
SEL-90-O02

SOFTWARE ENGINEERING LABORATORY SERIES SEL-90-002

THE CLEANROOM CASE
STUDY IN THE SOFTWARE

ENGINEERING LABORATORY:
PROJECT DESCRIPTION AND

EARLY ANALYSIS

MARCH 1990

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created for the purpose of investigating the effectiveness of

software engineering technologies when applied to the development of applications

software. The SEL was created in 1977 and has three primary organizational

members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in

the GSFC environment; (2) to measure the effect of various methodologies, tools,

and models on this process; and (3) to identify and then to apply successful devel-

opment practices. The activities, findings, and recommendations of the SEL are

recorded in the Software Engineering Laboratory Series, a continuing series of

reports that includes this document.

The primary authors of this document are

_Scott Green

Ara Kouchakdjian

Victor Basili

David Weidow

(NASA/GSFC)

(University of Maryland)

(University of Maryland)

(NASA/GSFC)

Additionally, the following persons contributed significantly:

Richard Burley

James Jeletic

Jon Valett

(NASA/GSFC)

(NASA/GSFC)

(NASA/GSFC)

Single copies of this document can be obtained by writing to

Systems Development Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

..°

111

581o PRPC_,DI,:,,Li PAGE E_LA[',IK NOT FILMED

ACKNOWLEDGMENTS

The authors would like to thank Frank McGarry of NASA/GSFC for his assistance

in making the Cleanroom case study possible. We would also like to thank
Michael Dyer and F. Terry Baker of IBM Systems Integration Division (IBM-SID)

for their time and advice, before and during the project.

5810

V

PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

This case study analyzes the application of the Cleanroom software development

methodology to the development of production software at the National Aeronau-

tics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The

Cleanroom methodology emphasizes human discipline in program verification to

produce reliable software products that are "right the first time."

Preliminary analysis of the Cleanroom case study shows that the method can be

applied successfully in the FDD environment and may increase staff productivity

and product quality. Compared to typical Software Engineering Laboratory (SEL)

activities, there is evidence of lower failure rates, a more complete and consistent

set of inline code documentation, a different distribution of phase effort activity,

and a different growth profile in terms of lines of code developed.

5810

vii

t

EXECUTIVE SUMMARY

E.1 INTRODUCTION

The Software Engineering Laboratory (SEL) at the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) investigates the effec-

tiveness of software engineering technologies when applied to the development of

applications software within GSFC's Flight Dynamics Division (FDD). One such

technology currently being examined by the SEL is the Cleanroom software devel-

opment methodology. There are several significant differences between the SEL

Cleanroom model and the standard SEL development methodology, including the

following items:

• Cleanroom testers and developers are on completely separate teams.

• Cleanroom developers have no access to the mainframe computer for

compilation and testing purposes.

• Cleanroom developers rely on code reading instead of unit testing to

verify correctness of the software prior to system testing.

• Cleanroom testers use a statistical testing approach.

E.2 OBJECTIVES AND SCOPE

This case study analyzes the application of the Cleanroom methodology on part of

a lar[_e ground support system used in mission support of attitude determination

requirements. The system selected for the study was the Coarse/Fine Attitude

Determination Subsystem (CFADS) of the Upper Atmosphere Research Satellite

(UARS). The completed system contained approximately 34,000 source lines of

primarily FORTRAN code. The major goals of the study were to

• Assess the process used in the SEL Cleanroom model with respect to

team structure, team activities, and effort distribution

• Analyze the products of the SEL Cleanroom model and determine the

impact on measures of interest, including reliability, productivity, overall

life-cycle costs, and software quality

• Analyze the residual products in the application of the SEL Cleanroom

model, such as fault distribution, error characteristics, system growth,

and computer usage

E.3 PRELIMINARY ANALYSIS

The following statements summarize this report's findings concerning preliminary

analysis of the Cleanroom methodology and its application in the FDD:

• The project members were able to successfully apply a tailored version of

the Cleanroom methodology.

5810

iX

PRL=CEDING PAGE BLANK NOT FILMED

The Cleanroom methodology enhances a "team" development approach

and minimizes individual programming styles.

Preliminary analysis of key measures indicates an increase in productiv-

ity and reliability and a decrease in rework effort, as compared with

typical SEL projects.

The Cleanroom effort distribution shows a significant increase in design

effort and decrease in coding effort.

Informal design reviews held by the development team appeared to,_e an
effective method of early fault detection.

Less than one-third of the faults uncovered in the code-reading process

were found by multiple code readers.

O The breakdown of effort spent in code writing versus code reading was

approximately even, as compared with a typical SEL ratio of 6 to 1 in

favor of code writing.

All team members indicated a willingness to reapply the methodology on

future projects.

E.4 CONCLUSIONS

Basecl on the findings indicated in the preliminary analysis of the project, the fol-

lowing conclusions have been drawn:

The Cleanroom methodology can be applied successfully in the FDD en-

vironment, but additional tailoring is required.

• The methodology had a favorable impact on all key measures of interest.

Early concerns, such as the team's experience level, the unstable specifi-

cations environment, and the psychological impact of the methodology on

team members, appeared to have little or no impact on the application of

the methodology.

The separation of teams forced the developers to apply a more thorough

effort in design and code verification.

The impact of the testing approach cannot be analyzed fully until the

project has completed its formal acceptance testing phase.

• Based on the favorable results found here, further studies are called for.

5810

X

Table of Contents

Section 1--Introduction ... 1-1

Section 2--The Cleanroom Methodology: History, Description,

and Prior Experiences 2-1

Section 3--The Cleanroom Case Study 3-1

3.1 The Software Engineering Laboratory 3-1

3.2 The Project and Its Environment 3-1

3.3 The Goals .. 3-5

3.4 Early Concerns .. 3-5

3.5 Data Collection .. 3-6

Section 4--A Tailored SEL Cleanroom Model 4-1

4.1 Training and Preparation 4-2

Section 5--Application of the Cleanroom Methodology 5-1

5.1 Predesign ... 5-1

5.2 High Level Design 5-1

5.3 Low Level Design 5-2

5.4 Coding ... 5-3

5.5 Pretest ... 5-5

5.6 Test ... 5-6

Section 6--Preliminary Analysis 6-1

Section 7--Conclusion 7-1

Glossary

References

Standard Bibliography of SEL Literature

5810

xi

List of Illustrations

Figure

2-1

3-1

3-2

6-1

6-2

The Cleanroom Development Process 2-2

System Schedules for CFADS and AGSS 3-3

Experience Comparisons Between the SEL Cleanroom

Project and Typical SEL Projects 3-4

Growth of System in Calendar Time Through System

Testing .. 6-2

Effort Comparison Between the SEL Cleanroom Project

and Typical SEL Projects Through System Testing 6-3

List of Tables

Table

4-1 Process Comparisons Between the SEL Cleanroom and

Standard SEL Development Models 4-2

Comparison of SEL Cleanroom Team Responsibilities 4-3

Fault Distribution by Quality Control Activity 5-3

5810

xii

SECTION 1--INTRODUCTION

This case study analyzes the application of the Cleanroom software development

methodology to the development of production software at the National Aeronau-

tics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The

case study involves the methodology's application on part of a large ground sup-

port system used in mission support of attitude determination requirements.

In addition to describing the Cleanroom methodology, this paper analyzes its appli-

cation in comparison to the existing S_ftware Engineering Laboratory (SEL) meth-
odology used in GSFC's Flight Dynafnics Division (FDD) (References 1 and 2).

The analysis covers the phases from project planning through system test. Areas

of analysis include the tailoring and use of the method, as well as effort, defect,

and productivity statistics. The emphasis of this study is on understanding the

methodology and its applicability to the SEL environment, rather than on a de-

tailed assessment in relation to other development methodologies.

5810

1-1

SECTION 2--THE CLEANROOM METHODOLOGY: HISTORY,

DESCRIPTION, AND PRIOR EXPERIENCES

The Cleanroom software development methodology (References 3, 4, 5, 6, 7, and

8) was conceived in the early 1980s by Dr. Harlan Mills at IBM. The term "Clean-

room" originates in the integrated circuit (IC) production process, where ICs are

assembled in dust-free "clean rooms" to prevent the destructive effects of dust.

