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ABSTRACT

We present a survey of a very incomplete subject. Our presentation is intended in part as

an introduction to topics to be covered in greater detail by others later in this Workshop. The

best-developed and simplest theories for current collection are steady-state collisionless theories,
and these must be understood before departures from them can be analyzed usefully, so we begin

with a review of them. We include some recent numerical results by one of us (L.J.S.) which

indicate that steady-state collisionless Laplace-limit currents remain substantially below the Parker-

Murphy (1967) canonical upper bound out to very large electrode potentials, and approach it

as a limit only very slowly if at all. Attempts to correct this theory for space-charge effects

lead to potential disturbances which extend to infinite distance along the electrode's magnetic
shadow, unless collisionai effects are also taken into account. However, even a small amount of

relative plasma drift motion, such as that involved in a typical rocket experiment, can change
this conclusion fundamentally. It is widely believed that time-averaged current collection may be

increased by effects of plasma turbulence, and we review the available evidence for and against
this contention. Steady-state collisionless particle dynamics predicts the existence of a toroidal

region of trapped orbits which surrounds the electrode. Light emissions from this region have

been photographed, indicating that collisional ionization may also occur there, and this, and/or

scattering by collisions or possibly turbulent fluctuations in this region, may also increase current

collection by the electrode. We also discuss effects on particle motions near the electrode, associated

with "breakdown of magnetic insulation" in the region of large electric fields near it.

1. INTRODUCTION

Even without magnetic-field effects, the problem of predicting current collection by objects

("probes") in plasmas is one of the most formidable in plasma physics. Reasonably complete

solutions of it exist only for very simple geometries, in the limits of large and small mean-free-

paths, and in the absence of flow effects. For objects in space plasmas, this situation has been

summarized by E.C. Whipple in the preceding paper.

When magnetic-field effects are introduced, the problem becomes notoriously intractable. As

one would expect, available treatments of it generally involve extreme simplifications. For space

applications, the collisionless approximation seems not extreme but instead inevitable. However,
we shall see that even in cases of large mean-free-paths, magnetic fields can cause coUisionai effects

to become important.

In spite of this, collisionless theories form the most important category of available theories,
and also must be understood before departures from them can be usefully analyzed. Accordingly, a

review of collisionless, steady-state theories (Section 2) forms the next part of this presentation. It

seems inevitable also to make a further division of such theories, into ones for the zero-space-charge,
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or large-Debye-length,limit (onewouldexpecttheseto be thesimplest),andthosefor finite Debye
length. However,eventhis divisionis complicatedby magnetic-fieldeffects. It turns out that a
strictly collisionless theory cannot be exact in cases of finite Debye length, because the disturbance

of electric potential produced by the object then extends infinitely far along the magnetic-field

direction. However, this conclusion is modified radically by even a small amount of relative plasma
drift motion. This situation is discussed in more detail in Sections 3 and 7. Our review includes the

work of Sanmartin (1970), who has himself given an extensive review of older theories. A review

of probe use in fusion plasmas has been given by Stangeby (1989).

It has often been asked whether any steady-state theory can give a correct prediction, in view

of the tendency of fluctuations, or "plasma turbulence", to carry charge across magnetic field lines

in magnetic-confinement fusion experiments. Measured return currents in electron-beam-emission
experiments in space have frequently been in excess of predicted values from steady-state theory,

and such observations have often been cited in support of this view. An alternative explanation,

involving energization of ambient electrons by an interaction with the beam, is supported by results

of the CttARGE-2 (Myers et al, 1989) and SPEAR I (Katz et aI, 1989) rocket experiments. We

discuss this question in Section 4.

Collisional ionization may cause important increases in current collection beyond those pre-

dicted by steady-state collisionless theory. The presence of a magnetic field greatly increases phase-

space volumes available to particles on "trapped" orbits near the probe, and the long lifetimes of

trapped particles in these regions greatly increase opportunities for collisional ionization to occur.
The observation of "toroidal glow" regions around spherical probes in low-pressure laboratory mag-

netoplasmas (W.J. Raitt and A. Konradi, private communication, 1987; Antoniades and Greaves,
paper appearing later in these Proceedings) lends support to this idea. Ionization may produce

"explosive" growth of the probe's sheath (Lai et al, 1985; Cooke and Katz, 1988). Independently

of collisional ionization, the existence of trapped orbits also increases the opportunity for cur-

rent collection to be increased by particle scattering, both collisional and turbulent. We discuss

collisional-ionization and collisional-scattering effects in more detail in Section 5.

Enhanced current collection by a probe at large attractive potentials requires increased trans-

port of particles across magnetic-field lines, and this phenomenon is often called "breakdown of

magnetic insulation". A brief discussion of some aspects of this phenomenon appears in Section 6.

If the probe is a large object compared with the ambient Debye length, and is moving rapidly

compared with the ion thermal speed as in the proposed Tethered Satellite Experiment, a variety

of complicated phenomena can occur near it. This situation has been studied by Thompson (1985).

A discussion of it appears in Section 7. Unexpectedly, this discussion leads to an inference that
even the small relative drift velocities characteristic of rocket experiments can modify radically

the processes governing collection of electrons, and can "revaJ_date" collisionless theories of such

collection. A separate issue is the enhancement of current collection by the use of a "plasma

contactor" (4 papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively,

which appear later in these Proceedings).

Some concluding remarks appear in Section 8.

Much of our discussion in this paper is directed toward current collection at large positive

electrode voltages. Interest in predicting such collection has recently increased because of applica-

tions to the design of high-voltage power systems for use in space and also because of large induced
voltages expected in the Shuttle Electrodynamic Tether experiment.
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2. COLLISIONLESS STEADY-STATE THEORIES

In this Section, we consider a spherical probe in a collisionless plasma containing a uniform

magnetic field B. We give brief summaries of the treatments of Parker and Murphy (1967) and Ru-

binstein and Laframboise (1982, 1983) and of new results by one of us (L.J.S.). We also summarize

results of an analogous treatment which has been done for an infinite cylindrical probe inclined

at an arbitrary angle to B, by Laframboise and Rubinstein (1976) and Rubinstein and Lafram-

boise (1978). For the spherical-probe case, we choose cylindrical coordinates (r, 0, z) centred on the
probe, with the z axis aligned with B. In the presence of B, our situation no longer has spherical

symmetry, and this makes our task much more difficult. However, it still has rotational symmetry

about the direction of B, and therefore the electric potential ¢ will be independent of 0. In this

situation, there are two constants of collisionless particle motion, the total energy E, given by:

(1)

and the canonical angular momentum component J about the z axis, given by

J = mr20 + _qBr2 = mr2 (o + lw) (2)

where m and q are particle mass and charge, and w = qB/m is the particle's gyrofrequency. We also

define the absolute gyrofrequency w e = Iwl = eB/m, where e is the magnitude of unit electronic

charge.

We eliminate 0 from these two equations, and obtain:

E= m +2+ 2 +q¢(r,z)+7 (3)

The first term on the right of (3) is the kinetic energy of particle motion in the (r, z) plane. The

remaining two terms are then the "effective potential"

U(r, z) =_ q¢(r, z) + _ rnr (4)

for particle motion in the same plane. Since the kinetic energy must be nonnegative, it follows that

a particle having a particular E and J will be confined to those regions of the (r, z) plane for which

E >_ U(r, z), i.e., inside the particle's "magnetic bottle". Some examples of the general appearance
of magnetic bottles are shown in Fig. 1.

Some properties of magnetic bottles follow readily from inspection of Eq. (3); see also Section

IV of Rubinstein and Laframboise (1982). These are as follows:

(1) Magnetic bottles have rotational symmetry about the z axis, i.e. their boundaries are

independent of 0.

(2) A particle orbit (having a given E and J) can touch the boundary of its magnetic bottle

only if ÷ and k are both zero at the same point on the orbit. Since this is very unlikely, particle
orbits generally do not do so.

15



(3) Wedefinea radiusr o by the relation:

1 2
g = _mwr o (5)

(if w > 0). In Eq. (4), the last term in V(r, z) will then vanish at r = ro, and is positive for r 7_ ro,

increasing without limit as r --+ 0 (unless J = 0) or as r --+ oo. Therefore, particles for which J 7t 0

are prevented from reaching the z axis.

(4) For w > 0, particle orbits for which J < 0 encircle the z axis once per gyration; orbits for
which J > 0 do not.

(5) A nonencircling orbit having energy E and canonical angular momentum J will have the

same projection in the (r,z) plane, and also the same magnetic bottle, as those of an encircling
1 ,2.2orbit having the corresponding values E + _J = E + _m_ "o and -J. In a strong magnetic field,

an encircling orbit will have a much larger energy and also a much larger gyroradius than the

corresponding nonencircling orbit, and encircling orbits will then make vanishing contributions to
number densities and fluxes.

We now present a derivation of the Parker and Murphy (1967) canonical upper-bound current.

