
r

NASA Contractor Report 187492

(NASA-CR-1874Q2) SqFTWARE RELIABILITY

EXPERIMFNTS DATA ANALYSIS AND [NV_STICATION

(Charles Piv:r An_lytics) 66 p CSCL 09B

G3/ol

NQI-17626

Software Reliability Experiments

Data Analysis and Investigation

J. Leslie Walker and Alper K. Caglayan

Charles River Analytics Inc.
Cambridge, MA 02139

The Charles Stark Draper Laboratory Inc.
Cambridge, MA 02139

Contract NASI-18061

January 1991

N .SA
National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665

Technical Report R9005 Charles River Analytics Inc.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. ANALYSIS OF SOFTWARE ERRORS IN RSDIMU PROGRAM 3

2.1. Software Error Descriptions 4

2.1.1. Failures in case U2 (SoA) 4

2.1.2. Failure to Properly Indicate Estimation Status 7

2.2. Analysis of Errors and Failures in RSDIMU Programs 7

2.3. Analysis of Errors and Failures in Development and Certification Site

Subpopulation .. 13

2.4. Results of Error Analysis 21

3. ACCEPTANCE CHECK DEVELOPMENT 22

3.1 Interactive Proofs 22

3.2 Generalized Interactive Checkers 23

4. RELIABILITY ANALYSIS 31

4.1. N-Version vs. Recovery Block Structures 31

4.1.1. N-Version Structure Reliability 31

4.1.2. Recovery Block Structure Reliability 31

4.1.2.1. Recovery Block Structure Reliability with Perfect

Acceptance Check 32

4.1.2.2. Recovery Block Structure Reliability with Imperfect

Acceptance Check 32

4.1.3. Comparison of Structures for RSDIMU Experiment Version

Population 33

4.2. Reliability of Software Fault Tolerant Structures Under Diverse

Methodologies 36

4.2.1. Diversity of Development Site 37

4.2.2. Diversity of Certification Site 39

4.2.3. Diversity of Version Reliability 42

4.2.4. Results of Subpopulation Diversity Reliability Analysis 47

4.3. Diverse N-Version Fault Tolerant Structures 47

4.3.1. Definition and Modelling of Diverse Structures 48

5. CONCLUSIONS ... 55

6. REFERENCES .. 59

TechnicalReportR9005 CharlesRiverAnalyticsInc.

LIST OFFIGURES

Figure

Figure

Figure

Figure

Figure

2.1: Categoriesof Relationships between Logical Errors 3

2.3.1: Venn Diagram of Input Domains of Conceptual Errors 4 and 5 19

4.1.1: Comparison of N-Version and Recovery Block Structure Reliability 35

4.2.1.1: Coincident Error Model of Reliability of N-Version Structures Built from

Development Subpopulations 39

4.2.1.2: Finite Population Model of Reliability of N-Version Structures Built from

Development Subpopulations 40

Figure 4.2.2. !: Coincident Model of Reliability of N-Version Structures Built from

Certification Subpopulations 42

Figure 4.2.2.2: Finite Population Model of Reliability of N-Version Structures Built from

Certification Subpopulations 42

Figure 4.2.3.1: Scatter Plot of RSDIMU Version Reliability 43

Figure 4.2.3.2: Scatter Plot of RSDIMU Version Reliability with versions uclab and uiuca

Removed ... 44

Figure 4.2.3.3: Average Failure Probability of Reliability Group Subpopulations 46

Figure 4.2.3.4: Coincident Model of Reliability of N-Version Structures Built from

Reliability Subpopulations 47

Figure 4.2.3.5: Finite Population Model of Reliability of N-Version Structures Built from

Reliability Subpopulations 47

Figure 4.3.1: Comparison of Infinite Population Models for Diverse and t lomogenous

Structures .. 53

Figure 4.3.2: Comparison of Finite Population Structure Reliability for Diverse and

Homogenous Structures 54

ii

TechnicalReportR9005 CharlesRiverAnalyticsInc.

Table 2. I. I"

Table 2.2.3:

Table 2.2.5:

LIST OF TABLES

Summary of Conceptual Errors in RSDIMU Versions 5

Significance of Correlated Occurrence of Failures in RSDIMU Programs 11

Significance of Correlation Between Failures due to Logical Errors 13

Table 2.3.2: Correlated Occurrence of Conceptual Errors in RSDIMU Programs by

Certification Site .. 17

Table 2.3.3: Correlation of Occurrence of Conceptual Errors Between Development Sites 17

Table 2.3.4: Correlation of Occurrence of Conceptual Errors Between Certification Sites 18

Table 2.3.5: Significance of Correlation of Occurrence of Conceptual Errors Between

Development Sites 18

Table 2.3.6: Significance of Correlation of Occurrence of Conceptual Errors Between

Certification Sites ... 18

Table 2.3.7: Failure Intensity Distribution for Conceptual Errors 20

Table 2.3.8: Version Failure Distributions for Conceptual Errors 21

"Table 4.1.3.1: Failure Intensity Distribution Obtained from RSDIMU Experiment 35

Table 4.2.1.1: Failure Intensity Distribution by Development Site 38

Table 4.2.2.1. Certification Sites for RSDIMU Programs 40

Table 4.2.2.2. Failure Intensity Distribution by Certification Site 41

Table 4.2.3.1: Version Subpopulations Based upon version reliability 45

Table 4.2.3.2: Failure Intensity Distributions by Reliability Groups 46

TechnicalReportR9005 CharlesRiverAnalyticsInc.

I. INTRODUCTION

This report describesthe researchdoneon CSDL SubcontractNo. 791. The program

versionsandfailuredatausedin thisresearchwereproducedunderNASA Conu-actnumberNAS1-

17705. This previouswork is referredto astheRSDIMU experiment. The main thrust of the

current work is to: 1) develop an understanding of the fundamental reasons making redundant

software components fail dependently, and 2) investigate the construction of software fault

tolerant structures maximizing the independence between developed software components.

The work described in this report falls into four categories:

1. Error Analysis

2. Acceptance Check Development

3. N-Version vs. Recovery Block Analysis

4. Analysis of Software Diversity

Under error analysis, we examine the particular errors made by programmers in the

RSDIMU experiment in order to determine what the effect of programmer errors is on the failure

behavior of redundant software components. We are particularly interested in errors which are not

similar in nature, but cause coincident failures. This analysis is important in identifying software

development methodologies to improve the independence of programmer errors which cause

coincident failures. This analysis is also important in determining the limitation of independent

software development (i.e. what degree of independent failure behavior we can expect even if we

are able to achieve independence between the errors made by the authors of different redundant

software components).

Under acceptance check development, we develop the theory of a generalized acceptance

check development methodology, and present examples of applications of this theory. This

methodology will produce acceptance checks which fail independently from the software whose

correctness they are designed to check. This work is important in building recovery block

structures. In addition, this work is applicable to the validation of high reliability software.

Under N-Version vs. Recovery Block analysis we have constructed models which predict

2

TechnicalReportR9005 CharlesRiverAnalyticsInc.

thereliability of thesetwo typesof fault tolerantsoftwarestructures.Thesemodelspredict the

performanceof suchsoftwarestructuresdependinguponthenumberof versionsimplemented,and

the reliability of the associatedacceptancecheck. Using thesemodelswecomparethesetwo

approachesto fault tolerantsoftwaredevelopmentinorderto determinewhichis appropriateunder
certainconditions. In particular,wecomparethesemodelsusingtheprogramsfrom theRSDIMU

experimentasarealisticexampleof aredundantcomponentpopulationanddetermineunderwhat
conditionswe shouldchooseN-Versionprogrammingand whento chooserecoveryblocks in

orderto mostefficientlyusetheavailableresources.

Underouranalysisof softwarediversity,weexaminetheeffectsof diversemethodologies

on the developmentof redundantsoftwarecomponents.We areparticularly interestedin the

impactof enforceddiversity on reliability gain,andin developmentmethodologiesthatproduce

independentfailure behavior. Therearetwo resultsthat wehaveachievedwith this analysis: 1)

modelsfor predictingthereliability of diversesoftwaresu'uctures,and2) anunderstandingof what

typeof diversity is required.We obtaintheseresultsbothin thegeneralcaseandin ourparticular
examinationof theresultsof theRSDIMU experiment.

f

Technical Report R9005 Charles River Analytics Inc.

2. ANALYSIS OF SOFTWARE ERRORS IN RSDIMU PROGRAMS

In this section we present our analysis of the software errors which were identified in each

of the 20 RSDIMU programs and the effects of these software errors on the failure behavior of the

programs. Specifically, we describe the software errors which occur in the programs and what

misconceptions of the programmers caused them to make these errors. We also present a

comparison between the correlation of failures between separate programs and the similarities

between the errors made by the programs' authors. Finally, we group the programs according to

development and certification sites and examine the failures and the errors in order to determine the

effects of site diversity.

We relate software errors to each other as shown in figure 2.1. A conceptual error results

from the programmer's misconception about how the program is ultimately meant to behave.

When the programmer implements this misconceived program, their conceptual errors are

manifested as logical errors. A logical error is the particular error which causes a program to fail.

We often treat logical errors independently of the misconceptions which caused them.

Errors

Conceptually Conceptually
related unrelated

Causing Not causing
coincident coincident

failures failures

Figure 2.1:

Causing Not causing
coincident coincident

failures failures

Categories of Relationships between Logical Errors.

Two logical errors are said to be conceptually related if they result from the same or similar

misconceptions on the part of the respective programmers. We further relate errors by whether or

not they tend to cause their respective programs to fail together. We consider each logical error to

have an input domain. This domain is the set of all inputs for which a particular logical error will

4

TechnicalReportR9005 CharlesRiverAnalyticsInc.

causeafailure. If the input domainsof two logical errorsoverlapsignificantly thenwe saythat

theselogicalerrorscausecoincident failures.

2.1. Software Error Descriptions

In this section we describe three additional conceptual software errors which were not

described in volume 3 of R8903. Two of these additional conceptual errors caused failures in only

the U2 (S0,1) case and these are described in section 2.1.1. The remaining conceptual error is

described in section 2.1.2. The combination of this section and volume 3 of R8903 describe all of

the errors which we analyzed in this study. A summary of the conceptual errors that we examined

in detail is shown in table 2.1.1.

The inputs to the RSMIMU programs are divided into 6 groups based on the parameters

used to generate the input data. These parameters govern the difficulty with which the programs

must come up with a correct answer for the data. The names used to refer to these input cases are:

UI(S0,0), U2(S0,1), U3($1,0), U4($1,1), U5($2,0), and U6($2,1).

2.1.1. Failures in case U2 (So,!)

In this section we describe the errors which were discovered in the U2 case (S0,1). These errors

all occurred in the sensor failure isolation routines of the RSDIMU programs. Inputs for the U2

case often created situations where an edge relation was violated which was common to two

"good" faces. This caused two situations which were not properly handled by many of the

programmers:

2.

Three edge relations failed, but there was no face common to them.

Four edge relations failed.

