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b_act. The current collected by a body in an unmagnetized plasma depends

in general on: (1) the properties of the plasma; (2) the properties of the body;

and (3) the properties of any neutral species that are present. The important

plasma properties are the velocity distributions of the plasma particles at a location

remote from the body (at "infinity"), and the Debye length which determines the

importance of plasma space charge effects. The important body properties are its

surface characteristics, namely the conductivity and secondary yield coefficients.

The neutral species affect the current through collisions which impede the flow

of current and possibly through ionization of the neutrals which can enhance the

current. The technique for calculating the current collected by a body in a plasma

will reviewed with special attention given to tile distinction between orbit limited

and space charge limited regimes, the asymptotic variation of the potential with

distance from a body, and the concept of a sheath.

Orbit Limited Currents

Consider a body in a plasma where the Debye length is much larger than the

body dimensions so that the potential can be taken to be a Coulomb potential. To

simplify the discussion we will consider the body to be a sphere and will first look at

how the sphere attracts particles from a monoenergetic beam. Figure 1 shows how

the trajectories are bent by the attractive potential distribution. In a spherically

symmetric potential distribution there are two constants of the motion, the total

energy E and the angular momentum J. As the angular momentum is varied, there

is a critical trajectory which just barely grazes the sphere. The impact parameter of

this trajectory, r0, defines the radius of an "effective cross-section" for collection of

particles. Any particles with angular momentum (or impact parameter) less than

that for the critical trajectory will be collected. Therefore the cross-section for

collection and the current to the sphere can be obtained from the expressions for

the total energy and angular momentum, as shown in Figure 1.

Note that in the derivation of the expression for the current that no explicit use

was made of the inverse square dependence of the potential. Therefore a linear cur-



rent voltage relation holds for any monotonic attractive potentiM distribution about

a sphere provided that trajectories exist at all energies which come from infinity and

are tangent to the surface of the sphere. This linear relation between current and

an attractive voltage holds for any particle velocity distribution since any particle

velocity distribution can be decomposed into superimposed beams. The condition

that trajectories exist at all energies which come from infinity and graze the sur-

face of the attracting body is tile defining condition for "orbit limited" currents.

Laframboise and Parker (1973) have shown that prolate and oblate spheroids also

exhibit orbit limited behavior in the Laplace limit az long as the major-to-minor

axis ratios are less than 1.653 and 2.537 respectively.

Orbit limited behavior also holds for any monotonic repelling potential about

a convex object since every grazing orbit connects to infinity. However, tile current

to a repelling object is not linear since the particles in the plasma with energies less

than the potential energy of the body will not reach it. For a Maxwellian plasma,

the attracted and repelled currents are

I = Io(1 - eC/kT),for e¢ < 0 (1)

I = Ioexp(-e¢/kT),for e¢ > 0

where Io is the random current to the body whea it is at zero potential.

(2)

Sheath Limited Currents

When the Debye length in the plasma is on the order of or less than the body

dimension, then there may not be any trajectories at a given energy which come

from the plasma and are tangent to the surface of the body. This is illustrated in

Figure 2 where there is a critical trajectory, defined as the non-impacting trajectory

which approaches closest to the body for particles with a given energy. Trajectories

with less angular momentum will all impact the body at angles of incidence which

are not grazing angles. In such a case the critical trajectory defines an "absorption

radius" (or absorption boundary) but this can not be easily used to obtain the

current since each energy will in general define a different absorption radius. When
tills kind of behavior occurs the currents are said to be "sheath-limited".

The problem of obtaining sheath-limited currents is difficult since it involves

finding the potential distribution from Poisson's equation which is self-consistent



with the spacecharge. Bernstein and Rabinowitz (1959) first showed how to do
this and Laframboise (1966) has applied their method to a Maxwellian plasma to
obtain currents to spheresand cylinders for various values of plasma parameters.
The method makesuseof the "effective potential for radial motion", U(r), defined
asfollows:

