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ABSTRACT: Effects of plasma drift on the current collection by a long conducting

cylinder in a magnetized plasma is studied by means of a 2 1/2 dimensional PIC code. It is

found that for the drift velocity (V o) perpendicular to the magnetic field Bo, the electron

current collected by a positive cylinder is considerably enhanced depending on the drift

velocity. The distributions of plasma and the potential structure around the cylinder for

several relative orientations between V o and B are presented along with the comparisons of

current with and without the magnetic field. Simulations with the magnetic field in the

simulation plane show that the potential structures around the cylinder are

two---dimensional double layers with dimension (L) perpendicular to B much smaller than

the dimension (L,,) parallel to B. In fact, L is found to be approximately determined by

the current limiting radius given by the Parker-Murphy model. However, it is found that

the collected currents in the simulations are generally higher than those given by this

model.

1. INTRODUCTION

The knowledge of current collection by conducting bodies in space plasma is

relevant to numerous applications such as the operation of plasma probes, charge

neutralization on space vehicles, working of the solar cell arrays and the operation of an
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electrodynamic tether. Most theories dealing with this topic are limited to simple

geometries and idealized plasma models. For reviews of the theoretical studies, the reader

is referred to Whipple and Laframboise and Sonmor in this volume. These reviews show

that there is a general lack of theoretical studies on current collection in a magnetized

plasma when there is a relative drift between the magnetized plasma and the current

collector. The purpose of this paper is to contribute to this area by means of computer

simulations using a PIC code.

Our computer model is two dimensional; the axis of the cylinder is perpendicular to

the plane of simulation. The magnetic field is oriented along the axis of the cylinder or in

the simulation plane in different simulations, which bring out the effects of relative

orientation between the magnetic field and the plasma drift on the sheath structure and the

current collection properties. For the axial magnetic field, a simple-minded picture with

radial electric fields indicates that the E x B drift will cause a magnetic insulation stopping

any collection of electrons by the positive cylinder. Simulations show that this picture is

not valid when there is a relative flow between the plasma and the cylinder; the potential

structure is considerably modified so that the flowing electrons are focused onto the

cylinder, making possible the collection of a relatively large electron current.

When the magnetic field is in the simulation plane, the potential structure is

extended along the magnetic field and its transverse dimension is quite limited and it is

found to be given by the current limiting radius calculated by Parker and Murphy [1] in a

non-flowing plasma. We find that when the flow is perpendicular to the magnetic field,

the electrons intercepted by the extended field-aligned potential structure are partially

collected by the cylinder and the current is found to be considerably enhanced over the

current predicted by the Parker-Murphy model [1]. However, for the flow parallel to the

magnetic field, the current is seen to be limited in a fashion described by the above model.

Since in the low earth orbit, the orbital velocity vector is at large oblique angles with

respect to the geomagnetic field, a current enhancement is expected.
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2. SIMULATION TECHNIQUE

The plasmaflow past the cylinder is simulated asshownin Figure 1. The hatched

area is the end view of the long conducting cylinder of radius rs. In the rest frame of the

cylinder, plasma flows along the positive x direction with the velocity Vo. The flow is

facilitated by imposing adc convectionelectric field Eo so that Vo = E_o x B/B 2. The

simulated plasma region is limited to r < Rma x (Figure 1). At the initial time t = 0, the

simulation region is a vacuum and the plasma flow for t > 0 is maintained by injecting

charged particles at the rim of the simulation box (r = Rmax) over the angular region _-/2

< 0 < 3v/2 (Figure 1). The average injection velocity of the charged particles is V o. At

each time step a predetermined number (Ninj) of electron-ion pairs are injected to

simulate a desired plasma flux. The plasma particles used in the simulations are like rods

parallel to the axis of the cylinder [2]. The injected particles are chosen from Maxwellian

e=xr2

Y_

Vo

0=3_/2

X e--o

Figure 1. Geometry of the simulation. The conducting cylinder is shown by the

hatched region. Rma x gives the radius of the simulation system. Plasma

flows across the cylinder with a velocity V o. The magnetic field is parallel to

the axis of the cylinder.
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distributions with electron temperature T e = T O and ion temperature T i = 0. The Y

coordinates of the particles are chosen according to a uniform probability distribution. The

2 y2) 1/2X coordinates are first calculated by X = (Rma x - and then further randomized by

replacing X by X + VAt where V is the particle velocity randomly chosen from a

Maxwellian distribution and At is the time step. Our injection technique is quite similar

to that described by Aldrich [6].

