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ABSTRACT

Stochastic robtt_tness, a simple technique used to estimate applied to these criteria giving probabilistic bounds on
the robustness of linear, time-invariant systems, is applied to a individual scalar performance criteria. Metrics resulting from
single-link robot arm control system. Concepts behind stability and perfomaance robustness can be related to controller
stochastic stability robustness are extended to systems with parameters, thus providing a foundation for design tradeoffs
estimators and to stochastic performance robustness, and optimization. Details of these extensions and uses of
Stochastic performance robustness measures based on classical stochastic robustness are described in the following and are
design specifications are introduced, and the relationship illustrated by means of an example.
between stochastic robustness measures and control system
design parameters is discussed. The application of stochastic STOCIIASTIC STABILITY ROBUSTNESS
performance robustness, and the relationship between
performance objectives and design parameters aredemonstrated Stochastic stability robustness of a linear, time-invariant
by means of the example. The results prove stochastic (LTI) system was described in [31 and is summarized here.
robustness to be a good overall robustness an" "ismethod that Consider a LTI system subject to constant-coefficient control:

can relate robustness characteristics to con. ._temdesign x(t) = F(p)x(t) + G(p)u(t) (1parameters.

INTRODUCTION y(t) = ll(p)x(t) (2
u(t) = Uc(t) - Cll(p)x(t) (3

Standardlinear control system design techniques rely on

accurate models of the system to be controlled. Because x(t), u(t), y(t), and p are state, control, output, and parameter
models are never perfect, robustness analysis is necessary to vectors of dimension n, m, q, and r, respectively, accompanied
determine the possibility of instability or inadequate by conformable dynamic, control, and output matrices that mayperformance in the face of uncertainty. Robustness to these
uncertainties, parametric or unstructured, is normally treated be arbitrary functions of p. Uc(t) is a command input vector,
deterministically and often without regard to possible physical and, for simplicity, the (m x n) cor.trol gain matrix C is
variations in the system. Consequently, overconservative assumed to be known without error. The n eigenvalues, _.i=
control system designs, or designs that are insufficiently robust _i+jtoi, i= 1 to n, of the matrix [F(p) - G(p)Cll(p)]
in the face of real world uncertainties are a danger, determine closed-loop stability. The control gain matrix C is

designed using some nominal or "mean" value of the dynamic
Stochastic robustness, a simple technique to determine the model, denoted F, G, and II, that represents F(p), G(p), II(p)

robustness of linear, time-invariant systems by Monte Carlo evaluated at the nominal parameter vector. The actual system
methods was introduced in [i] and presented in detail in [2,3]. has an unknown description, denoted FA, GA, and IlA thatThese references described stochastic stability robustness
analysis and introduced the probability of instability as a scalar depends on the actual (unknown) value of the parameter vector
measure of stability robustness. Confidence intervals for the p. Environment, variations in the nominal state, system
scalar probability of instability were presented, and the failures, parameter estimation errors, wear, and manufacturing
stochastic root locus, or probability density of the closed-loop differences all can contribute to mismatch between the actual
eigenvalues, has shown to portray robustness properties system and that used to design the controller. The parameter
graphically. Because it is a statistical measure of robustness, vector p is assumed to have a known or estimated probability
and because it directly uses knowledge of the statistics of the density function, denoted pr(p), that expresses the statistics of
physical parameter variations, stochastic robustness is parametric uncertainty due to the above factors.
inherently intuitive and precise. The physical meaning behind
the probability of instability is apparent, and overconservative System stability requires that no eigenvalues have positive
or insufficiently robust designs can be avoided. Applications real parts. While the relationship between parameters and
of stochastic robustness to analyzing full-state feedback aircraft eigenvalues is complicated, estimating the probability of
control systems were described in [4.1. The results presented instability (_) of a closed-loop system from repeated eigenvalue
there illustrated the use of stochastic stability robustness calculation is a straightforward task. Using Monte Carlo
techniques in comparing control system designs and in evaluation, the closed-loop eigenvalues are evaluated J timesincluding finite-dimensional uncertain dynamics.

