A Verified Model of Fault Tolerance

John Rushby

Computer Science Laboratory
SRI International
Transient Faults are Common and Important

NASA-LaRC 1988 FCDS Technology Workshop:

- A number of DFCS are highly susceptible to radiated EM energy (composite materials provide less shielding, densely packed VLSI more susceptible to SEU)

- Designers must prove that their design will always recover from any and all non-hard faults reasonably quickly
Goal

• A model of a replicated system with exact-match voting

• A fault model that includes transients

• A theorem that establishes the conditions under which the system provides fault tolerance

• A formal specification of the model and a mechanically checked verification of the theorem that is consonant with the journal-level presentation
Status

- Model based closely on that developed by Butler, Caldwell, and DeVito at LaRC, but simplified and more abstract
 - Does not model frames and cycles
 - Does not model sensor failure or loss of frame counter

- Model and theorem described in draft journal-level report

- Specification and verification in Ehdm completed (Jim Caldwell provided stimulation and help in the proof)

- Currently reconciling the two

- Next step is to address the (over) simplifications
General Idea

committed-to(c)

x = members of foundation(c)
Sets

sets: MODULE [T: TYPE]
EXPORTING ALL
THEORY

set: TYPE IS function[T -> bool]

x, y, z: VAR T
a, b, c: VAR set

union: function[set, set -> set] ==
(LAMBDA a, b : (LAMBDA x : a(x) OR b(x)))

subset: function[set, set -> bool] =
(LAMBDA a, b : (FORALL z : a(z) IMPLIES b(z)))

member: function[T, set -> bool] == (LAMBDA x, b : b(x))

empty: function[set -> bool] = (LAMBDA a : (FORALL x : NOT a(x)))

emptyset: set == (LAMBDA x : false)

fullset: set == (LAMBDA x : true)

extensionality: AXIOM
(FORALL x : member(x, a) = member(x, b)) IMPLIES (a = b)
Cardinality

m, n, p: VAR nat

card: function[set -> nat]

card_ax: AXIOM
 card(union(a, b)) + card(intersection(a, b)) = card(a) + card(b)

card_subset: AXIOM subset(a, b) IMPLIES card(a) <= card(b)

card_empty: AXIOM card(a) = 0 IFF empty(a)

empty_prop: LEMA card(a) > 0 IMPLIES (EXISTS x: member(x, a))

card_prop: LEMA
 subset(a, c)
 AND subset(b, c)
 AND 2 * card(a) > card(c) AND 2 * card(b) > card(c)
 IMPLIES card(intersection(a, b)) > 0
Sensors etc.

C: TYPE

a, c: VAR C

cell_types: TYPE = (sensor_cell, actuator_cell, task_cell).

cell_type: function[C -> cell_types]

sensors: TYPE FROM C WITH (LAMBDA c : cell_type(c) = sensor_cell)

actuators: TYPE FROM C WITH (LAMBDA c : cell_type(c) = actuator_cell)

active_tasks: TYPE FROM C WITH
 (LAMBDA c : cell_type(c) /= sensor_cell)

voted: TYPE FROM C

voted_ax: AXIOM
 (c IN actuators IMPLIES c IN voted)
 AND (c IN voted IMPLIES NOT (c IN sensors))

Gbar: function[C, C -> bool]

sensor_ax: AXIOM (EXISTS a : Gbar(a, c)) IFF NOT (c IN sensors)
Simple Machine

\[\text{step}(\sigma, c, n) = \sigma \text{ with } [c := \text{if } c \in C \text{ then } \text{sensor}(c)(n) \text{ else } \text{task}(c)(\sigma)] \]

\[\begin{align*}
\text{run}(0) &= (\lambda c : \perp) \\
\text{run}(n + 1) &= \text{step}(\text{run}(n), \text{sched}(n + 1), n + 1).
\end{align*} \]

\text{step: function [state, C, M -> state] =}
\text{(LAMBDA s, c, m : s)
\quad \text{WITH } [c :=
\quad \quad \text{IF } c \text{ IN sensors THEN sensor}(c)(m) \text{ ELSE task}(c)(s) \text{ END IF}])}

