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A systematic pointing error model is used to calibrate antennas in the Deep

Space Network. This article describes and analyzes the least-squares problem and

the solution methods used to determine the model's parameters. Specifically studied

are the rank-degeneracy problems resulting from beam-pointing error me_urement

sets that incorporate inadequate sky coverage. A least-squares parameter subset

selection method is described and its applicability to the systematic error modeling

process is demonstrated on a Voyager 2 measurement distribution.

I. Introduction

A pointing error model is used in tile Deep Space Net-

work's (DSN's) antenna-calibration process. With the ex-

ception of environmental effects, tire major sources of er-

rors in an antenna-pointing system are systematic and

repetitive and therefore can be closely modeled. Exam-

ples of parameters in the model are residual errors in tile

geometric alignment of the mount axes and fixed-angle en-

coder offsets. Data collected from spacecraft and radio star

observations are used to determine the parameters ill the

model and are then entered into the pointing system to

accurately point the antenna. The origins of the pointing

error modeling approach for radio-frequency (RF) anten-

nas can be found in [1,2] while its development within the

DSN is discussed in [3]. 1

1 R. L. Riggs, "Antenna Pointing Angle Corrections," DSN Antenna
Seminar, Videotapes 49-54, Jet Propulsion Laboratory, Pasadena,
California, May 1986.

The complete pointing error model is the sum of its

separate error components. Table 1 shows individual error

sources and the elevation/cross-elevation (or declination/

cross-declination, depending on antenna mount) regressor

variables used to estimate parameters. See [1,2,4] for a

more thorough discussion of these parameters. Currently,

this entire model is set ill motion in tile antenna-pointing

system by entering parameter values manually. The DSN

70-m antennas track targets in both the computer com-

mand and precision modes of operation, each defined by a

set of axis position transducers. (See [5] for a discussion

of the axis servos and controllers.) The 34-m antennas

employ only the computer command mode. In [3,6] rec-

ommended model parameter sets are given that apply to

each tracking mode of these antennas; they are also re-

peated in Table 2. As can be seen, nine error parameters

are used to estinaate in the precision mode and eight in

tire computer command mode. In practice, the model pa-

rameters are determined by performing a least-squares fit
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on the pointing offset data collected from the spacecraft

and/or from radio star observations. In this article, refer-
ence will only be made to the particular combinations of

parameters in Table 2.

This article explores the numerical properties of the sys-

tematic error modeling process. Specifically, the analysis
focuses on the numerical properties of the matrix formed

by the pointing model regressor variables evaluated over

the beam-pointing error data sets. These measurement

sets may not cover enough points in the sky to accurately
estimate all of tile parameters. This is due to the finite

number of targets and to other practical operational con-

straints, such as lack of antenna time. On the other hand,

tile objective of particular calibrations may be to opti-

mize pointing ill a particular region of the sky, such as
along a constant declination. In practice, however, the lim-

ited measurement sets lead to rank deficiency in the least-

squares measurement distribution matrix. This study of
the problem will lead to a more objective approach to pa-

rameter selection and parameter estimate interpretation.

In addition, the analytical techniques provided here may
be used to predict which directions in the sky will yield
optimal estimation•

Tile remainder of this article will formulate the system-

atic error parameter estimation problem and then estab-
lish a hypothetical performance index for matrix condi-

tioning. In addition, the numerical tools presented will be

used to analyze practical sky distributions in the context
of the least-squares approximation and the current solu-
tion method will be reviewed. The article concludes with

a proposed algorithm for parameter selection.

II. Model Generation

In order to accurately point the antenna, pointing er-
ror correction models must be generated from radio star

or spacecraft pointing offset data. This section deals with

the model-fitting process, which uses the least-squares al-
gorithm and assumes that the measurement data sets are

accurate. At this time, the estimation process does not

deal with uncertainties in the conical scan pointing offsets

and radio star boresights except in human filtering of very
large nonrepeatable and unexplainable offsets.

A. Least-Squares Problem Formulation

The paralneter vector p of the systematic pointing error

model is determined by performing a linear least-squares
fit oil tile offset data. The estimation problem is formu-
lated fi'om m observations as

or

" 8Xell "

6xelr,

6eli

_ 6elra .

