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SUMMARY

Panel methods are numerical schemes for solving (the
Prandtl-Glauert equation) for linear, inviscid, irrotational
flow about aircraft flying at subsonic or supersonic
speeds. The tools at the panel-method user's disposal are
(1) surface panels of source-doublet-vorticity distributions
that can represent nearly arbitrary geometry, and
(2) extremely versatile boundary condition capabilities
that can frequently be used for creative modeling. This
report discusses panel-method capabilities and limitations,
basic concepts common to all panel-method codes, differ-
ent choices that have been made in the implementation of
these concepts into working computer programs, and var-
ious modeling techniques involving boundary conditions,
jump properties, and trailing wakes. An approach for
extending the method to nonlinear transonic flow is also
presented.

Three appendixes supplement the main text. In
appendix A, additional detail is provided on how the basic

concepts are implemented into a specific computer pro-
gram (PAN AIR). In appendix B, we show how to evalu-
ate analytically the fundamental surface integral that
arises in the expressions for influence-coefficients, and
evaluate its jump property. In appendix C a simple exam-
ple is used to illustrate the so-called finite part of
improper integrals.

1. INTRODUCTION

There are fundamental analytic solutions to the
Prandtl-Glauert equation known as source, doublet, and
vorticity singularities. Panel methods are based on the
principle of superimposing surface distributions of these
singularities over small quadrilateral portions, called
panels, of the aircraft surface, or to some approximation
to the aircraft surface. The resulting distribution of super-
imposed singularities automatically satisfies the Prandtl-
Glauert equation. To make the solution correspond to the
desired geometry, boundary conditions are imposed at
discrete points of the panels. (Mathematicians refer to
these discrete points as collocation points; panel-method
users refer to them as control points.)

Panel codes are Often described as being lower-order
or higher-order. The term lower-order refers to the use of
constant-strength singularity distributions over each panel,
and the panels are usually flat. Higher-order codes use
something of higher order than constant, for example, a
linear or quadratic singularity distribution, and sometimes
curved panels.

Panel methods were initially developed as lower-
order methods for incompressible and subsonic flows
(e.g., refs. 1, 2; see ref. 3 for a review of panel methods
existing through about 1976). The first successful panel
method for supersonic flow became available in the mid-
1960s (refs. 4, 5). This was also a lower-order method,
and is variously referred to as the constant-pressure panel
method, or the Woodward-Carmichael method.

Panel methods are numerical schemes for solving (the
Prandtl-Glauert equation) for linear, inviscid, irrotational
flow at subsonic or supersonic free-stream Mach numbers.

Currently, panel-method codes are the only codes com-
monly in use that are sufficiently developed for routinely
analyzing the complex geometries of realistic aircraft. The
objective of this report is to give the reader some idea of
what panel methods can and cannot do, to describe their
common roots, to describe the differences between

various specific implementations, and to show some
example applications. In addition, recent progress in
solving nonlinear transonic flow problems by combining
portions of panel-method technology with other numerical
techniques, is described. This material is followed by
three appendixes that contain additional details: appendix
A describes how the basic ideas common to all panel
methods are actually implemented in a specific code;
appendix B shows how to evaluate some of the integrals
that arise in the influence-coefficient equations; and

appendix C discusses the so-called f'mite part of improper
integrals.

The panel methods for three-dimensional subsonic
flow allowed the actual vehicle surface to be paneled,
whereas the Woodward-Carmichael method was more

severely restricted in the placement of the panels. For
example, the wing was a planar array of panels, the body
(fuselage) volume was modeled with a line distribution of
source and doublet singularities (resulting in a body-of-
revolution) and the body boundary conditions were
imposed with a cylindrical "interference" shell of wing-
type panels. This representation was later extended to

include multiple wing-body components (ref. 6), but was
still restricted to the planar panel representation. These
two extremes of actual-surface models and mean-surface

models (Woodward-Carmichael) are illustrated in fig-
urel.

The mean-surface model used in the Woodward-

Carmichael panel method was a consequence of numerical
stability problems that arose in supersonic flow. The con-
stant-strength, elementary horseshoe vortex singularity
distribution (producing a constant pressure over each
panel) often produced unstable numerical behavior (the
solutions would "blow-up") when a panel was inclined to



a supersonic flow. The method worked only when all the

panels were kept pa/allel to the free-stream flow. This

required that angle of attack, wing thickness, camber, and
twist be simulated through the boundary conditions; that

is, it was necessary to have the panels generate flow per-

pendicular to themselves and thereby turn the flow

through the desired angles, as is done in classic thin-wing
theory. As a consequence of this restricted geometric

model, several new approaches to the supersonic problem

were pursued in the 1970s.

The first of these was also due to Woodward; it

evolved into the series of computer programs known as

USSAERO (ref. 7). For fuselage panels, USSAERO uses

constant-strength source singularities. Wing panels use

elementary horseshoe-vortex singularities whose strength

distribution varies linearly in the chordwise direction and

is constant in the spanwise direction. Although this repre-

sentation gave an improved modeling capability, numeri-

cal problems would still often occur when the wing panels
were inclined to a supersonic free-stream flow.

Another approach, developed by Morino and his

associates, uses a superposition of constant-strength

sources and doublets on hyperboloidal panels. The con-

stant strength doublets produce a velocity field that is

identical to that produced by line-vortex elements, having

the same strength as the doublet panel, placed head to tail

around the panel perimeter (a so-called ring-vortex panel).
This method is available in the computer program called

SOUSSA; it too is unable to handle the steady supersonic

case (ref. 8, pp. 2-20; private communication, L. Morino,

Feb. 1981).

The key to eliminating the numerical stability prob-

lems associated with supersonic flow, was to use doublet
distributions that were continuous over the entire surface

of the aircraft. This approach, using quadratic doublet

distributions (equivalent to linear vorticity distributions)

was first used in the PAN AIR code (refs. 9-14) and its

pilot code predecessor (ref. 15). It has since been imple-

mented in the European version of PAN AIR, called

HISSS (ref. 16). The continuous-doublet distribution

eliminates the appearance of spurious line-vortex terms at

the panel edges, which was the cause of the numerical

stability problems in the earlier approaches.

Within the limitations of the Prandtl-Glauert equa-

tion, the higher-order singularity distributions used in the
PAN AIR and HISSS codes allowed the actual-surface

paneling models, long in use for subsonic flow, to also be

used for supersonic flow. It also had a very beneficial side
effect: the numerical solutions turned out to be much less

sensitive to the size, shape, and arrangement of the panel-

ing than in earlier methods, including the subsonic-only
methods. Partly for this reason, continuous quadratic dou-

blets were incorporated into the subsonic-only MCAERO

code (ref. 17). These advantages did not come free how-

ever. The higher-order distributions require much more

analytic work to derive the influence-coefficient equa-

tions, and demand many more arithmetic operations than

the simpler lower-order (constant-strength) methods,

which results in significantly higher run costs.

It was subsequently discovered that for subsonic

flow, setting the perturbation potential to zero at the inte-

rior side of panels, in conjunction with the original lower-

order singularity distributions, also reduced the solution

sensitivity to variations in panel layout. This led to a
renewed interest in the lower-order methods, resulting in

the VSAERO (refs. 18, 19) and QUADPAN (refs. 20, 21)

codes. QUADPAN was later revised to handle the super-

sonic case by changing its constant-strength doublets to
continuous linear doublets.

2. WHAT PANEL METHODS CAN AND

CANNOT DO

Panel-method-based computer programs are currently

the workhorse codes for predicting the aerodynamics of

complete configurations. Representative aircraft examples

that have been analyzed with panel method codes are

shown in figure 2. Although such codes are routinely used

to analyze very complicated geometries, they do so at the

expense of ignoring much fluid physics. The equation that

panel codes solve is the Prandtl-Giauert equation. For

steady subsonic flow this equation is usually written as

V2_ : (1- M2)¢xx +_yy + Czz = 0 (1)

and for supersonic flow it is sometimes multiplied by -1,

2 (2)

where M_ is the flee-stream Mach number and _) is the

perturbation velocity potential.

For subsonic flee-stream flow, equations (1) and (2)

are elliptic, being similar to Laplace's equation. Such
equation types have the property that any disturbance at

some point is felt everywhere in the flow field (although

the effect usually dies out rapidly with distance). For

supersonic free-stream flow the equations are hyperbolic,

with the x-derivative term behaving like time in the wave

equation. Solutions for the supersonic case are

fundamentally different, disturbances having restricted



zonesof influence (or in Von Karman's words, zones of

"silence," or "forbidden signals"; ref. 22). The dis-

turbances only propagate downstream, along rays defined

by the Mach cones (characteristic surfaces), reflecting off

downstream geometry and interfering in a wave-like
manner with other disturbances.

The Prandtl-Glauert equation is the simplest form of

the fluid-flow equations that contain compressibility

effects (i.e., the effect of Mach number on fluid density).

It is obtained from the more general Navier-Stokes equa-

tion by (1) neglecting all the viscous and heat-transfer

terms; (2) assuming that the flow is irrotational, thereby

admitting the introduction of a velocity potential; and

(3) discarding all nonlinear terms. This restricts the flow
to be inviscid, irrotational, and linear. Often, the flow is

also assumed to be steady. Physically, these restrictions

mean that important flow behavior such as separation,

skin-friction drag, and transonic shocks are not predicted

with panel methods. Items that are predicted include drag-
due-to-lift (often called induced drag for subsonic flow,

and vortex drag for supersonic flow), and wave drag.

Wave drag is predicted because the Prandtl-Glauert
equation admits solutions that approximate the weak-

shock solutions of shock-expansion theory (ref. 23,

pp. 215, 216). A simple example is the supersonic flow

over a thin wedge (fig. 3(b)). For small wedge (deflection)

angles, the shock is attached at the wedge leading edge,

forms at an angle very nearly to that of the Mach angle,
and the flow remains supersonic on the downstream side

of the shock. The limiting case for these weak shocks, in

which the shocks form at exactly the Mach angle, is pre-

dicted by the Prandtl-Glauert equation.

The absence of any explicit viscous effects causes

subsonic flow solutions to be non-unique unless a Kutta

condition at sharp trailing edges is somehow imposed

(ref. 24, pp. 80, 81). This is done with the addition of

some type of wake panels that trail downstream from

lifting-surface trailing edges (fig. 3(a)), causing the flow

to separate smoothly from these edges and allowing the

potential to jump (be discontinuous) across the wake.

Most panel methods require the user to assume the shape

and position of the wakes. For a simple wing body this

poses no difficulty, the wake position being relatively

unimportant. However, for multiple-lifting-surface config-

urations, the wake placement is important since it affects

the flow experienced by downstream geometry. A few

codes iteratively solve for the wake shape and location.

Because panel methods are able to treat complete

configurations, they have often been used in combination
with other methods to approximately account for addi-

fional physics neglected by the Prandtl-Glauert equation.
One fairly common practice is to include the presence of

the wing boundary layer (ref. 25). The basic idea is to use

the pressure distribution from the panel-code solution as

input to a boundary-layer code and compute the displace-
ment thickness. This incremental thickness is then repre-

sented in a second run of the panel code. This is usually

done in one of two ways, as illustrated in figure 4

(ref. 25). The first is to actually recompute the wing
surface coordinates and the new wing-body intersection

by adding the displacement thickness to the actual wing

geometry. An alternative approach is to use "blowing," in
which the source strengths of the wing panels are adjusted

such that each panel ejects (or sucks) enough fluid to

cause the resultant flow field to be approximately

displaced by the displacement thickness. For either
approach, the resulting change in actual or apparent wing

shape has two effects: it reduces the effective camber of a

cambered wing and it increases the wing thickness. For a

specified angle of attack, the primary aerodynamic effect

of these changes is a reduced lift owing to the reduced
camber. The second, but usually less important effect, is a

slight increase in lift owing to the increased wing
thickness.

Another example is the coupling of panel codes to

propulsion codes. In reference 26, the PAN AIR code is
coupled to a parabolized Navier-Stokes propulsion code.

The purpose was to account for the viscous, high-energy,

exhaust-flow effect on the aerodynamic flow about the

complete aircraft.

Panel-method codes have also been built to model the

flow separation that occurs off highly swept wings with

sharp leading edges (refs. 27, 28). In these codes, wake

panels emanate from the wing leading edge, as well as

from the trailing edge (fig. 5). Iterative techniques are
used to solve for the correct shape and position of the

leading-edge wake panels. The criteria to be satisfied are

(1) that the Kutta condition be enforced and (2) that the
entire wake surface be a stream surface (i.e., no flow

crosses it, and it supports no pressure jump).

3. COMMON ROOTS OF PANEL METHODS

As indicated in section 2, panel methods rely on sur-
face distributions of sources, doublets, and vorticity. We

will see later that doublet and vortex distributions are

related. Since surface vorticity is a vector and a doublet is

a scalar, it is often easier to work with doublets than with

vorticity, and then compute the vorticity from the doublet-

strength distribution. Most higher-order panel-method

codes take this approach.



It can be verified by direct substitution, that the fol-

lowing expressions, called unit point sources and dou-

blets, respectively, satisfy the Prandtl-Glauert equation

(eqs. (1) or (2)).