Besides the assumption of collisionless, steady-state conditions, their work contained two additional

ones. They assumed that any particle whose magnetic bottle intersects the probe is itself collected,

and they ignored the effect of a particle's thermal motion at infinity on the question of whether
such an intersection exists for that particle. The first assumption results in their current expression

being an upper bound on the corresponding exact value. The second assumption amounts to taking
the limit E -_ 0 in Eq. (3). We shall see that this approximation does not lead to an upper bound,

so actual currents can exceed the Parker and Murphy (1967) values. When this approximation is

made, particles having the largest J for which collection occurs then have a magnetic bottle similar

in appearance to that shown as (a) in Fig. 1, but with one important difference: the condition
E --* 0 means that at large lzl, the inner and outer surfaces of the bottle collapse onto the common

radius %. To find the value of to, we make the further substitutions ÷ = 0, 0 = 0, r = rp, and

¢ = Cp in Eq. (3), where Cp is the probe's potential relative to space, rp is its radius, and qCp < 0
for an attractive probe potential for the particle species considered. We then substitute for J using

Eq. (5). We obtain:

[ Slq¢,l ) ½(r°_2= l+ _m----_-_r_ (6)
t,rp/

The positive sign corresponds to tangency of the bottle's inner surface with the probe, as shown in

Fig. la.

We now note that with Parker and Murphy's approximations, the collected current is equal to

the product of the random thermal particle flux with the combined area 27ero2 of the two disks of

radius %, located at z = -t-oc, through which all collected particles of charge q must pass.

In terms of the random current I R = 47cripqn_(kT/2rm)½, and using Eq. (6), we now obtain:

I 1 1 f 8]qCp, _ ½

-- + i \ r7) (7)

where k is Boltzmann's constant, and T and no_ are the temperature and ambient number density

of the attracted particles. Apart from notation, this is the same as Eq. (13) of Parker and Murphy

(1967).
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If effectsof thermal motion are included, then Eq. (7) is no longer an upper bound on the

(collisionless, steady-state) probe current, although we shall see that it remains a good approximate

upper bound for large potentials and large magnetic fields. Calculation of the canonical upper bound
including thermal-motion effects is much more cumbersome. It has been done by Rubinstein and

Laframboise (1982). ttere we give only their result, which is in analytic form, as follows:

i = i I + i2 (8)

where i 1 _nd i2 are the (normalized) currents due to nonencircling and encircling particles, respec-

tively, given by:

): - + w

i2=F 1 1+2 +F 2 1+2 +2a-----_

1

+ _ (9)

1( .)()El(U) : --4 0"2u2 -{- 2u + -'_ exp --o'2u

r (u) = T 2. + ../. .% + %) ½

1

-3- 2_p1 u

1

exp(¢p) (10)

where/_ = rv/_ = rp[w[(2m/TrkT)½ is the ratio of probe radius to mean attracted-particle gyrora-

dius, and Cp = -qCv/kT >_ 0 is dimensionless probe potential. Rubinstein and Laframboise (1982)

also obtained a corresponding analytic result for repelling probe potentials Cp < 0, given by their
Eqs. (30), (36), and (37), and plotted in their Fig. 10. In contrast with the usual exponential

variation of collected current at these potentials, their result shows a "rounding of the knee" of

the probe's current-voltage characteristic at small negative Cp. In the limit of large attractive

potentials Cp >> 1, Eqs. (8) - (10) reduce to:

i= _+--a +-2a 2 (11)

The first two terms of this are the same as the Parker and Murphy (1967) result. The last term is
a contribution from encircling orbits, which vanishes in the limit of strong magnetic fields: /3 _ oo.

A comparison of the Parker-Murphy (1967) canonical upper bound with results of Rubinstein and
Laframboise (1982) for attracted-species currents is shown in Fig. 2. The increasing curves in

Fig. 2 show least upper-bound currents. The portions of these curves to the right of the "kinks"

(discontinuities of slope) are the canonical upper bounds given by Eqs. (8) - (10). The portions
to the left of the kinks are "helical" upper bounds also calculated by them, and based on an
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assumption that particle orbits are helices near the probe. The decreasing curves are adiabatic-

limit (effectively lower-bound) currents also calculated by them, also assuming helical orbits near

the probe, but assuming a "one-dimensional" rather than "three-dimensional" velocity-space cutoff.

For a probe at space potential, ¢p = 0, the upper-bound and adiabatic-limit currents coincide, and
are the same as those given in Fig. 17 of Whipple (1965). For any given value of fl, we see

that the upper-bound and lower-bound curves separate rapidly as Cp increases. This is clearly an
unsatisfactory situation, but it appears to represent the best that can be done without resorting to

the expense of numerical orbit integration. We present results of such a calculation below.

As mentioned above, the adiabatic-limit currents decrease as Cp increases. This "negative-
resistance" behavior results from the fact that in the adiabatic limit, the kinetic-energy gain of

incoming particles goes entirely into increased speed parallel to B. This increases the pitch of

their orbits. Some orbits whose pitch becomes greater than roughly the probe diameter can now

bypass the probe, and current collection will be decreased. When ¢p is small, we also expect the
actual currents to approach the adiabatic-limit currents, since the adiabatic-limit condition is that

changes in the probe sheath electric field are small over an average particle gyroradius. We further

expect that as ¢p becomes more positive, adiabatic-limit conditions will break down, and collected
currents will then rise toward the upper-bound values.

We therefore expect the current-voltage characteristics to be "N-shaped'. Such behavior was

predicted qualitatively by Laframboise and Rubinstein (1976) and Rubinstein and Laframboise

(1982), and more recently seen in data from spherical electrostatic probes on the University of Iowa
Plasma Diagnostics Package flown on several Shuttle flights (G.B. Murphy, private communication,

1983). We present later in this Section a quantitative prediction of such characteristics.

Figure 3 shows the same comparison of the Parker and Murphy (1967) and Rubinstein and

Laframboise (1982) upper-bound currents over a larger range of attractive probe potentials. It

is evident from this Figure, and also from Eq. (11), that these bounds do not coalesce at large

potentials, but only for large magnetic fields.

Corresponding upper and lower bounds on current have been calculated for an infinite-

cylindrical probe inclined at an arbitrary angle to B by Laframboise and Rubinstein (1976) and

Rubinstein and Laframboise (1978), and for spheroids and finite cylinders, including disks, whose

axis of symmetry is aligned with B, by Rubinstein and Laframboise (1983). In all cases, their

helical upper-bound and adiabatic-limit currents depend on all aspects of probe shape, whereas

their canonical upper-bound currents depend only on the probe cross-section perpendicular to B.

We reproduce here only their result for the canonical upper-bound current to an infinite cylindri-

cal probe. For the cylindrical case only, we redefine I and I R to be the current and the random

current 27rrpqno_(kT/2rm)_, respectively, both per Unit probe length. For the attracted particles

(¢p >_ 0), their result [Rubinstein and Laframboise, 1978, Eqs. (10) and (11)] is:

l [(3-2_p) v/-_erfc(_-)exp(Cp)+6_FC_p ] (12)i = 27r sin 0 -t- 7r3/2---_

where 0 is the angle between the probe axis and the direction of B. For large _p:

4 _ 2 ( 8]qCp' )½r2mw2r_i_2sinO+rr3/2 - sin0+ (13)rr _5 r

A corresponding result for repelling probe potentials ¢p < 0 is given by their Eq. (13). The most
remarkable feature of our Eq. (13) is that it gives the same one-half-power dependence of probe
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currenton probepotential as in the sphericalcase[Eqs. (7) and (11)], in spiteof the difference
in probeshape.As in the sphericalcase,the canonical upper bound may not be the least upper

bound, especially at small fi and ep; see Figs. 2 and 3 of Rubinstein and Laframboise (1978).
Equations (12) and (13) should be useful for estimation of currents collected by tether wires in

space.

All of this leaves unanswered so far the question of how nearly the actual current collection

approaches these upper-bound values. For cylindrical probes, experimental data presented in Fig.

4 of Szuszczewicz and Takacs (1979) provide a partial answer to this question. They found that

adiabatic conditions are easily violated in the cylindrical configuration. For spherical probes in the

limit of large Debye length (Laplace-potential limit), we present results from an exact numerical

calculation of probe currents by one of us (L.J. Sonmor, Ph.D. thesis, in preparation). This calcu-

lation is "exact" in the sense that in the limit of zero discretization and roundoff errors, it would
produce results corresponding exactly to the physical assumptions made.

In the Laplace-potential limit, an important computational advantage can be gained by scaling

the collisionless charged-particle orbits. These obey the equation of motion mi: = q (E + i" x B).

We introduce the scaled position vector _ = r/(]m¢ffp/qB2l)U 3 and time 7" = (qB/m)t. This
equation then reduces to:

d2_ iv? + iz_ d_
dr---7 = + + i z (14)

(_2+_2)3/2 _x

which contains no free parameters. The calculation method then involves integration of (14) for
various scaled initial positions _ and velocities d_/dr on a plane 5 = constant located sufficiently far

from the origin of coordinates. This yields a data base of distances of closest approach to the origin.

The appropriate integration over this data base then yields the current-voltage characteristics (i vs

ep for various/_). Separate data bases must be created for attractive and repulsive probe potentials.
To obtain values of i having a relative accuracy of 1% or better required the integration of about two

million such orbits, and this consumed about 25 hours of CPU time on the University of Toronto
CRAY X-MP computer.

Results from this calculation are shown in Figures 4-7. Figures 4(a) - (d) show representative

particle orbits, together with their corresponding magnetic-bottle boundaries. The orbits shown all
have positive total energies (E > 0) so they all originate at z = -t-oc. As we mentioned following

Eq. (4), such orbits generally do not touch their bottle boundaries, but they evidently come very

close to them near points of reversal of z velocity, because I÷l and Ikl can be simultaneously very

small near such points. Our earlier discussion implies that actual currents will equal canonical-

upper-bound values [Eqs. (8) - (10)] if every orbit reaches the point closest to the origin on its
bottle boundary, but that in general, orbits do not do so. Comparison of Figures 4(b) - (d) shows

that the nearness of an orbit's approach to this point can be very sensitive to its initial phase.