When applying the Cleanroom methodology to the software development process,

the primary focus is on defect prevention rather than defect removal.

The goal of Cleanroom is to use a structured development process to build a prod-

uct that is "right the first time," instead of using the test process to reach a desired

level of reliability. The essential elements of Cleanroom include an emphasis on

human discipline and a stress on the use of a structured development approach.

These elements are enforced in a variety of ways. First, there is a complete sepa-

ration of development and test activities. Second, there is a reliance on "reading"

for correctness by the developers. Third, the purpose of testing is for quality

assessment rather than for debugging or finding defects. Finally, a top-down de-

velopment approach, with the use of stubs, is followed to allow for early assess-

ment of product quality. Figure 2-1 illustrates the organization needed to follow

the disciplined approach necessary for Cleanroom. These efforts result in a more

structured development process, which appears to be the direction of software

engineering.

In previous uses of Cleanroom (References 5, 6, 8, and 9), the actual development

activities were based on the IBM Systems Integration Division (IBM-SID) model for

software development, which has its foundation in structured programming (Refer-

ence 10). Using top-down design and development, a system was divided into

increments, which allowed developers to concentrate on small parts of the system

at any one time. The formal design process included the use of state machines to

help modularize the system and to support the concept of information hiding.

Development progressed through stepwise refinement, and each successive step

was verified by stepwise abstraction to ensure correctness. In addition, review/

inspection activities occurred at various milestones (Reference 11). The purpose
of the verification and review activities was not to find defects but to confirm

correctness. Since verification and reviews were perceived as constructive (posi-

tive) activities, team development was reinforced.

Testers for Cleanroom projects used a statistical testing approach (References 3, 4,

11, and 12). As with the development process, the purpose of the test process was

to confirm correctness and project future reliability, rather than to find defects.

For this reason, a black-box testing method--specifically, statistical testing--was

preferred to a white-box testing approach (Reference 4). Data for test cases were

selected according to the operational profile of the system. All inputs to the

5810

2-1

o
c-

o

®

E s;=
o=_n"

o _o

_- -= _s

II

cD _ ";-

_ -o_

11.'0 0_ _

E

5

¢r-

ffl

r-

r-

E

CT

n"

0
0

n

C

E
0.
0

1

E
0
0

e-

l
0

¢,.

&

5810

2-2

system were determined, and a probability distribution of possible values for each

input was calculated. Test cases were then statistically generated. Top-down de-

velopment allowed system test to begin once the first increment was submitted. In

addition, since data were statistically generated, it was possible to determine and

project the reliability of the system in terms of mean time to failure (MTTF).

As previously stated, this case study was not the first to use the Cleanroom meth-

odology. Cleanroom has been used for a few projects at IBM-SID and in a con-

trolled experiment at the University of Maryland. One of the Cleanroom projects

developed at IBM was the COBOL Structuring Facility (COBOL/SF) (References 7

and 8). COBOL/SF is a language product consisting of 80,000 executable lines of

PLA. The developers were hired directly out of college; thus, Cleanroom was the

first methodology any of the developers used in a corporate environment. During

development, the goal was to write simple designs and small procedures, with

walkthroughs used as a substitute for verification. The emphasis was on proving

the correctness of design, rather than finding errors. All released versions of

COBOL/SF were characterized by high quality and productivity.

At the University of Maryland, students in two graduate-level software engineering

courses participated in a controlled experiment (Reference 9). Student teams were

organized so that each team would have comparable experience, and the differ-

ences in the classroom instruction were negligible. A programming language unfa-

miliar to all students was used to prevent a bias toward a team that had more

experience in a particular language, and to control unauthorized execution of pro-

grams by developers. The teams in one class used the Cleanroom methodology for

development, while teams in the second class were given the same development

methodology, but also were given the opportunity to test. The submitted code from

all teams was tested by the teaching assistant, who executed identical test cases for

each team. The Cleanroom teams were able to apply the development methodol-

ogy more successfully. They passed more test cases, fulfilled requirements more

completely, generated less complex code, and had more inline documentation than

the non-Cleanroom teams. This experiment indicated that an extra piece of tech-

nology (developer testing) did not necessarily lead to added success. At the con-

clusion of the experiment, most of the Cleanroom developers said that they would

feel comfortable using Cleanroom again, although they missed the satisfaction of

testing their code. Since the teaching assistant handled all testing responsibilities

for the Cleanroom teams, the satisfaction level of Cleanroom test teams was not

part of the project assessment.

5810

2-3

SECTION 3--THE CLEANROOM CASE STUDY

3.1 THE SOFTWARE ENGINEERING LABORATORY

The SEL is sponsored by NASA/GSFC to investigate the effectiveness of software

engineering technologies when applied to the development of applications software

(Reference 13). It was organized in 1977 with the following goals:

. To understand the software development process in a particular environ-

ment

, To measure the effects of various development techniques, models, and

tools on this development process

3. To identify and apply improved methodologies in the GSFC environment

The principals of the SEL are the Systems Development Branch of the FDD of

NASA/GSFC, the Computer Sciences Department of the University of Maryland,

and the Systems Development Operation of Computer Sciences Corporation. Over

the past 14 years, the SEL has investigated numerous techniques and methods over

dozens of projects in order to understand and improve the software development

process in the FDD environment (References 1, 2, 13, 14, 15, 16, and 17).

The Cleanroom methodology was selected to be studied in the SEL for a variety of

reasons. The SEL was interested in optimizing the software development effort

and improving the effectiveness of software testing, thereby reducing the rework

effort, which encompasses a significant portion of the FDD development effort

(Reference 18). Cleanroom also displayed the potential to increase software qual-

ity and reliability without impacting productivity, an area of interest in any soft-

ware environment. This experiment represented an opportunity to increase the

SEL's understanding of Cleanroom in the FDD production environment, rather

than an academic environment, by a group other than the originators of the meth-

odology.

3.2 THE PROJECT AND ITS ENVIRONMENT

Development was carried out in the standard FDD environment, which is well

understood based upon a large number of prior studies. The development process

begins upon delivery of the requirements and specifications document. The re-

quirements and specifications are generated by an organization separate from the

development organization, and they adhere to a standard format familiar to both

groups. The functionally oriented specifications are highly algorithmic and consid-

ered to be of good quality. However, due to the continually evolving characteris-

tics of the spacecraft hardware and system architecture, the requirements and

specifications require frequent modifications. On typical ground support systems,

5810

3-1

approximately 300 formal inquiries typically are generated by the development

organization, and 150 to 200 formal specification updates are required over the

development life cycle.

The project selected for the Cleanroom case study at GSFC was the Coarse/Fine

Attitude Determination Subsystem (CFADS) of the Attitude Ground Support Sys-

tem (AGSS) for the Upper Atmosphere Research Satellite (UARS). The size of

the CFADS system was initially projected to be about 22,000 FORTRAN source

lines of code (SLOC), which was approximately 12 percent of the entire AGSS.

The develol_ment environment was an IBM mainframe running the multiple virtual

storage (MVS) operating system, and the remaining subsystems of the AGSS were

developed using the standard SEL development methodology. There were numer-

ous "design drivers," factors related to the project that limited design options. The

most significant was the interactive graphics system, which limited the ways some

data could be bound to procedures. Development for the AGSS began in

November 1987 and system testing was completed in March 1990. The develop-

ment of CFADS began in January 1988 and system testing was completed in

January 1990. System milestones were somewhat different in these projects, as

illustrated in Figure 3-1. In addition, the CFADS consisted of six builds, with one

build for each subfunction of approximately 5 thousand source lines of code

(KSLOC), as opposed to one build for every 60 to 80 KSLOC, as is traditionally

done on AGSS development in the FDD environment. As seen in Figure 3-1, the

CFADS did not have a separate acceptance test process, but was integrated into

the AGSS before acceptance testing began in March 1990.