with each element of pj, j = i to J, specified by a random-
Concepts behind stochastic stability robusmess can be number generator whose individual outputs are shaped by

easily extended to provide insight into control system design pr(p). The probability-otLinstability estimate becomes
for performance. Design specifications such as rise time, increasingly precise asJ becomes large. Then,
overshoot, settling time, dead time, and steady-state error are
normally used as indicators of adequate performance and lend N(o'max < 0)
themselves to the same kind of analysis as described above. Pr(stability) -- lim j (4
Concepts of stochastic stability robustness analysis can be j _> oo

and
* Graduate student
**Professor Pr(instability) = P = I - Pr(stability) (5
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N(.) is the number of cases for which all elements of c, the stochastic root locus show the possible interaction of dynamic
vector of the real parts of the closed-loop eigenvalues, are less and estimator states, and the possible robustness degradation
than or equal to Zero, that is, for which Ontax < 0, where dueto the estimator. Well-known loss of LQ stability margins- when a state estimator is added [9] can be quantified by tile
Omax is the maximum real eigenvalue component in o. For probability of instability.
less than an infinite number of evaluations, the resuhing Monte

Carlo evaluation is an estimate, denoted _'. STOCIIASTIC PERFORMANCE ROBUSTNESS

Because }' is a binomial variable (i.e., the outcome of While stability is an important element of robustness
each Monte Carlo evaluation takes on one of two values: stable analysis, performance robustness analysis is vital todetermining whether important design specifications are met.
or unstable) confidence intervals are calculated using tile
binomial test, where lower (L) and upper (U) intervals satisfy Stochastic stability robustness is described by a singleparameter, the probability of instability. Adequate
[51 performance -- initial condition response, response to

r_ ot comntanded inputs, control authority, and rejection ofPr(X<x-1)= (.l,j) L](1 - L) .I "J = 1 - _- (6 disturbances is difficult to describe by a single scalar.
j=0 tlowever, elements of stochastic stability robustness analysis

(e.g., Monte Carlo evaluation and use of the tests described

Pr(X<x)= _(J,j) U](I - U) J'j = _- 2 (7 above for confidence intervals) apply independent of the
j=0 performance criteria chosen. This will be demonstrated in the

X is the actual number of unstable cases after J evaluations (X sequel.
J_

= J _) and (J, x) is the binomial coefficient, x!(.l-x)------_."Explicit Numerous criteria stemming from classical controlconcepts exist as measures of adequate performance.
approximations of the binomial test 16, 7] avoid an iterative Appealing to these, one can begin a smooth transition front
solution of Eq. 6 and 7 for (L,U) and are accurate to within stability robustness analysis to perfommnce robustness analysis
0.1%. Confidence intervals for the unknown, true probability simply by analyzing the degree of stability or instability
of instability are presented in more detail in 13]. rather than strict stability. As described in [31, one method of

doing this is to shift the vertical discriminant line from zero to E
Stochastic Stability Robustness of Systems with less than (or greater than) zero (Fig. la). tlistograms and
Estimators cumulative distribt,tions for varying degrees of stability are

'r

Stochastic stability robustness analysis is easily extended J_pr(o)dff,
to systems incorporating dynamic state estimators. Using FA, readily given by the Monte Carlo estimate of 1 -._.,
GA, and IIA as the actual system matrices and F, G, and I1 as ,,,,'hereE represents a maximum real eigenvalue component,
the design system, state and estimator equations are [81 and -_< E < o_. The histogram is a plot of

x(t) = FA(p)x(t) + GA(p)u(t) + LA(p)w(t) (8 N[(Y-- 6) < Omax<_-£1 vs. E; A is an increment in _E,NI.] isJ
the number of cases whose maximum real eigenvalue

9(t) = Fg(t) + Gu(t) + K[ z(t) - ll_(t)l (9 components lie in the increment, and J is the total number of
evaluations. The histogram estimates the stability probability

u(t) = Uc(t) - C£(t) (I0 density function, pr(E), which is obtained in the limit for a
continuous distribution of E as A -> 0 and J -> oo. Tile

where ¢(t) is the estimated state. I, is the disturbance input cmnttlative prohahility distrihtttion of stability, Pr(E), is
. N(_O[m_x.._T.)

matrix, and K is the estimator gain matrix. The measurement is similarly estin]ated and presented as - vs. E, the
taken through the actual output matrix and cnn include J
measurement noise: exact distribution being achieved in the limit as J -> _,.