Axe6 (eh, az,)

Axelm(el .... az_)
Aell (ell, azl )

Aelm(elm,aZm)

(1)

y = Ap (2)

where the offset vector y is 2m x 1, the measurement dis-

tribution matrix A is 2m x n, and the parameter vector p

is n x 1. As can be seen, equations representing both the
cross-elevation and elevation error functions are obtained

for each single observation point in the sky. Let the least-

squares estimator be _ and satisfy the following matrix
equation

:_ = A15 (3)

where the vector _" contains the estimated (or fitted) values

to tile cross-elevation and elevation offsets of Eq. (i). The

difference between tile individual elements, or residuals, is
defined as

"i = y_ - y_ (4)

Tile method of least squares chooses the parameter esti-

mate 15, such that the following quantity is minimized

2m

i=1

Tile estimate satisfies the following matrix equation [7,9]

15= (AtA)-aAty (6)

where A t is the transpose of A. Caution must b_ given

to least-squares problems in which the regressor variables,
or basis terms of A, are not truly independent. ]n such

cases the measurement distribution matrix A may be close
to, or is, rank deficient. If A is rank deficient, then there

are an infinite number of solutions to the least-squares
problem and no conclusion can be drawn as to the role of

the individual regressor variables [9].
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During the systematic pointing error estimation pro-
cess, limited data sets and inherent correlations in the

pointing error model have led to rank deficiency and its
associated problems. This situation was discussed in [8]

where the condition of empirically correlated regressor
variables was termed "multicolinearity." It was pointed out

in [8] that regressor variables of the model are not truly

independent. However, this is not accurate when a proper

combination of parameters is selected, as recommended in

Table 2. The degree of linear independence in the colunms
of matrix A for various antenna configurations is strongly

dependent on the distribution of the observation points
over the sky. This situation and its effect on the pointing
error estimation is discussed below.

B. All-Sky Model Analysis

An analytical approach was taken to obtain a perfor-

mance index for the numerical conditioning of the sys-

tematic error least-squares problem and to compare it with

results from practical measurement sets. One such perfor-
mance index can be determined by examining a hypothet-

ical all-sky uniform distribution of pointing offset data.
These measurement points are used to generate measure-
ment distribution matrices for different combinations of

parameters. Intuitively, it would make sense to obtain

pointing error offsets uniformly throughout the field of
view of the antenna and conclude that this is the opti-

mal distribution for input into the parameter estimation

problem, tIowever, observing the basis terms of the point-
ing model given in Table 2, it can be seen that not all

terms are simultaneously functions of both azimuth and
elevation. This condition will tend to result in redundant

column elements of A; thus, optimal matrix conditioning

will most likely not be obtained with the all-sky distribu-

tion. ttowever, as will be shown, all-sky matrices do have

acceptable conditioning and can be used for a suitable per-
formance index. Singular value decomposition (SVD) was

used to analyze the linear independence of the columns of

A and is defined in the following theorem.

Theoreml. Let Abearealmxnmatrixwithm > n.

Then there is an orthogonal matrix U = [ua, • • •, um] of

order m and an orthogonal matrix V = [vl,...,vn] of or-
der n such that

utAv=[ ]o (7)

where

E = diag(al,...,an) (s)

and

al >_ a2 > ... >_ _ > 0 (9)

The theorem is taken from [10] and the more gen-

eral SVD is proven in [9]. The numbers (ra,cr2,...,rr,_,

which are unique, are called the singular values of A. The

columns [ua,u2,...,u,_] of U are called the left singular
vectors of A, and the columns [vl,v2 ..... vn] of V are

called the right singular vectors of A. SVD is extremely
useful in analyzing numerical rank deficiency because the

singular values indicate how near A is to a matrix of lower

rank. The matrix A has rank r if and only if

a_ > 0 = a_+_ (10)

Mathematically speaking, the smallest singular value
of A is the 2-norm distance of A to the set of all rank-

deficient matrices [9]. The ratio of the largest to small-

est singular value is termed the condition number of A.
This number quantifies the sensitivity of the least-squares

solution 15 of Eq. (2). Large condition uumbers indicate

that relatively small changes in A or the offset vector y

can induce large changes in the computed lea.st-squares

solution f). This is undesirable since parameter vector
estimates computed from such ill-conditioned measure-

ment distribution matrices can lead to erroneous pointing

offset corrections that will be applied in future antenna

tracks. The pointing model corresponding to the DSS 1.1

70-m antenna (i.e., latitude = 35.426) was used to gener-
ate the full A matrix of relevant error parameters. The

uniform distribution consists of 9-deg increments in eleva-

tion and 20-deg increments in azimuth. This full measure-

ment set is illustrated in Fig. 1. The singular values of
the A inatrices corresponding to the precision mode and

computer command mode of operation are presented in
Table 3.