The project was staffed by a total of seven different NASA/GSFC personnel. The

project began with four developers, but dropped to three during design when one

team member left NASA. The test team was composed of two people, but staffing

was briefly increased to three when other work commitments prevented the origi-

nal testers from allocating the planned level of effort. In addition to testing the

system, the test team also served as library managers. All personnel were also

working on other projects simultaneously during the CFADS effort. These other

responsibilities would often take time and attention from the case study. Addition-

ally, these other projects used methodologies other than Cleanroom, so staff mem-

bers would often need to use two development methodologies during the same day.

Figure 3-2 compares the average level of experience for the Cleanroom team

members with that of a typical SEL project team member. Most of the Cleanroom

team's experience was as members of team efforts, with some time also spent

managing projects. All of their development experience was with the standard

SEL methodology in the FDD.

5810

3-2

.I

IIi

¢)
l--e

¢)I
UI
C

_e
U
U0

_)I
i-I

:1

°1

r.D

f-

_ a D

o|

I
I

°1

0

O)
a

rr

rr

o

0

O

t_

cO

1:0

ffl

"0
c-

O

L_
0

"0

¢-
U

ffl

E

d_

,i
i1

5810

3-3

Application-Specific Experience

Average
Experience

in Years

10
Typical .SEL

Project

5.8

40.,, "_.., "%.-',... !% ¸'¸'%¸.',_,.'.'.,

!'%. "._.:.. 2,... ",

Managers Technical
Staff

SEL Cleanroom

Project

5.0

Managers Technical
Staff

Overall Experience

Average

Experience
in Years

Figure 3-2.

10

Typical SEL

Project

10.0

8.5

1

|

I

_ |

! '...

iii!i i; iii!!i!il
Managers Technical

Staff

SEL Cleanroorn

Project

5.0

Managers Technical
Staff

5810

Experience Comparisons Between the SEL Cleanroom
Project and Typical SEL Projects

5810

3-4

3.3 THE GOALS

The major goals of the SEL experiment were as follows:

1. Assess the process used in the SEL Cleanroom model with respect to
team structure, team activities, and effort distribution

, Analyze the products of the SEL Cleanroom model and determine the

impact on measures of interest, including reliability, productivity, overall

life-cycle costs, and software quality

. Analyze the residual products in the application of the SEL Cleanroom

model, such as fault distribution, error characteristics, system growth,

and computer usage

Additionally, other minor goals such as assessing the code-reading activity of the

SEL Cleanroom model were defined during the life cycle.

3.4 EARLY CONCERNS

Four major concerns were expressed by management and development personnel

very early in the project:

• The team's inexperience in the project's application area

• The impact of unstable requirements and specifications on the methodol-

- ogy

• Coordination with the main AGSS, which was developed without Clean-
room

• The psychological impact of the methodology on the team members

Despitethe team's general experience in the FDD environment, this was the first

time any of the project members had worked in the CFADS application domain. It

was also the first time any member had used a methodology different than the

typical SEL methodology.

As previously stated, the FDD environment is one in which modifications to the

initial specifications are often necessary. This specification instability was of par-

ticular interest to the Cleanroom experiment in view of the emphasis on developing
software "right the first time." There was also concern for the potential impact on
rework effort and possible consequences on the timely delivery of builds for the

test team. Frequently, the delivered specifications are not as detailed as might be
desired, since assumptions are made based on past FDD projects, and items are

negotiated between analysts and developers during early design.

Additionally, coordination between the CFADS and the remaining AGSS needed to

be carefully planned, noting possible conflicts caused by using different

5810

3-5

development methodologies. Formal reviews needed special consideration, as did

common libraries used by both groups.

Finally, there was concern regarding the psychological impact of the team separa-

tion and limitation of each team's activities. The development team and testing

team had specific tasks and guidelines to follow, and activities for each were care-

fully defined. There was concern that the developers would attain only minimal

satisfaction from releasing a product that they would not be able to test or see

executed. There was a parallel concern that the test team would experience a void

by testing a product without having participated in the design and development.

3.5 DATA COLLECTION

Project data collection methods fell into four categories: forms, automated data

collection, subjective data collection, and postdevelopment tools. The primary

source of quantitative data was the set of standard SEL forms used in the FDD

environment for all SEL projects (Reference 16). These forms address a wide

variety of issues, from project estimation to personnel resources and change de-

scriptions. In addition to the standard forms, a few new forms were designed to

gather additional data and fulfill functions unique to this project. Information such

as source code growth (system SLOC), source changes (module version updates),

and computer usage (central processing unit, or CPU, hours) are automatically

provided by several tools running in the host machine. To gather qualitative data,

interviews and informal discussions were held. An observer from the University of

Mar)land familiar with the IBM-SID Cleanroom model was present for 10 to

15 hours a week at GSFC. The observer's task was to resolve questions pertaining

to Cleanroom, tailor the methodology for the environment, ensure that the method-

ology was being used properly, and gather data and give real-time feedback to the

developers and testers. At the conclusion of the project, standard tools were run to

gather system statistics, including detailed component attributes and source code

characteristics such as size and complexity.

5810

3-6

SECTION 4--A TAILORED SEL CLEANROOM MODEL

The Cleanroom methodology had to be tailored to the FDD development environ-

ment, which is based on the waterfall model (References 1, 2, and 15). The

tailored methodology needed to preserve the salient features of Cleanroom, but

also needed to be easily adapted to the FDD environment. Some features of IBM-

SID Cleanroom, which the developers and testers were not able to use because of a

lack of experience in IBM-SID methods, needed to be reevaluated. Other charac-

teristic SEL activities required modification to simulate IBM-SID Cleanroom fea-

tures. Over a period of time, a version of Cleanroom was defined that seemed to

best fit this environment. This period of time extended into development, as the

initial Cleanroom description evolved to account for new problems encountered in

the environment. The tailored methodology was referred to as the SEL Cleanroom
model.

There were several significant differences between the SEL Cleanroom model and

the standard SEL development methodology:

• Cleanroom testers and developers are on completely separate teams

• Cleanroom developers have no access to the mainframe computer for

compilation and testing

• Cleanroom developers rely on code reading instead of unit testing to

_ verify correctness of the software prior to system testing

• Cleanroom testers use a statistical testing approach

Table 4-1 highlights differences between the SEL Cleanroom model and the stand-

ard SEL development methodology. The SEL Cleanroom model used the standard

SEL guidelines (References 1 and 2) for top-down design and development, but

had more increments than a similar project using the standard methodology would

have had. The project's requirements and specifications analysis process was

strongly emphasized. The design process was a combination of SEL and IBM-SID

activities, with attempts to use state machines, detailed program design language

(PDL), and a generic design. High level designs were reviewed at various mile-

stones. Team design reviews confirmed correctness during low level design, while

redundant sequential code reading did the same during the coding phase. Sequen-

tial code reading differs from code reading by stepwise abstraction in that lines of

code are read in physical order, not by functional hierarchy. The developers used

sequential reading because it is commonly used in the FDD environment, and the

training schedule did not offer sufficient time for skill development in reading by

stepwise refinement.

All development was done at desks and on personal computers (PCs), with files

transferred from the developers to the testers via floppy disks. The testers

5810

4-1

Table 4-1. Process Comparisons Between the SEL Cleanroom and

Standard SEL Development Models

SEL

Cleanroom

Standard

SEL

Organization

Separate

development
and test

teams

Single de-
velopment
and test

team

Design
Quality
Control

Team

design
reviews

PDL

reading

Code
Quality
Control

Sequential
redundant
code read-

ing for
verification

Code read-

ing and unit

testing

Testing
Strategy

Statistical

testing

Integration

and system

testing

5810

managed the libraries and upioaded code from the PC to the mainframe in order to

build and test the system. This process ensured that the developers did not com-

pile or unit-test their code, as they were not given any access to the mainframe. A

statistical testing approach was to be used to validate the code, and failures were

reported back to the development team. The developers then identified the error

source and took the appropriate corrective action. Table 4-2 compares develop-

ment and test team responsibilities in the SEL Cleanroom model.