Point source:

-1

Point doublet:

oD(gQ) = ft. _Q 1 -l_(gp, gQ)
R(gp, gQ) =_ R 3

where the so-called hyperbolic distance R is given by

This form clearly shows the directional properties of a

point doublet and reveals that a doublet disturbance dies

off at least as rapidly as the inverse of the distance
squared.

Since the Prandtl-Glauert equation is a linear partial

differential equation, sums of the source and doublet

(3) solutions are also solutions. Thus, panel methods are usu-

ally thought of as superposition methods, and, hence, are

restricted to linear problems. There is a more general

approach, however, that, while containing superposition

as a special ease, can also be used to solve nonlinear prob-

lems. In section 6 we will take a look at how panel-

(4) method technology can be combined with other tech-
niques to solve the nonlinear full-potential equation, so it

is advantageous to look at this more general approach,

known as Green's third theorem (ref. 29, p. 21, eq. (7)).

R = _(XQ-xp)2 +I_2I(YQ-Yp)2 + (ZQ-zp)2 ] (5a)

_2 = 1 - M 2 (Sb)

where

In these expressions, point P is the influenced point in

space having coordinates _p = (xp, yp, zp), and point Q is
the influencing point gQ = (xQ, yQ,ZQ) at which the unit
point source or doublet is located (see fig. 6). There is an

elemental area dSQ associated with the doublet, and the
doublet axis is normal to this area. (Recall from elemen-

tary fluid mechanics that a doublet can be thought of as a

source-sink pair approaching each other along an axis.
This definition of a doublet produces the same result as

eq. (4).) The subscript Q on the scaled gradient operator

means that the derivatives are to be taken with respect to

the coordinates of point Q, not point P.

For incompressible flow, R becomes simply the geo-

metric distance between the two points P and Q. Equation

(3) then tells us that a point source at Q produces a distur-

bance at P that diminishes inversely as the distance

between the two points. The meaning of equation (4) is

not so obvious until one works out the expression indi-

cated by the dot product. If one chooses the xyz coordi-

nate system at point Q as shown in figure 6, then the unit
normal fi equals the unit vector k and equation (4)

becomes simply

(_D - sin 0

p = _ (6)

In reference 29, the derivation corresponds to incom-

pressible potential flow; in reference 30, this is general-

ized to the compressible case. The result is the following
identity:

o,.:jj

+fffV (_72(_)Ko(x, XP) dv
(7)

where

=

dV = dx dy dz

o=A(a._)

la=A_

(8)

In the above equations o is the source strength and I.t

is the doublet strength at any point Q, on the surface S,

which in our case will be all (for subsonic flow) or part
(for supersonic flow) of the aircraft surface and wakes.

These strengths are equal to jumps (discontinuities) across

the panels of certain flow properties. The source strength

equals the jump in the normal component of the mass-flux

vector ft. The doublet strength equals the jump in

4



potential,andthegradientof thedoubletstrengthequals
the jump in tangential component of velocity. The values

of these strengths are the (as yet unknown) amplitudes of

the source and doublet singularity solutions appearing in
equations (3) and (4). Here, these source and doublet

solutions, when multiplied by a constant k -1, are denoted

as Ka and K_t, respectively (K is used to denote that the
singularities are called kernels). For M** < 1, k = 4r¢, and

S is the entire surface of the aircraft and wake(s). For

M** > 1, k = 2_t, and S is that portion of the aircraft

surface and wake(s) that lies in the upstream Mach cone

emanating from the influenced point P.

Equation (7) shows us that the velocity potential at

point P is related to the source and doublet distributions
on S, and to the spatial distribution of V2 0 in the volume

V bounded (wetted by) both sides of S. If d_p is con-

structed according to the surface integral terms in equa-
tion (7), that is,

_bP= ffS [t3K a + I.I.KI_]dSQ
(9)

then, because equation (7) is an identity, it follows that

fj'j'v(O ,) oOV=0 (10)

Since Ko is a function of the arbitrary point P, V2 o must

be zero. Thus, construction of ¢p according to equa-

tion (9) implies that equations (1) and (2), the Prandd-

Glauert equation, has been satisfied throughout V.

Equation (9) is the basic starting formula for panel

methods using sources and doublets. If the source and

doublet strength distribution is known (we will see how

this is done later), then the velocity at point P is obtained

from equation (9) by differentiating with respect to the
coordinates at P, that is

Vp = Vp_P = J'fS[O_'pKo + _VpKI,t]dSQ (11)

Equations (9) and (11) are used to generate influence-

coefficient equations that relate source and doublet

strengths at particular points Q on the surface S to the

potential and velocity at field points P. The basic idea is to

break S into a collection of panels Z and to assume a

functional form for a and I.t over each panel. For example,

a constant-strength source-doublet panel with index j is
given simply by

s (1:a)

where the unknown constants k s and _D arecalled source
and doublet singularity parameters, respectively, for panel

j, and (_,rl) are local surface coordinates associated with

the panel.

Once the functional form for aj(_,rl) and Bj(_,_) are
specified, equations (9) and (11) can be integrated over

each panel (a nontrivial task) so that 0p and Wp are

expressions involving only the unknown singularity

parameters. If P is made a control point (a panel point at

which a boundary condition will be imposed) with index i,

equations (9) and (11) give the potential and velocity at

that point in terms of (as influenced by) the source and

doublet disuibutions of the single panel j (see fig. 7). Note

that the fixed point P and the variable point Q of the ana-

lytic formulation correspond to control point i and panel j,
respectively, in the discretized implementation. Summing

the effects from all the panels on the aircraft surface gives

the potential and velocity at control point i in terms of the

total number (N) of singularity parameters.

If _ijdenotes the velocity at control point i, owing to
the source-doublet distributions at panel j, then the veloc-

ity at point i owing to all N panels is

N

fi=v.+
j--1

(13)

If the panel associated with control point i is to be a solid
(impermeable) panel represented by a zero normal com-

ponent of the total velocity, then the boundary condition is

%.+ .a =o
_, j=l )

(14)

Thus, for control point i, we have

N

X vii" lli = -V**" Ill

j=l

(15)

and since the vii are known (from eq. (11)) in terms of the
N singularity parameters, equation (15) can ultimately be

expressed as the single equation



N

E VICij_,j = bi (16)

j=l

where the VICij are called velocity influence coefficients

and b i = -V**. fii.

Repeating the process for a total of N control points

and applying boundary conditions at each of these points
leads to the equation

[AIC]{_} = {b} (17)

In this equation, [AIC] is called the matrix of aerody-
namic influence-coefficients, {X} is the vector of

unknown singularity parameters, and the elements of {b},

the so-called fight-hand-side quantities, are known from

the boundary conditions. Solving for the singularity

parameters then makes it possible to compute (from
eqs. (9) and (11)) the potential and velocity distributions,

and hence the pressures acting at the paneled approxi-

mation to the surface S. Integrating the pressures and their

moments yields the resultant aerodynamic force and
moment.

To summarize the basic ideas, a panel method uses
the fact that sources and doublets are solutions to the

Prandtl-Glauert equation. The numerical procedure is as
follows:

1. Break the aircraft surface into an assemblage of
panels

2. Use the panels to create source-doublet distribu-

tions in terms of singularity parameters {Z.}, whose values
are to be determined

3. Form influence-coefficient expressions for the

potential or velocity or both at each of N panel control

points owing to the source-doublet distribution of any
panel; for supersonic flow the zones of silence must be
accounted for

4. Use the influence-coefficient expressions to

enforce boundary conditions at N points, giving the N x N
system of equations

{b}

5. Solve for the singularity parameters {_.}, then

compute the potential and velocity at any point of interest

6. Knowing the velocity, compute the panel pres-
sure distributions

7. Integrate the pressure distributions to obtain
forces and moments

The above process, in one form or another, is common to

all panel methods. Selecting a way to break the surface S

into panels I;, choosing and implementing functional

forms for 6 and It, and evaluating the influence-

coefficient surface integrals are the fundamental tasks.

In section 4 we discuss how various codes differ in

the selection of I;, and of o(_,T1) and It(_,'q). Section 5

describes various means of specifying boundary condi-

tions and other aspects of modeling physical problems.
Appendix A gives additional details about how the basic

approach described above is actually implemented into
the PAN AIR code. This will lead to specific surface inte-

grals that must be evaluated to obtain the influence-

coefficients. The analytic evaluation of some of these

integrals for subsonic flow is given inappendix B.

The reader is warned that the above description has
ignored some subtle points that will be addressed later.

Specifically, a panel with both source and doublet distri-

butions requires two boundary conditions per panel. These
boundary conditions generally require some statement

about the flow on each side of the panel. (There is an

exception in supersonic flow.) The boundary conditions

must also produce a well-posed mathematical problem,
that is, one with a unique solution; otherwise the AIC

matrix will be singular. Also, some of the analytic expres-

sions for the potential and velocity can become singular

(blow up) when the influenced point is a point of the

influencing panel (when i = j); hence use of the name

source-doublet "singularities." Boundary conditions will

be discussed in section 5, and improper integrals (those

having a nonintegrable singularity) will be discussed in
appendix C.

4. DISTINCTIONS BETWEEN PANEL CODES

Having outlined the basic approach used by panel

methods, let us now look at various implementations. Dif-

ferent ways of approximating the actual aircraft surface

with surface panels will be described first, followed by the
selection of singularity distributions and their functional

forms. Finally, a summary of several specific panel codes
will be presented.



Surface Geometry

Current actual-surface panel codes generally allow
the user to break the configuration into logical pieces such
as forebody, canopy, and the wing upper and lower sur-
faces. In the PAN AIR code, such logical pieces are called
networks of panels (fig. 8). A component such as a wing
can also be broken into several networks. For example,
two different models for the F-16XL wing upper surface

are shown in figure 9. The 3-network model is appropriate
if control-surface deflections are not of interest; the
10-network model allows leading and trailing-edge
control surface deflections to be made.

Panel codes typically use arrays of M × N surface
grid points to define the comer points of panels, as illus-
trated in figure 10. Since the four panel comer points are
not, in general, coplanar, a single flat panel cannot be
used to connect the four comer points.

The lower-order (constant-strength) codes usually use
some kind of flat "average" panel defined by the four
comer points. Using flat quadrilateral panels to represent
a curved surface causes gaps to exist between the edges of
adjacent panels (fig. 11, courtesy of John Hess). This
approach begs the natural question about "leaks" through
the gaps. Actually, for constant-strength panels, the panels
themselves leak rather badly everywhere except at the
control points x, where the discrete boundary conditions
are imposed. The constant-strength, singularity influence-
coefficient-computed velocities at any points on the panel
other than the control point are not generally reliable. Sur-
face and near-surface values of velocity away from the
control points are usually obtained by interpolation.

Parabolically curved panels have been used in at least
three higher-order, subsonic-flow codes (refs. 31-33). For
a given number of panels on a curved surface, such panels
generally provide better accuracy than do flat panels. The
parabolically curved panels are similar to the flat panels in
that they still leave gaps between adjacent panels.

As indicated in the introduction, the difficulties

encountered with extending panel methods to supersonic
flow were eventually traced to using doublet-strength dis-
tributions that were not continuous at panel edges. The
task of building continuous donblet-strength distributions
requires that the panel edges themselves be contiguous
(have no gaps) since the doublet strengths are referenced
to the panel geometry.

There are several ways to connect an M × N array of
arbitrary points with-t'M - 1) × (N - 1) quadrilateral pan-
els that have no gaps along adjacent panel edges. Probably

the simplest is to use several piecewise flat subpanels to
connect four comer points. The most recent version of the
QUADPAN code uses four triangular subpanels
(fig. 12(a)), whereas the PAN AIR, HISSS, AND

MCAERO codes use four triangular subpanels and a flat
interior parallelogram (fig. 12(b)). Although not shown in
figure 12(b), the flat parallelogram portion of the panel is
further subdivided into four more triangular panels
defined by the diagonals of the parallelogram. This is
done to facilitate the construction of the continuous

quadratic doublet-singularity distributions within the
panel.

Two codes, SOUSSA and the most recent version of

the LEV code (leading-edge vortex code, also called the
flee vortex sheet code, ref. 27), use hyperbolic-paraboloid
panels, (fig. 12(c)). The curved shape of these panels is
the same as for a structural plate that is loaded as in fig-
ure 12(d), that is, a twisted shape is produced (ref. 34).
The side edges remain straight and hence produce no
gaps.

Use of the contiguous piecewise fiat panels has
enabled the influence-coefficient-equation surface inte-
grals (eqs. (9) and (11)) to be evaluated analytically for
both subsonic and supersonic free-stream flow. Use of the
hyperbolic-paraboloid panels has been restricted to sub-
sonic flow (no one has been able to evaluate the surface
integrals when using these panels for supersonic flow).