Binomial confidence intervals are applicable to each point of the
z(t) = llA(p)x(t) + n(t) (11 cumulative distribution, as there are just two values of interest,

e.g., "satisfactory" or "unsatisfactory". The probability of
Stability of the full dynamic compensator is determined by the instability is a special case where E equals zero.
combined system. Substituting for the control in Eq. 8 and 9,
the eigenvalues of the closed-loop system matrix Fcl must be
in the left-half plane for stability: _/ _ o) jo_rr - 1F¢I -- ,.KIIA F - GC - KIIJ (12

In terms of the state (x) and error dynamics (x - £), the _ o
coupling effect of mismatch on the closed-loop system is
directly app,'u'ent181

[ FA" GAC -GAC ] "Fcl = (F-FA) - (G-GA) - K(ll-IIA) F - (G-GA)C - KI! Figure i Alternateregionsfor probabilityof closed-loopeigenvalue
(13 locationtoaidin robustnessanalysisof transientrespond.

a) Alternatediscriminant
The effect of parametric uncertainty on stability robustness is b) Sectordefinedalonglinesofconstantdampingandnaturalfrequency.
computed by Monte Carlo evaluation of the eigenvalues of Eq.
I0, with F(p), G(p), and ll(p) substituted for FA, GA, and The measure of robustness resulting from the cumulative
IIA. Closed-loop eigenvalue densities portrayed on tile probability distribution is directly related to classical concepts
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of rates of decay (growth) of the closed-loop response, time-to- input, disturbance, initial condition, or some combination is
half and time-to double: evaluated J times, and for each evaluation, the trajectory is a

binomial variable; it either stays within the envelope or violates
0.693 (14 the envelope. Although computing actual time responses is

t half - _¢0n more computation-intensive than probability-of-instability
estimation or estinaation of scalar values associated with

0.693 performance robustness, such analysis is well within the
i double = " _O_n (15 capability of existing workstations.

Taking degree-of-stability analysis one step further, rather than STOCIlASTIC ROBUSTNESS AS A CONTROl,
a vertical discriminant line, one can confine the closed-loop I)ESIGN All)
roots to sectors in the complex plane bounded by lines of
constant damping and lines of constant natural frequency (Fig. Stochastic robustness metrics can and should be related to
lb). Roots confined to these sectors would be expected to control system design parameters for robust control system
display a certain transient response speed. Again, the .design. While general "rules of thumb" regarding the design.of
probability of roots lying within a sector is a binomial variable, robust control systems are useful, stochastic robustness metrics
and confidence intervalcalculations presented above apply, can identify non-obvious robustness "structures" of particular

applications. Figure 3 illustrates tradeoffs that can exist and be
While the speed of the transient response depends on the uncovered by stochastic robustness analysis. Consider Fig.

closed-loop poles, its magnitude and overall shape depends on 3a, which shows the upper-half plane of a plant that has a
the coefficients of the characteristic exponential and sinusoidal complex pair of poles and a right-half-plane zero. Hypothetical
terms. Closed-loop zeros, residues, eigenvectors, and steady- "uncertainty circles" are drawn around possible closed-loop-
state response are all concepts related to the magnitude of the root locations. As gain increases along the root locus, the
response. The distribution of closed-loop zeros, of residues, uncertainty is magnified, and stability robustness decreases,
of steady-state response, and of important elements of the with possible closed-loop root locations in the right-half plane
eigenvectors all can be estimated by Monte Carlo analysis, at high enough gain. This case illustrates one where the
Hence, a qualitative ideaof the possible closed-loop responses decrease in robustness may be monotonic. Figure 3b
can be obtained without calculating actual time responses, postulatesa system with a real pole and a complex pair of poles

and zeros. In Fig. 3b, the hypothetical root locus nears the jto
Time responses provide the most clear-cut means of axis before ending at the zero in the left-half plane. Again,

evaluating performance, but they are the most computation- uncertainty circles enlarge as gain increases. In this case, it is
intensive means as well. If actual time-responses are possible that the root distributions cross into the right-half
computed, stochastic performance robustness can be portrayed plane, yet are entirely in the left-half plane as gain increases
as a distribution of possible trajectories around a nominal or further, tlere, stability robustness (as measured by the
desired trajectory. After defining "envelopes" around the probability of instability) may have local or global minima (as a
nominal trajectory (Fig. 2), the probability of violating the' function of gain). For multivariable systems with many
envelopes can be computed using Monte Carlo evaluation. The parameters, the intrinsic structure of the problem and the
envelope chosen around the nominal trajectory encompasses tradeoff between the spread in closed-loop-root-location
scalar performance measures; the trajectories in Fig. 2 are uncertainty versus the magnitude of the control gains may not
examples of bounds defined by minimum and/or maximum be immediately evident. Plots of stochastic robustness metrics
allowable dead time, delay time, rise time, time to peak versus scalar control design parameters provide the necessary
overshoot, peak overshoot, settling time, and steady-state insight.error. While it is simple to conclnde that a response violates
such an envelope, individual responses within the envelope
may not be acceptable. In such cases, the derivative of a
response and envelopes around the derivative also can be used
as performance criteria.

