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Summary

This paper presents the results of mechanical and physical properties characterization

testing for the fiberglass prepreg system used to fabricate 15 of the replacement set of 25 fan

blades for the National Transonic Facility. The fan blades were fabricated to be identical

to the original blade set with the exception that the 7576 style E-glass cloth used for the

replacement set has a different surface finish than the original 7576 cloth. The 7781 E-glass

cloth and resin system were unchanged. The data are presented for elevated, room and

cryogenic temperatures. The results are compared with data from the original blade set and

evaluated against selected structural design criteria. Test experience is described along with

recommendations for future testing of these materials if required.

List of Symbols

C.T.E. Coefficient of thermal expansion

E Young's modulus

Hz Hertz

ksi Kips per square inch

R.T. Room temperature

a Stress

T Interlaminar shear stress

Subscripts:

ult Ultimate strength

T Tension

c Compression



Introduction

As a result of a mishap in the National Transonic Facility on .January 18, 1989, all 25 fan

blades were destroyed. The blades were destroyed due to the high energy release of metallic

parts from the drive shaft external thermal barrier retainer band. These parts impacted

metallic aerodynamic fairing plates releasing them into the air stream. Several metallic

plates passed through the fan damaging all 25 blades beyond repair.

The fiberglass prepreg system used for the original blade set was tested extensively and

reported in references 1 and 2. Two fiberglass cloths (7781 E-glass and 7576 E-glass) were

used to fabricate the blades. Ten blades manufactured from this system were on hand at

the time of the mishap. However, for the last 15 blades, the 7576 prepreg material was

no longer available with the VM 665 finish. At the recommendation of the manufacturer,

the CS-724 finish was selected. As a result of this diffcrcnce, a comprehensive mechanical

and physical properties characterization of the 7576 laminate and the design (representative)

laminate was carried out in order to assure that the mechanical and physical properties of

the modified system met the design requirements. The approach was to follow the same test

procedures and use the same test specimen designs and test methods that were used in the

original characterization program described in references 1 and 2.

The purpose of this paper is to document the results of the mechanical and physical

properties tests of the fiberglass prepreg materials used for 15 of the replacement blades

installed in the National Transonic Facility in 1989.

Material I, ayup Description

As previously mentioned, two styles of fiberglass cloth pre-impregnated with an epoxy

resin system were used for the fan blades. The 7781 style E-glass cloth has a ratio of 60 fibers

in the warp direction to 54 in the fill direction. The second material is the 7576 style cloth

which has a ratio of 120 fibers in the warp direction to 24 in the fill direction (see table I).

The stacking sequence for the design (representative) laminate is shown in figure 1 and a
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perspective of tile blade illustrating the design layup is given in figure 2. Test specimens

were cut from panels (ply layups) in the warp (0 ° direction) and fill (90° direction) direction

as illustrated in figure 3. Panels were fabricated separately for the two cloths and for the

actual design laminate layups. It should be noted that these panels are representative of the

design laminate, and referred to in references 1 and 2 as the representative laminate. The

panels were taken through the sazne cure cycles as the actual blades. Emphasis was placed

on testing specimens taken in the warp direction which is the direction of principal loading

in the fan blade. The reader is referred to references 1 and 2 for a more detailed description

and discussion of the material system.

Mechanical Properties Tests

The intent of the test program was to use the same type specimens and test equipment as

those used for the previous fan blade material characterization tests at the Langley Research

Center (LaRC) (references 1 and 2). This approach would utilize previous test experience

and provide a basis for direct comparison of the data to that for the original blade set.

However, a number of mechanical/specimen problems were encountered in various tests and

are discussed later in the paper.

Mechanical and physical properties characterization was carried out at elevated (200°F),

room and cryogenic (-300°F) temperature in the 0° direction (principal loading direction).

Also, a limited number of tests were conducted in the 90° direction, and, although not

reported herein, these tests gave very good agreement with previously reported values.

Reported values are the average for three specimens unless otherwise noted. The various

tests and results are discussed in the following sections.

Tensile

i The American Society for Testing and Materials (ASTM) D3039-6 method was used to

test the tensile specimens. The tensile specimen geometry is shown in figure 4. Problems were

I encountered in testing this straight sided specimen, particularly at cryogenic temperatures.



Specimens with both tapered and square tabs were tested but little difference between

performance was noted. The major problems were either (1) failure in the grip area, or

(2) tab failure (shear surface between the tab and specimen). Very few specimens failed in

the gage portion of the test specimen. Other related problems included (1) specimen size

(too long for testing in the LaRC Structures and Materials Laboratory cryo chambers for the

case where both the specimen and grips need to bc cooled) and (2) lack of hydraulic grips on

the Instron machine that was used to test specimens to failure at cryogenic temperatures.