Figures 4(a) - (d) also show significant violation of the adiabatic-limit approximation, including, in

(b) - (d), reversals of z-velocity.

Figures 5 and 6 show attracted-particle current-voltage characteristics for smaller and larger

ranges of attractive probe potential, respectively, and for two different values of _. Also shown

are the Rubinstein and Laframboise (1982) canonical upper bound [Eqs. (8)- (10)], and, in Figs.

5(a) and (b), their helical upper bound and adiabatic limit. Features visible in Figs. 5(a) and (b)

include, as predicted above, a negative-resistance region in the attracted-particle current-voltage
characteristic. When _ = 3, this region extends over a larger range of probe potentials than when
_=1.
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In this region,the slopeof theexactcharacteristicappearsto belessnegativethan that of the
adiabatic-limitcurveeverywhere,evenat smallpotentials.Onecanidentify threepossiblereasons
for this. Oneof theseis that the mechanismcausingthis bahavior,namelythat someorbits miss
the probe becausethey are "stretched", i.e., their pitch is increased near it, does not operate

as effectively for the real orbits as for the helical ones assumed in the adiabatic-limit calculation.
Another is that nonadiabatic effects also cause some particle gyroradii to increase (Fig. 4), allowing

more particles to be collected. A third possible reason is radial drift motions caused by electric-field

inhomogeneities (Fig. 4a). A current-collection theory based on such drift motions was developed

by Parker and Murphy (1967, Fig. 2 and Table 1).

Figures 5 and 6 appear to leave unresolved the important question of whether the exact currents

approach the canonical upper-bound values at large attractive potentials or remain substantially

below them. This question is examined directly in Fig. 7, but the outcome is still not clear. What

is clear from Fig. 7 is that even if the actual currents approach the canonical upper-bound currents

at large potentials, the approach is so slow as to be irrelevant to most practical purposes. It is

noteworthy that at the largest probe potential shown in Fig. 7, i.e. ep = 500, the Parker-Murphy

(1967) canonical-bound values are much closer to the Rubinstein-Laframboise (1982) values than
the exact currents are, so the latter currents also remain substantially below the corresponding

Parker-Murphy values. Some evidence of the level of numerical errors in these "exact" results also

appears in Figs. 6(a) and 6(b).

An important limitation of the exact results shown in Figs. 4-7 is that they apply only in

the Large-Debye-length limit. As the Debye length is decreased, space-charge effects influence

more and more strongly the potential disturbance around the probe. As a result, this potential

becomes progressively more "short-range', with increased electric fields in the sheath region near

the probe, and decreased fields in the presheath region farther away (see below, however). M.J.

Mandell (private communication, 1989) has suggested that in this situation, the current collection

may increase above the values shown in Figs. 5-7 toward the canonical-upper-bound values, because
adiabatic-limit conditions now are more strongly violated near the probe, and this permits incoming

particles to acquire larger gyroradii, so that more of them are collected. This is in contrast with

the nonmagnetic situation, in which attracted-species current collection decreases with decreasing

Debye length; see, for example, the preceding paper by E.C. Whipple.

Figure 7 contains a feature which may illuminate this question. This Figure shows a "crossover"

of the current-voltage curves for various values of fl as the probe voltage ep increases, with the

currents for the largest fl values becoming the closest ones to the upper-bound currents at the

largest ep values shown. If one considers the magnetic bottles which correspond to the attracted-
particle energies making the most important current contributions at large ep, then among these
bottles, those which correspond to the largest fl values will have the least relative widening (Figs.

1 and 4) near z = 0. Figure 7 therefore implies a tendency for bottles with the least widening to be

the "most filled" by the orbits confined inside them. If this tendency carries through to situations

in which space-charge effects are important, it will tend to counteract the mechanism described in

the preceding paragraph, and the attracted-species current may then decrease rather than increase
with decreasing Debye length as in the nonmagnetic case. Another mechanism which may act in

the same direction is the tendency of magnetic bottles to form "bulges" or even disjoint "bubbles"

as a result of space-charge effects on the probe sheath potential distribution (Section 5).
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3. COMBINEDEFFECTSOF SPACE-CHARGEAND COLLISIONS

In somepresheathlocations,a decreasein Debyelength will producean increasedrather
than decreasedelectricfield. To seewhy,weconsiderthe depletionof particlesat largedistances
from a sphericalprobe,causedby the probe'scurrent collection.If B = 0, this depletion occurs

equally in all directions for both ions and electrons, and therefore results in a spherically-symmetric

distribution of net space charge and therefore of potential. If B _ 0, it occurs predominantly along

and adjacent to the probe's "magnetic shadow". In other words, we expect that at large Izl, both

the ion and electron density disturbances (in the collisionless limit) will become functions only of the
cylindrical radius r. In contrast with the nonmagnetic case, however, these disturbances will have

different dependences on r for the ions and electrons, because the much smaller average gyroradius

of the electrons will cause the electron depletion to be confined much more closely to the magnetic

shadow itself, whereas the ion depletion will be more widespread (Fig. 8). If the Debye length is

finite, the resulting charge imbalances will produce a potential disturbance which will also depend

only on r at large ]z I. Unless the probe potential is very negative, this disturbance will be positive

in sign (Sanmartin, 1970). In the absence of collisions (and assuming steady-state conditions), no

mechanism exists to cause the charge-density disturbances to decay with increasing Izl, and the
resulting potential disturbance must therefore also extend to infinity in both directions along the

probe's magnetic shadow. This fllrther implies that if the charged-particle mean-free-paths are

finite, no matter how large they are, collisions will ultimately repopulate the depleted regions as

Izl --. oc. Some of these collisionally-redirected particles will travel toward the probe. In doing so,

they will produce effects on both the space-charge density near it and on current collection by it.

Some of the same particles will have negative values of the total energy E defined in Eq. (1); if

the potential disturbance is positive in sign, this can happen only for electrons. These particles

cannot escape from the probe's potential disturbance unless it extends to infinity or they undergo

another collision; otherwise the z component of their velocity, if initially directed away from the

probe, must eventually reverse. The electron current reaching the probe will therefore include a

contribution due to electrons which have negative total energies. In contrast with the situation

for B = 0, this contribution will persist rather than vanish in the limit of large mean-free-paths;

increasing the mean-free-path will result merely in a corresponding increase of the scale of distances

over which collisions provide this contribution.

We therefore conclude that a collisionless, finite-Debye-length theory cannot be formulated for

a probe in a magnetoplasma, unless some approximation is made (discussions with H.A. Cohen,

unpublished). On the other hand, effects of this may be negligible in at least some real situa-

tions. For example, the calculations reported by Katz et al (1989), which were done in support of

the SPEAR I electrostatic probe measurements using the NASCAP/LEO and POLAR simulation

programs, gave good agreement (within about 4% in the case of the more-accurate POLAR calcu-

lations) with these measurements (see their Fig. 10), and these were collisionless calculations. The

NASCAP/LEO calculations used analytic approximations for space-charge densities in the sheaths
around the SPEAR I probes and rocket body, whereas POLAR calculated these densities by track-

ing particle orbits inward from sheath edges. It is noteworthy also that all the theory which we have

discussed so far has been for a nondrifting ambient plasma. In Section 7, we discuss a description

by Thompson (1985) of the disturbed region around a high-voltage orbiting object. Thompson's
description implies that a drift transverse to B, even at much less than orbital speed, may change

fundamentally the structure of this disturbed region, and a completely collisionless calculation of

collected current then may still be applicable. We discuss this question in more detail in Section

7. Here we confine our discussion to nondrifting situations.
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Themostthoroughavailabletreatmentofthecombinedeffectsof collisionsandspace-chargeon
probecurrentis that of Sanmartin(1970),whoperformedanasymptoticanalysison this problem,
using ion and electroncollisionmodelsbasedon cumulativesmall-anglescatteringby multiple
Coulombencounters.In his treatment,electroncollection by the probe is limited by the fluxes

of electrons which are supplied by collisions to the above-mentioned two regions (one for z > 0

and one for z < 0) of positive potentials in the probe's magnetic shadow. To be collected, these

electrons must also cross a potential barrier which exists between each of these regions and the

probe when the probe potential is close enough to space potential. This barrier exists because at

such probe potentials, each region is more positive than at either the probe or infinity, i.e., there

is an "overshoot" in the potential distribution as a function of ]z] in each region (Fig. 9). The

most important effect of this situation on the probe current near space potential is to decrease the

electron collection, thereby "rounding the knee" of the probe's current-voltage characteristics as

computed by Sanmartin. His results for the electron-current characteristics are reproduced in Fig.

