetic field vector. 

During eclipse, when the sun information is not available, the body pitch 
axis is assumed to remain inertially fixed at the value given by the second row of the 
last inertid-to-body transformation matrix computed before entering eclipse. This 
vector J and j, a y-axis unit vector in the body frame, are substituted for the inertial 
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construction of the iner 

Figure 2. Construction of Inertial-To-Body Transformation Matrix 

Reference Vector Generation 

Although pointing requirements for SAMPEX are modest, accurate on- 
board spacecraft ephemeris and magnetic field vectors are required to meet the 
design goal of 2 degrees accuracy for on-board attitude determination. 

The spacecraft ephemeris is propagated employing the fourth order Runge- 
Kutta integration method with integration step size equal to the ADC sampling 
frequency. The dynamic equation for generating the spacecraft ephemeris includes 
the perturbations due to the zonal gravity harmonics and the atmospheric drag [3]: 

.. R=-- R + a g + a d  
IRI3 

where: R - spacecraft position vector (km) 
P - earths gravitational constant, 3.9860064 x lo5 (km3/sec2) 
IRl - magnitude of R (km) 

ad - acceleration due to atmospheric drag (km/sec2) 
- acceleration due to zonal gravity harmonics (km/sec*) 

ag 

The nonspherical contribution to the gravity acceleration is computed with 
the spherical harmonic model using zonal harmonic coefficients up to J4. 
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- 

where fT2 = 3.0 j2 (5.0 G2 - 1.0) 

fxy3 

fxy4 

fz2 

fz4 = 1.25 j4 
j2 = 1.0826271 x 10-3 

= 5.0 j3 (&/ I I ) (7.0 2: - 3.02,) 

= 3.75 j4 (Re/ I R I I2(21.O Zp - 14.0 2: + 1.0) 

= 3.0 j2 (5.0 Z? - 3.0) 

fi3 = j3 (&/ I R I) (Zr (35.0 Z?-30.0 Zr)  + 3.0 I R I) 
I R I I2 (63.0 q4 - 70.0 Z: + 15.0) 

j3 = -2.5358868 x 

j4 = -1.6246180 x lo4 

Re = 6.37814 x 103, earth radius at equator (km) 

The drag model is 

where: p - 

d 
f - 
*C - 

m 
IRrI - 

atmospheric density at the spacecraft's altitude computed 
using a Jacchia-Roberts density model, (kg/ km3), [4] 
drag coefficient (nominally 2.2) 
drag scale factor 
cross sectional area of spacecraft perpendicular to the 
direction of motion (km2 ) 
mass of the spacecraft (kg ) 
magnitude of R r  (km/sec) 

velocity of the spacecraft relative to the rotating 
atmosphere (km/ sec) 

z 

where [ x y z IT is the inertial velocity of the spacecraft and 0 is the rate of rotation 

385 



arameters to specify the Jacchia- 
Roberts model are reiniti ound command. They are 

The earths magnetic field is generated using the spherical harmonic model 
with order eight [2]. The Gaussian coefficients are updated to epoch 1985. The 
position of the sun is computed using a rapid analytical technique [2]. The 
parameters are updated to epoch 1991. Both the earths magnetic field vector and 
sun vector are used to construct the transformation matrix. 

Transformation Matrix Construction 

The transformation matrix [A] is constructed by employing the standard 
TRIAD method [5] .  This method only requires two body frame vectors and two 
reference frame vectors. The sun vector is more heavily weighted than the 
magnetic field vector except when the two vectors are perpendicular. The TRIAD 
method is given by: 

[AI = [PI [QF 
where [PI and [Q] are orthogonal matrices. [PI is a matrix constructed using the sun 
(s) and earth’s magnetic field (b) vectors in the body frame, and [Q] is a matrix 
constructed using the sun (S) and earth’s magnetic field (B) vectors in the inertial 
frame: 

1 s x b  s x k x b )  P = [ s ,  
Isxbl ’ Isxbl 

1 SxB Sx(SxB) 
Q = [ s 9  ISxBl’ ISxBl 

Computation of Angular Velocitv 

The angular velocity vector along with the momentum wheel speed is 

The angular velocity matrix is determined from the matrix identity: 
used to compute the system angular momentum for momentum management. 

[ -:z : ~ ] = ~ A l [ A I T  

9 -% 0 

where [A] is the derivative of the inertial-to-body transformation matrix [A], and is 
estimated by simple differencing of sequential values of [A] as decribed in the 
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At 
Where At is the diffe~ence between the current time an the time when the 
previous sample is taken. The angular velocity vector is formed using the average 
of the two off-diagonal elements for each of the rates cox, coy, and a,. 

Computation of Pitch Error Annle, and Error Rate 

Both the pitch error angle and error rate are used in the computation of the 

In vertical pointing control mode, the pitch error angle is computed using 
momentum wheel control torque. 

the following equation: 

e = tan-11-r(1)/r(3)] 
where r(1) and r(3) are x and z components of the spacecraft position vector in the 
body frame, respectively. This vector is obtained by transforming the spacecraft 
position vector in the inertial frame to the body frame by using the transformation 
matrix [A]. 

In the orbit rate rotation mode, the spacecraft y-axis is desired to point at 
the sun while the z-axis rotates at one revolution per orbit in a plane perpendicular 
to the sun vector. At the same time, the z-axis is desired to point as close to north 
as possible at the northernmost point in the orbit, south at the southernmost point, 
and parallel to the equator at the equatorial crossings. 

Let 8 be the spacecraft orbit angle ( measured from the northernmost point 
of the orbit), Figures 3 and 4 show the desired pointing direction for the z-axis for 
the two cases § 0 N > 0 and S 0 N e 0 respectively, where N is the orbit normal in the 
direction of R x R and § is the inertial sun vector. 

W 
X 

Figure 3. Desired Spacecraft Orientation Figure 4. Desired Spacecraft Orientation 
for S 0 N > 0 for S e N e 0 

In these figures, W is a unit vector in the direction of NP x S, where NP is a 
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le unit vector, EO, 8, 11'. n inertial target ( 

= cos0 c o  
= cos0 > O  

- P X S  where - 
INPXSI 

The sine and cosine of the orbit angle are determined from the spacecraft 
position (R) and velocity (R) vectors. If AN is a unit vector in the direction of NP x 
N and locates the orbit ascending node, and NMP is a unit vector in the direction of 
N x AN and locates the northernmost point, then sin0 and cos0 are defined by: 

R O A N  
IRI 

sin0 = - 

The test for the sign of the dot product of the sun and the orbit normal 
vectors will automatically change the spin direction when the sun passes through 
the orbit plane. The pitch error angle for control can be computed using: 

e = tan-l(-u(I)/u(3)) 

where u is obtained by transforming the target vector U in the inertial frame to the 

body frame by using the transformation matrix [AI . 
The pitch error rate is estimated by differencing of sequential values of 

pitch error angle. 

- IV. CONTROL LAWS 

In the two science control modes, z-axis pointing is accomplished by 
controlling the momentum wheel speed, and sun pointing is accomplished by 
magnetic torquing. In addition to pointing control, the magnetic torquer bars 
provide nutation damping. 

When the sun vector is parallel to the earth's magnetic field vector (at 
singularity), the momentum wheel speed is held constant at the speed before 
singularity occurs, and all torquer bars are turned off. 

During eclipse, all magnetic torques are turned off, and momentum wheel 
is controlled using the normal control law except in the singular case described 
above. 
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gnetic torquer 

The goal of controlling the momentum wheel speed is to control the 
motion of the spacecraft about pitch axis (y-axis), i.e. z-axis pointing control. The 
torque to the momentum wheel is driven by rate and position error: 

Ty = Iy ( 4 e  + 25mne) 

where Iy is inertia (N-m-sec*), a, is the control frequency and is set to 0.01 (rad/sec), 
6 is a damping constant and is set to 0.707, e is the pitch error angle (rad), and k is the 
pitch error rate (rad/sec). Both e and e are products from the attitude determination 
algorithm. 

Magnetic Control for Science Pointing 

SAMPEX attitude control involves a momentum bias along the spacecraft 
y-axis and the pointing of this axis at the sun. Let H, be a desired level of angular 
momentum, with j a y-axis unit vector and s the sun unit vector in the body frame. 
Ideally, we would like to have the system angular momentum vector (H) equal to 
both H, j and Ho s. This will be true only if the y-axis is pointed at the sun, 
momentum is at the desired level and there is no nutation. 

j and H - H, s and 
add them together to form an" excess" momentum vector to be ''unloaded" by the 
magnetic torquing system. Let AH = 2H - H, <j + s). One common method of 
momentum unloading is to let dm = AH x b where dm is an applied magnetic 
moment, AH is the undesired system momentum and b is the magnetic field vector 
in the body frame. In our case, we let 

We now consider two momentum error vectors, H - 

= Mag-gain (AH x b) 

where Mag-gain - an appropriate control gain (A-m*/N-m-sec-tesla) 
A - undesired system momentum (N-m-sec) 
b - Measured earths magnetic field (tesla) 
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etail, this becomes 

SZ 

bx bY bz 
Sun Point Onlv Mode ( Software Safe Hold) 

The sun pointing only mode is a non-science control mode. It is executed 
at computer power on, or when the spacecraft pitch axis drifts away from the sun 
line by more than 15 degrees. 

The goal of this control mode is to remove any excess spacecraft body spin 
rates, and to precess the spacecraft pitch axis to within 15 degrees of the sun line. In 
this mode, there is no pitch axis control and the momentum wheel speed is held 
constant. The torque signal in N-m is given by: 

Tr = G,,(fixed-rate - V) 

where v is the momentum wheel speed (rad/sec), and G,, is momentum wheel 
gain in N-m-sec / rad. 

The roll and yaw torquer bars are used for spin rate control (spin control) 
and momentum unloading (Bdot control). In addition to these two goals, the pitch 
axis torquer bar is used to precess the pitch axis toward the sun line ( y-axis 
precession control). The following equation describes these three controls: 

bP 
scY 

Fe 

FP 

- 
- spin control gain (A-m*/tesla) 
- y-axis precession gain (A-m2) 
- 

Bdot control gain (A-m%ec/ tesla) 

the second element of bxs, s is the body sun vector and 
b is the measured earth's magnetic field vector (tesla) 
previous measured earths magnetic field vector (tesla) 
y-axis spin control flag, values can be -1,O, 1 
corresponding to despin, off, spin 

- z-axis spin control flag, values can be -1,O, 1 
corresponding to despin, off, spin 
eclipse flag, 1 = no eclipse, 0 = eclipse 
y-axis precession flag, 1 = y-axis precession enable 

- 
- 

- 
- 
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t current time and the time 
evious sample is taken (sec) 

The first term of the above equation describes the Bdot control for the momentum 
unloading. The dipole moment for each torquer bar is proportional to the rate of 
change of the measured earths magnetic field along each axis. The second and third 
terms describe the spin control with the second term for y-axis spin and the third 
term for z-axis spin. These two spin controls will not be on simultaneously. The 
control options spin, despin, or off are selected by ground command. The last term 
describes y-axis precession control. The dipole moment for this control is driven by a 
gain with a polarity determined by the cross product of the measured sun and 
magnetic field vectors. The precession dipole moment is not computed when the 
spacecraft is in eclipse and can be disabled by ground command. All gains are 
modifiable via ground command. 

- V. SIMULATION 

The dynamic simulator has two parts: 1) system state model (SSM) and 2) 
on-board attitude determination and control. The on-board attitude control and 
determination has been discussed in sections 11, 111, and IV. The SSM includes the 
kinematics (including the quaternion and direction cosine matrix), the equations of 
motion, and the sensor models. Figure 5 below describes the dynamic simulator. 

Magnetic Field I Sun I Spacecraft Positiod 

Determinatioi 

Figure 5. The Dynamic Simulator 

391 



~ntegra t io~  on the entum and wheel 
the spacecraft 

omentum 

The system momentum is computed by integrating Euler's equation [2]: 

where: H - system angular momentum (N-m-sec) 
Taero - aerodynamic torque (N-m) 
T s  - gravity gradient torque (N-m) 
Tmu - magnetic unloading torque (N-m) 
0 - spacecraft rate (rad/sec) 

The Pictorial Solar Pressure (PSP) program is used to compute the 
aerodynamic torques on SAMPEX. PSP takes into account the effects of shadowing 
on the spacecraft. The density is selected for a worst case solar cycle. 

where: conv - conversion factor 

2 .  3 
N-m-sec 

(gm / cm3)km in 
16387.3 

P - atmospheric density (gm/cm3) 
V - orbit velocity (km/sec) 
cd - coefficient of drag 
cp;lorrn - normalized torque output from PSI? (ins) 

The gravity gradient torque is computed by [21: 

where: p - earths gravitational constant 
(3.98601 x lo5 km3/sec2) 

rb - zenith vector in body frame 
IRI - magnitude of radius vector (km) 
I - inertia tensor (N-m-sec2) 

The magnetic unloading torque is determined from: 
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sion factor (1.0 N-m/A-m2-tesla). 
term is the gyroscopic reaction torque. It is the cross product of 

The system angular momentum is determined from the following integral 
the body rates and the system angular momentum vector. 

H = H dt = (Te. - o x H)dt 
where Text is the sum of the external torques on the spacecraft. 

applied wheel torque 

where T, is the commanded wheel torque and Tfriction is the torque due to friction. 

Similarly, the reaction wheel angular momentum is the integral of the 

h, = pw +T&&)Jdt 

0 0, -my 0,- 

-0, 0 0, ay 

"y -0, 0 0, 

-0, -ay -0, 0 
-I 

Quaternion 

is the skew-symmetric matrix 

The quaternion obeys the kinematic equation of motion [Z]: 

where IR= 

o = [I]-l(H - h,j) 
h, - wheel momentum (N-m-sec) 
j - unit vector along the y-axis. 

Using this quaternion, a direction cosine matrix can be generated: 
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This matrix and its trans sform vectors from the inertial frame 
to the body frame and vice versa. This process is used in the sensor models in the 
simulation. 

Sensors 

The spacecraft epheme~is is generated by integrating the equations of 
motion including the perturbations due to nonspherical earth gravity effects and 
aerodynamic forces. 

The sun vector in inertial frame is used to generate the sun vector in body 
frame and for attitude determination. It is computed using 1985 coefficients. 

The magnetometer reading includes the earths magnetic field, computed 
using a 10th order spherical harmonic magnetic field model [2], and the magnetic 
field produced by the torquer bars. The contamination due to the torquer bars is 
approximated by modelling the torquer bar as a dipole. For thin cylindrical bar 
magnets, the distance between the two poles of the dipole is approximately five- 
sixths the length of the magnet [6] (the torquer bar in our case). A contamination 
matrix is formed based on the contamination due to each bar in each of the axes of 
the three-axis magnetometer. 

Results 

The dynamic simulator has been used to simulate both the vertical 
pointing mode an the orbit rate rotation mode for various orbit configurations. 
These configurations include 6 P , and midnight orbits, where the time is the 
local time at the ascending node. The simulator also examines how the relative 
motion of the sun and the earth throughout the year effects such things as the sun 
pointing error and pitch loop position error. 

Plots of the sun pointing error and the pitch loop position error for 6 PM, 
9 PM, and midnight orbits are shown in Figures 6,  7, and 8, respectively, for the 
vertical pointing mode and in igures 9,10, and 11 for the orbit rate rotation mode. 
These simulation runs are for the winter solstice time of year. The results of the 
simulation show that the five degree sun pointing requirement is met for all cases 
investigated for both control modes. 
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the velocity vector avoidance criterion, this mode is recommended as the base 
control mode for normal operation. 
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Launch window analysis for Space Shuttle missions determines the launch times which will 
ensure that all payload and Shuttle requirements for the mission are met. Attitude and pointing 
analysis determines Shuttle Orbiter attitudes that meet various communication, viewing, and 
thermal requirements for the Orbiter and its payloads. Historically, launch window analysis and 
attitude and pointing analysis for Shuttle missions have been done separately, without directly 
influencing each other. However, methods have been developed to consider simultaneously 
dependencies between launch window and attitude and pointing requirements if they arise. These 
methods were developed from the launch window analysis for STS-31, the Hubble Space Telescope 
(HST) deployment mission. 

To release the HST, the Orbiter attitude had to remain inertially fixed while pointing the HST 
at the Sun. The Orbiter release attitude and the HST release time were determined from the position 
of the Sun and varied with launch time and launch date. The launch window analysis for STS-31 
centered on how to determine the range of launch times for a given launch date that would allow the 
Shuttle to release the HST and simultaneously satisfy communication, attitude, and lighting 
requirements for the deployment operations. 

This paper discusses how the HST deployment requirements determined the launch window 
and how the Orbiter release attitude affected the launch window. 
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The orbital trajectory of the Space Shuttle is made up of a series ofevents that must occur a t  
precise times to meet the objectives of the mission. The timing of these events usually originates 
from requirements to operate or deploy Shuttle payloads at locations that ensure certain orbital 
conditions are met, such as communication, viewing, lighting, and thermal exposure. These orbital 
conditions usually have a certain geometrical relationship relative to Earth-fixed targets or celestial 
targets. The times that these mission events occur are also influenced by crew schedules, Shuttle 
performance limitations, and duration of the mission. For all plannedevents to occur in sequence 
and satisfy the objectives of the mission, the Shuttle can launch only at certain predetermined times. 

A launch window for a particular Shuttle payload is the range of launch times, on a given 
launch date, that achieve the payload’s orbital objectives and satisfy the crew, Shuttle, and mission 
requirements and constraints. The launch window for the Hubble Space Telescope (HST), for 
example, is constrained by several objectives, such as deploying the satellite on a particular orbit, 
ensuring orbital lighting at deployment, pointing the HST at the Sun at release, and maintaining 
communication with the Tracking and Data Relay Satellite System (TDRSS) during deployment. 

Attitude and pointing analysis is another specialized area of Shuttle orbital flight analysis. 
Attitude and pointing analysis determines Shuttle attitudes that satisfy the communication, 
viewing, lighting, thermal, and microgravity requirements of the Orbiter and its payloads at certain 
times during a mission. Such analysis, for example, determines the attitude that is required at a 
certain time to point the Orbiter’s star trackers and recalibrate the onboard navigation platform. 
This pointing analysis is necessary because of the Orbiter’s own operational requirements. But 
payloads may also require specific Orbiter attitudes at certain times during a mission, and they may 
require their own special attitude and pointing analysis. The attitude and pointing analysis for the 
HST mission determined the Orbiter attitudes that were needed to make contact with TDRSS and 
still point HST at the Sun before its release from the Orbiter’s robotic arm. 

Orbiter attitudes are usually determined separately from the orbital times required for 
deploying or operating Shuttle payloads; therefore, attitude and pointing requirements are usually 
independent of launch time. However, attitude and pointing analysis for STS-31, the Shuttle 
mission to deploy the HST, showed that Orbiter attitudes affect the orbital conditions required at 
HST deployment, and that the availability of these conditions due to Orbiter attitudes varied with 
launch time. Special analysis was required to analyze this interdependency between Orbiter 
attitude requirements and launch time. 
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yment requirements launch window analysis 
communication wit ghout the deployment 

had to be in a particular attitude to deploy 
occur in orbital daylight. 

rate from it, and (3) 

For ground control to uplink commands and receive telemetry from HST during the deployment 
operations, the Orbiter had to relay Ku-band transmissions through one of the two TDRSS 
satellites, TDRS-West or TDRS-East. Since these geosynchronous satellites are fixed with respect to 
the Earth, the orbiting Shuttle continually moves into and out of contact with each satellite, 
creating certain times of TDRSS acquisition of signal (AOS) and loss of signal (LOS) due to Earth 
occultation. The release of HST had to occur at least 5 minutes after AOS and a t  least 25 minutes 
before LOS on a given TDRSS pass. The 5 minutes before release were needed for the Orbiter’s 
directional Ku-band antenna to begin tracking the TDRSS satellite. The 25 minutes after release 
were needed to ensure the HST maneuvered to a stable attitude. 

Attitude Constraints 

While HST was in its release position on the Orbiter’s robotic arm, the Orbiter was required to 
point the satellite’s aft end, or -V1 axis, at the Sun. The aft end contains coarse Sun sensors that 
allow HST’s attitude control system to determine and stabilize the satellite’s orientation after 
release. The release orientation was further constrained by the need to protect the telescope during 
the Orbiter’s separation burn that occurred 2 minutes after release. To prevent recontact with the 
HST or contaminating the HST with the Orbiter jet plumes during the burn, the Orbiter’s 2-body 
axis had to remain in the orbit plane and point in the direction of orbital motion at the time of HST 
release. 

Lighting Constraints 

To ensure that HST’s solar arrays were deployed and to verify the Orbiter’s safe separation 
from the HST, the Shuttle crew had to be able to observe the telescope in orbital daylight before and 
after its release. To meet this lighting requirement throughout the deployment sequence, the 
release was timed to coincide approximately with the location of orbital noon. Since orbital noon is 
approximately halfway into the daylight portion of an orbit, HST release near orbital noon would 
provide sufficient lighting during the deployment operations. 
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combination of the eo 

First, HST release had to occur while the Orbiter was in contact with one of the 
satellites on orbit 19. Second, the release time also had to satisfy the specific attitud 
constraints during this period of contact. 0 determine the actual release time after orbital noon, a 
formula was derived in which the incidence angle between the Sun and the orbit plane was the only 
variable. This angle is generally called the solar Beta angle and is illustrated in the HST release 
time derivation in Figure 1. 

90"- B ----- 

-/ 

x 

a, S8 = right ascension and declination to the Sun, respectively, measured in the inertial X-Y-Z 
plane 

h = the direction of the orbital angular momentum vector, perpendicular to the orbit plane 

= the direction of the Sun pointing vector from the center of the Earth 

= the solar Beta angle measured from the orbit plane to the Sun pointing vector 

I* 

S 

fi 

e. 
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A 

r =- the direction of the position vector for the Shuttle at a particular time 

L 

Y = Sun angle the geometric angle between the Shuttle’s position vector, r, and the Sun 
pointing vector, s  ̂

Orbital noon occurs when the Sun angle is at a minimum: 

(W ition of o r ~ i ~  noon. 
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Local Vertical, Local orizontal coordinate system whose origin is at the spacecraft's 
center of mass. The z-axis points towards the Earth along the spacecraft's position 
vector, the y-axis is in the opposite direction of the orbital angular momentum vector, 
and the x-axis completes the orthogonal coordinate system. The Euler rotation sequence 
for spacecraft attitudes referenced to the LVLH system is usually pitch, yaw, roll (P,Y,R) 

Orbital noon 
LVLH attitude: 

/ / /  ----------/I 
+ 

Half-ane angle 
of cone for possible 
zBr zLu plane 

L! 2, can travel 
for various Beta's 

LVLH pitch angle of Orbiter at  orbital noon is: 
cQs74" 

cos P 
eo& = cos-1 [ -1 = f ,  cp, 

(c) Derivation of the Orbiter LVLH pitch angle at orbital noon. 
Figure 1.- Continued. 
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gle from orbital noon to the V-bar s 

where p = solar Beta angle 

esep 

e,, 

= Euler pitch angle of the Orbiter, in the LVLH coordinate system, at the V-bar 
separation; equal to 90" 

= Euler pitch angle of the Orbiter, in the LVLH coordinate system, at orbital noon 

@ = central angle from orbital noon to the V-bar separation 

The time from orbital noon to the V-bar separation is: 

At = - .T 
sep 360" 

where Cp = central angle from orbital noon to the V-bar separation 

T = orbital period 

At sep= the time from orbital noon to the V-bar separation 

Finally, the time from orbital noon to HST release is: 

(d) Derivation of the central angle and time between orbital noon and HST release. 
Figure 1.- Concluded. 
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indow was calculated from the range of release times on orbit 19 that 
s i ~ u l t a n e o ~ § l y  satisfied the communication, attitude, a 
deployment. Figure 2 shows how each of these requirements combine to produce the range of 
acceptabIe reIease times from which the launch window can be d e t e r m ~ ~ d .  

lighting r e ~ ~ ~ e ~ e n t s  for the 

1. 

2. 

3. 

4. 

5. 

6. 

AOZ 
TDRS-W IS 
TDRS-E 

Orbit* 

Elapsed time since 
launch. or mission 
elapsed time (MET) 
D:H:M 

Potential range of HST 
reIease times I Ismin I 25min 4 I- 1-1 t, Using T D R S T W , ~  I 

25min 
Actual range of HST release 
times based on payload communication 
requirements -I l- 1-1 

5 min 

"t8D corresponds to the descending equatorial crossing, or descending node, for orbit 18. 
19A corresponds to the ascending node for orbit 19. 

Figure 2.- Aeee ST refease times on ~ r ~ ~ t  19 I 

For an orbital trajectory with a given geometry and orientation, the variation in launch time 
over a range of possible launch days will depend on how the orbital conditions required for payload 
operations change with time. Because the TDRSS satellites are geosynchronous, their orbital period 
is equal to the Earth's sidereal day, and communication with TDRSS is cpnsidered contact with a n  
Earth-fixed target. Since TDRSS is an  Earth-fixed target, the mission elapsed time of TDRSS 
acquisition on a given orbit does not vary with launch time. However, the position of the Sun, and 
therefore orbital lighting, does vary with time, so the mission elapsed time of HST release on orbit 
19 also varied with launch time and date. This variation of release time due to a change in launch 
time can be seen in Figure 3. 

By simulating the trajectories resulting from various launch times over a 24-hour period, the 
Iaunch window analyst can determine all possible launch times that produce the required orbital 
conditions at the desired time of payload operations. For the WST mission, the launch time was 
varied on a specified launch date until the release time, calculated from the orbital noon time and 
solar Beta angle, matched an acceptable time from the HST deployment timeline in Figure 2. This 
day-long launch window would ensure that the deployment conditions were met during the 
allowable period of release times on orbit 19. 

The variation in launch time over a day or period of days is typicalIy displayed as a graph 
showing the opening and closing of the launch window that meets the payload requirements. The 
day-long and year-long HST launch windows in Figure 4 show how the HST deployment 
requirements that  open and close the launch window change with time. 
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Figure 4.- ~ a ~ - ~ o n g  and year-long HST launc dows for an orbit 19 deploy men^ 
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All launch times between the opening and closing of the ST launch window in Figure 4 
ensured that communication, attitude, and lighting requirements could be met during the 
deployment on orbit 19. However, since launch time determined the Orbiter release attitude, certain 
launch times actually caused the Orbiter body to block the Ku-band antenna's line-of-sight 
communication with TDRSS. The launch times causing these unacceptable Orbiter release attitudes 
must be eliminated from the launch window. 

To determine whether Orbiter attitudes required for payload operations affect a launch 
window, the analyst must first determine the attitudes that satisfy the payload requirements during 
the mission. Typically, more than one Orbiter attitude will meet the operational requirements of a 
free-flying or attached Shuttle payload. The analyst would limit this range of acceptable attitudes 
either by fixing the Orbiter orientation relative to the orbit plane or celestial sphere, or by requiring 
the Orbiter maintain an attitude that continually tracks a desired target. 

Although the Orbiter attitude had to point the HST's -V1 axis at  the Sun during the 
deployment, only one release attitude also aligned the Orbiter's Z-body axis with the orbital velocity 
vector at the separation burn. A formula was determined for this Sun-tracking, inertial attitude 
based on the known attitude and pointing constraints and the solar Beta angle at orbital noon. This 
geometrical derivation is illustrated in Figure 5. Like the HST release time, the Orbiter release 
attitude also varies with launch time and date because the solar Beta angle changes with launch 
time and date. 

The Orbiter release attitudes could conceivably affect the lighting or communication required 
for HST deployment. However, the lighting requirement was met as long as HST was pointing at the 
Sun and its release was timed to coincide with orbital noon. But, determining whether the Orbiter 
release attitude interfered with TDRSS communication required special analysis, since the attitude 
varied with launch time and date. To assess the effect of attitude on communication, the launch 
window analyst had to construct a spherical look angle plot, or blockage pattern. 