Singularity Distributions

Most codes use a combination of source and doublet

distributions on the panels. The primary exceptions are
the Woodward-Carmichael and USSAERO (also called
Woodward-2) codes, which use elementary horseshoe
vortices instead of doublets. The elementary horseshoe
vortex potential is obtained by integrating the doublet
potential in the x (streamwise) direction (ref. 35, p. 87).
The strength of the vortex distribution, also called the sur-
face vorticity vector Y, is related to the doublet strength as
follows (ref. 2, eq. (A-3); ref. 11, eq. 03.3.9)).

(18)

Both _ and V_t are in the plane of the panel, fi is a unit

vector normal to the panel, and ® is the cross-product
operator.

Source, doublet, and vorticity surface distributions
cause certain flow properties to be discontinuous with

respect to the panel surface; that is, there is a jump in the
flow properties. In general, this means that the velocity



vectorson opposite sides of a panel are different. This is
illustrated in figure 13, where the subscripts U and L refer
to the "upper" and "lower" sides of the panel, respec-
tively. For incompressible flow, a source-only panel
causes the normal component of the velocity at point (_,rl)
of the panel to jump by an amount given by

(%- (19)

and a doublet-only panel causes both the potential and the
tangential component of velocity to jump. These jumps
are given by

%-*L = (2o)

_¢Tu- VTL= Vl.t(_,rl) (21)

The jump property given by equation (21) is derived in
appendix B. Each of the jump properties is derived in ref-
erence 33.

The velocity jump across a panel for incompressible
flow is then given by

_'u - VL = O'fi+ Vbt (22)

The generalization of equation (22) for compressible flow
is given by equation B.3.29 of reference 12 (version 3.0,
1990).

Equations (18) and (22) provide some guidance for
selecting consistent functional forms for the singularity
distributions. A constant-strength source panel combined
with a constant-strength vorticity panel or a linear-
strength doublet panel will produce a velocity-jump dis-
tribution that is constant over the panel surface. A linear

velocity-jump distribution requires a linear-source and
linear-vorticity or quadratic-doublet distribution. As will
be discussed later, popular sets of boundary conditions are
those that include setting the perturbation potential to zero
on the interior side of panels (the side not wetted by the
external flow field). Consequently there is no interior
perturbation velocity, and the velocity jump across the
panel equals the perturbation velocity on the exterior side.

As discussed in reference 32, consistency also

depends on the surface shape used for the panels. Flat
panels are consistent with constant sources, and parabolic
panels are consistent with linear sources. In this sense, the
methods of references 32 and 33 (which use parabolic

panels, linear sources, and linear vorticity or quadratic

doublets) are among the few totally consistent higher-
order formulations.

Continuity of Doublet Strength

The reason discontinuous doublet strength can cause

disastrous numerical problems in supersonic flow is illus-
trated in figure 14. For a problem simple enough to solve
in closed form, the actual doublet strength might look

something like that in the top part of the figure, that is, I.t
varies in a continuous manner. A panel method that does
not enforce doublet-strength continuity at panel edges will
produce a solution like that shown in the lower part of the
figure, that is, the doublet strength jumps at the panel
edge. Now consider either of the panels separately. In this
view the doublet strength has a nonzero value at the panel
edge. The velocity field produced by the doublet distribu-
tion on either panel is given by the second term of equa-
tion (11). This term can be integrated by parts (appen-
dix B of ref. 11) to obtain

1 ffST @(VpR-1)d_ d_VP= i"

(23)

where the line integral is around the panel perimeter.

The surface integral in equation (23) involves the sur-
face vorticity vector _, and is called the regular part of the
doublet velocity. The line integral involves the doublet
strength at the panel edges and is called the line-vortex
term. The two line-vortex terms from the common edges

of the two panels in figure 14 produce a single line-vortex
of strength F(/) = A_t(t), where AIx(l) is the jump in the
doublet strength along the panel edge. The velocity field
from this line vortex is spurious since the actual doublet
strength does not jump at the panel edge; that is, the dis-
cretization has introduced velocities that should not exist.

In subsonic flow these spurious velocities decay

rapidly with distance from the edge and usually do not
cause serious problems. In supersonic flow, these veloci-

ties persist, their effect propagating down the Mach cones.
Consequently, erroneous incremental flows continue to
exist at control points within the domain of influence of
the disturbance points, thereby introducing errors in the
AIC matrix. These errors are frequently serious enough to

produce a totally incorrect solution for the flow.

Now, if it were known in advance that the discretized

doublet strength would always be continuous in value,



then the resultant line-vortex term along common panel
edges of adjacent panels would always be zero. Hence,
the line-vortex term in equation (23) would not even have
to be computed, but could be simply discarded. This
approach is taken in the subsonic-supersonic-flow PAN
AIR and HISSS codes: the doublet strengths are made
continuous by construction and the line-vortex terms are
thrown away.

A comparison of results for a 3%-thick swept wing at
M** = 2.05, based on discontinuous and continuous

quadratic-doublet distributions, is shown in figure 15
(figs. 9 and 10 in tel 36; figs. 48 and 62 in ref. 37). In the
discontinuous-distribution case, there is a pressure spike
at about 80% chord of the station just inboard of the tip.
This is caused by a doublet-strength discontinuity near the
leading-edge region of the wing tip, the effect of which
propagates down the Mach cone originating at the tip
leading edge. The spike is not present in the continuous
doublet-distribution case.

Summary of Methods

Table 1 summarizes the basic features of several

panel codes. Codes that handle only subsonic flow are
listed separately from those that treat both the subsonic
and supersonic cases. The QUADPAN code is listed twice
because it was originally a subsonic-only code and was
later revised to do supersonic flow. The year given next to
each code's name is the approximate year the code was
introduced. The panel geometry and the singularity types
and their spatial distributions are listed for each code. A

footnote indicates that geometry or singularity type is con-
tinuous from panel to panel. The table includes what are

probably the best known, or most generally available
codes; other codes (often proprietary) also exist. Refer-
ences 39 through 41, as well as other sources (material
distributed at the 1985 AIAA Workshop on Aerodynamic
Analysis Using Panel Methods), compare results from
several of the codes for various configurations.

Codes for subsonic-only flow- The lower-order
Hess code (also known as the Douglas-Neumann code) is
considered by many to be the fast practical implementa-
tion of the panel method for quite general geometry
(tel 2). It actually exists in several versions, the first
being a source-only version that did not treat lifting
problems. The lifting case was later added. The Hess
family of codes is one of the few that enforce the Kutta

condition with a nonlinear pressure rule. As shown in
reference 40 this can sometimes give a better trailing-edge
pressure result than is possible with a linear approxi-
marion to the pressure rule.

MCAERO uses higher-order continuous doublet dis-
tributions on piecewise flat continuous panels (tel 17).
One of its important capabilities is the use of analytically
differentiated (with respect to panel coordinates)
influence-coefficients. These are used to efficiently
implement the so-called design problem, that is, the prob-
lem of determining the geometric shape required to pro-
duce a specified pressure distribution.

SOUSSA stands for steady, oscillatory, and unsteady
subsonic and supersonic aerodynamics (tel 8). Although
it produced some supersonic results by using a small but
nonzero reduced frequency, it turned out to be incapable
of doing steady supersonic flow. One of its legacies was
to popularize the so-called Morino boundary-condition
formulation, which is discussed in section 5. This formu-
lation led to renewed interest in lower-order subsonic

codes and resulted in the development of the VSAERO
and QUADPAN codes.

VSAERO (from vortex separation aerodynamics
analysis) is one of the few codes that contain a procedure
for calculating the shape and location of the trailing-wake
system (ref. 18).

The LEV code (leading-edge vortex; ref. 27) is also
known as the free-vortex sheet code. It was designed
specifically to model the vorticity shed from sharp leading
edges of swept wings (fig. 5).

The higher-order Hess code (ref. 32) is the most
recent version of the Hess family of codes. It uses
parabolically curved panels in conjunction with linear
source and linear vorticity (quadratic doublet)
distributions.

Codes for subsonic or supersonic flow-The
Woodward-Carmichael code (tefs. 4, 5) (also known as
the constant-pressure panel code and the Woodward-I
code) was described in the introduction. It is still used for

simple configurations that can be approximated with the
mean-surface representation of figure 1(b).

USSAERO (unified subsonic/supersonic aerodynam-
ics) is also known as the Woodward-II code (ref. 7). It
differs from the Woodward-I code in that the line distri-

butions used for bodies were changed to constant-strength
source panels, and the constant-strength vorticity panels
were changed to distributions wherein the strength varies
linearly in the chordwise direction and is constant in the
spanwise direction. The corresponding doublet strength
(quadratic-linear) is not continuous, so flat mean-surface
models of lifting surfaces are usually required for super-
sonic flow.
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PANAIR(panelaerodynamics) is generally consid-
ered to be the first actual-surface paneling code with reli-
able numerics for supersonic flow (refs. 9-14). In addition
to using continuous doublet distributions, it was also nec-
essary to incorporate forward-weighted splines for the
supersonic case. This is somewhat analogous to the use of
forward-differencing in the finite-difference computa-
tional fluid dynamics (CFD) codes. The basic technology
in PAN AIR is also used in the HISSS code (higher-order
subsonic/supersonic singularity method, refs. 16 and 42).

QUADPAN (quadrilateral panel aerodynamics pro-
gram) started out as a subsonic-only code and used
constant-strength sources and doublets (ref. 19). Later, the
doublets were changed to a linear-continuous distribution
so that supersonic flow could be handled (from 1985
AIAA Workshop on Aerodynamic Analysis Using Panel
Methods).

It has been well established that continuous doublet

distributions are essential for reliable numerics in super-
sonic flow. However, it is probably fair to say that there is
not a unanimous agreement between panel code develop-
ers about the need for higher-order approaches for the
subsonic-flow codes. The advantages that lower-order

codes offer over higher-order codes are (1) less work to
derive the influence-coefficient equations; (2) simpler
coding implementation (because the higher-order
approaches must relate information involving different
panels, which leads to special cases and logic); and (3) far
fewer arithmetic operations, hence lower run costs. One
reason some subsonic-only codes use higher-order
approaches is that their developers believe the numerics
are more reliable than those of the lower-order approaches
for highly complex geometry. In the case of two codes
that use parabolic panels with linear sources and quadratic
doublets, numerical calculations have demonstrated that

fewer panels are required than for lower-order methods to
obtain a given accuracy (refs, 32, 33). This seems to be
especially true for internal flows.

5. MODELING

Modeling refers to particular techniques used to
simulate flow about an object. The modeling tools at the

disposal of a panel-method user are (1) the geometric
generality that panel codes provide, (2) the use of sources
and doublets, individually or in combination, and
(3) boundary conditions. In this section we will discuss

boundary conditions, their interplay with the source-
doublet jump properties introduced in section 4, and how
the combination can be used to model in different ways.
There is also a brief look at wake modeling.

In section 2 we discussed the general limitations
inherent in the Prandtl-Glauert equation derivation,
namely, the fl0w is represented as being inviscid, irrota-
tional (potential), and linear. If the free-stream Mach
number is supersonic, there are additional geometric
restrictions; these are illustrated in figure 16.

In supersonic flow," the Prandtl-Glauert equation
admits solutions for solid surfaces only if the surfaces are

swept back more sharply than the Mach cone. Thus, the
higher the Mach number, the more streamlined must be
the aircraft. This restriction means that forebodies must be

pointed, not blunt. Wing leading edges can be blunt only
if they are swept behind the Mach cone (a so-called sub-
sonic leading edge).

Surfaces can be swept at angles smaller than the
Mach cone only if they do not represent solid surfaces.
These so-called superinclined panels (ref. 11) are used for
nacelle inlet faces and nozzle exit planes. Superinclined
panels use both sources and doublets, and both boundary
conditions must be prescribed on the downstream side of
the panel. Numerical experiments indicate that these
downstream boundary conditions must also be of a spe-
cific type, namely, that the potential and its normal deriva-
tive must be specified. This is analogous to an initial

value problem. Superinclined panels have no upstream
influence. The panels generate a downstream flow only
and simply absorb any flows that run into them. Refer-
ence 11, appendixes A and B in reference 12, and refer-
ence 37 are recommended sources of information on the

supersonic aspects of modeling.

Mass.Flux and Velocity Boundary Conditions

The physical description of a real flow at a surface is
given by the no-slip boundary condition

_" = 0 (24a)

or

(pV) = 0 (24b)

These equations state that the total velocity vector V, or
the mass flux vector (p'_), is zero at a solid surface. For
inviscid flow, the tangential component of the velocity
cannot be prescribed (unless the pressure is known) and

equations (24) are replaced with the zero normal-flow
boundary conditions,

9. fi = 0 (25a)
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or 9"._' = 0 (3O)

(pg). fi: o (2Yo)

which must be supplemented with a Kutta condition for
subsonic trailing edges.

Equation (25b) is nonlinear since the density is a
function of the unknown velocity; a linear approximation

to equation (25b) is (from sec. 1.11 of ref. 30)

p9 - p..9.. + p.. % (26)

Equation (26) involves neglecting terms that are of the
same order of magnitude as those neglected in deriving
the Prandfl-Glauert equation. Dividing by p**gives

•_' = _ Q -" _¢. + g, (27a)

where, from equation (8)

(27b)

The quantities "_ and _, are called the linearized total

and perturbation mass flux, respectively. Thus, equation
(25b) is approximated by the mass-flux boundary
condition

_. fi = 0 (28)

which is linear in the components of the perturbation
velocity, and depends on the free-stream Mach number. If
the panel is not meant to be impermeable, for example, at
an inlet face, then the right-hand side of equation (28) is
replaced with a specified nonzero value.