10. Sanmartin's treatment assumes that the ion-to-electron temperature ratio is close to unity,

the electron average g3"roradius _ and the Debye length )_D are both << rp, and rp < both the

mean free path for multiple small-angle Coulomb collisions and the ion average gyroradius. In his

analysis, the magnetic shadow region on each side of the probe is divided into: an outer layer which

extends to infinity, is quasineutral and collision-dominated, and in which the potential rises to a
maximum value as one approaches the probe; an intermediate layer, also quasineutral, across which

the potential is uniform and whose thickness is of the order of the local electron mean free path;
and an inner layer which is collisionless and in which the potential decreases steeply to its value on

the probe. Sanmartin's approximations include a point-to-point matching of the particle fluxes as

a function of r across the intermediate layer. For electrons, this is done by equating his Eqs. (44)

and (65) for these fluxes. The result is to exclude the possibility of an attraction-region increase
in current collection due to effects of particle orbital motions, so his attraction-region currents

saturate at i - 1 as Cp _ _, in contradiction with the results discussed in Section 2. His theory
in its present form therefore is useful primarily for probe potentials close to space potential when

rp _,_, )_D and the magnetic field is large enough that fl = rp/_ >> 1 (See, however, the last

paragraph of Section 4). For a probe at space potential, Cp = 0, the currents predicted by him
(Fig. 10) are much lower than the collisionless currents given by Fig. 17 of Whipple (1965) for

the case rp << _D" At present, there is no theory available for probes in magnetoplasmas which
includes effects of particle orbital motions together with collisional and space-charge effects, and

we have seen (Section 2) that at larger probe potentials, orbital-motion effects become increasingly

important.

4. EFFECTS OF PLASMA TURBULENCE

A persistent and widespread suspicion has been that when probe potential is sufficiently posi-
tive, spontaneous fluctuations or "plasma turbulence", driven by the large electron-density gradients

which then exist near the edges of the probe's magnetic shadow, will transport charged particles

transversely to B and produce probe currents much larger than those predicted by the steady-state

theories described in Sections 2 and 3. The existence of probe-induced spontaneous fluctuations, for

probes having a sufficiently large positive bias, is well-established by laboratory observations (Bal-

main, 1972; Urrntia and Stenzel, 1986; Stenzel, 1988). Spontaneous density fluctuations of up to a
few percent amplitude have also been observed in the disturbed region around the Shuttle Orbiter

(Murphy et al, 1986). What is less clear is whether such fluctuations can increase substantially the

time-averaged currents collected by probes.
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Fora longtime,onlyonetheoreticaltreatment,dueto Linson(1969),hasbeenavailablewhich
includespredictionsof plasmaturbulenceeffectsoncurrent collectionby a probe. An alternative
formulationby P.J.Palmadessoappearslater in theseProceedings.

Linson's(1969)treatment is semi-empiricaibecauseit dependson a parameterwhosevalue
is inferredfrom experimentaldata ratherthan predicted.Linsonsuggeststhat the unneutralized
electronpopulationin the sheathregionaroundaprobehavingalargepositivebiasmaybesubject
to a gyroresonantinstability whoseonsetdependsona sufficientlylargevalueof the parameter:

Q 2 2 (15)---- _Je /0.)¢

where we = (nee2/meeo)_ is the electron plasma frequency, wc = eB/m e is the electron gyrofre-

quency, m e and n e are electron mass and number density, and eo is the permittivity of space. Linson
cites evidence that the onset of this instability occurs when Q is close to or somewhat smaller than

1; ionospheric values of Q are generally greater than 1. Linson then assumes that the resulting

turbulent diffusion produces a region of uniform electron density around the probe (Fig. 11), that

this region is greatly extended in the z direction, and that electric fields parallel to z are small

compared to those perpendicular to z. Assuming also that ions are completely excluded from this

region then permits him to write a cylindrically-symmetric Poisson equation:

i d (_r) ene (16)r dr r = --
Go

for potentials within it. He solves this equation subject to the boundary conditions:

¢=¢pwhenr=rp (17)

d¢ (18)
¢=0, drr =0whenr=r s

Equation (16) is of only second order, so with three boundary conditions given in Eqs. (17) and

(18), this system of equations is overdetermined. Solving it therefore also provides a value for the

sheath radius rs. We obtain:

¢p 1Q¢. _ In _ -1 +1
(19)

where ¢* 1 2 2= _meWcrp/e. This result is Linson's Eq. (13). It provides an implicit relation for rs as a
function of the probe potential ¢p. Linson then proposes, as an upper bound on probe current, the
random current incident on both ends of a flux tube of radius r8. In terms of the random current

I R defined just prior to Eq. (6), Linson's upper-bound current is now given by:

2' (../.,) (,o>i = I/IR =

Figure 12, which is a reproduction of Linson's Figure 3, shows a comparison of the currents given

by Linson's treatment for Q = ¼ and 1 with those given by the result of Parker and Murphy

(1967) [our Eq. (7)] and by the nonmagnetic, spherically-symmetric, space-charge-limited theory

of Langmuir and Blodgett (1924). This Figure suggests that turbulent transport produces a major

increase in the probe's electron collection, perhaps to values close to the nonmagnetic ones.
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Experimentalevidencefor this contentionhasbeenambiguousuntil recently.This is in spite
of the launching,since1969,of no fewerthan25separaterocketandsatelliteexperimentswhich
includedmeasurementsof the potentialacquiredbysurfacesof thevehiclewhenanelectronbeam
wasemitted from it. Reviewsof theseexperimentshavebeengivenby Winckler (1980),Linson
(1982),Szuszczewicz(1985),and Maehlum(1988). During the sameperiod, spaceexperiments
havealsobeenperformedwhich involvedeitherthe emissionof ion beams,with measurementsof
the resultingvehiclesurfacepotentials,or the applicationof a differentialbiaswhichcausedone
part of the vehicleto acquirea largenegativepotential relativeto space,with the resultingion
collectioncurrentmeasured.In suchcases,magnetic-fieldeffectson ion collectionare relatively
smallbecauseof therelativelylargeaveragegyroradiiof ions.Of greaterimportancein thesecases
areeffectsof relative ion drift motion. Exactcollisionlesstheoryfor ion collectionin the presence
of ion drift is relativelyincomplete.A reviewof availableapproximatetheoriesfor this situation
hasbeengivenby GodardandLaframboise(1983).Substantialdisagreementexistsbetweenthese
theoriesand experimentalresults(Makita and Kuriki 1977,1978)but the approximationsin the
theoriesaresevereenoughthat this doesnot constituteevidencethat the collisionless,steaxiy-state
modelis invalid for ion collection.In contrastwith this, the electroncurrent-voltageobservations
generallyimply currentsexceedingthe Parkerand Murphy (1967)values.The amountof excess
currentappearsto increasewith ambientelectrondensity.Popadopoulosand Szuszczewicz(1986)
haveproposedthat acollectiveinteractionbetweenthebeamandtheambientplasmamayenergize
someof the ambientelectrons,and thesethen providea greatly increasedreturn current to the
vehiclebecauseof their muchlargervelocities.

This hypothesisis supportedby the resultsof the recentCHARGE-2(Myers et al, 1989)

and SPEAR I (Katz et al, 1989) rocket experiments. In the CttARGE-2 experiment, the payload

was separated into two sections joined by an insulated conducting tether. One of the sections

carried a 1 keV electron gun. The sections were separated by up to 426m across the geomagnetic

field. Return current collection was observed for positive potentials up to 1 kV on both sections.

In all measurements, return currents to the section carrying the gun exceeded Parker-Murphy

(1967) values, while those to the other section agreed well with these values. In the SPEAR I
experiment, no beam was emitted. SPEAR I carried two spherical electrostatic probes of radius

lOcm, separated from each other by lm and from the rocket body by 3m. Positive voltages up

to 45.3kV were applied to one of the two spheres. In the results presented by Katz et al (1989),

the other sphere was grounded to the rocket body. Also grounded to the rocket body was a

stem which supported both probes and was separated from them by resistive bushings of length

lm. Katz et al (1989) calculated that when a 46kV bias was applied to one sphere, the rocket
body and the other sphere floated at -8.3kV, and the biased sphere then floated at 37.7kV. The

measured current-voltage curve gives a current of 52 mA at this voltage. This is about twice

the Parker-Murphy (1967) value [Eq. (7)] for these conditions, but the calculations of Katz et ai

(1989) indicate that this discrepancy results from the breaking of canonical angular momentum

conservation [Eq. (2)] by the strong asymmetry of the sheath around the probe; this asymmetry
in turn is produced by the presence of the oppositely-biased large rocket body and other probe (I.

Katz, private communication, 1989). The results of this experiment therefore can be interpreted

as providing further support for the validity of the canonical upper bound on current collection

[In these experiments, the correction term ½/a 2 in Eq. (tl) was negligible, so the canonical upper
bound was essentially equal to the Parker and Murphy (1967) upper bound given by Eq. (7)].

This in turn indicates an absence of significant turbulent-transport effects on such currents in the

absence of beam-induced disturbances, contrary to the hypothesis advanced at the beginning of
th_s=secti__
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However, Palmadesso (paper appearing later in these Proceedings) has pointed out that one
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expects turbulent-transport effects to become important only when the region of large electric

fields near the probe extends radially beyond the region in which the probe is readily accessible

to particles on the basis of steady-state fields only. For the radii of these two regions, he uses the

nonmagnetic spherical sheath solution of Langmuir and Blodgett (1924) and the Parker-Murphy

(1967) radius ro, given by Eq. (6) with a positive sign, respectively. He points out that the

Langmuir-Blodgett radius is initially smaller but grows more rapidly as probe potential increases,

so one should expect significant turbulent transport effects only for large enough values of probe
potential. This appears to indicate that turbulent transport may yet prove to be important at

large enough positive voltages, so the indications to the contrary provided by the CHARGE-2 and

SPEAR I experiments may not be conclusive.