4.1 TRAINING AND PREPARATION

Before project development began, both teams attended a 1-week tutorial on the

Cleanroom methodology. The training was also attended by the project's supervi-

sors. Lectures were given by Dr. Victor Basili of the University of Maryland, and

Mr. Michael Dyer and Mr. F. Terry Baker, both of IBM-SID. Sessions discussed

Cleanroom in general, and emphasized the IBM-SID method of software develop-

ment. The classes consisted of lectures followed by question-and-answer sessions.

Later, there were follow-up sessions by Mr. Dyer on statistical testing for the test

team, and a presentation by Dr. Basili on verification by stepwise abstraction for

the developers.

The purpose of the training sessions was twofold. First, it allowed the CFADS

team the opportunity to learn as much as possible about the theory behind the

methodology and how Cleanroom has been done in the past. Second, it served to

reduce some of the misconceptions and apprehension of the team members. The

cost of the training, in terms of CFADS team effort, was 4 percent of the total

5810

4-2

Table 4-2. Comparison of SEL Cleanroom Team Responsibilities

Schedule

1/88

2/88-

11/88

12/88-

12/89

Project
Phase Development Team

Training

Design

Pretest

Code

Test

Attend 1-week tutorial

Attend additional sessions on

design and code reading

Analyze requirements and
specifications, submitting

questions as needed

Create high level design using
abstract state machines

Create low level design using
PDL

Review designs

None

Write code components

Read code independently
Submit code to testers

Respond to failures encountered

by testers

Correct and reverify code

Test Team

Attend 1-week tutorial

Attend additional sessions on

test case generation

None

Analyze requirements and

specifications, submitting

questions as needed
Analyze specifications to

understand functionality of

the system
Determine test items and

passage criteria

Determine system inputs and
distributions

None

Generate test cases

Handle all configuration
control activities

Compile components
Link components
Execute test cases

Validate results

Return code to developers
for correction

5810

5810

4-3

hours expended on the project. Overall, the team members were happy with the

tutorial, but felt that the addition of a laboratory exercise would have made the

activity more effective. At the conclusion of the training sessions, two project

members felt skeptical about proceeding with Cleanroom, two were cautiously con-

fident concerning the methodology's application, and two members seemed confi-

dent that the methodology could be applied successfully in the FDD environment.

5810

4-4

SECTION 5--APPLICATION OF THE CLEANROOM

METHODOLOGY

5.1 PREDESIGN

The predesign phase, accounting for 30 percent of the total design effort, was

given greater emphasis than on a typical FDD project. The major activity in pre-

design was requirements analysis, where the requirements and specifications were

studied in order to understand the problem domain, resolve ambiguities, and make

corrections. The FDD has a history of reusing requirements and specifications

from previous projects, and these documents frequently assume an understanding

of the systems developed for previous satellites as a base for describing the present

project. Additionally, the documentation is often dynamic, and changes can occur

during any phase of development. Since Cleanroom strives to develop software

that is "right the first time," the requirements and specifications had to be more

complete, so the requirements analysis activity needed to be more thorough. Team

meetings were held to ensure that all development and test team personnel had a

common understanding of the documents. Where ambiguities or errors were

found, clarifications were requested. The result was an improved set of documen-

tation for the developers and testers to work with.

5.2 HIGH LEVEL DESIGN

The remaining 70 percent of the design effort was divided into design creation

(49 percent) and design review (21 percent). The high level design process at-

tempted to emulate the high level design activities used at IBM-SID, encapsulating

data and functions as state machines. Use of state machine concepts such as

information hiding and data abstraction helped the developers in the design proc-

ess, although there are few explicit signs of these concepts in the design and code

of actual modules. One reason for the inability to actually implement state ma-

chines may have been the functional specifications, which strongly implied a func-

tion-oriented design. In addition, the developers' lack of experience in using state

machines as a design representation may explain why they were able to use state

machines conceptually but not concretely.

Because of problems in the early stage of development, such as the inability to

build concrete state machines, some members of the development team again ex-

pressed concerns with the methodology. This may have been attributable to the

fact that the methodology was still being tailored and was not in a clear, final

form. This proved to be frustrating for some of the developers, as they could not

see a complete life-cycle model and found it difficult to work on one step of the

methodology when the next step potentially could be redefined. Many of the atti-

tudes changed as the process became more complete and familiarity increased.

5810

5-1

Tangible results also helped increase team confidence in the Cleanroom methodol-

ogy.

Since the process was being tailored as the project .progressed, it seemed logical to

follow the IBM-SID Cleanroom model. Although the IBM-SID and SEL environ-

ments are similar in their use of disciplined life-cycle development activities, the

level of formality employed during the activities is different and prevents a blanket

use of the IBM-SID model. For example, the IBM-SID model bases its design

review activities on the formal Fagan inspections (Reference 11), while the SEL

Cleanroom model relied on informal peer review techniques familiar to the envi-

ronment to verify design correctness.

The content and schedule of builds were also defined during this phase. The

project leader, a member of the development team, worked together with the test

team to determine the number of requisite builds and the functions that would be

contained in each. This joint effort allowed the builds to be viewed from two

perspectives and attempted to keep both teams sufficiently active during the entire

implementation and testing phases. An effort was made to schedule builds so that

the development team would complete a current build at approximately the same

time as the test team finished with the previous one.

5.3 LOW LEVEL DESIGN

Since developers were not permitted to test their code, the developers inferred that

the design had to be of high quality. This encouraged them to write more detailed

PDL, and to make a strong effort to reduce their individual programming styles,

opting for a common design to facilitate the design review process. Because devel-

opers used the state machine concept, the system was modularized differently than

it normally might have been, although actual state machines were never imple-
mented.

The team design review process was simple and successful. A few days before a

scheduled review, the designs for a set of related modules were distributed to the

other developers. The design for each module consisted of a standardized prolog,

calling sequence information, and the PDL. The appropriate baseline diagrams

also were distributed, along with any related COMMON blocks and general notes.

The designs were studied individually by the other developers, which encompassed

15 percent of the design effort, and faults were noted. During the design reviews,

which accounted for 6 percent of the design effort, faults were discussed and cor-

rections suggested. A set of modules would remain in the design review process

until the development team determined that there was no need to review the design

again. All designs required at least two reviews.

As a result, the assessment of a representative sample of the CFADS design

showed an average of 18.4 faults/KSLOC found during the design reviews. This is

a lower bound, as the designer corrected other faults before and after reviews.

5810

5-2

Since the SEL does not normally track design faults, it is impossible to evaluate

this parameter in relation to the existing SEL methodology. The distribution of the

faults by types along with raw count and percentage of faults found in each activity

appears in column A of Table 5-1. Qualitatively, the developers were confident in

the completeness and accuracy of the final designs, and felt they knew and under-

stood the entire system better than they normally would have on other projects.

Table 5-1. Fault Distribution by Quality Control Activity

Fault Type

FORTRAN Syntax

Control Flow

Interface

Data Initialization

Data Declaration

Data Use

Computation

Displays

Total Number of Faults

Percent of Total Faults Found

Activity

A B C D

Design
Reviews

0.0%

20.0%

24.0%

1.0%

45.0%

0.0%

10.0%

0.0%

542.0"

32.0%

Code

Reading
I

4.0%

8.0%

17.0%

5.O%

19.0%

32,0%

9.0%

6.0%

883,0

53,0%

Compilation

100.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

74.0

4.5%

Testing

0.0%

12.0%

34.0%

12.0%

5.0%

23.0%

11.0%

3.0%

175.0

10.5%

Totals

7.0%

12.0%

20.0%

4.0%

25.0%

19.0%

9.0%

4.0%

1.674.0

*Projected
5810

5.4 CODING

The more thorough design process allowed the developers to concentrate solely on

coding the system during the coding stage, without major impacts due to an incom-

plete design. Through the first few builds, slightly more than half the effort in the

coding phase was spent writing code, with the rest in code reading. More time was

shifted to reading code as failures were found by the testers and corrected by the

developers, who were no [onger writing as much new code. The final relationship

5810

5-3

was that 48 percent of the total coding effort was expended in code writing, and

52 percent was spent in code reading.