As can be seen, the numerical conditioning for the least-

squares problem resulting from this hypothetical all-sky

distribution is well behaved. Both the precision mode and
computer command mode parameter sets yield A matrices

with reasonably nonzero singular values and small condi-

tion numbers, implying full-colunm rank. Another quan-

tity commonly considered in least-squares analysis is the

correlation lnatrix derived from (AtA) -a of Eq. (6), which

is numerically shown in Table 4. The matrix (AtA) -1 is
an estimate of the covariance matrix for the solution vector

of the least-squares problem. Values near one in the cor-

relation matrix indicate high pairwise correlation between

the estimated parameters.

19



It isevidentthat suchhighcorrelationis impliedbe-
tweenthefirst threeparameters(azcollimation,fixedaz
encoderoffset,andaz/elaxisskew)ofthecomputercom-
mandmodeset.Evaluationofthebasistermscorrespond-
ingto theseparametersin the limitedelevationrangeof0
to 90degresultsin thepairwisecorrelationandcannotbe
avoidedregardlessoftheazimuthdistribution.Theimpli-
cationof inherentcorrelationto parameterestimatesta-
bility wasinvestigatedthroughMonteCarlosimulations.
Theempiricalestimationcovariancematrixwascomputed
andfoundto bein verycloseagreementwiththetheoret-
icalcovariancematrixcomputedfrom(AtA) -1, thusil-
lustratingthatstableparameterestimateswill resultfrom
anall-skydistribution.It wasnotedin thesimulations
that individualestimatesof thefirst threeelementsal-
waysvariedin thesamedirectionof magnitude,but that
differencesneverexceededtheboundspredictedin thethe-
oreticalstandard-deviationvectorgivenby

n

_p = -- (11)
i=i O'i

where the vi and _ri are defined in Theorem 1. The above

equation is obtained by solving for A in Eq. (7), substi-
tuting it into (AtA) -1, and then taking the square root

of the diagonal of the resulting matrix.

The numerical conditioning of the least-squares estima-
tion of antenna precision and computer mode systematic

error parameter sets was evaluated above for an all-sky

distribution. The resulting measurement distribution ma-
trix for each mode of operation was found to have full

rank, thus ensuring unique least-squares solutions for 15.

Also, the large values in the correlation matrix were not

seen to degrade the stability of repeated parameter esti-

mates. The linear dependence of the parameters implied

by the correlation matrix is due to their mathematical defi-
nitions and selecting them simultaneously will not degrade

the estimate of the measurement vector y. Such rich off-

set distributions can never be obtained in practice, thus

it is inevitable that poorer matrix conditioning will lead

to least-squares estimates of poorer quality. As shown by
this analysis, the singular values and condition number of

the distribution matrix A are key parameters in evaluating

ill-conditioned least-squares problems.

C. Reduced and Sparse Data Sets

Current practices dictate that systematic error models

be generated from antenna-pointing error-correction data

taken from as much of the sky as possible or from an area

defined by one or two declination angles. The first is used

to generate all-sky pointing models, while tile second com-

putes model parameters applicable only in limited direc-

tions of the sky. Both situations typically diverge fi'om the

hypothetical all-sky example since the basis terms of the

pointing model are evaluated in fewer, and perhaps more

redundant, directions. Their effect on the least-squares
estimation process will be illustrated with examples.

Figure 2 shows the sky trajectory for the Voyager 2

spacecraft. Conical-scan offset data collected at a decli-

nation of -22.5 deg clearly represent only a small por-
tion of the total sky measurement space. Tables 5 and

6 show the singular values, condition numbers, and theo-

retical standard deviations in millidegrees (mdeg) for the

least-squares estimate using the A matrices generated for

precision and computer command operation. As implied

in the tables, matrix condition deteriorates in both param-
eter sets because of reduced measurement space. ]'he the-

oretical standard deviations of the all-sky parameter sets

are shown in mdeg in Table 7. Comparison with those

of Table 6 illustrate the degradation of the least-squares

parameter estimation. In [8], least-squares parameter fits

were done on Voyager 1 conical-scan data obtained from
the DSS 14 64-m antenna. The results were parameters

that were too large in magnitude to be realistic or practi-

cal and that were unstable on a day-to-day basis. It has

been shown through SVD analysis that such ill condition-
ing of the systematic error least-squares problem can, in

general, be inferred a priori for any constant declination
measurement set.

