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Stochastic robustness is a simple technique to determine the robustness of linear,
time-invariant systems by Monte Carlo methods. Stochastic stability robustness has been
described previously. These results are extended here to provide insight into control system
design for performance. Together, stochastic stability and perfonnance robustness concepts
constitute a comprehensive tool that can be used to analyze control system robustness
properties. As well, they offer control system design insight that can set the stage for
stochastic robustness synthesis. The concept of stochastic stability robustness is reviewed,
stochastic performance robustness is introduced, and stochastic robustness synthesis is
described qualitatively. Confidence intervals necessary for comparing control laws
statistically are presented.
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STOCHASTIC ROBUSTNESS ANALYSIS 

Stochastic robustness is a robustness measure based on the probability of satisfactory 
stability/perfomance in the face of uncertainty. Stability robustness is described by a single 
metric: the probability of instability. Because it is a statistical measure of robustness, and 
because it directly uses knowledge of the statistics of the physical parameter variations, 
stochastic robustness is inherently intuitive and precise. The physical meaning behind the 
probability of instability is apparent, and overconservative or insufficiently robust designs 
can be avoided. Concepts behind stochastic stability robustness can be easily extended to 
provide insight into control system design for performance. Design specificatioris such :IS 

rise time, overshoot, settling time, dead time, and steady-state error are normally used as 
indicators of adequate performance and lend themselves to the same kind of analysis as 
described above. Concepts of stochastic stability robustness analysis can be applied to these 
criteria giving probabilistic bounds on individual scalar performance criteria. Stochastic 
robustness concepts can be applied to specific aircraft handling qualities criteria as well. 
Binomial confidence intervals for the scalar probability of instability have been presented, 
and these apply to performance robustness criteria as well. 

STOCHASTIC ROBUSTNESS 
A robustness nleasrdre based on the 

probability of satisfactory stability/perforrnance, 
given the statistics of a plant's parameter variations 

STABILITY ROBUSTNESS: 
PROBABILlTY OF INSTABILITY 

PERFORMANCE ROBUSTNESS: MANY MEASURES 
Degree of stability 

Time response envelopes 
Hand1 ing qualities criteria 

BINOMIAL CONFIDENCE INTERVALS 
Statistical bounds for the 

estimated stability or performance measure 



HANDLING QUALITIES ROBUSTNESS
Principles behind stochastic stability robustness can be directly applied to aircraft

handling qualities. Here, the short-period mode is evaluated using the MIL-F-8785C
specification that relates short-period handling quality levels to the normal acceleration
sensitivity to angle-of-attack vs. short-period undamped natural frequency. Each Monte
Carlo evaluation would result in a single point on the graph. The probability of remaining
within level 1 or 2 specifications is the performance robustness metric. The abscissa and
ordinate quantities can be computed using very little computation beyond eigenvalue
evaluation. Hence, performance can be characterized as easily as stability using this metric.

Principles behind stochastic stability robustness can be
directly applied to aircraft handling qualities

Example: Short-Period Frequency
Requirements from MIL-F-8785C
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The probability of remaining Within Level 1 or Level 2
regions is the scalar performance robustness metric
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PERFORMANCE ROBUSTNESS
Making the transition from strict stability to degree of stability is simple. Alternate

regions can be described that relate to classical measures of response speed. Alternate
discriminants relate to time-to-half or time-to-double. Sector bounds relate directly to
damping ratios and natural frequencies. The probability of closed-loop eigenvalues
remaining within the alternate region is the scalar performance robustness metric. Time
response envelopes can be defined as well, and stochastic robustness analysis gives tile
probability of a response remaining within the desired envelope. Using any of these metrics,
binomial confidence intervals apply.