The code review process was similar to the design review process. Strict coding

guidelines were established and adhered to by the developers, although opinions

regarding the content and flexibility of the guidelines varied among the develop-

ment team. This standardization aided the code reading process by forcing all

code to appear similar in style, and made the process of mapping the code to the

PDL easier. Related modules were coded and listings given to the readers along

with necessary references. The readers read the code independently in a sequen-

tial manner, marked faults, and suggested corrections. Code was returned to the

developer, corrected, and given back to the readers to be reread. Code was ready

to be delivered to the testers only when no faults were found by the readers. Most

modules required two or three iterations of the code reading process.

Redundant sequential code reading resulted in significant numbers of faults being

found and corrected before the code was actually tested. The readers found and

corrected an average of 30 executable faults/KSLOC while code reading. An addi-
tional 10.4 nonexecutable faults/KSLOC were found and corrected. Nonex-

ecutable faults are faults found in the commentary for the procedure, which could

not have been found by the testers. These corrections helped to make proiogs

more consistent and complete in relation to the code, and should make mainte-

nance efforts easier. As with the design reviews, these numbers are lower bounds,

as each developer found and corrected additional faults before and after his code

was-read by the readers. Surprisingly, of the 30 executable faults/KSLOC found

by the readers, only 28.5 percent were found by both readers, with no consistent

pattern between readers in terms of relative effectiveness. This leads to the con-

clusion that for this project two readers were more effective than one would have

been, and that sequential code reading allowed readers to read the code in differ-

ent ways.

One of the early concerns for the project was the impact of specification changes,
a common occurrence in the FDD environment. However, this concern was never

any more of a factor than is typically found in other SEL projects. Subjectively,

the developers felt making changes of any type was actually easier in the Clean-

room environment due to the detail and accuracy of the PDL. All software

changes were reverified, and appropriate PDL updates were made and checked.

It should also be noted that all reused modules for this experiment were reused in

their entirety. Any reusable module that required changes was rewritten to follow

the design and coding standards and passed through the review process as a new
routine.

The actual distribution of faults by type, along with the total number of faults and

percentage per activity, is shown in Table 5-1, column B. Qualitatively, the

5810

5-4

developers had high confidence in their code. These results also confirm the effec-

tiveness of reading, as found elsewhere in the literature (References 3 and 9).

5.5 PRETEST

As was shown in Figure 3-1, the testing phase ran concurrently with the develop-

ment phase. The testing process began with a requirements analysis. This activity

was performed with the developers, to enable the specifications to be reviewed

from two different perspectives and to promote a common understanding of the

specifications by both groups. Following the requirements analysis, interaction

between the testers and developers ended, and did not resume until the actual

testing activities began. In addition to studying the requirements, pretest activities

included identifying potential test items, determining system usage profiles, pre-

paring test data, generating test cases, mapping test items to the test cases, and

generating expected results for each test case. The pretest phase involved 32 per-

cent of the total testing effort.

Test items defined the lowest level of functionality to be evaluated during the test-

ing process. A test item consisted of one or more functions that mapped directly

to the specifications. Identification of the specific test items was a subjective proc-

ess that relied on the testers' impressions concerning the level of functionality that

could be verified. Each test item was then mapped to the build where it would be

available for validation. As previously stated, the test team was directly involved

in determining the content of each build, so an attempt was made to reasonably

spread test items throughout all builds.

These activities were simplified by the functional orientation of the specifications.

Alterations to the specifications, however, which continued throughout the testing

activity, resulted in changes to the test items identified. A great deal of care was

needed to ensure a mapping of the test items to the specifications throughout the

testing effort. While no interaction was permitted between the testers and develop-

ers during pretest activities, it was later determined that communication with the

developers may have been useful in defining the type and l_vel of diagnostic output

desired to support the testing activities.

The manner in which the system was expected to be used by an operator (the

usage profile) was determined by direct observation of operators executing similar

systems and by previous experiences of the testers. This information, combined

with specification outlines on user interaction with the system, was used in an

attempt to develop a statistical profile of system inputs and options. These distri-

butions were then used as the basis for generating test cases to closely simulate

actual operator use of the system. While test cases were generated based on usage

profiles, it was later determined that the variation from test case to test case was

minimal. This was due to the limited number of inputs required by the system

(few option selections), the types of inputs required (strong dependencies on data

and results from outside interfaces), and the low level of user interaction required

5810

5-5

by the system (the sequential operation of the system). Because of the limited

variation in the test cases, many were later abandoned during the testing activities,

as they would have given little additional insight about the overall system quality.

Once test cases were generated for the system, they were mapped to the subset of

test items associated with the build being evaluated. Based on the total test item

coverage by all test cases, the testers were free to generate test cases independent

of the system usage profile. These test cases isolated critical test items not cov-

ered in the other test cases, or test items that may rarely be exercised but are
nonetheless critical.

The final pretest activities included preparation of test data for the test cases and

generation of expected results for the test items in each test case. Because the

Cleanroom build schedule required data earlier than in traditional development

efforts, the unavailability of the necessary data forced these activities to be post-

poned until the test cases were executed.

5.6 TEST

The remaining 68 percent of the testing effort comprised three distinct activities:

configuration control, system integration, and test case execution/verification.

Traditional SEL configuration control practices were followed by maintaining a

controlled library of all source code for the system on the host machine. However,

because developers were not permitted to access the mainframe, additional con-

figuration control responsibilities included the maintenance of a separate con-

trolled library on a PC. The mainframe control library was used to integrate the

system, while the PC control library was used to distribute components back to the

developers, upon their request, for modification. After being placed into the PC

control library, new or modified components were uploaded to the mainframe con-

trol library. The extra effort required to manage two libraries was minimal but did

require careful procedures to ensure consistency between the two. The test team

was also required to maintain a library of stubs on the mainframe for use in the

system integration.

The system integration activity was viewed as a two-step process. The first step

involved compiling all new and modified components as they were received and

uploaded by the testers. The results of this compilation were the first opportunity

to assess the effectiveness of the development method. Of the 101 FORTRAN

subroutines, which averaged 258 SLOC, 62 percent compiled on their first at-

tempt. Among those that failed, all but one compiled on the second try. Although

all faults were obviously due to incorrect FORTRAN usage, over 90 percent were

directly attributable to typographical mistakes such as missing commas or mis-

spelled variable names. As might be expected, BLOCK DATA routines displayed

greater success. Ninety-one percent compiled on the initial attempt, and all that

failed the first time compiled on the second attempt. Overall, 70 percent of all

5810

5-6

compilable units compiled successfully on the first try. This result compares favor-

ably to the 63 percent figure of first compilation success for the first increment of

COBOL/SF at IBM-SID. The second step of the system integration process was the

rebuilding of the system to support test case execution. The need to completely

rebuild the system from scratch each time, rather than linking in only the modified

components, became evident early in the testing effort. This was due to a depend-

ency on other development groups, separate from the CFADS effort, for common

portions of the system. Communication was often inadequate and occasionally

resulted in outdated versions of the common components being included in the

CFADS integration process. To promote rapid turnaround when identifying, isolat-

ing, and correcting faults in the system, the load module was rebuilt frequently,

often two or more times per week. There was also a greater dependence on system

stubs, since the entire system was to be integrated and executed much earlier in

the development process than would be required during a traditional development

effort. This required the test team to maintain the stubs library on the host and

include it in the system integration process.

Test case execution and verification accounted for the majority of the test team's

efforts. Activities consisted of preparing test data, generating expected results,

executing test cases, analyzing and reporting results, and supporting the develop-

ment team's fault isolation efforts. As stated earlier, test data preparation and

expected results generation were postponed until test activities began. For the

generation of simulated test data, the test team relied heavily on an external sys-

tem developed solely for that purpose. Because data were needed much earlier in

the Cleanroom effort than in traditional SEL efforts, there were conflicts with the

development schedule of the data simulation system. This resulted in requests for

data which were frequently only partially satisfied or exhibited analytic inconsis-

tencies throughout testing activities. The impact to the testers was most strongly

felt in the difficulties caused in generating expected results prior to test case exe-

cution, and the inability to exercise all test items associated with a test case.