1 2 1 2 1 j2 ;
E = _mv_ + _mv e + e¢(r) = -2mv_ + 2mr2 + eC(r) (3)

then

where

J = mr,e (4)

vr = E-U(r)] (5)

j2

U(r) = eC(r) + 2mr-----_ (6)

and where the radial and angular components of velocity are v_ and vt • The second

term in (6) is the repelling "centrifugal potential" which can give rise to potential

barriers as shown in Figure 3. When the attractive electrostatic potential is weaker

than (1/r 2 ) then a maximum in the effective potential does not exist outside the

probe surface, ttowever, when the electrostatic potential is stronger than the inverse

square potential, then potential barriers can exist for angular momenta greater than

zero. Particle trajectories can be pictured in Figure 3 as horizontal lines of constant

total energy which are reflected when they are incident on the effective potential

curve for a particular angular momentum J. Barriers in the effective potential will

repel particles with positive energies and thus reduce the current. Consequently

sheath limited currents are always smaller than the orbit limited currents at a given

potential. Orbit limited behavior can be seen to exist whenever the electrostatic

potential falls off more weakly than an inverse square potential at every radius.

Figures 4 and 5 illustrate how the various types of trajectories which can occur

for a given potential variation can be translated into a picture in the velocity space

defined by the energy E and square of the angular momentum (j2). Moments of

the particle velocity distribution such as the particle density and current involve

integrals over the distribution function, and the boundaries in the (E, j2) plane

between the different types of trajectories must be used in the limits of these inte-

grals. For example, in Figure 4 trajectories of type 1 are populated by incoming

plasma particles, and possibly by outgoing secondary particles from the probe sur-

face. Those of type 2 are plasma particles which do not reach the probe. Type 4
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consistsof particles trapped in closedorbits about the probe, and type 3 consists
of secondaryparticles which are emitted from and return to the probe. In Figure
5 for the sheath limited case, trapped particles do not exist, and type 3 trajecto-
ries are for particles which are repelled by a potential barrier and return to the
plasma. This type of analysishas beenused to calculate the current, spacecharge,
and potential distribution about probeswhere both plasmaparticles and secondary
particles contributed (Chang and Bienkowski, 1970; Schroder 1973; Tunaley and
Jones, 1973;Whipple 1976;Parker, 1976).

Figure 6 shows currents obtained for inverse power law potential variations

(Parker and Whipple, 1967). These potentials are not self-consistent but they

illustrate nicely how the current decreases as the power n increases. Note how

there is only one, linear curve for n < = 2. Figure 7 from Laframboise (1966) shows

self-consistent currents to a sphere for various values of the probe radius to Debye

length ratio.

When the particle velocity distribution is not isotropic, it may still be a reason-

able approximation to use a spherically symmetric potential in order to calculate the

current. Godard (1975) has used the potential distributions obtained by Lafram-

boise (1966) for a stationary body to calculate the currents for a drifting Maxwellian

plasma. These results, shown for a sphere in Figure 8, are appropriate for a posi-

tive ion currents to an attractive spherical satellite moving through the ionospheric

plasma. Note especially that the current can in some cases initially decrease as the

speed ratio of the body increases from zero. This effect is significant in calculating

the "gyrophase drift" of a charged dust grain in a magnetic field (Northrop et al.,

1989).

The Concept of a Sheath Edge

Intuitively, a sheath is the region close to a charged body where most of the

potential drop occurs and where there is significant space charge. The concept of

a "sheath edge" is useful because it defines a surface where the potential is close

to the plasma potential and where the current can be estimated and equated (or

related to) the total current to the body. The concept of a sheath is most useful

when the body potential is high and when the Debye length is small compared to

the body size. The sheath edge is usually defined as the place where the potential

is (kT/2e) so that outside this surface a quasi-neutral solution can be used for the

potential. Swift and Schwar (1970) have reviewed work based on the concept of a

finite thickness sheath.

The most important application of the sheath concept to current collection is
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the Langmuir-Blodgett (1923, 1924) derivation of the familiar (3/2) power law for
the collected current:

c(v) (7)

Angular momentum effects are neglected in this derivation. It is assumed that

the particles are all emitted from one electrode with either zero or very small radial

velocities, and that the particles follow the electric field lines to the collector. With

these assumptions it is possible to relate the charge density to the current by means

of the continuity equation. When the inner electrode is taken to be the collector,

then the outer electrode position can be interpreted as the edge of the sheath for

applications where a single collector is placed in a plasma.