The blockage pattern is a graphical tool used in attitude and pointing analysis to determine the 
effect of Orbiter attitudes on the acquisition of targets relative to the Orbiter and payload. This plot 
represents a 360" spherical perspective from a pointing instrument, such as an  antenna, sensor, or 
camera, that must make contact with a target. Plotting the time-varying and attitude-dependent 
positions of a target on the blockage pattern determines whether contact with the target can be made 
by the pointing instrument. 
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A 

h --= orbital angular momentum vector 

Therefore, the Orbiter LVLH attitude at orbital noon is: 

Figure 5.- The Orbiter attitude at orbital noon. 
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nowing that Qrbiter- TDRSS communication during the 
Ku-band frequencies, a blockage pattern was created for the Orbi 
Figure 6. The positions of the TDRSS satellites relative to the 
Ku-band antenna blockage pattern for the different launch times and the varying release attitudes 
that the Orbiter would be in over the duration of the launch window. The locations of the TDRSS 
satellites for a November 11,1988, launch date can be seen in Figure 7. This plot shows that 
communication is affected by Orbiter and HST structures within the field-of-view of the Ku-band 
antenna, and by Earth occultation due to relative orbital motion between the Orbiter and a TDRSS 
satellite. 

and antenna, as shown in 
bit 19 were plotted on the 

By plotting TDRSS satellite positions on the Orbiter Ku-band blockage pattern for launch 
window durations over different days of the year, the analyst determined the launch times that 
produced Orbiter release attitudes that would allow contact with TDRSS and simultaneously point 
HST at the Sun while the Orbiter was in the proper separation attitude. The effect of the Orbiter 
release attitude on the year-long HST launch window is shown in Figure 8. 

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 
Azimuth (degrees) 

0 

Figure 6.- Ku-band antenna blockage pattern. 
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(a) Positions of TDRS-W for the HST launch window using TDRS-W. 
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(b) Positions of TDRS-E for the HST launch window using TDRS-E. 

Figure 7.- Positions of TDRSS from the Ku-band antenna 
for launch times on November 11,1988. 
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Figure 8.- HST launch window using Ku-band antenna for orbit 19 deployment. 
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he launch window analysis described in this paper was used to determine the Shuttle launch 
ST. Shuttle attitudes that are required for payloa operations are usually 

independent of launch time, but analysis for STS-31 showed that the Shuttle Orbiter attitude 
required to release the HST varied with launch time and date. The results of the analysis also 
showed that launch time determined the acceptable times to deploy the HST. The launch window 
that was eventually developed for STS-31 allowed the mission planner to determine the Orbiter 
release attitude and HST release time for a specific launch time, and to make prelaunch decisions if a 
launch delay occurred or if a TDRSS satellite was not available. 

Analytical solutions were derived for the HST release time and the Orbiter release attitude 
based on the requirements for the deployment operations. A spherical look angle plot, or blockage 
pattern, was a visualization tool used to predict the effect of the Orbiter release attitude and the HST 
release time on the launch window. The methods developed from the HST launch window analysis 
can also be used in the launch window analysis for Shuttle missions with payloads with 
communication, pointing, and lighting requirements similar to HST, such as Spacelab missions or 
missions deploying low Earth-orbiting satellites. 

For the HST deployment mission, a change in launch time rotated the Shuttle’s trajectory in 
inertial space so the required orbital conditions for RST release occurred a t  a particular time. 
Changing the orientation of the orbital trajectory with launch time was the basis for the HST launch 
window analysis. However, the trajectory profile for the HST mission could have been altered by 
other means to obtain the orbital period, altitude, inclination, or Earth-latitude crossing that would 
ensure the required orbital conditions for the HST deployment. This could have been accomplished 
by a number of design options, such as ascent yaw-steering, nonstandard inclinations, alternative 
insertion altitudes, a1 ternative days for payload operations, and orbit adjust maneuvers. Although 
some of these options were considered for the HST mission, discussion of these options is an  entire 
subject by itself and was not covered in  this paper. 
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Abstract 

A celestial body produces a gravitational moment about the mass center of a 

small orbiting body, which affects the orientation of the smaller body. Each 

zonal harmonic in the gravitational potentia1 of a ceIestial body is shown to 

make a contribution to the gravitational moment which can be expressed in a 

recursive vector-dyadic form. A formal derivation is presented, followed by an 

example in which the result is employed in obtaining the contribution of the 

zonal harmonic of 2nd degree. The contribution of the zonal harmonic of 3rd 

degree is also reported. 

Introduction 

The gravitational moment about the mass center of a body in orbit about a 

celestial body has an important effect on the orientation of the orbiting body. 

The more misshapen the celestial body, and the less uniform its mass distri- 

bution, the more involved is the calculation of the gravitational moment (and 

*Aerospace Engineer, Control and Guidance Systems Branch 

417 



force) it exerts. Situations in which it might be important to calculate accu- 

rately the gravitational moment include the design of spacecraft for expeditions 

to asteroids, comets, and the moons of Mars. 

In Ref [l], a method for obtaining a vector-dyadic expression for the moment 

exerted about a small body’s mass center by an oblate spheroid was set forth. 

The derivation of that expression made use of a gravitational potential written 

in terms of the zonal harmonic of 2nd degree. When gravitational potentials 

containing zonal harmonics of degree 2 or greater are considered, each zonal 

harmonic makes a contribution to the gravitational moment. 

Recorded below is a vector-dyadic expression for the contribution of a zonal 

harmonic of degree n to the gravitational moment, produced by a body, about 

the mass center of a small body. As is the case with all vector-dyadic expres- 

sions, this result .is basis independent.- that is, the vectors and dyadics can be 

expressed in any convenient vector basis. 

The equation given below is recursive: the contribution to  the gravitational 

moment from the zonal harmonic of degree n is a function of the moment con- 

tributions from the zonal harmonics of degree n - 1 and n - 2. The equation 

contains Legendre polynomials and derivatives of Legendre polynomials of de- 

gree n - l and n - 2. The Legendre polynomials, as well as their derivatives, 

can, themselves, be generated by means of recursion formulae. 

As an example, the contribution to the gravitational moment from the zonal 

harmonic of degree 2 is worked out. The contribution of the zonal harmonic of 

degree 3 is also given. 

Assert ion 

Figure 1 shows a small body B in the presence of an axisymmetric body E .  

The distance between B*,  the mass center of B, and E*, the mass center of 
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E ,  is assumed to exceed the greatest distance from B* to any point of B.  The 

system of gravitational forces exerted by E on B produces a moment M about 

B*, and M can be written as 

where M n  is the contribution of the zonal harmonic of degree n and can be 

obtained by using the recursion relation 

M ,  = pJnREn { [(2n - 1 )  [ (n + 2 ) p n - 1 +  3 ( i  0 i ; ) p ~ - ~ ]  - (2n - 2 ) p ~ - , ]  nRn+3 
( r i x L . +  + + X L . r i )  

+ [(4n - 4) [(n + 1lpn-2 + (+ 0 A ) P A - ~ I  

-(2n - 1)(4 0 A )  [(4n + 8)Pn-1 + 4($ 0 h)PA-l]]i  x L 0 .i. 

- b(2n  - 1 ) ~ ~ - , ] r i  x 10 ri 

2 (s) ~ n - 2  ( 2 )  
2n-  1 Jn RE n - 1  Jn --- (i o A ) M n - i  - -- 

n Jn-1 R n Jn-2 
+ 

where; /I is the gravitational parameter of E ,  Jn is the zonal harmonic coefficient 

of degree n,  RE is the mean equatorial radius of E, R is the distance from E* 

to B*, P, is the Legendre polynomial of degree n and argument SA, SA is the 

Sine of A,  the latitude of B* (SA = i; oh),  PA is the first derivative, with respect 

to its argument, of Pn, i is the unit position vector from E* to B*, n is the 

unit vector in the direction of the axis of symmetry of E ,  and I is the inertia 

dyadic of B relative to B*. 
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Figure 1: Body B in the Presence of Body E 

Derivation 

The gravitational forces exerted by a body E on a small body produce a moment 

M about the mass center B" of B. M is given approximately by equation 

(2.18.1) of Ref [2], 

M = -I - z VVV(R) (3) 

where R is the position vector from E' to B* and V denotes differentiation with 

respect to the vector R. Section 2.9 of Ref [2] contains a thorough explanation 

of how one differentiates with respect to a vector. The definition of the cross-dot 

product, z ,  appears on p. 156 of Ref [2]. The gravitational potential of E is 

symbolized by V .  

Equation (2.13.14) in Ref [2] deals with the gravitational potential of an 

axisymmetric body and contains an infinite series of zonal harmonics. For a 

particle of unit mass coincident with B*, 
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where SA, the argument of P, , is equal to the sine of the geographic latitude of 

B*. Eq. (4) can be simplified to 
00 

when the contribution to the gravitational potential of the zonal harmonic of 

degree n, V,, is defined as 

Ref [l] shows that -I V V ( p / R )  = (3p/R3).i. x I o  i .  Hence, eq. (3) can 

be rewritten as eq. ( l ) ,  

so long as the contribution to the gravitational moment of the zonal harmonic 

of degree n, M , ,  is defined as 

The Legendre polynomial of degree n, Pn(c), is expressed recursively in 

equation (8.71) of Ref [3] in terms of Legendre polynomials of degree n - 1,  

n - 2,  and their argument, 2, for n 2 2,  as follows: 

Eq. (9) can also be produced with rn = 0 in formula I of Table 1 in Ref [4]. Sub- 

stituting from this recursion relation for the Legendre polynomials into eq. ( 6 )  

leads to a recursive expression for V,: 

v, = --- &Vn-l--- - Jn ( - 3 2 v n - 2  (10) 
2 n - 1  J ,  RE 

n Jn-1 R n Jn-2 

42 1 



Eq. (8) requires that a dyadic be formed by differentiating Vn twice with 

yields a recursion 

relation for the vector VVn, the contribution of the zonat harmonic of degree 

n to the gravitational force exerted by E on a particle of unit mass coincident 

with B*. 

. The first derivative of Vn with respect to 

The second derivative of Vn with respect to R yields a recursion relation for the 

symmetric dyadic VVV,, 

where a is the unit dyadic. 
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§§- 

We now perform the crossdot product with dyadics I and VVV,, making use 

of the right hand side of eq. (12) and the cross-dot identity 1. i = 0, which is 

set forth in eq. (19) of Ref [l], obtaining 

I (VSxR + RVSx) X 2 n - 1  Jn Vn-1 x Vn- 1 I o  VVV, = -- R E ( ~ L  e V V S ~  - - R3 - - 
Jn-1 

n - 1  J n  1 x  8Vn-2 I x - -- RE'(-L e VVV,-~ + - oRR-O 
Jn-2 R6 - 

In order to carry out the cross-dot products with L and the other dyadics on 

the right side of eq. (13), we will express these dyadics in terms of R and i i ,  a 

unit vector parallel to the axis of symmetry of E. 

The sine of X can be expressed as sinX = ( R e n ) / R  = + e n  so that the first 

derivative of SA with respect to R is 

and the second derivative of SA with respect to R is 

3(Re 'IRR - -!.- [GR + Rh + ( R e  ii)a 
R5 R3 

vvsx = 

Eq. (20) of Ref [l] is a derivation of a cross-dot identity which will be used 

repeatedly throughout the sequel: For any dyad u v  composed of vectors u and 

v ,  it is shown that L e u v  = -u x e v. By making use of this identity, and 

eq. (15) above, one can write 

X 
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where i is a unit vector in the direction of . By recalling the definition in 

eq. (6), one can evaluate the first cross-dot product on the right side of eq. (13). 

The dyadic required for the second cross-dot product on the right side of 

eq. (13) is easily constructed by using eq. (14): 

Thus, 

L (VSx R + R V S x )  = Vn- 1 - 
R3 

-pJn-l RE"-' - Rn+3 pn-l [ 2 ( i  0 n)i x L. i - n x L o  .i. - .F. x L. n] (19) 

Replacing n with n - 1 in eq. (8) allows the third cross-dot product on the 

right side of eq. (13) to be immediately expressed in terms of Mn-l. 

The fourth cross-dot product on the right side of eq. (13) contains the quan- 

tity VVn-,. Temporarily allow x to be the argument of Pn-l [See eq. (6)] and 

write the derivative of Vn-l with respect to R as 

The first derivative of a Legendre polynomial Pn with respect to its argument 

is often denoted by P,',. For n >_ 2, a useful recurrence formula for P,', can be 

found in problem 8-9 of Ref 131, p. 393, or in formula I of Table 1 in Ref [4] 

(with rn = 1): 
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Since the argument of Pn-l is known to be SA, we can make use of eq. (14) to 

rewrite eq. (21) as 

The sum of two dyadics, formed by juxtaposing the vectors VSA and VVn-l in 

opposite order, yields the symmetric dyadic 

( R o n )  2(Reh)RR]} (24) 
R3 

-- 
R4 

Consequently, the fourth cross-dot product on the right side of eq. (13) can be 

expressed as 

The dyadic required for the fifth cross-dot product on the right side of 

eq. (13) can be constructed rather easily by employing eq. (23), which yields 

so that 
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The sixth cross-dot multiplication which must be performed in order to 

VVV, is one of the easiest to carry out. That is, 

The seventh cross-dot product on the right side of eq. (13)  can be expressed 

in terms of Mn-2. Replacing n with n - 2 in eq. (a), we get 

The eighth cross-dot product to be evaluated is simpIy 

The dyadic required for the final cross-dot product is similar to that needed 

for the fifth cross-dot product, 

-/A Jn-zREn-2 { & Rn- 1 [?% + $6 - 2(i; 0 li)i;..i] - 2(n - Rn- 1)Pn-2 1 i i ; } ( 3 1 )  

so that 

2 x  
R4 - -I 0 (VVn-zR+ RVVn-2) = 

Substituting from eqs. (17 ) ,  (19) ,  (20), (25),  (27)  - (30) ,  and ( 3 2 )  into ( 1 3 )  

and then into (8) leads to  eq. ( 2 ) ,  which is a recursive vector-dyadic expression 

for the contribution of the nth zonal harmonic to the gravitational moment. 

Examples 

In order to demonstrate the use of eq. ( 2 ) ,  we will use it to obtain M2, the 

contribution to the gravitational moment from the zonal harmonic of degree 2 .  
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The two required Legendre polynomials are Pl(Sx) = SA = + 
Po(Sx) = 1. Legendre polynomials of degree greater than or equal to 2 can 

be obtained recursively by using eq. (9). The two derivatives of Legendre poly- 

nomials which will be needed are Pi(Sx) = 1 and p { @ ~ )  = 0. Derivatives with 

respect to the argument of Legendre polynomials can be generated with the 

recursion formula (22) for n _> 2. 

Eq. (2) also requires knowledge of Mo and M1 in order to produce Mz.  

Eq. (8) is helpful in developing expressions for Mo and M I .  

The Legendre polynomial of degree zero is equal to 1, regardless of its argu- 

ment, and the scalar Vo [See eq. (6)] is 

The dyadic formed with VO is then 

(34) 
J 

VVVo = VV(-pJo/R) = V(pJoR/R3) = R3 - 3?+) 

Eq. (8) tells us that 

JO is an undefined constant, but the coefficient of Mo in eq. (2) contains JO in 

the denominator. Hence, a numerical value of Jo is not required for constructing 

M2. 

A similar process leads to M I .  The value of the Legendre polynomial of 

degree 1 is identical to the argument, so the scalar VI is 

The dyadic formed with VI is 

3 
R5 

-p J1 RE { l5'"R,' RR - - [Rfi + fiR + ( R  0 .)a} (37) 
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so that 

M I = -  3pJ1RE [n x L o  i; + i; x L 0 n - 5(+ . n)+ x L (38 )  R4 

Like Jo, the constant J1 is undefined, and unneeded for the purpose of obtaining 

Mz. Note that Mo and M I  do not represent contributions to the gravitational 

moment, but are required to begin the process of recursion which will generate 

moment contributions beginning with M2. 

By substituting from eqs (35) and (38) into (2), we arrive at the following 

result with n = 2:  

Mz = - pJzRE2{ [30(?  o i i ) ] ( A  x L . 9  ++ x L o ~ )  
2 ~ 5  

+ [ 1 5 - 1 0 5 ( 6 0 A ) ~ ] ?  x L 0 ? - 6 i i x L o i i  } (39 )  

If eq. (1) of Ref [l] is expressed as M = (3p /R3) i ;  x L o  ? + M z ,  it can be seen 

that Mz from Ref [I] is identical to eq. (39), above. 

The contribution M3 can be obtained in a similar manner, using the values 

of PZ(SX), Pl(%), wb.), P:(sX), MZ, and M1. 

M3 = - PJ3RE3 { [315(c 0 T i y  - 451 (?% x L o  e + e x L 0 i i) 
6R6 

+ [315(+ 0 A) - 945(? 0 A)3] i; x L o  i: - 90(? 0 h)fi x L o  f i }  (40) 

Conclusions 

A recursive vector-dyadic expression for the contribution of a zonal harmonic 

of degree n to the gravitational moment about the mass center of a small body 

can be obtained by a procedure which involves differentiating a celestial body’s 

gravitational potential twice with respect to a vector. The recursive property 

of the result is a consequence of taking advantage of a recursion relation For 

Legendre polynomials that appear in the gravitational potential. When a celes- 

tial body’s gravitational potential includes zonal harmonics, the vector-dyadic 

428 



expression above is useful for calculating their contributions to the gravitational 

moment. The contribution of the zonal harmonic of degree 2 is consistent with 

the gravitational moment exerted by an oblate spheroid. 
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ABSTRACT 

This paper describes a predictive temperature estimation technique which can be used to 
drive a model of the Sunrise/Sunset thermal “snap” disturbance torque experienced by low 
Earth orbiting spacecraft. The  twice per orbit impulsive disturbance torque i s  attributed to 
vehicle passage in and out of the Earth’s shadow cone (umbra), during which, large flexible 
appendages undergo rapidly changing thermal conditions. Flexible members, in particular 
solar arrays, experience rapid cooling during umbra entrance (Sunset)  and rapid heating 
during exit (Sunrise). The  thermal “snap” phenomena has been observed during normal 
on-orbit operations of both the LANDSAT-4  satellite and the Communications Technology 
Satellite (CTS) .  Thermal “snap” has also been predicted to be a dominant source of error 
fo r  the T O P E X  satellite. 

The fundamental equations used to model the Sunrise/Sunset thermal “snap” disturbance 
torque f o r  a typical sobar array like structure will be described. For this derivation the array 
is assumed t o  be a thin, cantilevered beam. The t ime  varying thermal gradient is  shown t o  
be the driving force behind predicting the thermal (‘snap’3 disturbance torque and therefore 
motivates the need f o r  accurate estimates of temperature. This paper will highlight the 
development of a technique t o  optimally estimate appendage surface temperatures. The 
objective analysis method used is structured on the Gauss-Markov Theorem and provides 
an  optimal temperature estimate at  a prescribed location given data f rom a distributed 
thermal sensor network. The  optimally estimated surface temperatures could then  be used 
to  compute the thermal gradient across the body. The  estimation technique is demonstrated 
using a typical satellite solar array. 
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an unexpected perturbation was experienced by the L -4 and 
omously large, twice per orbit disturbance was observed in the flight 

on-orbit operations. 
ich show the LANDS 

data, respectively, over one orbital period. An inspection of Figures 1 and 2 reveals that 
the roll and yaw controlled response of the vehicle exhibits an impulsive velocity in one 
direction immediately followed by a similar motion in the opposite direction, and finally 
proceeded by a decaying step of the initial sign. There is minimal coup1 
pitch axis data which indicates the disturbance is primarily distributed 
and yaw axes. The perturbation shown in Figures 1 and 2 has been correlated with the 
spacecraft’s entrance (sunset) and exit (sunrise) to the eclipsed region of the orbit plane. 
During penumbral transitions, the vehicle undergoes rapidly changing thermal conditions 
which result in a thermally induced bending motion of the large single solar array. If 
the snaping or bending motion occurs at a non-constant rate a disturbance torque is 
generated about the hinged axis of the array, which is then transferred back onto the vehicle 
core-body. This concept is illustrated in Figure 3. This thermally induced disturbance, 
referred to as Thermal “snap” or Thermal Elastic Shock (TES), has also been observed 
during the three-axis stabilized operation of the Communications Technology Satellite 
(CTS), but to a much lesser degree. The difference in perturbation magnitude was a 
result of the differences between the two spacecraft designs. The TES disturbance is most 
pronounced for asymmetric satellite configurations, such as the single-wing LANDS AT 
vehicles. Satellites possesing a dual-wing array design, such as CTS, are significantly less 
affected by TES since the motion of both arrays tends to be self-compensating. However, 
a single array configuration is typically required to provide an unobstructed radiator view 
of cold space for proper thermal control of mission sensor payload instruments. 

The significant attitude excursions experienced by the LANDS AT vehicles in response to 
the TES disturbance have aroused considerable concern for future satellite missions. This 
is especially true for the Upper Atmospheric Research Satellite (UARS) and the TOPog- 
raphy Experiment (TOPEX) satellite since both vehicles utilize LANDS AT heritage. In 
particular, the TES disturbance has been predicted to be a dominant source of attitude 
perturbation for the TOPEX spacecraft [Dennehy et  al., 19881. Dennchy et al. (19901 have 
analyzed the attitude pointing performance of the TOPEX spacecraft when subjected to 
the TES disturbance. Their analysis found that the TES disturbance was large enough 
to cause the TOPEX spacecraft to temporarily exceed its Normal Mission Mode (NMM) 
attitude pointing requirements. Consequently, some degraded performance of the primary 
scientific instrument will be experienced for a brief period of time. Thus, for TOPEX and 
other future satellites, a need is established to determine the on-orbit magnitude of the TES 
disturbance in order to compensate science data taken during degraded attitude periods. 
Temperature data could be used in one of two ways to counteract the TES disturbance. 
The first methodology would utilize the temperature data in an on-board implementation 
to provide adjustments in order to accommodate the TES disturbance torque. The second 
procedure would employ the use of temperature telemetry data to drive a TES disturbance 
model so a postori attitude reconstruction could be performed on the ground. 
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Figure 1: On-Orbit LANDSAT-4 Sunrise/Sunset Disturbance (Roll Axis) 
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Figure 2: On-Orbit LANDSAT-4 Sunrise/Sunset Disturbance (Yaw Axis) 
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A mathematical representation for the TES disturbance torque for a typical satellite solar 
array has been developed by D e n n e h y  et al. [1990]. This model is essentially the second 

tive of the array inertia multiplied by the angle through which the array bends. 
disturbance model, the solar array is assumed to be a thin, cantilevered beam 

with mass M and length L. The general form of the disturbance torque is expressed as 
[ D e n n e h y  et  aZ., 19901: 

Tb = 2 f ( t  - ~)2i( t  - 7) + f’(t - T ) u ( ~  - 7) 

where u(t - 7) is a unit step function defined as: 

0 i f t < 7  
1 i f t 2 . r  u(t - 7) = 

and &(t - 7) is a Dirac function described as: 

1 i f t = ~  
0 otherwise ih(t - 7) = (3) 

If the array is broken into n pieces, where n is sufficiently large, then a general expression 
for the function f ( t  - 7) can be formulated as: 

where 

d f thickness of the array 
7 f point of umbra entrance or exit 

AT E thermal gradient across the array 
acte c material coefficient of thermal expansion 

The parameters Z i  and mi are determined using the following relations: 

L 1 
2 n 

1 .  - -(; - -) 
t -  

n 

( 5 )  

Substituting Equations 2, 3 and 4 into Equation 1 yields a standard expression for the 
TES disturbance torque: 

where 
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and Ha is the array momentum given as: 

It is apparent from Equations 7, 8 and 9 that the TES disturbance torque is a function 
of not only the thermal gradient across the array, but is also dependent on the first and 
second time derivatives of the thermal gradient, A'T and AT. Thus in order to predict the 
magnitude of the TES disturbance using the mathematical model, an array temperature 
gradient profile is necessary. 

OPTIMAL TEMPERATURE ESTIMATION 

The dependence of the TES disturbance torque model on the successive derivatives of 
the thermal gradient motivates the need for accurate temperature determination. The 
thermal response of a solar array may be predicted using numerical techniques such as 
those presented in Dennehy et al. [1990]. Such methods include using the Thermal Ra- 
diation Analysis SYStem (TRASYS) and the Systems Improved Numerical Differencing 
Analyzer (SINDA) software packages, as well as solving the one-dimensional heat equation 

PANEL BEFORE 
THERMAL TORQUE 

CONNECTION 
TO VEHICLE 

PANEL AFTER 
THERMAL 
G RAD I E NT 
IS APPLIED 

Figure 3: Solar Array Structural Deflection Due to Applied Thermal Gradient 
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using finite difference approximations. However, to measure the true thermal response 
of a solar array9 thermal sensors are used during on-orbit spacecraft operation. Thermal 
sensors utilized for spaceflight applications include thermisters and platinum resistance 
thermometers (P rmisters are accurate to about +4"C while the accuracy of a 
PRT is approximat C. If a distributed network of thermal sensors exists on each 
surface of the array, as illustrated in Figure 4 for the front panel, a measurement of the 
surface temperatures at those prescribed locations is obtained. It would be nice to use all 
the available surface temperature information to estimate the array surface temperature 
at a desired location. Thus a technique, based on the Gauss-Markov Theorem, is described 
to optimally estimate array surface temperatures. Then once the temperature estimate 
for each surface is determined, the thermal gradient may be predicted by differencing the 
front and back surface temperatures at a consistant specified location. 

4 762.0 cm e- 

S 

0 -THERMAL 
SENSO 

Figure 4: 9-Element Distributed Thermal Sensor Network on a Typical Solar Array (Front Surface) 

The Gauss-Markov theorem provides a linear minimum mean square estimate of a vector 
E with n components given a set of m observations, 0. The estimator, given by Liebelt 
(19671, is stated as follows: 

where 

c,, E ~ ( 2 0 ~ )  (n x m matr i x )  
C, G ~ ( 0 0 ~ )  (rn x m matr ix )  
E G expected value operator 

The error matrix associated with the estimate of x is given as [Liebelt, 19671: 

c, = c, - c,,c, 1 T  c,, 
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with 

C, E ~ ( z 2 )  (n x n matrix) 

the expected value of the estimate, E(?), is equal to z (i.e. the average of the estimate 
is equal to the true value) then 2 is a linear minimum variance unbiased estimate and Ce 
is the covariance matrix of the estimate. The error gives a indication of how the estimate 
is dispersed from the true value. If the error is small then the estimate approaches the 
true value. 

Equations 10 and 11 form the basis of the optimal estimation method developed by 
Bretherton et al. [1976]. For their analysis, the Gauss-Markov theorem was utilized to 
estimate the value of a two-dimensional scaler variable at a specified location given mea- 
surement data at a limited number of positions. A linear form of the observations is 
assumed and can be expressed as: 

pi = O(r , s )  + ~i 
for i = 1, ..., N where 

pi SE ith measurement 
ci E ith measurement error 

N 3 total number of observations 
O(r ,  s) f scaler variable at position ( r ,  s) 

Furthermore, the assumption is made that the measurement errors are uncorrelated and 
independent of p. Under these assumptions, Bretherton et al. 119761 applied the Gauss- 
Markov theorem, Equations 10 and 11, to obtain the resulting estimation equation given 
as follows: 

N N 

where 

0 estimated mean of the observations 
Aij 3 covariance between all pairs of observations 
C,. covariance between the estimate and the ith observation 

and the associated error matrix, C, given as: 

The estimated mean is computed under the condition that the sum of the weighted mea- 
surements is zero and is determined by the following equation IBretherton et d.,  19761: 
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quations 13, 14 and 15 will be used to provide an optimal estimate of a solar 
temperature at a prescribed location and the error associated with the estimate in 
to demonstrate the estimation technique. 

array 
order 

The key to implementing the optimal estimation technique is the determination of both 
the C, matrix and an analytic weighting function to scale the variance of the data. The 
weighting function is necessary to compute numerical values for the C,i and Aij matrices. 
The C, matrix is generally unknown but can be approximated by the variance of the given 
data set. The numerical computation of C, for this analysis was performed using the 
following equation [Bretherton et  al., 19761: 

where o,,, is the standard deviation of the measurement data given as: 

with 

The last term on the right 
with the estimated mean. 

hand side of Equation 16 accounts for uncertainties associated 

A weighting function was selected, for this study, to weight the measurements according 
to their spatial location with respect to one another and to the desired position of the 
estimate. This type of weighting function can be used as a first cut statistical model given 
no a priori knowledge of the data statistics. The estimation technique can, however, easily 
accommodate more complex statistical models if desired. An analytical expression for the 
weighting function is given as: 

where 

y E measurement degradation factor 
r:i = scaling parameter between the ith 

s:j E scaling parameter between the ith 
and j t h  observations in the r direction 

and j t h  observations in the s direction 

The parameter 7 is introduced to change the quality of the observations. If 7 is set equal 
to 5.0 then a maximum correlation of 1.0 will exist when the condition i = j is satisfied in 
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Equation 19. s y linearly decreases, the maximum attainable correlation also decreases 
in a linear fashion. The scaling parameters, rTj and sTj, are calculated using the following 
equations : 

Sensor No. Sensor Position 
r (cm) 1 s (cm) 

and 

Temperature "C 
Case 1 I Case 2 (Thermister) 1 Case 3 (PRT) 

The variables rscscale and sscale can be specified to determine an effective range of data in- 
fluence (decorrelation scale) or set to the dimensions of the spatial area over which the 
measurements are confined. For the present study, the latter condition is used. The vari- 
ables ri and si denote the spatial location of the ith observation location while the variables 
rj and sj indicate the spatial position of the j t h  point. Thus a spatially weighted covariance 
can be computed between the point of estimation and the measurements, Czi, and between 
the observations themselves, Aij, given the weighting function. The calculation of C,i can 
be expressed by: 

7 
8 
9 

cxi = wxio; (22) 
where the subscript z is used to denote the desired location, (rx, ax), of the estimate, while 
the weighted observation matrix, A,, is determined from the following equation: 

285.75 152.4 72.9534 72.4241 72 .W80 
476.25 152.4 72.9534 72.7547 72.4672 
666.75 152.4 72.9534 72.8162 72.7367 

where Sij is the Kronecker delta function expressed as: 

0 i f i f j  
1 i f i = j  (24) 

and aE the standard deviation of the error. 