The first of these situations was not correctly handled by versions uclac, uclad, and uvac. The

second of these situations was not correctly handled by versions uclac, uclad, uiuca, uiuce, and

uvac. In general, the versions failed because they assumed that these situations would never

occur. In some cases, however, some of the programs still managed to give the correct outputs

even though the algorithm that was used would only give the correct outputs in special situations.

5

Technical Report R9005 Charles River Analytics Inc.

Fault
Number

2

8

Software Faults

A unit vector in an orthogonal coordinate system was

apparently assumed to remain a unit vector after a
nonorthogonal transformation

Failure isolation algorithm was implemented in a coordinate
system other than specified

Vector components were apparently assumed to remain the
same after a small angle transformation

Three edge out-of-tolerance edge relations were apparently
assumed to have a face common to all of the out-of-tolerance

edge relations
• i

Four out-of-tolerance edge relations were not proces_d

Test threshold computed incorrectly

Variable initialized incorrectly

Best estimate of acceleration left uninitialized after system
failure

Versions

ncsud

uclae

uclac
uitr,xl
uv_lc

uvab

uclac
uc"lad
uvac

uclac
uclad
uiuca
uiace
uvac

uiuca

uclab

uiuca

uclab

Table 2.1.1" Summary of Conceptual Errors in RSDIMU Versions.

Version uclac failed under both of the situations described. The authors assumed that if

more than one edge relation failed for more than one face, then the system should fail. This is true

if more than one edge relation fails for more than three faces and not two. The result was that

when four edge relations were violated, a system failure was indicated. In some cases three

violated edge relations also triggered a system failure due to the same fault.

Version uclad also failed under both of the situations described. The failure isolation

algorithm contained a case statement whose tag was the number of failed edge relations. The

authors grouped the 4, 5, and 6 edge relation out-of-tolerance cases together and failed the system

in all of these situations. This caused the program to fail in all cases where 4 edge relations were

6

Technical Report R9005 Charles River Analytics Inc.

out of tolerance. Version uclad failed whenever three edge relations were out of tolerance with no

face common to them. The authors specifically detected this situation and failed the system, which

was incorrect.

Version uiuca failed only when 4 edge relations were out-of-tolerance. The authors use the

total number of times an edge relation is out-of-tolerance for each face -- thus each time an edge

relation is out-of-tolerance it counts twice -- to determine whether or not a failure has occurred.

When any three edge relations are out-of-tolerance, this total is 6 and the case is handled directly.

However, when 4 edge relations are out-of-tolerance the total is 8 and the authors did not consider

this possibility. In such a case no effort was made to isolate a sensor failure on any of the faces,

and the version failed.

Version uiuce also failed only when 4 edge relations were out-of-tolerance. The authors

made independent tests on every combination of 3 from 6 edge relations that could be

out-of-tolerance with a common face between them. The algorithm is to check the edge relation

involved with face A and each of faces B, C, and D. The first one of these edge relations that is

out-of-tolerance is assumed to be the only possibility for failure. Thus if the AB edge relation is

out-of-tolerance, then only the BC,BD and AC,AD edge relations are checked. If four edge

relations are out-of-tolerance with a face common to three of them and AB is not one of these three,

then this version will assume that no face has failed the edge-vector test. This causes failures only

in 3 of the possible 15 cases where four edge relations can fail, so version uiuce did not fail in all

of the four edge out-of-tolerance cases.

The authors of version uvac assume that whenever three edge vector relations are

out-of-tolerance there will be a face common to them. They then assigned a failure signature to

each of the 4 possible combinations of edge relation which could be out-of-tolerance with a single

face in common. This signature can be computed directly from the edge relations and examined to

see which face fails. Since there are actually 15 possible combinations of 3 edge relations this

algorithm does not always work. However when a signature does not match one of the 4 key

values, no face is assumed to have failed. This produces the correct result for most of the three

edge relation combinations. The program fails because combinations where there is no common

face to the three edge relations will produce a signature that indicates the failure of one face. Since

this only occurs for 2 of 15 possible combinations of three edge relations, the program did not fail

in all of the cases of three edge relations out-of-tolerance with no common face.

Version uvac also contains a case statement similar to that of version uclad where the tag

value is the number of out-of-tolerance edge relations. Once again, the 4, 5, and 6 edge relation

7

TechnicalReportR9005 CharlesRiverAnalyticsInc.

casesaregroupedtogether. Since system failure detection is handled prior to this point in the

program, nothing is done for these cases and no failure is detected. The prior system failure

detection algorithm does not handle the case of 4 edge relations out-of-tolcrance and so in this case

no failure is detected.

2.1.2. Failure to Properly Indicate Estimation Status

We diagnosed an error in version uclab which was not described in report R8903. This

error causes failures whenever a system failure is signaled due to lack of good faces for an

analytical estimate of acceleration. The specification instructs programmers to set the estimate

status of each of the 5 estimates (best estimate and each channel estimate) to UNDEFINED

whenever a system failure is signaled. The authors of version uclab set the channel estimate status

to UNDEFINED in this case, but "allow the best estimate to remain uninitialized. Thus the status of

the best estimate remains at whatever value is set by the compiler for initialization. This often

causes failures when the program fails the system.

Section 2 of R8903 describes an error in version uiuca which is similar to that of uclab.

When a system error is signaled the value of thebest estimate is not set to zero and the status is not

set to UNDEFINED. The effects of this error are identical to that of the uclab best estimate error.

2.2. Analysis of Errors and Failures in RSDIMU Programs

Here we present our analysis of the logical errors which occur in the 20 RSDIMU

versions. We examine the correlation of these errors and how this relates to the conceptual and

input domain relationships between the logical errors.

Table 2.2.1 shows the correlation of the occurrence of the conceptual errors of table 2.1.1.

The numbers along the diagonal of this grid (xAA) represent the number of times a conceptual error

occurs in version A. The numbers off the diagonal (xAB) represent the number of

conceptually-related errors which occur between versions A and B.

Table 2.2.2 shows the input correlation of failures between the RSDIMU programs. The

numbers along the diagonal (XAA) represent the total number of inputs on which version A failed.

The numbers off the diagonal (XAB) represent the total number of inputs on which both version A

and B failed together. It is difficult to judge the significance of the numbers since they represent

8

TechnicalReportR9005 CharlesRiver AnalyticsInc.

only thecountof failures. In orderto dterminewhetheror not two versionsexhibit significantly

correlatedfailurebehaviorweperformeda X2testwith thenull hypothesis:

Ho= "VersionsA andB exhibit independent failure behavior"

for each combination of versions A,B following the same statistical test as |Brilliant, Knight, and

Leveson 1989].

n n n n n u u u u u u u! u u u
........ U U U I1 U

C C C C C C C C ¢ C 1 i ! ! I
V V V V V

s s s s s 1 I I 1 1 u u u u u
a a a a a

u u u u u a a a a a c c c c c
a b c d e

a b c d e_a b c d e a b c d e

ncsua 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00i 0 0 0

ncsub 0

ncsuc 0 0 0 0 O! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ncsud 0 0 0 t 0 0 0 0 0 t 0 0 0 0 O! 0 0 0 0 0

nesue 0 0 0 0 0 0 0 0 0 01 0 () 0 0 0! 0 0 0 0 0

uclaa 0

uclab 0 0 0 0 0 0 2 0 0 0 I 0 0 0 0 0 0 0 0 0

uclac 0 0 0 0 0 0 0 3 2 0 1 0 0 1 1 0 0 3 0 0

uclad 0 0 0 0 0 0 0 2 2 0 1 0 0 0 1 0 0 2 0 0

uclae 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

uiuca 0 0 0 0 0 0 1 1 1 0 3 0 0 0 1 0 0 1 0 0

uiucb 0 0 0 0 0 0 0 0!'0 0 0 0 O! 0 0 0 0 0 0 0

uiucc 0

uiucd 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

uiuce 0 0 0 0 0 0 0 1 1 0 1 01 0 0 1 0 0 1 0 0

uvaa 0 0 0 0 0 00J 0 0 0 0 0 0 0 0 0 0 0 0 0

uvab 0 0 0 0 0 0 0 0 0 0 0 0l 0 0 0 0 1 0 0 0

uvac 0 0 0 0 0 0 0 3 2 0 I 0 0 1 l 0 0 3! 0 0

uvad 0 0 0 0 00' 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uvae 0 0 0 0 0 O! 0 0 0 0 0 0 0 0 0 0 O! 0 0 0

Table 2.2.1" Correlated Occurrence of Conceptual Errors

in RSDIMU Program

9

•-s .. -s _ _j

0

("4

c_

Q;

0

0

lo

TechnicalReportR9005 CharlesRiverAnalyticsInc.

The)_2 statistic can be computed from table 2.2.2 using:

(xga - pApBn) 2

pApan

, l'pR)n)2
p,_ 1-pB)n

÷ ((XBB - XAB)-(1-pA)pBn) 2

(1-PA)PBn

+ ((n-(XAA + XBB- XAB))-(1-pA)(1-pB)n) 2

(l-p_(1-pB)n

2.1.

where PA is the average reliability of version A. For each pair of versions A,B we compare this

statistic with a threshold of ct = 5% level with 3 degrees of freedom. The result of this analysis is

table 2.2.3. A dot "." in this table represents comparisons which are meaningless because our

testing was unable to produce failures in either or both of the versions in question. A star "*" in

this table represents a comparison in which the statistic was not large enough to cause rejection of

the null hypothesis of independence. In this case the versions are assumed to fail independently.

Finally, a "C" in this table represents a comparison in which the statistic was large enough to cause

rejection of the null hypothesis. In this case the programs were assumed not to have failed

independently. In order to determine whether the programs exhibited dependent or better than

independent failure behavior we computed the correlation coefficient for the two failure behaviors.

A "-C" indicates that the programs exhibited better than independent failure behavior.