Figure 3 shows sky distribution for a radio source bore-

sight offset file taken at the DSS 13 26-m antenna. The dis-

tribution is typical of data gathered during planetary radio

astronomy experiments--here, for four radio sources. The

pointing model regressor values were once again evaluated
at the source coordinates and results of the SVD analysis

are shown in Tables 8 and 9. Condition numbers for pre-

cision and computer command mode parameter sets are

comparably small in magnitude to those from an all-sky
distribution. The smallest singular values are also reason-

ably nonzero. Only minimal estimate degradation is pre-

dicted by the increase in theoretical standard deviations.

Furthermore, the magnitude of this uncertainty is still rea-

sonably small in the context of parameter estimates, which

are usually in the tens of mdeg. This example illustrates
that rank deficient measurement distribution matrices can

be avoided by using recommended parameter sets and by

evaluating the regressor variables with adequate sky dis-

tribution of pointing offsets. Concluding that such a mea-

surement set is adequate for the least-squares model fitting
is essentially putting emphasis on the norm of the result-

ing solution vector 15 instead of minimizing the norm of the
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residual vector r of Eq. (4). This approach appears to be

the most logical given that the measurement uncertainties
are not modeled. It has also been shown that, for radio

source pointing calibrations, this matrix condition analy-

sis can be done during pretrack activities, thus influencing

the scheduling of calibrators.

It nmst be stressed that these results hold only for the

sets of parameters recommended in Table 2. Different com-
binations of 21 error coefficients in the current pointing

model will yield different, and in some cases disastrous,

numerical properties of the matrices involved in the com-

putation of the least-squares solution.

III. Solution Methods

A. Parameter Selection

The two goals of the modeling process are to quan-

tify contributors to the antenna's systematic pointing error

so that pointing can be corrected and so that knowledge
of the antenna's mechanical and structural characteristics

can be acquired. To achieve both of these objectives si-

multaneously, identical parameter vectors must be chosen
for estimation on a consistent basis. These parameters for

the 70-m and 34-m antennas in the applicable mode of op-

eration have been given in Table 2. Subsets of these vec-
tors should be chosen either when parameter values are

physically known a priori or when they are consistently
estimated with small magnitudes. In practice, however,

the goal of correct pointing can be achieved without ac-

curate knowledge of actual antenna error characteristics.

Optimization may be based on any random set of parame-
ters that minimizes the sum of the squares of the residuals

given in Eq. (5) without regard for physical interpretation.

Regardless of the estimation philosophy practiced,
problems always arise when building models for partic-

ular regions of the sky--for example, along a line or band
of constant declination for one or more sources--or for

a particular spacecraft. The rank deficiency that plagues

least-squares problems in these cases generates uncertainty

in parameter selection and interpretation. Ilowever, such
models for locally optimized pointing are needed for criti-

cal spacecraft and holography tracks and for those tracks

of single sources known as strong, reliable antenna calibra-
tors. The current least-squares solution method described
next uses the SVD to accommodate ill-conditioned mea-

surement distribution matrices.

B. Singular Value Decomposition

The SVD subroutines in the systematic error modeling

software that were used to solve the least-squares problem

were taken from [11]. A key feature of the SVD method

is its ability to handle rank deficiency. Ill-conditioned A
matrices result in the rank (A) = r being less than the

parameter dimension n. This results in a rank-deficient

least-squares problem that has an infinite number of so-
lutions, for if the vector p is a minimizer and the vector

z E null(A), then p+ z is also a minimizer. The SVD
method is useful in such situations since it is a revcal-

ing and complete orthogonal decomposition. The routines

from [11] basically implement the following theorem taken

from [9], given here without proof.