The magnitude of charge (qa) , per unit length of such computer particles, is

obtained by balancing the plasma flux into the simulation region at the injection boundary

and the simulated flux due to the injection of the charge particles at each time step of

duration At, giving

[qa] = 2 RmaxeNoV ° At/Nin j C/m (1)

where N O is the ambient plasma density and e is the magnitude of the electron charge.

The injection of equal numbers of electrons and ions insures that no net charge is injected

into the system.

The temporal and spatial evolutions of the plasma and fields are calculated by the

self---consistent solutions of the equations of motions [2] of all the charged particles and the

Poisson equation for the electric potential ¢. It is important to note that in our

simulations, the electric field has two contributions as indicated by the following equation

E = E 4- E 1 (2)-"O

where EE_o is the convection field and E 1 is determined by the space charges and the bias

= 0 and the divergence ofSince E_o is uniform in space, V • E_opotential on the cylinder.

(2)gives

V • E=V .E l=p/e o (3)

Under the electrostatic approximation, E 1 = -V¢

v2¢= -p/% (4)

where p is the electric charge density.

and (3) gives the Poisson equation
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The boundary conditions on the electric potential ¢ are ¢(r = rs, 0) = ¢o and ¢ (r =

B.max, 0) = 0, where ¢o is the bias potential of the cylinder. The particles striking the

cylinder and those leaving the system are assumed to be lost. However, the simulation

system is maintained quasi-neutral at the 'global' scale. For this purpose, we compare the

total numbers of electrons and ions in the entire system at each time step. The deficit

charged particles, which are taken from a Maxwellian plasma reservoir are randomly

distributed over the entire simulation system according to a uniform probability

distribution.

The collected current (I) is calculated by counting the electrons and ions striking

the cylinder during each time step,

I = r, a qa 0"Na/At (5)

where _N a is their number, and qa is given by (1). We note that although q_ depends on

the numerical factors Rmax, Nin j and At; the current I is found to be independent of them,

if Rma x and Nin j are sufficiently large and At is sufficiently small. This was verified by

carrying out simulations by varying these parameters.

3. NORMALIZATIONS AND DEFINITIONS

We discussed earlier that the charge on a computer particle is given by (1). If

qa/e = _?, the analogy between the real and computer particles requires that the masses m,

effective temperatures T and density N satisfy the relations

mca = rPnra , Tca = 7?Tra and Nca = Nra/7? (6)

where the subscripts r and c refer to the real and computer particles, respectively. It is

worth mentioning that the electron and ion Debye lengths and plasma frequencies are

invariant under the scaling law described by (6) [4].

The results presented in this paper are based on simulations with the following

ionospheric plasma parameters: ambient plasma density N O = 1011m -3, electron
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temperature T e = 0.2 eV, plasma debye length Ado _ 1 cm, electron plasma frequency Wpo

_= 1.8 x 10 7 rad/s, and the magnetic field B o = 0.3 G. With the above ambient plasma

parameters, the electron thermal current Jr = No eVte/f-_ _ 1.2 mA/m 2, where Vte =

(kTo/me)1/2 _~192 km/s.

In order to simplify the equations and to generalize the applicability of their

solutions to different situations with varying plasma and current-collector parameters, we

use the following normalizations: potential ¢ = ¢/¢n' Cn = kBTe/e; time t = tWpo;

velocity V = V/Vte and distance r = r/Ado.