For a fixed subsonic Mach number, a solution for

_(x,y,z) can be obtained in either of two ways. The first is
to solve the "true" compressible problem, that is, solve the
Prandtl-Glauert equation as it stands, using the mass-flux
boundary condition applied to the true geometry. The sec-
ond (and better known) way is to solve the equivalent

incompressible problem by using the Prandd-Glauert
transformation to convert equation (1) to Laplace's equa-
tion (sec. 7-1 in ref. 35):

¢i'x' + ¢_'y' + ¢;:z': 0 (29)

using the velocity boundary condition

applied to the transformed geometry. In equations (29)
and (30) the primes indicate that all the variables
are in the transformed coordinates, for example,

_p _• / _• • • " the solution" for 1_•V = V" + [¢x',0y',0z'). Transforming
back to the'true (physic'al) variables gives the solution for
0 for the true geometry. The important point is that the
solution for 0 obtained from the first approach will be the
same as that obtained from the second approach (ref. 43).

Thus, solving for the flow about the true geometry by
using the subsonic Prandtl-Glauert equation with mass
flux (instead of velocity) boundary conditions, is mathe-
matically the same as solving the equivalent incompress-
ible problem with velocity boundary conditions applied to
the transformed geometry. The first approach has the
advantage that it can also be used for supersonic flow
(where there is no equivalent incompressible problem).

Note that the linearized mass flux defined by. equa-
tions (27) is not parallel to the true mass flux pV, and,
hence, is not parallel to the velocity vector V = V**+ 9.
This inconsistency is one of the prices paid for the lin-
earization. The consequences of this will be illustrated
with the following two examples. (Theoretical discussions
of mass-flux and velocity boundary conditions appear in
refs. 44-46.)

The first example demonstrates the accuracy of the
mass-flow boundary condition and the Prandtl-Glauert

equation for supersonic flow over a thin wedge. It also
demonstrates the jump properties of the mass-flux and

velocity vectors across shocks predicted with the Prandd-
Glauert equation.

Panel-method results obtained from the PAN AIR

code are shown in figure 17 (from ref. 9). The boundary
condition applied to the exterior side of the panels is the
linearized mass flux condition V¢. fi = 0. This forces the

linearized mass flux vector _r instead of the resultant

velocity vector V, to be parallel to the wedge faces. Pres-
sures have been computed with the isentropic and the
second-order pressure rules (eqs. (8.10) and (8.11),
respectively, in ref. 23). Also shown are the pressure
distributions computed from shock-expansion theory and
from classic linear thin-airfoil theory (secs. 4.16 and 4.17,

respectively, in ref. 23). The PAN AIR results are very
close to those of nonlinear shock-expansion theory,

having a greater pressure magnitude on the frontward-
facing compression surface than on the rearward-facing
expansion surface. This contrasts with the classic linear
thin-airfoil theory, which predicts equal and opposite

pressures on the two inclined faces.
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How does one explain that PAN AIR, which solves

the linear Prandtl-Glauert equation, produces results that

agree more closely with nonlinear shock-expansion theory

than with classic linear thin-airfoil theory? Apparently, for

this particular problem, the velocities are small enough to

make negligible the nonlinear terms in the differential

equation. This conclusion is justified by the close agree-

ment between the isentropic and second-order pressure

rules. (It is good practice to always compute the pressures

by these two rules; a substantial disagreement in the
results is a sure sign that the small-perturbation assump-

tions of the Prandtl-Glauert equation are being violated.)

Since classic thin-airfoil theory is also based on the

Prandtl-Glauert equation, but in addition depends on

complete linearization of the boundary conditions, the

explanation must reside in the boundary conditions.
Although PAN AIR uses the linearized mass-flow W in

the boundary condition fie. fi = 0, the unit normals fi act

at the actual wedge surfaces. In the classic linear-theory
solution the boundary conditions are not applied to the

true geometry. Instead, the boundary conditions are

applied along the straight upper side of the wedge, and the

flow is made to turn through the wedge angles, as in the

mean-surface modeling of the Woodward-Carmichael
code (see sec. 1). So, this appears to be an example of an

instance in which the solution is more affected by approx-

imations made to the boundary conditions than it is by

those made to the differential equation.

The mass-flux and velocity vectors at two points on

opposite sides of the Mach line emanating from the wedge

apex are shown in figure 18. We first note that for expan-

sive flow about a corner, such as at the wedge apex, the

Prandti-Mayer solution predicts an expansion fan. That is,

away from the apex the flow properties change gradually

through the fan. However, the Prandtl-Glauert equation

predicts abrupt changes that occur along the apex Mach

line. This "expansion shock" approximation to an expan-

sion fan is a poor representation at large distances from

the apex, but is accurate near the apex. Our point here is

to illustrate what happens to a panel-method solution

across such a shock (whether expansive or compressive).

Both the mass-flux and velocity vectors are discontinuous

across the Mach line; they jump in both magnitude and

direction. For the mass flux, the tangential component

jumps, and the normal component is continuous. For the

velocity, the tangential component is continuous, and the

normal component jumps. This is the same behavior as

predicted by the nonlinear Rankine-Hugoniot relations,

thus providing some measure of confidence in the lin-

earized mass-flux approach.

The second example (fig. 19) shows the pressure at

any point on 10 ° and 15 ° half-angle cones at zero angle of

attack, for free-stream Mach numbers between 1.0 and 4.0

(fig. 4.1 in ref. 15). At the lower Mach numbers, the mass-

fux-boundary-condifion solution agrees more closely
with the exact Euler-equation solution than does the

velocity-boundary-condition solution. As the Mach num-

ber increases, the mass-flux and velocity-boundary-
condition solutions become less accurate. The mass-flux-

boundary-condition solution rapidly diverges from the

exact solution, and crosses the less rapidly diverging

velocity-boundary-condition solution. As the cone angle
increases, the Mach number at which the mass-flux and

velocity-boundary-condition solutions cross one another

becomes smaller. This supersonic "thick-body" behavior
is responsible for the fact that when panel methods are

applied to nonslender fighter forebodies, the velocity-

boundary condition often gives superior answers to the

mass-flux boundary condition in the region just ahead of

the canopy (refs. 47, 48). For such cases, the mass-flux

boundary condition can actually produce negative pres-

sure coefficients, as suggested by the 15 ° cone solution

behavior of figure 19. For bodies that are adequately slen-

der, the linear Prandtl-Glauert equation with mass-flux

boundary conditions can provide good answers, for exam-
ple, the Mach 1.6 pressures on the B-1 forebody presented

in references 36 and 37. The important conclusion to be

drawn from figure 19, and from other examples in ref. 15,

is that inviscid supersonic flow solutions based on the

Prandtl-Glauert equation can be substantially in error if

the Mach number, thickness, or angle of attack are too

large. In such cases, codes based on nonlinear theories

(for example, the full-potential equation or Euler equa-
tions) must be used for reliable answers.

Interior Potential

An actual-surface panel model of an aircraft generally
produces a set of panels that separates space into two or

more distinct regions: enclosed interior volumes and an

external volume extending from infinity to the external

side of the panels. The flow in the external volume corre-

sponds to the physical flow field being modeled. The flow

in the interior volumes is fictitious but, as will be shown,

can be used to advantage.

Newcomers to panel methods often find the idea of

an internal flow field to be strange in that no such flow

exists inside a real wing. However, it must be remembered

that we are using sources, doublets, and boundary

conditions to create the flow fields, and flow will exist on

either side of the source-doublet panels. The external-

internal flow fields are in general independent of one

another; they depend on the boundary conditions on the

external-internal sides of the panels. These include direct

boundary conditions explicitly imposed on each side of
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the panel and indirect boundary conditions resulting from
some specification of the source or doublet strength. The
indirect boundary conditions arise because of the jump in
flow properties produced by sources and doublets.

The boundary condition implied by the equation (20)
jump property is the cause of a common mistake made by
new users of panel methods, namely, not specifying the
potential at a point of an interior volume. When an interior
volume is totally enclosed by panels that all have doublet
distributions, the potential must be specified at one or
more interior points, and this must be done with a source
distribution. If this is not done, the problem is ill-posed,
that is, it does not have a unique solution, and the AIC
matrix will theoretically be singular (will not possess an
inverse). (In practice, numerical round-off error often
changes a theoretically singular matrix to just an ill-
conditioned matrix.)

The reason for the problem being ill-posed is gener-
ally explained as follows. At _ = ** the value of the poten-
tial owing to a source or doublet is zero (this is called the
far-field boundary condition). At the exterior side of pan-

els enclosing an interior volume the potential will have
some distribution Oext(X,y,z) that depends on the surface
boundary conditions and on the resulting source-doublet
strength distribution. On the interior side of the panels, the
potential is Oint(x,y,z), which by equation (20), differs
from the external distribution by an amount equal to the
doublet-strength distribution _t(_,TI).Now, if at some inte-
rior point, a constant c, arbitrary except that it must satisfy
any boundary condition associated with the point, were to
be added to 0int(x,y,z), then 0int(x,y,z) + c would also sat-
isfy the Prandtl-Glauert equation and, hence, be another
solution. The way to make the interior solution unique is
to specify a value for the potential at an interior point,
thus determining the constant c. (The same argument can
be made for the exterior side of the panels, which requires

that the arbitrary constant be zero to satisfy the far-field
boundary condition 0.* = 0. Thus, no explicit specification
of the potential at an exterior point has to be made.)

The interior potential at a point must be specified
with a source panel, and not a doublet panel, because of
the "physically" different behavior between sources (or
sinks) and doublets. With any paneled geometry, the
boundary conditions are enforced only at the control
points. Hence, when a finite number of control points is
used to impose boundary conditions there will be some
degree of "leakage." That is, the integral of the source
strength (jump in normal component of mass flux) over
the surface enclosing the interior volume will not be
exactly zero. When a source panel is used to specify
velocity potential in the interior domain, the panel is

capable of generating or consuming fluid to conserve
mass that is leaked out of or into the interior domain. (The

source strength is one of the unknowns that are solved
for.) The doublet panel does not have the ability to gen-
erate or swallow fluid (at least, in a net sense), and conse-

quently is not capable of handling the leaked flow.
Numerical examples demonstrating this behavior are

given in cases 5 and 6 of reference 49 (pp. 6-7).

Another interesting example in reference 49 is case 7.
Here, a thick wing is modeled using doublets-only for the
wing upper and lower surfaces and sources-only for the
panels closing off the wing-tip opening. Using only a
single type of distribution on all panels allows only one
boundary condition per panel, which was chosen to be
"_¢-fi = 0 on the exterior panel sides. The interior poten-

tial was not specified anywhere inside the wing. At first
glance this also appears to be an ill-posed problem, but it
is not. The source-only tip-closure panels do not produce
a potential jump. Therefore, as far as the potential is con-
cemed, this model behaves as if there were no tip closure,
and in this sense the wing interior is not a separate domain
from the exterior domain. Hence, the constant ¢** = 0

applies to both the exterior and interior part of the single
domain. The zero-normal-flow boundary condition
applied at the tip, however, does separate the flow into
two regions.

In actual practice, the interior potential is set not at
just a single point, but at the interior-side control point
locations of all panels. If the boundary condition
OOint(x,y,z)= 0 is used at all such control points there will
be no internal perturbation flow (assuming an adequate
number of panels), giving uniform free-stream flow in the
interior volume. If both sources and doublets are used

with each panel, then another boundary condition is
needed, and it is selected to control the flow on the exte-

rior sides of the panels. Two alternative ways of doing
this, for flow about a solid (impermeable) aircraft surface,
are described next. The first is a direct approach, the sec-
ond is an indirect one.

The direct approach is illustrated in figure 20(a). On
the exterior panel side, the zero normal mass flux bound-
ary condition (eq. (28)) is imposed. The resulting bound-
ary condition pair at each panel control point is

(_¢. a)c_t = 0 (31a)

¢int = 0 (3 lb)
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The indirect approach (sometimes referred to as the
Morino formulation) is illustrated in figure 20(b). Here,
equation (31a) is replaced by a condition imposed on the
source strength, and the boundary condition pair is

a = (32a)

¢i_t = 0 (32b)

The equivalence between these two boundary condition
pairs can be shown by starting with the definition of the
source strength (see eq. (8)):

a = (_'ext - _'int)" fi (33)

If the perturbation potential is zero everywhere in the
interior region, then its derivative is zero in every direc-
tion and _'int is then zero. (Equation (32b), applied to the
interior side of every panel normally produces a good

approximation to this condition._ Then equation (33)
becomes (using the definition for W given by eq. (27a))

o=_'u'fi

a
(34)

Now imposing the "¢¢u.fi=0 condition sought
(eq. (31a)), we get equation (32a).