This apparent absence of turbulent-transport effects in space situations runs counter to

widespread expectations, as we noted at the beginning of this Section. An example of such expec-

tations is a discussion by Stangeby (1989, Sec. IIIA) of particle transport across magnetic fields in

magnetic-confinement fusion experiments. Stangeby summarizes the evidence for the well-known

conclusion that such transport generally agrees with the empirically-obtained Bohm value (Bohm

et al, 1949), and is much larger than the "classical" value which forms the basis of the Sanmartin
(1970) theory discussed in Sec. 3. However, probe use in fusion plasmas generally involves very

different conditions than in space (P.C. Stangeby, private communication, 1990). Because of in-

terpretive difficulties, probes in fusion plasmas are generally operated at voltages below floating

potential (Stangeby and McCracken, 1990, Figures 2.4 and 2.5). Ion and electron densities are then

nearly equal to each other almost to the probe surface, whereas in the CHARGE-2 and SPEAR

I situations, the probes were surrounded by large electron sheaths. This difference presumably
affects the turbulent-transport mechanisms involved, but these are understood very poorly, so firm
conclusions cannot be drawn.

5. PARTICLE TRAPPING AND THE "TOROIDAL GLOW" REGION

We have seen that imposition of a magnetic field changes fundamentally the characteristic mo-

tions of charged particles in the disturbed region around a probe (Sections 2 and 3). An important
consequence of this is a qualitative increase in the possibilities for trapping of attracted particles

in this region. This in turn creates the possibility of significant increases in probe current because

of collisionai or turbulent scattering into and out of this region, or collisional ionization of neutrals
in it. We examine each of these aspects of this situation separately.

We illustrate in Fig. 13 the region of space in which particle trapping occurs in the presence

of a magnetic field. For the attracted-particle species [qCp < 0], this Figure shows the general
appearance of "open" magnetic bottles which extend to z = =t=oc and correspond to E > 0, and
"closed" ones which correspond to E < 0, all drawn for a particular value of J which is chosen such

that the bottle for E = 0 marginally fails to intersect the probe. Since ¢ = 0 at infinity, E > 0 for

all particles coming from the ambient plasma. Therefore, in the absence of collisions, the "trapped-

orbit" (E < 0) region of one-particle phase space, corresponding to closed magnetic bottles such
as those shown in Fig. 13, must remain unpopulated. However, if a particle is scattered into this

region, by either a collision or (possibly) a turbulent scattering event, it will remain there until
another such event scatters it out again. If the collision frequency is very small, such a particle is

likely to remain there for a very long time. Therefore, even in the limit of small collision frequency, a

steady-state particle population will build up in the trapped-orbit region. This population will not

be larger than the equilibrium value given by the usual Boltzmann factor, but this bound permits

very large attracted-species populations if potentials near the probe are very large. This population

will always remain less than the equilibrium value, because particles can also be scattered out of
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it into "collection"orbitswhichintersecttheprobe.Assumingthat theprobeis nonemissive,this
setsup anet unbalancedflux of particlesinto it, usingthetrappedorbitsasan intermediarystage
(Fig. 14),and thereforedetailedbalancingcannotoccur,andan equilibriumpopulationof these
orbits cannotbeattained.Thisunbalancedflux alsoconstitutesanadditionalcurrentto the probe.
Sofar, the problemof calculatingthis currentis completelyunsolved.

In theabsenceof a magneticfield, approachesto thisproblemhavebeenmadebyWasserstrom
et al (1965), Chou et al (1966), Bienkowski and Chang (1968), Self and Shih (1968), Talbot and

Chou (1969), Thornton (1971), Shih and Levi (1971), Parker (1973), Friedland and gagan (1979),

and others, using various approximations. A review of most of this work has been given by Chung

et al (1975, Section 2.5).

Our depiction in Fig. 14 of the intermediary role of trapped orbits is schematic, and applies

whether or not a magnetic field is present, even though the orbits when B _ 0 will generally be more

complicated than those shown. However, one feature of the trapping phenomenon is fundamentally

different when B _ 0. In either the nonmagnetic or magnetic case, the term q¢(r,z) in Eq. (4)
will have a local minimum as a function of z at z = 0 for each r, so trapping will occur, i.e. the

effective potential U(r, z) in Eq. (4) will have a local minimum, if the last term in Eq. (4) has a

minimum outside the probe as a function of r for at least some values of J. Inspection of this term

shows that in the nonmagnetic case (w = 0), this term has minima only if Iq¢(r, z)l decreases more

slowly as a function of r than an inverse-square potential ¢ = const, r -2 over at least some range

of r values (Mott-Smith and Langmuir, 1926; Bernstein and Rabinowitz, 1959; Laframboise, 1966;
Laframboise and Parker, 1973). Accumulation of a trapped-particle population adds space charge

of a sign opposite to that on the probe surface, and this causes the sheath potential to steepen,

tending to destroy the conditions necessary for trapped orbits to exist, and thereby limiting their

population (Laframboise, 1966, Section VIII). However, in the magnetic case, the last term in Eq.

(4) always has minima as a function of r. A steepening of the potential therefore can modify the

resulting minima of the effective potential U(r, z), but cannot destroy them. We therefore expect

trapped-orbit effects to be much more important when significant magnetic fields are present.

We have so far not mentioned what may be the most important consequence of trapped-

orbit population. Particles scattered into the trapped-orbit region will be accelerated by large

electric fields in this region if the probe potential is large. In the more central regions of the

closed magnetic bottle accessible to each particle, it will then have enough kinetic energy to cause
collisional ionization of neutrals. If the attracted particles are electrons, this will occur for probe

potentials above a few hundred volts. Some of the new charged particles thus produced will be on

collection orbits (Fig. 14), and this can produce a substantial increase in probe current. Another
consequence of energetic collisions in the trapped-orbit region is light emission. Such emission was

first observed as a "toroidal glow" region, in a laboratory experiment by W.J. Raitt and A. Konradi

(private communication, 1987). The toroidal-glow phenomenon has since been studied in detail by

Antoniades and Greaves (paper appearing later in these Proceedings), who have also observed the
above-mentioned increase in probe current. They have observed these phenomena in a test chamber

which was large enough to permit a well-developed trapped-orbit region to exist around the probe,

but they did not see them in tests done in a smaller chamber. So far, these phenomena have not

been observed in space. Antoniades and Greaves discuss in detail the conditions under which one

can expect them to occur. One feature of the toroidal-glow region, which may be expected on the

basis of Fig. 13, is that it should have "pointed ends" in the =t=z directions, and this feature is

evident in photographs of it presented in their paper.

When the magnetic field is sufficiently weak, their results show that the toroidal-glow region

disappears and either no discharge or a spherically-symmetric discharge occurs. If the ambient
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neutraldensityis largeenough,the establishmentof a spherically-symmetricdischarge,arounda
probeat a largepositivevoltage,involvesa processof "explosivesheathionization", which has
beenstudiedby Lai et al (1985) and Cooke and Katz (1988). In this process, electrons created

by ionization of neutrals in the sheath migrate quickly to the probe, while similarly-created ions

accelerate slowly away from it. This results in a net positive contribution to the space charge in

the probe sheath. This contribution enlarges the sheath and thereby enlarges the region in which

the electrons have been accelerated through a sufficient change of potential to ionize neutrals. This

results in more net positive space charge and a consequent runaway sheath expansion.

Magnetic-bottle shapes similar to those shown in Figs. 1, 4, and 13 do not exhaust all possi-

bilities. The dependence of I¢(r, z)l on r for z _ 0 in a steady-state situation invariably involves a

steep decrease toward space potential in the sheath region, followed by a much less rapid decrease

in the presheath region beyond the sheath edge. For some values of J, the effective potential U(r, z)

for the attracted particle species in Eq. 4 may then have, instead of a single minimum as a function

of r for z = 0, two minima separated by a maximum. Depending on the value of E, this can cause

the corresponding magnetic bottles to have "bulges" or even disjoint "bubble" regions (Fig. 15).

In the latter case, particles travelling along collisionless orbits from infinity will be unable to enter

these "bubble" regions even though permitted by their values of E and J to exist there. In the

case of "bulges", such particles are likely to be partly prevented from entering the bottle regions

closest to the probe; a similar effect was discussed in connection with bottle "widening" at the end

of Section 2. To some extent, all of these effects will limit access to the probe of attracted-species

particles which initially (i.e. far from the probe) move along orbits located outside the probe's

magnetic shadow. This may possibly invalidate the conjecture, mentioned at the end of Section 2,

that space-charge effects on the potential ¢(r, z) may cause the current collection to increase above

the Laplace-limit values calculated by Sonmor (see Section 2), toward the canonical-upper-bound

values. However, the SPEAR I and CHARGE-2 current-collection values discussed in Sections 3

and 4 appear to show good agreement with the canonical-upper-bound values, so at present there is

no clear experimental evidence for a collected-current decrease caused by the formation of "bulges"

and the breakup of magnetic bottles into disjoint "bubble" regions. As noted in Section 2, the

numerical results of Sonmor support the idea that this may occur. However, a definitive answer to

this question will require a more specific investigation of it than any done so far.