The one drawback of using this technique is the inversion of the observation covariance 
matrix, Aij. If a large number of observations exist then the dimension of the covariance 
matrix becomes cumbersome and hard to numerically invert. However, to speed the nu- 

Table l: Thermal Sensor Locations and Temperature Measurements for Cases 1-3 
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Figure 5:  Temperature Estimates Versus Measurement Degradation Factor for Cases 1-3 

' CASE 2 

CASE 3 

*CASE 1 

1 2 3 4 5 Y 

Figure 6: Standard Deviation of Temperature Estimates Versus Measurement Degradation Factor 
for Cases 1-3 
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merical inversion rocess, the order of the covariance matrix coul 
only those Q~servatiQns having a correlation value above a specified limit. 

be reduced, keeping 

For this study, the arrangement of the thermal sensors on a typical solar array front surface, 
labeled 1 through 9 as shown in , represent the spatial location of the t e ~ p e r a t ~ r e  
observations. The length (762.0 cm) and width (304.8 cm) of the array represent the 
spatial area scales, ts , , le  and sscole respectively. To demonstrate the technique, temperature 
measurements at the nine locations, all at a single point in time, are used. The factor 7 
is set equal to 5.0 to provide a maximum correlation of 1.0. The technique is first used 
with data that is assumed true with no measurement error, e.g. ~i = 0. Thus the error 
matrix will represent the covariance of the unbiased estimate. The temperature data and 
the locations of the thermal sensors are listed in Table 1 under the Case 1 heading. The 
prescribed point of estimation is positioned at (381,503) cm for this and all examples. 
Applying the technique, the computed estimate is 72.9523OC with a standard deviation 
of 0.023OC. The estimated temperature is consistant with the observed data and the 
standard deviation of 0.023OC represents a small deviation from the true temperature at 
the estimation point. A second example is illustrated by corrupting the true temperature 
measurements with error. In one case the sensors are considered to be thermisters and in 
another the PRT sensor is used. The standard deviation of the error is assumed to be 4°C 
for the thermister and l 0 C  for the PRT. Case 2 shows the thermister simulated temperature 
data and Case 3 represents the PRT data as shown in Table 1. The temperature estimates 
for the thermister and PRT data are 73.1893"C and 73.0396OC with standard deviations 
of 2.205"C and 0.53OoC respectively. The estimates for each of the 3 cases fall within 

4 762.0 cm t 

I 

S 

t 
0 -  L 

Figure 7: 10-Element Distributed Thermal Sensor Network on a Typical Solar Array (Front Surface) 
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the range of the observe data with Case 
standard deviation for Case 2 is a result of the large variance associated with the simulated 
thermister data set. 

exhibiting the largest standard deviation. 

If the parameter 7 is allowed to approach 0 from its maximum value of 5.0, the quality 
of the observations is degraded. Furthermore, as 7 decreases the estimate is expected to 
degrade with an increase in the standard devation. To test this hypothesis, estimates and 
standard deviations for the 3 test cases were recomputed for values of 7 ranging from 0.1 
to 5.0 in 0.1 increments. Figures 5 and 6 show the estimated temperatures and standard 
deviations, respectively, for the true data (Case l), the thermister data (Case 2) and the 
PRT data (Case 3). An inspection of Figure 5 reveals that the temperature estimate for 
Case 1 remains essentially constant, 72.955"C, for 7 2 0.8. In the range of 7 < 0.8, the 
Case 1 temperature estimates reach a maximum of 73.185"C at 7 = 0.2 and a minimum of 
72.92"C at 7 = 0.4. The large deviations occur as the elements of the Aii matrix approach 
small values resulting in an inverse matrix with large components. Case 2 also shows a 
non-linear change in the temperature estimate for 7 < 0.8 with a minima at 73.155"C. 
The estimate reaches an approximate steady state value of 73.19"C with a slight downward 
trend for 7 > 3.5. Case 3 temperature estimates indicate a linear decrease in temperature 

for 7 2 0.4. When from 73.7"C to 73.4"C with a slope of approximately 0.065 
, The standard deviations for the 3 Cases, as 7 < 0.4,the slope increases to -0.33 

a function of 7 ,  are illustrated in Figure 6. The standard deviation for the true data (Case 
1) remains essentially constant with a value of approximately 0.023". The thermister data 
set (Case 2) shows a linear decrease in standard deviation from 2.9OC to 2.2"C with a 

7incrsment "' 
?'increment 

762.0 em 4 

Ar 
Ar = 31.75 cm 
A s  = 25.40 cm 

Figure 8: Grid Point Locations Superposed on 9-Element Distributed Thermal Sensor Network 
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4 OC as y increases. The standard deviation of the data also shows a 
linearly decreasing trend but with a much more subtle slope of 0.0 
the estimates for the 3 Cases degrade with an associated increase in the standard deviation 
as y approaches a small value. 

Yincremant 

Yinsrement 

Sensor No. Sensor Position 
r (cm) I s (cm) 

Temperature O C  

Case 4 1 Case 5 (Thermister) I Case 6 (PRT) 
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CONTOUR FRO 

VAL OF 0.05"C 

Figure 9: Contoured Array Front Surface Temperature Estimates for 9-Element Distributed Ther- 
mal Sensor Network 

-4 762.0 cm D- 

0.O"C TO 0.26"C 

Figure 10: Contoured Standard Deviations Associated with Array Front Surface Temperature 
Estimates for 9-Element Distributed Thermal Sensor Network 

444 



ble 3: Summary of Temperature Estimates and Standard Deviations for Cases 

Sensor No. Temperature Temperature Standard 
True "C Estimate "C Deviation "C 

I 

6 77.5123 1.500 

% Error 

Table 4: Accuracy of Temperature Estimates Compared to True Observations 

CONCLUSIONS 

An optimal temperature estimation technique has been described and used to estimate the 
surface temperature of a satellite solar array at a prescribed location. The technique also 
provides error information relative to the estimated variable. This technique is capable of 
determining array surface temperatures at any location, with reasonable accuracy, from 
'a finite set of observational data. Applying the procedure to both surfaces ot the array, 
as a function of time, and differencing the surface temperature estimates will result in an 
estimated thermal gradient profile. The thefmal gradient estimates can then be utilized 
to drive the TES disturbance model in order to evaluate the true nature of the TES 
disturbance. 
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V. N. Dvornychenkol 
South Pasadena, California 

The performance of a rocket, say a chemical rocket, can be greatly improved by dynamically 
transferring energy from one part of the propellant to another. Although with present technology the 
achievable degree of energy concentration is low, payload increases on the order of 20% are theoretically 
possible. With unlimited energy redistribution increases of a factor of two are possible. 

Jntroduct ion 

ideal-velocity-gain of a rocket: 
Some eighty-five years have passed since K.E.Tsiolkovsky published the equation for the 

Vi = V, ln(m, /ml ) (Tsiolkovsky) . .. . . . (1) 
Here Vi is the ideal-velocity-gain. 

Ve is the effective exhaust velocity of the mass ejecta. 
m, and ml are the initial and final rocket masses, respectively. 

It is customary to introduce two derived quantities, the mass-ratio (p) and the specific-impulse (Isp): 

where g is the earth’s gravitational constant. 

Typical values for I,* are 200 to 450, corresponding to Ve of 1.96 to 4.41 kdsec.  The upper range 
is achieved by high-performance LOX-LH (liquid-oxygedliquid-hydrogen) propulsion systems such as the 
Space Shuttle. Exotic oxydizers such as ozone or fluorine can push this into the low 500’s, but this seems to 
be about the chemical propulsion limit. Usable and practical mass-ratios are in the range 5 to 10. For 
structural reasons values beyond 20 are very difficult to achieve. 

The important thing about (1) (and this was most emphatically noted b y  the early space pioneers ) is 
that the mass-ratio, and therefore the size of the rocket, increases exponentially with the required 
ideal-velocity-gain. A single-stage-to-orbit using LOX-LH requires a mass-ratio of about 10 (after 
performance losses are taken into account). This is difficult but achievable. But a low performance 
propellant (Isp = 200) would require a mass-ratio of 150, which is essentially impossible. 

Let us now look at an apparently unrelated situation: the fission of a particle (mo) into two particles 
(rn1,mz ) with a release of energy (E), which goes wholly into kinetic energy. The result, familiar from 
undergraduate physics, is 

where VI is the velocity of particle one. 

. . . (4) 

1 The author is employed by Northrop ESD, 500 E. Orangethorpe Avenue, Anaheim, CA. 
92801. 

His duties at Northrop are in the area of image understanding. Member AIAA. 
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Suppose now that all the energy resides initially in particle two, and that this energy has a specific 
er unit mass) of 

Substituting this into (4) and introducing the mass-ratio we obtain 

. . . . ( 5 )  

. . . . . (6a) 

as opposed to the classical (Tsiolkovsky) equation 

Vi = V, ln(p) . . . . (6b) 

As expected, (6a) always produces a greater value than (6b), as shown in Figure 1. 

A natural question is the reason for this discrepancy. The usual explanation is that the classical 
rocket suffers by having to drag its propellant along. But this is only partly correct. A better answer lies in the 
inability of the classical rocket to transfer energy from one part of the propellant to another. 
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es not need to OCCLE instantaneously. Let us a ee to call the rocket which obeys (6a) the 
igure 2 provides additional performance co arisons between the classical and super 

t curve shows how much additional specific impulse is needed by the classical rocket to 
, as a function of mass-ratio. The second curve shows how much the payload (final mass) is 

r a mass-ratio of 20 the super has an 84% higher increased on the super with the same initial energy. 
payload, which is equivalent to increasing the specific impulse in the classical rocket by 42%. 

Do practical methods exist for transferring energy from one part of the propellant to another? The 
answer is, yes and no. Ways certainly exit, some may even be "practical". The problem is that it is not 
possible to achieve the high exhaust-velocity modulation required by the previous theory. Let us consider 
some of the ways available: 

1. mechanical -- the energy is directly stored as rotational kinetic energy. 

2. thermal -- the energy is stored as heat. 

3. chemical -- the energy is concentrated by creating certain high-energy compounds or 
species; for instance, making ozone out of oxygen. 

4. mixture-ratio shift 
-- the relative ratio of two substances is changed. This may be considered to be a 

special case of the "chemical" method. 
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w show two thi that (6a) is the upper limit of the velocity attainable by mass ejection of 
, and 2), that this limit i s  in fact attainable with unlimited energy 

redistribution. 

et Ve (m) be the variable exhaust velocity, taken as a function of the propellant mass remaining, 
and measured with respect to the space-fixed system in which the rocket is initially at rest. The total 
propellant mass is m2 (as before) and the mass of the all-burned rocket is ml. As before, we assume the 
total energy expended is E. 

Then we have from the momentum and energy conservation equations : 

and 

Let 

and introduce the aloss function”, L, via 

....( 7a) 

. . . . (7b) 

. . . . . (7c) 

From these we derive : 

. . (7d) 

where is essentially as given by ( 5 )  , the star having been added to differentiate it from other uses of V, . 

Since L 2= 0 it is clear that the velocity is maximized when L=O, in which case (8) becomes identical 
to (6a) .Equation (7d) shows that to achieve the condition L=O we must have the exhaust velocity constant in 
a space-fixed frame, rather than with respect to the rocket. The exhaust velocity must therefore be of the 
form 

where Vl(t) is the instantaneous rocket velocity and Ve;o is the initial exhaust veIocity. 

...( 9) 

Note that, as in the classical equation, there are no restrictions on the rate at which mass is 
expended. We can take all the time we want. We can even have bursts of mass ejection and pauses. Most 
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5.  “exotic” -- this is a catch-a11 to include eve ing else, such as, electrical energy in 
capacitors, plasma, etc. 

Surprisingly a conceptually simple mechanical method exists. igure 3 shows the basic concept. 
ed” , with rocket engines mounted on booms at the periphery. These are rocket is “flying-saucer-sh 

sequentially as the rocket rotates, so that the thrust maintains a space-fixed direction. During the initial 
phase energy is transferred into kinetic energy of rotation. During the subsequent phase opposing rockets are 
fired so that the energy is returned to the mass-ejecta stream. Because of structural limitations it is difficult 
to achieve peripheral rotation speeds beyond about 300 dsec .  Thus the velocity modulation is limited to 
about 7%, corresponding to about 14% modulation in energy density. 

Comparable energy modulation is achievable using heat storage. Here the problem is not only a 
structural one -- high temperatures cause high pressures, requiring strong vessels -- but also a 
thermodynamic one: as the temperature is elevated disassociation causes energy extraction to drop. 

Chemical methods do not provide a much higher energy modulation than the previous, mainly 
because the types of reactions in rockets are already among the most energetic. Using reactions such as the 
previously mentioned oxygen to ozone conversion a modulation of 20 to 30% might be possible. 

Mixture-ratio shift is interesting because it is comparable in its simplicity to the mechanical method. 
The basic idea is to mix the ratio of two “reactants”. These need not be fuel and oxidizer. Indeed the 
separation is a conceptual one, and they need not be physically isolated. The two species could be, 1) 
propellant, and 2) an unreactive tamper; or else 1) the stoichiometric part, and 2) the excess part. The 
modulation is generally lower than any of the previous. 

As for “exotic” methods, I know of no practical ones. Perhaps electrical plasmas, in which atoms 
are stripped of their electrons, provide some potential. 

6 

a) First Phase : Some of the Energy is 
siphoned off into rotational Energy 

b) Second Phase : Rotational energy 
returned to mass ejecta. 

Figure 3 - Mechanical Means of Energy Modulation 
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rges is this: the kinds of ene 
some 30%, rather than the 
this paper. We thus need to modify the theory. 

density modulation feasible are in the order of 
tors of 25 to 100 required by the simple theory 

Suppose the total propellant (m2 ) consists of two parts (m3 ,m4 ), where m3 is the lower energy 
portion (say), and m4 the higher. It is not necessary that these two parts be physically separated, as in 
different tanks; the separation may be a virtual one, in which m3 represents that part of the propellant which 
is depleted in energy, while mq represents the energy-enhanced part. Let c3 and 04 be the corresponding 
specific energies. If an amount dm2 = dm3 + dm4 of mass is ejected the amount of energy available is : 

d E =  u3 dm3 + 04 dm4 .. (10) 
and the total momentum of the (differential) mass ejecta will be 

& =  JzF& 
and this amount of momentum will be imparted to the rocket. 

Introduce now the mixture-ratio 

d 
r = dm4/(dm3 + dm4) 

The velocity-gain of the rocket is now given by : 

.... (11) 

. . * . (12) 

. . . . (13) 

where dm is the change in mass of the rocket and is the same as dm2. 

Our objective is to find the optimal mixture-ratio profile which maximizes (13). To do this we need 
to add the constraint 

*2 
m4 = le rdm . . . . (14) 

which says nothing more than at all-burned all of m4 is used up. 

In addition we need to observe the restraint 

O < r = G l  0 . .  . (15) 

The optimization of (14) can now be accomplished using either the optimal control theory 
formulation or the older calculus of variations. The gist of the solution is that there are three phases: 

1. during the first phase r=O. 
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2. during the second phase r is variable and given by the recipe. 

1/m2 - 0 3 ) / ( a  - 03)  . . . . (1 6) 

here 7p? is the mean specific during this phase, and 1 are the initial and final masses during 
this phase. 

3. during the third phase r=l. 

epending on the values of m3 ,m4 ,03 and 04 some of these phases may be missing. In the case 
where all phases are present the total velocity gain is given by 

In (1 1) we tacitly assumed that all the mass ejecta are imparted the same velocity. However, when 
gasses are mixed the energy divides on a molecular basis (equipartition principle). If this principle is pursued 
we need to slightly modify (13) by introducing into the integrand the factor Q defined by 

.. . . (17) 

where w3 and w4 are the average molecular weights of the (combustion) products of dm3 and dm4 . 
It can be shown that Q(r) < 1, so that this kind of process produces a smaller Vi. However, not only does 
this complicate the analysis, but as it is unlikely to accurately model the thermodynamics we do not 
investigate this approach further. 

Some Numerical Results 

Consider the case where all the propellant is originally the same, with specific energy On. We assume 
it is possible to enrich some of this to a level 04 , in the process depleting some of it to level 03 . However, the 
degree of enrichment is limited to a level 04 = Cn (1 + E), where E << 1. (The degree of depletion is not 
assumed limited, and can go all the way to zero.) The theory of the previous section may be used to show 
that the resulting fractional velocity gain is given by E /2. Or if the velocity is kept the same the fractional 
payload increase is given by ~*ln(p)/2. For example, if ~=0.2 (maximal enrichment is 20%) then the 
realizable velocity gain is lo%, or a payload increase of 23% @=lo). This is a meaningful increase. 

Historical Ppsts crim on K.E.Tsiolkovskv 

Of the three great space pioneers, R. Goddard, H. Obertha, K. E. Tsiolkovsky (alphabetical order), 
Konstantin Eduardovich Tsiolkovsky has the honor of being the first. He was born near Ryzan, Russia in 
1857. At the age of ten he was taken seriously ill, resulting in almost total hearing loss. Isolated in this way, 
he turned inward and became very studious and contemplative. He took his education upon himself and was 

2. During the preparation of this paper a notice appeared in the newspapers announcing the death of 
Hermann Oberth. He was the last survivor of the three, and the only one to actually witness the space- 
age. 
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y professio scientific studies 
early age influenced by Jules Verne t ations on space 
s p e c ~ c ~ a r ~ ~  successful. 

s a school teacher in the city of 

Equation 1 -- the been derived by him as early as 1895, 
though it was not publishe to have derived it, though the Soviet 
literature gives credit to a rsky (1859-1935) for having done work in the dynamics of 
variable-mass bodies. It does not appear, though, that he derived eq. 1. (A very early rocket theoretician 
was the English scientist Benjamin Robins (1707-1751). We belongs to the generation following Newton. 
Interestingly enough, he was also largely self-taught. He did much good work on ballistics, including the 
determination that the exhaust velocity of blackpowder was in the order of 7000 fps . )  

When a man achieves a very great station his mistakes become noteworthy. Perhaps Tsiolkovsky’s 
greatest error occurred when he initially discounted the step or stage principle, announced by Goddard, He 
soon realized his mistake and became an avowed supporter. It is interesting to note that his reason for 
discounting staging was a too literal interpretation of eq. (1) I A more venial mistake came about as follows. 
Tsiolkovky had the ingenious idea of circling the exhaust gasses, via looped pipes, prior to ejection. Thii, he 
reasoned, would provide desired stability through gyroscopic action. Realizing that a gyroscope can stabilize 
in only two axis, he considered two such orthogonal loops. But of course two gyroscopes rigidly tied together 
act as a single (or no) gyro. He died in his native country, greatly honored and revered, in 1935. 

l&2bxus: 
1. 
Translation, 1968. 

2. Sloop, John L., -0en as a Propulsion Fuel. 19 45-1959 , NASA History Series, NASA 
Publication SP-4404, 1978. This monograph cannot be praised too highly: besides giving an excellent 
summary of the performance and history of liquid hydrogen, it provides excellent short biographics of the 
space pioneers. 

, compiled by V. N. Sokolsky, MIR Publishers (Moscow), English 
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~ ~ p ~ t e r  oratio 

ABSTRACT 

The double-lunar swingby trajectory is a method for maintaining align- 
ment of an Earth satellite’s line of apsides with the SumEarth line. From 
a Keplerian point of view, successive close encounters with the Moon 
cause discrete, instantaneous changes in the satellite’s eccentricity and 
semimajor axis. This paper identifies numerical solutions to the planar, 
restricted problem of three bodies as double-lunar swingby trajectories. 
The method of solution is described arid the results compared to the 
Keplerian formulation. 

“This work was supported by the National Aeronautics and Space Administration (NASA) IGoddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31 500. 
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re 1). At the end of a 

same relative position as at the beginning of the cycle. Hence, the trajectory is said to be 
periodic in the ”lunar-rotating frame’’ as well as in the “solar-rota frame.” (The 
lunar-rotating frame is that coordinate sy 
at rest with each other. That is, the coordinate axes rotate at the same rate as the rotation 
of the Moon about the Earth. Similarly, for the solar-rotating frame, the Sun and Earth 
are at rest with respect to each other. The coordinate axes then rotate at the rate of the 
mean solar motion.) Figure 1 depicts a typical double-lunar swingby trajectory in an 
“Earth-inertial” coordinate system; the Moon, Sun, and spacecraft motions are shown 
relative to axes centered on the Earth and at rest with respect to the stars. Figure 2 
shows the same spacecraft trajectory viewed in the solar-rotating frame. Figure 3 gives 
the same spacecraft trajectory viewed in the lunar-rotating frame. 

Dunham and Davis, in Reference 2, presented extensive tables describing double-lunar 
swingby trajectories in terms of Keplerian orbital elements. Reference 3 documented the 
method used to calculate these elements. In each case, the trajectory is viewed as two 
elliptic Earth orbits: an inner-segment loop orbit and an outer-segment loop orbit. Trans- 
fer is considered to be instantaneous between the two orbits and occurs at the lunar 
radius. Physically, of course, the change is not instantaneous. Other simpIifications 
include the neglect of the Sun’s gravity, the assumption of a circular lunar orbit, and the 
assumption that the Sun, Moon, and Earth are coplanar. How well, then, does the 
Keplerian formulation describe the double-lunar swingby trajectory? Further, how may 
we conveniently characterize such trajectories without resorting to Keplerian elements? 
Howell (Reference 4) addressed several of these issues and obtained numerical solutions, 
discussed in the following paragraphs. 

One might integrate the equations of motion of the Earth, Moon, Sun, and Spacecraft. A 
double-lunar swingby trajectory would then depend only on the spacecraft state vector 
(position and velocity) at a given time. This, in fact, is the procedure for a real mission. 
But how is that state vector determined? By satisfying the necessary equations given in 
Reference 3. How does one guess an initial state vector that might satisfy those equa- 
tions? The answer is to build the state vector from the parameters given in Reference 2. 
Thus, the utility of the Keplerian formulation is seen: the model does not, however, 
depend on the Moon’s true anomaly or argument of perigee or on the Earth’s true anom- 
aly in its orbit around the Sun. Little utility might be found in preparing massive tables 
that add these variables to.our model. 

in which the E 

We still may examine the Keplerian formulation’s assumption of an instantaneous trans- 
fer between inner-segment and outer-segment orbits. We know that the transfer is not 
instantaneous. In fact, no Keplerian elements describe the possible behavior of a space- 
craft under the influence of two gravitational forces. The simplest model that will describe 
such behavior is referred to as “the restricted problem of three bodies” (References 5 
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Figure 1. A Double-Lunar Swingby Trajectory 
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PERIOD= 13.000019280 
x(O)= -1.080364866 
y(0) = o.ooowo0Oo 

"1 =o.o0Oooo0Oo 1 
dt t = O  

- ~0.414651788 1 /MDoNsoABK I 
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Figure 2. Double-Lunar Swingby Trajectory As Viewed in the Solar-Rotating 
Frame 
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dt t = O  
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Y 

Figure 3. Double-Lunar Swingby Trajectory As Viewed in the Lunar-Rotating 
Frame 
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upon by the 
two bodies of 

nter of mass, and the 
require that the initial 
depends only on five 

masses of the finite bodies. 

Our coordinate system is shown in Figure 4. Since the x and y axes rotate in the direc- 
tion of the Moon’s orbit about the Earth, both the Earth and the Moon appear motionless 
in this coordinate system: the lunar-rotating frame. The coordinate system’s origin is at 
the center of mass-of the Earth and 
craft, in this coordinate system, are 

dY d2x 
dt2 dt 

= x + 2 - -  - 

the Moon. The equations of motion for the space- 

where 

2 1/2 
TE = spacecraft-Earth distance = [(x + pI2 + y ] 

r M  = spacecraft-Moon distance = [(x - 1 + p02 + y ] 2 1/2 

Y t 

Figure 4. Lu~ar-~otating Frame Used for T ~ ~ ~ e - 5 o d y  Equations 
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coordinates of the Earth 
are (-,u , 0). The cbordinates for the Moon are (1 - p ,  0). 

2. DEFINITION OF PERIODIC SOLUT~O~S AND METHOD OF SOLUTION 

Let the period of a double-lunar swingby be TDLs. Then, by the definition of periodicity, 
the spacecraft coordinates and velocity at time t are equal to those at time t + TDLs. For 
simplicity, we choose our time t = 0 to occur at apogee of the outer-segment loop. From 
Figure 3, we note that the symmetry of the orbit requires 

Suppose we integrate the equations of motion from t = 0 to t = T,,/2. Since y and the x 
velocity are known at t = 0, the values of y and of the x velocity at t = T,,/2 are a 
function of only two variables: the values of x and of the y velocity at t = 0. Thus, we 
must find the solution of a set of two equations (the values of y. and of the x velocity 
integrated from t = 0 to t = TDLs/2) in two unknowns (the initial x and the initial y 
velocity), or 

Any method used for the iterative solution of nonlinear equations may be applied to 
Equation (2-2). Both the Newton-Raphson method used in Reference 3 and the 
multivariate Halley method (Reference 9) were used to solve Equation (2-2). Note that 
Equation (2-1) is the same for t = TD,/~ or for t = TDLS, so we may also have ap- 
proached the problem by integrating from t = 0 to t = TDLS. Another approach, suitable 
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COORDINATE 
SYSTEM AT t = 0 

/ 
/ 

# 

SYSTEM AT t = TDLS 

Figure 5. Determination of the Period of a Double-Lunar Swingby, TDLs 

even for asymmetric periodic solutions, is to form the norm of all four variables evaluated 
a t t = O a n d a t t =  TDLs 

One then seeks to minimize this norm by any nonlinear optimization algorithm. Both a 
discrete Newton and the Davidon-Fletcher-Powell algorithms were implemented (Refer- 
ences 9 and 10). 

We now determine TDU. Consider Figure 5 ,  which shows the Earth-inertial coordinate 
system at two different times. The Earth, moving with constant angular velocity 
around the Sun, has traveled the angle wet. The Moon, moving with constant angular 
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arth, ~ ~ t ~ ~ n s  to its ori inal position with respect to t 
t h ~ o u ~ h  the angle 

in the time 

For the case n = 1 

2n 

27.32 365.25 

= 29.5287 days 2z 2n * 
TDLS = - -  

For the case n = 2 

4n 
2 z  2n = 59.057days TDLS = - -  (2-7) 

27.32 365.25 

Knowing TDLS, we may now seek numerical solutions to Equation (2-2). 

To find the three-body solution for the double-lunar swingby of Figure 1, we use initial 
values of x and the y velocity taken from Reference 1. The inner-segment loop has an 
apogee of 549889 kilometers (km) and a perigee of 37436 km. Using these values, the 
initial x and the y velocity values in the lunar-rotating frame are calculated to be 

~ ( 0 )  = - 1.41836564, - 21 ,=o = + 1.1216628 
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to begin the iterative solution of 
eplerian solution. In 

Inner-segment loop apogee 

Inner-segment loop perigee 

Outer-segment loop apogee 

~ ( 0 )  = - 1.420505~g244, - = +1.09755070684 

541,370 km 549,889 

42,350 km 37,438 

892,710 km 898,915 

(2-9) 

(The period of the trajectory, in the units of the lunar-rotating frame, is 13.600878. This 
corresponds to 59.057 days. We consistently use a distance unit of 384399 km and p = 
0.0 12 1505649405 .) 

This solution of the three-body problem was first obtained by Howell in Reference 4, for 
,u = 0.012. 

Table 1 compares the three-body solution with the Keplerian solution. The values are so 
close, one may question the necessity for the three-body calculation. However, the three- 
body trajectory has no instantaneous jump in the velocity at the lunar orbit, as does the 
Keplerian solution. Further, of course, no simple parameterization akin to the Keplerian 
elements is possible for the general solution to three-body motion. 