The test team executed the system based on a test case setup. During execution, a

log was kept that identified the run, documented alterations to the test case, and

described abnormalities observed. All outputs generated by the system, including

copies of the interactive screens displayed, were collected and attached to the log

for future analysis. Alterations to the test cases were required when there were

deficiencies in the test data or in the functionality of the system, or when modifica-

tions to the specifications affected the mapping of test items. Functional deficien-

cies were primarily the result of software that was designed to provide a certain

level of functionality but failed to do so because of source code errors or limita-

tions with system interfaces. The limitations often were linked to conflicts with the

schedule of the interfacing group responsible for developing those components. To

expedite the testing process, the test team adjusted cases appropriately to test

around known deficiencies. As these problems were addressed, the required

functionality was added within the system. The net result for the testers was an

5810

5-7

inability to execute test cases as specified and to exercise various test items associ-

ated with a test case. The final solution was to abandon many of the test cases in

the interest of the project's schedule and resources (possibly justified, since there

was little variation from test case to test case), and to postpone tlntil the last build

of the system the verification of many of the test items. In several instances, it was

not until then that the required data became available, the required functionality

was provided, or the modifications to the specifications were completely under-

stood to allow for accurate assessment of the code.

Once a test case had been executed, the results were analyzed and failures re-

ported to the developers. Analysis of the results required the generation of ex-

pected results for each test item and a comparison with the computed results.

Generation of expected results was usually quite tedious and time consuming. The

comparison of expected results with computed results occasionally resulted in re-

quests from the testers to modify the diagnostic output in the system. A log kept

during analysis activities documented any concerns, questions, and problems iden-

tified and provided a compilation of which test items passed, failed, or could not

be verified. In addition, a test item status sheet was maintained to track the status

of each test item. All failures were documented using a Software Failure Report

(SFR) form, which identified the test case run and described the observed failure.

To expedite the process, developers were often informed of a run's results infor-

mally and potential faults were investigated prior to the generation of the SFRs.

When a potential failure was identified, the developers attempted to isolate the

problem and define a solution, with assistance from the testers as required. On

occa§ion, developers requested additional runs of the system to assist in their fault

isolation efforts, and on a single occasion it became necessary to build a test ver-

sion of the system which was modified directly to isolate the cause of a failure.

Several problems were also traced to the external interfacing groups.

The testing process uncovered 3.3 errors/KSLOC. Errors represent the number of

software changes attributed to error corrections on data collection forms. Errors

are tracked only for changes that occur after code is placed under configuration

control. These errors resulted in a total of 175 faults, whose distribution by type

are listed in column D of Table 5-1. Most faults were identified and corrected the

day the failure was reported, although some took several days to correct, and a few

took weeks to correct. Once a fault was isolated, the first correction implemented

typically resulted in the removal of the failure. As mentioned earlier, while a fault

remained in the system, an attempt was made to test around the problem.

After correction or modification was made to the system, test cases or variations of

test cases were executed to verify the modification. In the case of a failure correc-

tion, the test case that caused the failure was reexecuted. For other modifications

due to specification changes, test cases were usually created by the testers to exer-

cise the specific test items affected. Testing activities continued until all test items

were verified.

5810

5-8

SECTION 6--PRELIMINARY ANALYSIS

The fundamental finding was that the Cleanroom methodology could be used suc-

cessfully in the FDD environment, as the CFADS team demonstrated.

The completed system contained approximately 31 KSLOC divided into

101 FORTRAN subroutines, 33 BLOCK DATAs, 33 COMMON blocks, and

2 NAMELISTs. Combined with the 2.9 KSLOC for the graphic displays, which

were not developed using Cleanroom, the entire CFADS totaled 34 KSLOC. Fig-

ure 6-1 compares the growth history of the CFADS with similar systems developed

using the traditional SEL approach. As a result of the increased design effort,

code appeared later and system growth progressed much more quickly. Because of

the incremental development and code reading processes, which forced related

modules to be read by the developers and submitted to the testers together, the

SEL Cleanroom growth in Figure 6-1 appeared as a step function.

The personnel effort distribution during the development process for the Clean-

room project is somewhat different than the effort expended on other FDD proj-

ects. As Figure 6-2 shows, the Cleanroom effort spent more time in Design and

Other (management, meetings, etc.) activities and less time in the Coding area. It

should be noted again that almost one-third of the Testing effort was spent on

pretest activities, which resulted in only 18 percent of the entire project's effort

being spent actually executing test cases and finding and fixing defects.

Productivity for the project is approximately 4.9 SLOC per staff hour, from

predesign through system test. This number compares favorably with the average

of 2.9 SLOC per staff hour typically found in this environment.

During the testing phase, the error rate of the system was 3.3 errors/KSLOC, com-

pared to the 6 errors/KSLOC typically found in the FDD environment. In actual-

ity, the Cleanroom error figure is artificially high for comparison purposes, as

some errors that would typically have been found during unit test when using an-

other methodology are not encountered until the system test process when using

Cleanroom. Typically, the SEL does not formally track errors found during unit

testing.

In analyzing the number of faults found during the various activities of the life

cycle, 85 percent were found and corrected before any code came under configura-

tion control. Table 5-1 showed the fault type breakdown by activity. Additionally,

nearly 90 percent of all faults were removed before the first test case was exe-

cuted. The majority of the faults found throughout development and test were data

declaration problems, followed in frequency by data use and interface issues.

5810

6-1

-- u
LL. _)

_- ii1

-- ..

uJ

I I

I I

I |

I I

I I

I $

| |

I I I I

o o o o

_QQ

QO

4

I

I I I I

0 0 0 0
(D _ _I" Ce)

_ o

E o ,,, "o_ I1) o
._c 0

D.

I

o
O4

I

o

o
-- o

0

E
I.--

"o
E

0

¢-

o
.,,,i-,,,

Iii

"6

Q
o

Q.

T"

I-

E

f/)

0
i,._

e-
l-.

E
°--

i--

e-

m

o
C

E

,11-#

0

0

¢D

°--
Ia.

5810

6-2

ff

_P

6_3

The early concerns about using Cleanroom on the project and in the FDD environ-

ment did not limit Cleanroom's applicability.

1. The team's inexperience in the application area was countered by a more

complete Requirements Analysis process. The increased early emphasis enhanced

the development and test teams' familiarization with the project domain.

2. The impact of an unstable requirements and specifications environment

was lessened by a concentrated effort in the team review processes, which encour-

aged detailed PDL and accurate inline code documentation, and made later stages

of the Cleanroom methodology less prone to the effect of requirements and specifi-

cations changes.

3. Coordination with the main AGSS, which was developed without Clean-

room, did present some minor problems. Since some software was common to

both groups, the Cleanroom team was directly affected when modifications were

made or errors were discovered. Furthermore, because the Cleanroom team ac-

cessed the common libraries earlier in the development phases, they were often the

first group to uncover an error, and thereby felt the greatest impact. Additionally,

communication between the groups was not as frequent or thorough as necessary

during the initial phases of the projects. Formal mechanisms to aid the communi-

cation process were added and proved helpful. The Cleanroom team also needed

to make some adjustments in the format of their design materials in order to par-

ticipate in the combined formal design reviews.

4. The application of methodology and team structure seemed to have mini-

mal impact on the project personnel's level of professional satisfaction. While

team members did note that there was an adjustment in the importance of activi-

ties, they also indicated that the overall success of the project was still of primary

interest. Overall, the psychological impact of the methodology was not a factor in

the project's degree of success.

Preliminary analysis of the first two goals of the experiment, understanding the

Cleanroom process and product, has been performed. Additional analysis with

respect to these goals remains. The results of this analysis will be used to refine

the SEL Cleanroom model for use on future projects. This packaging will attempt

to incorporate the successes in this project, while learning from failures or mis-

takes made in the planning or execution of the methodology's application. Finally,

the refinement must be based upon the concepts that can be applied effectively to

the SEL Cleanroom model. For example, previous studies indicate that reading by

stepwise abstraction is more consistent with the methodology and may prove, with

proper skill development, more effective. A redesign of the entire system may

permit a broader application of state machines. The result of this process will be

an appropriate SEL Cleanroom model that is more effective in the environment.