The indirect approach has two features that reduce
run cost. First, only the influence-coefficients for the
potential, and not the three components of velocity, have
to be computed. Second, since the source strengths are
specified, only the doublet strengths have to be solved for,
cutting the size of the [AIC] matrix roughly in half. (The
reason the size is not necessarily cut exactly in half is that
some codes use more doublet unknowns than source

unknowns, e.g., for wakes, and for doublet matching in
the continuous-doublet codes.)

The direct approach requires that both potential and
velocity influence-coefficients be computed, and both
source and doublet strength must be solved for. For a
given number of panels this causes the direct approach to
be more costly than the indirect approach. The advantage
of the direct approach is that it is sometimes more accu-
rate than the indirect approach. This is apparently because
the indirect approach depends on the internal perturbation
potential being zero everywhere for equations (32) to
accurately represent equations (31). In practice, the poten-

tial is set to zero only at discrete interior points; conse-
quently, the indirect formulation sometimes produces
mote error than does the direct approach.

An additional advantage, common to both formula-

tions, is the property that the internal flow is everywhere
uniform (it equals the free-stream velocity). For super-
sonic free-stream Mach numbers this prevents the forma-
tion of internal disturbances that otherwise would propa-
gate along Mach lines and reflect from the internal sides
of the panels. If not eliminated, these reflections can cause
severe internal flow disturbances that are "felt through the
panels" and degrade the external flow-field solution.
Although there are no Mach-line disturbances in subsonic

flow, large velocities are normally produced by the line-
vortex behavior of constant-strength doublet panels.
These large velocities are eliminated in the internal flow
region by the internal potential being set to zero. This is
apparently why solutions obtained with the newer
constant-strength source-doublet formulations are not as
sensitive to the panel layout as were earlier constant-
strength codes (which did not use a zero interior-
perturbation potential).

A final example uses doublet-only panels to represent
a wing, including the tip closure. Since the interior vol-
ume is totally enclosed with doublet panels, the potential
must be set in the interior volume for the problem to be
well-posed. Also, having only one type of singularity dis-
tribution means that only one boundary condition can be
employed per control point. The direct approach would be
to set the interior potential with an additional source panel
located inside the wing, and specify V¢. fi = 0 on the exte-

rior. A clever indirect approach is to simply set the total
(instead of the perturbation) potential to zero on the inte-
rior side of each panel. For sufficiently dense paneling,
this will make the total potential close to uniformly zero at
all interior points. Hence the gradient of the total potential
in any direction, which is the total (linearized) mass-flux
in that direction, will also be zero. Consequently, the total
mass-flux component normal to the interior side of the
panels will be zero. Then, since doublets do not produce a
jump in normal mass flux, the normal mass flux on the
exterior sides of the panels will also be zero, that is,
V¢. fi = 0 on the exterior is produced.

Wakes

Wake panels are used to enforce the Kutta condition
at sharp (usually the trailing) edges of lifting surfaces.
Since wakes trail downstream from these edges, they also
influence the flow experienced by downstream compo-
nents. For example, the load experienced by a wing will
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depend on the proximity of the wake from an upstream
canard.

Figure 21 shows a PAN AIR model of a supersonic
fighter wing-canard concept (reL 50). Two of three wake
models tried for this configuration are shown in figure 22.
Simple, fiat wakes for both the wing and canard are used
in the first model, the wakes being positioned approxi-
mately in the wing-canard mean plane (fig. 22(a)). For
each angle of attack, the resulting span loadings were then
used by a multiple lifting-surface code to compute the
approximate rolled-up shape of the canard wake. The
rolled-up canard wakes were used for the second model
(fig. 22(b)). The third model (not shown) again used fiat
wakes, but for each angle of attack the canard wake was
aligned with the free-stream velocity direction. The results
in reference 50 indicate that for this configuration, the
second and third models give essentially the same lift and
moment, and these agree more closely with wind-tunnel
results than do the results from the first wake model. Lift

and pitching moment coefficients at Math 2.2, obtained
from the third wake model, are shown in figure 23. There
is a noticeable difference in the PAN AIR-predicted lift-
curve slopes for the isentropic and second-order pressure
rules, indicating that nonlinear effects are beginning to
become important. Also shown are results from the
USSAERO (version B) program; it does less well at pre-
dicting the moment.

Another wing-canard configuration is shown in fig-
ure 24 (ref. 51). The effect of aligning a fiat-canard wake
model with the free stream instead of with the chord plane
(unaligned position of fig. 25) for this close-coupled
wing-canard is illustrated in figure 26. This figure shows
the spanwise circulation distribution of the canard and the
wing for the aligned and unaligned fiat-canard wakes. The
canard-wake position does not significantly affect the lift
distribution along the canard. It does, however, have an
important effect on the wing-lift distribution. Moving the
canard wake from the unaligned position to the aligned
position causes two major changes in the flow over the
wing, the dominant one of which is an increase in wing
lift inboard of the canard-tip station. This is due to the
diminished canard-wake downwash field, raising the
effective angle of attack of the inboard wing section. The
secondary effect is a loss in wing lift outboard of the
canard-tip station. This loss in lift is due to diminished

spanwise velocity imparted on the upper surface of the
wing by the canard wake, which is due to the increased
distance between the canard wake and the wing. The net
effect of these changes caused by the aligned wake model

is an increase in total lift over that predicted by the
unaligned wake model.

The final example, taken from reference 52, is a PAN
AIR flaps-down analysis of the Boeing 73%300 (fig. 27).
The actual and computational flap geometries for the
tlaps-15 setting, used for most takeoffs, are shown in fig-
ure 28(a). The assumed flap, wing, and slat wake posi-
tions are shown in figure 28(b). Leading- and trailing-
edge spanwise geometry discontinuities owing to the
deflected flaps and slats also had to be treated; these are
discussed in reference 52.

The drag buildup was obtained from a combination of
methods. The profile drag for everything but the wing was
estimated from handbook data. The wing profile drag was
estimated from a two-dimensional multielement-airfoil

panel code coupled with a viscous model (ref. 53). The
induced drag was obtained from PAN AIR's surface-
pressure integrations. Figure 29(a) shows the drag contri-
buions for both the flaps-15 (F15) setting, and a lower set-
ring called flaps-1 (F1). The resulting computational lift-
to-drag ratios are compared with flight data in fig-
ure 29(b).

6. TRANSONIC FLOW

Panel-method codes have existed for about 25 years
and are still the only codes routinely used to analyze flow
about complex three-dimensional configurations. Their
general inability to solve nonlinear problems is a serious
drawback, however, and most current CFD research
involves finite-difference, finite-volume, or finite-element

approaches to solving nonlinear flow equations. In the
United States, the finite-difference and finite-volume
approaches currently seem to be in most favor. Unfortu-

nately, most finite-difference and finite-volume
approaches require well-structured flow-field grids that
conform to the surface of an aircraft. It "is the difficulty in
generating 'suitable grids'" (ref. 54) that is the major
technical obstacle to routinely computing inviscid tran-
sonic flow about realistic aircraft. In contrast, it is rela-
tively easy to produce panel-method-type grids that are
only on the aircraft surface.

This raises a question: Is it possible to combine the
surface geometry grid used by panel methods, with some
easy-to-generate flow-field grid and use the combination
to solve nonlinear fluid flow problems? The answer is yes,
as demonstrated by the TRANAIR code and the work that
led to it (refs. 55-59). This section provides a brief intro-
duction to the technique, and how it evolved. To the user,
TRANAIR appears to be a panel code since the input is
panel-code-like; however, the solution techniques
TRANAIR uses are not those of a panel code.
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The basic approach used in TRANAIR is to embed
the surface panels in a rectangular box of grid points, as
shown in figure 30. The initial formulation (sec. II of
ref. 56) was based on Green's third theorem (eq. (7)), and
combined the surface-integral-generated influence-coeffi-
cients with the volume integrals. The rectangular grid was
used to evaluate the volume integral, for every point of

the rectangular and surface grids, with fast Fourier trans-
forms. This Green's theorem approach was able to solve
the nonlinear fuU-potential equation if there were no
shocks, but proved to be unstable when shocks were pres-
ent. By resorting to more powerful mathematical methods
involving optimization, supercritical results using
influence-coefficients were subsequently obtained

(refs. 55, 56); however, the computational cost was
extremely high.

The most recent version of TRANAIR (refs. 57-59)
still uses panels and the rectangular grid, but does not use
influence-coefficients. Instead, the cells formed by the
rectangular grid are used to discretize the full-potential
equation with tri-linear basis-function finite elements. The
surface panels, which slice through some of the finite-
element cells, alter the finite-element discretization in the

vicinity of boundary surfaces.

At the perimeter of the rectangular grid, the equation
set being solved changes from the full-potential equation
to the Prandtl-Glauert equation. As a consequence, the
rectangular computational grid need only encompass the
nonlinear flow regions (which are only near the aircraft).
The far-field boundary condition of zero potential at infin-
ity is automatically satisfied by the discrete Green's func-
tion (for the Prandtl-Glauert equation) used in the formu-
lation. Consequently, the solution domain extends to
infinity, even though the computational grid is finite, as
indicated in figure 30.

The finite-element discretization yields a set of non-
linear algebraic equations which are solved iteratively,
using Newton linearization, multiple preconditioners, and
an optimization algorithm called GMRES (generalized
minimal residual). Details are given in references 58-60.
The computer run cost based on this approach is much
less than with the original influence-coefficient/
optimization approach.

The input to TRANAIR is essentially that of the PAN
AIR code, that is, the surface grids of panel comer points
supplemented by the box of rectangular flow-field grid
points. This enables transonic flow to be computed about
very complex configurations without having to generate a
surface-conforming flow-field grid. For example,
TRANAIR has been used to compute transonic full-

potential solutions for the F-16A, using the rectangular
grid box and paneled geometry of figure 30. For the half
geometry shown, the grid box contains 129 x 33 x 33
points, and the aircraft contains about 3,500 panels. Two
views of the surface paneling are shown in figure 31. In
this model, the wing-tip missiles and launchers are not
included.

F-16A supercritical wing-pressure results (ref. 57) are
shown in figure 32. The free-stream Mach number is 0.9
and the angle of attack is 4 °. The experimental data for the
outboard station indicates separated flow near the trailing
edge. This is probably a result of the wing-tip missiles and
launcher that were part of the wind-tunnel model. The
wind-tunnel data indicate a shock at approximately 75%
chord for the four inboard stations. TRANAIR also indi-

cates a shock, but it is slightly downstream of the shock

predicted by the wind tunnel. This result is generally
expected from a conservative full-potential solution, a
result of the absence of a boundary-layer correction
(fig. 40 in ref. 61). The shock predicted by TRANAIR is
smeared over 5 to 6 grid cells, and at the 2 outboard sta-
tions where there are only about 11 rectangular-grid
points spanning the chord, the shock is completely
washed out. Increasing the grid density in the x-direction
(streamwise) greatly reduces the shock smearing. To bet-
ter resolve rapidly varying flow behavior without increas-
ing the flow-field grid density everywhere, techniques
such as local grid refinement, wherein individual cells of
the rectangular grid are subdivided into smaller cells, or
higher-order finite-element-basis functions are needed.

The coarseness of the rectangular grid is particularly
evident in the leading-edge region of the wing. An exam-
ple is shown in figure 33, at about 70% semispan. The
In'st 18% of the wing chord is spanned by only three cells
of the rectangular grid. Consequently, with this coarse
uniform grid, TRANAIR fails to capture the leading-edge
pressure peaks. The subsequent addition of local grid
refinement has enabled these pressure peaks to be
resolved (ref. 62).

7. CONCLUDING REMARKS

An attempt has been made to give an overview of the
basics of the panel method and to provide some fairly

specific details on how the basics can be implemented.
The tools at the disposal of the panel-method user are
(1) surface panels of source-doublet-vorticity distributions
that can represent nearly arbitrary geometry, and
(2) extremely versatile boundary-condition capabilities
that can frequently be used for creative modeling.
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Panel methods have reached a relatively mature stage
of development. Their fundamental limitation is that they
solve only linear differential equations. Even so, they are
widely used in the aerospace industry because they can be
used to model extremely complicated geometry.

Recently, panel-method technology has been com-
bined with other procedures to solve transonic flow prob-
lems. For example, the TRANAIR code has been able to
solve the full-potential equation for the F-16A at super-
critical Mach numbers. It does this by combining surface

panels with a rectangular flow-field grid, thereby
eliminating the often difficult task of creating three-

dimensional, surface-fitted, flow-field grids. To the user,
TRANAIR appears to be a panel code because the input is
esseatially the same as that of a panel code; however, the
actual solution process is based on finite-element and
optimization techniques.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, CA 94035-1000, February 13, 1990
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APPENDIX A

PAN AIR IMPLEMENTATION OF SECTION 3 MATERIAL

The general approach common to panel methods was

described in section 3. Here, a brief description is pre-

sented of how that approach is actually implemented in
the PAN AIR code.