Table 1. Comparison of Three-Body Solution With Keplerian Solution of 
Reference 1 

I I Three-Body I Reference 1 I 

Not every solution to the equations given in Reference 3 has a corresponding solution in 
the three-body problem. For example, the [l, 1, 1, I] double-lunar trajectory shown in 
Figure 6, while certainly periodic in the lunar-rotating frame, is not quite periodic in the 
solar-rotating frame (Figure 7). 

Also, the Keplerian formulation is not amenable to analysis of orbits such as that of 
Figure 8. Here the line of apsides is rotated within the lunar orbit. The apogee and 
perigee of this orbit are 248400 km and 120983 km, giving a period of approximately 
9.14 days. The periodicity in the solar- and lunar-rotating frames is 29.5287 days for this 
orbit (n = 1) .  
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X(0) = -1.080364866 
y(0) = 0.000000000 

I = 0.000000000 

I 

X - P -  

Figure 6. A Double-Lunar Swingby Trajectory Periodic Only in the Lunar-Rotating 
Frame 

PERIOD = 13.00001 9280 
X(0) = -1.080364866 
y(0) = 0.000000000 

I &i I I0.000000000 
dt t = o  

Figure 7. The Trajectory of Figure 6, Viewed in the Sofar-Rotating Frame 
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Figure 8. A Cislunar Periodic Soiution of the Three-Body Problem 
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** *** 
3 

an 

The fuel optimal control problem arising in the non-planar orbital transfer employing 
aeroassisted tehnology is addressesd. The mission involves the transfer from high 
energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic 
strategy here is to employ a combination of propulsive maneuvers in space and 
aerodynamic maneuvers in the atmosphere. The basic sequence of events for the 
aeroassisted HE0 to LEO transfer consists of three phases. In the first phase, the 
orbital transfer begins with a deorbit impulse at HE0 which injects the vehicle into an 
elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the 
vehicle is optimally controlled by lift and bank angle modulations to perform the 
deisred orbital plane change and to satisfy heating constraints. Because of the energy 
loss during the turn, an impulse is required to initiate the third phase to boost the 
vehicle back to the desired LEO orbital altitude. The third impulse is then used to 
circularize the orbit at LEO. The problem is solved by a direct optimization technique 
which uses piecewise polynomial representation for the state and control variables 
and collocation to satisfy the differential equations. This technique converts the 
optimal control problem into a nonlinear programming problem which is solved 
numerically. Solutions were obtained for cases with and without heat constraints and 
for cases of different orbital inclination changes. The method appears to be more 
powerful and robust than other optimization methods. In addition, the method can 
handle complex dynamical constraints. 

* Staff Manager, ** Principal Scientist, *** Manager, Flight Mechanics/Advanced 
Systems Analysis 
+ The senior author wishes to thank Professor P.E.Gill for helpful discussions on the 
structure of the nonlinear programming codes, i.e., NZSOL and NPSOL. He also 
wishes to thank Greg Badum for computing supports and graphics. 
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AV 
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2 
coefficient 

zero-lift drag coefficient 
lift coefficient 
lift coefficient for maximum lift-to-drag rati 
drag force 
gravitational acceleration 
gravitational acceleration at surface level 
altitude 
performance index 
induced drag factor 
lift force 
vehicle mass 
distance from Earth center to vehicle center of gravity 
radius of the atmospheric boundary 
radius of the low Earth orbit (LEO) 
radius of the high Earth orbit (HEO) 
radius of Earth 
aerodynamic reference area 
time 
velocity 
Thrust 
inverse atmospheric scale height 
flight path angle 
heading angle 
bank angle 
down range angle or longitude 
cross range angle or latitude 
gravitational constant of Earth 
density 
characteristic velocity 

subscripts 
c : subscript for circularization or reorbit 
d : subscript for deorbit 
S : subscript for surface level 

1. INTRO~UCTION 
In order to have a viable and affordable space program, advanced technology must be 
exploited and new design concepts must be developed to reduce the size and cost of 
transportation elements for supporting new mission requirements. One of the new 
concepts that has evolved in recent years to advance the cost effectiveness of space 
transportation systems is the aerodynamically assisted orbit transfer. Such an orbital 
transfer vehicle is designed with an aerodynamic configuration which can utilize the 
planetary atmosphere for the purpose of energy management. Numerous studies 
have demonstrated that the use of the aerobraking can significantly reduce the 
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vehicle (AOTV) maneuver involves three propulsive burns or impulses as sketched in 
Fig.1. In the first phase , the transfer begins with a deorbit impulse at HEO which 
injects the vehicle into an elliptic transfer orbit with the perigee inside the atmosphere. 
In the second phase, the vehicle is inside the atmosphere and is optimally controlled 
by the lift and bank angle modulations to perform the desired orbital plane change and 
to satisfy the heating rate and other physical constraints. Because of the the energy 
loss during the atmospheric maneuvers, an impulse is required to initiate the third 
phase to boost the vehicle back to the final orbital altitude. Finally, the third impulse is 
applied to circularize the orbit at LEO. In summary, there are three propulsive burns 
and an aeroassist plane change inside the atmosphere. Simulation results similar to 
those obtained in the draft paper of Reference 2 have been obtained here by using the 
Hermite polynomial and collocation technique to convert the optimal control problem 
into a nonlinear programming ( NP ) problem which is solved numerically using the 
optimization code, NZSBL ( cf. Reference 12 ) provided by Gill, which is an improved 
version of NPSOL ( cf. Reference 6 ), developed at Stanford. This solution method is 
different from the indirect method such as those discussed in Reference 2,4,7 and 8. 
The above simulation results have been extended to cases with heating constraints 
and cases for different orbit inclination changes. The details are presented and 
discussed in this paper. It is important that in the future these simulations be extended 
to include all other realistic flight constraints and to establish baseline optimum 
trajectory characteristics for GEO to Space station or shuttle, lunar and Mars missions. 

2. DIRECT TRAJECTORY OPTIMIZATION WITH COLLOCATION AND 

In the direct collocation with nonlinear programming approach, the trajectory is 
approximated by piecewise polynomials, which represent the state and control 
variables at a number of discrete time points, i.e., nodes. For a given state variable, 
the state trajectory over a given "segment" between two nodes is taken to be the 
unique Hermite cubic which goes through the end points of the segments with the 
appropriate derivatives that are dictated by the differential equations of motion at the 
endpoints. This is the "Hermite cubic" since it is determined by the states and their 
derivatives. A collocation is taken at the center of the segment where the derivative 
given by the Hermite cubic is compared to the derivative obtained from the evaluation 
of the equations of motion. The difference is termed the "defect" and is a measure of 
how well the equations of motion are satisfied over the segments. If all the defects are 
zero, then the differential equations are satisfied at the center collocation points as 
well as at the endpoints. Figure 2 shows the typical defects between node 1 and node 

HERMITE POLYNOMIALS 

3 
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uations of motion 

(2-1 a) 

here X is the state vector and is the control vector and (') denotes the diffe~entiatio~ 
with respect to the time. Let the time over a given segment be T. For the problem 
discussed here, one can show that 

(2-lb) 

Then the Hermite interpolated x-component of the state vector X at the center point is 

where x1 and Xy are respectively the x-component of the state vector X at the left and 
the right nodes. The derivative of the interpolating Hermite cubic at the center point is 

X; = -3/(2T) (XI - Xr) - (1/4) [f(Xl,Ul)+ f(Xr,Ur)] (2-3) 

The defect vector is then calculated as 

If X I ,  u7, Xr, and Ur are chosen such that the elements of the defect vector, d, are 
sufficiently small, the "Hermite polynomials" become an accurate approximation to the 
solution of the differential equations of motion (by implicit integration). With the above 
approach, the differential equations are converted into nonlinear algebraic equations 
and the optimal control problem can then be solved using the nonlinear programming 
techques. 

3. APPLICATION TO OPTIMAL AEROASSISTED ORBITAL TRANSFE 

The aeroassited orbital transfer can be analyzed in three phases , Le., deorbit, 
aeroassist (or atmospheric flight), boost and reorbit (or circularization). In each of the 
phases, a particular set of equations of motion apply. 

WITH PLANE CHANGE 

3.1 Deorbit 

Initially, the spacecraft is moving with a circular velocity vd = d n  in a circular orbit 
of radius Rd, well outside the Earth's atmosphere. Deorbit is accomplished at point D 
by means of an impulse AVd, to transfer the vehicle from a circular orbit to an elliptic 
orbit with perigee low enough for the trajectory to intersect the dense part of the 
atmosphere. Since the elliptic velocity at D is less than the circular velocity at D, the 
impulse AVd is executed so as to oppose the circular Velocity Vd. In other words, at 
point D, the velocity required to put the vehicle into elliptic orbit is less than the velocity 
required to maintain it in circular orbit. The deorbit impulse AVd causes the vehicle to 
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th a velocity V, an 
aneuver from the c 

h a  
t is 

arallel and opposite to the instantaneous 
velocity vector. 

After applying the deorbit impulse an before entering the atmosphere at Ra , the 
deorbit trajectory is a coasting arc and known integrals of the equations of motion can 
be used to relate the state vectors at Ra ,the entry into atmosphere to the state vectors 
right after the deorbit impulse at Rd. Using the principle of conservation of energy and 
angular momentum at the deorbit point D and the atmospheric entry point E, we get 

from which we can solve for AVd to get 

(3-3) 
It is easily seen that the minimum deorbit impulse AVdm obtained for ye = 0, 
corresponds to an ideal transfer with the space vehicle grazing the atmospheric 
boundary. To ensure proper atmospheric entry, the deorbit impulse AVd must be 
higher than the following minimum deorbit impulse AVdm 

(3-4) 
Physically, the second term of the above equation corresponds to the apogee velocity 
of an ellpitic transfer orbit with perigee radius Ra and apogee radius Rd. This elliptic 
transfer orbit is tangent to the atmosphere boundary at perigee. It will be shown later 
that the nonlinear constraint equations ( 3-15 ) at the atmospheric entry point can also 
be derived from equations ( 3-1 and 2 ). 

3.2 Aeroassist 
During the atmospheric flight, the vehicle is optimally controlled by the lift and bank 
angle modulations to achieve the necessary velocity reduction (due to the atmospheric 
drag) and the plane change. In the present formulation, only the aeroassisted 
atmospheric flight need be solved by using the collocation and nonlinear 
programming techniques discussed earlier in this paper. The solutions in the other 
phases are provided by the known integral relations of the equations of motion 
because these arcs are coasting arcs. 

Consider a vehicle with the point mass m, moving about a rotating spherical planet. 
The atmosphere surrounding the planet is assumed to be at rest, and the central 
gravitational field obeys the usual inverse square law. The equations of motion for the 
vehicle are given by (Figure I ) ,  
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- vcosy cosyr - 
r cos$ 

$= Vcosy siny, 
r 

(3-5b) 

(3-5c) 

(qT COSE - D) p siny += -- + a2r cos$ (siny cos$ -cosy sinyr sin$) 
m r2 (3-5d) 

co2 r cos Q, (cosy cos$ + siny sinv sin$) 
V 

+ 

o2 r cos yr sin$ cos+ 
v cosy 

+ 

m = -f(r,V,q) 

(3-5e) 

(3-5f) 

(3-5g) 

where for a given vehicle, the drag D and the l i f t  L are 

D = - P V ~ C D  S 
2m (3-5h) 

L=-pv2cL S 
2m 

and the drag and lift coefficients obey the drag-polar relation 

CD = CDO 4- KCf 

Also, for an exponential atmosphere, one has 

p = ps exp (-Hp) and H = R-RE 

(3-5i) 

(3-5j) 

(3-5k) 

Simulation results obtained here were using the U.S. standard Atmosphere 1976. 
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, one assumes that, inside the 

orbit inclination, i, is related to the cross range $ and the heading angle y as 

(3-6) cosi = cos@ cosy t, I t  I tf 

The orbit inclination changes throughout the atmospheric flight and must end up with 
the required value at exit. For small values of cross range angle $, i is given by the 
heading angle y~ itself. 

3.3 Boost and Reorbit 
During the atmospheric flight, the vehicle undergoes the plane change using the lift 
and bank angle modulation . Because of the loss of energy during the atmospheric 
maneuver, a second impulse is required at the exit from the atmosphere to boost the 
vehicle back to the final orbital altitude at LEO. 

The vehicle exits the atmosphere at point F, with a velocity Vf and the flight path angle 
y. The additional impulse AVb , required at the exit point F for boosting the vehicle 
into an elliptic transfer orbit with apogee radius R c, and the reorbit (or circularization) 
impulse AVc , required to insert the vehicle into a circular orbit, are obtained by using 
the principle of conservation of energy and angular momentum at the exit point Fand 
the reorbit or circularization point C. Thus, we have 

Solving for AVb and AVc from the above equations (3-7) and (3-8) yields 

(3-10) 

It is interesting to note that the second term of equation (3-10) is maximum for 'yf =O 
and therefore the reorbit impulse AU, ,is minimum for yf =O. It will be shown later that 
boundary conditions and nonlinear constraint equations at the exit point F, can be 
derived in terms of the final orbit characteristics and the final state vectors at the exit as 
shown in (3-1 6,17,& 18). 
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the characteristic veloc 
the fuel consumption. 
e total characteristic ve 

performance index is the sum of the characteristic velocities for deorbit, boost, and 
reorbit, as 

(3-1 1) 

Where, AVd, AVb, and AVc are the deorbit, boost, and reorbit characteristic velocities 
respectively, and are related as 

Alternatively, AVd, AVb, and AVc are also given by (3-3, 9, and 10) respectively. Note 
that for a given final circular orbit, the impulses AVb and AVc are completely 
determined by the state variables Vf and yf at the exit of the atmospheric portion of the 
trajectory. The velocity V, and the flight path angle ye at the atmospheric entry point 
are dependent only on the magnitude of the deorbit impulse AVd. It follows that the 
optimal control problem needs to consider only the trajectory segment within the 
atmosphere subject to the nonlinear constraints and boundary conditions at the 
atmospheric entry and exit points. In addition, other path constraints such as the peak 
heating rate have to be satisfied. 

3.5 Boundary conditions and constraints 
The boundary conditions and constraints for the optimal control problem can be 
summarized as follows: 

0 At the entry into atmosphere, the following initial constraints.must be satisfied. 

(3-1 4) 

(3-1 5) 
The first initial constraint is required to ensure the vehicle enters the atmosphere. In 
the present formulation, the initial velocity and the flight path angle are unknown and 
to be determined by the optimization processes subject to the second constraint. 

0 At the exit from atmosphere, the following constraints must be satisfied. 
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2 

(3-1 8) cos if -cos @f cosyq = 0 

quation (3-16) is required to ensure the vehicle exit the atmophere. The second 
costraint can be used to compute AVb, and if Avb,iS assumed to be zero as in the case 
of aerobraking without orbit plane change, the above constraint must be imposed to 
determine the correct Vf and 3. The third constraint is required to perform the desired 
orbital plane change. 

0 In addition, there are other path constraints ,i.e., constraints must be satisfied 

- a) Stagnation Point Heating Rate Constraints 
- b) Altitude Constraints 
- c) Bounds on the Control Variables 
- d) Others 

along the trajectory such as 

4. STRUCTURE AND SOLUTION OF THE NONLINEAR PROGRAMMING 

The direct collocation and Hermite polynomial procedures described above convert 
optimal control problems into corresponding nonlinear programming problems. 
Ordinary differential equations are converted into corresponding nonlinear algebraic 
equations (or nonlinear “defects” constraint equations). These problems can then be 
solved using nonlinear programming codes. 

PROBLEM 

The variables for the nonlinear programming problem are the collected state vectors 
and control vectors at the nodes and the time duration of phases. These quantities are 
assembled into the NLP state vectors 

where n is the number of nodes and k is the number of phases on the trajectory. The 
defects and other physical and mathematical constraints are collected into the NLP 
constraint vector C 

where dj is the defect vector and w is a vector of additional problem constraints. 

The nonlinear programming code used here is the NZSOL (Reference 12). The 
NZSOL is an improved version of the NPSOL (Reference 6) , developed by the 
Stanford Optimization Laboratory and designed to minimize a smooth nonlinear 
function subject to a set of constraints which may include simple bounds on the 
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an onlinear constraints 
foll 

min i~ ize F(x) 
XER” 

subjectto 1 s  

(4-3) 

where the objective function F (z) is a nonlinear function, AL is an r n ~ ,  x n constant 
matrix of general linear constraints, and c(x) is an rnN - vector of nonlinear constraint 
functions. the objective function F and the constraint functions are assumed to be 
smooth, Le., at least twice-continuously differentiable. (The method of NPSOL will 
usually solve NP if there are only isolated discontinuities away from the solution). 

Note that upper and lower bounds are specified for all the variables and for all the 
constraints. This form allows full generality in specifying other types of constraints. In 
particular, the i-th constraint may be defined as an equality by setting t i  = ui. If certain 
bounds are not present, the associated elements of I or u can be set to special values 
that will be treated as - - or + -. 
Here we briefly summarize the main features of the method of NZSOL and NPSOL as 
discussed in Reference 6 because Reference 12 is not available to general public. At 
a solution of NP, some of the constraints will be active, Le., satisfied exactly. An active 
simple bound constraint implies that the correspo ndina variable is fixed at its bou nd, 
and hence the variables are partitioned into fixed and free variables. Let c denote 
the i77 X n matrix of gradients of the active general linear and nonlinear constraints. 
The number of fixed variables will be denoted by nFx, with nFR (nFR = n - nFx) the 
number of free variables. The subscripts “FX  and “FR” on a vector or matrix will 
denote the vector or matrix composed of the components corresponding to fixed or 
free variables. The details are discussed in Reference 11. 

A point x is a first-order Kuhn-Tucker point for NP if the following conditions hold: 

(i) X is feasible; 
(ii) there exist vectors < and h (the Lagrange multiplier vectors for the 

bound and general Constraints) such that 

g = CT h +c, (4-4a) 

where g is the gradient of F evaluated at x, and G= 0 if the j-fh variable 
is free. 
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(iii) 

asis for the set of vectors o 
t statement of the condition i the rows of CFR; i.e., CFRZ= 

is 

ZTgFR = 0 (4-4b) 

The vector Zrgj=R is termed the projected gradient of F at x. Certain additional 
conditions must be satisfied in order for a first-order Kuhn-Tucker point to be a solution 
of NP. 

4.1 The Quadratic Programming Subproblem 
Similar to NPSOL, the basic structure of NZSOL involves major and minor iterations. 
The major iterations generate a sequence of iterates (xk) that converge to x*, a first- 
order Kuhn-Tucker point of NP. At a typical major iteration, the new iterate x is 
defined by - 

x=x+ap, (4-5a) 

where x is the current iterate, the non-negative scalar a is the step length, and p is the 
search direction. Also associated with each major iteration are estimates of the 
Lagrange multipliers and a prediction of the active set. 

The search direction p is the solution of a quadratic programming subproblem of the 
form 

minimize 
P 

- 
subjectto 1 s  

(4-5b) 

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton 
approximation to the Hessian of the Lagrangian function and AN is the Jacobian 
matrix of c evaluated at x. 

The estimated Lagrange multipliers at each major iteration are the Lagrange 
multipliers from the subproblem (and similarly for the predicted active set) and provide 
information about the the sensitivity of these NLP problems. 

Certain matrices associated with the QP subproblem are relevant in the major 
iterations. Let the subscripts “FX” and “FR” refer to the predicted fixed and free 
variables, and let C denote the m x n matrix of gradients of the general linear and 
nonlinear constraints in the predicted active set. First, we have available the TQ 
factorization (Reference 11) of CFR : 
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is a nonsingular m x m reverse-triang lar matrix (Le., bjj = 0 if i +] m ) ,  an 
ingular nFR x nFR matrix QFR is the roduct of orthogonal trans 

have the upper-triangular Cholesky of the transforme 
sian matrix 

RIR = H~ = Q ~ F ~ Q ,  (4-7) 
where 
are first, and Q is the n x n matrix 

is the Hessian H with rows and columns permuted so that the free variables 

Q= fQFR 1. 
\ IFX ) (4-8) 

with /FX the identity matrix of order nFx. if the columns of QFR are partitioned so that 

the nz (nz = nFR - m) columns of Z form a basis for the null space of CFR. The matrix 
Z is used to compute the projected gradient zTgFR at the current iterate. 

As discussed in Reference 6 and 11, a theoretical characteristic of SQP methods is 
that the predicted active set from the QP subproblem is identical to the correct active 
set in a neighborhood of x*. In NPSOL, this feature is exploited by using the QP active 
set from the previous iteration as a prediction of the active set for the next QP 
subproblem, which leads in practice to optimality of the subproblems in only one 
iteration as the solution is approached. Separate treatment of bound and linear 
constraints in NPSOL also saves computation in factorizing CFR and HQ. 

4.2 The merit function 
Detailed discussions of the merit function are given in Reference 14. In NZSOL and 
NPSOL, once the search direction p has been computed, the major iteration proceeds 
by determining a steplength a that produces a “sufficient decrease” in the augmented 
Lagrangian merit function 

1 L(x,x,s)=F(x)-c hi(ci(x)-si)+-C pi(cj(x)-si)2, 
i 2 i  (4-1 0) 

where x, A and s vary during the line search. The su mmation terms involve onlv the 
nonlinear constraints. The vector h is an estimate of the Lagrange multipliers for the 

nonlinear constraints of NP. The non-neaative slack variable {Si} allow nonlinear 
inequality constraints to be treated without introducing discontinuities. The solution of 
the QP subproblem (4-5) provides a vector triple that serves as a direction of search for 
the three sets of variables. 

The q~asj-Newton updated 
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1 - 
H=H---- 

sTHs (4-1 1) 
where s = Z- x (the change in x ) .  

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (4- 
7) is updated, where Q is the matrix from (4-8) associated with the active set of the QP 
subproblem. The update (4-1 1) is equivalent to the following update to HQ : 

(4-1 2) 
where yo = QTy and so = QTs. This update mav be e xDressed as a ran k-o ne 
update to R and is used to incorporate new curvature information obtained in the 
move from x to 2. 

4.4 NZSOL, NPSOL 4.02, and NPSOL 2.1 
For those who are interested in applying these NLP codes, there are two publised 
versions of NPSOL. The NPSOL 4.02 was developed after the NPSOL 2.1 and 
therefore more reliable and efficient algorithm were incorporated according to Gill ( 
Reference 12 ). However, in updating the Cholesky factor, the NPSOL 4.02 updates 
the whole or complete R while the NPSOL 2.1 updates only the part associated with 
the Z-space or null space of R. For the problem formulated here ,usually several 
hundred varibles are involved and the NPSOL 2.1 converges in less computing time. 
The NZSOL (Reference 12) incorporates not only latest efficient and reliable algorithm 
but also updates only the part of R associated with the null space of R only. In addition 
to improve the algorithm of NPSOL, it also adopts the best parts of both NPSOL 2.1 
and 4.02. 

Finally, it may be interesting to point out that the matrices in the present formulation 
using collocation and Hermite polynomial are large and fairly sparse. For 
computational efficiency, it is important to incorporate NLP codes such as MlNOS 
(Reference 13) to take advantage of the special characteristic of the collocation 
formulation discussed here. 

MERlCAL R E S ~ L T  ATA 
The data used in the numerical experiments presented here (c.f. Reference 2 and 9) 
are summarized as follows: 

C~0=0.1 ; K=l.lll ; m/S=300kg/m2 (5- 1) 
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other data are 

14 3 pa = 1.225 kg / m3;p = 3.986~10 m / sec2 

p = 1 / 6900 m-'; RE = 6378 km 
Ha = 120 km; R, = 12996 km; R, = 6558 km ( 5-3 1 

Using the above mentioned data, simulations were carried out. The optimal sdlution 
for the reference case ( shown in figures as Case 1 ) has the following entry and exit 
status. 

Entry status: He = 120 km; Ve = 9034.74 m/sec 
ye = -4.36 degrees; $e = 0; we = 0 ( 5-4 1 

Exit status: Hf = 120 km; Vf = 7028.95 m/sec 
3 = 0.0 deg; @ = -6.69 deg 
vf = 18.891 deg; total flight time = 478 sec ( 5-5 1 

Characteristic velocities: 

Deorbit characteristic velocity 
Boost characteristic velocity 

AVd = 1031.59 m/SeC 
Avb = 821.49 m/SeC 

Reorbit characteristic velocity AV, = 17.98 m/sec 
Total characteristic velocity AV = 1871.07 m/sec ( 5-6 1 

Time histories of altitude, velocity, flight path angles, heading angles, dynamical 
pressure, atmospheric density, orbit inclination and heating rate are shown in Figure 
3-1 0. Figures 1 1-1 3 show lift coefficient, bank angle, and lift to drag ratio as a function 
time for several simulation runs for the reference case(.i.e., Case 1 ). These simulation 
runs show that at high altitude the control may be different for different simulation runs 
depending upon initial guesses. This is really not a surprise because at high altitude, 
the aerodynamic forces or the controls are ineffective. In fact, the problem has a weak 
optimium with respect to the controls at high altitude. 

Without going into the details, the characteristic velocities for the cases with orbital 
inclination changes for 15, 20 and 25 degrees are summarized in Table 2. 

The heating rate Qr along the atmospheric trajectory, is computed for the stagnation 
point of a sphere of'radius of one meter, according to the following relation 
( Reference 2 and 6 ) 
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respectively. These two cases reduces the peaking heating rate of the reference case 
by 15 and 30 percent respectively. Simulation results presented here provide the 
sensitivity of trajectory and associated physical variables as the heating constraints 
are imposed. 

Similarly, the characteristic velocities for the cases with heating constraints are 
summarized in Table 2. The percent reductions are with respect to the peak heating 
rate of the reference case without heat constraints. As shown here, one needs less 
thermal protection materials and more fuel consumption to fly the heat constrained 
trajectories and therefore by taking into account the weight of thermal protection 
materials one may find an optimal design to minimize the total vehicle weight. 

Another interesting observation from the data given in Table 1 and 2 is that the deorbit 
impulse is almost the same for all the cases simulated here. The total characteristic 
velocity for a given optimal trajectory is almost completely determined by the boost and 
the recirculation. In fact, the boost velocity contributes the most to the variation of the 
total characteristic velocity. Physically, it is obvious as the vehicle makes a larger turn 
it also loses more energy and therefore needs more velocity to boost it back to the final 
orbital altitude. Although the total characteristic velocity is insentive to the magnitude 
of deorbit impulse, the optimal trajectory is very sensitive to AVd . 
6. CONCLUDING REMARKS 
An excellent survey of the subject was given in Reference 1. Walberg reviewed the 
problem of synergetic plane change for optimal orbital transfer. In a recent paper by 
Naidu (c.f. Reference 2), fuel optimal trajectories of aeroassisted orbital transfer with 
plane change were presented using the so-called multiple shooting method for the 
case without heat constraints and under the assumption that all the synergetic plane 
change was performed entirely in the atmosphere. A brief review of the progress 
made in this field was also given in Reference 2. In our paper, a similar problem for 
cases with and without stagnation point heating rate constraints was solved using the 
collocation and nonlinear programming technique. This method is especially suitable 
for parametrical studies because of its relative insensitivity to initial guesses. Once a 
solution for a reference case is obtained, solutions for other cases such as different 
orbital inclination change can be obtained easily. 
Finally, the present problem can also be formulated under a more general assumption 
that not all the plane changes are entirely made in the atmosphere. It must be noted 
that the AOTV transfer can be made more efficient propulsively if the plane change is 
performed partly in the atmosphere and partly in space and the propulsive plane 
change in space is subdivided into components associated with various impulsive 
points. For the more general formulation discussed, the desired plane change may 
consist of more than one plane change, i.e. 

Total orbital plane change = i7 + i;, + i3 + ia 
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be mentioned that the collocation and nonlinear programming technique 
cussed here was re ntly applied to another group of orbital transfer problem by 
right and Conway in eference 3 and the relative insensitivity of this method to the 

initial guesses was als bserved by them. Our 
eference 5 ) with an improved and upd 
All physical models used were docum 

necessary modifications and corrections have to be incorporated to simulate the 
aerobraking problems discussed here. 