rain max peakovershoot max

max

steady-state Figure3 Illustrationof designinsightrevealedby stochasticrobustnesserror analysis. Solid points indicateclosed-loopeigenvaluesenclosed by
90_ I max mln "uncertaintycircles".max

• settling stead)'slate a) Rootlocussketchwherestabilityrobustnessdecreasesmonotonically
time time error with increased gain.

50% b) Rootlocussketchwherestabilityrobustnessdecreasesthenincreases
withincreasedgain.

delay
time EXAMPLE: SINGLE LINK ROBOT ARM

de_ _ As an example of the concepts discussed above, stochastic
time robustness is applied to the flexible one-link robot described inmax

undershoot Ref. 10. The model retains the first three flexible modes, and
Figure2. Exampleof stepre,q'_onmboundsformedbyscalarperformance the tip of the linkis controlled by applying a control torque to
characterizes, the hub, or base of the link. Because the structure of this

model is representative of a general flexible structure,and the
There is no unique set of criteria defining envelopes that physical parametersareeasily identifiable, it is a good candidate

bound an acceptable time response; the segmented envelopes in for stochastic robustness analysis.
Fig. 2 can be smoothed, or other scalars can be used to define
points on the envelope. Itowever, once an envelope is The dynamic, controleffect, and output matrices are given
defined, time response distributionscan be computed by Monte by
Carlo methods. The closed-loop time response to a command
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Degree of stability is portrayed in Fig. 5 by the histogram
0 1 0 0 0 0 0 0 and cumulative distribution of stability around the origin for a0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 bin size of 0.25. (The smaller bin size was chosen for better

resolution.) For binary parameter variations [3] of the same
0 0 c021-2_1€Ol 0 0 0 0 magnitude as tile maximum uniform variations, 214 or 16,384

deterministic evaluations give a zero probability of instability as
F = 0 0 0 0 0 1 0 0 (16 well. These results indicate good stability robustness in the

0 0 0 0 ct_22-242€,120 0 face of reasonably large uncertainties.

0 0 0 0 0 0 0 1 Moving to performance robustness analysis, Fig. 6 shows

0 0 0 0 0 0 0_2 -24'!_3 a top, contour-shaded view of a stochastic root-locus with- sector bounds defined by 4 <t0n< 65 and_ >0.1. For
50,000 evaluations, the probability of having closed-loop

I 0 / eigenvalues outside of these bounds is 0.0147, with 95%

""'1

/ confidence intervals (L,U) = (0.0136,0.01581. While the

1/01(°)l [L0 hi(L) 0 _(L) 0 03(L) 0 ] shape of the time response depends on closed-loop zeros, aG =Trr] o I II = I 0 €,1(0) o 4,}(0) o €_(0)j minimum speed of response can be guaranteed by requiring
0"0)-- that all closed-loop eigenvalues lie within a specified sector.

Figure 7a presents example step response envelopes and
I_€,_(01/ the response of the tip to a 4.8 cm position command input for

(17,18 500 Monte Carlo evaluations. The control time history
corresponding to the mean response is given in Fig. 7b. The

where x is the length along the arm, _i(x),are the normal transfer function between hub torque and tip position is non-

modes, q_= , L is the length of the ann, and IT is the total minimum phase; thus the step response exhibits an initialresponse in the wrong direction. The time response envelopes
inertia of the arm. The measurements taken through I! are the in Fig. 7 indicate the maximum acceptable non-minimum phase
tip displacement and hub-rate, respectively. The flexibility of response. For 500 responses, the probability of violating the
the open-loop system is apparent in the open-loop eigenvalues, time response envelope is 0.184 with 95% confidence intervals
which are 0, 0, -0.177 + 11.81j, -0.432 + 21.61j, and -0.968 (L,U) = (0.151,0.221). Individual responses characteristic of
+ 48.37j. The system has a readily identifiable 14-element those evaluated by Monte Carlo analysis are given in Fig. 8.
- While the responses fill out the envelope, some of the
parameter vector: individual responses within the envelope may not be acceptable
P -- 141 ct'_l42 t02 43 t03 _bi(0) _k'_(0)¢r'_(0) L $1(L) 02(L) 03(L) I1"1 in the face of real-world criteria governing rate of change of the

(19 response (Fig. 8c). This is a case where checking envelopes
around the derivative of the response may be necessary.