In view of the above normalizations the Poisson equation (4) can be written as

where Anic

(jAr, iA 0).

in r.

ia2 i

_--_-br 8"-_ "+ _-_-_-- Cn
(qnic - qnec) (7)

where qnic and qnec are the charge per unit volume associated with the computer ions and

electrons, respectively. It is assumed that both types of particles have the same magnitude

of charge, i.e., qe = qi = q' as given by (I). These charge densities (qnic and qnec ) are

determined by calculating the number of computer particles at each grid point by the area

sharing method [2] and dividing it by the effective volume of a ceil. This volume is given

by rjAOArAz, where rj is the radial distance of a grid point, Ar and A0 are the radial and

angular grid spacings, respectively and Az is the length along the axial direction. With

these definitions and equation (1), the normalized Poisson equation takes the form

1 _--_ + 1=_ _-_0 = - 21_maxVoA t(Anic - Anec)/rjAr A E_lin j (8)+ r r

and Anec are the number of computer ions and electrons shared on a grid point

The above equation is solved by employing FFT in 0 and triadiagonal method

below are based on the following numerical

= 10Ado _ 0.1 m, At = 0.2, Ar = 1, A0 = 10"

The numerical results presented

parameters: Rma x = 140Ado _ 1.4 m, r s

and the normalized flow velocity _'o = Vo/Vte is varied. The simulations are carried out

with H + plasma for which mi/m e = 1836. We note that in our simulation electron
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cyclotron period rce _ 18 Wpo while the ion cyclotron period rci __(mi/me) rce. Thus, for

the time scales in the simulations, electrons are magnetized, while ions behave as

unmagnetized charged particles.

4. NUMERICAL RESULTS

In the following discussion we first present results for B = 0, which are later used

for the purpose of comparisons with the results for non-zero magnetic fields with different

orientations.

4.1 Simulations with B = 0

We recall that the simulation begins with no initial plasma in the system. The

simulation plasma builds up in the system in response to the injection of particles as

described above in Section 2. In the simulation described in this subsection ¢o = 100 and

Ir o = 0.3. Figures 2 and 3 show the evolution of the plasma; in Figure 2 the contours of

constant density of ions are shown at some selected times. The minimum density contour

is n = 0.1 and the density interval between the contours is An = 0.3. The electron density

shows nearly the same evolution as the ions. After about t = 550, a quasi-steady state is

reached in the plasma distribution.

The distribution of the computer particles in the r-0 plane are shown in Figure 3,

each dot in the panels of this figure represents a particle. The left-hand panels show

electrons while the right-hand ones show ions. Note the formation of a distinct wake

behind the cylinder (also see Figure 2). Another noteworthy feature of Figures 2 and 3 is

that a bow structure forms in the ram direction; in this structure the density is generally

enhanced. We also see from Figure 3 that ions are not able to reach the cylinder because

the kinetic energy of the ions (1/2 m i V 2 = 82.6 kTo) associated with the plasma drift is
O

smaller than the potential energy e¢o = 100 kTo, where ¢o is the bias voltage on the

cylinder. Outside the wake region, the plasma density n = 1, indicating a uniform plasma

flow in the ram direction away from the bow structure.
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_g_e2.
Evolution of the plasma inside the simulation region. Contours of constant

densities are shown with a contour spacing of A_ i _, 0.3. Note that the

plasma distribution attains a quasi-steady state after about t" = 600.

_o = I00.

57



I00

-I00

Figure 3.

I

-i00 0 i00 -i00 0 tO0

X

Evolution of plasma is shown by showing the distribution of (a) electrons and

(b) ions in the r-# plane. Each dot in this figure represents a computer

particle. _o = 100, B = 0, _'o = 0.3.

58



The evolution of the potential distribution around the cylinder is shown in Figure 4,

which gives the equipotential surfaces at some selected times. The contour levels are An =

5 apart. This figure shows that after about t = 500, the sheath structure reaches a

quasi-steady state. In the wake region the potential is generally negative.

In response to the evolution of the plasma and potential around the cylinder, the

collected current evolves as shown in Figure 5. The current reaches a quasi-steady state

after about t = 500, in agreement with the evolutions of the density and the plasma

potential. After this time, the plasma and the potential are still undergoing some changes,

especially in the wake region, but they seem to have negligible effect on the current

collection. The time-average current for B = 0 in the quasi-steady state (t > 500) is

about I __.18 mA.