It may be worthwhile mentioning that the present problem was actually solved by 
guessing the initial state and control varibles at four selected points , Le., the initial 
point, the final point and two other nodal points along the trajectory inside the 
atmosphere. The initial state and control variables at other nodes or grid points were 
simply obtained by linear interpolation. These initial guesses do not have to satisfy 
either the governing equations or the nonlinear constriants including the defects. Only 
roughly guesses are needed at these four points. Converged solutions were obtained 
with relative ease. However, it is important to point out proper scaling of the defects, 
constraints and variables are essential to get converged solutions. Although our 
results were compared with the draft paper of Reference 2, the solution presented by 
Naidu was not actually optimal because the final flight path angle "/r = -0.627 7 degrees 
is negative. For simulations discussed here, converged solutions were obtained by 
using as little as 20 nodes. However, in some cases, converged solutions were 
obtained using 60 nodes, In the later case, the problem has more than 660 
independent variables and more than 400 nonlinear "defects" equations. For cases 
with heating rate constraints, the problem has more than 500 nonlinear constraint 
equations includinding the "defect" equations. As far as we know, this may be the first 
time converged soultions were obtained for so many independent variables and 
nonlinear constraint equations. This also illustrates how powerful the nonlinear 
programming code and the collocation and Hermite polynomial technique are. 

Finally, it is important to mention again that aeroassisted orbital transfer introduces a 
strong coupling between the vehicle design and the trajectory design as indicated by 
the simulation data. A trajectory that minimizes fuel mass, without attention to heating , 
may require the vehicle to have a heavy thermal protection systems. As shown here, 
an optimal design for the total vehicle weight may be obtained as discussed earlier. 
However, if the aeroassisted transfer is to be prefered to all propulsive transfer, it must 
offer a reduction in fuel mass greater than the increase in thermal protection mass. 
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ABSTRACT 

The paper is a summary of several studies into problems 
associated with aerobraking a manned vehicle into a Martian 
capture orbit. The problems investigated are: 

1) The establishment of entry flight path angle windows that allow 
aerocapture. 

2) The determination of the sensitivity of the entry trajectory to 
initial flight path angle. 

3) The determination of the effect on aerocapture of the 
assumed Martian atmosphere model. 

4) The determination of the effect of random atmosphere 
disturbances on adaptive guidance systems that may be used for 
aerocapture. 

As a result of investigating the above problem areas, entry 
windows were established for three different vehicle 
configurations. Sensitivities to changes in initial flight path 
angle were also obtained for these three configurations. One 
configuration was chosen to determine the effect of Martian 
atmospheric model changes and random variations of density within 
a specific atmospheric model. Of particular interest was the 
effect of random density variations on adaptive guidance 
techniques. The effect of entry velocity on the size of the entry 
window was also examined. 

INTRODUCTION 

Aerobraking has been identified as an enabling technology for 
manned Mars missions because of weight savings in propulsion fuel 
(ref.1). The accuracies required for Martian entry that guarantee 
aerocapture must be established. 

Guidance techniques to accomplish aerocapture must also be 
determined. The guidance must be adaptable and robust enough to 
compensate for a wide range of atmospheric disturbances among which 
density variation has the greatest impact on guidance.performance. 
In this paper only density variations will be considered. 
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atmosphere of Mars and 
go into orbit. Lift modulation is used to adjust the level of 
penetration into the atmosphere and how quickly the vehicle exits 
the atmosphere so that operational constraints can be satisfied. 

Since this is a preliminary study, a range of possible manned 
Mars vehicles was considered. Basically, all of the vehicles will 
accommodate a 6- to 8- person crew and be designed for missions of 
up to 2 years. Within this framework vehicles with a range of 
ballistic coefficients were studied to establish combinations of 
initial flight path angle and bank angle required for capture into 
Martian orbit. To establish these angles, entry flight path angle 
windows and the sensitivity to entry flight path angle for 
aeropass trajectory parameters were determined. Next,bank angle 
profiles required for aerocapture for different vehicles were 
investigated. Simulated guidance profiles using fixed bank angle 
sequences were used to determine the sensitivity to bank angle for 
various vehicles and for different Martian atmospheres. 

Using the results of the studies with fixed bank commands two 
adaptive guidance techniques were developed. In this paper 
adaptive guidance is a procedure for continuously changing the 
bank commands to the vehicle control system. So that these 
guidance techniques could be tested in a realistic environment, a 
random Martian atmosphere was developed. By incorporating the 
random atmosphere into the program used to simulate Martian 
entries, the adaptive guidance techniques were tested under 
conditions of random density variation. Monte Carlo techniques 
were used to establish success boundaries for the various guidance 
techniques so that their adaptability to random density variations 
could be demonstrated. 

This paper will discuss the entry windows for several potential 
manned Mars mission vehicles , the sensitivity to the entry flight 
path angle, the bank angle profiles required for Martian 
aerocapture and the "survivability" of adaptive guidance 
techniques in a randomly varying Martian atmosphere. 

SYMBOLS 

A 

a 
cD 

2 area, m 
acceleration, m/sec 
drag coefficient 
lift coefficient 

2 
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k 

sC 

sN 

llV1 

6, 
cp 

ALTITO 
BNKANG 

DENS 

ENERGY 
POST 
TIME 
VEL1 
ASMG 

feedback gain 

mass I kg 
current vehicle state 
vehicle state from baseline trajectory 

ift-to-drag ratio 

velocity, m/sec 
change in velocity, m/sec= 
commanded bank angle, degrees 
bank angle from baseline trajectory, degrees 

initial flight path angle, degrees 
change in initial flight path angle, degrees 

ABBREVIATIONS 

altitude, m 
bank angle, degrees 

density, kg/m3 

energy per unit mass, m /sec 
program to optimize simulated trajectories 
time, sec 
velocity, m/sec 
acceleration, "g" units 

2 2 

APPROACH 

The studies discussed in this paper were made using the Program 
to Optimize Simulated Trajectories (POST). This program can be 
used to determine initial parameters and control parameters 
throughout a trajectory to accomplish stated mission objectives. 
The simulations were started at 300,000 meters and at an entry 
angle selected by the user. Initially, a fixed number of bank 
angles were chosen to represent an entry guidance system. By 
varying the magnitudes of these bank angles the lift force is 
modulated to control the trajectory of the vehicle. Runs were 
considered successful i f  capture was achieved, the maximum 
acceleration was less than 5 leg81s, and the minimum altitude was 
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entry window the maximum and minimum flight path angles for which 
capture was possible were determined. The difference in these 
flight path angles was the entry window. During the runs the 
sensitivity of the trajectory to flight path angle and bank angle 
was calculated by POST. 

Once the trends in bank angle magnitude for various vehicles 
and entry conditions were determined, then an attempt was madeto 
establish the minimum number of bank commands that were required 
for aerocapture. One of these flfixedfv bank profile trajectories 
became the nominal for the adaptive guidance. 

Various Martian atmosphere models obtained from David Pitts et 
al. at Johnson Space Center were used to determine the effects of 
varying Martian atmospheres. When the random Martian atmosphere 
was developed, these same data were used as the nominal for the 
perturbed atmosphere. The random atmosphere subroutine allowed 
different levels of density variation. 

The two adaptive guidance techniques to be discussed in this 
paper are presented in reference 3. Adaptive guidance 1 is a 
trajectory following technique and adaptive guidance 2 is a 
predictor-corrector technique In summary, the adaptive techniques 
adjust the bank angle to change the orientation of the lift vector 
and control the entry trajectory. Adaptive guidance 1 follows a 
nominal trajectory that gives an acceptable entry. The guidance 
used in this study compared the actual and nominal energies at the 
current velocity. The form of the bank angle command equation was 
Cp = CpN + k * ( E - EN). This technique tried to correct to a 
nominal energy when the trajectory was pertuzbed by density 
variations. 

Adaptive guidance 2 predicted the perigee altitude based on 
current conditions and adjusted the bank angle to try to attain a 
desired perigee altitude. 
4 = #N + k * ( hT - hp). Once perigee was reached the vehicle was 
rolled to a specified bank angle until the Martian capture 
velocity was attained and then the vehicle was rolled to full lift 
up for escape from the atmosphere. The adaptive guidance 
techniques implemented were not optimal but were used to determine 
the effect of a random atmosphere on representative guidance 
systems. 

C 

The form of the bank angle command was 

A program for establishing requirements for and evaluating the 
performance of guidance techniques was developed by combining the 
guidance subroutines, the random Martian atmosphere program, and 
the basic POST software. The results and discussion section, 
which follows, will discuss applications of this program. 
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simulated guidance that would allow 16 bank changes during the 
aeropass. Using this simulated guidance, the maximum and minimum 
entry flight path angles for which capture was possible were 
determined. Typical time histories of these aerobraking 
trajectories are shown as figures 1 and 2. As can be seen from 
examination of the bank angle time histories, about nine of the 
possible bank angle changes were required for the maximurn flight 
path angle entry and six for the minimum flight path angle entry. 
This gave an indication of the amount of maneuvering an entry 
might require. 

The POST program calculates the sensitivity of entry trajectory 
parameters to entry flight path angle. Typical sensitivities to 
entry flight path angle and the maximum and minimum flight path 
angles possible for two proposed manned vehicles are shown in 
figure 3. The sensitivity is generally larger for the maximum 
flight path angle entries since they fly higher in the atmosphere, 
have smaller lift components and are, therefore, less able to 
correct for disturbances. 

The entry windows Ari(difference between the maximum and 
minimum entry angles) are shown as Table If for two potential 
manned Mars entry vehicles. Table I1 gives the maximum and minimum 
entry flight path angles and Ari for several L/D ratios determined 
by assuming a fixed drag coefficient and changing the lift 
coefficient. The entry flight path angles for which aerocapture 
was possible showed almost no change with ballistic coefficient: 
however, the change in entry flight path angle with L/D was 
significant. As the lift that was available to be modulated to 
control the vehicle was reduced,the size of the entry window 
decreased. 

The sensitivities to entry flight path angle for several 
vehicles with different L/D values and ballistic coefficients are 
given as Table I11 taken from reference 5. This table was 
generated by taking an entry flight path near the center of the 
entry window and varying this angle by .001 degrees from the 
chosen entry angle. The results of the runs with the modified 
angle were compared with a run made using the original entry angle 
and the A parameter to Ari ratios were obtained. These 
sensitivities and window sizes can be used to establish navigation 
and guidance accuracy requirements, 

Thus far, only aerobrake shapes with large nose radii have been 
discussed. However, for completeness a more streamlined vehicle 
with significantly less drag and a much larger ballistic 
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~erobra~ing entries were run wit several other 
atmospheric models, The aerobraking trajectories showed very 
little impact due to the change in atmospheric model. These 
results are shown in references 4 and 5 e 

Results presented earlier indicated that the number of bank 
commands required for successful aerobraking could be greatly 
reduced. The vehicle referred to as blunt vehicle type 1 (Table 
I) was shown to require six  or less bank commands when a L/D of .5 
was assumed (figure 4). Since nominal entries will be flown near 
the center of the entry corridor to allow as much margin as 
possible before capture trajectory limits are encountered, runs 
were made with entry flight path angles near the middle of the 
entry windows. These show that less guidance activity was 
required for the nominal runs, but these runs are only for a 
deterministic atmosphere. Using a deterministic atmosphere and 
flying near the middle of the entry corridor, capture trajectories 
were generated that required only two commanded bankangles. One of 
these was chosen as the nominal trajectory of adaptive guidance 1. 

So that the more realistic case of the effect of random 
disturbances on a guidance system could be tested, a random 
Martian atmosphere generator was implemented as a subroutine to 
POST. This combination enabled the adaptive guidance techniques to 
be tested in a realistic environment. When random density 
variations of up to 50 percent were allowed, both adaptive 
guidance routines gave acceptable capture trajectories. Typical 
entry trajectories with 50 percent random density variations as 
compared to a trajectory using a deterministic density profile are 
shown as figures 5 and 6. 
results for maximum density variations of up to 86 percent. This 
assessment, discussed in reference 5, was based on a limited 
number of runs. 

Adaptive guidance 2 also gave acceptable 

Since adaptive guidance 2 seemed the most tolerant to large 
density variations, Monte Carlo runs were made to establish the 
success of the guidance for a large number of runs. One hundred 
runs were made at each of two density variation levels for 
adaptive guidance 2. The variations were from the deterministic 
density of figure 6 and the results are comparisons to various 
parameters from figure 6. When the first variation level wasused, 
the maximum density variation was such that 90 percent of the 
maximum densities fell within a plus/minua 60 percent band about 
the maximum deterministic density. In spite of large density 
variations, the final periods of the capture orbits fell within a 
plus/minus 20 percent band of the deterministic density orbital 
period 88 percent of the time. The acceleration was over 5t1gtts 
only 6 percent of the time and at no time was the acceleration 
over 5.5 Ogccs. All of the perigee altitudes were greater than 34 
kilometers. All of the entries resulted in capture. 
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of the time. 

In spite of the fact that all the perigee altitudes were 
greater than 34 kilometers because of the larger maximum 
densities, many of the maximum accelerations were large. The 
maximum acceleration was greater than 5 trg"s 40 percent of the 
time and greater than 5.5 "grs 23 percent of the time. In all 
cases, capture was achieved. 

Although 40 percent of the cases exceeded the 5 "gB1 limit 
imposed on the capture trajectory, the density variations in the 
order of 100 percent are probably extreme. The results using the 
60 percent variations are probably more realistic. The fact that 
a very simple guidance performed well with large density 
variations implies that a more optimal guidance should be very 
successful. 

All of the runs were made using an entry velocity of 6.7 
kilometers/sec. This entry velocity is on the low end of possible 
entry velocities for manned Mars missions (ref. 1) .Several 
additional runs were made using vehicle described as a blunt 
vehicle type 1 ( Table I), and having a L/D of .5. Entry 
velocities of 7.5 kilometers/sec and 8.0 kilometers/sec were 
tested. The results are shown in Table V . The entry velocity had 
no effect on the trajectories that flew lowest in the atmosphere 
(minimum ri). However, the entry angles for which capture was 
possible for trajectories passing higher in the atmosphere 
(haximum ri) became much more negative as velocity increased. 
Because of the added energy the vehicle had to pass lower in the 
atmosphere to be captured, thereby, reducing the entry window. 

CONCLUDING REMARKS 

Potential manned Mars mission vehicles with large nose radii 
and L/D's of .5  were found to have entry flight path angle windows 
of over 1 degree. For these windows the sensitivity to change in 
initial flight path angle tended to be greater for trajectories 
that flew higher in the atmosphere. The size of the windows 
changed very little with ballistic coefficient, but were smaller 
as L/D decreased. 

Vehicles with an L/D of .5  that flew near the middle of the 
entry corridor required very little guidance activity to obtain 
capture for the deterministic case. However, when flying near the 
top of the entry corridor or when random disturbances were 
encountered, more guidance response was required. To determine the 
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er of runs. 
results for 
idance 2 had 

better performance at higher levels of random density variation, 
so it was tested for 100 cases using Monte Carlo techniques. For 
maximum density variations of up to 60 percent, 96 percent of the 
runs resulted in acceptable entries. 

Increasing the entry velocity reduced the entry flight path 
angle window for which capture was possible. 
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tic 

Ad = 226,378 kg 
A = 182.415 m2 

hd/CDA = 919.3 kg/m2 
CD = 1.35 

Vehicle Type 1 

M = 226,378 kg 
A = 182.415 m2 

MICDA = 620.5 kg/m2 
CD = 2 Vehicle Type 2 

I 
Streamlined Vehicle 

I 

&I = 136,116.2 kg 
A = 79 m2 

M/CDA = 2970.7 kg/m2 
Vehicle Type 1 

CD = 0.58845 

Table 11. Entry Angle Windows for Blunt Vehicles 
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I I I 

Table IV. Entrp Angle Windows for Streamlined Vehicle 

. 5  3 3 . 0  12.5 -10.637 Lift down -- 

. 5  30.0 18.3  -20.608 32 km limit .663 

.75 35.6 1 0 . 6  -10.613 Lift down -- 

.75 3 2 . 1  i 7 . 0  -19.197 32 km limit ,684 

1 . o  37.9 10.0 -18.424 Lift down -- 
1 . o  32.1 l B . 8  -19.314 32 km limit .899 

Table V. Entry Angle Windows for Several Entry Valocitiee 

Hax ri Hin ri AYi 

6.7 km/sec -18.3 dag -19.8 deg 1.5 dog 

-10.9 dag -1S .B  dag 0.9 dag 7.5 km/aec 

8 . 0  km/sec -19.2 dag -19.8 dag 0.8 dog 
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ALTITQ ------- TIME, SBC ASHC . ---------- 

Vehicle Type 2 

M/CDA ., 620.5 L/D . 5  

Figure 1. Time Histor ies  of Bank Angle, Altitude, and Acceleration for a Maximum 
Flight Path Angle Martian Entry. 
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'rim, sec 

BNKflNG 
ALT I TO 

Vehicle Type 2 

M/CDA = 620.5 L/D = .5 

Figure 2 .  T i m e  Histories of Bank Angle, Altitude, and Acceleration for a Minimum 
Flight Path Angle Martian Entry. 
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TlHE 

Vehicle Type 1 

M/CDA = 919.3 L/D = . 5  

Figure 4 .  Typical Time Histories of Bank Angle, Acceleration, and Altitude for a 
Martian Entry with Reduced Bank Commands. 
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5 .  State and Atmosphere Time Histories for a Martian Aerocap-ure using 
Adaptive Guidance 1, with a Reduced Gain of lX10"4, Flying Through 
a Random Atmosphere with Maximum Density Variations of 50 percent 
and for the Baseline Trajectory. 
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Figure 5 .  Continued. 
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Figure 5. Concluded. 
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Figure 6. State  and Atmosphere Time Histories for a Martian Aerocapture using 
Adaptive Guidance 2 ,  Flying through a Random Atmosphere with Maximum 
Density Variations of 50 percent and for a Deterministic Atmosphere. 
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General Dynamics Space Systems Division 
San Diego, CA 

ABSTRACT 

Real time utilization of propellant reserves that are not needed is available with the 
implementation of the in-flight retargeting capability for the Centaur Upper Stage. 
Application to a performance critical, geosynchronous mission is discussed. The 
operational duration of the satellite may be increased by selectively choosing the 
appropriate final orbit injection conditions. During ascent Centaur evaluates the 
amount of propellant excess available and adjusts the flnal orbit target to consume the 
excess. Typical satellite mission requirements are introduced to illustrate the mission 
analysis process to determine the pre-flight nominal target and the in-flight retarget 
function. 

* Engineering Specialist, Trajectory and Performance Dept. 
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system provides nominal or above nominal performance this additional capability is 
not used in any way to benefit the spacmraft mission objective. There is no flexibility 
in the flight algorithms to improve beyond the nominally targeted mission. 

An in-flight retargeting capability has been developed for the General Dynamics 
Centaur Upper Stage which can uwine excess propellant reserves to achieve an 
enhanced final orbit, Le. an orbit which upgrades the p@bnnance index of the 
satellfte. The perfonnance index is typically related to the operational Wetime of a 
satellite. Centaur detects how well the lower stages have performed and releases the 
appropriate amount of reserves for use. When the final orbit of the upper stage is a 
geosynchronous transfer orbit, the retargeting algorithm emplayed is strictly and 
solely to reduce the orbit's inclination. The spacecraft performs the injection into its 
operational orbit, at geosynchronous altitude. 

When an upper stage is used to deliver the spacecraft into its operational 
geosynchronous orbit a more elegant retargeting strategy is desired, one which will 
increase the spacecraft's lifetime. The operational lifetime of a satellite is often 
dependent on the amount of spacecraft propellants required to trim out any injection 
errors and to maintain desired orbital characteristics. For example. the satellite's 
mission may require it to spend its time on station at the low inclinations. The 
oscillatory motion of a geosynchronous orbit plane is manifested in the propagation of 
its inclination and RAAN (Right Ascension of the Ascending Node) periodically about 
the values of 7.55 degrees inclination and 0.0 degrees RAAN. The period is 
approximately fdty to fifty-five years for injection inclinations less than 10 degrees. 
The period and the variation of the elements are a function of the initial injection 
inclination and RAAN. 

We shall investigate a sample mission that requires the satellite to marrimize its dwell 
time at inclinations below 6 degrees. However, the nominal performance of the launch 
vehicle delivers it to 10 degrees inclination. Mission analysis will identify the optimal 
combinations of targeted/injection inclinations and RAANs which will enhance 
spacecraft objectives and satisfy constraints based on the expected propellants 
available on the upper stage. 

RMARGETING !YI'F?A TEGY 

The Centaur is a high energy, liquid upper stage with a three bum capability. After a 
sub-orbital separation from the booster lower stage the first bum inserts Centaur into a 
low altitude parK orbit. For typical geosynchronous orbit missions, the second bum 
provides insertion into a geosynchronous transfer orbit. The final Centaur bum 
circularizes the orbit at geosynchronus altitude and completes the inclination change. 
The objective of this capability is to evaluate actual booster p e r f o m c e  and re-target 
the Centaur second and/or third burn in accordance with mission specifications. The 
Centaur first bum is not altered, allowing the nominal park orbit to be achieved. The 
intent is only to compensate for booster phase dispersions, not upper stage dispersions. 
This decision was made partly based on range safety implications. Other constraining 
factors considered in the design were: 1) simplicity, 2) minimal flight computer 
memory use, 3) credibility, 4) reliability, and 5) accuracy. 

The re-targeting process is divided into several segments. The first segment is the in-flight 
detection phase; some detection criteria are imposed to detemrine if the vehicle is within 
the envelope of acceptable nominal performance. The predicted time-to-go to Main 
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tolerance of the value from each of the two previous guidance computation cycles, Le.: 

ITa-Tql-1 + At I < E 

and 

I Ta - T4-2 + 2M I C E 

At = elapsed time between successive guidance computation cycles 
Tqi = time-to-go to MECO at the ith guidance cycle 
E = convergence tolerance, set at 1 sec. 

When both of these are satisfied, the difference between the in-flight predicted burn 
duration and the nominal burn duration (loaded pre-flight) is computed 

TB-NOM = nominal Centaur first bum duration 
TMS~ = Main Engine Start-1 (MES1) time from go-inertial 
T = time from go-inertial 

The re-targeting sequence proceeds only if the absolute difference is above some 
threshold. Additionally, some time limit will be set after which actual Centaur 
accelerations are admitted (for proper steering corrections) and the re-targeting option 
is disengaged. Since the predicted time-to-go is a standard guidance calculation there is 
minimal impact to the flight software and computer memory. The long successful 
history of Centaur flights has proven the reliability and accuracy of the computations. 
In particular the NASA Atlas/Centaur-53 HEAO-C mission had similar detection 
software loaded on board. 

A performance index is needed to quantitatively relate the perfomance excess (or 
shortfall) to revised Rnal orbit parameters. At General Dynamics Space Systems Division 
the conventional measurement of performance is the Propellant Excess (PE). This is the 
total burnable propellants remaining in the final stage after the last main engine bum 
thrust decay. For this study it is baselined that the nominal mission results in a PE equal 
to zero. Having computed the difference in bum time from (2). the change in the amount of 
propellants at MECOl (due to off-nominal performance of the booster stage) is now 
calculated based on a nominal mass flow rate: 

The change in performance which is supplied by the subsequent Centaur burns can be 
measured by the variation in propellant excess (APE). The partial derivative based on the 
mass fraction across the nominal second and third burns is used to calculate APE: 
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The final phase of the algorithm re-targets the Centaur burns to an 
which will improve spacecraft capability. The variation of the t 
inclination and RAAN as a function of available PE is examined in the next sections. 
This functional relationship will be loaded into the flight computer. Pre-flight 
analysis determines the function constants for the set of desired final orbit parameters. 
The algorithm is structured to be able to deploy different functions dependent on the 
value of the PE. A complete description of the algorithm can be found in Reference 1. 

sted final orbit 

PROPAGATION OF GEOSYNCHRONOUS 0 RSm$ 

Earth oblateness, gravitational attractions of the Sun and Moon, and solar radiation 
pressure affect the long-term orbital variations of geosynchronous satellites. 
Algorithms that propagate the oscillation of the orbit characteristics have been 
developed to estimate the stationkeeping requirements for satellites. An 
understanding of the time history of the satellite orbit precession provides a strategy to 
adjust the injection targeting for Centaur. 

A semi-analytical method which predicts inclination and RAAN given the initial 
inclination and RAAN values has been developed by Allan and Cook (Ref. 2). This 
procedure is based on analysis which used an averaged disturbing function in the 
equations of motion. Expression by vectorial elements (in the satellite orbit frame) 
reduced the resultant Lagrange equations to a compact and tractable form. Chao and 
Baker (Ref. 3) generated a program that numerically integrates the equations. 
Comparison of the semi-analytical approach with the numerical method (Ref. 4) 
yielded favorable results for several ten-year inclination and RAAN histories. Also 
noteworthy is that for synchronous, circular orbits an approximate solution to the 
Lagrange equations yields a "stable" orbit which is at 7.55 degrees inclination and 0 
degrees RAAN. 

Allan and Cook provide the expression for the period of oscillation of the orbit under 
these influences by inverting and integrating the equation of motion along one axis: 

where 
integration constant 
K(k) is the complete elliptic integral of the first kind and 

are eigenvalues of the set of "Euler" equations and is an 

0 is the dihedral angle between the stable orbit and the orbit of interest 

Figure 1 illustrates the variation in the period of precession of the orbit based on the 
initial inclination and RAAN. The variation of the precessional period is about one 
year at the low inclinations (less than 5 degrees) but may be up to seven years at 
inclinations around 25 degrees. Figure 2 presents the RAAN and inclination time 
history for three different injection states: inclination of 8 degrees and RAAN of 270, 
300. and 330 degrees. Although the difference in period is only ten months among the 
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/3 
T = period of oscillation 

Sjrnilarly, the 300 degree RAAN trajectory results in a dwell time of 15.9 years and the 
330 degree RAAN trajectory yields a dwell time of 23.4 years. 

UPPER STAGE MISS10 N DESIGN 

The nominal mission design for the Centaur results in targeting to final orbit 
parameters which can be achieved by the launch system with a 99.87 percent 
probability. To guarantee this confidence a certain amount of propellants (vehicle 
performance) is held in reserve to compensate for dispersions in flight. With Inflight 
Retargeting, part of this reserve is released and used to achieve a different orbit which 
enhances the satellite objectives. 

Given particular mission requirements such as satellite weight, the Centaur is capable 
of achieving a geosynchronous orbit with a certain inclination for its nominal level of 
performance. As reported earlier, for that inclination there is a corresponding FWAN 
which maximizes the time spent at certain inclination bands. This selection is done 
pre-flight to generate the complete nominal mission final orbit target parameters 
which are loaded onboard the flight computer. By adjusting the time of launch each 
day, achieving the desired RAAN does not incur any performance penalty. 

To determine the targeted RAAN simply requires solving for the intersection of two 
non-concentric circles. Referring to the coordinate system used in Figure 2 the polar 
equations of an inclination band and the precession trace are expressed: 

r = i  19) 

9 - 2  0s O r  + (s2-p2, = o ( 10) 

i = inclination 
s = inclination of "stable" point = 7.55 deg. 
P = radius of the precession trace based on 

the initial injection inclination, io. and 
Right Ascension of the Ascending Node, 
-0 

Equation (10) is solved by substituting eq. (9) and (1 1): 

The two RAAN values indicate the RAAN along the precession trace where the satellite 
enters the inclination region of interest and the RAAN at which it exits. These angles 
provide the arc length of travel along the precession trajectory. The central angle, PI of 
this arc length is calculated by the law of cosines from the triangle shown in Figure 3. 
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Figure 3 Geometry of Intersection Central Angle 

Equation (8) is then used to calculate the dwell time. 

Let us exarnine the application to a sample geosynchronous mission. The satellite 
requirements are: 1.) maximize the time spent at inclinations of 6 degrees or less with a 
minimum of 10 years and maxJmum of 12 years: 2.) assume no spacecraft AV has been 
allocated for out-of-plane injection usage: 3.) the total mission duration will not exceed 
15 years. If the nominal launch vehicle can only deliver the spacecraft to 10 degrees 
inclination, this becomes a performance critical mission. A retargeting function, 
executed in-flight, may help meet the requirements by utilizing propellant reserves 
which are not needed. 

In developing the retargeting strategy, the nominal target must first be established. 
Obviously the nominal targeted inclination is 10 degrees but the targeted RAAN is still 
to be determined. Since any RAAN may be achieved by selecting the appropriate time of 
day to launch without incurring a performance degradation, one can allow the satellite 
requirements to drive its selection. Figure 4 shows the dwell time, the drift time, and 
the total mission duration time for a range of FUANs at 10 degrees inclination. It can 
be seen that a €WAN of 290 degrees will satisijr the mission requirements: the dwell 
time at inclinations of 6 degrees and less is 10.5 years, the time to drift into that region 
is 4.5 years, and thus the total mission duration is 15.0 years. The nominal target is 10 
degrees inclination and 290 degrees RAAN. The propellant reserves carried on board 
will ensure this orbit will be achieved even with three-sigma "low performance" launch 
system dispersions. 