Details concerning the modeling andparameter identification are Similar analyses can be performed on control trajectories to
given in [101. The linear-quadratic-regulator designed in 1101 make sure bandwidth and control effort limitations are not
was used for demonstration and review of stochastic stability violated during the simulation.
robustness analysis. The quadratic performance index weights
tip position and tip-rate, and the LQR state-weighting and It is instructive from a design standpoint to plot stochastic
control-weighting matrices are robustness measures versus design parameters used to calculate

feedback gains. Since there is only a single control in this

[/ 0] [1 0] example, the control weighting matrix R is a scalar and can beQ = 0.01FTII T IIF + IIT I!, R = 0.001 used as the design parameter. Two stochastic performance
(20, 21 robustness measures are plotted versus R in Fig. 9 - the

"probability of violating the time response envelope and the
resulting in linear-quadratic regulator gains probability of degree of instability. As control gains increase,

the closed-loop roots are pushed farther into the left half plane,
C = 135.4213.38,11.242.65 59.32 -0.67 135.,161.581 (22 but they tend to migrate farther from their nominal values as

and closed-loop eigenvalues -5.41 + 48.8j,-6.47 + 23.8j, well. At some value of control gain, there is a tradeoff- - between how far roots migrate and their location in the left half
-6.1 +__2.66 j, -7.7 + 11.42j. plane; thus a local minimum is apparent around R = 0.001 in

A uniform probability density function was chosen to the probability-of-degree-of-instability curves. While degree of
model the parameter uncertainty statistics, with variations instability improves for very small R, the control gains for thiscase are unrealistically large. For larger R (smaller control
between +2% of the nominal values for L and IT and__+25% gains), the nominal closed-loop roots have real parts in the
for the remaining parameters. The stochastic root locus for
50,000 evaluations of the full-state feedback case is given in range of the values of E used; thus the probability of degree ofinstability increases rapidly beyond R = 0.01. The probability
Fig. 4. The nominal eigenvalues are marked, and the possible
distribution is indicated by the height above the complex plane of the violating time response envelopes takes on the same
in units of roots/length along the real axis and roots/area in the shape as a function of R as the probability of degree of
complex plane. The "bin" size in Fig. 4 is 0.9 along the axis instability. In this example, the probability of instability iszero for all values of R checked, however, minima in the
and 0.9 x 0.9 off of the axis. The probability of instability probability of instability versus design parameter curve can
estimate (P) for 50,000 evaluations is zero. Each of the four occur as well !11].
complex eigenvalue pairs appears in Fig. 4 as a "peak", with
some distribution around the peak due to parametric Figure 10 shows the stochastic root locus for the LQG
uncertainty. The peaks can be well-defined (as in the lowest system with estimator gains based on disturbance effect matrix
frequency complex pair) or broad (as in the highest frequency L = G and disturbance and noise covariance matrices
pair), and the nominal eigenvalues are not necessarily at the

of the distributions. Uncertainties of the magnitude W=I. N= L,,I-0"00'5 i (_l,,Jpeaks (23, 24
chosen cause complex pairs to coalesce into real roots resulting
in a distribution along the real axis.
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With estimator states added, the stochastic root locus changes REFERENCES
in overall character from the full-state feedback case. Peaks are
sharper, and the distribution along the real axis is less 1) Stengel, R.F.,"Some Effects of Parameter Variations on the
pronounced. In particular, note the eigenvalues associated Lateral-Directional Stability of Aircraft," AIAA Journal of
with the largest peaks. In the full-state feedback system (Fig. 4) Guidance and Control, Vol. 3, No. 2, pp. 124-131, Apr
a broad distribution is associated with these eigenvalues, yet in 1980.
Fig. 10, this pair of eigenvalues undergo very little variation
from theirnominal values! While the extent of the distribution 2) Stengel, R.F., and Ryan, L.E., "Stochastic Robustness of
into the left half plane is about the same as in Fig. 4, LQG Linear Control Systems", Proceedings of the 1989
system eigenvalues do migrate into the right half plane. The Conference on Information Sciences and Systems, pp. 556-
probability of instability estimate and 95% confidence intervals 561, March, 1989.
for 50,000 evaluations are P = 0.0771, and (L,U) -- 0.0748,
0.0795, representing a significant loss in the stability 3) Stengei, R.F., and Ryan, L.E., "Multivariate ttistograms
robustness characteristic of the LQR system. These results for Analysis of Linear Control System Robustness", American
reflect the well known fact that guaranteed stability margins of Control Conference Proceedings, pp. 937-943, Pittsburgh,
an LQR system are lost when an estimatoris added. PA. June 1989.