Theorem 2. Sul)pose UtAV = ]E is the SVD of

AE_mxn with r = rank(A). If V = [ua,...,u,,] and

V = [vl,...,Vn] are column partitionings and y E _'"
then

PLs = _ u3"-_Yvl (12)
o"i

i=1

minimizes ]1Ap - y t]2 and has the smallest 2-norm of all
minimizers. Moreover

IIApLS -- y IIg= _ (u[Y) _ (13)
i=r+l

Note that if r < n, this corresponds to simply adding a

zero multiple to the solution vector PLS rather than addiug

random large-valued multiples produced by the near-zero

singular values. This may reduce uncertainty in the esti-

mated coefficients, as in Eq. (11), but increases the resid-
ual norm, as in the increased summation index of Eq. (13).
This point was touched on earlier. In practice, one nmst

still come up with a numerical estimate ÷ of r. The sys-
tematic error modeling software estimates the numerical
rank ÷ofA as

O"1 _ -. '¢Tf _ 6 > 0"7_+1 ___ '" "O'n (14)

where the tolerance 6 is chosen to be _1, scaled I)y a

machine-precision dependent factor. The selection of
results in

I'i" : _ U[Yvi (15)
O- i

i=1

as an approximation to PLS. If cr,_ >> 6, then p_. is a

very close approximation to the true minimizer PLS since
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A can be unambiguously regarded as a matrix with rank

[9]. When [al .... ,a,] do not clearly split into small
and large values, rank determination may be somewhat

arbitrary.

C. A New Algorithm for Parameter Selection

As has been shown, tile SVD solution currently alle-
viates ttle rank-deficiency problems associated with lim-

ited pointing offset distributions. This means filtering out

small singular values of A and replacing them with the
matrix At. defined as

AI. = E aiuiv_ (16)
i=l

where ÷ is ttle numerically determined estimate of the rank

of A. As discussed in [9] such a cutoff makes sense when

tile measurement distribution matrix is derived from noisy

data. Ilowever, in this case, A is being evaluated using
accurate ephemeris from observed targets, as in Eq. (1).

In other applications, rank deficiency is an indication of

redundancy among factors that comprise tile model. As

has been shown in previous sections, redundancy among
systematic error regressor variables occurs in the estima-

tion process only when dealing with limited and reduced

pointing measurement sets. In these cases, tile system-

atic error predictor A_p_ used in subsequent tracking will
involve all n redundant factors that may ]lave been cho-

sen as a result of random parameter selection. Although
such solutions may correct future pointing, parameter esti-

mates can obscure physical interpretation of true antenna

mechanical characteristics. In such instances, it is argued

that the least-squares solution vector should contain at
most _ nonzero systematic error parameters, which in turn

dictate which colunms of A will be used in approximating

tile observation vector y. The problem of choosing the ap-

propriate colunms of the measurement distribution matrix
is termed subset selection. Tile SVD-based subset selec-

tion procedure that has been chosen for this least-squares

application is summarized below:

(1) Compute the SVD A = UEV ¢ and use it to deter-
mine a rank estimate ÷.

(2) Calculate a pernmtation matrix P such that the

columns of the matrix Ba E _i'"_x_ ill AP = [Ba B2]

are "sufficiently independent."

(3) Predict y with the vector Ap_,b where Ps,,b = [z 0] t

and z E 37÷ minimizes [[ Baz - y ][2.

Using systematic error modeling, the rank determina-

tion in the first step can be chosen with more heuristic

criteria instead of those used in Eq. (14). Tile new criteria

are based on the matrix condition number and the mag-

nitude of the theoretical standard-deviation vector given
by Eq. (11). Given ÷, the first ÷ columns of pernmta-

tion matrix P give the column indices of A for use in the

least-squares estimation. These are equivalent to the pa-

rameters from which the model is selected. A thorough

discussion of the various approaches to this problem can
be found in [9,10]. Below is a summary of the algorithm to

compute P that was chosen and implemented in the sys-

tematic error modeling software. It is based on both the

SVD and on QR factorization with the column-pivoting
algorithm. For A E _}_mxn, QR factorization with cohnnn

pivoting from [9] produces AP = QR where

7Y$ -- fi (17)

where _ is the rank (A), Q is orthogonal, Raa is upper tri-

angular and nonsingular, and P is a permutation matrix.

This factorization implies that the first _ columns of Q

form an orthonormal basis for range (A). It is the desired

result since the measurement vector y in the least-squares
problem may be approximated by the first ÷ columns of

the lnatrix AP, which is just Ba of the second step above.

This is equivalent to choosing tile first ÷ parameters of Pp

for estimation, which is equal to the vector z in step three

above. As in a previous section where the case for cutting
off singular values in the SVD method was presemed, re-

ducing the order of the parameter solution vector will also
increase the residual norm.