The three-halves power law in equation (7) may seem to contradict the earlier

statement that the maximum current drawn by a body is the orbit-limited current

which is linear with voltage. However, the derivation of the current in (7) is for a

given ratio of emitter and collector radii. This ratio is contained in the constant C

in (7). When the sheath edge around a body in a plasma is taken to be the emitter,

the current increases as the potential on the body is increased because the sheath

grows larger. The way in which the sheath radius can be estimated for various

regimes in space has been discussed in some detail by Parker (1980).

Asymptotic Potential Variation

In the distant plasma far from a spherical body the electrostatic potential varies

asymptotically as

v =c/r 2 (s)

where V is the potential, r the radial distance, and C a constant.

This behavior is obtained from ttle so-called "plasma solution-, where the

asymptotic forms of the ion and electron densities are obtained in terms of the

local potential and distance, and then quasi-neutrality of the plasma is invoked.

Both the ion and electron densities involve terms depending on the potential such

as the Boltzmann factor, and solid angle factors depending on the distance, (1 -

rv2/r2), where rv is the radius of the body. In the limit as r becomes large, the

potential enters the density terms linearly and this gives the first-order asymptotic

variation of the potential as (1/r 2 ).
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In a numerical scheme for obtaining the potential distribution from Poisson's

equation where a floating condition is necessary as a boundary condition at a finite

distance, then this inverse square potential is the appropriate one to use. Lafram-

boise (1966) has discussed the application of this condition and has given examples

of calculations showing how the accuracy of the solutions depends on the distance

of the boundary. Parker and Sullivan (1974) have also used this condition.

The value of C in (8) depends on the assumed plasma conditions. Various

authors have obtained different expressions (Bernstein and Rabinowitz, 1958; Lam,

1965; Chang and Biekowski, 1970).

Present Issues Involving Current Collection

Finally, we list some of the issues involving current collection which are receiving

attention at the present time. These issues have arisen in context of active space

experiments where large potentials may occur or where large structures may be

used:

. What determines tile current for large attractive potentials? Large

potentials have been envisaged for high-power solar arrays. They also

can occur when energetic charged particle beams are emitted.

o Large potentials on spacecraft may involve dipole configurations with

overlapping sheaths. What are the collected currents in such con-

figurations? Katz et al. (1989) have recently calculated the current

through a dipolar sheath and found good agreement with data.

. The presence of neutral gas (from the neutral atmosphere, vehicle

venting or outgassing, etc.) provides opportunities for ionization and

therefore large currents, ttow can this effect be calculated?

1 Application to tether configurations: in large extended geometries,

the spacecraft and tether form a circuit element with the current

loop being completed through the plasma. How does the current flow

in the plasma to complete the circuit?
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An At_ractlve Coulomb Patentitli (edp < 0)
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1. Behavior of particles in an attrctive Coulomb potential.

A Hore C-eneral Attractive Potential
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There may not be any trajectories (for a given energy) vhich come from

and are tangent to the probe.

O0

The last (least J) non-impactlng trajectory, for a given energy, defines an

_absorption boundary" for that energy.

2. Behavior of particles in a more general attractive potential.



EFFECTIVE POTENTIAL: U(r)= e_b(r)+ -_
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3. The effective potential U(r) for radial motion.
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POSSIBLE TRAJECTORIES FOR THE ORBIT-LIMITED CASE

4. Classification of trajectories for orbit-limited trajectories.
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POSSIBLE TRAJECTORIES FOR THE SHEATH-LIMITED CASE
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5. Classification of trajectories for sheath-limited trajectories.
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6. Current-voltage curves for an inverse power law potential with a Maxwellian

velocity distribution (from Parker and Whipple, 1967).
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7. Ion or electron current vs. probe potential for various ratios of probe radius

to ion or electron Debye length; dotted curve shows trapped-orbit boundary

(from Laframboise, 1966).
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8. Ion current vs. ion speed ratio with ratios of probe radius to Debye length and

probe potential to electron temperature as parameters. The crosses represent

the asymptotic solution (from Godard, 1975).
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