Each of the conceptual errors in table 2.1.1 can be traced to a particular logical error in each

program involved. We have determined the number of failures in each program due to each logical

error which was found to occur in the program from table 2.1.1. The correlation between these

individual logical errors is shown in table 2.2.4. We applied the same X2 test to these correlations

to obtain a correlation shown in table 2.2.5. By comparing tables 2.2.3 and 2.2.5 to table 2.2.1

we observe that some of the failure correlation between versions can be attributed to the existence

of logical errors which are conceptually-related. Where table 2.2.1 indicates that two versions

have one or more conceptually-related logical errors in common, presumably these related logical

errors are the cause of the correlation in table 2.2.3. The following pairs of versions have

11

Technical Report R9005 Charles River Analytics Inc.

significant failure correlation which can be attributed to conceptually-related logical errors:

(uciae,ncsud)

(uclac,uiuca)

(uclac,uvac)

(uclad,uvac)

(uiucd,uvac)

(uclab,uiuca)

(uclac,uiucd)

(uclad,uiuca)

(uiuca,uiuce)

(uiuce,uvac)

(uclac,uclad)

(uclac,uiuce)

(uclad,uiuce)

(uiuca,uvac)

n n n n n u u u u u u u u u u
c c c c c c c c c c i i i i i

s s s s s I 1 1 I 1 u u u u u

u u u u u a a a a a c c c c c
a b c d e a b c d e a b c d e

ncsua

ncsub

nCStlC

nc.._ad C * * C C * C C

ncsue * C * * C C * *

uclaa * * C * * * * *

uclab C * * C -C-C C C

C C * -CC C C C

• C * -CC C * C

C * * C C * C C

C * * CCCCC

uclac

uclad

uclae

uiuca

uiucb

uiucc

uiucd

uiuce

uvaa

uvab

ugac

uvad

uvae

* C *

C * *

* C *

C C C

C * C

* C *

* C C

* C * * C C * * C * *

C * * C C * C C * C *

* *" * * C C * C * * C

• i • i • • • *

C * * C C * C C * C *

.... C * * * C C C C * C C

• .. °

U U U U U

V V V V V

a a a a _t

a b c d e

C C
7

C *

C C

• C

C C

C C

• i • i •

C C

• C

C C

C C

+

Table 2.2.3: Significanc¢ofCorrelated Occurrence of Fa!lures !n RSDIMUPrograms. _:

12

>

0

_3

r..)

t'M

13

Technical Report R9005 Charles River Analytics Inc.

ncsud

uclab

uclac

uclad

uclae

uiuca

uiucd

uiuce

uvab

uv_lc

!1 U U U U U
c c c c c i
s I 1 I 1 u

u a a a a c
d b c d e a

u u u u
i i v v

u u a a
c c b c
d e

n u u u u u u u u u u u u u
c c c c c c c c c i i i i i
s 1 I I 1 I 1 I I u u u u u

u a a a a a a a a c c c c c
d b b c c c d d e a a a d c

1 7 8 4 5 2 4 5 1 5 6 8 2 5

u u u u
V V V V

a a a a

b c c c

3 4 5 2

ncsud.l c c , , , c , , c , c , c , c , , c

uclab.7 C C -C-C-C C -C-C C -C C C C * C * -C C

uclab.8 * -C C * * * * * * * * -C * * * * * *

uclac.4 * -C! * C * * * * * * * -C * * * * * *

uclac.5 * -C * * C * C C * C * -C * C * C C *

uclac.2 C C * * * C * * C * C * C * C * * C

uclad.4 * -C * * C * C * * * * -C * * * C * *

uclad.5 * -C * * C * * C * C * -C * C * * C *

uclae.1 C C * * * C * * C * C -C C * C * * C

uiuca.5 * -C * * C * * C * C * -C * C * * C *

uiuca.6 C C * * * C * * C * C -C C * C * * C

uiuca.8 * C -C-C-C * -C-C-C-C-C C * * * * -C *
L_

uiucd.2 C C * * * C' * * C * C * C * C * * C

uiuce.5 * * * * C * * C * C * * * C * * C *

uvab.3 C C * * * C * * C * C * C * C * * C

uvac.4 * * * * C * C * * * * * * * * C * *

uvac.5 * -C * * C * * C * C * -C * C * * C *

uvac.2 C C * * * C * * C * C * C * C * * C

Table 2.2.5: Significance of Correlation Between Failures

due to Logical Errors.

14

Technical Report R9005 Charles River Analytics Inc.

There are still quite a few pairs of failure correlated versions in table 2.2.3 which cannot be

attributed to conceptually related errors. For example, errors 1, 2, 3, and 6 of table 2.1.1 have

input domains which will overlap in cases where the misalignment angles are large and/or the

tolerance parameter NSIGT is small (indicating very little tolerance between the edge vectors). The

following pairs of version have errors which are conceptually-unrelated, but cause coincident

failures:

(ncsud,uclac)

(ncsud,uvab)

(uclac,uvab)

(uclae,uvab)

(uiuca,uvab)

(uclab,uclac)

(ncsud,uiuca)

(ncsud,uvac)

(uclae,uiuca)

(uclae,uvac)

(uiucd,uvab)

(uclab,uclad)

(ncsud,uiucd)

(uclac,uclae)

(uclae,uiucd)

(uiuca,uiucd)

(uvab,uvac)

The existence of conceptually-related logical errors is one factor that leads to correlated

failure behavior. It is possible that certain conceptual errors are caused by the development

methodologies. Diverse development methodologies may reduce the failure correlation of this type.

The existence of overlapping input domains is another factor that leads to correlated failure

behavior. The existence of a logical error in a version indicates that the input domain for that

logical error lies outside the domain of inputs that was included by the testing methodology.

Identical testing methodologies as well as methodologies whose input domains overlap are more

likely to allow logical errors with overlapping input domains. Diverse testing methodologies may

reduce the occurrence of this type of related errors.

Errors 7 and 8 are shown by table 2.2.5 to produce negative correlation with most of the

other conceptual errors. Most significantly, logical error uclab.7 causes negative correlation with

versions uclac and uclad through errors uclac.4, uclac.5, uclad.4, and uclad.5. These errors are

conceptually unrelated.

2.3. Analysis of Errors and Failures in Development and Certification Site

Subpopulations

Diversity of development methodologies is one way to inhibit the occurrence of logical

15

TechnicalReportR9005 CharlesRiverAnalyticsInc.

errors which causecoincident failures. Here we examine the diversity which exists in the

RSDIMU experimentin order to determinethe degreeto which this diversity minimizes the

occurrenceof logical errorswhich causecoincident failures. The RSDIMU programswere

developedbyindependentdevelopmentteamsat fourdevelopmentsites.Theywerethencertified
at threedifferentcertificationsites. Thedifferent sitesleadto thedeterminationof two different

diverseclassificationsof programs.Theseareclassificationaccordingto developmentsite and

classificationaccordingto certificationsite. Table2.3.1showsthecorrelationof theoccurrenceof

conceptually-relatedlogical errorsbrokenintogroupsby developmentsite. Table2.3.2showsthe
correlation of the occurrenceof conceptually-relatedlogical errors broken into groups by

certificationsite. By totalling thenumberof conceptually-relatedlogicalerrorsbetweeneachpair

of versionsat eachpairof sites,weobtainthedatafor tables2.3.3and2.3,4. Thesearea measure

of howwell thediversity avoidedtheoccurrenceof conceptually-relatedlogical errors. We then

performedaZ2testwith thenull hypothesis:

H0= "Theoccurrenceof conceptually-relatederrorsin programsproducedby sitesA and

B wasindependent"

For two different sitesA andB in thefollowing tables,therejectionof Ho indicatesthat

thesesitesproduceprogramswhichcontainedasignificantlylargenumberof conceptuallyrelated

errors. In thiscaseweconcludethatthediversity betweenthesesitesis unsuccessfulin reducing

theoccurrenceof conceptuallyrelatederrors.Theacceptanceof theHo indicatesthatthis typeof

sitediversitymightbeagoodmethodof reducingtheoccurrenceof conceptuallyrelatederrors.

Theresultsof this testareshownin tables2.3.5and2.3.6. Herewe seethattheonly site

which producedversionsin which the occurrenceof conceptually-relatedlogical errors is not

correlatedis thedevelopmentsitencsu.This informationseemsto contradictthefailurecorrelation
informationof table2.2.3in whichdevelopmentsitesncsuanduvashowarelativelysmallamount
of failurecorrelation.

16

Technical Report R9005 Charles River Analytics Inc.

n

c

s

u

u

C

I

a

u

1

u

C

u

v

a

ncsu uva

...... U U U U I

:::_:_ v v! v v

a ala a -'

a b c d =

.......,

_i::?:oiiii_ii_:,iliO!i_,i_,_i',i',_

................. ;:::;:1:;.:; ;.:,,,,.:, ,...,.,.

;i!ii._;=_;i_ii::i_;_i::i_o;::i_;oiii!

_::i]_0i0 0 0 0 (

iiii_iio o o 0
:3:.::::::,:

!::::::i_::il0 0 2 0 £

i::i_Oi::0 0 0 0 C

...... ,:.,, .,.,., ,,,.,,,,

,v,-:,:.,. ,.:.:-:, :,::.,.: -......,. • ..,..- .,:.A.

:,:::,=:i:,:=:,:_ii_!iii_ilii::i::_i::i:==io_i
i_il_i_0 O, 0 0 0

33"::

iii_',ii,_o o 3 o o
,,i_,,o o o o o
i!i_iiio ol o o o

Table 2.3.1: Correlated Occurrence of Conceptual Errors in

RSDIMU Programs by Development Site

17

TechnicalReportR9005 CharlesRiver AnalyticsInc.

ncsu ucsb uva

n n 111 u u
uc c c c i
vl

s s s I u al
U I1 U a c

ac d e d c

u,ii_!liiiii_liiii_Hiiiiiiiiii_!!ii n n u u u u u

v v

a a

n_ 0 0 0 0'-0 0 0 _Ti!i!i_i_!ii_iiiiii_!!ifii_0 0 0 0 0 0 0
r_d 0 _ 0_070"0 0 _tiliiii!_iiliiii_lli_ii0iii_[i!i_0 0 0 0 0 0 0

n 0 0 0 0 0 0 0ii! i ii6!ii!i! '!ii ,ii ,ii lii 0 0 0 0 0 0 0
c _m o o o 2 o o 2 _!li_i_i_]i:ii_i_':i_i_':ii;i_i_!_i_o o o o _ o o

u_ o o o oi o o o _i!:_Iiiii!!_iI:iiii_liiii!_'iiii_|i!i!':_o ol o o o o o
u_aa 0 o 0 0 0 0 0iiiii_iiiiii_iiii_iiii_ii!_iiiiii_iol o 0 0 0 6 o
_ o o o _ o o 3_ii!_iiiiii_iiiiii_!'iiiii_'!i!i_i_io: o o o _ o o

_!_i_:!iii!:,.i_iii_:i]i_ii!!i:,.i_::iiiiii_ii',ii_iiili_iii:_ili_iiiiili_!iiii',_:i0:.lii':!_'_.,.,_.i.iiii_i.S_i_i_i_i_],iiiiO:'lri:i:_iI_:_::i_ili.!i"iii'?:'_i.i_i!-i:-i_i
';:.:;5";_:_:::::: : ":"-":- _. _::_::':'-.'-.':""': ::_:"-: : : : _:"::_::: : :"::

b i _iill.................. ...!_iiiii_"iiii!_'_!iiii_ _i_: iiiiiii._ii!iii!.:![:::':':'":;:_:i_ _:.::.::_:!ii_!!_:'i:.:.:.:.:.::_?:.:.:,:+:,:.:.:.:....J...:+:+:A.:.:.:.....::i;i:_:!iiiii""::?:]:_!_i_i':_i_.:i_:_!_!5""i]:]:]:'_:!iiiiiii'iii!_'_iiii_i¢iiiii_iii_iiii_0iliiii_iiii __iiiiii_:x,:.:,:.::,:.:,:r:,:,: +:+::." .>:.:+:+ +=.:.:+ =========================::.:+:+

._a 0 0 0 0 0 0i o iilji_':iiiii_l!ii_l!iii_i.iiiii_.ijii_o o o o o o o

..,,b o o o o o o o!i!!_i'ii::ii_!!i!'_:!ii_l!iiiii_.!ii_o o o o o o o
. uc_a o o o o o o 0 ii',i',_::_:i'_i':_iiiiiii:_'iii_[!iii_![iiiii_o'-o o o o o o

-:i:-::'"::_:i:i:i::"::"i:_:_::::]i:i:i::': i:_:!::'"::_:i:i:i::":: 0v uclab 0 0 0 0 0 0 0 ::!i!_!::iiii_!::iiiii_ilii]!::i_]ii::i::i_::[!::i::_0 0 2i 0 0 0

a uiuce () 0 0 1 0 0 _i_iiii_i_,_2_'_i_'_ili_i_'_li_i_i_',I'_',_!_o o o o _ o o

u,,-_ o o 6 o o o o i!,_,:',::i:iii_iiiii_.'_ilili_.i,_!::i:_.i,_i_i_o o o_ 6 o o o
uv_ o o o o o o o !i_:_ig!ii_iliiii_!iiii_iii!i_':i!ii_o o o o o o o

Table 2.3.2: Correlated Occurrence of Conceptual Errors

in RSDIMU Programs by Certification Site.

ncsu

uch

uiuc

uva

ncsu uc'la uiuc uva

1 0 0

1 6 5

0 6 3

0 5' 3

Table 2.3.3: Correlation of Occurrence of Conceptual Errors

Between Development Sites.