A number of things were tried in an attempt to alleviate the aforementioned problems;

these included, (1) different adhesive between specimen and grip tabs, (2) pin plus adhesive,

(3) rivets in tabs plus adhesive, and (4) tapering (necking down) the specimen over the

original straight-sided gage length. Finally, a tensile specimen made from the geometry

illustrated in figure 5 worked to the extent the failure loads were near or equal to expected

values before either the tabs failed, or the specimens failed across the net gage section. A

typical instrumented test specimen mounting arrangement is illustrated in figure 6.

It is recommended that for any future testing the specimen geometry shown in figure 5 be

used particularly for cryogenic temperatures. Straight-sided specimens (believed to reduce

interaction effects in cross ply layups) should be avoided. Also consideration should be given

to scaling down the specimen length to the extent that it can be tested in the machines

already equipped with cryogenic chambers and hydraulic grips which are located in the

LaRC Structures and Material Laboratories.

Because of the aforementioned problems, modulus values (based on extensiometer data)

were obtained at cold temperatures in the LaRC materials laboratory where tile gage portion

of the specimen was cooled but not the grips.

The tensile strength results for the 7576 cloth with the 724 finish arc given in table II

and compared with values obtained for the original 665 finish. The tensile values for the 724

finish are slightly lower and follows the trend of data obtained from the manufacturer for the

two finishes. The value given at -300°F does not represent a tensile failure in the specimen
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material but is based on failure loads resulting from tab failure (shear) which indicates that

the material tensile strength should be as good or better than the average value given in

the table. However, failure indications in the laminate were evident in all specimens and

appeared to start at the slight radius transition between the taper and gage (straight sided)

portion of the specimen shown in figure 5. The tensile strength and Young's modulus data

are given in table III for the design laminate and are compared with the previously reported

values given in reference 1. It is seen that the ultimate tensile strength for the design laminate

is slightly lower at elevated and room temperature. The average value at -300°F (based

on one tensile failure in the gaged section and one in which tile tabs slipped on two other

specimens) is also lower than the value reported for the original blade set material.

The Young's tensile modulus data given in table III for the design laminate were about

:! 16 percent lower than the values reported in references 1 and 2. However, comparison with

Young's modulus data obtained from fatigue specimens for the original blade set but not

reported in the references gave excellent agreement. Although reasons for differences between

the reported values of references 1 and 2 and the results from these tests are not understood

they are still acceptable with regard to blade stiffness requirements. Also, it should be

noted that the results of modal (vibration) testing did not show any significant differences in

fundamental vibration frequencies for the last 15 blades manufactured when compared with

the first 10 blades manufactured from the original material. In addition, the average value

for the new blade set first mode frequency is 66.1 Hz compared to 57 Hz for the original blade

set, which implies increased stiffness. This observation further supports the acceptability of

• the Young's modulus for the material.

Compression

The ASTM D3410-75 test method was used as a guideline for compressive testing (see

fig. 7 for typical test setup) of the fan blade material. The reader is referred to references 1

and 2 for details on the procedure as it was basically unchanged and worked very well. The

compression specimen geometry is shown in figure 4. The compression strength and modulus
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data are summarized for the 0° direction specimens in tables II and III. As indicated, the

compression strength is greater than previously reported vahms for both the 7576 cloth and

the design laminate, especially at -300°F. Also note from table III, the excellent agreement

in compression modulus values.

Intcrlaminar Shear

The test method used to determine interlaminar shear strength was the "guillotine"

method using the standard fixture and is described in detail in reference 1. The reader is

referred to reference 1 for detailed information on curing of specimens, etc. These tests were

performed only on the representative (design) laminate. The interlaminar shear strength

values are given in table III. Note that the average values are lower when compared to

the original blade data (approx. 5 to 17% reduction). However the trend of strength with

temperature is the same and the blades are not highly loaded in shear.

Fatigue

The design laminate fatigue specimens were tested in the same manner as reported in

references 1 and 2 using the ASTM D3479-76 test method. The load-control tests were

conducted at a frequency of 10 Hz and at a stress ratio of .01. These tests were conducted

at the stress level (30% of ultimate strength at room temperature) used as the allowable for

fan blade design with a goal of 1 million cycles without failure.