\text{idemtity: function [M -> nat] = (LAMBDA m : m)}

\text{run: RECURSIVE function [M -> state] =}
\text{(LAMBDA m :)
\quad \text{IF } m = 0 \text{ THEN undefined ELSE step}(\text{run}(m - 1), \text{sched}(m), m) \text{ END IF)}
\text{BY identity}
TCC's

(* Subtype TCC generated for the first argument to task in dependency *)

dependency_TCC1: FORMULA
(c IN active_tasks AND (FORALL a : Gbar(a, c) IMPLIES s(a) = t(a)))
IMPLIES (cell_type(c) /= sensor_cell)

(* Subtype TCC generated for the first argument to sensor in step *)

step_TCC1: FORMULA (c IN sensors) IMPLIES (cell_type(c) = sensor_cell)

(* Subtype TCC generated for the first argument to task in step *)

step_TCC2: FORMULA
(NOT (c IN sensors)) IMPLIES (cell_type(c) /= sensor_cell)

(* Subtype TCC generated for the first argument to run in run *)

run_TCC1: FORMULA (m >= 0) IMPLIES (NOT (m = 0)) IMPLIES (m - 1 >= 0)

(* Termination TCC generated for run *)

run_TCC2: FORMULA
(m >= 0) IMPLIES (NOT (m = 0)) IMPLIES identity(m) > identity(m - 1)
Replicated Machine

\[\neg F(i)(n) \triangleright sstep(\rho, c, n)(i) = step(\rho(i), c, n), \]

\[\neg F(i)(n) \triangleright vote(\rho, c, n)(i) = \text{if } c \in C \setminus V \text{ then } \rho(i) \text{ with } [c := \text{maj}\{\rho(j)(c)|j \in R\}] \]
\[\text{else } \rho(i) \]

\[rstep(\rho, c, n) = vote(sstep(\rho, c, n), c, n). \]
Replicated Machine

sstep_ax: AXIOM
 NOT (F(i)(m)) IMPLIES sstep(rs, c, m)(i) = step(rs(i), c, m)

maj_ax: AXIOM
 (EXISTS A :
 2 * card(A) > card(fullset[R])
 AND (FORALL i : member(i, A) IMPLIES rs(i)(c) = x))
 IMPLIES maj(rs, c) = x

vote_ax: AXIOM
 NOT (F(i)(m))
 IMPLIES vote(rs, c, m)
 = IF c IN voted
 THEN rs WITH [(i)(c) := maj(rs, c)]
 ELSE rs END IF

rstep: function[rstate, C, M -> rstate] ==
 (LAMBDA rs, c, m : vote(sstep(rs, c, m), c, m))

rrun: RECURSIVE function[M -> rstate] =
 (LAMBDA m :
 IF m = 0
 THEN (LAMBDA i : undef)
 ELSE rstep(rrun(m - 1), sched(m), m) END IF)
 BY identity
Foundation etc.

\[
\text{foundation}(c) = \begin{cases}
\{c\} & \text{if } c \in (C_S \cup C_V) \\
\{c\} \cup \bigcup_{(a,c) \in \overline{G}} \text{foundation}(a) & \text{otherwise}
\end{cases}
\]

\[
\text{support}(c) = \begin{cases}
\{c\} \cup \bigcup_{(a,c) \in \overline{G}} \text{foundation}(a) & \text{if } c \in C_V \\
\text{foundation}(c) & \text{otherwise.}
\end{cases}
\]

\[
\text{committed-to}(c) = \min\{\text{when}(a) | a \in \text{support}(c)\}.
\]
Foundation etc.

foundation: RECURSIVE function[C -> set[C]] =
 (LAMBDA c :
 (LAMBDA a :
 c = a
 OR (NOT (c IN voted OR c IN sensors)
 AND (EXISTS b :
 Gbar(b, c) AND member(a, foundation(b))))))
 BY dowhen

backup: function[C -> set[C]] =
 (LAMBDA c :
 (LAMBDA a :
 (EXISTS b : Gbar(b, c) AND member(a, foundation(b))))))

support: function[C -> set[C]] =
 (LAMBDA c :
 (LAMBDA a :
 member(a, foundation(c))
 OR (c IN voted AND member(a, backup(c))))))

critical_times: function[C -> set[M]] ==
 (LAMBDA c : (LAMBDA t : member(sched(t), support(c))))

committed_to: function[C -> M] == (LAMBDA c : min(critical_times(c)));