18

TechnicalReportR9005 CharlesRiverAnalyticsInc.

ncsu

ucsb

uva

ncsu ucsb uva

9 2

9 - 3

2 3

Table 2.3.4: Correlation of Occurrence of Conceptual Errors

Between Certification Sites.

ncsu

ucla

uiuc

uva

ncsu

* C

* C

ucla uiuc uva

C C

C

C

Table 2.3.5: Significance of Correlation of Occurrence of Conceptual Errors

Between Development Sites.

ncsu ucsb uva

ncsu C C

ucsb C C

uva C C -

Table 2.3.6: Significance of Correlation of Occurrence of Conceptual Errors

Between Certification Sites.

The reason for the apparent contradiction is the invalidity of the assumption that

conceptually-related errors will always cause coincident failures and that conceptually-unrelated

errors will not cause coincident failures. Table 2.3.7 shows the failure intensity distributions

corresponding to each of the conceptual errors of table 2.1.1. For each conceptual error ei the

19

Technical Report R9005 Charles River Analytics Inc.

corresponding failure intensity distribution is compiled using only the failures which were

attributable to logical errors which were in turn attributable to the conceptual error el. Table 2.3.8

shows the corresponding version failure distribution for each ei.

An example of conceptually-related errors which do not cause coincident failures is uclad.4

with uclacA and uvac.4. From the descriptions of the logical errors attributable to conceptual error

number 4 in section 2.1.1 we expect that the input domain of uclac.4 would entirely contain the

input domain of uclad.4 which would entirely contain the input domain of uvac.4. Table 2.3.7,

however, shows that there are no 3 version coincident failures attributable to conceptual error

number 4. This means that a significant part of the input domains of these logical errors does not

overlap.

U

uclac.5

@

Figure 2.3.1" Venn Diagram of Input Domains of Conceptual Errors 4 and 5.

Detailed analysis of the input domains of logical errors attributable to conceptual errors 4
- ,_==

and 5 leads to the diagram of figure 2.3.1. This is a Venn diagram of the input domains for each

of these logical errors. One interesting feature of this diagram is that logical errors uiuca.5 and

uvac.5 have the same input domain which strongly supports the assertion that conceptually-related

errors cause coincident failures. Notice also, however, that the domain of the failures of uclac.4 lie

completely outside of the other failures attributable to conceptual error number 4. Further, the

input domain of uclad.4 and uvac.4 lie entirely within the input domain of uclac.5. This indicates

20

TechnicalReportR9005 CharlesRiverAnalytics Inc.

that the failures of uclad.4 and uvac.4 are more correlated with uclac.5 which is non-related than

with uclac.4 which is conceptually-related.

Another example of conceptually-related errors that do not cause coincident failures

is uclab.8 with uiuca.8. Notice that logical errors uclab.8 and uiuca.8 are conceptually-related and

yet the input domain of these errors is disjoint (Table 2.2.4).

An example of a version containing conceptually-unrelated errors which cause coincident

failures is uclab. We have determined that version uclab contains logical errors attributable to

conceptual errors 7 and 8, and that it is the only version containing logical errors attributable to

conceptual error number 7. This means that version uclab contains logical errors which are

conceptually unrelated with any versions but uiuca and that the input domains of uclab.8 and

1

2

3

4

5

6

7

8

9

10

E_or Number

1 2 3 4 5 6 7 8

170 13 105 608 247 314 49323 43725

68! 4 0 47 12 0 0 0

0! 98 0 0! 0 0 0 0

0 0 0 0] 133 0 0 0

0 0 0 0 47 0 0; 0

0 0 04 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 2.3.7: Failure Intensity Distribution for Conceptual Errors.

21

TechnicalReportR9005 CharlesRiverAnalyticsInc.

1

ncsud 121

uclab 0

uclac 0

uchd 0

uclae 185

uiuca 0

uiuca 0

uiuce o

,uvab . 0
uvac 0

Error Number

2 3 4 5 6 7 8

0 0 0 0 0 0 0

0 0 0 0 0 49323 2197

104 0 411 438 0 0 0

0 0 244 191 0 0 0

0 0 0 0 0 0 0

0 0 0 181 314 0 41528

99 0 0 0 0 0 0

0 0 0 47 0 0 0

0 105 0 0 0 0 0

112 0 47 181 0 0 0

Table 2.3.8: Version Failure Distributions for Conceptual Errors.

uiuca.8 are disjoint. In spite of this apparent independence of version uclab, table 2.2.3 shows

version uclab to exhibit correlated failure behavior with 6 other versions. In addition table 2.2.5

shows uclac.7 to be failure correlated with 8 conceptually-unrelated errors.

These observations lead us to believe that the correlation of conceptually-related logical

errors is highly dependent upon the type of conceptual error and the manifestation of this error.

The nondeterministic nature of an uninitialized variable makes the correlation of logical errors

resulting from conceptual error number 7 difficult to predict. The design of version uclab is such

that the effects of uclab. 7 tend to cause correlation with unrelated errors.

The manifestation of logical errors uclab.8 and uiuca.8 are such that the erroneous code is

called upon in situations whose input domains are disjoint. This behavior is not determined by

conceptual error number 8 alone. Further, it cannot be determined by logical errors uclab.8 and

uiuca.8 alone. In order to determine the effects of conceptual error number 8 upon the failure

behavior of versions uclab and uiuca, it is necessary to understand the computations of these

programs in detail.

22

TechnicalReportR9005 CharlesRiverAnalyticsInc.

Finally, thenatureof conceptualerrornumber5 is suchthatthe input domainsof logical

errorsattributableto it significantlyoverlapwitheachother. This leadsustobelievethatthenature

of conceptualerrornumber5 iscompletelydifferentfrom thatof 7 or 8.

2.4. Results of Error Analysis

Conceptually-related logical errors cause coincident failures. Diversity of development

methods and diversity of testing methods may help to inhibit the occurrence of coincident failures

caused by conceptually-related logical errors. However, the elimination of conceptually related

errors is not enough since conceptually unrelated errors can cause dependent failure behavior as

well. Here, the interaction between a logical error and the computations of the program and the

interaction between different logical errors with overlapping input domains is important.

Enforcement of diversity upon development and testing methodologies needs to take into account

the degree to which a methodology inhibits or promotes these types of interaction.

The occurrence of unrelated logical errors causes negative correlation. The enforcement of

diversity upon development and testing methodologies should promote the production of programs

whose errors are conceptually- and input-unrelated. In addition, relationships other than input-

related and conceptually-related should be developed in order to relate logical errors which will

cause coincident failures and logical errors which will not.

We have found that site diversity is not enough of a factor in development to significantly

reduce the occurrence of conceptually-related errors. Since conceptually related errors cause

coincident failures, site diversity is not likely to reduce the numbers of coincident failures in the

development of multiple versions.

23

TechnicalReportR9005 CharlesRiverAnalytics Inc.

3. ACCEPTANCE CHECK DEVELOPMENT

In this section we present our theory of generalized interactive program checkers. In

addition we present some examples of complex programs for which we have developed interactive

checkers.

3.1 Interactive Proofs

Interactive Proofs is a new approach to software validation. Interactive Proofs is different

than formal verification in that each particular output for a given input is "verified" in contrast to

verifying the correctness of software for all inputs. Here, we give an informal overview of this

approach to checking of program correctness. This approach owes much to the development of the

theory of Interactive Proofs. [Blum and Raghavan 1988] [Babai 1989] [Goldwasser, Micali, and

Rackoff 1985]

The scenario we are considering below is as follows: consider a program P supposedly

satisfying specification S, and producing the output P(x) on some input x. We would like to know

how much trust we can have in the correctness of this particular output. The approach taken here

is different from program correctness proving techniques in that it is much more practical in

general, though it tells us only if the program is correct in the particular instances. The problems

for which efficient program checkers were constructed include examples from graphs, codes,

matrices, latin squares, and multisets.

The approach is to construct a program checker C which checks whether the output P(x) of

a program P on input x is indeed the answer S(x) on input x, where P is a program for S. The

checker C depends on the specification S and not on the program P. Thus modifications of P do

not require changes in C. The checker C is a probabilistic algorithm. Program P produces an error

on input x if P(x) # S(x). In such a case the checker will output INCORRECT with an

overwhelming probability, depending only on a security parameter k. It is very important to stress

that the probabilities (of checker's error, for example) are over the internal coin tosses of C, and

depend on neither program P nor inputs x. If P(x) = S(x), i.e. no error occurs in the particular

instance, the checker C may still output INCORRECT if there is another instance x', such that

P(x') # S(x'). If the program P is always correct the checker will always output CORRECT. It is

24

TechnicalReportR9005 CharlesRiver AnalyticsInc.

natural to require that the checker spends less time than the program. In some cases it is even

possible to construct checkers which run much faster than the program they check.

Example 1" Graph Isomorphism. Let program P given two graphs produce 1 if the

graphs are isomorphic and 0 otherwise. Let P(G0,G1) = 0 for graphs Go and GI.

The verification of this output may be very hard since there is no way known to

produce a short proof of graph non-isomorphism. But the following checker will

1__.
correctly identify an error in P(G0, G1) = 0 with probability 2 k.

DO k times

i := random_bit (ie. i e {0,1 })

T := randompermutation (Gi)

if P(T,G0) = i then return BUGGY

END DO

return CORRECT

Note that the checker uses the specification knowledge that graph isomorphism is

invariant under random permutations. If the checker returns BUGGY, then the bug

can be localized since P was wrong either in P(G0, G1) or in P(T, G0, assuming

that T has been correctly computed).

We would like to stress interactive proof simplicity of this checker's algorithm. Much of

the theory so far has been developed for NP decision type problems. In the next section, we

discuss its generalization to arbitrary programs.