Recall that PAN AIR breaks each panel into eight tri-

angular subpanels to maintain doublet-strength continuity

within a network of panels. Consequently, separate linear

source and quadratic doublet distributions are used over

each subpanel, instead of there being a single source and

single doublet distribution over the entire panel. The

source distributions are chosen to be linear polynomials

and the doublet distributions are chosen to be quadratic

polynomials

2 2

.(_,_)= 11o+ tt{_+ ttn_ + it{{--T + tt{n_ri+ ttnn--T

where _ and rl are the in-plane coordinates of a local

(_,'q,_) coordinate system associated with each subpanel.

Panel and Network Singularity Parameters

The linear sources contribute three unknown coeffi-

cients (Oo,O_,O-q) per subpanel, and the quadratic doublets
contribute six additional unknown coefficients per sub-

panel, giving a total of 72 unknowns per panel. To solve a

system of equations involving 72M unknowns, where M

is the number of panels, would be extremely inefficient. A

better approach is to relate the 72 subpanel coefficients to

values of the source-doublet strengths at a small number

of discrete points. PAN AIR uses two sets of points: one

is used to define panel singularity parameters, and the

other is used to define the network singularity parameters.
The panel singularity parameters are used to evaluate

panel influence-coefficients, and to relate the 72 coeffi-

cients to the network singularity parameters {_.} appear-
ing in equation (17) in section 3:

The eight subpanels of a panel are shown in fig-

ure 34, along with the network singularity-parameter

points (locations). Both source and doublet singularity

parameters are defined at panel center points. Only

doublet singularity parameters are def'med along the net-

work edges; these are used to enforce doublet strength

continuity across network abutments. We will not discuss

this aspect of PAN AIR; we will only discuss the
relationships between the 72 coefficients and the panel

and network singularity parameters.

The panel singularity-parameter points are shown in

the lower portion of figure 35. There are five points for

(35) the source and nine points for the doublet. The panel

source and doublet singularity parameters are the values

of the source and doublet strengths at these points; they

are labeled Ol ..... 05, and I.tl ..... II% respectively. These

panel source and doublet singularity parameters are

expressed in terms of 9 network source and 21 doublet
singularity parameters, {k s } and {kD}, respectively,

located at the panel center point and at the neighboring

(36) panel center points indicated by the asterisks in the upper
portion of figure 35. (When a panel is nearer a network

edge than is shown in fig. 35, neighboring singularity
parameters that are different from those shown are used.)

This is done through what the PAN AIR theory document
calls source and doublet "outer" spline matrices [B s] and

[BD], respectively (ref. 11). There is one each of these

two matrices for each panel.

To relate the panel singularity-strength parameters

(shown in the lower half of fig. 35) to the three source and

six doublet coefficients appearing in equations (35) and

06), PAN AIR uses source and doublet "subpaner' spline
matrices [SPSPL s] and [SPSPLD], respectively. There is

one each of these two matrices for each subpanel.

The actual construction of the outer and subpanel
spline matrices is described in appendix I of reference 11.

Here, we simply show how they are used. For the sources,

we can now use equation (35) and the matrices [SPSPL s]

and [B$] to obtain, for subpanel k,

[AIC]{X}={b}

PRE_CEDii'_G PAGE
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Similarly, equation (36) gives, for the doublet distribution
on subpanel k,

(38)

Panel Influence Coefficient Matrices

Equations (37) and (38) relate the source and doublet
distributions, respectively, of a subpanel, to the panel and
network singularity parameters. Equations (9) and (11) are
then used to obtain the perturbation potential and velocity

components at an arbitrary point P in terms of the panel
singularity parameters (five for the source, nine for the
double0. That is, a relationship of the form

O(P) = ;IC5S r_,]+ ;IC9D I_,]
(39)

is determined, where [PIC s] and [PIC D] are panel
influence-coefficient matrices for the sources and dou-

blets, respectively. This is done as follows. To determine
the potential, we start with equation (9):

1 -o(Q) .- 1
_(V) = _SSs[T + I-t(Q)n "VQ _']dSQ (4O)

Using equation (37), the potential owing to the panel
source distributions is

t_Stpx_-1 ff _<----_Q)s

8

= "_1k_=lSSAk'_-'L1 f°1trlI[SPSPL s _ d_

(o5J

(4D

where A k represents one of the panel's eight subpanels.
The subpanel spline matrix and the vector of panel source
singularity parameters are not functions of the local sub-
panel coordinates and can be extracted from the integral,
giving

1 8 ,to,1qJd_dqJ[SPSPLS i
lasJ

(42)

Comparing equations (42) and (39), we see that the under-
fined portion of equation (42) gives the elements of the
lust row of the [PICS] matrix. The same approach is used

to obtain the other rows of both matrices appearing in
equation (40). Of course all the surface integrals similar to
the one appearing in equation (42) must still be evaluated.
This step is described in appendix B.
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AssembledInfluenceCoefficients

Equation (39) gives the contribution of a single panel
to the perturbation potential and velocity at a point. To
arrive at the equation [AIC] {_,} = {b}, we have to assem-
ble the effects of each panel. This is simply done with
superposition, which is allowed since we are solving dis-
cretized equations corresponding to a linear partial differ-
ential equation.

The first step is to use the outer spline matrices to
express equation (39) in terms of the network singularity
parameters, namely

@(P)I = [PICS][BS]{2_s} + [PICD][BD]{A'D}
_(P)J _

l,cS],..,

(43)

The next step is to move to another panel, repeat the
construction of equation (43), and superimpose the
results. An example of this, for the source contribution to
the potential at point P owing to two adjacent panels, is
shown in figure 36. Applying this process to all the panels
of each network then produces an equation of the form

[ICs I ICD] _S
[_(p)j- XD

(44)

where NS = the number of network source singularity
parameters, ND = the number of network doublet singu-
larity parameters, and N = NS + ND is the total number of
singularity parameters for all the networks of the configu-
ration (except for those involved with doublet matching
across network abutments, which we have ignored).
Equation (44) gives the effect of all panels on the
(perturbation) potential and velocity at point P, in terms of
all the network singularity parameters. Next, further pard-
tion equation (44) as

4xN s 4xN D Nxl

[ J__i,(P)l=rL,icsj*,cD
[9(P)J L[vxcS]l [vIcD]]{_ D}

(45a)

Of

lxN 3xN

¢(P)=L¢icJ{x} , = [VIC]{_,}

(45b)

(45c)

The latter form is what we need to use with the boundary
conditions to finally arrive at [AIC] {_.}= {b}.

The Aerodynamic Influence Coefficient Matrix
Equation

Recall from section 4 that the velocity boundary con-
dition for an impermeable panel is

(46)

This is a specific example of the more general boundary
condition, for point P, namely

c@(P)+(a_+t)._(P)=b(P) (47)

where c and a are arbitrary constants, and T is a vector

tangent to the panel.

Equation (46) is obtained from (47) by setting c = 0,
a = 1, i" = 0, and b(P)=-'q**, ft. Equation (47) can be
written as

3xN

c@(P)+ {aft+ t'}T{'7(P)} = b(P) (48)

Then, using equations (45c), we obtain

lxN Ix3 3xN

[cLoicj+{al_ +_}T [viclJ{x}=b(P)
(49)

or
The underlined portion of equation (49) is a row of what
we have been calling the [AIC] matrix, since if N bound-
ary conditions are imposed, we will have N equations like
(49) relating the N unknown singularity parameters; that
is
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= {b) (50)

Two issues have been sidestepped in the above dis-
cussion. First is the question of doublet matching at net-
work abutments. The reader is referred to the PAN AIR

theory document (appendix F of ref. 11) for information
on the doublet matching. Second is the question of how to
analytically evaluate the surface integrals of the type
appearing in equation (42). The complete story is con-
rained in appendix J of reference 11 (approximately
200 pages). An abbreviated version, restricted to incom-
pressible flow, is given herein in appendix B. Finally,

there is a third point which was mentioned in the Sum-
mary of Methods portion of section 4. For supersonic
flow, the outer doublet spline matrices have to be
"forward-weighted" to obtain stable results at high Mach
numbers. The weighting refers to the weights used in a
least-squares construction of the outer spline matrix. The
forward-weighting obtains more information from
upstream points than from downstream points. This is
somewhat analogous to the use of forward-differencing in
supersonic zones by finite-difference codes. This forward-
weighting scheme is described in section 1.1.2.4 of
reference 11.
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APPENDIX B

EVALUATION OF INFLUENCE-COEFFICIENT SURFACE INTEGRALS

In appendix A, equation (40) contained the

expression

I ff-a(Q).,,,

0(P) = -[J jsT UOQ
(51)

for the potential at P owing to a source distribution over a

panel. The equations following equation (40) were for the

PAN AIR implementation wherein a panel is subdivided

into eight triangular subpanels. Here, we focus on a flat

quadrilateral (or u'iangular) panel wherein a single source
distribution covers the entire panel. This eliminates the

subpanel spline matrices of appendix A, thereby simplify-

ing the discussion (but it also prevents the doublet

strength from being continuous). We also restrict our dis-

cussion to incompressible flow. The approach is that of

sections D.5 and G.1 in reference 33. The general scheme

is to integrate the surface integrals by parts (where possi-

ble); this reduces, by one, the singularity order of the

resulting surface integrals, and introduces line integrals

along the panel edges. The resulting expressions for the

potential and velocity field are expressed below in terms

of surface integrals denoted H(M,N,K), and line integrals
denoted F(M,N,K), where M,N,K are integer exponents

appearing in the integrands. We then show how H(1,1,3)

and F(1,1,1) are evaluated analytically. These two inte-

grals are the fundamental ones because, as shown in refer-

ence 33, all the remaining integrals can be computed

recursively in terms of these two. It is H(1,1,3) that causes

the jump properties discussed earlier. The jump behavior
will also be derived.

Velocity Owing to a Flat, Linear Source Panel

For a fiat panel with a linear source distribution and

incompressible flow, equation (51) becomes

-1
dp(x, y,z) = _--_-fS z °(_'rl)R(_,rl;x,y,z) d_d'q

(52)

where

and (53)

and, as shown in figure 37, Z denotes the flat panel,

Q(_,_,0) is a variable point of the panel, P(x,y,z) is the

influenced point, and h is the height of P above or below

the panel (h is positive above the panel, and negative
below it). The x-component of velocity at P is

0dp -1 3 o -1 3 1
vx = _-_= 7_-_-_SIz _d_ drl= _-_IIz'_-_I_]crd_ drl

Noting that

(54)

3(1/ R) 3(1/ R)
---b'7-- = O{ (55)

equation (54) is written as

1 3 1

Vx = "_-_"_Sz _(_]° d_ drl
(56)

This form allows us to integrate by parts, using the

formula shown in figure 38 (this result can be derived

from the equations on p. 499 of ref. 63), to obtain

1 1 1 3o

Vx = T_- _- ov_ d! - _--_- d_ drl (57a)

where the sum is over the four panel edges. Similarly, the

y-component of velocity is

1 1 13o

Vy = _ _- ov n dt - _-_ d_ drl
(5To)

The z-component of velocity is

-_z 1 ffz3(1/R) od_dnVz= = - _ 3z

=_ff h od_drl (57c)
_'JJzR

We now collect terms:
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= -_-_jj,_L_- i +_-_J ÷°

4
1 a _. a _.

1

and for convenience, write the above as the vector

equation

= _A + VB + _C (59)

where the three terms on the right-hand side of equation

(59) are simply shorthand notations for the three lines,

respectively, on the right-hand side of equation (58).

The next step is to express the various integrals

appearing in equation (58) in terms of (_ - x) and (r I - y).

This is done to put the integrals in a form that can be inte-

grated analytically. To demonstrate how this is done, we

will show the process for _B and _c- The process is the

same for VA .

Starting with VB, the line integral contribution from

edge l is

(v_'vn'0) f t_ d/
_B = 4n JtR

1
+CrTl(q- Y)]_'d/

(60)

Now define

a(x,y) - _o + cy_x+ %y

Oy =-(_q

(61)

This is done to emphasize that these terms are indepen-

dent of _ and q. Also define the general line integral

F(M_,K) as

F(M,N,K) = f_t"(_ - x)M-I(rI-RK y)N-I dl (62)

Thea, equation (60) becomes

vB--- (V_4V2"0){O(x,y)F(1,1'I) +CxF(2'l'l)

+t_yF(1,2,1)}
(63)

At this point let us pause and reflect on what is

known and unknown. In principle, for an arbitrary point P

the line integrals F(M,N,K) can be evaluated for each

edge of a panel and are, therefore, known. The coeffi-

cients t_o, t_, and c_l, are unknown. They are, however,
related to the source singularity parameters through an

outer spline matrix as discussed in appendix A. (The
actual spline matrix used in ref. 33 is given by eq. 03-7) of

that reference.) Thus, once the singularity parameters {_}

are determined from [AIC] {_.} = {b}, everything in equa-

tion (63) is known, and the velocity at P (from the _B

term) can be computed.

The procedure for the surface integrals is similar, as

we illustrate for the contribution of _c to equation (58):

t_h
(0,0,1) ff __Td_dq

(64)

where equations (61) have been used. Now defining the

general surface integrals H(M,N,K) as

H(M,N,K) = _f'I: (_ - x)M-I(_IRK - y)N-I d_ drl
(65)

permits us to write equation (64) as
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+°x. hH(2,1,3)+6y, hH(1,2, 3)} (66)

If we had analytic expressions for the H(M,N,K) integrals,
the _c contribution to the velocity field could be com-

puted (in terms of the three unknown source coefficients)

from equation (66). A similar expression is likewise

obtained for the _A contribution.