Loop Transfer Recovery (LQG]LTR) [12] is a common 4) Ryan, L.E., and Stengel, R.F., "Application of Stochastic
design technique by which the trade-off between estimator Robustness to Aircraft Control Systems", AIAA Guidance,
performance and stability robustness can be made Navigation and Control Conference Proceedings, pp. 698-
systematically using a single design parameter. Figure l I 708, Boston, Mass, Aug, 1989.
illustrates the LTR mechanism for this example using the
probability of instability as the robustness measure. Ilere 5) Conover, W.J., Practical Non-parametric Statistics,
plotting the probability of instability as a function of design John Wiley and Sons, New York, 1980.

parameter v (W = vWo) shows that there is a value of v (v = 6) Anderson, T.W., and Burnstein, H., "Approximating the
2) that minimizes the probability of instability. The fact that Upper Binomial Confidence Limit", Journal of the American
such a minimum exists may not be apparent by simply Statistical Association, Vol. 62, pp. 857-861, Sept 1967.
examining the estimator eigenvalues. The kind of results
presented in Fig. 11 offer design insight and show robustness 7) Anderson, T.W., and Burnstein, H., "Approximating tile
characteristics not revealed by other robustness metrics. Lower Binomial Confidence Limit", Journal of the American

Statistical Association, Vol. 63, pp. 1413-1415, Dec 1968.CONCLUSIONS

, 8) Stengel, R.F. Stochastic Optimal Control: Theory and
Stochastic robustness offers a rigorous yet straightforward Application, John Wiley and Sons, New York, 1986.

alternative to current metrics for control system robustness that
is sit_ple to compute and is unfettered by normally difficult 9) Doyle, J.C., "Guaranteed Margins for LQG Regulators,"
problem statements, such as non-Gaussian statistics, products IEEE Transactions on Automatic Control, Vol. AC-23, No.
of parameter variations, and structured uncertainty. Principles 4, pp. 756-757, Aug 1978.
behind stochastic robustness can be applied to scalar
performance metrics as well as time responses, making it a 10) Cannon, R.J., and Schmitz, E., "Initial Experiments on the
good candidate for overall robustness analysis. Both End-Point Control of a Flexible One-Link Robot", The
performance and stability metrics resulting from stochastic International Journal of Robotics Research, Vol. 3, No. 3,
robustness analysis can provide details relating robustness pp. 62-75, Fall, 1984
characteristics intrinsic to a given application and scalar control
design parameters, making it a good candidate for optimization 11) Stengel, R.F., and Ryan, L.E., "Stochastic Robustness of
techniques as well. Linear Time-lnvariant Systems", to appear in IEEE

Transactiom on Automatic Control.
ACKNOWLEDGMENTS

12) Doyle, J.C., and Stein, G., "Multivariable Feedback
This research has been sponsored by the FAA and the Design: Concepts for a Classical/Modern Synthesis," IEEE

NASA Langley Research Center under Grant No. NGL 31- Transactions on Automatic Control, Vol. AC-26, No. !, pp.
001-252 and by the Army Research Office under Grant No. 4-16, Feb 1981.I)AALO3-g9-K-0092.

pt( Z ) Pr( Z )

I

Z Z
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Figure 7 Timehistories a_sociatedwith tip position commandof 4.8 cm.
a) 500 Monte Carlo evaluations of the tip response. Envelopes are

Figure 6 Top view of a stochastic root locus with sector bounds for the defined by scalar performance criteria. Nominal response is indicated by
single-link robot, 50,000evaluations, the solid line.

b) Nominal control input.
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Figure 8 Examplesof individualtip responses [_ _.,I,.__.. _-..........-.

a) Acceptable responsewithin envelope, i 0.0'2

b) Response violates envelope.
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Figure 9 Stochastic performance robustness metrics vs.control weighting
matrix R.

a) Probabilityof violatingtime response envelopes.
b) Probability of degree of instability, for values E along the real axis.
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Figure 10 Stochastic root locus for the single-link robot with state
estimation(LQG), 50,000 evaluations. Figure ! I Probabilityof Instability vs. LQG/LTR design parameter v.

186