' I I I I 1450o -'

-loo - I "7"---0/'_

Y , r"

-i00 0 I00 -tO0 0 i00 -tO0 0 i00 -i00 0 i00

X

_gure4. Evolution of the equipotential surfaces around the cylinder. Note that after

about t = 600, the equipotential surfaces attain a quasi-steady state. The

equipotential contours are An = 5 apart, no = 100, B = 0, _r o = 0.3
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Figure 5. Temporal evolution of the current collected by the cylinder. The thick line

curve shows the time average current wh.en fast oscillations are averaged out.

Note that the current attains a quasi--steady state when about t > 600.

¢o = 100, B = 0, 9 o = 0.3

The simulations with B = 0 were carried out for several bias potentials. Figure 6

shows the V-I characteristics of the cylinder. It is found that I a ¢1o/2, which is in

agreement with the orbit-limited current collected by a cylinder (e.g. see Chert [5]).

However, the proportionality constant is found to be given by

I _ 1.8 (e¢o/kWe)1/2 mA/m,

which is found to be by a factor of two larger than that for V o = 0. It is expected that in

the limit V o = 0, the simulations must yield the current as predicted by the orbit-limited

current. However, the simulation runs with very small drift velocities take too long to

complete and so far we have not carried out such simulations.
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4.2 Simulation with B = B z : 0.3 G and _bo = 100

We do not show the temporal evolution of the plasma and potential here, instead we

just present here the quasi---steady state distribution of the plasma and potential around

the cylinder. The top two panels of Figure 7 show the contours of constant ion and

electron densities. The corresponding distributions of the particles in the r-0 plane are

shown by the two middle panels. The bottom single panel shows the distribution of

potential; equipotential surfaces at intervals of A¢ = 5 are shown. It is worth pointing out

that the plasma and potential distributions for B z = 0.3 Gauss is quite different from those

for B = 0. In the former case (B z = 0.3 Gauss), the equipotentials show a multicell

convection pattern [6]. The fan--shaped structure extending below the cylinder is the
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Figure 7.
Quasi-steady state feature of the plmsma (a) Ion density distribution, (b)

electron density distribution. The contour levels in (a) and (b) are An = 0.3

apart. (c) spatial distribution of ions, (d) spatial distribution of electrons,

(e) distribution of potential; equipotentiM surfaces are A_ -- 5 apart.

_o = 100, B = 0, L = 0.3.
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consequence of the stagnation of the plasma flow below the cylinder due to the opposition

to the flow by the E x B drift in the initial radial electric field [6]. The fan-shaped

equipotentials cause electrons to circulate around the cylinder due to the E x B drift. The

electron flow coming from the left is caught in this convection cell and focused on to the

cylinder as shown by the crowded equipotentials immediately on the top of the cylinder.

This circulation of the flowing electrons facilitates their collection by the cylinder.

The temporal evolution of the current collected by the cylinder with the axial field

B z is shown in Figure 8. The current is seen to reach a quasi-steady state at about

_. 700, after which its average value I _. 14 mA/m, which is only slightly lower than 18

mA/m for B = 0. The simulation with the axial magnetic field shows that the magnetic

insulation due to _E . B__drift in the initial radial electric field is destroyed due to the

considerable modification of the potential distribution caused by the plasma flow [6].
o
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_g_e8. Temporal evolution of the current for B z = 0.3 G, _o = 100 and Vo = 0.3.
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with increasing _o"

given by

4.3 Simulation with B = By = 0.3 Gauss, and ¢o = 50

Note that in this case the magnetic field is in the plane of the simulation. This

allows us to study the B field-aligned potential structures. The quasi---steady state

distributions of the plasma and potentials are shown in Figure 9. The top two panels show

the contours of the ion and electron densities. The corresponding distributions of ions and

electrons in the r-0 plane are shown in the middle panels. The wake structure is clearly

seen from these panels. In the ram direction the plasma is generally uniform with the

normalized density n = 1. The bottom panels show the equipotential surfaces from

simulation with ¢o = 50 (left) and ¢o = 25 (right). These bottom panels show that the

potential distributions are extended along the magnetic field. When ¢o = 50, the potential

structure is seen to extend all the way to the boundary of the simulation plasma. In order

to examine the effect of the boundary the simulation was repeated by lowering ¢o to 25

and increasing the size of the system from Rma x = 140 to 185. The result is shown in the

bottom right-hand panel. It is seen that potential structure is now nearly fully

accommodated in the simulation region.