During flight Centaur will detect and evaluate the actual performance of the booster 
lower stage; if the vehicle is operating nominally, or at any level above the low three- 
sigma threshold, there are propellant reserves which may be utilized. This propellant 
excess (PE) can be used to reduce the inclination from 10 degrees. Figure 5 illustrates the 
effect on the dwell time, drift time, and total mission duration by reducing the injection 
inclination (FUAN remains the same). For this mission the maximum dwell time of 12 
years is satisfied at an injection inclination of 8.4 degrees. Additional PE can then be 
used to reduce the drift time of 2.8 years at the injection RAAN of 290 degrees and 
injection inclination of 8.4 degrees. To accomplish this and to maintain the 
requirement of a 12 year dwell time dictates adjusting the RAAN and inclination 
according to the precession path (see Figure 2). To determine the RAAN and inclination 
pairs along this pa# recall equation (10) and (1 1). 
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Table 1 contains the retargeted values of inclination and RAAN and the associated 
change in drift times. 

Table 1 Reduction in Drift Time from Retargeted RAM and Inclination 

RAATV fDEGl INC fDEG1 

290 
289 
288 
287 
286 
285 
284 
283 
282 
28 1 
280 
279 
278 
277 
276 

8.4 
8.22 
8.04 
7.87 
7.69 
7.52 
7.35 
7.18 
7.01 
6.84 
6.69 
6.53 
6.37 
6.2 1 
6.07 

12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 
12.0 

DRIFT TIME WRS) 

2.77 
2.56 
2.35 
2.14 
1.94 
1.74 
1.54 
1.34 
1.15 
0.96 
0.78 
0.60 
0.42 
0.24 
0.07 

To illustrate the final form of the retargeting function that would be loaded on the 
Centaur flight computer for this hypothetical mission we will use typical values of 
propellants required to change inclination and RAAN associated with a Centaur 
geosynchronous orbit. 

6 PE / 6 i = 34.02 kg (75 lbs)/ deg. inclination 

6 PE / 6 RAAN = 9.07 kg (20 lbs)/ deg. F?AAN 

(16) 

117) 

The retargeted values of inclination and RAAN from the nominal pre-flight set as a 
function of the propellant excess (PE) as detennined in flight is shown in Figure 6. 
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Upper stage in-flight retargeting may enhance geosynchronous satellite mission 
objectives by using excess propellant reserves to achieve different b a l  orbit injection 
conditions. By analysis of the precessional motion at geosynchronous altitudes a 
strategy is formulated to adjust the final orbit injection inclination and RAAN which 
will meet dwell time, drift time, and total mission duration requirements. The 
variation in inclination and RAAN as a function of the additional propellants detected 
to be available during flight is generated for loading onto the flight computer. 
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ABSTRACT 

This study investigates active rendezvous of an unmanned spacecraft with 
the Space Transportation System (STS) Shuttle for refueling missions. 
The paper first presents the operational constraints facing both the ma- 
neuvering spacecraft and the Shuttle during a rendezvous sequence. For 
example, the user spacecraft must arrive in the generic Shuttle control 
box at a specified time after Shuttle launch. In addition, the spacecraft 
must be able to initiate the transfer sequence from any point in its orbit. 
The standard four-burn rendezvous sequence, consisting of two Hohmann 
transfers and an intermediate phasing orbit, is presented as a low-energy 
solution for rendezvous and retrieval missions. However, for refueling 
missions, the Shuttle must completely refuel the spacecraft and return to 
Earth with no excess fuel. This additional constraint is not satisfied by 
the standard four-burn sequence. Therefore, a variation of the four-burn 
rendezvous, the constant delta-V (AV) scenario, has been deveioped to 
satisfy the added requirement. 

*This work was supported by the National Aeronautics and Space Administration (NASA) Goddard 
Space Flight Center (GSFC) , Greenbelt, Maryland, Contract NAS 5-31 500. 
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is report presents the results of ~nvestiga~on into analysis and mission-planning 
techniques for  manned user spacecraft involved in active rendezvous with the Space 
Transportation System (STS) Shuttle for refueling purposes. The requirements for an 
active rendezvous are (1) the maneuver sequence must possess a 360-degree phasing 
capability (Le., the two spacecraft must rendezvous from any initial orientation) and 
(2) the rendezvous must be completed in a fixed amount of time. A standard four-burn 
rendezvous sequence has been developed for retrieval missions. In this sequence, the 
amount of fuel used during the rendezvous varies with the initial angular phasing between 
the two spacecraft, as shown in Figure 1 for a 3-day rendezvous. For refueling missions, 
an additional rendezvous requirement is that maneuver planning and analysis for premis- 
sion planning must determine the exact amount of fuel the user spaccecraft will expend 
during the rendezvous sequence. This allows the Shuttle to transport only the fuel neces- 
sary to refuel the spacecraft’s tanks. However, since the initial phase angle varies during 
a Shuttle launch window, the delta-V (AV) required during the rendezvous is not fixed. 
Therefore, the standard four-burn sequence is not appropriate for a refueling mission. 
Consequently, a constant AV rendezvous scenario was developed to meet all require- 
ments. 
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Figure 1. Total AV for a 3-Day Rendezvous, Standard Four-Burn Sequence 

Section 2 presents background information on the derivation of the standard four-burn 
sequence from the standard Shuttle rendezvous policies. This sequence, which consists of 
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ND: FOUR- BUR^ RENDEZV 

This section presents an overview of the rendezvous sequence designed for retrieval mis- 
sions. This is essential, since the retrieval sequence is the basis for the constant AV case. 
The section first presents the requirements imposed by the Shuttle on an actively rendez- 
vousing user spacecraft. Then, the four-burn rendezvous sequence is derived as the opti- 
mum sequence that satisfies all the Shuttle requirements while minimizing AV 
requirements. 

2.1 STS SHUTTLE RENDEZVOUS REQUIREMENTS 

The rendezvous sequence is initiated when mission controllers at Johnson Space Center 
(JSC) issue the “Go for descent” declaration. This is done after the Shuttle has achieved 
orbit and a systems check has determined that the rendezvous sequence may proceed. 
Nominally, this occurs at 5 hours mission-elapsed time (MET), or 5 hours after launch. 

Upon receiving the “Go for descent” declaration, the unmanned user spacecraft (chase 
spacecraft) must complete its rendezvous with the Shuttle (target spacecraft) at a prede- 
termined time, currently given as 53 hours MET. JSC refers to this rendezvous comple- 
tion time as the Control Box Start Time (CBST). The rendezvous is considered complete 
when the maneuvering spacecraft has achieved the Shuttle control box (Figure 2) and has 
ceased all translational maneuvering. As illustrated, the control box is a region above 
and ahead of the Shuttle with its origin at the Shuttle. The horizontal component meas- 
ures angular separation along the Shuttle orbit, while the vertical component measures 
radial distance from the Shuttle. 

Upon achieving the CBST at the completion of the rendezvous, the user spacecraft must 
satisfy a semimajor axis and eccentricity requirement limiting the difference in apogee 
and perigee altitudes to 14.8 kilometers (km). In addition, a maximum angular separa- 
tion of 0.03 degree (deg) in the orbital planes of the spacecraft is required. The user 
spacecraft must be capable of absorbing up to approximately 0.1 deg of launch dispersion 
error in the orbit plane of the Shuttle. Finally, the user spacecraft must be capable of 
handling Shuttle launch slips of up to 1 hour. This, combined with the possibility of 
24-hour Shuttle launch delays, requires that the user spacecraft be capable of completing 
rendezvous with the Shuttle from any initial orientation (or phasing) with the Shuttle. 
Stated differently, the user spacecraft must possess a 360-deg phasing capability with the 
Shuttle . 

2.2 THE STANDARD FOUR-BURN RENDEZVOUS SEQUENCE 

This section describes the four-burn rendezvous sequence, which is well suited to the 
operational environment. This method satisfies all the Shuttle requirements while 
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minimizing AV. The section begins with a discussion of the characteristics of the Hoh- 
mann transfer and proceeds to describe a rendezvous sequence consisting of a series of 
Hohmann transfers with an intermediate phase orbit. The rendezvous technique does not 
require any specific orbital conditions. However, to simplify the ,current discussion, it is 
assumed that the user spacecraft begins in a higher orbit than the Shuttle. 

A Hohmann transfer is well known as the optimum maneuver sequence for transferring 
between two circular coplanar orbits. The firit burn of such a maneuver places the chase 
spacecraft in an elliptic transfer orbit with perigee at the same altitude as the target orbit. 
The second burn occurs 180 deg after the first and makes the transfer orbit circular, 
leaving the chase spacecraft in the same orbit as the target vehicle. 

If the chase and target orbits are not coplanar, a plane change must be done at some point 
in the maneuver sequence. This could be accomplished by executing the entire plane 
change in either the initial or the final orbit, independently of the altitude change to be 
performed. However, the transfer AV is optimized by a simultaneous execution of the 
plane-change and orbital-change maneuvers. Efficiency is further improved by distribut- 
ing the plane changes between the two burns. In the examples discussed in this paper, 
however, rendezvous will be assumed to be coplanar. For a more detailed discussion on 
the Hohmann transfer as it pertains to rendezvous, see References 1 and 2. 

If two spacecraft are to rendezvous using a Hohmann transfer, the correct angular separa- 
tion, or phasing, must exist between the spacecraft at the initiation of the transfer. This 
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ase angle he relative periods of the two 

eriod represents the length of time required for spacecraft in different orbits 
to return to the same orientat. other. This is the time between 
successive occurrences of the iod is greater than the amount of 
time allotted for a particular rendezvous scenario, the required €€PA may not be achiev- 
able for all initial orientations. For a 2-day rendezvous, the synodic period is longer than 
the rendezvous duration if the initial user spacecraft altitude is less than 145 km above 
the nominal Shuttle altitude of 315 km. For a spacecraft such as the Gamma Ray Ob- 
servatory (GRO), which is nominally only 35 km above the Shuttle at the start of the 
rendezvous sequence, additional measures must be taken. 

The required 360-deg phasing capability can be achieved while maintaining the AV ad- 
vantages inherent in the Hohmann transfer by employing a series of Hohmann transfers. 
Such a sequence, the four-burn rendezvous sequence (Figure 3), consists of two 
Hohmann transfers. The first transfer places the chase spacecraft in an intermediate 
orbit called the phase orbit. The second transfer maneuvers the chase vehicle to the 
target spacecraft. The phase orbit is computed such that the HPA between the phase and 
target orbits is reached at the time of the final transfer. By varying the altitude of the 
phase orbit, the user spacecraft can achieve rendezvous with the Shuttle from any initial 
relative orientation. 

TRANSFER ORBIT FROM 
PHASING ORBIT TO TR 

INITIAL 
HASE ORBIT 

TARGET ORBIT 

PHASE ORBIT 

N A 

5 
f 

(0 = INITIAL PHASE ANGLE 

Figure 3. Four-Burn Transfer Scenario 

The concept of linking in- and out-of-plane corrections to save AV is as applicable to the 
four-burn scenario as it is to the case of a direct Hohmann transfer. To combine plane 
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changes and altitu anges, each of the four burns st occur along the relative node 
r spacecraft and Shuttle orbit planes at the termina- 

ver, to simplify the cases examined in this paper, 
e intersection of the 

e rendezvous sequence. 
rendezvous will be assumed to be coplanar. 

To apply the four-burn sequence, it is necessary to accurately compute the semimajor axis 
of the phase orbit, given a set of initial conditions. This is done using the following 
equation: 

where 

p = Earth's gravitational constant (398,600.64 kmWsec2) 
at = target spacecraft semimajor axis 

= chase spacecraft semimajor axis 
ap = phase orbit semimajor axis 
$J = initial phase angle 
T = rendezvous duration 

Equation (2-1) is solved iteratively until a value for ap is found that makes the right-hand 
side of the equation arbitrarily close to zero. 

Figure 4 shows phase orbit altitude as a function of phase angle, #, for a 3-day transfer 
from 350 to 315 km. The figure demonstrates that two phase orbit solutions exist for 
each initial phase angle: one above the target spacecraft and the other below. The solid 
portions of the curves show the phase orbit solutions having the lower AV requirement 
for each specific initial phase angle. The crossover point from the upper to the lower 
solution occurs when both solutions require equivalent AV expenditure. 

Further examination of variations in phase orbit altitude with rendezvous time and initial 
spacecraft altitudes suggests several noteworthy trends. The phase orbit semimajor axis 
is essentially a linear function of phase angle, with the upper and lower solutions being 
nearly parallel. Furthermore, the y-intercept of the upper phase orbit altitude/phase angle 
function is the target spacecraft semimajor axis, and its slope varies inversely with T, the 
rendezvous duration. With these relationships in mind, it is possible to write the follow- 
ing three analytical equations, which accurately predict the phase orbit altitudes and the 
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Figure 4. Phase Orbit Altitude as  a Function of Initial Spacecraft Phase 
Angle for a 3-Day, 350- to 315-km Scenario 

crossover point over the ranges of Shuttle altitudes (300 to 350 h), user spacecraft 
altitudes (300 to 500 km), and rendezvous durations (2 to 5 days) under consideration: 

[ac - a, + - 
2n T k' 1 @c = 4 + ku 

(2-4) 
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where 

aPU 

aPl 

d)C 

k,, kl = constants 

imajor axis of the upper phase orbit 
= semimajor axis of the lower phase orbit 
= phase angle at which crossover occurs 

The expressions for ku and 4 were derived by taking a Taylor series expansion of an 
expression for phase orbit altitude based on spacecraft angular rates and assuming only 
linear terms to be significant. Numerical analysis can be performed to demonstrate that, 
in agreement with the initial simplifying assumption of a linear relationship between 
phase orbit altitude and #,  ku and 4 do remain essentially constant over the ranges 
under consideration. The derivation of 4 and ku and the associated numerical analysis 
can be found in Reference 3. 

3. CONCEPTS OF THE CONSTANT A V  RENDEZVOUS 

The purpose of this section is to introduce the constant AV rendezvous scenario. A 
constant AV rendezvous means that for the same two spacecraft and rendezvous dura- 
tion, a rendezvous requires the same AV for every initial angular orientation (phasing). 
Such a rendezvous is required if the Shuttle is to refuel a user spacecraft and return to 
Earth without excess fuel. Calculation of the fuel the user spacecraft requires during the 
rendezvous allows the Shuttle to transport only the fuel necessary to refuel the space- 
craft’s tanks. 

In the standard four-burn rendezvous sequence, the fuel cost of the rendezvous varies 
with the initial phase angle of the two spacecraft and with the rendezvous duration. Since 
the possibility of launch slips and delays makes it impossible to predict the initial phase 
angle of the two spacecraft and the fuel cost of the rendezvous, a variation of the four- 
burn sequence must be developed that ensures that a constant AV rendezvous occurs. 

The AV required for a four-burn sequence can be computed for specific GRO and Shuttle 
altitudes and rendezvous duration. For a low-Earth orbit, the AV of a maneuver is a 
linear function of the altitude change. However, since the chase and target altitudes are 
fixed in the case of a four-burn scenario, the total change in altitude (AA) and AV are 
functions of the altitude of the phase orbit. Figures 5 and 6 show the phase orbit alti- 
tudes and corresponding total AV costs associated with all possible initial phase angles 
for a rendezvous occurring between 350 km and 315 km altitude. Two phase orbit solu- 
tions exist for each phasing, one above the target orbit and the other below the target 
orbit. Figure 5 shows the lower AV cost solutions as solid lines. When the phase orbit 
lies between the initial and final orbits, the total altitude change and, therefore, AV cost 
remain constant. For phase orbit altitudes above the initial chase orbit, the AV has a 
maximum value when the lower phase orbit fuel cost equals the upper orbit cost. The 
lower solution is then employed, and the total altitude change and AV costs decrease. 
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Figure 5. Phase Orbit Altitude as a Function of Initial Phase Angle (2- and 
3-Day Rendezvous) 

The standard four-burn scenario, composed of two Hohmann transfers and an intermedi- 
ate coast period in a phase orbit, yields the optimum fuel cost solution for the rendezvous 
of two spacecraft. The phase orbit altitudes shown in Figure 5 result in the minimum 
altitude change AA and, thus, AV for each possible phasing for a rendezvous occurring 
between 350 and 315 km. For the 3-day curve in Figure 5, the 247-deg phase angle 
requires the largest total altitude change during the four-burn sequence. These phase 
orbit altitudes are 380 km or 285 km, respectively, and both altitudes result in a total AV 
of 55 meters/second (m/sec). Since no method exists that can change the phase orbit 
altitude such that AA decreases, a constant AV rendezvous is not possible below 55 m/ 
sec. For example, the graph in Figure 6 show that a constant AV of 40 m/sec for a 3-day 
rendezvous is not possible for phase angles between 200 deg and 295 deg, since 40 m/sec 
is below the minimum cost profile. Instead, 55 m/sec would be the minimum constant 
AV value possible. Therefore, in order to achieve a constant AV of 55 m/sec, a variation 
of the standard four-burn sequence must be designed that requires all phase angles to use 
phase orbit altitudes of 380 km or 285 km. This would ensure a constant altitude change; 
thus, a constant AV scenario would exist. 

Altering the phase orbit altitude is accomplished by incorporating an initial coast period 
into the rendezvous before burn 1. As the spacecraft coast freely in their initial orbits, 
the phasing between the spacecraft changes due to the differences in the angular rates of 

529 



0 45 90 135 180 225 270 31 5 

INRIAL PHASE ANGLE (DEG) 

Figure 6. Total AV as a Function of Initial Phase Angle (2- and 3-Day 
Rendezvous) 

the spacecraft. In addition, an initial coast time reduces the effective rendezvous dura- 
tion; e.g., a 3-day rendezvous duration with an initial coast period of 12 hours has only 
2-1/2 days to execute the four-burn sequence. Both the charige in phasing and the 
reduced time interval in which to execute the rendezvous burn sequence combine to move 
the phase orbit farther away from the chase and target orbits, which increases the total 
altitude change. 

Figures 7 and 8 demonstrate the effects of an initial coast on phase orbit altitude and 
AV. Initial coast durations of 12 and 24 hours are plotted along with the standard 
four-burn case (no initial coast). As the coast period increases, the slope of the phase 
orbit altitude plot increases, either raising the phase orbit farther above the initial orbit or 
lowering the phase orbit farther below the final orbit. As shown in Figure 8, the addi- 
tional altitude change increases the rendezvous costs. For the 3-day constant AV exam- 
ple, the phase orbit must be raised or lowered to altitudes of 380 km or 285 km, resulting 
in a constant AV rendezvous of 55 m/sec. A 12-hour initial coast period will satisfy this 
constraint for phase angles of 225 and 285 deg, whereas a 24-hour coast is required for 
phasings of 205 and 325 deg. It is evident that for each initial phasing, a unique coast 
time is required that will enable the phase orbit to be altered to the constant AV altitude. 

Figure 9 illustrates the constant AV technique for an initial phase angle of 180 deg. For 
a 3-day rendezvous, the target phase orbit altitude is 380 km, yielding a AV of 55 m/sec. 
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If a standard four-burn rendezvous is employed, the phase orbit ,altitude required is 
363 km, which requires a AV of 34.5 m/sec. Therefore, an initial coast must be per- 
formed to increase the phase orbit altitude. Figure 9 shows the progression of the initial 
coast period for both phase angle and phase orbit altitude. After the spacecraft has 
coasted for 41 hours and 18 minutes, execution of a four-burn rendezvous sequence, 
given the new phase angle and remaining rendezvous time, will require a phase orbit 
altitude of 380 km. If such a procedure is executed at each initial phase angle, the AV 
profile will be horizontal at 55 m/sec, as shown in Figure 10. Furthermore, all rendez- 
vous requirements will be met and AV expenditures will be minimum. 

4. COAST TIME EQUATIONS 

A set of analytic formulas that describe the coast time necessary for a coplanar constant 
AV rendezvous was derived based on linear approximations for computing the phase 
orbit altitude, and it was determined that the relation between AV and altitude changes. 
The primary approximation is that AV is linearly proportional to the total altitude change, 

AV = m(AA) (4-1) 
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Figure 8. Total AV as a Function of Initial Phase Angle (No Initial Coast 
Period and 12- and 24-Hour Initial Coast Periods; 3-Day Rendezvous) 

The slope, m, can be determined by examining a single Hohmann transfer. First, the 
equation for the AV of the transfer is modified to be a function of altitude change and 
final altitude. Then, the partial derivative of this function with respect to fi results in 
an equation for the slope, m. This equation has been tested numerically, and the slope 
has been shown to be nearly constant (approximately 0.0005 m/sec-' /km-') for transfers 
below 500 km. 

The total altitude change in a four-burn sequence is defined by the following equation: 

where 

A, = initial chase (user spacecraft) orbit altitude 
Ap = phase orbit altitude 

At = target (final) orbit altitude 
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Figure 9. Changes in Phase Altitude and Angle as Initial Coast Period 
Increases 

Absolute values are required, since the position of the phase orbit may lie between the 
chase and target orbits, above the chase orbit, or below the target orbit. 
The phase orbit altitude can be computed from the analytic equations discussed in 
Section 2.2. These equations describe the upper and lower phase orbit altitudes for a 
standard four-burn rendezvous as functions of the rendezvous duration and the initial 
phase angle. 
For a constant AV rendezvous, the equations must be modified to include the initial coast 
period: The modified equations include the changes in the rendezvous time and the phase 
angle. 
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where 

APU 
API 
T 
t 

phase orbit solution above the target orbit 
phase orbit solution below the target orbit 
total initial rendezvous duration 
initial coast time 
angular rate of the chase vehicle in its initial orbit 
angular rate of the target vehicle in its orbit 
initial phase angle 
equation constant, 45.76 km day 
equation constant, 44.18 krn day 

When Equations (4-3) and (4-4) are then substituted into Equation (4-Z), three different 
solutions result for AA as a function of phase angle, corresponding to the three possible 
positions of the phase orbit relative to the initial chase and target orbits. Specifically, 
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these solutions are (1) above the chase orbit, (2) belo the target orbit, and (3) between 
target orbits. The equations for the total altitude change are as follows: 

[(w, - Wt) t + <Po - 2 4  
2 * kl AAl = A, - At - 
(T - 

a b  = A, - At 

where 

AAu = total altitude change for a phase orbit above the chase orbit 
hA1 = total altitude change for a phase orbit below the target orbit 
f i b  = total altitude change for a phase orbit between the chase and target orbits 

Multiplying the above equations by the slope constant, m, in Equation (4-1) yields equa- 
tions for AV as a function of initial coast time, t. 

Solving for t in these equations yields 

[T(AV/m - At + A,) - 2kuQ01 
[2ku (w, - w,) + AV/m - At + &] tu = 

(4-9) 

(4-10) 

(4-1 1) 
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t, = (4-12) 

tb = undefined (4-13) 

V case with no initial coast. 

If the optimum solution (before adding the coast) for a given phase angle is the upper 
solution (phase orbit above the chase orbit), then Equation (4-11) describes the coast time 
required before burn 1 for a constant AV rendezvous. If it is originally the lower solution 
(phase orbit below the target orbit), then Equation (4-12) should be used. 

If the original phase orbit is between the initial and final orbits, the altitude change is 
constant. Therefore, since no equation exists as a function of t for the constant portion of 
the curve in Figure 6, no formula for an initial coast time can be extracted. This occurs 
because an initial coast will decrease the phase angle that still requires a phase orbit 
between the chase and target orbits, and the total altitude change remains the same. 
However, as the coast time increases, the phase angle reaches 0 deg, or 360 deg. At 
these angles, Equation (4-11) may be used to solve for the additional coast time required 
to achieve a constant AV. In summary, the coast time required from the initial phase 
angle would equal the coast time from the initial phasing to a phasing of 0 deg plus the 
coast time generated from Equation (4-10) for a phase angle of 360 deg. A simpler 
approach to the problem is to apply Equation (4-11) and adjust the initial phase angle by 
adding 360 deg. From this angle on the lower solution, an initial coast time may be 
found directly. Therefore, the following equation solves for t as a function of a, for 
initial phase angles that require a phase orbit between the chase and target orbits: 

(4-14) [T (A, - At - AV/m) + 4n kl - 2k1 ((a, + 2 4 1  
[2k1 (w, - WJ + A, - At - AV/m] 

tl = 

Equations (%ll), (4-12), and (4-14) are the only equations needed to compute the coast 
time before burn 1 that will result in a constant AV rendezvous. 

Figure 11 presents the coast time solutions for a 2- and 3-day GRO/STS rendezvous. The 
maximum coast time equals the rendezvous duration and occurs when the low-energy 
phase orbit altitude (without an initial coast) equals the initial altitude. The minimum 
point on each curve equals zero. This occurs at the maximum AV case in Figure 3, 
which is the constant AV value chosen. 

The coast time results from the above equations are presented in Figure 6 for 2- and 
3-day rendezvous. These values were tested in rendezvous cases using the current rendez- 
vous software, FENDEV. For the majority of the phase angles, the AV costs for a 2-day 
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Figure 11. Initial Coast Period as a Function of Initial Phase Angle (2- and 
3-Day Rendezvous) 

rendezvous were within 6.5 percent of the maximum AV value computed by RENDEV. 
For the 3-day case, errors were under 5 percent for most initial phase angles. These 
percentage errors can be attributed mainly to the phase orbit altitude approximation for- 
mulas. The limitation of these formulas is that they do not include the time and phasing 
changes in the transfer orbits. This approximation can offset the phase orbit altitude by 
as much as 2 km. Still, the overall coast time results are good approximations for most 
cases. The phase angles for which the coast times are not accurate occur when the coast 
time is within 12 hours of the total rendezvous duration. The accuracy of the linear 
approximations used in the derivations declines rapidly in the 12 hours or less available 
for the four-burn rendezvous sequence. 

5. CONCLUSIONS 

This paper has considered active rendezvous between a low-Earth-orbit user spacecraft 
and the STS Shuttle for refueling missions. A four-burn rendezvous sequence consisting 
of a series of Hohmann transfers, which was derived in a previous study, is presented as 
an optimal solution for rendezvous and retrieval missions. However, this sequence does 
not readily satisfy the mission constraints for refueling scenarios. Therefore, a variation 
of the standard four-burn sequence is derived as a method that satisfies all constraints for 
refueling missions while optimizing AV costs. 
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time equations were found to be good approximations for the majority of initial phase 
angles. However, for a small range of phasings, the solutions are not accurate, since the 
approximations made in the analytic equations for phase orbit altitudes are not valid. 
Therefore, accurate solutions for all phasings require iterative solutions. 

r-burn sequence after e initial coast period. 
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Abstract 
The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are 

presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector 
is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive 
problem are highly effective in the solution of the two-point boundary-value problem associated with bounded 
thrust. These results were applied to the problem of fuel optimal manuvers of a spacecraft near a satellite in circular 
orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using 
a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the 
satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the 
solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in 
the way that a certain integral i s  evaluated. For elliptical orbits this integral is evaluated through the use of the 
eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits. 
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Many problems of optimal trajectories, maneuvers, and rendezvous of spacecraft have been investigated using linearized equations 
of motion. Linear equations describing the relative motion of a spacecraft near a satellite in circular orbit [l-41 have been very 
useful to  aerospace researchers. Some of the published applications are cited here [5-81. The linear equations describing relative 
motion near a satellite in an elliptical orbit [9,10] are not quite so well known, but have also been useful in applications [ll- 
161. These equations also generalize to a description of relative motion near a satellite in an arbitrary Keplerian orbit [17,18]. 
Another approach to similar problems involves the linearization with respect to the orbital parameters associated with a satellite 
or spacecraft [19]. Other sets of linearized equations describing the motion of an object near one of the five Lagrange points in 
the restricted three body problem are well known in celestial mechanics [20]. 

In this paper we present necessary and sufficient conditions for fuel-optimal trajectories of a spacecraft whenever the 
equations of motion are linear. This theory encompasses all of the preceeding examples in which the equations of motion of a 
spacecraft are usefully linearized about an equilibrium condition [l-201. 

The work divides naturally into two distinct areas, impulsive problems, and bounded thrust problems, and is based largely 
on recent investigations [21,22] in these two areas. Early work on these problems was done by Neustadt [23,24] who formulated 
the linear impulsive spacecraft trajectory problem mathematically as an unbounded thrust problem in a class of more general 
nonlinear programming problems. He obtained an existence theorem and necessary conditions for solution of this problem. He 
presented also a precise sense in which the impulsive problem solution is a limit of the bounded thrust problem solution as the 
bound becomes arbitrarily large, and showed that the necessary conditions for the impulsive problem are obtained from the 
necessary conditions for the bounded thrust problem by passing to the limit. 