5810

6-4

SECTION 7--CONCLUSION

Analysis of the Cleanroom case study shows that the methodology can be applied

in this environment. There are indications of an increase in developer productivity

and product quality. Compared to typical SEL activities, Cleanroom produced a

lower failure rate (3.3 errors/KSLOC versus 6 errors/KSLOC), and there are indi-

cations of a more complete and consistent set of inline code documentation. In

terms of effort, there is a different distribution of phase effort activity (more time

in Design and meetings, and less time in Coding) and a different growth profile in

terms of lines of code developed (code appears much later).

The Cleanroom case study generated important lessons for application on future

projects. It is clear that the development effort is a true team effort, and all team

members must be able to function as such. Additionally, there is visible benefit in

the adoption of strict design and coding standards for all development team mem-

bers to follow. These standards should be defined before a project begins, reduc-

ing debate among team members on personal preferences. It appears that the

actual standards are not as significant as the consistent application of the standards

by all participants. It is also recognized that the test team and development team,

while performing distinct functions, need frequent communication. Both groups

need to be aware of specification changes, and the developers require input from

the testers regarding desired diagnostic data for test item validation. Configuration

control and the transfer of modules between teams also requires a well-coordinated
effort.

Subjectively, project personnel felt that the activities associated with the methodol-

ogy are quite similar to activities typically done in the FDD environment. The

difference in using Cleanroom is evident in the goals and discipline level associ-

ated with the activities. All members of both teams indicated that they would be

willing to use the methodology on future projects.

There are also a few specific issues that will affect the refinement of the methodol-

ogy in the FDD environment. Since developers do not have access to the main-

frame, they must rely heavily on their personal knowledge of the development

environment. Situations may arise where more time is expended tracking down a

solution through documentation or a colleague's recommendation than would have

been spent in a trial-and-error session on the mainframe. It is also unclear whether

the design phase should be completed for all builds before any coding begins (to

isolate design inconsistencies), or if the design and code for each build should be

completed before design on the next build commences (to produce testable soft-

ware earlier).

More analysis of the Cleanroom project is planned, as well as applications on

future systems. Upon completion of acceptance testing, the appropriate final

5810

7-1

adjustmentsto the dataon effort, productivity, and quality will be made. Compari-
sons between the Cleanroom process and products and the process and products

typically used in the FDD will continue. All the data gathered will be further

analyzed to reach a better understanding of the causes of the results and the con-

texts in which the data should be interpreted. An appropriately tailored Clean-

room model for the FDD environment will evolve using the results of this

experience as a basis.

5810

7-2

GLOSSARY

AGSS

CFADS

COBOI_./SF

CPU

FDD

GSFC

IBM-SID

IC

KSLOC

MTTF

MVS

NASA

PC

PDL-

SEL

SFR

SLOC

UARS

Attitude Ground Support System

Coarse/Fine Attitude Determination Subsystem

COBOL Structuring Facility

central processing unit

Flight Dynamics Division

Goddard Space Flight Center

IBM Systems Integration Division

integrated circuit

thousand source lines of code

mean time to failure

multiple virtual storage

National Aeronautics and Space Administration

personal computer

program design language

Software Engineering Laboratory

Software Failure Report

source lines of code

Upper Atmosphere Research Satellite

5810

G-1

REFERENCES

°

.

3.

.

.

°

,

,

.

10.

11.

12.

13.

14.

Goddard Space Flight Center, Software Engineering Laboratory,

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Develop-

ment, March 1986

--, SEL-81-205, Recommended Approach to Software Development, April 1983

P. A. Currit, M. Dyer, and H. D. Mills, "Certifying the Reliability of Soft-

ware," IEEE Transactions on Software Engineering, Vol. SE-12, No. 1, January

1986, pp. 3-11

IBM, Systems Integration Division, TR. 86.0002, An Approach to Statistical

Testing for Cleanroom Software Development, M. Dyer, August 12, 1983

--, TR. 86.0004, A Design Method for Cleanroom Software Development,

M. Dyer, August 15, 1983

--, TR. 86.0003, Software Validation in the Cleanroom Development Method,

M. Dyer, August 19, 1983

M. Dyer, "A Formal Approach to Software Error Removal," The Journal of

Systems and Software 7, 1987, pp. 109-114

R. C. Linger and H. D. Mills, "A Case Study in Cleanroom Software Engi-

neering: The IBM COBOL/SF Structuring Facility," Proceedings of

COMPSAC '89, Chicago, Illinois, October 5-7, 1988, pp. I0-17

R. W. Selby, V. R. Basili, and F. T. Baker, "Cleanroom Software Develop-

ment: An Empirical Evaluation," IEEE Transactions on Software Engineering,

Vol. SE-13, No. 9, September 1987, pp. 1027-1037

R. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and

Practice. Reading, Massachusetts: Addison Wesley, 1979

M. E. Fagan, "Design and Code Inspections to Reduce Errors in Programs,"

IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182-211

IBM, Systems Integration Division, TR. 86.0008, Cleanroom Testcase Genera-

tor, J. F. Gerber, June 18, 1986

Goddard Space Flight Center, Software Engineering Laboratory,

SEL-81-104, The Software Engineering Laboratory, February 1982

V. R. Basili and R. W. Selby, Jr., "Comparing the Effectiveness of Software

Testing Strategies," IEEE Transactions on Software Engineering, Vol. SE-13,

No. 12, December 1987, pp. 1278-1296

5810

R-1

15. University of Maryland, UMIACS-TR-89-84, Lessons Learned in the Transition

to Ada from FORTRAN at NASA/Goddard, C. Brophy, August 1989

16. Goddard Space Flight Center, Software Engineering Laboratory,

SEL-87-008, Data Collection Procedure for the Rehosted SEL Database,
October 1987

17.

18.

19.

D. M. Weiss and V. R. Basili, "Evaluating Software Development by Analy-

sis of Changes: Some Data from the Software Engineering Laboratory,"

IEEE Transactions on Software Engineering, Vol. SE-11, No. 2, February 1985,
pp. 157-168

Goddard Space Flight Center, Software Engineering Laboratory,

SEL-86-006, "Determining Software Productivity Leverage Factors in the

SEL," Proceedings of the Eleventh Annual Software Engineering Workshop,

F. McGarry, S. Voltz, and J. Valett, December 1986

IBM, Systems Integration Division, TR. 86.0009, Cleanroom Reliability Analy-

sis Software, J. F. Gerber, August 3, 1987

5810

R-2

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are

organized into two groups. The first group is composed of documents issued by

the Software Engineering Laboratory (SEL) during its research and development

activities. The second group includes materials that were published elsewhere but

pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-77-004, A Demonstration of AXES for NA VPAK, M. Hamilton and

S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer

and C. E. Velez, October 1977

SEL-78-005 Proceedings lirom the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006 GSFC Software Engineering Research Requirements Analysis Study,

P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007 Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,

December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Re-

vision 3), W. J. Decker and W. A. Taylor, July 1986

SEL-79-002 The Software Engineering Laboratory:

K. Freburger and V. R. Basili, May 1979

Relationship Equations,

SEL-79-003 Common Software Module Repository (CSMR) System Description and

User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004 Evaluation of the Caine, Farber, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-

ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

5810

B-1

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System

(MMS/GSSS) State-of-the-Art Computer Systems�Compatibility Study, T. Welden,

M. McClellan, and P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007 An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-81-008 Cost and Reliability Estimation Models (CAREM) User's Guide,

J. F. Cook and E. Edwards, February 1981

SEL-81-009 Software Engineering Laboratory Programmer Workbench Phase 1 Evalu-

ation, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011. Evaluating Software Development by Analysis of Change Data,

D. M. Weiss, November 1981

SEL-81-012. The Rayleigh Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engineering Workshop,
December 1981

SEL-81-014. Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A.L. Green, W. J. Decker, and F. E. McGarry,