It is interesting to examine the size (L) of the potential structure transverse to the

magnetic field. Figure 10 shows the radial distribution of the potentials for _bo = 50 and 25

in the ram direction (0 = 180"). It is seen that the potential structure becomes narrower

The radial distances at which ¢ = 0 for the above bias voltages are

L _-25_d, _ =25 (9a)± 0

L 31 = 50 (gb)O

Parker and Murphy [1] have considered the collection of electrons by a positive

sphere. Using conservation of energy and angular momentum, they have shown that in the

case of non-flowing plasma, the electrons which are possibly collected by the sphere, are

confined in a cylinder of radius ro as shown in Figure 11, where ro is given by
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Figure 9. Quasi--steady state distributions of (a) electron density, (b) ion density, (c)

electrons, (d) ions, (e) potential for $o = 50, Vo = 0.3, B = By = 0.3 Gauss,

and (f) potential distribution for }o = 25, Vo = 0.3, B = By = 0.3 Gauss in

a simulation with larger system size.

65



ro = [i + _-_a 1/2 a

-_J: Pe_ a, pe_> >a

where Pe_ is the electron Larmor radius with the electron energy e_o.

note that the value of L estimated above for _o = 25 and 50 are quite accurately given by

(10), with a as the radius of the cylinder.

(10)

It is interesting to

0.8

o
¢_ 0.6
EI.

c,

04
o
m

_. 0.2
0

e 0
[--

_ -0.2

-0,4

I I l t I 1

0
I 1 I I J

40 80 120

Radial Distance ( DeBye Length )

Figure 10 Radial distributions of potential for no = 50 and 25 in the ram direction

(0- 180"). B -- By = 0.3 Gauss. Vo = 0.3.
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Figure 11 Geometry of the Parker-Murphy model for the current limitation. Electrons

contained inside the cylindrical volume of radius V o are possibly collected by

the electrode at a positive potential.

According to the Paxker-Murphy model the current collected by the spherical

electrode in a non---drifting plasma is simply the electron flux intercepted by the cylinder of

radius r o (Figure 11):

IpM = 2_ Jr (11)

where Jr is the electron thermal current given by Jr = No eVte/J'-_" In the present

situation, Jr is associated with the thermal motion along the y direction parallel to B y"

We find that for the flow in a direction transverse to the extended potential

structure, the current is considerably enhanced. If the current was collected primarily

through the two ends of the potential structures (Figures 9e and 9f), the total electron

current collected by the cylinder is given by

IpM -- 2 x 2r ° Jr A/m (12)

which is only about 1.2 mA/m for _bo = 25. Our simulation shows a considerably larger

collection of electron current. Figure 12 shows the evolution of the current collected by the
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cylinder when ¢o = 25; in the quasi--steady state the current is about 7.5 mA/m, which is

found to be close to the current collected without the ambient magnetic field with the same

drift velodty Vo = 0.3 (Figure 6). The excess current (~ 6.3 mA/m) is interpreted in

terms of the interception of the electron flow by the extended potential structure along the

magnetic field.
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Temporal evolution of the current for B = By

¢o = 25.

= 0.3 Gauss, "V'o = 0.3,

4.4 Simulation with B = axB o

In order to examine the effects of relative orientation of the drift velocity with

respect to the ambient magnetic field B_o in the simulation plane, we carried out another

simulation with V o H B o. The potential structure for this case in the quasi--steady state is
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shown in Figure 13. It is seen that now the potential structure is extended along x, the

direction of the B field. Its transverse dimension L is again found to be limited according
.L

to (10), which gives the current limiting Parker-Murphy radius as a function of the bias

voltage ¢o. The temporal evolution of the collected current for B = a x B ° is shown in

Figure 14a. For the purpose of comparison, the current with By is plotted in Figure 14b

for the same value of 3o = 50. Note the different vertical scales in Figures 14a and 14b. It

is seen that for the flow along B, the current is significantly reduced compared to the case

with flow transverse to B. As noted earlier, in the later case the interception of the flow by

the elongated potential structure enhances the current.