Our approach differs significantly from Neustadt's, especially in the impulsive problem. We formulate this problem through 
the use of a finite number of velocity increments as independent variables instead of thrust functions having unbounded range. 
This results in a simpler problem that can be solved without the use of mathematical control theory or advanced mathematics. 
The bounded thrust problem is then solved by the well known Principle of Pontryagin. It is found that the two problem solutions 
are closely related, and insight into either problem is sometimes obtained from the other. Probably the most useful relationship 
is the fact that both problems are found to contain the identical new form of the primer vector function originally defined by 
Lawden [25]. 

It is shown that a class of two-point boundary-value problems associated with bounded thrust can be readily solved from 
starting iteratives that are obtained from a primer vector function associated with the impulsive problem. 

Section two demonstrates necessary and sufficient conditions for solution of the impulsive minimum fuel problem with 
linear equations of motion. At the end of the section this material is applied to the case of a spacecraft near a circular orbit 
using the Clohessy-Wiltshire [l-41 equations of motion. Simulations of impulsive spacecraft trajectories are presented. In section 
three, necessary and sufficient conditions are also revealed for solution of the related bounded thrust minimum fuel problem. 
Simulations of optimal bounded thrust spacecraft trajectories near circular orbit are also presented for this problem using the 
same equations of motion. The final section indicates how this material can be applied for a spacecraft near a non circular 
Keplerian orbit. The Tschauner-Hempel equations of motion [9,10] are applicable to this problem. The work of Tschauner and 
Hempel and Weiss 2151 has demonstrated that solutions of these equqtions can be used to define a fundamental matrix solution 
that applies to either circular or elliptical orbits. This work was found useful in constructing two-impulse solutions to rendezvous 
problems involving objects in elliptical orbits of high eccentricity [l6] and can also be used to apply the theory presented here 
for rendezvous of a spacecraft with objects in circular or elliptical orbits. We complement this work by presenting a new form 
[18] of the solution of the Tschauner-Hempel equations that is valid for elliptical, parabolic, or hyperbolic orbits, and that avoids 
the removable singularities found in some earlier papers. This form of solution is then used to construct a fundamental matrix 
solution. Based on this fundamental matrix solution, the theory of sections two and three can be applied to the problem of fuel 
optimal rendezvous of a spacecraft with an object near a satellite in a general Keplerian orbit. 

2 The Impulsive Minimization Problem 
2.1 The Impulsive Problem Formulation 
We let m and n be positive integers, and 20, vo, z j ,  v j ,  Avi ( i  = 1, ..., n) are all elements of the m-dimensional Euclidean 
space Rm. The real numbers 80 and B j  define a bounded interval 0 = [Bo, e,]. We denote the generalized instantaneous position 
and velocity of a spacecraft respectively by z(B) and v(B) in Rm where 0 E 0 represents a convenient independent variable 
such as the normalized time in flight, applications the true anomaly of a satellite in Keplerian orbit. [10,17] A prime is used 
to indicate differentiation with respect to 8. The norm or magnitude of any vector will be represented by the symbol I . I . 
The symbol x will be used with reference to rows and columns of a matrix or will denote the Cartesian Product of sets. The 
superscript T refers to the transpose of a matrix or vector. For each B E 0 the vector y(B) E ern refers to the transpose of the 
pair (.(e)', Similarly the vectors yo and yj in ern denote respectively the transposes of (z:, v z )  and (zj, v j  ). We 
assume that a velocity increment Av, is added to the velocity v(&) of the spacecraft at a point B j  ( i  = 1, ..., n). This assumption 
represents an idealization of the effect of the application of n short duration thrusts to the spacecraft, resulting in instantaneous 
changes in velocity without change in position. This type of idealization is in common practice by mission planners and can 
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be useful in providing approximate data for iterative schemes to solve problems having more accurate models. The n points of 
application of the velocity increments can be specified a priori by the mission planner. Another possibility is that the locations 
of these velocity increments be determined through the optimization process. Our approach is flexible enough to include either 
of these possibilities or a combination of the two. 

Specifically we let p be a positive integer that represents the number of elements in 0 that are specified a priori, and 
N p  = (8jl, ..., B f g )  E OP is this ordered set of specified points in 0 where velocity increments are to be applied. For technical 
reasons we shall require that both end points 80 and 6f are in N p  so that p 2 2. We also specify an integer T 2 0, and we shall 
seek an ordered set N,  = ( 8 k l ,  ..., 6 k , )  E 0' of T elements of 0 that are to be determined through the optimization process, and 
that represent optimum locations for the application of velocity increments. If T = 0 then N, is empty. We now set n = p + T, 

order the components of ( N p ,  N,.) E On to  form the ordered set (81, ..., 8,) E 0" where 8i 5 &+I (i = 1, ..., n - I). We observe 
that it is possible to have 8i = 6, for i # j .  We associate a velocity increment Avi with each 8, (i = 1, ..., n) even though the 
optimization process may show some of these velocity increments to be zero. Although we associate velocity increments with 
the end points 80 and O f ,  there are problems where one or both of these velocity increments become zero. We now define the 
impulsive optimal spacecraft trajectory problem for linear equations of motion as follows: 

2.1.1 

Having specified N p  and the integer T ,  find Nr = ( 8 k l ,  ..., e k , )  E 0' and the velocity increments Avi E Wm (i = 1, ..., n )  
which are added to the velocity vectors v(8i) E '32'" (i = 1, ..., n )  in order to minimize the total characteristic velocity 

Statement of the Linear Impulsive Minimization Problem 

J = lAvll 
i=l 

of a spacecraft, whose motion is defined by the linear differential equation 

Y'(0) = A(@)Y(8) (2) 

for each 8 E 0 except at 8i (i = 1, ..., n) ,  where A is a 2m x 2m real matrix-valued function continuous on 0, and whose initial 
and terminal conditions are given by 

Y(80) = Yo, Y(8f) = Yf* (3) 

2.1.2 Fundamental Matrix Solution 

It is known from the theory of linear differential equations that a 2m x 2m fundamental matrix solution which we shall denote 
by @(e) is associated with the linear differential equation ( 2 ) ,  its elements are continuously differentiable, its inverse @(e)-' 
exists and its elements are also continuously differentiable, for each 8 E 0. Ai we shall show, the 2m x m matrix which consists 
of the last m columns of @(e)-' (i.e., the right hand half of @(e)-') plays an important role in the determination of the optimal 
impulses and will be denoted by R(8). Because of the continuity of A(@) the 2m x m matrix R(8)  of real-valued functions is 
continuously differentiable on 0. Moreover if the elements of A(@) are analytic on 0, then the elements of R(B) are known to 
be analytic on 0 also. Our principal result, as presented in the next section, is stated in terms of the matrix R(B), and the first 
step in solving actual problems is to  determine the matrix R(8). 

2.2 Necessary and Sufficient Conditions 
As we shall see, the effects of the initial and terminal positions and velocities (3) in defining an optimal solution are determined 
exclusively through the vector b E W2'" which is defined as follows: 

b = @(ef)-lYf - @(eo)- 'y0.  (4) 

A family of initial and final positions and velocities having the same value of the vector b is associated with a family of problems 
having identical optimal impulsive solutions. 

In the following we define a; =I Avi I (i = 1, ..., n )  and for each i such that ai # 0 we define u, = Avi/a,. These are simply 
the magnitudes and the unit direction vectors of the nonzero velocity increments. We now state our principal result as follows: 

Theorem 2.1 Suppose that b i s  nonzero, A(6) ezists and is  continuous on 0, and N p  contains both of the end points 80 

and O f  of 0. Then for each T = 0 ,1 ,2 ,  ... and n = p + T ,  the element (&,, ..., &,, Avl, ..., Av,) solves the minimization problem 
defined by (1 - 3 )  subject to the imposition of the n velocity increments, over the set 0' x Em" if and only if there exists a 
nonzero vector X E R2m such that 

a; = 0 OT ui = -R(8i) X (i = 1, ..., n )  

f fk ,  = 0, OT ek, = 60 OT ek. = e f  OT XTR'(ek,)R(ek,) x = o (i = 1, ..., T )  

( 5 )  

(6) 

(7) 

T 

a, = o or XTR(e,)R(e,)TX = 1 ( i  = I, ..., n )  
T 
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a; = -bTX > 0 
i= 1 

- bTX i s  a minimum on the set{X E R2" I (6 - 10) is valid}. (11) 
A proof of this theorem is presented in [21]. The requirement that b is nonzero in this theorem prevents the problem from 
becoming trivial. If b = 0 then the minimization problem can be solved by setting Av; = 0 ( i  = 1, ..., n). In applying this 
theorem to actual problems one specifies the number T of points of application of velocity increments to be determined by the 
optimization process. Of course, the choice of the number r affects the solution of the minimization problem defined by (1-3) 
and the resulting minimum value of J. Although the proof introduces some additional mathematical framework and will not be 
considered here, it can be shown that if the elements of A(B) are analytic functions of 0 then there is an integer T* such that 
the solution of the minimization problem for r > T* does not lead to a lower value of J than does the solution for T*. One 
consequence of this fact is that N p  has no effect on the minimum value of J if the integer r is sufficiently large. For this reason, if 
T is sufficiently large, then there is no loss in generality in making the assumption that N p  contains the elements 00 and 0,. The 
determination of the smallest such integer T* for a wide class of problems defined by (1-3) is a problem whose solution would 
reveal to the mission planner the maximum number of thrust impulses needed for a mission. Neustadt's work [23] would suggest 
that r* 5 2m. We can sometimes keep the value of T general. If in the determination of the locations for velocity increments, 
we obtain Bi = 8J for i # j (Le. repeated roots) then the value of T can be lowered without altering the minimum value of J .  

2.2.1 The Primer Vector Function 

Some of the results of this theorem can be interpreted in terms of the well known primer vector theory, introduced by Lawden [25] 
and developed for impulsive spacecraft trajectory applications by Lion and Handelsman [26,27]. We shall refer to the function 
q : 0 -+ IR" defined by q(8) = R(B)TX as the primer vector function. In terms of this function, (6) and (7) respectively become 

ai = 0 or I q(f3,) I =  1 ( i  = 1, ...,n) 

a h ,  = 0, or ek ,  =eo, or e k ,  = ef ,  or I q (ek,)  1'= o ( i  = 1 ,..., r). 

(12) 

(13) 
Geometrically, this says that nonzero optimal impulses must occur where the magnitude of the primer is unity and, if they are 
at interior points of 0, where the magnitude of the primer is tangent to a horizontal line one unit above the horizontal axis. 
This and other related geometric conditions were observed by Lion and Handelsman, even though the class of problems under 
their investigation was very different from the above. 

2.2.2 

As previously indicated, this theorem is presented in such a way that the mission planner can specify some of the locations of the 
velocity increments a priori. It can be made even more flexible by allowing the mission planner also to specify completely some 
of the velocity increments a priori, as well. This is accomplished as follows. We assume that an additional s velocity increments 
are completely specified by the mission planner where s is a positive integer, and N p  is extended to include the locations of these 
velocity increments. The total number of velocity increments is then n+s ,  and the 8 completely specified velocity increments will 
be denoted Avn+l, ..., A V ~ + ~  with respective locations e,+,, ..., E Np.  The Theorem can be restate'd with this adjustment 
and only minor changes in the proof are necessary. The principal change occurs in Lemma 4.1 of the next section where the 
vector b is adjusted as follows: 

A Priori Specification of Velocity Increments 

s 

b = 9q@f)-' - 4(eo)-'Yo - R(en+j)Avn+J 
3 = 1  

This definition of b replaces (4) only in the following adjusted result: 
Theorem 2.2 Suppose that b, as defined above, i s  nonzero, A(0) exists and is continuous on 0, and that s velocity 

increments Av,+l, ..., AV.,+~ E IR" are specified a priori and N p  contains their respective locations @,+I, ..., On+s and the end 
points 00 and 03 of 0. Then for each T = 0, 1,2,  ... and n = p - s + r, the element ( B k l , .  . , Bk,, Avl, ..., Av,) solves the 
minimization problem defined by (1-3), subject to the imposition of the n $- s velocity increments, over the set 0' x am" if and 
only if there exists a nonzero vector X E ?I?" such that (5-11) are satisfied where b is  defined above. 
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This approach to  the solution of the minimization problem defined by (1-3) requires solving the system (5-11). The primary 
computational problem is in the solution of (6-8) which are quadratic in X and linear in ai (i  = 1, ..., n). In most application 
to spacecraft trajectories, the position and velocity vectors of the spacecraft are in three dimensional Euclidean space so that 
m = 3, or if the motion is restricted to an orbital plane, m = 2. If the equations of motion of the spacecraft are based on 
linearization about a satellite in circular or Keplerian orbit, we conjecture that it is not necessary to  employ more than four 
impulses for one orbital period or less (6, _< 8, + 2r), so we recommend setting n = 4 for these problems. This is in agreement 
with a similar conjecture which was made for bounded thrust problems. [28,29] Neustadt's results [23] for the general linear 
unbounded thrust problem show that the maximum number of impulses is 6 for m = 3 and 4 for planar problems. 

2.3.1 Types of Problems 

We list the following types of problems: 

1. Planar problem with four impulses with specified locations. Here (6) presents four quadratic equations in four unknowns 
to determine A. For some cases these can be solved by hand or by a computer programmed for symbol manipulation. 
Half of these solutions are eliminated by the test -bTX > 0 of (10). The remaining solutions are used in (8) to solve for 
a1, ..., an by Gauss-Jordan elimination. All that do not satisfy (9) are thrown out. Usually only one solution remains 
after this test. If more than one solution remains, the value or values of X that satisfy (11) are retained, and from this the 
velocity increment directions are determined through (5). An outstanding feature of this problem is that a change in the 
initial or terminal conditions does not require a solution of (6) again. The solutions of (6) are a set of vectors like spokes 
on a wheel, any one of which may point out the correct solution. A change in the boundary conditions defines another 
vector from the set which satisfies condition (6) and defines the optimal impulses only through the solution of sets of linear 
equations (8) to determine a1, ..., an and then applies the tests (9-11). An example of this type of problem is presented 
in the next section. 

2. Four impulse planar problem with intermediate locations determined optimally. For this problem (6) and (7) determine 
a set of six equations in the six unknowns A,& and 83. After obtaining multiple solutions of these, the tests (9) and (10) 
and the linear equations (8) can be used as in the preceding. For practical problems it may be preferable computationally 
only to approximate the solution of 62 and 83. We guess the locations 82 and 83 and solve the preceding problem 1). We 
repeat this process several times with new values of 82 and 83. We then pick the set which most closely approximates (7) 
. In this manner (7) can be approximated to  any desired accuracy. An alternative is to use gradient methods on 82 and 
83 to minimize J .  

3. Four impulse three dimensional problem with specified locations of impulses. In this case (6) and (8) define a set of 10 
equations in the 10 unknowns X,a1,a~,a3,a4. Each solution of this system is subjected to the tests (9) and (10) as in 
the previous problems. In case of multiple solutions, the test (11) is applied. 

4. A two impulse solution with impulses at the ends. Rather than using the equations (5-11) for this trivial problem, it is 
easier to use Lemma 4.1 from a recent work [2l] and solve for the two impulses through the linear equations 

This method is computationally simpler than the two impulse method of Weiss [15] used for high eccentricity elliptic orbits. 

2.3.2 

As an application, we consider the problem of determining optimal maneuvers of a spacecraft near a satellite in circular orbit. 
The linearized equations of motion with reference to a coordinate frame fixed in the satellite were determined independently 
by Wheelon, Clohessy and Wiltshire, Geyling, and Spradlin [l-41. With these equations, optimal impulsive solutions were 
investigated by Prussing [6] in 1969 using primer vector theory. Our approach is to find and invert a fundamental matrix 
solution, and apply Theorem 2.1. The equations of motion when put in the state vector form y t ( t )  = A(t)y( t ) ,  are determined 
by the 6 x 6 matrix 

Spacecraft Maneuvers near Circular Orbit 

0 0  0 0 O 0 1  1 0  
0 0  0 

0 0  0 A(t) = 

0 0 -wz 0 
0 3w2 0 -2w 

0 0  O O I  1 
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-0.621919006 
-0.651106246 

-1.798123431 
-0.182280857 

f t; 1 z.436298624 

-0.098201378 
0.052928935 
0.182280857 
0.436298624 

where the real number w is the orbital angular speed of the satellite, and the flight time is denoted by t. It is not difficult to 
find and invert a fundamental matrix @ ( t )  associated with A(t),  and obtain 

@@)-I = 0 

- sin O ( t )  

0 -2 0 1 
0 3sinO(t) 0 -2sinO(t) -cosO(t) 0 
o -3cose(t) o 2cosO(t) -sinO(t) 

2 
0 

1 -6O(t) 0 3O(t) 

0 0 sin O (t) 0 0 
0 0 cos e(t )  0 0 

where O ( t )  = wt.  From (16) R( t )  is evident. We drop the argument t and consider O as the independent varia 

We shall consider only the planar case. For this problem we find the 4 x 2 matrix 

'le. 

For simplicity we shall pick 8, = 0, O f  = 27r, and we shall select four impulses at  0, ~ / 2 ,  37r/2, and 2r. Based on earlier studies 
for optimal trajectories with bounded thrust [8] we suspected that these locations are not far from the optimal locations. After 
computation of the X values based on these locations, this suspicion was confirmed by substituting these values of Oi into (7). 
The values of the matrix R(&) (i = 1,2 ,3 ,4)  are easily obtained so that (6) is a manageable set of four quadratic equations 
in the four unknown components of A; X I ,  X2, X I ,  X4. Solution of these four quadratic equations reveals the following 24 = 16 
solutions which we denote by Xij (i, j = 1,2,3,4) .  These solutions are presented in Table 1. We consider three distinct sets of 
initial and terminal conditions for computation of the optimal impulses using the method outlined in 1) of Section 2.3.1. We 
find that each of the three cases requires a different value of X from Table 1, and a different number of impulses for optimality. 
(We neglect very small impulses, and assume that they are zero because of their negligible effect in comparison with much larger 
impulses in the same case.) 

Case 1. A spacecraft is one unit behind a satellite in the same circular orbit. Its initial relative velocity is zero, and 
its object is to rendezvous with the satellite having the same velocity at O f  = 2r.  The tests (8-11) determine A12 as optimal. 
For this value of A, the solution of (8) establishes that a2 = a3 = 0, a two impulse solution. The optimal impulses are both 
horizontal and opposite: 

Aw(0) = [ ] ,hw(%) = [ $ 3 .  
A computer simulation of the optimal trajectory is presented in Figure 1. 

Case 2. A spacecraft is one unit above a satellite in circular orbit with the same initial velocity as the satellite. Its object 
is to rendezvous with the satellite at O f  = 27r having the same final velocity. For this problem the tests (8-11) determined A21 
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as optimal. For this value A, eq.(8) defined a3 = 0, a three impulse solution. The optimal impulses are 

A computer simulation of the optimal trajectory using these impulses is found in Figure 2. 
a A spacecraft is in circular orbit one unit behind the satellite with the same velocity as in Case 1, but in this case 

its object is to reach the satellite with a positive vertical velocity. This causes quite a different trajectory from Case 1. The 
optimal X changes to A22 and a four impulse solution results. The optimal impulses are 

-.02729 .08965 
= [ .03436 ] = [ .01194 ] ' 

-08965 .02729 
= [ -01194 ] , = [ -03436 ] 

The optimal trajectory is presented in Figure 3. 
Each of the figures can be compared with similar figures in [8] which are based on bounded thrust and continuous velocity. 

The similarities in the shapes are apparent. 
Extension of this work to other Keplerian orbits requires the replacement of the Clohessy-Wiltshire equations with the 

Tschauner-Hempel equations [9,10] for elliptical orbits or the equations in [18] for more general orbits. For the Tschauner-Hempel 
equations the fundamental matrix solution has been found and inverted by Weiss [15], so that the matrix R(B) can be defined. 

3 Bounded Thrust Space Trajectories 
3.1 The Bounded Thrust Minimization Problem 
We let m be a positive integer and zo, vo, zf, wf are elements of the Euclidean Space R". The real numbers to and t f  define a 
closed and bounded interval T = [to, tf] where to < t j .  A dot above a variable will denote differentiation with respect to t E T. 
The Euclidean norm or magnitude of a vector will be referred to by the symbol I I . The superscript T denotes the transpose of 
a vector or a matrix. The elements yo and yf in R2m are defined by y z  = (zz,vz) and y; = (z$,vT). We let U denote the 
class of admissible control functions, which is the set of all Lebesgue measurable functions that map T into the closed unit ball 
U in R" a.e. on T. 
We shall consider the linear nonhomogeneous differential equation 

i ( t )  = A(t)Y(t) + B 4 t )  (18) 

Y(t0)  = Yo, (19) 

Y(t f )  = Yf 9 (20) 

which is defined a.e. on T subject to the initial condition 

and the terminal condition 

where A is a real 2m x 2m matrix valued function on T, w(t)= = (O*, u(t)*) where 0 is the zero element in R",u E U, and p is a 
positive real number. We shall assume throughout that the elements of A are real valued analytic functions on T. A solution y 
of (18) at t E T is an element of R2", and we shall write y(t)= = (z(t)* ,  v(t)=) where z ( t )  E R" and v( t )  E Rm for each t E T. 
We define the cost of any element u E U to be 

J[Ul = L' I u(t> I d t  (21) 

which represents the Lebesgue integral of the norm of u over T. Here we are assuming that a spacecraft has constant exhaust 
velocity, and that its total fuel consumption over the interval T is proportional to J[u]. The linear bounded thrust minimization 
problem can therefore be stated as the problem of minimizing J[u] over U subject to the conditions (18 - 20). 

Many spacecraft maneuvers and rendezvous missions can be formulated in terms of this problem. In these cases the equa- 
tions of motion of a spacecraft are approximated by the linear equations (18) where t represents a flight time or related variable 
such as the true anomaly of a satellite in Keplerian orbit, and pu(t) usually represents an applied acceleration on the spacecraft 
caused by the engine thrust. The problem is a bounded control problem because of the restriction that u E U (Le. I u(t) I< 1 
a.e. on T). For simplicity, we assume the spacecraft mass is constant over T so that p is a positive constant representing the 
maximum magnitude of the applied acceleration. We can, however, include the effect of the variation of mass as in previous 
work [29]. To avoid an additional equation that is nonlinear, we shall not do this. If the matrix A(t) is partitioned into four 
m x m matrices so that the top left is zero and the top right is the m x m identity, then i ( t )  = v( t ) ,  and if t represents time in 
flight then the elements z( t )  and v( t )  can be interpreted respectively as relative positions and velocities of the spacecraft. 
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Before we present our principle result, we shall place a restriction on the matrix A(t )  that will simplify the solution of the 
minimization problem by eliminating singular abnormal solutions. The matrix A($) can be partitioned into four m x m matrices 
as follows: 

We shall say that the matrix valued function A is primer-compatible if the only solution of the two equations 

A12(t)Tp(t) = 0, $(t)  = -All(t)Tp(t)  (23) 

on T is the solution p(t) = 0 (t E T). It is readily seen that A is primer-compatible if A12(t) is nonsingular for each t E T. For 
this reason we see that in the usual problems in which i ( t )  = v( t )  for each t E T the matrix A is primer- compatible because 
AI&) = I the rn x rn identity matrix. By differentiating we see also that A is primer-compatible if A l 2 ( t )  - All(t)Alz(t) is 
nonsingular for each t E T. Other conditions for primer-compatibility can be obtained by differentiating further. 

We now present our principal result. The proof can be found in [22]. 
Theorem 3.1 Suppose that the elements of the 2m x 2m matrix A(t) are analytic on T, and that A is primer-compatible. 

1 u(t) I dt over U subject to the conditions (18 - 20) if and only if there exists a real number Then u is a minimum of J[u] = 
to 2 0 and X E S2" such that q( t )  = R(t)TX for each t E T and 

where @(t) is any fundamental matrix associated with A(t) for each t E T, its inverse exists and is partitioned so that @(t)-' = 
(L( t ) ,R( t ) )  where L( t )  and R(t)  are 2m x m matrices for each t E T, and either 
i) X is the zero element in S2",u(t) = 0 a.e. on T, and @(tj)@(to)-'y0 = gj,  or else 
i i )  X is nonzero, the equation I q ( t )  I= 0 has a t  most finitely many solutions on T, y ( t j )  = yj ,  and 

u(t) = -- q(t) f ( t )  I d t )  I 
a.e. on T where either the equation I q(t) I= t 0 / p  has at  most finitely many solutions on T and 

a.e. on T, o r  else it i s  satisfied identically on T and 0 5 f ( t )  I 1 a.e. on T. Moreover XT(@( t ) - ' y ( t )  - @(to)-'yo) = -PSI', I 
q(r) I f ( r )dr  5 0 

Remark 1: The final condition establishes a geometric restriction on the vector X E'S'". If we define the function 
z : T ----+ Sfz'" by z( t )  = @(t)-'y(t) - @(to)yo then X is restricted by the boundary condition XTz(tj) 5 0. Moreover X is 
restricted by the whole trajectory, i.e. XTz(t) 5 0 (t E T) and, upon differentiating, we obtain X T i ( t )  = - I q ( t )  I f (t) a.e. on T. 
This shows that X is further restricted by the tangent vector to z(t)  i.e. X T i ( t )  5 0 a.e. on T. Finally we observe that XTz(t )  is 
monotone decreasing on T. All of these conditions place restrictions on the shape and location of an optimal trajectory. 

Remark 2: If the real number to whose existence is asserted by this theorem is zero, then i )  cannot hold; therefore (25, 
26) of i i )  must hold where (26) requires that f ( t )  = 1 a.e. on T. A solution where lo = 0 is called an abnormal solution. 

On the other hand, a solution in which to > 0 is called a normal solution. For normal solutions the constant l 0 / P  can be 
absorbed by the function q [22]. Effectively, this is equivalent to setting to = P in the preceeding theorem. For normal solutions 
the equation ] q( t )  I =  1 either has at most finitely many solutions on T and (26) is replaced by 

(t E T). In particular, XT(@(tf)-'yj - @(to)- 'yo)  5 0 and equality holds if and only if f ( t )  = 0 a.e. on T. 

a.e. on T, or else 

and f is any real valued measurable function satisfying 
I d t )  I =  1 ( t  E-T) 

a.e. on T such that (24, 25, 20) are satisfied. 
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We shall say that a normal solution of the problem defined by (18 - 21) is singular if (28) holds, otherwise we say that it is 
~ons~nguzar.  Since (28) cannot hold for abnormal solutions, we shall also call them nonsingular. It follows from the preceeding 
theorem that (27) must hold for normal nonsingular solutions or else ~ ( t )  = 0 a.e. on T. For this reason and the continuity of 
q we can say that a normal nonsingular solution consists of thrusting intervals and coasting intervals separated by points on T 
called switches. It is sometimes convenient to refer to  the switching function as the real valued function s on T defined by 

The thrusting intervals are determined by the condition that the switching function is positive; similarly a negative value 
determines a coasting interval. A switch is a zero of the function s such that every open interval containing it also contains 
points where s is positive and points where s is negative. The preceeding theorem asserts that there are at most finitely many 
switches. The number of switches for a given interval T is not known, even for the linearized problem of a spacecraft near a 
circular orbit [28]. Since Theorem 3.1 shows that it is impossible to have s ( t )  = 0 on a subset of T of positive measure and also 
s ( t )  # 0 on another subset of T of positive measure, we do not need to define singular solutions on a subset of T. This property 
is lost, however, if the differential equation (18) is replaced by certain nonlinear differential equations such as those representing 
spacecraft trajectories in a Newtonian gravitational field, as discovered by Rabbins [30] who found singular and nonsingular 
regimes on the same interval. If a solution is singular then (29) is valid a.e. on T, but the form of the function f i s  not specified. 
For this reason one might suspect that singular solutions to a boundary value problem are not unique. We shall show that this 
is the case'for a certain large class of singular solutions. A singular solution is called an intermediate thrust solution if there 
exists a measurable subset S of T of positive measure such that 

0 < f ( t )  < 1 (31) 

for each t E S. We shall show that the intermediate thrust solutions are degenerate in the sense of the following theorem. This 
type of degeneracy was first discovered by La Salle [31] in the problem of time optimal control of linear systems. The theorem 
generalizes previous results based on linearized equations about a satellite in circular orbit [32]. An earlier observation of the 
degeneracy of singular solutions near a circular orbit was &de by Marec [19]. 

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 are satisfied. If the problem of minimizing JEW] = sfy I u( t )  I d t  
subject to (18 - 20) has an intermediate thrust solution, then it has infinitely many intermediate thrust solutions. 
The proof can be found in [22]. 