September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry,

et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry,

G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools,

W. J. Decker, W. A. Taylor, and E. J. Smith, February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-

ology for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development, F.E. McGarry,

G. Page, S. Eslinger, et al., April 1983

5810

B-2

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,

D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software Engineering Workshop,

December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Descrip-

tion (Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

F. E. McGarry, and M. G. Rohleder, October 1983

SEL-82-806, Annotated Bibliography of Software Engineering Laboratory Literature,

M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007 Proceedings From the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106 Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-001 Manager's Handbook for Software Development, W.W. Agresti,

F. E. McGarry, 13. N. Card, et al., April 1984

SEL-84-003 Investigation of Specification Measures for the Software Engineering Labo-

ratory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engineering Workshop,
November 1984

SEL-85-001 A Comparison of Software Verification Techniques, 13. N. Card,

R. W. Selby, Jr., F. E. McGarry, et al., April 1985

SEL-85-002 Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

5810

B-3

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and

Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D.N. Card, C. Antle, and

E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,

R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment Tutorial,

J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October 1986

SEL-86-006, Proceedings From the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),

W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Implications: A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL Database, G. Heller,
October 1987

SEL-87-009, Collected Software Engineering Papers:
November 1987

Volume V, S. DeLong,

SEL-87-010, Proceedings From the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project:

J. Seigle, L. Esker, and Y. Shi, November 1988

The GRODY Study,

5810

B-4

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project:

S. Godfrey and C. Brophy, September 1989

The GRODY Study,

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,

W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area:

Implementation�Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark,

and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and

User's Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and

D. Spiegel, February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler and K. Pumphrey, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Proj-

ect Description and Early Analysis, S. Green et al., March 1990

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada

for Satellite Simulation: A Case Study," Proceedings of the First International Sym-

posium on Aria for the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al.,

nology," Program Transformation and Programming

Springer-Verlag, 1984

"Measuring Software Tech-

Environments. New York:

5810

B-5

1Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Re-

source Expenditures," Proceedings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"

ASME Advances in Computer Technology, January 1980, voi. 1

7Basili, V. R., Software Development: A Paradigm for the Future, University of

Maryland, Technical Report TR-2263, June 1989

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineer-

ing. New York: IF_, Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of

the First Pan-Pacific Computer Conference, September 1985

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribu-

tion and Resource Estimation Problems?," Journal of Systems and Software,

February 1981, vol. 2, no. 1

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in

the Software Engineering Laboratory," Journal of Systems and Software,

February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and

Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment

in the SEL Environment, University of Maryland, Technical Report TR-1699, August
1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empiri-

cal Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the

Software Engineering Laboratory," Proceedings of the ACM SIGMETRICS

Symposium�Workshop: Quality Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Prototype Expert System

for Software Engineering Management," Proceedings of the IEEE/MITRE Expert Sys-

tems in Government Symposium, October 1985

5810

B-6

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software De-

velopment," Proceedings of the Workshop on Quantitative Software Models for Reliabil-

ity, Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V., and H. D. Rombach, "Tailoring the Software Process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-

neering, March 1987

5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-

ronment," Proceedings of the Joint Ada Conference, March 1987

5Basili, V., and H. D. Rombach, "T A M E: Integrating Measurement Into Soft-

ware Environments," University of Maryland, Technical Report TR-1764, June

1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-

Oriented Software Environments," IEEE Transactions on Software Engineering, June

1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

A Reuse-Enabling Software Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric Analysis and Data Valida-

tion Across FORTRAN Projects," IEEE Transactions on Software Engineering,

November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environments's

Characteristic Software Metric Set," Proceedings of the Eighth International Confer-

ence on Software Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing

Strategies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collec-

tion and Analysis Methodology," Proceedings of the NATO Advanced Study Institute,

August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Soft-

ware Engineering," IEEE Transactions on Software Engineering, July 1986

5Basili, V. and R. Selby, Jr., "Comparing the Effectiveness of Software Testing

Strategies," IEEE Transactions on Software Engineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engi-

neering Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software

Engineering Data," IEEE Transactions on Software Engineering, November 1984

5810

B-7

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Ob-

jectives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Re-

search, August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experi-

ment," Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labo-

ratory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Character-

istics in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Develop-

ment," Proceedings of the Third International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned in Use of Ada-Oriented

Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in

the Implementation Phase of a Large Ada Project," Proceedings of the Washington

Ada Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"

Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Esti-

mation," Computer Sciences Corporation, Technical Memorandum, November
1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII Con-

gresso Nacional de Informatica, October 1985

5Card, D., and W. Agresti, "Resolving the Software Science Anomaly," The Jour-

nal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design Complexity," The Jour-

nal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engi-

neering View of Flight Dynamics Analysis System," Parts I and II, Computer Sci-

ences Corporation, Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software

Design Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Mod-

ules," Computer Sciences Corporation, Technical Memorandum, June 1984

5810

B-8

SCard, D., F. McGarry, and G. Page, "Evaluating Software Engineering Technolo-

gies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software M'odulariza-

tion," Proceedings of the Eighth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software

Engineering Methodologies," Proceedings of the Fifth International Conference on

Software Engineering. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C.W., and V. R. Basili, "Monitoring Software Development

Through Dynamic Variables," Proceedings of the Seventh International Computer Soft-

ware and Applications Conference. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer Program," Univer-

sity of Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages

long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the I988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order

Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848,

May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model,"

Proceedings of the Tenth International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering

Information Bases From Software Process and Product Specifications," Proceedings

of the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, F., and W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Pro-

duction Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

5810

B-9

3McGarry, F. E., J. Valet-t, and D. Hall, "Measuring the Impact of Computer Re-

source Quality on the Software Development Process and Product," Proceedings of

the Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research

Technology Workshop (Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Inde-

pendent Verification and Validation," Proceedings of the Eighth International Com-

puter Software and Applications Conference, November 1984

5Ramsey, C., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-

neering Management, University of Maryland, Technical Report TR-1708,

September 1986

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Cover-

age," Proceedings of the Eighth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure

on Maintainability," IEEE Transactions on Software Engineering, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,

September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A

Basis for Generating Customized SE Information Bases," Proceedings of the 22nd

Annual Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland,

Technical Report TR-2252, May 1989

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System Sci-

ences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life

Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications, October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Devel-

opment Methodology," Proceedings of the First International Symposium on Ada for

the NASA Space Station, June 1986

5810

B-10

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software

Reuse," Proceedings of TRI-Ada 1989, October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

7Sunazuka. T., and V. R. Basili, Integrating Automated Support for a Software Man-

agement Cycle Into the TAME System, University of Maryland, Technical Report

TR-2289, July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and

Analysis Center for Software, Special Publication, April 1981

5Valett, J., and F. McGarry, "A Summary of Software Measurement Experiences

in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis

of Changes: Some Data From the Software Engineering Laboratory," IEEE Trans-

actions on Software Engineering, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software

Systems," Proceedings of the Joint Ada Conference, March 1987

1Zeikowitz, M. V., "Resource Estimation for Medium Scale Software Projects,"

Proceedings of the Twelfth Conference on the Interface of Statistics and Computer Sci-

ence. New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer

Science Research," Empirical Foundations for Computer and Information Science (pro-

ceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study,"

Proceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter

of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal

of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measure-

ment Facility," Proceedings of the Software Life Cycle Management Workshop,

September 1977

5810

B-11

NOTES:

1This article also appears m SEL-82-004 Collected Software Engmeenng Papers:

Volume I, July 1982.

2This article also appears m SEL-83-003, Collected Software Engineering Papers:
Volume H, November 1983.

3This article also appears m SEL-85-003 Collected Software Engineering Papers:

Volume III, November 1985.

4This article also appears m SEL-86-004 Collected Software Engineering Papers:
Volume IV, November 1986.

5This article also appears m SEL-87-009 Collected Software Engineering Papers:

Volume V, November 1987.

6This article also appears m SEL-88-002 Collected Software Engineering Papers:
Volume VI, November 1988.

7This article also appears m SEL-89-006, Collected Software Engineering Papers:

Volume VII, November 1989.

5810

B-12