3.2 Generalized Interactive Checkers

Blum and Raghavan define a test procedure for asserting the correctness of a program

solving a decision/search problem in NP on a given input. Here, we discuss one possible

generalization to testing arbitrary programs by reducing to a decision problem. Let

25

TechnicalReportR9005

X be thesetof all possibleinputsfor aproblem

Y bethesetof all possibleoutputsfor aproblem

CharlesRiverAnalyticsInc.

DefinetheprogramspecificationSby:

S:X _ Y suchthat S(x) = y for xeX,yeY

Let P bea program supposedly satisfying the specification, then

P: X _ Y such that P(x) =y for xe X,y_ Y

Let x by an arbitrary input on which the program P produces the output y. We would like

to assert whether y is correct or not. We define two equivalence classes. Now, there are two

natural equivalence relations that we can define on the set X. Recall that a relation on the set X is

defined as any subset ofX × X. An equivalence relation is a relation which is reflexive, symmetric

and transitive. Consider the relation Rx:

xlRxx2 <-0 S(xl) = S(x2) for Xl,X2E X

Clearly,

XlRxXl

XlRxX 2 ==> x2RxXl

XlRxX2 and x2Rxx3 ==> XlRxX3

Hence, Rx is an equivalence relation on the set X.

Now consider the relation Ry:

xlRyx2 <==> Xle S-I (y)and x2_ S-1(y)

26

Technical Report R9005 Charles River Analytics Inc.

where S -1 is the inverse set function associated with the function S.

XlRyXl

XlRyX2 --> x2RyXl

xlRyx2 and x2Ryx3 ==> Xl Ryx3

Hence, a program P producing an output y* on an input x*

equivalence classes:

Again,

generates the following two

Xx* = {x e X: S(x) = S(x*)}

Xy* = {x e X: S(x) = y*= P(x*)}

That is, Xx, is the set of all inputs for which a correct program produces the output S(x*) which is

the correct output for the input x*. On the other hand, Xy, is the set of all inputs for which a

correct program produces the output y*=P(x') which may or may not be the correct output for the

input x*. Now consider the following proposition:

Proposition: Given x* e X and y* e Y with y* = P(x*), the program output y* is correct

(more precisely, P(x*) = S(x*)) if and only if Xx, = Xy,.

_oof;

(_) Let y* be correct. Then

y* = P(x*) = S(x*)

Let xe Xx*. Then

S(x) = S(x*) = y* =:_ xe S-1 (y*)

Hence,

27

TechnicalReportR9005 CharlesRiverAnalyticsInc.

X_ Xy*

Now, let xe Xy, _ S(x) = y* = P(x*) = S(x*)

So xE Xx,

(¢=) Let Xx* = Xy,

Now x*_ Xx,. Since Xx, = Xy, this implies X*E Xy*. Therefore,

x*e S-I (P(x*))

which implies

S(x*) = P(x*)

Q.E.D.

We have thus reduced the problem of checking the correctness of a program output on a

given input to testing the equality of two sets. What we need is a characterization of Xx° and Xy,

based on the specification S. If the number of elements in the sets Xx, and Xy, are infinite, then

we need a random characterization. If these are available, then we can proceed with probabilistic

interactive checkers.

Suppose that we have a random characterization of Xx, and Xy,. Given these random

characterizations, we propose the following checker based solely on invoking the program P on

random inputs from the subsets Xx, and Xy, and comparing the program outputs at these random

inputs to the output being tested.

Generalized Checker. Given a program P supposedly satisfying a specification S, an input

x*e X, and a corresponding output y*e Y, let

S: X --->Y where S(x) = y for xe X, ye Y

28

TechnicalReportR9005 CharlesRiverAnalyticsInc.

P:X ---)Y whereP(x) =y for xe X,yEY

define

Xx* = {x _ X: S(x) ---S(x*)}

Xy* = {x E X: S(x) = y*}

whereXx, is thesetof all inputsonwhichacorrectprogramwouldgeneratethesameoutputason

x*, andwhereXy, is thesetof all inputson which a correctprogramwouldhavegeneratedthe

output(possiblyincorrect)y*.

.

2.

3.

Choose randomly between Xx, and Xy, .

Choose a random element z from the set selected in step 1.

Invoke the program P on the input z selected in step 2.

If P(z) _: y*, report INCORRECT

If P(z) = y*, go to step 1 up to k times.

If a program output is correct, then such a checker will always return correct. If the

program output y* is not correct, then the performance of the checker will be determined by the

relationship between the element of y* e Y and the following two subsets of Y:

P(Xx,) = {yE Y • y=P(x) for some XE Xx*}

P(Xy*) = {yE Y • y=P(x) for some xE Xy,}

If P(Xx*) U P(Xy,) - {y* } = 0, then such a checker will miss the incorrect output.

If P(Xx*) U P(Xy*) - {y*} _: 0, then such a checker will eventually detect the incorrect

output. The probability of the checker hitting an input providing inconsistency will depend on the

relative cardinality of the two subsets of X

{xE Xx, U Xy, • P(x)=y*}

29

TechnicalReportR9005

{x_ Xx* U Xy, : P(x)_y*}

CharlcsRiverAnalytics Inc.

If the intersection of the subsets P(Xx,) and P(Xy,) is empty, then the efficiency of the checker is

very high.

Example 2: Checker for a Sorter Pro m'am. Consider a program P which sorts a set

of inputs according to a given relation, given the input x* and output y*:

x,={x7,x x:}
Y*= {Y_, Y_..... Yn}

The equivalence classes Xx* and Xy ° are given by:

Xx* = {T (x*): T (x*) is a random permutation of x*}

Xy, = 0,

= [T(y*)}

if y* is not ordered

otherwise

where T is a random permutation of y*. Now the checker can be

implemented with the algorithm:

1. Choose randomly by z* from x* or y*.

2. Select a random permutation T(z*).

3. If P(T(z*)) :_ y*, report INCORRECT

P(T(z*)) = y*, repeat up to k times.

This checker will eventually detect all ordered incorrect answers for a sorter program.

Unordered incorrect answers may also be detected depending on the relationship between the sets

P (T(x*)) and P if(y*)).

30

Technical Report R9005 Charles River Analytics Inc.

Example 3: Ch¢cker for _ Least Squares Esti .mator Program. This example

corresponds to the estimation module in the RSDIMU experiment. Consider a

program P computing the least squares estimate

a=C#f

where f and a are the real-valued measurement and estimate vectors with dim (f)

> dim (a), and C' is the generalized inverse of the matrix C. Suppose, for a given

measurement f*, the program P computes the estimate a*. In this case, the

equivalence classes Xr, and Xa* are given by:

Xf'= {f* +[I-CC #] f" fis arbitrary}

Xa* = {Ca* + [I - CC#] f: f is arbitrary

In order to reduce the complexity of the checker, we employ the program P

in the random characterization of these sets. For a correct program P, we have

Xf, = {f* + f- CP(f):farbitrary}

Xa* = {Ca* + f - C P(f) : f arbitrary }

Now the checker can be implemented with the algorithm

1. Choose randomly either Xf, or Xa*

2. Choose a random element f from the set selected in step 1

3. If P(f) ¢ a*, report INCORRECT

P(f) = a*, repeat up to k times.

Note that this checker employs the program in the selection of a random element from two

equivalence classes.

Example 4: Checker for an Eigenvalue Computation. Consider a program P which

computes the eigenvalues {_.1 _.n} for real valued square matrices A:

31

TechnicalReportR9005 CharlesRiverAnalyticsInc.

S:Rn× Rn--) C'nwith S(A) = {_,1..... _.n}

Supposefor agivenmatrixA*, theprogramPcomputestheeigenvalues

I" :1_.l, ..., _. • The equivalence classes are given by:

XA" = {PA* p-l: p is arbitrary, nonsingular}

X_" = {PJ* p-l: p is arbitrary, nonsingular}

with J* = block diagonal {J1 J;} where Ji are the Jordan blocks associated

with the eigenvalues _,1 _,n. That is, the equivalence classes consist of random

similarity transformations of the input matrix and the Jordan normal foma of the

eigenvalue outputs.

32

TechnicalReportR9005 CharlesRiverAnalyticsInc.

4. RELIABILITY ANALYSIS

In this section we present the results of our reliability analysis using the data obtained from

the RSDIMU experiment.

4.1. N-Version vs. Recovery Block Structures

In this section we present a comparison of the reliability of N-Version structures and

Recovery Block Structures. We use models of the reliability of structures built from an infinite

population of versions characterized by a failure intensity distribution g. We then compare the

performance of these two types of structures using the failure intensity distribution obtained from

the RSDIMU experiment.

4.1.1. N-Version Structure Reliability

In an N-Version fault tolerant structure, N independently designed similar software

components (where N is an odd integer) are executed and the results are passed to a voter. The

majority consensus output is the output of the fault tolerant structure. The probability of failure of

such a structure Pk is shown by [Eckhardt and Lee, 19851 to be:

k k-j (k + 1)

pk=_ ° (j)(-_i(1-_-/ g(_-),wherem-
"= j=m 2

4.1.1

4.1.2. Recovery Block Structure Reliability

A fault tolerant recovery block structure consists of k versions of redundant software (one

primary alternate and k-1 supplementary alternates) to be executed serially with sequential

acceptance checks performed between version executions.

Clearly, the overall reliability of a recovery block structure not only depends on the

reliability of the individual component versions, but also on the reliability of the acceptance check

routine. Our definition of acceptance check reliability encompasses not only the reliability of the

33

TechnicalReportR9005

acceptancecheck software, but also the coverage of the

distinguishing between correct and incorrect version outputs.

Charles River Analytics Inc.

acceptance check algorithm in

4.1.2.1. Recovery Block Structure Reliability with Perfect Acceptance Check

We begin our analysis of recovery block structures in this section by assuming the

existence of a perfect acceptance check routine. That is, an acceptance check routine containing no

software errors with the additional property that for a given input-output set of data:

1. P[acceptance check declares output incorrect I output is correct] = 0

2. P[acceptance check declares output correct I output is incorrect] = 0

That is, the fin'st probability refers to the false alarm rate while the latter refers to the probability of

missed detection of the acceptance check test. Later sections will approach the problem assuming

non-zero failure probability.

Assume that we have a version population which is characterized by the failure intensity

distribution:

g(_), 1 <i <N 4.1.2

Under this assumption, the probability of failure of a k-version recovery block structure with

perfect acceptance check is:

N

Pk=i___0(_-)kg_ -)

4.1.3

4.1.2.2. Recovery Block Structure Reliability with Imperfect Acceptance Check

In order to model the reliability of a recovery block structure with an imperfect acceptance

check, we make the following assumptions:

34

TechnicalReportR9005 CharlesRiverAnalyticsInc.