15
OK and MOK

\[OK(i)(c) = (\forall n : \text{committed-to}(c) \leq n \leq \text{when}(c) \supset \neg \mathcal{F}(i)(n)). \]

\[MOK(c) = \exists \Theta \subseteq R, |\Theta| > r/2, i \in \Theta \supset OK(i)(c). \]

OK: function[R \to set[C]] =
(LAMBDA i :
 (LAMBDA c :
 (FORALL m :
 committed_to(c) <= m AND m <= dowhen(c)
 IMPLIES NOT F(i)(m))))

working: function[C \to set[R]] = (LAMBDA c : (LAMBDA i : OK(i)(c)))

MOK: function[C \to bool] =
(LAMBDA c : 2 * card(working(c)) > card(fullset[R]))
Theorem

If

$$\forall a : \text{when}(a) \leq \text{when}(c) \supset MOK(a),$$

then

$$\forall j : OK(j)(c) \supset \text{rrunto}(c)(j)(c) = \text{runo}(c)(c).$$

safe: RECURSIVE function[C -> bool] =
(LAMBDA c : MOK(c) AND (FORALL a : Gbar(a, c) IMPLIES safe(a)))
BY dowhen

correct: function[C -> bool] =
(LAMBDA c :
(FORALL j : OK(j)(c) IMPLIES \text{rrunto}(c)(j)(c) = \text{runo}(c)(c)))

the_result: THEOREM safe(c) IMPLIES correct(c)
Noetherian Induction

noetherian: MODULE [dom: TYPE, <: function[dom, dom -> bool]]

ASSUMING
 measure: VAR function[dom -> nat]
 a, b: VAR dom

 well_founded: FORMULA
 (EXISTS measure : a < b IMPLIES measure(a) < measure(b))

THEORY
 p, A, B: VAR function[dom -> bool]
 d, d1, d2, d3, d4: VAR dom

 general_induction: AXIOM
 (FORALL d1 : (FORALL d2 : d2 < d1 IMPLIES p(d2)) IMPLIES p(d1))
 IMPLIES (FORALL d : p(d))

 mod_induction: THEOREM
 (FORALL d3, d4 : d4 < d3 IMPLIES A(d3) IMPLIES A(d4))
 AND (FORALL d1 :
 (FORALL d2 : d2 < d1 IMPLIES (A(d1) AND B(d2)))
 IMPLIES B(d1))
 IMPLIES (FORALL d : A(d) IMPLIES B(d))

PROOF
 mod_proof: PROVE mod_induction d1 <- d1@p1, d3 <- d1@p1, d4 <- d2
 FROM general_induction p <- (LAMBDA d : A(d) IMPLIES B(d))
END noetherian
The Proof

correctness_proof: MODULE
USING correctness, voted_step, nonvoted_step, sensor_step,
 noetherian[C, Gbar]
PROOF
 a, c: VAR C

 discharge_well_founded: PROVE well_founded measure <- dowhen FROM
 Gbar_when c <- b

inductive_step: LEMMA
 (FORALL a : Gbar(a, c) IMPLIES safe(c) AND correct(a))
 IMPLIES correct(c)

almost_final_proof: PROVE inductive_step a <- a@p7 FROM
 sensor_inductive_step, voted_inductive_step, nonvoted_inductive_step,
 induction_body a <- a@p1, induction_body a <- a@p2,
 induction_body a <- a@p3, induction_body

final_proof: PROVE the_result FROM
 mod_induction A <- safe, B <- correct, d <- c, d2 <- a@p3,
 safe a <- d4@p1, c <- d3@p1,
 inductive_step c <- d1@p1

END correctness_proof
Summary

- Formal specification and verification revealed typos in the original report

- Exposed omission in original proof

- Led to stronger theorem and more elegant proof (using Noetherian rather than ordinary induction)

- Confirmed that Ehdm has the capability to specify interesting and useful properties in a direct, natural, and readable manner

- Proofs were hard (three intensive man-weeks, 92 lemmas); I haven’t yet gone back to see why that was so

- We have the beginnings of a formally verified model for a fault tolerant operating system