Velocity Owing to a Flat, Quadratic Doublet Panel

Before showing how the fundamental integrals

H(1,1,3) and F(1,1,1) are evaluated, let us first discuss

some of the properties of the various integrals (in practice,

one only knows these properties after evaluating and

studying the integrals). A more complete discussion

appears in appendix D of reference 33. We will do this by

first giving the complete equation for the velocity owing

to a fiat panel with the quadratic doublet distribution

given by equation (36), and then describing the signifi-
cance of the various terms. This equation is obtained from

equations (D.130) through (1).140) of reference 33; the

derivation follows the procedures described above for the

source panel:

41t_= (0,0,1). [[txx + _tyy]- H(1,1,1)

+[(lax,lay,0 )- hH(1,1,3). (_txx,laxy, 0). hH(2,1,3)

+(Bxy,_tyy,0)h- H(1,2,3)] + E1 + E2

(67)

where

, hvhv = ./xyl.,ll3,
unit vector in

directionof _®_

+gxF(2,1,3) + layF(1, 2,3) + ½1axxF(3,1,3)

+laxyF(2,2,3) + ½layyF(1,1,3)] (68a)

4

E2 = E(0,0,-1)[(gxV[ + [tyVrl)F(1,1,1)

1

+(laxxV_ + laxyVrl)F(2,1,1)

(68b)

and

1 2

1 2

1 2
lx(x,y)= lao+l.t_x+t.trly+-_g_x +l_nxy

1 2
+ _ IJ.tlrlY

(69)

lax(X, y) = _1._,+ IJ.[[x + I.i.[11y

laxx = la_

and so forth.

The first two terms in equation (67) arise from the

surface integrals produced by the integration by parts--

the last two terms arise from the line integrals. The first

and last terms give velocity contributions that are in a

direcrion normal to the panel; the second gives contribu-

tions that are in directions parallel to the panel. The third

term is the "line-vortex" contribution and produces a
velocity that is in the direction of l x _, which is shown in

figure 39.

Both F(1,1,1) and F(1,1,3) would be singular if they
were to be evaluated at a point of the panel edge. In prac-

rice, this problem is avoided by having edge control points

(if used at all) located slighdy interior to the panel. For

points near a panel edge, F(1,1,1) is the weaker singular-
ity, varying as ln(1/gZ), whereas F(1,1,3) varies as l/g

0ike a line vortex).

The quantity hH(1,1,3) in the second term is what

causes a panel's jump properties. Here, we see that it

multiplies the in-plane first derivatives of the doublet

strength; this is what causes the tangential velocities of a

doublet panel to be discontinuous across the panel. Note

that this property would not be predicted if the panel dou-

blet strength were assumed to be constant.
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The surface integral H(I,1,3) is singular if computed
at an interior point of the panel, but hH(1,1,3) is well
behaved (just having the jump behavior). For a point on
the panel edge, hH(1,1,3) depends on the angle at which
the point is approached. This nonuniqueness is avoided as
done for the F integral singularity behavior, that is, by
using edge control points withdrawn slightly into the inte-
rior of the panel. The behavior of the doublet velocity
near a panel edge can be used to impose the Kutta condi-
tion (see fig. 10 in ref. 9).

If the doublet strength is continuous from panel to
panel (as in the PAN AIR, HISSS, MCAERO, and
QUADPAN codes), the line-vortex contributions from
adjacent panel edges will be equal and opposite and will
cancel, and thus will not produce a resultant velocity field.
(In general, a correct potential flow solution to flow about
a general shape does not contain concentrated line-vortex-
induced velocities.)

Ironically, if a constant-doublet-strength panel is
used, the linear and quadratic terms in equation (67) dis-
appear, and the only nonvanishing term is the spurious
line-vortex term associated with F(1,1,3); that is

4

= _ Z _ ® gl't°gF(l'l'3)
I

(70)

If the above expression is evaluated for a specific
panel geometry, the velocity field obtained will be the
same as that produced by four fine-vortex filaments all of
strength F = Ixo, placed head-to-tail around the panel
perimeter. That is, a constant-strength-doublet panel is
equivalent to a ring vortex. Although many subsonic-only
codes use the line-vortex model (and often get away with
it numerically), such an approach causes numerical disas-
ter in supersonic flows.

Evaluation of H(I,1,3)

The surface integrals HOVI,N,K) were defined by
equation (65). The fundamental integral H(1,1,3) is then

H(1,1,3) = erH (71)R3J,Iz

This integral can be evaluated by making two changes of
variable. The first is to use polar coordinates in the plane
of the panel, as indicated in figure 40, giving

f,l,i+_[ gr rdr ]

L d,
(72)

The upper limit r extends to the boundary of E; h is a con-
slant as far as the integration is concerned; and i is the
panel corner point number.

Next, the integration on 4)is changed to a line integral
along the panel edges. Referring to figures 40 and 41,
equation (72) becomes

+[./i+lrl 1 ] ffd/

H(l,I,3)= ZJJti=l i L/T-fff-_J(g_-_2) (73a)

where

g2 = [2 + h a (73b)

and where [ is a different value for each edge L. The
geometrical significance of g is shown in figure 42. The
indefinite integrals of the two terms appearing in equa-
tion (73) can be found in tables (e.g., on p. 49, line 3 of
ref. 64 for the second term, called I2 below). The result is

4

a 21
i--1 i

(74)

where

i+l dt _ 1 ,._-1( g "_l/i+l": (75a)

and

/i+l d/12 =

ti (12+_2)_

1-1¢ Ihl/ )[/i+l

:r.,,,='
(75b)

Thus, we can write
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4
_-, ( a o'_ Iti+1

H(1,1,3) = e_,it]-_l.i)ii/i
i=l

(76)

where

13= t,_)- Li_l_/e2+gij
(77a)

and

-- = +1, see figure 41 (77b)
Iil

Equation (76) contains 4 arctangents per edge, giving
16 arctangents to compute for a four-edged panel. After
considerable effort, the above can be reduced to the fol-

lowing form, which contains only one arctangent per
edge:

4

j=!

(78)

where

62-_I = t ClCl+ i2/1/2 J

c I = g2+lhlsl

c2 = g2+lhls2 (79)

Sl = _ + g2

S2 = _22+ g2

and the subscripts 1 and 2 refer to the first and second
end-points of each panel edge j. All the quantifies in equa-
tions (78) and (79) can be computed from the coordinates
of the panel comer points and the coordinate of the influ-
enced point P. (For compressible flow the expression for
H(1,1,3) would also contain the free-stream Math number
since M** is contained in the expression for R (see

eqs. (5)).)

The Jump Property of hH(1,1,3)

Equation (78) can also be written as

4

hH(l'l'3) = _hl2 (62- 61)j
j--I

(8o)

where

c°sOtanai i = 1 or 2tan_i -
1+ sin 0311+ tan2 cti

(81)

and the meanings of the various new symbols are shown

in figure 43. For an interior point of the panel, h = 0 and

0=0

al = ¢1, a2 = ¢2 (82)

61=0tl, 62=_2

Thus, equation (82) becomes

4

h 4,hH(1,1,3)=Th-T2(¢2- 1)j 2 h= _i-_

j=l

(83)

And, as the point P passes through the panel, hH(1,1,3)
jumps by the value 4it. (The reader is encouraged to show
that hH(1,1,3) = 0 when P is in the plane of the panel, but
at a point exterior to the perimeter.)

We can now finally derive equation (21). Referring to
equation (67), we see that the only nonzero term con-
tributing to the tangential component of velocity at an
interior point of the panel is hH(1,1,3). Thus, equation
(83) gives

4/t_T = (]Ltx, _y, 0)" 2_ i-_ (84)

Denoting the two sides of the panel as the upper (U) and
lower (L) sides, we use equation (84) to obtain

4rC(VTu- VTt,)= VI.t" 2n[1- (-1)] (85)

and thus

_Tu -- _TL = VIX (86)
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whichisequation(21), except total rather than perturba-
tion velocity appears in that equation. Both equations are
correct, since the total and perturbation velocities differ
only by the free-stream value, which is a constant.

The Line Integral F(1,1,1)

From equation (62), and figure 41, the fundamental
line integral F(I,I,1), for edge L, is

l,_)- at at
F(I, -- fL.-_= fL3[(__x)2+(rl_y)2+h2

(87)

This can be put in several forms, for example,

(88a)

F2(1,1,1) =/n(_- gl 1 (88b)

(88c)

Analytically, these three forms are identical. How-
ever, depending on the location of point P, the different
forms produce different numerical results with a com-

puter's finite precision arithmetic. Referring to figure 41,
the following choice is recommended in reference 33 as
the best for numerical accuracy.

When Use

h,t2 >-o FI(1,1,1)

tl,12 < 0 F2(1,1,1)

gl<O,/2>O F3(1,1,1)
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APPENDIX C

IMPROPER INTEGRALS AND THEIR FINITE PART

The velocity equations for the source and doublet
distributions both contain the term hH(1,1,3) (see

eqs. (66) and (67), respectively). The integral contained
therein was evaluated for an arbitrarypoint P at (x,y_z). In
particular, z Was nonzero. For P being an interior point of
the panel, z = h = 0, we found that hH(1,1,3) is generally
well behaved. It has different values on opposite sides of

the panel, but it is not singular.

If z = 0 had been used before evaluating the integral,

the resulting integrand would have been simpler, but it
would also have been singular. It turns out that singular

(improper) integrals obtained in this manner can actually
be correctly evaluated. This behavior is illustrated with
the following two-dimensional example.

We are going to compute the two-dimensional veloc-
ity field owing to a doublet sheet (panel) in the x-y plane.
The panel extends to infinity in the positive and negative
y-directions, the doublet strength varies only in the
x-direction, and the doublet axis is in the z-direction

(normal to the panel).

We start with the expression for the potential at
P(x,z) owing to a line doublet extending from y = --00 to
y = +**, passing through the point x = z = 0. The strength
per unit length of the y-direction is _, and the doublet
axis is aligned with the z-direction:

H

m

#(x,z) =
z

(89)
x2+z 2

If instead of a single line doublet, we have an
x-distribution of them located between x = a and x = b, of

strength tt(Xl) per unit length of the x-direction, the poten-
tial at (x,z) is

w(x,z) 1"b z
= _"ff_'z ,Jxl=a (x- Xl)2+ z2 dxl

(92)

We are going to evaluate the expression for w(x,0) in two
different ways. The f'ast is to do the integration first, and
then set z = 0 to find w(x,0). This is how we did it in

appendix B for hH(1,1,3). The second way is to do the
integration after setting z = 0; this will produce an
improper integral containing a nonintegrable singularity.

Integration Before Setting z = 0

Performing the differentiation in equation (92) gives

Ifb (x-x1)2dxl

b dxi 1 (93)

If the velocity is wanted at a point x in the interval
a < x < b, the term (x - Xl) will become zero as the

dummy variable of integration, Xl, passes through the
point x. However, the integrand will remain finite if we do
not let z = 0 at this stage.

Performing the integration yields

l_ol X-Xl ]x_=b (94)

1 b

,(x,,.)=  t(x )z (90)(x-xD2+z2

Letting IX(Xl) = go, a constant, we have for the potential
and z-component of velocity, the expressions

_ go f" z
Ill(X'Z) - '_ Jxl--a (X - Xl)2 + Z 2dxl

(91)

Now we let z = 0, obtaining

(95)

This expression gives the z-component of velocity at any
point along the x-axis; it is the same as that owing to a
pair of concentrated line vortices (each of which produces
a velocity v = F/(2rcr)) located at x = a and at x = b, whose
strengths are equal and opposite, and of magnitude
F = go. This is a confirmation of our earlier conclusion
that the velocity field owing to a constant-strength doublet
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panelis thesameasthatproduced by line-vortex fila-
ments (having the same strength as the doublet) being

placed along the panel edges.

Integration After Setting z = 0

Here, we set z = 0 in equation (93), yielding the
integral

_ _t° b

w(x,0) - _'ff I'.,,,, axs(x-xl)2
(96)

This is an improper integral, since if x is wanted at a point
between a and b, the denominator is zero at Xl = x.
Because the integrand becomes infinite, this integral has
no meaning in the ordinary sense. However, let us ignore
this problem, and proceed as if the integrand were not
singular. We then obtain

1 Ix' =b __9.r-1 x--"_] (97)w(x,0) = zrr x_--7-_1ix1__,= zx L_'7"_'-a +

Amazingly, we have obtained the correct answer, that
is, we have obtained equation (95) again, even though the
integrand is singular. This result is not a fluke. Refer-
ence 65 (p. 11) shows that, if

(98)

is the indefinite integral, for example, G = l/(x - Xl) in

our simple example, then the correct finite value for the
improper integral (that results from setting z = 0 before
performing the integration) is

fxb f(x')d_nl+i : G(x,b)- G(x,a ) n = 0,1,2 .... (99)

1--, (x-x])

The expression on the left-hand side is merely notation
used to indicate that the integrand is singular, but that the
integral does in fact have a unique finite value. This value
is usually called the "principal value" or the "finite part"
of what appears to be an integral having an infinite value.
Equation (99) says that this finite value can be computed
from the indefinite integral by evaluating it at the two
end-points a and b, as we did in our example. If the indef-
inite integral contains logarithmic terms, the absolute
value of the arguments must be taken.