6. BREAKDOWN OF MAGNETIC INSULATION

"Magnetic insulation" is the tendency of a magnetic field to inhibit the transport of charged

particles across magnetic flux surfaces. In Sections 2-5, we have considered various ways in which

magnetic insulation can break down and current collection by a probe can increase as probe voltage

becomes more attractive for the particle species considered (most specifically, the electrons). We

have examined effects of violation of adiabatic invariance (Section 2), collisions (Sections 3 and

5), self-excited fluctuations (Sections 4 and 5) and particle trapping combined with collisions,

fluctuations, or collisional ionization (Section 5). Here we take a different view of the collisionless
particle motions treated in Section 2 (discussions with D.L. Cooke, unpublished). We consider

specifically the motions of particles in the trapped-orbit or "toroidal glow" region discussed in

Section 5. For particles which have a small enough z-component of velocity, one may expect these

motions to be well-approximated by a circumferential E × B drift with superposed gyromotion in

the plane z = 0, together with small oscillations about this plane. However, we now show that this

is not necessarily the case.

To show this, we note that the usual analysis for particle motion in uniform crossed E

and B fields (see, for instance, Tanenbaum, 1967, Section 1.4) yields an E x B drift velocity
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i =

v d = (E X B)/B 2. The magnitude of v d is E/B. This can easily exceed the speed of light. This
happens when E > Bc. For B = 0.3 Gauss = 3 x 10-5T, corresponding to the low-latitude iono-

sphere, and c = 3 × lOSrn/sec, this inequality becomes E > 9000Vim. The SPEAR I probes had

radius rp =lOcm. Ignoring space-charge effects gives a surface electric field E r on these probes
given by E r = -(d¢/dr)p = Cp/rp. The above-mentioned inequality is then fulfilled when the

probe potential Cp > 900V. Since space-charge effects can be expected to increase electric fields
near a probe, this inequality would have been fulfilled at even lower probe voltages in the SPEAR

I experiment. Since drift velocities greater than the speed of light are impossible, something is

clearly wrong with this analysis.

What is wrong is that the usual derivation of v d is non-relativistic. For planar geometry, the

correct approach to the derivation of v d involves use of a Lorentz transformation (Longmire, 1963,

p. 30; Jackson, 1975, pp. 582-584), which can eliminate the component of E perpendicular to B,

yielding the usual E × B drift result, only if E < Be. If E > Bc, a Lorentz transformation to a

frame moving at velocity E × B/E 2 (rather than E × B/B 2) now eliminates the component of B

perpendicular to E. In this frame, particles now accelerate indefinitely parallel to E, so no magnetic-

insulation effect is predicted. The situations treated here do not involve probe potentials large

enough to produce strong relativistic effects, but what is instead implied is that orbit curvatures
due to the magnetic field become so slight that electron motions become dominated by electric-

field inhomogeneities associated with the rotational symmetry of the probe's potential distribution.

Therefore, the non-relativistic magnetic-bottle analysis of Section 2 still applies, and still predicts

that radially-inward motion toward a probe will eventually be limited, except for particles having a

zero value of the canonical angular momentum component J defined in Eq. (2). Palmadesso (paper

appearing later in these Proceedings) has numerically calculated particle orbits in model spherical-

probe sheath potentials in magnetic fields, and these orbits display both of the phenomena just
described, namely the breakdown of E x B drift in strong electric fields, and the limitation of the

resulting radially-inward motion because of conservation of J. The same phenomena are visible also
in results from the NASCAP/LEO simulation of SPEAR I flight conditions, presented by Katz et

al (1989). We have reproduced their Figures 8(a) and (b) herein as Figures 16(a) and (b). Figure

16(a) shows their calculated bipolar-sheath potential contours for a 46kV bias on one spherical

probe and a -6kV assumed floating potential for the SPEAR I rocket body. Figure t6(b) shows

the trajectory of an electron in the potential of Figure 16(a). A sudden transition from E x B drift
motion to accelerated motion is clearly visible, as also is orbital motion caused by nonzero angular

momentum, closer to the probe.

7. PHENOMENA AROUND LARGE ORBITING OBJECTS AT HIGH VOLTAGES

Our discussion so far has been directed primarily toward rocket experiments involving large

positive electrode voltages. In such experiments, effects of spacecraft motion (relative plasma

drift) on sheath structure and current collection are generally thought to be unimportant. A very
different situation arises in the planned Electrodynamic Tether experiment, which is part of the

Shuttle-borne Tethered Satellite System (T.S.S.i.-in-this experiment, it is planned to deploy an

insulated conductive tether of up to 20km length, extended vertically upward from the Orbiter's

cargo bay. At the end of the tether is to be located a conductive spherical subsatellite. One

expected consequence of this arrangement is the generation of large-scale systems of low-frequency

plasma waves in the ionosphere (Banks et al, 1981; Raitt et al, 1983; Grossi, 1984; Rasmussen et ai,

1985; Urrutia and Stenzel, 1989; Stenzel and Urrntia, 1989). Another experimental objective, more

closely related to our present discussion, is to investigate whether induced currents in the tether

due to its motion across the geomagnetic field can provide a useful source of electric power in space.
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This depends on achieving as large as possible an electron current collection by the subsatellite,

either passively or with the aid of a low-energy plasma source known as a "plasma contactor". Here
we consider only passive current collection; the performance of plasma contactors is analysed in

four papers, by Hastings, Wilbur and Williams, Katz and Davis, and Cooke, respectively, which

appear later in these Proceedings. In the Orbiter's reference frame, the ambient plasma contains an

upwardly-directed v × B electric field of about 0.24V/m, where v is the Orbiter's orbital velocity.

The Orbiter is to carry an electron emitter (Banks et al, 1981; Raltt et al, 1983) which is intended

to keep its potential close to that of its surroundings. The subsatellite will then acquire a potential

up to about 5kV positive with respect to its surroundings.

The planned diameter of the subsatellite is 1.4m (Raitt et al, 1983). Much larger subsatellites

(conductive balloons) have also been considered (Williamson and Banks, 1976; Banks et al, 1981).

In either event, the subsatellite's radius will be large compared with both the average gyroradius

and the Debye length of ambient electrons. The situation around the subsatellite therefore appears

likely to be similar to that analyzed by Sanmartin (1970; our Section 3), except that the ions

and electrons will now have a drift speed U = 8km/sec relative to the subsatellite. Since the

mean thermal speeds vi and ve of ambient ions and electrons are roughly lkm/sec and 300km/sec,

respectively, drift effects would appear likely to be important for ions but negligible for electrons.

However, in the case of electrons, this conclusion turns out to be untrue. The following discussion

is based in large part on a treatment by Thompson (1985), and also on unpublished work by W.B.

Thompson.

In the nondrifting situation analyzed by Sanmartin (1970; our Section 3), electron depletion

by the probe created a positive potential disturbance which extended in both directions along the

probe's magnetic shadow without attenuation until distances of the order of an electron mean free

path were reached. However, in low-Earth-orbit conditions, electrons drift at speed U toward the

upstream surface of this positive-potential region. They then enter this region, migrate along it to

the subsatellite, and are collected. The flux associated with this drift, integrated over this surface

out to a distance of order L = D-_e/U in both directions from the subsatellite, where D = 2rp is
the subsatellite's diameter, then supplies the subsatellite's electron collection current. The speed

and direction of this drift will be modified near this surface by electric fields associated with the

potential change across it. The upstream surface of the positive-potential region (on each side

of the subsatellite) now is no longer parallel to B but is "swept back" relative to B by a small

angle _ _ tan-](U/Ve) (Fig. 17). This implies that the region of positive potentials now tapers to

zero width in a distance of order L along each of the directions parallel and antiparallel to B. This

distance will be large compared to D, but generally much smaller than the electron mean-free-path,

so in this situation, a self-consistent collisionless treatment can be formulated. Positive ions striking

the upstream side of this region reflect forward from it (Fig. 17), creating conditions conducive

to two-stream instability just forward of it. Whether such instability has any substantial effect on
electron collection has not been determined. The same repulsion of ions from the positive-potential

region also creates an extensive ion-depleted wake region on its downstream side, and this wake

region can be expected to contain negative potentials (Fig. 17). In Thompson's description, the

total length of this wake region parallel to B, i.e. transverse to the relative plasma drift, will be of
order 2L.

From our viewpoint, the most important question regarding the treatments of Sanmartin

(1970) and Thompson (1985) is whether they lead to different predictions for electron collection
by the subsatellite. Sanmartin's theory includes collisions, and therefore leads to the populating of

orbits which have negative total energies with respect to space potential and therefore cannot be

populated by particles moving collisionlessly from infinity. In fact, the electron population reaching

the probe in Sanmartin's treatment is a Maxwellian, with a reduced density factor [his Eq. (65)]
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whichat the probedependson positionperpendicularto B (our r coordinatein Section2 and
elsewhere).Therefore,in Sanmartin'sdescription,mostof the electron current reaching the probe

is carried by negative-total-energy electrons.

The collisionless description given by Thompson (1985), and summarized above, is very differ-
ent. In this description, the definition of space potential is more complicated because in a reference

frame fixed on the subsatellite, there exists an ambient v × B electric field of about 0.24V/m.