3.4 The Two Point Boundary Value Problem 
In order to apply Theorem 3.1 one must solve a two-point boundary-value problem. A value of the element X E Prn must be 
found such that the trajectory (24) satisfies the terminal condition (20). Specifically X defines the primer vector function q, 
which for normal nonsingular solutions defines the control function u through (25,27), establishing the trajectory through (24). 
We see therefore that the terminus y ( t j )  of the trajectory is a function of X E R2". The terminal condition (20) can therefore 
be viewed as the solution of 2m nonlinear equations in the 2m components of A. 

Newton's method is a well known computational method for the solution of several nonlinear equations in several variables, 
but reliable numerical convergence to a root requires knowledge of the approximate location of the root. We use a method 
of approximating the location of the root through the solution of the related impulsive problem [21]. The related impulsive 
problem provides a very good approximation if the number p in (18) is sufficiently large. The mathematical justification that 
the unbounded thrust problem can be viewed as the limit of the bounded thrust problem as f l  tends to infinity is due to Neustadt 
[24]. The remarkable accuracy of the root for large values of /3 is also partly due to the fact that the form of the primer vector 
function is found to be identical for both problems! Compare q in Theorem 3.1 with its corresponding definition in section 
2.2.1 Having solved the boundary-value problem for a large value of p, one can then successively lower the value of p, solving 
the boundary value problem at  each step, until the solution is reached for the designated value of p. The whole sequence 
can usually be performed with only a microcomputer. The effectiveness of approximating a bounded thrust problem by an 
impulsive one and then lowering the bound in steps to solve the boundary value problem was demonstrated by Handelsman in 
1966 [33]. Starting iteratives for solution of the linear bounded thrust minimization problem can be obtained from solution of 
the related linear impulsive problem. A very attractive short cut is available, however, for many of the most useful problems 
in rendezvous and orbital maneuvers of spacecraft. For many problems in which t j  - to, I vo 1, and I vf I are not too large, 
nonsingular bounded thrust solutions consist of a t  most two short duration thrusting intervals separated by a relatively large 
coasting interval. Starting iteratives are obtained for these problems from the related impulsive problem having at most two 
impulses at the end points, an initial increment Avo E Xrn at to and a terminal increment Avj E ?Rrn at  t f .  Computation of 
Avo and Avj requires only the solution of the following set of 2m linear equations as determined by (14) and in [21] 

548 



o s  

We now outline an algorithm for computation of certain two-point boundary-value problems associated with the solution of the 
optimal linear bounded thrust problem. The method is applicable to problems in which yo, y j ,  and T satisfying the following: 

1. A n o n s ~ n g u ~ ~ ~  solution over the interval T exists connecting the points yo and y j  and these points are not sufficiently 
close to points in which the only solutions are singular. It has been shown that, in some situations, the only solutions 
connecting yo and flr are singular 1321, and in these situations the algorithm is not applicable. Since the definition of q in 
Section 2.2.1 and (28) show that singular solutions are characterized by 

XTR(t)R(t)TX = 1 (t  E T) (33) 

it is frequently possible to determine which elements X E R2" determine singular solutions and avoid those cases. 

2. The magnitudes I vo I ,  I wj 1, and t j  - to are small enough that nonsingular solutions consist of relatively short initial and 
terminal thrusting intervals separated by a relatively long coasting interval. It has been shown for the linear problem of 
optimal maneuvers near circular orbit that given any nontrivial interval T there are boundary values where more than 
two thrusting intervals occur; also more can occur for large values of t j  - to [8]. It is conjectured for that problem that 
no more than four thrusting intervals can occur during one period of the circular orbit [28]. For problems such as these 
the algorithm is not applicable, and the boundary-value problem is more difficult. 
The algorithm is outlined below. The process should generally begin using a much larger value of the number p than is 
given in the problem. 

Step 1. The linear system (32) is solved for Avo and Avj. In some cases the 2m x 2m matrix (R(t ,) ,  R ( t j ) )  is singular. In 

Step 2. The length of the initial and terminal thrusting intervals At, and Atj are approximated by 
these cases the value of t j  should be changed by a small amount so that the resulting matrix is nonsingular. 

Ato =I Avo I At, =I Avj I / P *  
The switches t,, and t , j  that define the coasting interval are 

tso = to + At,, t s j  = t j  - Atj .  

Step 3. The values t ,  and t j  are replaced in (32) respectively by t,, and t , j ,  and steps 1 and 2 are repeated. If the 
magnitude of the difference in sucessive values of tSo and t , j  satisfies a specified tolerance we proceed to step 4, otherwise steps 
1 and 2 are repeated. If the tolerance is not satisfied after a specified number of loops, the value of p can be increased and the 
process can begin again at  step 1. 

Step 4. The current values of Avo and Avj are used to calculate the primer vector at the current values of t,, and t , j  

respectively. 

These equations hold for the related impulsive problem defined on the interval [t,,, ts j ]  [21]. 
q ( L )  = -Avo/ I Avo 1, g ( t s j )  = -Avj /  I Avj I 

Step 5. Utilizing the definition of q in Section 2.2.1 we can find the element X by solving the linear equations 

If the matrix of coefficients is singular a very small adjustment in l:j is made, and the system is then solved for A. 
Step 6. Knowing A, the primer vector and its derivative are determined: The' control function u can be calculated from 

(25) where f ( t )  is zero on the interval [tdO,tsj] and f(t) = 1 otherwise.'The vector y(tj),,izr obtained through (11). If numerical 
integration of the differential equations describing y and q is preferred, then the initid values of the primer and its derivative 
are obtained from 

q(to) = R(t0)TX, q'(t,) = R'(t,)TX. 
Step 7. The above yields y ( t j ) .  If this is sufficiently close to a root of the equation y ( t j )  - y j  = 0, then Newton's method 

with iteration on X can be applied to determine a root. Stkndard commercial packages are available using shooting methods for 
numerical determination of the root, as well as performing numerical integration of the differential equations for q and y if this 
approach is preferred, and solving the systems of linear equations used herein [34]. After determination of the root, the value of 
p is lowered, and a root is again found using the preceeding solution for starting iteratives. This process is repeated until p is 
lowered to the correct value. 
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We present some of the results for a 90 minute circular satellite orbit (w = 2r/3600 rad./sec.), a spacecraft mass of 3400kg, and 
a flight time of 600 sec. (to = 0, t j  = 600). Although the maximum thrust of the spacecraft is 267N, we assumed higher values 
initially, solved the boundary value problem, and successively lowered the thrust to its actual value. 

A typical example of the use of this algorithm is presented in figures 1 to 8. The transition from near impulsive to a low 
bounded thrust is shown graphically on the switching function curves where the portion above zero corresponds to thrusting 
and the portion of the curve below zero corresponds to coasting in figures 1 to 4. The trajectories required for fuel optimal 
rendezvous corresponding to these different thrust values are presented in figures 5 to 8. This particular calculation can be 
started at either 4000N thrust where the maneuver requires thrusting for only 3% of the time which closely approximates the 
impulsive solution, or at l O O O N  where the maneuver requires thrusting for 11% of the time. In either case the estimates of the 
starting values of Lawden’s primer vectors are close enough to obtain a converged solution. The thrust is then systematically 
lowered after each converged solution until a thrust of 267N is reached that requires thrusting for 65% of the maneuvering time. 

In general the starting primer vectors change very slowly as the maximum thrust is changed as long as the magnitude of 
thrust is large enough for the thrusting time to be less than 10% of the flight time. When the impulsive calculation predicts 
thrusting times greater than 20% of the flight time, then the changes in the magnitude of thrust between converged solutions 
produce rapidly increasing changes in the starting primer vectors. As the thrusting time approaches 50% of the flight time, 
progress becomes difficult unless the thrust magnitude is limited to small changes between converged solutions. 

The calculations were made on an IBM PS/2 Model 50 computer which is on a Token Ring Network with IBM Personal 
Computer DOS Version 3.30. The programs are written and compiled with Microsoft(R) Fortran Optimizing Compiler Version 
4.10. The calculations are in single precision. 

4 A Fundamental Matrix Solution for Spacecraft Maneuvers Near a 
General Keplerian Orbit 

4.1 Lawden’s Integral and Some Previous Work for Noncircular Keplerian Orbits 
As early as 1954 Lawden [35] introduced a change of the variable from time to the true anamaly in describing the equations of 
motion of a rocket under the action of an inverse square law of force, and in order to evaluate his primer vector during a null 
thrust (Keplerian) interval, he introduced the integral 

where 6 denotes the true anamaly at time t and 60 denotes its initial value at time to.  In 1963 this integral appears again in his 
book [25] in connection with the solution of his equations (5.30) - (5.32) which determine the transformed primer vector along 
a Keplerian interval. 

These same equations, with only minor modifications, appeared at approximately the same time in the work of De Vries 
[9] to describe the relative motion of two nearby points in elliptical orbits. Except for changes in the coordinate systems, a 
nonhomogeneous version of these equations was used by Tschauner and Hempel [lo] to describe the rendezvous of a spacecraft 
with a target in elliptical orbit. These equations were used again by Tschauner E141 and were investigated through a change of 
variable from the true anamaly to the eccentric anamaly. Restricted or generalized forms of these equations were employed by 
Shulman and Scott [ll], Euler and Shulman [13], and Euler [12] for rendezvous of a spacecraft with an object in elliptical orbit. 
The approach of Tschauner and Hempel, as used by Weiss [15] in 1981 was found to be effective in constructing two-impulse 
solutions to rendezvous problems involving objects in elliptical orbits of high eccentricity [16]. In all these studies, the solution 
of Lawden’s equations was not investigated through the use of the integral I(@) of Eq. (34). 

Eckel’s paper [36] of 1982 returns to the integral I ( 6 )  with Lawden’s equations to determine the primer vector and solve 
the problem of optimal impulsive transfer between noncoplanar elliptical orbits. Recently Carter and Humi [17], and Carter [29] 
used this integral in solving Lawden’s equations to determine both the primer vector and the structure of an optimal rendezvous 
of a spacecraft with an object near a point in general Kepierian orbit. 

The previously mentioned studies demonstrate a variety of applications and interpretations of Lawden’s equations. They 
also indicate considerable variation in the form of the solution of these equations. 

We prefer those forms which include the integral I(@) because it appears naturally in the most straightforward approaches 
to solving Lawden’s differential equation. This integral is singular, however, at  values where the true anamaly is a multiple 
of r. Even though these are removable singularities, they may lead to computational instabilities in the solution. Especially 
bothersome is the fact that computational problems can occur where the true anamaly is near zero. These problems are avoided 
in the work of Tschauner and Hempel [10,14] and others [ll-13, 151 who use a form of solution that does not involve I ( 6 ) ,  but 
their work is confined to elliptical orbits. 
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The approach presented in this paper i s  to modify the original form by replacing I (6)  by a related integral J(6), thereby 
removing all singularities and computational instabilities. The resulting solution, in terms of J(6 ) ,  is identical for hyperbolic, 
parabolic, or noncircular elliptic orbits, but the particular case determines the nature of the closed-form evaluation of .I(@). 

4. ans ations of erian it 
We consider a rotating coordinate frame centered at a point moving in a Keplerian orbit about a central attractive body. The 
positive 2 2  axis is directed away from the central body, the positive 21 axis is perpendicular to it and opposes the direction 
of the motion, and the 23 axis completes a right handed coordinate system. We consider the equations of motion of a point 
mass spacecraft relative to this coordinate system in which the Newtonian gravitational force function has been linearized about 
the point in Keplerian orbit. The independent variable is the true anamaly B defined on the closed interval 60 5 6 B f  
which we denote by 8. All vectors are assumed to be elements of three dimensional Euclidean space. The position vector 
.(e) = (zl(6), ~ 2 ( 6 ) ,  23(6)) of the spacecraft in this coordinate system is transformed to the vector z(B) = (z1(6), zz(6), za(0)) 
by the equation 

z(6)  = .(+(e) (35) 
where 

.(e) = 1 + ecos(6) 
and e denotes the eccentricity of the Keplerian orbit. 

spacecraft 
This development which is presented in detail in previous work [17] results in the following transformed equations of the 

.:'(e) = 2z@) + ul(e)  

4 ( e )  = -z3(6) + ~ ~ ( 6 )  (37) 

4 0 )  = P ( W 6 )  (38) 

where the prime indicates differentiation with respect to 6,  and the vector u(6 )  = (ul(6),az(6),u3(6)) is given by 

In this expression the positive constant k is L6T,/p'm where L is the magnitude of the constant angular momentum of 
the object in Keplerian orbit divided by its mass, T, is the maximum magnitude of the thrust of the spacecraft, p is the product 
of the universal gravitational constant and the mass of the central body of attraction, and rn is the mass of the spacecraft. The 
vector u(8) = (u,(e),uz(e), ua(8)) represents the normalized thrust of the spacecraft and is subject to the constraint 

1 4 0 )  I5 1. (40) 

Since this investigation is restricted to linear equations, we shall assume that the mass rn is constant. Previous investigations, 
however, have taken into account the change in mass of the spacecraft as propellant is consumed [29,18]. 

Equations (37) are essentially the equations of Tschauner and Hempel [lo], and their homogeneous form represents essen- 
tially the equations of De Vries [9] and Lawden [25]. 

Here the class of admissible control functions is the set of all Lebesque measurable vector valued functions that satisfy (40) 
a.e. on 8. The optimal rendezvous problem associated with a point in Keplerian orbit is defined as the determination of an 
admissible control function u that minimizes the cost function 

J[u] = 1; -dB 

subject to the conditions (37-40) which are valid a.e. on 0 and the end conditions 

z(60) = 20, z'(60) = 0 0 ,  

Z(6f) = Zf, z'(6,) = V f  (42) 
where the vectors zo and zf define the initial and terminal values of the transformed position z, and wo and v f  define the initial 
and terminal values of its derivative. 

Theorem 3.1 is not directly applicable to this problem because (38) and (4.2) do not conform to (18) and (21) respectively. 
The theorem can be generalized to include this problem, however, and the results are very similar if the primer vector q(B) is 
replaced by t ~ e  transformed primer Q(6) = q(B)/r(B) as in previous work. [17,29] 
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If we define the state vector function y : 0 -.) R6 by y(e) = zr(e)T)T, then equations (37-39) can be put in a form 
similar to (18)  where p(e) replaces p and 

O 
0 ° 1  E 0 0 0 1 0  

0 

0 0 -1 -2 0 O 0 0  "1 o 3/r(e) o 

Here 6 replaces t and 0 replaces T. By defining yo = ( z r , ~ ? ) ~  and y j  = (zT,t$)' the boundary conditions (41)  satisfy (19, 

In order to obtain a fundamental matrix solution @(e) associated with this problem, we solve the homogeneous form of 
the system (37), that is, we find the complete solution where a(@) is identically zero. This solution was found by Lawden [35] in 
terms of the integral I(@). Using a similar form of solution [17], we obtain 

20). 

zl ( e )  = -blr(e)2 - b 2 [ r ( e ) 2 ~ ( e )  + cote] - b3sin6[1+ r(e)]  + b4 

z2(e) = er( l )s ine[bl  + b 2 q e ) 1  - b 3 r ( e ) ~ ~ s e  

z3(e) = bscos0 + b6sine (44) 
where b1, b2, ba, b4, bs, be are arbitrary constants of integration. 

forming from .(e) to .(e) using (35), and is a generalization of the work of De Vries. [9]. 
These equations can be used to define the relative motion of two nearby points in noncircular Keplerian orbits by t rans  

4.3 New Form of the Rendezvous Equations and the Resulting Fundamental Matrix 
Solution 

The Equation (43) has removable singularities at integer multiples of 7r which we denote by n7r. These singularities appear in 
the expressions I ( @ )  and cote. Computation is troublesome at or near these singularities. These computational instabilities can 
be removed. If we integrate (34) by parts, it becomes 

which holds except at the singularities of I (0)  where c is a constant of integration and 

It is observed that the integral J ( 0 )  has no singularities. It follows from the continuity of J ( 0 )  that 

aeJ(n7r) + c = lim 
e-na (47) 

so that the singularities in (43) are removed. I t  follows that there are no singularities if solutions of (37) are stated in terms of 
J ( 0 )  instead of I(@). [18] With these changes the solution (43) of the unpowered equations of motion becomes 

z l (0)  = -r(0)2[bl + 2b2eJ(B)] - b3[1+ r ( e ) ] s i d  + b4 

b2e 
.(e) 

~ ~ ( 0 )  = r(6)sin@[ble + 2b2e2J(6')] - cos@[- + b3r(B)] 

%,(e) = bscose i- b 6 S i d .  (48) 
These equations are valid for a l l  noncircular Keplerian orbits. The integral J ( B )  can be evaluated in closed form, and the 
particular form is determined from the type of orbit. Equations (47) are more useful than equations (43). If we differentiate 
(47) we obtain the vector-valued function z' : 0 --+ e. The pair z!(B)T)T defines the state vector y(B). The equation 
z(0)  from (47) and its derivative %'(e) together are represented by 

y(e) = ia(e)b (ea@) (49) 
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where b = ( b ~ ,  bz,  b3, b a ,  bs ,  
follows from (47) that 

is a constant vector in R6 and @(e) is a fundamental matrix solution associated with A(@). It 

-z , (e)zJ(e)  -(1 + r(e))sine 1 0 
0 0  

r~r(e) . ineJ(e)  - acose/r(e) e - Zr(8)co.e 0 0 
0 0 o cos8 ] . 

ler(e)rineJ(e) - cose/r (e )  --r(e)cose 

(50) 
ae(r(e)co.e - e s i n z e ) ~ ( e ) +  ?- (r(e)+ecoae)sine o o 0 

0 0 0 -sine cos0 
r(@) 

@(e) = 

Our goal has been to determine this matrix function. If the problem is restricted to a plane, we delete the third and sixth row and 
the fifth and sixth column. The resulting 4~ 4 matrix function is a fundamental matrix solution for the planer problem. There 
are several approaches3 to the problem of inverting a fundamental matrix solution and applying a generalization of the preceeding 
theory. These should result in new methods of computing either impulsive or bounded thrust trajectories of a spacecraft near 
Keplerian orbit. Further results in this area are forthcoming. 

4.4 Closed-Form Evaluation of The New Integral 
We show here that the integral J ( e )  can be evaluated easily if we transform from the true anamaly 0 to the eccentric anamaly 
E for elliptical orbits or its analog H for hyperbolic orbits. 

4.4.1 Elliptical Orbits 

For orbits in which 0 < e < 1 we have the relationship between the eccentric anomaly E and true anomaly 0 given by 

cosE - e 
1-ecosE 

case = 

where sin 0 and sin E always have the same algebraic sign. Changing the variable to E in (45) establishes the much simpler 
integral 

J ( e )  = (1 - e2)-5/2 L:(1- ecost)(cost - e)dt (52) 

where EO is the eccentric anomaly at 80. This integral is easily evaluated using elementary methods to obtain 

1 (53) 
e 
2 

J ( 0 )  = -(1 - e2)-’I2 [ ;E - (1 + e2) sin E + - sin E cos E + C 

where C is an arbitrary constant. 

4.4.2 Hyperbolic Orbits 

In a similar way we can evaluate J ( e )  for orbits in which e > 1. We introduce the analog of the eccentric anomaly H by the 
relationship 

(54) 
e - cosh H 

ecosh H - 1 
case = 

where sin 0 and sinh H always have the same algebraic sign. With this substitution the integral defined by (45) becomes 

J(8 )  = (e2 - (e cosh 4 - 1)(e - cosh ()de L: 
where Ho denotes the value of H at Bo. This integral also is easily evaluated. The result is 

cosh H + C ]  e sinh H J (e )  = -(ez - 1 ) - ~ / 2  [ - 3;H - (1 + e’) sinh H + - 
2 

(55) 

where again C denotes an arbitrary constant. 

4.4.3 Parabolic Orbits 

For the case in which e = 1, the integral J ( 0 )  can be evaluated directly using the identity cos e = 2 cos’ - 1. The result is 

i e i  e J ( e )  = -tan- - - - tan5-  + c 
4 2 2 0  2 (57) 

where C is again an arbitrary constant. Since this expression is only defined on the region .(e) > O(i.e.cosB > -l), it has no 
singularities. 

3This matrix was inverted by Prof. Mayer Humi of the Mathematid Sciences Department at Worchester Polytechnic Institute using 
MAXYSMA. The author has also inverted this matrix using the adjoint system to that defined by (42). Numerical inversion is also feasible. 

554 



[l] Wheelon, A.D.,“Midcourse and Terminal Guidance,” Space Technology, Wiley, New York, 1959. 

[2] Clohessy, W.H., and Wiltshire, R.S., “Terminal Guidance System for Satellite Rendezvous,” Journal of the Aerospace 
Sciences, Sept. 1960, pp. 653-658, 674. 

133 Geyling, F.T., “Satellite Perturbations from Extra-Terrestrial Gravitation and Radiation Pressure,” Journal of the Franklin 
Institute, Vol. 269, 1960, pp. 375-407. 

[4] Spradlin, L.W., “The Long-Time Satellite Rendezvous Trajectory,” Aerospace Engineering, Vol. 19, 1960, pp. 32-37. 

[5] Tschauner, J., and Hempel, P., “Optimale Beschleunigungsprogramme fiir das Rendezvous-Manijver,” Astronautica Acta, 

[6] Prussing, J.E., “Optimal Four-Impulse Fixed Time Rendezvous in the Vicinity of a Circular Orbit,” AIAA Journal, Vol. 7, 

[7] Prussing, J.E., “Optimal Two-and Three-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit,” AIAA 
Journal, Vol. 8, pp. 1221-1228, 1970. 

[8] Carter, T., “Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point in Circular Orbit,” Journal of Guidance, Control, 
and Dynamics, Nov./Dec., 1984, pp. 710-716. 

[9] De Vries, J.P., “Elliptic Elements in Terms of Small Increments of Position and Velocity Components”, AIAAJournal, Vol. 

[lo] Tschauner, J., and Hempel, P., “Rendezvous zu einemin Elliptischer Bahn Umlaufenden Ziel”, Astronautica Acta, Vol. 11, 

[ll] Shulman, Y., and Scott, J., “Terminal Rendezvous for Elliptical Orbits”, AIAA Paper No. 66-533, AIAA Fourth Aerospace 

[12] Euler, E.A., “Optimal Low-Thrust Rendezvous Control,” AIAA Journal, Vol. 7, pp. 1140-1144, 1969. 

[13] Euler, E., and Shulman, Y., “Second Order Solution to the Elliptical Rendezvous Problem,” AIAA Journal, Vol. 5, 1967, 

[14] Tschauner, J., ”Elliptic Orbit Rendezvous,” AIAA Journal, Vol. 5, 1967, pp. 1110-1113. 

[15] Weiss, J., “Solution of the Equation of Motion for High Elliptic Orbits,” TN PRV-5 No. 7/81, ERN0 Reumfahrttechnik, 

[16] Wolfsberger, W., Weiss, J., and Rangnitt, D., “Strategies and Schemes for Rendezvous on Geostationary Transfer Orbit,” 

[17] Carter, T., and Humi, M., “Fuel-Optimal Rendezvous Near a Point in General Keplerian Orbit”, Journal of Guidance, 

[18] Carter, T., “New Form for the Optimal Rendezvous Equations Near a Keplerian Orbit,” Journal of Guidance, Control, and 

[19] Marec, J.P., Optimal Space Trajectories, Elsevier, New York, 1979. 

[20] Szebehely, V., Theory of Orbits, Academic Press, New York, 1967. 

[21] Carter, T., “Optimal Impulsive Space Trajectories Based on Linear Equations,” Accepted for publication in the Journal of 

[22] Carter, T. and Brient, J., “Optimal Bounded Thrust Space Trajectories Based on Linear Equations,” Submitted for publi- 

E231 Neustadt, L.W., “Optimization, A Moment Problem, and Nonlinear Programming,” SlAM Journal of Control, Vol. 2, 1964, 

[24] Neustadt, L.W., “A General Theory of Minimum-Fuel Space Trajectories,” SIAM Journal of Control, Vol. 3, 1965, pp. 

1251 Lawden, D.F., Optimal Trajectories for Space Navigation, Butterworths, London, 1963. 

E261 Lion, P.M., “A Primer on the Primer”, STAR Memo No. I ,  Department of Aerospace and Mechanical Sciences, Princeton 

[27] Lion, P.M., and Handelsman, M., “Primer Vector on Fixed-Time Impulsive Trajectories,” AIAA Journal, Vol. 6, No. 1, 

[28] Carter, T., “How Many Intersections Can a Helical Curve Have With the Unit Sphere During One Period?” Unsolved 

Vol. 10, pp. 296-307, 1964. 

pp. 928-935, 1969. 

1, pp. 2626-2629, 1963. 

pp. 104-109, 1965. 

Sciences Meeting, Los Angeles, June, 1966. 

pp. 1033-1035. 

Bremen, Nov., 1981. 

Acta Astronautica, Vol. 10, 1983, pp. 527-538. 

Control, and Dynamics, Nov./Dec., 1987, pp, 567-573. 

Dynamics, Jan./Feb., 1990. 

Optimization Theory and Applications. 

cation. 

pp. 33-53. 

317-356. 

University, April 21, 1967. 

Jan. 1968. 

Problems Section, The American Mathematical Monthly, Vol. 93, pp. 41-44, Jan., 1986. 

555 



[29] Carter, T., “Effects o 
Control, and Dynam~ 

Congress-Madrid, Oct., 1966. 

1-24, Princeton University Press, Princeton, N.J., 1960. 

of Optimization Theory and Applications, Vol. 54, No. 3, Sept., 1987, pp. 447-470. 

Journal, Vol. 4, June 1966, pp. 1077-1082. 

Loss on Fuel-Opt& Rendezvous Near Keplerian Orbit” , Journa~ of G ~ ~ ~ ~ n ~ ,  

., “Optimal Rocket Tkajectories with Subarcs of Intermediate Thrust,” 17th International Astronautical 

[31] LaSalle, J.P., “The Time Optimal Control Problem”, Contributions to the Theory of Nonlinear OsciNations, Vol. 5, pp. 

[32] Carter, T., “Singular Fuel-Optimal Space Trajectories Based on a Linearization About a Point in Circular Orbit,” Journal 

[33] Handelsman, M., “Optimal Freespace Fixed-Thrust Trajectories Using Impulsive ‘Ikajectories as Starting Iteratives” , AIAA 

[34] Press, W.H., et all Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, 1986. 
[35] Lawden, D.F., “hndamentals of Space Navigation”, Journal of the British Interplanetary Society, Vol. 13, pp. 87-101, 1954 

[36] Eckel, K.G., “Optimal Impulsive Transfer with Time Constraint”, Astronautica Acta, Vol. 9, pp. 139-146, 1982 

556 



atio e 

Flight Mechanics/Estimation Theory Symposium - 
1990 

7. Author(s) 

Thomas Stengle, Editor 

9. Performing Organization Name and Address 

Flight Dynamics Division 
Goddard Space Flight Center 
Greenbelt, Maryland 20771 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D. C. 20546-0001 

3. Recipient's Catalog No. 

5. Report Date 

December 1990 

6. Performing Organization Code 

554 

8. Performing Organization Report No. 

9 1B00018 

10. Work Unit No. 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Conference Publication 

14. Sponsoring Agency Code 

15. Supplementary Notes 

Thomas Stengle is Head, Attitude Analysis Section, Flight Dynamics Analysis 
Branch at the Goddard Space Flight Center, Greenbelt, Maryland. 

76. Abstract 

This conference publication includes 32 papers and abstracts presented at the 
Flight Mechanics/Estimation Theory Symposium on May 22-24, 1990. Sponsored 
by the Flight Dynamics Division of Goddard Space Flight Center, this symposium 
features technical papers on a wide range of issues related to orbit-attitude 
prediction, determination and control; attitude sensor calibration; attitude 
determination error analysis; attitude dynamics; and orbit decay and maneuver 
strategy. Government, industry, and the academic community participated in 
the preparation and presentation of these papers. 

17. Key Words (Suggested by Author(s)) 
Flight Mechanics Estimation Theory Unclassified-Unlimited 
Attitude Determination Subject Category 
Mission Analysis 
Spacecraft Dynamics 
19. Security Classif. (of this report) 

18. Distribution Statement 
Orbit Det erminat io.1 

20. Security Classif. (of this page) 21. No. of pages 22. Price 

Unclassified Unclassified 568 A24 



bS!ZigS an f%s Paid 
National Aeronautics and 
Space Administration 
NAS4-451 

Official Business 
Penalty for Private Use $300 

.,. . 
-. .:. 