1. P[acceptancecheckdeclaresoutputincorrectI outputis correct]= 0

2. Acceptance check failures are independent of component version failures.

The first assumption concerning the false alarm rate is a reasonable one for most acceptance

checks. The second assumption's validity is a function of the specific application under

consideration. Under the second assumption:

P[acceptance check declares output correct I output is incorrect]

= P[acceptance check fails]

=E

where e denotes the probability of missed detection of the acceptance check. Under these

assumptions we are able to determine the probability qk that a k-version recovery block structure

will fail. If we assume that k-versions are chosen from a population which is characterized by the

failure intensity distribution of 4.1.2, then the probability of failure is

where Pi is given by 4.1.3.

k-!

qk(e)=p,(1- e) k-' + eZ Pi(l- e}i'l
i=l

4.1.4

4.1.3. Comparison of Structures for RSDIMU Experiment Version Population

In this section we compare the reliability of N-Version and Recovery Block fault tolerant

structures. In particular we will consider a population of programs which is characterized by the

failure intensity distribution obtained from the RSDIMU experiment. We have combined the

individual cases S0,0 through $1,2 to obtain the failure intensity distribution of table 4.1.3.1.

Using equations 4. I. I and 4.1.4 we are able to compare the predicted effectiveness of N-Version

and recovery block structures built from a realistic population.

35

Technical Report R9005 Charles River Analytics Inc.

9/20-20/20

0 8(0)
0/20 9.1802e-1

1/20 5.8575e-2

2/20 2.2995e-2

3/20 8.3628e-5

4/20 1.574_-4

5/20 8.7972e-5

6/20' 4.5615e-5

7/20 2.2808e-5

8/20 6.5164e-6

0

Table 4.1.3.1: Failure Intensity Distribution Obtained from RSDIMU Experiment.

10-2.

_ 10-3.

O 4.10"
i_ :

.ID

.D

o. 10.5_ _
0

"-.. N-Version

I ' ! I I • I

2 4 6 8 10
_ __ _ = _ =

Number of Versions

I
epsilon = 0.5

P
epsilon = 0.05

I
epsilon = 0.005

I
12

Figure 4.1. l: Comparison of N-Version and Recovery Block Structure Reliability.

The result of modelling an N-Version structure with a recovery block structure with an

imperfect acceptance check is shown in figure 4.1.1. Here we have sampled the reliability curve

36

Technical Report R9005 Charles River Analytics Inc.

for a recovery block structure using acceptance check failure probabilities -- e -- of 50%, 5%, and

0.5%. It is immediately apparent that a recovery block structure whose acceptance check is no

more than 50% reliable is no more effective than an N-Version structure no matter how many

versions are used.

With more reliable acceptance checks, however, there is an advantage to choosing to build

a recovery block structure over an N-Version structure when a relatively small number of versions

are involved. With the population of table 4.1.3.1 the decision point of which fault tolerant

structure to use is:

use N-Version use Recovery Block
Structure Structure

for e = 5%: k > 5 k < 5

for e = 0.5%: k > 10 k < 10

If three versions are to be used in building a structure, the failure probability of our acceptance

check would have to be less than approximately 0.195 in order to warrant the use of N-Version

programming instead of recovery blocks.

This leads us to believe that if it is possible to develop a reasonably reliable acceptance

check whose failure behavior is independent of the programs that it is checking, then the decision

of whether to use N-Version programming or recovery blocks depends upon the number of

versions that are to be employed. In the case where it is possible to develop a large number of

versions to include in the structure, then N-Version programming should be employed. On the

other hand, if only a small number of versions can be developed then it is better to use recovery

blocks.

The development of a recovery block model for which the acceptance check is not assumed

to be independent would be very advantageous. This would make it possible to decide which fault

tolerant methodology to use in the case where an independent acceptance check is not possible.

37

TechnicalReportR9005

4.2. Reliability of Software

Methodologies

Fault Tolerant Structures

Charles River Analytics Inc.

Under Diverse

Here we examine the reliability of fault tolerant software structures in order to

determine how best to exploit the independence which exists between subpopulations of the twenty

RSDIMU versions. This will help us to determine the best ways to exploit independence resulting

from diverse development methodologies.

The RSDIMU programs were developed by independent development teams at four

development sites. They were then certified at three different certification sites. The different sites

lead to the determination of two different subpopulation classifications. These are classification

according to development site and classification according to certification site. In addition, in

examining the individual reliabilities of the programs we have identified three clearly defined

reliability subpopulations. We refer to these subpopulations as high, medium, and low reliability

groups. By separating the programs into these three groups independent of development and

certification site, we are able to fabricate diverse subpopulations.

In the following sections we model the reliability of fault tolerant software structures which

are built using the following techniques:

subpopulation structures:

homogenous structures."

Structures built using only programs from
within each specific subpopulation.

Structures built using the aggregate of all

subpopulations.

In comparing the subpopulation structures with the homogenous structure we must be

careful only to generalize the end results. This comparison is not meaningful when we are

searching for the sources of the software failures. In other words we cannot say that the

homogenous structure showed a relatively poor reliability because of subtle dependencies between

the methodologies at different development sites or certification sites. This is invalid because cross

correlation between programs at different development sites could be due to planned factors in the

experiment, such as the use of a common specification and the fact that versions from different

development sites were certified at the same certification site.

38

TechnicalReport R9005

4.2.1. Diversity of Development Site

Charles River Analytics Inc.

The failure intensity distribution of Table 4.2.1. I. results from separating the versions into

four groups according to their development site.

failure developmentsi_

in_nsity ncsu uc_ uiuc uva homogenous

0 920616 866187 878637 920379 845268

1 130 53982 42025 262 53933

2 0 566 84 105 21173

3 0 11 0! 0 77

4 0 0 0 0 145

5 0 0 0l 0 81

6 42

7 21
i

8 6

9-20

Table 4.2.1.1: Failure Intensity Distribution by Development Site.

The average reliability varies widely, and sites ucla and uiuc have a very high number of

single version failures. Of the single version failures in the ucla subpopulation, 99.1% are due to

the failure of version uclab. Of the single version failures in the uiuc subpopulation, 99.9% are

due to the failure of version uiuca.

Figure 4.2.1.1 shows the improvement of reliability of structures formed from

subpopulations and the homogenous population. The uva subpopulation structure showed less

than an order of magnitude improvement in reliability even though its failure intensity distribution

in table 4.2.1.1 shows fewer high-intensity errors than the ucla subpopulation. The reason for this

is that the ucla subpopulation has a very large number of failures of intensity 1. Note that the

reliability improvement of the ncsu, ucla, and uiuc Structures are nearly identical even though the

ncsu failure intensity distribution shows significantly fewer coincident failures and higher average

reliability.

A significant feature of figure 4.2.1.1 is the remarkable improvement of the homogenous

structure compared to that of the subpopulation structures. This suggests that the dependencies

39

TechnicalReportR9005 CharlesRiverAnalyticsInc.

between versions in the subpopulations are not as significant when those subpopulations are

combined. This is because there is more dependent failure behavior between versions from the

same subpopulation that from different subpopulations.

2 .1 ". -.4.
n % _._._.

U.

._N'l°• .01 "..... "'""..

.E
o

z
.001 w 1 • = i

0 2 4 6 8 10

Number of Versions

.......... RCSU

.................. ucla

uiuc
uva

......... Hom_jenou_

2

Figure 4.2.1.1: Coincident Error Model of Reliability

of N-Version Structures Built from Development Subpopulations.

Figure 4.2.1.2. shows the finite population model of structures built from development

subpopulations. Each subpopulation structure in figure 4.2.1.2. performed as would be expected

from the failure intensity distributions of table 4.2. I. 1. In this figure the lines which drop off the

plot (ncsu at N = 3 and uiuc and uva at N = 5) are considered to have reliability 1.0 at this point.

This is because no coincident failures were observed that could cause failure of any structure with

the N versions. The homogenous structure shows a smaller improvement than the subpopulations

in the finite population mode. By considering the populations to be composed only of the versions

developed in the RSDIMU experiment, we exaggerate the effects of the low reliability versions on

the resulting structure. In the infinite population of the coincident error model, the effect of this

small number of low reliability versions is overcome by the independence which exists in the

majority of the versions.

40

Technical Report R9005 Charles River Analytics Inc.

m

23
.o
o

el

.=
-i

.u

tl

-IO

.N

t_

O
Z

.1

.01

.0Ol

.00Ol

\
i

I

I

• II " ' I I

0 2 4 6 8 10

Number of Versions

.......... ncsu

................... ucla
uiuc
uva

......... Homogenous

Figure 4.2. 1.2: Finite Population Model of Reliability

of N-Version Structures Built from Development Subpopulations.

4.2.2. Diversity of Certification Site

In order to determine the effects of certification site diversity on the independence of

failures we divided the versions into three categories according to table 4.2.2.1.

ncsu

IICSUC

ncsud

IlCSli(3

ucbd

uiucc

ilvaa

uvac

ucsb uva

uclac ncsua

uclae ncsub

uiuca uclaa

uiucb uclab

uitw.xl uiuce

uvab uvad

uvae

Table 4.2.2.1. Certification Sites for RSDIMU Programs.

41

Technical Report R9005 Charles River Analytics Inc.

The failure intensity distribution of table 4.2.2.2. results from separating these versions into

subpopulations by certification site.

failure certification site

intensity ncsu uva ucsb homogcnous

867192 877872 845268
I ml

53554 53933

0

0 920102

1 330

2 313

3 1

0

0

0

0

21173

0 77

4 0 14'5

5 0 81

6 0 42

7 21

8 6

9-20 0

42545

224

14

56

34

0

0

Failure Intensity Distribution by Certification Site.Table 4.2.2.2.

Here we see that the highest intensity failures are all within the same certification site

subpopulation. The average reliability of the subpopulations uva and ucsb are similar while the

ncsu subpopulation exhibits a much higher average reliability. 99.9% of the uva failures were

caused by version uclab and 98.8% of the single version failures in ucsb were caused by version

uiuca.

In figure 4.2.2.1 we see some of the same behavior that we saw in figure 4.2.1.1. The

ncsu subpopulation structure shows little improvement even though there are relatively few

coincident errors. We also see that for N < 8 the uva and ucsb subpopulations exhibit less than an

order of magnitude reliability improvement even though the failure intensity distributions for these

subpopulations show dramatic improvement for failure intensities greater than 1. This is most

dramatic in the uva subpopulation which shows better than independent behavior. Once again, the

homogenous structure shows more improvement than the subpopulation structures.

42

Technical Report R9005 Charles River Analytics Inc.

1

.o

o .1
13..

"1

u.

"o .01

N

ra

Z
.001

0

• q,_,.=

I " I | I I

2 4 6 8 10

Number of Versions

.......... ncsu

................. uva

ucsb

......... Homogenous

Figure 4.2.2.1" Coincident Model of Reliability

of N-Version Structures Built from Certification Subpopulations.

m.D

.,o
2

rt

itl
II

.N

E
O

z

1

11
.01

.001

.0001

0 12

| %!
s

i
I " I I I I

2 4 6 8 10

Number of Versions

......... OCSU

.................. uva

ucsb

......... Homogenous

Figure 4.2.2.2: Finite Population Model of Reliability

of N-Version Structures Built from Certification Subpopulations.