However, this does not substantially affect what we can conclude about the velocity distribution of

electrons reaching the subsatellite. This remains as follows: all electron orbits not connecting back

to infinity are unpopulated. This includes all negative-total-energy orbits, and also those positive-

total-energy orbits which are caused to return to the subsatellite by electric or magnetic fields. The

positive-total-energy orbits which connect back to infinity have populations which are a function

of their ambient velocities. This function is just the drifting Maxwellian velocity distribution Of

the ambient plasma. However, the drift velocity of these electrons is, as we have seen, very small

compared to their mean thermal velocity, and even though this "small" amount of drift is crucial

to the construction of a self-consistent collisionless treatment, it nonetheless has a negligible effect
on the population of those orbits which connect back to infinity. This population can therefore be

regarded as isotropic, i.e. dependent only on the total energy of each electron impacting the sub-

satellite, and this energy is conserved along the electron's orbit, again assuming that the electron

has not passed through a region of significant time-dependent fluctuations (Section 4). If this is

the case, we then have complete knowledge of the velocity distribution of impacting electrons if we
know the "cutoff boundaries" in velocity space which separate the orbits which connect back to the

ambient plasma from those which do not (Laframbois e and Parker, 1973). This last question in turn

is easy to resolve if electron acceleration into the positive-potential region is adiabatic (gyroradius

<< scale of changes in the electric field E), because the cutoff boundary is then "one-dimensional",
i.e., if the z direction is again parallel to B, electron orbits arriving at the subsatellite surface are

1 2
populated only for vz values such that _mev z - eCp > 0, where Cp is the subsatellite's potential
relative to space (Laframboise and Parker, 1973; Laframboise and Rubinstein, 1976; Rubinstein

and Laframboise, 1982; see also Section 2). All of this now implies that with these approximations,

the velocity distribution of impacting electrons is just an "accelerated half-Maxwellian", and the

electron current collected by the subsatellite is just the random current collected by the projection

of its area onto a plane perpendicular to B. The dimensionless current i defined in Eq. (7) is the'n

just equal to ½.

However, this estimate may be much too small, because it excludes any correction for nona-

diabatic effects oa e!_ctron motions near the subsatel]ite; these were discussed in Section 2. It

may seem surprising that such effects should be significant, because the average ambient:electron

gyroradius _ is much smaller than the subsatellite radius rp. For rp = 0.7m, B = 0.3G = 3 x i0-4T,

and kT e = O.leV, the ratio fl = rp/_ defined following Eq. (10) is equal to 22.2. In spite of this,

for a subsatellite potential Cp = 5keV, The Parker-Murphy (1967) upper-bound value for i, given
by either Eq. (7) or the first two terms of Eq. (11), is 11.86; the correction given by the third

term of Eq. (11) is insignificant. For this value of fl and for the value _bp = 5 x 104 implied by the
parameter values just given, the numerical results of Sonmor given in Fig. 7 appear to indicate that

the actual current will be very close to this upper-bound value. One cannot infer a firm conclusion

on this point because the Sonmor results are for a Laplace potential distribution (infinite Debye

length), rather than for the actual sheath potential distribution around the subsatellite, and no

clear information exists on whether actual currents will be larger or smaller than the corresponding
1

Laplace-limit currents (Sections 2 and 5). Nonetheless, the wide disparity between the values of
and 11.86, given just above for i, suggests that nonadiabatic effects on electron motions near the

subsatellite are very strong, and therefore the actual velocity-space cutoff boundary for electrons ar-
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riving at the subsatellite is very different from that given by the "one-dimensional" cutoff-boundary

relation noted above. However, this conclusion in turn could be affected strongly by the breakup

of magnetic bottles into disjoint regions, which we noted in Section 5 and in Fig. 15, so it still

requires detailed numerical verification.

For increasingly large subsatellite diameters D, the half-length L of the positive-potential

region increases in proportion. It is instructive to ask at what value of D does L become large

enough that a transition will occur from the collisionless description of Thompson (1985) to the

collisional one of Sanmartin (1970). To calculate the electron mean-free-path, we use the classical

Spitzer (1962, Chapter 5) results for the electron collision frequency in a fully-ionized gas. To use
these results, we consider an electron "test particle" whose velocity ve is given by mv2e = 3kTe, i.e.

which has kinetic energy equal to the average value for electrons at temperature T e.

We include contributions to its cumulative angular scattering from both ambient electrons and

ambient ions. For ambient-electron density n e = 105 /cm 3 and temperature Te = O.leV, Eq. (5.22)

of Spitzer (1956) gives an electron mean-free-path Ae = 725m for cumulative angular scattering.

We have just seen that the most important distinction between the collisionless and collisional

descriptions is likely to be the energy distribution of electrons in the positive-potential regions.

Another important mean-free-path therefore is that for energy exchange among electrons, also

defined by Spitzer (1956, Eq. 5.25). Bearing in mind that electron-electron encounters change the

electron energy distribution much more rapidly than do electron-ion encounters, a recalculation of

Table 5.3 of Spitzer (1956) to include ion effects indicates that the energy-exchange mean-free-path

is only moderately larger than Ae for most electrons.

A good approximate criterion for collisionless current collection by the subsatellite therefore is

that L << Ae. With the above-mentioned relation L = D_e/U and the values U = 8km/sec and

-_e = 300km/sec, this criterion reduces to D << 19m. This result implies that collisional effects
can become significant for balloon subsatellite diameters which axe within the realm of possibility.

In rocket experiments, U is generally much smaller, and this criterion then becomes much more

severe. For U = lkm/sec, we obt_n D << 2.4m. The SPEAR I probes (Sections 3, 4, and 6),
whose diameters were 20cm, are comfortably within this limit, so we infer that even the relatively

small amount of spacecraft motion present in the SPEAR I experiment was enough to ensure that

current collection by these probes was essentially a collisionless process. The collecting portion of

the CHARGE-2 daughter payload (Myers et al, 1989) was somewhat larger, with a largest dimension

of 82 cm, but was still within the above-mentioned approximate limit. As mentioned in Sections 3

and 4, current collection in both experiments appeared to be described well by collisionless, steady-

state theory. A surprising prediction of the discussion in this Section is the extreme sensitivity of

this conclusion to very small values of ambient-electron drift motion. The effects of this drift motion

appear to remove the apparent contradiction between the conclusion of most of our discussion in

Section 3 (which applied in the strict absence of drift) and the apparent success of collisionless,

steady-state theory in both of these experiments. To put this interpretation on a firmer basis will

require the development of a theory which is capable of making quantitative predictions of collected
current in the transitional regime between the collisionless situation described by Thompson (1985)

and the cotlisionally-influenced one of Sanmartin (1970).

31



8. CONCLUSIONS

Our discussionin Sections2-7hasrevealedsubtleand surprisingaspectsof the problemof
predictingcurrentcollectionby probesin thespacemagnetoplasma.Manyof theseaspectsinvolve
unresolvedissues.Theyincludethefollowing:

(1) The attraction-regioncurrent-voltagecharacteristicof a probein a magnetoplasmacan
containa "negative-resistanceregion"nearspacepotentiM(Section2).

(2) Numericalcalculationsof colllsionless,steady-state,Laplace-limitcurrentsindicate that
theseremainsubstantiallybelowthe canonical-upper-boundcurrentvaluesevenat largeattractive
potentials.Implicationsfor currentcollectionin morerealisticpotentialsarenot clear(Sections2
and5).

(3) In a nondriffingplasma,nocurrent-collectiontheoryispossiblewhichincludesspace-charge
effectsbut not interparticlecollisions,nomatterhowlargetheambientcharged-particlemean-free-
pathsare (Section3). However,evena very smallamountof relativeplasmadrift, suchas that
involvedin a typical rocketexperiment,canchangethis conclusionfundamentally(Section7).

(4) Plasmaturbulenceappearsto havean importantinfluenceoncurrentcollectionby probes
in fusionplasmasbut not in spaceplasmas.Suchturbulenceis not understoodwell enoughto
explainwhy (Section4).

(5) Space-chargeeffects,which tend to steepenthe sheathpotential profile near a probe,

decrease attracted-particle collection in nonmagnetic situations, but may possibly increase it in

magnetic ones (Section 2). However, formation of "bulges" and breakup of magnetic bottles into
disjoint "bubble" regions by such space-charge effects may reverse this effect. Presently available

experimental results and theory do not provide sufficient evidence to indicate whether an increase

or a decrease actually occurs (Section 5).

(6) The existence of trapped-orbit regions around a probe provides pathways for additional
current collection due to collisional ionization, collisional scattering, and possibly turbulent scat-

tering. The first of these is undoubtedly important; no predictions are available for the other two

(Section 5).

(7) Circumferential "E × B drifting" motion can break down in the strong electric fields that

exist near a probe, and be replaced by radially-accelerated motion. This motion in turn can be

limited by angular-momentum effects closer to the probe (Section 6).
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(8) - (10)] and Parker-Murphy [1967; dashed curves; given by our EQ. (7)] canonical-upper-bound

values for dimensionless attracted-particle current i as a function of dimensionless probe potential

_bp, for various values of the dimensionless magnetic-field strength/_. The curve for _ = 0 is the
Mott-Smith and La_gmuir (1926) orbit-limited-current result.

38



2

----- f- --........... BOTFLE .......