It is instructive to quantitatively compare the current from the Parker-Murphy

model with that from the simulation with B x. We already saw that the former current is

2OO

lO0

0

-100

-200

-200

I I I

I I I

- 100 0 1O0 200

Figure 13 Quasi---steady state potential distribution for B = B x = 0.3 Gauss, "_o = 0.3,

¢o = 50.
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given by (12). However, a few observations must be made while using this expression in

the present case. The flow along the magnetic field makes the potential structure

asymmetric with respect to x = 0 because of the formation of the wake behind the cylinder,

making the first factor of 2 in (12) inaccurate. The use of this factor will give an

overestimate. Furthermore, Jr in (12) must be replaced by a modified current density due

to the plasma flow; for the flow velocity V o = 0.3 Vte , this modified current density

Je = 1.44 Jr" With these considerations, (12) gives IpM < 2.2 mA/m. Figure 14 shows

that the time average current is about 3.5 mA/m, which is at least 60% larger than the

current predicted from the Parker-Murphy model. The enhancement in the current

suggests the transport of electrons across the magnetic field line. The exact mechanism for

the cross-field electron transport has not been identified from the simulations. However,

cross-field diffusion due to the fluctuations in the field need to be examined [7].

. CONCLUSIONS AND DISCUSSION

The main conclusions of this paper are as follows:

(i) When the relative plasma flow is transverse to the magnetic field, the current

collected by a positive electrode can be considerably enhanced depending on the

relative drift velocity.

(ii) For the flow along the magnetic field, the current is limited as predicted by the

Parker-Murphy model [1].

(iii) Simulations with B_B_in the simulation plane show that the magnetic

field-aligned potential structure is like a double layer with dimensions transverse to

the magnetic field determined by the limiting radius given by the Parker-Murphy

model [1], but it is extended along the field line.

(iv) Simulation with the axial magnetic field shows that the potential structure

represents a multi---ceU convection pattern. The fan---shaped cell is seen to focus the

electron flow on to the cylinder thus destroying the magnetic insulation effect.
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(v) In the low earth orbit, the orbital motion is nearly perpendicular to the

magnetic field, and the relative flow velocity V o _ 8 km/s, which can considerably

enhance the current collection.

* In a real situation with an arbitrary orientation between B_o and V_o, the potential

structure will be the combinations of the structures shown in this paper.

Recently Myers et al. [8] have demonstrated that the measured currents in a rocket

experiment agree well with the predictions from the Parker-Murphy model [1]. Raitt et. al

[this volume] have carried out a similar comparison. Since in the rocket experiments the

relative drift velocities are only a few hundred meters per second, the current enhancement

due to the relative drift is not expected to be significant.

In our present simulations plasma flows while the electrode is standing. In space

the electrode cuts across the magnetic field lines. This raises some question about the

dynamical effects. We note that in the simulations starting with an initial vacuum state,

the quasi---equilibrium is reached quite quickly in a time of about 500Wpo1 _ 30 _s.
In real

situations of space the quasi-equilibrium condition are.expected to reach in a considerably

shorter time. On the other hand, the contact time of a current collector with a magnetic

flux tube depends on its sheath size. If we use the sheath size as given by (10) for large

electrode voltages, the contact time _'c can be estimated by

Tc=2¢peCa / V o

Using typical parameters (¢o = 100 V, a = 1 m, B = 0.3 G and V o = 8 km/s) it is

found that v c > 250 p_. Comparing this time with the sheath establishment time of the

order of a few tens of microseconds, it is inferred that the quasi---equilibrium conditions for

the potential structure and the current collection as found from the simulations are likely

to be maintained for a current collecting electrode in the low earth orbit.
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