43

Technical Report R9005 Charles River Analytics Inc.

As in figure 4.2.2.1, figure 4.2.2.2 shows that the homogenous structure performs poorly

in relation to the subpopulation structures for the same reasons as have been discussed.

4.2.3. Diversity of Version Reliability

In order to determine the effects of version reliability diversity upon diverse structure

reliability we created an artificial grouping of the versions according to their reliability. The

version reliabilities of the 20 RSDIMU programs are plotted in figure 4.2.3.1.

8.0e-2

t'3

2
rt

Id.

6.0e-2

4.00-2

2.0e-2

O,Oe+O

Figure 4.2.3.1:

[]

"10 (1)

,., o C =o

Scatter Plot of RSD[MU Version Reliability.

Because of the extremely low reliability of versions uclab and uiuca it is difficult to determine more

than two groups. A better view of the intermediate reliability subpopulation is shown in figure

4.2.3.2. In this figure versions uclab and uiuca have been removed and the Y-axis has been scaled

accordingly.

44

TechnicalReportR9005 CharlesRiverAnalyticsInc.

.m

t_
t,n
o

t3.

-i

ii

1.200e-3

1.000e-3,

8.000e-4,

6.000e-4

4.000e-4

2.000e-4

O.O00e+O

[]

[]

[]

[]
[]

[]

m _ m m m _ o o o o _ _ _ _ _
ooo_ 000

Figure 4.2.3.2: Scatter Plot of RSDIMU Version Reliability with

versions uclab and uiuca removed.

With the information presented in these two figures we divided the versions into three

subpopulations based upon the individual version reliabilities. These subpopulations are shown in

table 4.2.3.1. The variation of reliabilities and the number of versions differ between groups,

however the average reliabilities of these subpopulations is roughly log-linear as shown in figure

4.2.3.3.

45

TechnicalReportR9005 CharlesRiverAnalyticsInc.

Table4.2.3.1"Version

High
ncsua

ncsub

ncsl.lC

ncsue

uclaa

uiucb

uiucc

IlV_

avad

UV_llC

Medium Low

ncsud uclab

uc"1_! uiuca

uclae uclac

uiucd

uiuce

uvab

uvac

Subpopulations Based upon version reliability.

._
t_

o
O..

"3
It.

(I)
o)

I._

lO 0 Q

10- 1.t

10" 2_

10-3.

10-4.

10-5.

10-6

homogenous population
.., ,..n=,,,..,...,=,o,,°,=, ,=...,

!

2 3

Reliability Group

Figure 4.2.3.3: Average Failure Probability of Reliability Group

Subpopulations.

46

Technical Report R9005 Charles River Analytics Inc.

failure Reliability Group

intensity High Medium Low homogenous

0 920744 920020 845358 845268

I 1 338 _424J 33tJ33

2 l 215 21135 21173
,,,w

3 0 57 l0 77

4 0 43 145

5 0 53 81

0 o o 42

7 0 0 21

8 0 6

9-20 0 0

Table 4.2.3.2: Failure Intensity Distributions

by Reliability Groups

Table 4.2.3.2: Shows the failure intensity distributions resulting from partitioning the

versions into reliability subpopulations. It is difficult to draw any conclusions based upon the

failure intensity distributions as there are a different number of versions involved in each

subpopulation. The low reliability subpopulation exhibits 10 failures involving all versions in the

subpopulation while the medium reliability subpopulation has none. The high reliability group has

three failures and two of these were correlated. The high reliability group also contains 7 versions

with reliability 1.0 (no failures reported).

Figure 4.2.3.4: Shows the result of the coincident error model using these failure intensity

distributions. The reliability improvement is very small for the low and medium reliability

subpopulations. In the case of the low reliability subpopulation this is due to the high proportion

of correlated failures among the versions in the group. Since there were reported failures involving

all versions, this carries through to the characterization of the infinite population, yielding no

improvement. The improvement in the medium reliability subpopulation is suppressed for

basically the same reason. Only in the highest reliability group do we achieve any improvement.

The single order of magnitude improvement for an 11 version structure is quite small considering

the expense involved in developing this number programs of such high version reliability.

47

TechnicalReportR9005 CharlesRiverAnalyticsInc.

1

.13

.O

o
ta. .1

o--
t_

I1

"O
® .01

0

z
.001

0
I I I ' ' | !

2 4 6 8 10

Number of Versions

......... Low

................. Medium

High

......... Homogenous

Figure 4.2.3.4: Coincident Model of Reliability

of N-Version Structures Built from Reliability Subpopulations.

°_

.o
¢¢
t'J

o
n

Z

".,72.
• %.

°•°• _

.1 ., t

.0, \:',.,

.001 i

i
t
t

.0001 _ = , ' , _ , = ,
0 2 4 6 8 10

Number of Versions

12

.......... Low

................ Medium

High

......... Homogenous

Figure 4.2.3.5: Finite Population Model of Reliability

of N-Version Structures Built from Reliability Subpopulations.

48

TechnicalReportR9005 CharlesRiverAnalyticsInc.

Onceagain,thehomogenousstructureshowsabetterimprovementthanthesubpopulation

structures.Here,however,it is becausewe haveforceddependenciesin the subpopulationsby

characterizingthembytheiraveragereliability.

The finite population model of figure 4.2.3.5 shows similar results to that of figure

4.2.3.4. Due to the varying size of the subpopulations, the prediction of structure reliability is not

valid for larger values of N in some subpopulations. This occurs for small N in the low reliability

group since there are only three versions in this subpopulation.

4.2.4. Results of Subpopulation Diversity Reliability Analysis

The analysis presented in the preceding sections contains some surprising observations. In

addition there are some conclusions that lead to further study of diversity and N-Version reliability

modelling. One significant observation is the improvement of homogenous structures over that of

subpopulation structures. In all examples of subpopulations the coincident error model predicts

significant improvement of the homogenous structure in the range of 1 < N < 11 versions. While

the subpopulation structures usually show some improvement in this range, this improvement is

limited to approximately 1 order of magnitude while the homogenous structure improves by

approximately 2 orders of magnitude. This leads us to believe that a population which incorporates

versions which were produced by different methodologies will benefit more from N-Version

programming than a population whose versions were produced by similar methodologies.

The finite population model of the homogenous structure exhibits smaller reliability

improvement in the case of the homogenous population than any of the subpopulation structures.

This result contradicts the predictions of the infinite population model. By limiting the population

of versions, the finite population model exaggerates the effects of the extremely low reliability

versions in the RSDIMU population.

4.3. Diverse N-Version Fault Tolerant Structures

Here we present the idea of a diverse N-Version fault tolerant software structure. Such a

structure is intended to take advantage of independence which results from using different

development methodologies to develop versions which are combined into a single fault tolerant

software structure. We use the RSDIMU software versions to examine the reliability of these

49

TechnicalReportR9005 CharlesRiverAnalyticsInc.

diversestructuresandto predictthepossibleadvantagesof diversestructuresover homogenous
structures.

4.3.1. Definition and Modelling of Diverse Structures

A diverse software structure is composed of N different programs developed under M

different methodologies. The more diverse the methodologies are, the greater the advantage of

using diverse structures will be. A diverse structure has between {N{ and IN] versions from each

of the M methodologies. In the case when N = kM where k is an integer, the method of choosing

versions for a diverse structure is uniquely defined. However, where k is not an integer the

method of choosing versions for a diverse structure is not uniquely defined. In such a case there

will be N _ M different methods of choosing versions. These methods represent different

numbers of versions from each methodology to incorporate into the diverse structure.

In [Litflewood and Miller 1990] the authors present an infinite population model for diverse

structures where N < M. Consider the set HA of programs developed under methodology A.

Similarly consider the sets FIB and FIc. For N=M=3 the probability of failure of a diverse structure

P3 is defined by

-3E(0AOBOC)

4.3.1

This represents a voting structure which fails whenever a majority of its versions fail. The

expected values of 4.3.1. are defined as follows:

E(OAO B)

k

--ZZ Z
i= 1 n^E FI^ _ FIs

V(/17A,X i) V(1_B,Xi) S(/17A} S(7_B)

4.3.2

50

TechnicalReportR9005

E(OAOBO C)

k

=Y 2Z2
i= 1 n^e HA rise II B r_e I-lc

Charles River Analytics Inc.

4.3.3

_KA,Xi) V(/i_B,X i) '_c,Xi) S(X A) S(/1; B) S(/l; C)

Where S(/_A) is the probability of developing a program nA under methodology A and vt_A.xl) is

equal to 1 if program _A fails on input Xi.

For the infinite population, we can obtain these expected values using a joint failure

intensity distribution. The joint failure intensity distribution _ is defined as:

(to lXVersi° r°mall_(x,y,z)= tal # times that y versions from B fail over all inputs

z versions from C 4.3.4

Using this definition, equations 4.3.2. and 4.3.3. become:

I_0A0.)= _ Z _ g(i,j,k}!l_)l[-_l)
i=lj=lk=!

4.3.5

I_ Inl Icl

_{i,j,k) i J k

i=lj=lk=l
4.3.6

Using 4.3.1, 4.3.5, and 4.3.6 it is possible to predict the performance of a diverse 3 version fault

tolerant software structure built from infinite subpopulations A, B, and C which are characterized

bye.

If we consider only the 20 versions of the RSDIMU experiment, we can predict the

reliability of a randomly chosen diverse structure. We first partition the set of 20 programs into

51

TechnicalReportR9005 CharlesRiverAnalyticsInc.

disjoint subsets.ConsiderA, B, andC asdisjoint subsetsof the20programs.Let W bethesetof

all diversestructureswhich maybechosenfrom the3 setsA, B, and C. Let S(J)bea function

whichcharacterizesa setof programsJ whichform astructureby giving avector(x, y, z) where:

Sx(J) = IJc"_A I

Sy(J) = IJnBI

Sz(J) = IJ_Ct

Using (4.3.7) we can partition W into disjoint subsets Wi such that:

4.3.7

tlJi = {J[Jl, J2 _ tlJ A S(J1) = S(J2)}, for0<i < N@3 4.3.8

If we assume no preference between sets A, B, and C in producing a diverse structure we can

estimate the reliability of a 3-Version structure Pk in terms of _i as

P'_N= _ 1 P'N (t[a'i)

i=0 (N_3)+l 4.3.9

...where P'N(_i) is an estimate of the reliability of a randomly chosen diverse structure J E qJi

composed of a unique number of versions from each of the sets A, B, and C.