The fatigue specimen is the same length and thickness as the tensile specimen but is

lV2 inches in width. (See fig. 4.) Tile procedures described in references 1 and 2 were

followed for fatigue testing at elevated and cryogenic temperatures. However, problems were

encountered such as (1) failure at a lower number of cycles than expected and (2) failures in

the grip area. It was found that premature fatigue specimen failures were associated with

testing at a higher stress ratio (0.1 instcad of .01), and with failure of the tabs in shear

at the bond plane, or failure of the material in the grip area. After correcting for stress

ratio, changing adhesives and varying grip pressures, tests were successfully completed for

the design laminate in the 0° direction. The results are given in table IV and demonstrate
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that fatigue properties meet the design requirement of >30% of ultimate strength at elevated

temperatures and 30% of the room temperature ultimate at ambient and cryogenic (-300°F)

temperatures.

The fatigue specimens were tested for residual strength after cycling. The design laminate

residual strength values for the fatigue specimens (obtained from tensile tests after 1 million

cycles) were as good and in some cases higher than those obtained from the pure tensile

tests. It is believed that the differences are attributed to specimen geometry differences (the

fatigue specimen is wider than the tensile specimens and probably more stable) and also to

failures in the tab regions for the smaller tensile specimens. (It should be noted that some

of the fatigue tensile specimens also failed in the grip area.) The residual strength results

are presented in table III.

Thermal Expansion

The linear coefficient of thermal expansion tests were performed in the 0° and 90°

directions for the representative laminate using a DuPont 943 Thermomechanical Analyzer.

The analyzer was calibrated using a known aluminum standard. This state-of-the-art

instrument was used because the accuracy is better than the method used for the original

blade set and the equipment used in the original tests was not available. Additionally, the

analyzer gave continuous measurements as opposed to end points. The results are tabulated

in table IV for the temperature ranges of room temperature (RT) to 200°F, and RT to

-300°F. The results compare very well with design laminate (both the 0° and 90° direction)

values obtained for the original blade set.

Creep

The test method for establishing tensile creep properties is ASTM D2990-77. The method

and procedure is described in detail in reference 1. Three design laminate specimens (see

fig. 4) were loaded to 18.8 ksi (approximately 30% ult. at 200°F) and elastically strained

to 0.57 percent. The results are given in table IV and compared to values reported in the

reference. As reported in reference 2, for the previous tests, the specimen(s) were loaded
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to a lower stress level (12.94 ksi) with a reported 500 hr strain average for three specimens

of 0.37%. The permanent strain (avg. values) was .079%. Overall, the material exhibits

excellent creep properties.

Thermal Cycling

For the thermal cycling tests, three tensile specimens each of the 7576 material and

the design laminate were thermally cycled 256 times. The cycling consisted of taking the

specimens from room temperature to 200°F, from 200°F to -300°F, and from -300°F back

to room temperature. The specimens were held at each temperature for 20 minutes before

being subjected to the next temperature. After the 256 cycles were completed the specimens

were tested to failure at room temperature to determine their residual tensile strength. The

results are given in table V. No previous data are available for the design laminate. The 7576

cloth lost 6.5% of its tensile strength while design laminate lost 5.0% of its tensile strength.

In the original tests the 7576 cloth lost approximately 7.6% of its tensile strength due to the

thermal cycling.

Additional Tests

Additional tests were performed on specimens containing the new 7576 E-glass cloth.

These tests were 3-point flex, punch shear, and short beam shear. For the 3-point flex and

short beam shear tests, the only design laminate data available from material tests for the

original set of blades were for specimens tested at room temperature. For the punch shear

tests the only data available were for design laminate specimens at room temperature. The

data for these additional tests are shown in table VI.

It can be seen from table VI that in all cases ultimate stress levels increase with decreasing

temperature. The data for the 3-point flex and short beam shear follow the general trend

of the data for the other testsy that being the failure stress levels for the design laminate

specimens are lower, at all temperatures, than the failure stress levels for the 7576 specimens.
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Comparison of the 7576 E-glass data from unpublished data for the original blade set to

the data from the new blades indicates the 3-point flex specimens at all temperatures and

the room temperature design laminate punch shear specimens give lower failure (ultimate)

stress levels in the new blade specimens. This same comparison of the 7576 short beam shear

specimens gives mixed results. Room temperature data for the 7576 specimens indicate

a slightly higher strength in tile original blade material while the new material is higher

at 200°F and much higher at -300°F. Room temperature data for the design laminate

specimens indicate a higher strength for the new material.

Evaluation of Tensile and Fatigue

Properties for Design Requirements

The NTF fan blades are designed for a minimum service life of 10 years with the likelihood

of up to 50 years service in absence of a mishap. For comparison purposes, the measured

stress at two critical points on the blade assembly (blade root and pin wrap see fig. 8)

are compared with the fatigue and ultimate strength values in table VII. The minimum

ultimate and fatigue strength values at 200°F are used as the basis for design, which is

conservative since the strength and fatigue properties improve with decreasing temperatures.