Unfortunately, QR factorization with cohnnn pivoting

alone is not a totally robust method for computing the

permutation matrix P [9]. The preferred algorithm im-

plemented in the software that uses both SVD and QR
factorization is presented in the revised steps below:

(1) Compute the SVD A = U_V t and use it to deter-
mine a rank estimate ÷. Save the matrix V.

(2) Apply the QR factorization with column pivoting
to the subset ofV t : QtV(:,l : ?)_P = [Rll Rl._]

and set AP = [B1 B2] with B1 E O_,n×e and B2 E
_._x(n-_).

(3) Deterlnine z E R e, which minimizes I[ Baz- y ][2.

The main contribution of this algorithm is facilitating
parameter selection for reduced and constant declination-

pointing measurement sets. In the latter case, its appli-

cation will ensure consistent parameter selection for par-
ticular radio sources and spacecraft tracks. This subset
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selection procedure essentially eliminates l)arameters that

the algorithm has deemed unobservable in the given mea-

surement distribution. Tim next step is to decide how

to deal with these excluded parameters. One approach

is to simply ignore them and proceed as usual with the

least-squares estimation with the reduced vector z, as de-

termined above.

A different approach, when possible, is to use physically

known or accurate a priori estimates for unobservable pa-

rameters and subtract their contributions from the mea-

surement vector y before estimating z. Such an option

is available in the current software. The resultant solu-

tion vector should be more consistent with all-sky models.

Finally, it. should be noted that the tools presented here

can be used for the opposite effect (e.g., predicting matrix

condition and rank or for least-squares est.imate accuracy)

when the measurement vector y is augmented with point-

ing offsets taken in new directions.

To illustrate, this algorithm is applied to the A matrix

which resulted from the Voyager 2 trajectory, _ shown

in Fig. 2. Referring to Table 5, one can base the rank

deternfilmtion of the A matrix on the smallest of the sin-

gular values. For example, choosing 0.1 as a singular value

cmoff results in precision and computer command mode

parameter selections and matrix couditions that are sum-

marized in Tables 10 and 11. Eliminating parameters 11

and 21 from the precision mode and 1 from the computer

command mode results in reduced matrix condition and

smaller estimation standard deviations for some elements

of the solution vector. In practice, the actual systematic

error estimated values are generally less than 100 mdeg.

Thus, estimation accuracy for some of the remaining pa-

rameters in Table 10 will be a certain percentage of the

estimated values.

Depending on the antenna's frequency band, this may

or may not meet the pointing requirements. (A detailed

description of errors will not be covered here.) Estima-

tion errors will always be larger in practice because of

uncertainties in the measurement vector y, so one may

decide to increase the singular value cutoff and apply the

subset selection algorithm. Using cutoffs 1.0 for the preci-

sion mode and 0.2 for the computer command mode yields

the results summarized in Tables 12 and 13. To achieve

accuracy comparable to the hypothetical all-sky models,

the parameters to be excluded are 1,7, 11, and 21 from

the precision-mode set and 1 and 7 fi'om the computer

command-mode set. It is advised that wheuever the fixed

angular encoder error parameters (for example, 7 and 21)

are excluded in the subset selection procedure, their values

should be determined directly from t.he pointing offset data

and contributions to y shouhl bc removed b:fore nmking

an estimation.

IV. Summary

This article h_rs described aml analyzed the least-

squares problem encountered in the I)SN syste}natic point-

ing error modeling process. Specifically investigated is

the relationship between rank degeneracy of lneasurerJm'nt

distribution matrices and limited-sky distributiotls of the

pointing error ott'sets. Using a ]Lvpolhotical all-sky por-

forrnance index and an SVI) analysis, it is shown that an

acceptable matrix condition of the least-squares problem

can be obtained by evaluating tile point ing Hlodel regr 'ssor

variables with adequate sky dist ribul ions of l}le poinl iJlg

measurements. ]n addition to mat,'ix condition, the lll,--

oretical standard deviations of tile least-squares estimate

are used to evaluate accuracy. It is shown through an ex-

ample that redundancy among the syst_ematic error model

regressor variables occurs when dealing with lillfit_ed and

sparse data sets. In practice rank-degenerate mat rices are

encountered when building models for particular regions of

the sky,, such as along a band of constanl declination.