In order to define P'N we refer to the estimator of [Eckhardt, et. al. 1990]. Let

0 if l vcrsions in set J fail on input x Iuj (x,l) = if otherwise. 1 4.3.10

Given a diverse structure j we know that the proportion of inputs on which a structure j fails is

k N

1.E E UJ (xi' l) where m = n +12
1=1 l=m

4.3.11

52

TechnicalReportR9005

Using 4.3.11wecandefine P'N in terms of uj as:

Charles River Analytics Inc.

k N

_.,N (tp)_jeW i=l l=m

4.3.12

In 4.3.12 we know S(ji) = S(jj) for all ji, jj _ tlJ so it is a straightforward task to produce the set

_. For the version subpopulations of section 4.2. the size of W is small enough to fit in computer

memory so that it is possible to directly compute the numerator of 4.3.12 in a reasonable amount of

Thus we can compute P"N of 4.3.9 by partitioning W into q"i and directly computing P"N

The graph of figure 4.3.1 shows the results of our analysis using the Littlewood-Miller

model for a 3-Version diverse structure. If we assume that all of the versions in a homogenous

population fail independently we can obtain a prediction of the reliability of an N-Version structure

using only the reliabilities of the 20 RSDIMU versions. The resulting reliability is labeled

independent in figure 4.3.1. This represents the upper bound of reliability for any type of N-

Version structure. The lower bound of reliability for a diverse N-Version structure was shown by

Littlewood and Miller to be the Eckhardt-Lee model of the homogenous population, since Eckhardt

and Lee assumes

COV(0A, 0B) = Var(0A) = Var(0B)

This lower bound is labeled coincident also in figure 4.3.1. Note that if we desire to choose

multiple versions from the same population, the Littlewood-Miller model suffers from the same

identical distribution assumption as the Eckhardt-Lee model. IEckhardt and Lee, 1985]

In order to investigate the effects of diverse methodologies we consider the site diversity

discussed in section 4.2, specifically development site diversity and certification site diversity.

53

Technical Report R9005 Charles River Analytics Inc.

10"2

10-3,

10-4.

.¢3
o 10-5.

EL

10-6.
LL

10-7.

10"8
0

Certification Site Diversity (Littlewood-Miller)

", l._velopment Site Diversity (Littlewood-Miller)

",,,,, Homogenous (Eckhardt-Lee)

• Homogenous (Independent)
w.%

I ' I ' I _"_I ' I '

2 4 6 8 10 2

Numberof Versions

Figure 4.3.1: Comparison of Infinite Population Models for Diverse

and Homogenous Structures.

In figure 4.3.1 we see that the reliability of diverse structures lies within the upper and

lower bounds provided by the coincident and independent error models.This modest reliability

improvement is expected since the different sites do not necessarily represent diverse

methodologies and indeed certain common methodologies were forced upon the sites. In addition

we have compared the finite population predictors to give an unbiased estimate of structure

reliability based solely upon the population of 20 RSDIMU versions.

54

Technical Report R9005 Charles River Analytics Inc.

t3
1X$
¢'1
O
l..

O-

:I

LI.

10 -2 '

i0-3

10-4.

10-5.

'o

',,,
•_._ Homogenous

\.

'_t'l't,_t , Development Site Diversity
- a,.i,_.... -

Certification Site Diversity _ "":,:_!'_'-_

10-6
I I ' I I I "

0 2 4 6 8 10 12

Number of Versions

Figure 4.3.2: Comparison of Finite Population Structure Reliability

for Diverse and Homogenous Structures.

Figure 4.3.2. shows a comparison of the certification site and development site diverse structures

and the homogenous structure. The result is that the reliability of the homogenous structure is

virtually identical to that of the certification and development structures.

Table 4.3.1 shows the effect of the selection criterion upon the certification site structure.

The inclusion of both high and low reliability structures in the homogenous structure make its

reliability medium while the inclusion of only the medium structures in the certification site diverse

structure yields a medium reliability prediction.

The result is that the certification site structure arrives at the same reliability prediction as

the homogenous structure via an entirely different selection criterion.

55

Technical Report R9005 Ch_,rles River Analytics Inc.

Number of Versions

to Form Structure

Predicted Slructure

Reliability

ncsu ucsb uva high med low

3 0 0 •

0 3 0 •

0 0 3

2 1 0 •

2 0 1 •

0 2 1

1 2 0 •

0 1 2

1 0 2 •

1 1 1 •

certification site homogenous
structure structure

Table 4.3. i: Version Selection for Certification Site Diverse Structure

Compared to Homogenous Structure.

56

Technical Report R9005 Charles River Analytics Inc.

5. CONCLUSIONS

In examining the types of errors made by programmers, we have discovered several

different relationships which hold between these errors. These relationships indicate the eventual

failure behavior within a group of programs. Conceptually-Related errors can cause the programs

that contain them to fail dependently, however this is not always the case. We have shown cases

where conceptually related errors have input domains which are disjoint or have very little overlap.

We have also shown that some conceptually-unrelated errors also cause programs containing them

to fail dependently. This is the case when the input domains for errors overlap significantly.

Diverse development methodologies may minimize the occurrence of conceptually-related

errors. Diverse testing methodologies may reduce the occurrence of conceptually-unrelated errors

which cause coincedent failures. It is not enough to relate errors conceptually. Programmer

diversity may cause different levels of failure correlation for programs containing the same

conceptual error, thus indicating the usefulness of the independent development paradigms (used in

the RSDIMU experiment) in reducing identical and wrong errors.

We have described the notion of a diverse N-Version structure in which the redundant

components are produced by diverse methodologies. We have described two models for

predicting the reliability of diverse N-Version smactures and used these models in conjunction with

the data obtained from the RSDIMU experiment. Infinite population models indicate that diverse

methodologies might be developed which will offer an improvement of an order of magnitude.

Finite population models indicate that diverse structures perform the same as a structure which

ignores such diversity. The discrepancy between the reliability predictions given by these models

can only be resolved through experimentation with large populations of programs under controlled

conditions.

The diversity present in the RSDIMU experiment was not enough to prevent significant

correlation in the occurrence of conceptually-related errors, input-related errors, and eventual

failures during testing. In order to prevent such correlation, measures beyond development and

certification site diversity should be employed. New methods need to be developed to enforce

diversity on development and testing if the reliability of N-Version structures is to be improved.

Diversity of development and testing methodologies are promising.

We have developed a generalized interactive checker for asserting the correctness of a

program on a given input. The generalized interactive checkers reduce the correctness

57

TechnicalReportR9005 CharlesRiverAnalyticsInc.

determinationto testingtheequalityof twosetsgeneratedfrom theinputandoutputundertest. We
have demonstratedthe useof this methodfor typical flight domain examples. Generalized

interactivecheckersarepromising for the implementationof acceptancechecks for recovery

blocks. Moreover,generalizedinteractivecheckersis applicableto thevalidationof convention',d

(singleversion)highreliability software.
If it ispossibleto developanindependentacceptancecheckwith areasonablereliability --

suchasthosedescribedabove-- thenthedecisionof whethertodevelopanN-Versionstructureor

recovery block structurecan be basedupon the numberof redundantcomponentswhich are

allowedby the availableresources. For a largenumberof componentsit is better to build N-
Versionstructures,while for a small numberof componentsit is better to build recoveryblock

structures. In the RSDIMU experimentwe determinedthat for a threeversion structure,the

acceptancecheckreliability needonly be80.5%or betterto warrantthe useof arecoveryblock
structure. This result indicatesthat future researchshouldbeconcentratedon developmentof

independentacceptancechecks.

58

TechnicalReportR9005 CharlesRiverAnalyticsInc.

Acknowledgments

The authors wish to express their gratitude to the following individuals who participated in

this work. Thanks to Dr. Dave Eckhardt for his help in reliability modelling and general guidance

in this research and to Dr. Jay Lala for his management of the subcontract. Gene Itkis participated

in the development of acceptance checks. Cheryl Stubbs assisted us in reliability modelling and

comparison of N-Version and Recovery Block software structures. Prof. Mladen Vouk of NCSU

assisted in the diagnosis and identification of software errors in the RSDIMU programs.

59

TechnicalReportR9005

6. REFERENCES

Charles River Analytics Inc.

Babai, S., Moran, Arthur-Merlin Games: A Randomized Proof System, and Hierarchy of

Complexity Classes, to appear in Journal of Comp. Sci. and Sys.

Blum, M. and Raghavan, P., Program Correctness: Can One Test for It?, IBM Research Report

RC14038, September 1988.

Brilliant, S., Knight, J., and Leveson, N., Analysis of Faults in an N-Version Software

Experiment, IEEE Trans. on Soft. Eng., Vol. 16, No. 2, February 1990.

Eckhardt, D. and Lee, L., A Theoretical Bct_is for the Analysis of Software Subject to Coincident

Errors, IEEE Trans. on Soft. Eng., Vol. SE-I 1, No. 12, December 1985.

Eckhardt, D., Caglayan, A., Knight, J., Lee, L., McAllister, D., Vouk, M. and Kelly, J., An

Experimental Evaluation of Software Redundancy as a Strategy for Improving Reliability,

Submitted to IEEE Trans. on Soft. Eng.

Goldwasser, S., Micali, S., and Rackoff, C., The Knowledge Complexity of Interactive Proof

Systems, Proc. of 27 th FOCS, 1985.

Littlewood, B. and Miller, D., Conceptual Modeling of Coincident Failures in Multiversion

Software, !EEE Trans. on Soft. Eng., Vol, 15, No. 12, December !989,

Lorczak, P, and Caglayan, A., A large Scale Second Generation Experiment in Multi-Version

Software; Analysis of Software and Specification Errors, Charles River Analyties Report No,

R8903, January 1989.

Report Documentation Page

1. Report No. t 2 Governrner_! Accession No.

NASA CR-187492

4. Title and Subtitle

Software Reliability Experiments Data Analysis and

Investigation

7. Authoris)

J. Leslie Walker and Alper K. Caglayan

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory Inc.
Cambridge, MA 02139

12, Sponsoring Agency Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

3. Recipient's Catalog No

5. Report Date

January 1991

6. Performing Organization Code

8 Performing Organization Report No.

10. Work Unit No

505-66-21

11. Contract or Grant No.

NASI-18061

13. Type of Report and Period Covered

Contractor Report

14 Sponsoring Agency Code

15. Supplementary Notes

This work was prepared by Charles River Analytics Inc., under Charles Stark Draper

Laboratory Inc. subcontract no. 791. J. Leslie Walker and Alper K. Caglayan,

Charles River Analytics Inc., Cambridge, Massachusetts.

Langley Technical Monitor: Dave E. Eckhardt, Jr.

16. Abstract -_

The objectives of this study are to investigate the fundamental reasons which

cause independently developed software programs to fail dependently, and to
examine fault-tolerant software structures which maximize reliability gain in

the presence of such dependent failure behavior. We used 20 redundant programs
from a software reliablility experiment to analyze the software errors causing

coincident failures, to compare the reliability of N-version and recovery

block structures composed of these programs, and to examine the impact of

diversity on software reliability using subpopulations of these

programs. The results indicate that both conceptually related and conceptually
unrelated errors can cause coincident failures and that recovery block

structures offer more reliability gain than N-version structures if acceptance
checks that fail independently from the software components are available. We

present a theory of general program checkers which have potential application
for acceptance tests.

17. Key Words (Suggested by Author(s))

Fault tolerant software, software

diversity, N-version, recovery block

19. Security Classif. (of this report)

Unclassified

NASA FORM 15 OCT 86

20. Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category 61

Security Classif. (of this page)