Note from table VI that the safety factors on ultimate and fatigue are reduced slightly for

i the replacement blade set at the selected points for comparison. This is due to the slightly

reduced tensile strength of the design laminate. However, the safety factors are still quite

_: acceptable. Another measure of blade structural integrity can be obtained from the data
!

tabulated in table VIII. Using actual strain data obtained during tunnel operation and

correcting for maximum pressure by analysis, safety factors on both strength and fatigue

are shown for both the new and original blade set. It can be seen that the peak dynamic

stresses for worst case loadings are still well below the endurance limit (fatigue strength at

106 cycles) for the material while a safety factor greater than 5 is calculated at the point of

measurement (blade root).
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Concluding Remarks

The mechanical and physical properties of the fiberglass prepreg system for the National

Transonic Facility replacement blade set are presented. The 7576 cloth with the 724 surface

finish gives acceptable properties. The representative (design) laminate properties for the

new blade set compare well with those for the original blade set, and meet structural design

requirements. Some differences between Young's tensile modulus and that reported from

previous tests were observed, but are of no consequence insofar as structural design properties

acceptability. Numerous problems were encountered in obtaining acceptable test results.

Chief among these were specimen tab failures, grip region failures and equipment limitations,

particularly for cryogenic tcsting.

Recommendations

It is recomnmnded that tapered (instead of straight sided) specimens and different tab

geometries be used for any future tensile testing and fatigue testing of the fan blade materials.

Also tile specimen(s) should be sized such that they can be tested in existing machines with

required load and environmental capability for subjecting the entire specimen (including test

machine grips) to the required test temperature.
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TABLE I
MATERIALAND LAMINATEDESCRIPTION

FIBERS FIBERS PLIESPERLAMINATE
MATERIAL WARP FILL REPRESENTATIVE 7576

DIRECTION DIRECTION LAMINATE LAMINATE

7781 E-GLASSCLOTH 60 54 14 0

7576 E-GLASSCLOTH 120 24 5 11

TABLE II
TENSIONAND COMPRESSIONSTRENGTHPROPERTIES

OF STYLE7576 LAMINATEWITH 724 FINISH
COMPAREDWITH ORIGINAL665 FINISH

PROPERTY 200°F R.T. -300°F

a T,ult ' ksi 87.7(105.5) 96.4(105.9) >125"(162.7)
, ksi 87.2(76.7) 112.7(100.3) 130.8(126.9)a C,ult

( ) 665 Finish- datafororiginalblades
*Averagefortwospecimens- failedingrips(tabsshearedoff)
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TABLE III
MECHANICALPROPERTIESOF DESIGNLAMINATE

FOR NEW BLADES(LAST 15 MANUFACTURED)
COMPAREDWITH ORIGINALBLADES

Property 200°F R.T. -300°F

o T,ult ,ksi 54(57) 64(65) 113"(128)
, ksi 61(56) 74(58) 122(86)o C,ult

• , ksi 4.8(5.3) 5.3(6.4) 6.9(7.2)

ET x 10 "_ 3.5(4.2) 3.6(4.4) 4.5(5.3)(3.6)** (3.7)** (4.7)**

Ec x 10-8 3.9(3.5) 3.7(3.6) 4.5(4.2)

• Fortaperedtensilespecimens
( ) Indicatesaveragevaluesfororiginal blades

•* Modulusforfatiguespecimensfromoriginalbladeset
(not reportedinreferences)

TABLE IV
FATIGUESTRENGTH, RESIDUALSTRENGTHFOR

FATIGUESPECIMENS,CREEPAND C.T.E.
PROPERTIESFOR DESIGN LAMINATE

Property 200°F R.T. -300°F

>30%ult >30%ult >30%ult
Fatiguestrength attemp. at R.T. atR.T.
Residualtensilestrength
@ R.T.forfatigue 61.2 54.2(48.3) 54.1(50.4)
specimens,ksi

Creep
Stress,ksi 18.9(12.9)
500-hrstrain,% .58(.37)

Direction R.T.to200°F R.T. to-300°F
Thermalexpansion

=, pin/in/°C 0° 11.0(10.7) 8.8(8.6)90° 16.4(16.0) 12.9(12.8)