The key' fi.'ature of the analysis presented is its predic-

tive capability. Matrix condition and least-squares esti-

mate accuracy based on measurement distribution may be

predicted before actual pointing calibration activities com-

mence. The current lea.at-squares solution method based

on singular-value decomposition is also presented. This

method can handle ill-con(litioned measurement distribu-

tion matrices encountered in the mod_'l-building process.

For limited measurement sets, it was argued that it. may

be preferred to estimate only observable parameters. Sys-

tematically eliminating redundant parameters will facili-

tate the parameter selection process and make it cow,sis-

tent. A recommended subset seleclion algorithm based

on singular-value decomposition and QR factorization is

illustrated with a Voyager 2 measurem_mt set.

V. Future Work

This article has presented an analytical approach using

mathematical tools to answer fundamental numerical ques-

tions arising fi'om tile systematic error-modeling process.

Such general but consistent procedures are needed in the

modeling process because of t.l,e many antenna-specific me-

chanical and other practical considerations encolnpassed

by the proM(re. Once past this juncture, one may begin

to address the deficiencies and look for possible refinenJents

in the estimation process. The most obvious is that of re-

cursive estimation. Methods must be devised to handle
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data sets spanning many weeks or years and incorporat-

ing many a priori models and model uncertainties into the

esthalation algorithms. If and when uncertainties in point-
ing measurements can be accurately modeled, including
those from natural or manmade sources as well as from

antenna-system imperfections, then the algorithm should

also bc modified to allow for weighted observations.

All these enhancements must be worked into the

existing modeling software. This package should also en-
able the functional form of the model to change relatively

often. This will allow for the addition of newly discovered
error terms and for enhancements to accommodate new

antenna architectures such as the DSS 13 beam-waveguide
antenna.
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Table 1. Systematic pointing error sources and model terms

Elror source

Model function

Cross-elevation error Elevation error

Az a collimation Px e _

Az encoder fixed offset P2 cos (el) -

Az/el skew Pa sin (el) -

Az axis tilt P4 sin (el) cos (az) -P4 sin (az)

Az axis tilt P5 sin (el) sin (az) P5 cos (az)

Source dec b P6 sin (az) P6 sin (el) cos (az)

E1 c encoder fixed offset - P7

Gravitational flexure - PS cos (el}

Residual refraction - P9 cot (el)

Az encoder scale error Plo (az/360) cos (el) -

Cross-declination error Declination error

llAa/dec axis skew -Pll sin (dec) -

HA axis tilt P12 sin (IlA) sin (dec) P12 cos (IIA)

ttA axis tilt -/°as cos (ItA) sin (dec) P13 sin (IIA)

IIA feed offset -P14 -

Gravitational flexure P_5 cos (p)l cos (el) -P15 sin (p) cos (el)

Declination feed offset -- P16

Gravitational flexure PlZ sin (p) cos (el) -

Gravitational flexure - -Pas cos (p) cos (el)

Gravitational flexure - P19 sin (el) -

Gravitational flexure - P20 sin (el) (el)

tlA encoder bias P21 cos (dec) -

a Az refers to azimuth angle.
b Dec refers to declination angle.

c El refers to elevation angle.

d HA refers to hour angle.

e Uppercase P refers to parameter value.
/ Lowercase p refers to paralectic angle.

Table 2. Applicable parameter sets to DSN 70-m and 34-m
antennas

Table 3. Singular values for all-sky distributions

[_rpcb, ion mode COllljlutcr ctHIlttlall(| 111o11¢_

Pvcclsi*ltl lll()q]C ()(tllllftltCF COltl]lt_tll(t lllode
3 t.252 3.t.252

1 l 18.108 18.096

7 2 ] 5.785 11.814

,S 3 11.811 11.S07

'3 ,t 10.3t2 10.3.12

11 5 6.16l 5.G,I.I
,1.131 2.G23

12 7

13 8 2.925 0.819
2.623

14 9
Condit ion ntunbcr ( :, ,n( lit ion nun,be=

21
13.0(; ,11 .SO
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Table 4. Computer command mode correlation matrix for all-sky distribution

l)ara_ nel er ! 2 3 ,I 5 7 s !