BOUND_d_Y -

-- ;;!i;

BOUN'DARY _..__

0 ' ' '--J I I I I ,__L_.I i i J I ,
-i0 -5 0 ,5 i0

Fig.re .l(a). lies.Its of LJ. Sonlnor (l'h.]). thesis, in preparation), for tile trajectory in sealed

coordinates if = r(linop rp/qll2[)l/"_, £ = z(lm_vrv/qli:l)l/.1] or a charged particle in an attractive

C.uloml) el(,ctric _.[,: and nniforin magnetic field, given l)y numerical solution of Eq. (14). Also

shown are th,. boulularies of allowed moth)n ("magiu,tie bottle I)uun(laries") for the same particle,

implied I)y conservation of energy and canonical angular momentum. The £ axis (parallel to the

magnetic fiehl) has i}een compressed for purposes of display. The portions of the trajectory wllich

are oul, side Ihe l)h,t I)onndary are monotonic progressions in £ from arid to infinity. The hHt];d

con(ilti.ns are: ._ = -20, d£/dr = flx/OT_.lT, scaled radius ro of guiding centre = 4¢'_._, scaled

gyrora(li.s = _2.2. and i)h,a_e angle = O.

2

1.5

.5

-Itll I i t i I I t i i )'-I

##
J

r S

r

s

"t I I I I i I I t I I t i-

0 , , , , I , , , , I , , , , I , , , ,l_m_ I
-15 -I0 -5 0 5 I0

I I I l

15

Fig.re 4(b). Same ,as Fig. ,l(a), except that the initial conditions are: _ = -20, d_,/dr =

_. ro = _, scaled gyroradius = _, and phase angle = 0.

39



1.5

.5

0
-15

B

-i0 -5 0 5 I0 15

Figure, .l(c). Same r,._ Fig. 4(h), except that the hfiti,'d pha.se angle is 71r/32.

7"

1.5

.5

o
-15 -10 -G 0 S 10 15

I.'iguro ,l(d). ,Same _s Fig. ,t(b), exc_'pt that the initial pha,se angle is 11_r/32.

40



_=1

L

i

.'R & L HELICAL
J

R & L CANONICAL.---" =_

," $ONMOR EXACT
=....

...................."R-;_-TL-_r__'rd"..................

J i z i [ i _..il__J J i i ] i J i_) ] i , L_L

0 I 2 3 4

_p

Fig,r(, ')()_). Dim_'nsh)Ide._s attrncted-partlch" c.rrent i vers,s dh,el)sionless pro|)e potenti_| _p
for _ r:)l,h) I_or 1)rol)(• r;_li.._ t() av(,rn/_(, aml)ie.t atlracted particle ,gyroradhls oi" I. Also di._Iday(,([

are the ;ullal)atk'-lh.itcrrre.tsaud the st.allerof the helic_.Iupper-bound and canonic_lupper-

b()u)HI c.rr('.l,s, cal(',lated l)y ll)d)i.._l('i, and I,affaml)oise (1982).

1.5

.5

i I

¢

,_ & L HELICAL
-- 7

_/

R & L CANONIC_.L .......

SONMOR EXACT

r & i.-_)_]ttrd ................ --

1 2 3 4

f"i,_,)re 5(I)). Salne as Fill. 5(a.), eXrel)tthat/_= 3.

41



B=I

15

-i e

/

0

R & L CANONICAL.-"

t

J I L_L_LI, , I ,_ ___LJ__,, , I J
50 100 150 200

%

Plgure 6{a). Dilnensionless attracted-particle curre.t i versus dimensionless probe potenti',fl

_/'v for a ratio fl of probe radhts to average ambient attracted-partlcle gyroradius of l, plotted rot

a larger ra,ge of probe putentials than in Fig. 5(a). Also displayed is tile canonical upper-bound

current due to ]|ubinstein and Laframl}oise (t982). The minimum in the exact current at t#p _ 0.2,

whicit was evide,t in Fig. 5(a), is o.ly barely visible here. llere anti in Fig. fi(b), numerical errors

in the "exact" results ;it larger $1' are noticeable on the scale of these graphs, anti we have therefore

marked actual ronqHiled valites f()r larger ¢'v by open circles, and a curve-_qt to Llienl by a solid

line.

10

6

4

2

_,_,l,,,,l,I, Jl,,,,l,,,,

_= 3 ._

R & L CANONICAL.-''" "''_

oLi i i i J 1 I_ I I I t I I I ]..I=LI l I I I I1

0 100 200 300 400 500

%

["igttre 6(b). l)imensionless attracted-particle currenl, i versus dimensionless probe potentiM

_/,p fur a ratio fl uf l)robe radins to average atnbient atLracted-l)ardcle gyroradius of 3, plotted for

a larger range of probe potentials than in Fig. 5(b). Also displayed is the canonical ni)per-botiltd

current due tcJ Rubinstein att(l Laframboise (1982)- The minimum in the exact current at. Sp _ 0.9,

which waz evideltt ill Fig, 5(b), is only barely visible here.

42



.B

.4

.2

o

, , ,l,,,*, I _ _,.,I., t , , .,.,,,j , , ,.,,,,
/

COLLECTED CURRENT / 10

- R& LCANONICAL _ 35

_ upp_.-_o_ cu_N'r _ 2

" 1

_-- _'/" // / COLLECTED CURRENT -

t LII_FI' CUTNT
__.LI.LLIL ]__LIIJ] I I A_LA.I_L_

.1 1 10 100 1000
_Pp

Figure 7. Computed results of l,.J. Sonmor (Ph.D. thesis, in preparation), showing tra,sitio,

from adiabatic-limit current toward cano,ieal upper-bound curreut as probe potential _'Jp becomes

m_}re attractive, for various ratios/3' of probe radius to average ambie, t attrac[ed-partlcle gyro-

radius. IRL A and IRl, C are tide adiabatic-limit current and the canonical upper-bound current,

respectivcly, both due to Rubi.stcin and l,aframboise (1989). The canonical upper-bou,d current

is also give, by Eqs. (8)-(10). In this Figure, tide curves have been s]noothed to reduce oscillations

cansed by numerical errors i. i,dividu_d results.

B

....

Figure 8. Geuer',d appearance of rel>resentative collisionless ion and electron orbits far from

the probe but not beyond the positive-potential disturbance (Sa, martla, 1970) which exlends aloug

the probe's magnetic s/_adow. Diagram is schematic only since this disturbance can extend very

far in the z aml -z directions.

43



PROBE

Fig_Jre 9. Get=erM al>l}earance of poteittlals as a function of z for r = 0 u.der conditioas

analyzed by Sarmlartia (1970) arid described itl Sectioll 3.

3

0.1

3
1

Ze ('me'_T

rpz • neoo\kTe/

0.01

= (8T)Zie 7
5

.001

-8 -6 -4 _n -Z 0
r

Figure 10. Reproduced from Fig. 1 of Sa,anmrtht (L970), will= aotaLion changed, showing his

results for electroa curreJtt collecLioa b)' a spherical probe in a magnetopla.sma for which 7'i = 7_ _uHI

coutaitfillg siJ_gly-eharged ions. OLher a_SUll_pt_ol|s made _n Sanmartia's treatment are described

i. Sect, ion 3.
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Figure 11. lteproduced from Fill. 2 of Linson (t969), showing the construcl,ion of his constaut-

deusity cylindrical space-charge shielding model, r e is the critical radius defined by his l':q. 8 (our

E'q. 6).
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Figure 12. IlelJr(.luced Fro., Fig. 3 (If I,insou (1970), with soule liol,ation ch;inllell, ._howlu t a

conlparison of ciirrelit-vorslls-prolie-vo[l,a_e predictionii [rolii three iliodels discussed by hilri. Their

asynilltoLic I)eliltviour fi)r large lirohe w)ltagc _bp is showli. In this Pillure, 1o ellnid_ one-ha.If l,lie

raildoui current I/! delhled in our Secl,ion 2. The dot-dash curve represents the Langinuir-lliodl!lett

(1924) spherical st)ace-charge-lilnited current vahie. For constlint lloteliti&], this current scales

apl)roxilnal,ely as I_ 4[?. The normalized roll,age 4b" defined h)llowlng our Eq. (19) is the same

as l,he quautil,y _bo defiiied in Liuson's Eq. (8), aad has beeii taken to lie 178 volts, which is

equivaleilt l,o Br = 0.45Gin. A chaug'e in !.he cousl,ant Q displaces the solid curve horizontMly by

the iipproprlaLe _acl,or.
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Figure 13. General appearance of open magnetic bottles corresponding to E > 0 and cloned

ones ct_rresp,u,diltg to /" < 0, ;dl f_,r the Sillll(_ v;tlue LI[ lll*_ canonical angll[ar Ulolnentultl (Olllpou(,nt

d about the z axis, defined in Eq. (2). Note the "pointedness" of bottles corresponding to slightly

negative values of" E,
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Figure 1.1. Illustration of how tral)ped orbits provide at= additional current pathway to a probe.

Whether trapl)ed orbits exist depends o. electric anti magnetic [iehls preseut; if B is negligible, E

nlust vary with r less steeply thall r -3 for trapped orbits to exist (Section 5). Tbe orbit classification

shl_wn isth;tt due to Parker (197;|, i975); see precediltg paper by E.C. Whipple in these Proceedings.

In a magnetic fiehl, the shapes of these orbits ran be much more complicated tha. those shown.
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Figure 15. Development of "bulges" and disjoint "bubble" regions in magnetic "bottles" as
described in Section 5.
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Figure 17. Reproduced from Figure 2 of Thompson (1985), showing the structure of the

disturbed region around a large sphere in a drifting magnetoplasma.
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