Transition from strict stability to degree of stability
Alternate discriminant Sectorbounds

'jo3 jco

13 CI

Time response envelopes
min max peak overshoot max

i peak_ _,,,;_ak

• "_me max

steady-stateerror

90% min p _ min
rise _" m.ax max steady-state
time _" r!se settling

time time error
50% min d"

delay / max
time /" delay

time
2' max

r deadtime
max
undershoot

144



TWIN-JET TRANSPORT AIRCRAFT:
SHORT-PERIOD MODE EVALUATION

As an example of the above concepts, stochastic performance robustness analysis is
applied to a nonlinear longitudinal model of a twin-jet transport aircraft. Each Monte Carlo
evaluation consists of linearizing the system around nominal trim conditions and computing

the eigenvalues and nz-- The probability of violating sector bounds and the probability ofo_
violating level 1Mil-spec requirements are shown here.

Nonlinear, longitudinal rigid-body model, 22 parameters

..usin_ sector bounds based on Mil-spec damping requirenaent
prO.)

Sector bound

..using Mil-spec short-period frequency requiremen!
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TWIN-JET TRANSPORT AIRCRAFT:
CLOSED-LOOP COMMAND RESPONSE

Closed-loop flight-path angle command response is given here, where the controller
was developed using a Proportional-Filter-Implicit-Model-Following LQR control law.
Here, the probability of violating the defined time response envelope and the probability of
control saturation are the performance robustness metrics.

Flight-path-angle command response dislribulion
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STOCHASTIC ROBUSTNESS SYNTHESIS
Metrics resulting from stability and performance robustness can be related to

controller parameters, providing a foundation for design tradeoffs and optimization. This is
illustrated qualitatively here. As gain increases along a root locus, uncertainty is magnified,
and the "uncertainty circles" associated with the closed-loop root locations enlarge. The first
root locus demonstrates one where the probability of instability increases monotonically with
increased gain. The shape of the second root locus makes it possible for the uncertainty
circles to initially cross into the right-half plane, remain in the left-half plane as gain
increases, and finally cross into the right-halfplane again for very large gain. The probability
of instability decreases, then increases, and it has a minimum for some value of gain.

Tradeo.[,f_exist and can provide a foundation for optimization

QUALITATIVE ILLUSTRATION
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Closed-loop roots are enclosed by "uncertainty circles"
a) Stability robustness decreases as gain increases
b) Stability robustness increases, then decreases
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STATISTICAL COMPARISON
OF CONTROL LAWS

The above analysis qualitativelydemonstrates tradeoffs that can provide a foundation
for optimization. The ability to statistically compare control laws and say with certainty that
one is better than another is another tool necessary for optimization. The Bonferroni
inequality can be used to describe confidence intervals for the difference based on individual
confidence intervals. As illustrated, the one control law is statistically better than another
when their individual confidence intervals no longer overlap.

Given binomial confidence intervals for two estimates

Pr(L]< ]?l<U1)=l-_l
Pr (L2 < ]?2< U2) = 1 - cz2

tile confidence interval for A]?= ]P1- ]72

Pr [(L1 - U2) < A_ < (U1- L2)] > ! - c_

is derived from the Bonferroni inequality

O_= _1 - _2 for dependent intervals
= _1 - _2 + _1 _2 for independent intervals

ILLUSTRATION

Number of Evaluations
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HOW MANY EVALUATIONS ?
The number of evaluations necessary to distinguish between two control laws is an

important factor when considering stochastic robustness synthesis using optimization. Here,
the number of evaluations necessary for a required interval width is related to the number of
evaluations necessary to distinguish a significantdifference.

Number of Evaluations
for a Required Interval Width and o_= 0.05
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SUMMARY
Stochastic robustness is a good overall robustness analysis tool. It is intuitive and

simple, and makes good use of engineering knowledg. Both stability and performance
metrics can be identified, and confidence intervals offer statistical significance to the resulting
metrics. It is a good candidate for synthesis techiques as well, because it demonstrates
robustness tradeoffs with control systems design parameters. Confidence intervals for the
difference between two Probabilities provide a tool that can be used in future optimization
studies.

Good overall robustness analysis tool

Intuitive and simple

Makesuse of engineeringknowledge

Both stability and performancerobustness metrics

Confidence intervals are easily interpreted

Good candidate for control system synthesis

Shows stability and performance
tradeoffs with design parameters

Confidence intervals for differences can be defined

150