1 1 .uo -(3.!}7 -0.98 o.00 0.00 0.00 {).t)u o.Do

2 -02)7 I .(1(1 0.!.} 2 0.00 o.00 0./)0 0.l)t) ().l)[)

3 -0.98 0.'.)2 I .Or} O.OO 0,00 0.00 0.00 0.00

[I [Jl!)0 {) ,0 I) (] .()_ l ,ijtj () .(}() [) .{}{) f }.()() {) .{}( )

5 O,[)l) O.(JO (J.O(J O.{}(I l,(lO ()J)O 0.0() (}.f)O

7 (J.(JO {).(Jl) 0.0(1 I),OIJ o.(J0 l .( }_) - o:.< I o .36

8 0.00 0.00 0.00 l).l)l) 0.00 -D.81 I.O(P -0.75

9 0.(J0 0.00 0.1)1) 0J)0 0.00 0 .: _,(; - ().75 ] .(JIJ

Table 5. Singular values for the Voyager 2 data set

Pl.eci_,iiiil in,_de Q*,Olllpll[(!l" (),qHlllalt{| IIl_(|(}

Table 7. Theoretical standard deviations for the all-sky data
set in millidegrees

];;t1{1111¢!{¢!1" ['l(!l'i:",iOll lllcH'le (_!(llllp I|,F21" CI_I|IIIFIIU_ IIbHlt}

r57.22(; 57.22G

l "1.'r130 12. 171 l 0.16 0.82

10.282 1(I.282 2 - |3.61

5.912 5.0.12 3 - 0.(;'._

1.,tS3 1.t83 .t - (.)s

0.334 1.3 l 5 5 - U. C):..:.

o. 199 o. 199 7 0.17 o. 17

0,0033 0,9671 8 0.3'; U,3_

0.0028 _ !1 0.OG O.0G

(,my'lit i,m nutH})er COlldit ion numl.,er 11 0.23 -

20,,t3_ 853 12 0.08 -

13 0.2l --

1,1 O. 20 --

21 0.22 -

Table 6. Theoretical standard deviations for the Voyager 2 data
set in millidegrees

ParttllLeler Precision IllOd(3 COllll)lltel' Ci)llllll;tlld lllOd(! Table 8. Singular values for radio source distribution

1 2,19 10,,16 Precision mode Computer c(anmaml m_,de
2 -- 10,06

3 - 3,46 15,.951 15 .,t52

4 - 0,20 13.00,_; 13.157

5 - 0,72 9.885 S. 176

7 3.55 3,55 7.660 7.501

S 3.53 3.53 t.326 .1.23S

9 0.03 0.03 3.550 2 .(;03

11 289,48 - 2,020 0.82_;

12 0.72 - 1.L56 0.28._;

13 1 .SLI -- 0.825 --

14 252.03 - C,.mditiot_. :mmfl)er Condition llllllll)el"

21 269.20 -- 19.335 5-t .600
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Table 9. Theoretical standard deviations for the radio source

data set in millidegrees

Parameter Precision mode Computer c(mnnand mode

1 0.33 2,45

2 -- 1.68

3 -- 1.96

,I -- 0,13

5 -- 0,14

7 0.,12 0,42

8 1.11 1,11

9 0.36 0.35

11 0.44 --

12 0.14 --

13 0.,14 --

1 '1 0.,t9 --

21 0.57 --

Table 10. Reduced parameter standard deviations tor the

Voyager 2 data set in millidegrees

Parameter Precision mode Computer command mode

1 2.16 --

2 -- 0.29

3 - 0.72

4 -- 0.20

5 - 0.72

7 3.55 3.55

8 3,52 3,53

9 0.03 0.03

12 0.72 -

13 1.87 -

14 1.30 -

Table 11, Singular values for reduced Voyager 2 parameter set

Precision mode Computer connnand mode

57.226 57.226

12.157 10.282

10.282 8.893

5.221 4.8,t5

1.483 1.483

0.319 1.315

0.199 0.199

Condition number Condition number

288 288

Table 12. Reduced parameter standard devlaiions for the

Voyager 2 data set in millidegrees

Parameter Precision mode Computer command mode

2 - 0.29

3 - 0.72

4 -- 0.20

5 -- 0.53

7 -- --

8 0.55 0.55

9 0.03 0.03

12 0.53 --

13 0,19 -

14 0.13 --

Table 13. Singular values for reduced Voyager 2 parameter set

Precision mode Computer command mode

56.955 56.955

8.952 8.893

8,137 8.137

4.900 4.8:15

1.335 1.335

- 1.315

Con<lit ion numbec Cotl<lition mmlber

,13 ,t3
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Fig. 1. Hypothetical all-sky measurement set.
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Fig. 2. Voyager 2 measurement set.
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