( ) Denotesvaluesfororiginalblades(ref2)
12



TABLE V
RESIDUALTENSILESTRENGTH

AFTERTHERMALCYCLING

7576 E-Glass DesignLaminate

90.1(97.9) ksi 60.6 ksi

( ) Indicatesdata from originalblade set

TABLE VI
ADDITIONALTEST DATA

a. 3-Pointflex

Temperature 7576E-Glass DesignLaminate

200°F 106.8(121.0)ksi 77.3 ksi
R.T. 122.6(140.9)ksi 88.9(101.6)ksi

-300°F 234.9(244.7)ksi 187.0ksi

b. Short beamshear

Temperature 7576 E-Glass DesignLaminate

200°F 8.1(6.8)ksi 8.4 ksi
R.T. 11.0(11.4)ksi 10.9(8.6)ksi

-300°F 37.0(18.7)ksi 16.3 ksi

c. Punchshear

Temperature 7576E-Glass DesignLaminate

200°F 15.5ksi 18.8 ksi
R.T. 17.7ksi 22.3(26.7)ksi

-300°F 30.7 ksi >37.2 ksi*

*Shearloadexceededmachinecapacityof 20,000Ibf.
( ) Indicatesdatafromoriginalbladeset
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TABLE VII
COMPARISONOF MEASUREDPEAK STRESSES

WiTH FATIGUESTRENGTHAND ULTIMATESTRENGTH

Measured Fatigue Ultimate Safety Safety
Test Location stress strength strength factoron factoron

ksi at 106cycles ksi fatigue ultimateksi

Fatigue (]) Airfoil 7.2 18.4(19.6) 54(57) 2.6(2.7) 7.5(7.9)root

Centrifugal(_ Pin
14 18.4(19.6) 54(57) 1.3(1.4) 3.9(4.1)overspeed wrap

( ) Averagedvaluesfor originalbladeset
O At surfaceof rootof airfoil(figure8)
(_ Pinwraparoundlaminateoutersurface(figure8)

TABLE VIII
MEASURED PEAK STATIC AND DYNAMIC

STRESSES AT AIRFOIL ROOT DURING TUNNEL
OPERATION AT DESIGN LOAD CONDITIONS

AND ASSOCIATED SAFETY FACTORS

Measuredor test values Stress, ksi Safetyfactor

Measuredpeakstresses
Static 8.6
Dynamic 1.9

Fatiguestrength@R.T. >18.4(19.4) 1.74(1.84)for 106cycles

Ultimatestrength 54(57) 5.12(5.40)@200°F

( ) Indicatesvaluesfor originalbladeset
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v._xi 7781E GLASS 0 °
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REPRESENTATIVE CROSS SECTION

0°
__30 _ I_ +30 _ 0 LAMINATE OUALITY EVALUATED BY

/ ° VISUAL INSPECTION
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Figure 1. Stacking sequence of representative laminate.
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_ 7781 FABRIC

_-._ 75 76 FABRIC

•.30 °

,..g

WARP
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7576 0 o 36
7781 0 ° 28
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_'°_'_t 7781 -30 ° 17.5

Figure 2. Perspective of fan blade illustrating ply orientation.



TESTSPECIMENPLYLAYUP

f Prepreglaminate

I 90° Specimen I

_' -_,i
{

_>o. o t

_ _ ,
./

[

90° Ply direction
(Filldirection) f

Figure3. Testspecimenplylayupillustratingorientation
of test specimens.
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NOTE= ALL DIMENSIONS IN INCHES

I .00 SPECIMEN THICKNESS "T" VARIES
WITH MATERIAL.

6.00 NOMINAL THICKNESS IS:
7576 EF-2 T=,I09
DESIGN LAMINATE T=,174

BONDED TAB
i__ REQUIRED

1.00 _ _ 1.00 .,I--- -.,I--- I.SO--," 4 F'450 MAX.

TENSILE CREEP FATIGUE AND COMPRESSION

Figure 4. Typical test specimen geometries.
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NOTE: ALL DIMENSIONS IN INCHES

SPECIMEN THICKNESS "T" VARIES
WITH MATERIAL.
NOMINAL THICKNESS IS:

7576 EF-2 T=.I09
4X R 1.00 _ DESIGN LAMINATE T=.174

"x°i°°-If _-_--'lT,,ooo

2. iO0 I 6. 000

1[/

,!

_ 2.i00 BONDED TAB
-- REOUIRED

,P

;i --l,- 1.000 .,.I-- "-I" .450 MAX.

Figure5. Taperedtensilespecimengeometry.
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SPECIMEN



Figure 7_ Compressiontest setup°



NTF Fan Blade Assembly

J
f

J
J

j- Airfoil

Platform

Channel

Side Fairing

Figure 8. NTF fan blade assembly. Point 1 is at surface
of root of blade, point 2 is pin wraparound
laminate outer surface.
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