The reason for dealing with the finite part concept is
that unlike our simple example, it may not be possible to

evaluate the nonsingular integral (the one containing the
nonzero z), but it may be possible to find the indefinite
integral when z = 0. Also, even if the nonsingular problem
can be evaluated, it is usually simpler to evaluate the sin-
gular problem, as it was in our example.

There may be cases in which even the indefinite inte-
gral for the singular integral is not known. In such cases
the finite part can be obtained numerically. One way is as
follows. If

I_ f(Xl)dXl
l=a (x-xl) 2

(lOO)

is the improper integral obtained by setting z = 0 before
doing the integration, the finite part can be computed from
the formula

= lim +
_:---_0 l=a (X - Xl) 2 Ll=X+_ (X - Xl) 2

(101)

where e is a small number. For a fixed value of x and e,

the two integrals on the right-hand side of equation (101)
can be evaluated numerically. Their sum will be a "large"
number, from which is subtracted another large number

given by the last term. The limiting value of this differ-
ence, as _ goes to zero, exists and is the finite part. Equa-
tion (101) is a special case of the more general formula

given by equation (13) of reference 64. Another numerical
approach is given in reference 66 (pp. 42-47).

Contrary to what one might assume based on the
above discussion, performing the integration before set-

ting z = 0 does not always eliminate the appearance of
improper integrals. A counter-example appears in refer-
ence 33 (appendix D.2), where a curved panel is exam-
ined. In that case, the integration-by-parts step we went
through in appendix B is not done. The resulting integrals
are all expressed in terms of a nonzero z, but as z

approaches zero some of the integrals become improper.
However, the collection of all the improper integrals sums

identically to zero, and the improper integrals can conse-
quently be ignored.

Additional information on improper integrals can be

found in reference 37 (pp. 15-18) and in reference 11
(appendix J).
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Codename
Approximate

date
introduced

TABLE1.-COMPARISONOFFORMULATIONS

Singularitytype
Panel

geometry o p

Reference

M**,subsonic only

Lower-Order
Hess

MCAERO

SOUSSA

VSAERO

LEV

QUADPAN

Higher-Order
Hess

1965

1980

1980

1982

I979

1983

1985

Flat

Piecewise

flata

Hyperbolic
pamboloida

Flat

Hyperbolic

pamboloida

Flat

Parabolic

Constant

Constant

Conslant

Constant

Linear

Constant

Linear

IVl**,subsonic/supersonic

Quadratic a

Constant

Constant

Quadratic a

Constant

Linear

Linear

2,38

17

18,19

27

20,21

32

Woodward-
Carmichael

USSAERO

PAN AIR

HISSS

QUADPAN

1966

1973

1981

1984

1985

Flat

Flat

Piecewise

f/a_a

Piecewise

flata

Piecewise

flata

Line distributions
for bodies

Constant

Linear

Linear

Constant

Quadratic a

Quadratic a

Linear a

Constant

Linear in x

Constant in y

aContinuous panel edge geometr or doublet stren ,,th.
bFrom October 1985 AIAA Workshop on Aerodynamic Analysis Using Panel Methods.

4,5

7

9-15,
36,37

16,42

b
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MEAN SURFACE

MODEL
ACTUAL SUR FACE

MODEL

Figure l.- Mean-surface and actual-surface panel models.

. "

Figure 2.- Examples of surface paneling.
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UTTA CONDITION

WAKE

a) SUBSONIC (1-M2) exx +_yy + Czz = 0

b) SUPERSONIC (M2-1) _xx- _yy- _zz = 0

Figure 3.- Panel methods predict linear potential flow by solving the Prandfl-Giauert equation. The weak shock solutions

(small 0) of shock-expansion theory are predicted and yield wave drag.

U

(a)

ACTUAL BODY--,_

MODIFIED BODY

DISPLACEMENT

KNESS

__ __ DIVIDING STREAMLINE

U

(b)

Figure 4.- Two methods of boundary-layer simulation (not to scale) (from reference 25). (a) Surface displacement;

panels at modified body. (b) Surface blowing; panels at actual body.
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E

(

Figure 5.- Free VOrtex sheet tnOdel t'or sharp leading edges.

y _,_A_f P
_,_oo_A,/ /

Rigure 6._ C°ord;nate System used to obtain

equation (6).
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CENTER OF PANELi

-y

PANELj, WITH AREA Sj AND VARIABLE INTEGRATION POINTxj

KNOWN SOURCE AND DOUBLET SOLUTIONS

ARE FUNCTIONS OF R AND M_

-_. ->

_DTS@i = ff [a(xj) x K o +/l(xj)xK/_] dSj

s ---7 --T
KNOWN SOURCE AND DOUBLET STRENGTH

TRIBUTI--O--_A-TPANELj _

VELOCITY POTENTIAL AT POINTi, v i = V @i IS THE VELOCITY AT POINT i

Figure 7.- The flow at center of panel i due to source and doublet distributions at panel j.

HORIZONTALAND
VERTICALTAIL

MIDBODY AND NETWORKS

NACELLE /

_,_/_ AFTBODY

TWO R K

FOREBODY WING NETWORK
NETWORK

Figure 8.- Networks of surface panels. Each panel is a surface distribution of sources and doublets whose strengths are

adjusted so as to satisfy the boundary conditions; for example, to make the flow tangent to the surfaces.
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(a)

(b)

Figure 9.- Two models of the F- 16XL showing different breakdowns of wing surface into networks. (a) Aircraft and

wake paneling; wake has been truncated for visualization. (b) Exploded view of networks representing top half of

wing.
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N= 4._q______ N-DIRECTION

M=_ M=5, N=4

/ "" M-DIRECTION
M=5 M=5

N = 1-"4

(a) (b)

Figure 10.- M x N arrays of surface grid points used to define panel networks. The unit normal fi = 1_1×/VI is used to

distinguish between the two sides of a network or panel. (a) 5 x 4 grid. (b) 5 × 4 grid with collapsed edge.

Figure 11.- Gaps produced by representing a curved surface with fiat quadrilateral panels.
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CORNER POINTS 1 AND 3 ARE BELOW THE

PLANE OF THE FLAT CENTRAL PORTION AND

CORNER POINTS 2 AND 4 ARE ABOVE THE

PLANE OF THE FLAT CENTRAL PORTION

STRAIGHT LINE PANEL EDGES

l'_C_ ...... \,,,.,_J" EDGE

_NTRALMI2;;:_;

FLAT 3 (PARALLELOGRAM)
TRIANGULAR

TIPS

(a) (b)

(c) (d)

(x2 _ y2)

Figure 12.- Continuous panels constructed from four arbitrary points. (a) Piecewise flat; QUADPAN. Co) Piecewise flat;

PAN AIR, HISSS, MCAERO. (c) Hyperbolic paraboloid; SOUSSA, LEV. (d) Figure 12(c) corresponds to the

twisted shape a flat flexible plate takes when loaded as shown.
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• TWO SIDES

OF A PANEL

• SOURCE

• DOUBLET

ER__,__ Lt V
UPP \

LOWER

o o = (_'U - _L )°_"

/j = (/)U - (/)L

=

Figure 13.- The jump properties of source and doublet panels; incompressible flow.

ACTUAL

SURFACE

PANEL METHOD WITH
DISCONTINUOUS a} A#

DOUBLET STRENGTH_

i

PANEL 1 PANEL 2
P2

--_ F2 = P2

Figure 14.- The spurious line vortex that results from having a discontinuous doublet-strength distribution.
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b/2

0.9

-.4

--,2

0

Cp
.2

.4

.6

-.4

-.2

Cp

- DISCONTINUOUS

Q 0

,, _,, O

0 1

THEORY

O EXPERIMENT 0 .2

CONTINUOUS/J

0 E) E) (3 ' ' Q

I I t I
.4 .6 .8 1.0

x/c

Figure 15.- Effect of discontinuous doublet strength in supersonic flow: M**= 2.05, a = 2°, 3%-thick biconvex airfoil.

SLOPE OF SOLID SURFACES
MUST BE SMALLER THAN THAT

OF THE MACH CONE

MACH CONE ANGLE
BLUNT AIRFOIL ALLOWED FOR
SUBSONIC LEADING EDGE

ONCOMING FLOW IS
SWALLOWED BY

SUPERINCLINED PANELS

a¢
_,=o, _ =o

CYLINDRICAL
WAKE SURFACE

Figure 16.- Supersonic flow modeling constraints.
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Moo = 1.75

.2

.1

Cp 0

-.1

-.2

,_0 = 6.0 °

SHOCK-EXPANSIONTHEORY(%= 0.166)
/ _2ND ORDER Cp

_).__.E_...__ISENTROPIC Cpl' PAN AIR

- LINEAR

TH EORY

I I I I I I I

X o

C

Cp = -0.129

Figure 17.- Two-dimensional pressure distribution for supersonic now over a wedge.

0
0

0 + _ w

Wi = V_ + wi
._.y .-.). ,-),

Vj = Vo_+ vj

¢0 v 2

G0 _ _ V 1 // v2-v 1

Figure 18.- Jump in mass-flux and velocity vectors across Mach line from wedge apex.
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Cp

.2

.1

/ _ EXACT SOLUTION TO EULER EQUATIONS

_ ---- MASS FLUX BOUNDARY CONDITION /PRANDTLGLAUERT

\ _--.-- VELOCITY BOUNDARY CONDITION J EQUATION

\\ _, M.._.._._

_.N_\._.._-Oc 15°_

"___

°_- . _

Oc:,O° 

I 1 I

2 3 4

Moo

Figure 19.- Cone pressure solutions to Euler and Prandtl-Glauert equations at supersonic Mach numbers.

Voo
-, / j ext

(a)

a = -V_*n

_-_int = 0

(b)

Figure 20.- Alternative ways of representing a solid surface with source/doublet l_anels. (a) Direct approach: (_int = 0,
Wext" fi = 0. (b) Indirect approach: (_int = 0, Or= -Vo," [I.
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Figure 21.- PAN AIR model of supersonic fighter concept.
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(a)

(b)

Figure 22.- Wake models. (a) Flat wakes in mean-chord planes. (b) Rolled-up canard wake.
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O WIND TUNNEL DATA

PANAIR ISENTROPIC RULE

[] PANAIR SECOND-ORDER RULE

/k USSAERO-B

C L

.6

.4

.2

.6

.4

CL .2

-.2 A t , , , -.2 i , ,
-2 0 2 4 6 8 .2 .1 0 -.1

o_ Cm

(a) (b)

Figure 23.- Lift and moment coefficients for configuration of figure 21: M** = 2.2. (a) Lift coefficient. (b) Pitching
moment coefficient.

Figure 24.- A wing-canard VSTOL concept.
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c

UNALIGNED WITH Voo

ALIGNED WITH Voo

Figure 25.- Canard-wake models: a = 10°, root section.

1.0

.9

.8

2 c0

_ .5

zO

o_ _ .4
Z -J

.2

.1

.2

" ,,=,,I I I 1 1 I I

l L . ! L L I !

.3 .4 .5 .6 .7 .8 .9 1.0

WING SPANWISE POSITION, b/2

Figure 26.- Effect of canard-wake position on spanwise circulation distribution.
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:Z3- panelingo[Boeing -_37-300Omps-15conOEurstion-

Figure •

Ac'TU_

coMPU'T_

SLA'T wAKE

FLAP wAKE

FigUre 28.- Flaps-|5 modeling. (a) Flap

geometry. ('o')WakeS.
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F15

<1

F1

F1 F15

& F151 .......I F1 I I
CDp CDp CDi

• NACELLE • WING • FULL AIRPLANE

• HORIZONTAL @ 1.2 V s @ 1.2 V s
• VERTICAL

• BODY

METHOD-----_ HANDBOOK 2D MULTIELEMENT PAN AIR

VISCOUS

,-I

(a) (b)

• COMPUTATIONAL

BUILDUP AT 1.2 V s

FLAPS 1 NO

C L FLIGHT

Figure 29.- Predicted and measured drag at 1.2Vs; Vs = stall speed, CDp = profile drag, CDi = induced drag, F1 = flaps-1
setting, F15 = flaps-15 setting. (a) Drag breakdown at two flap settings. (b) Aircraft lift-to-drag ratio.
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Figure 31.- PAN AIR surface panels used for input to TRANAIR.
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RECTANGULAR- 1

GRID POINT i

SURFACE-GRID

POINT

Figure 33.- Detail of leading-edge paneling embedded within the rectangular grid.

E) LOCATION OF DOUBLET SINGULARITY

PARAMETERS X_)

* LOCATION OF SOURCE AND DOUBLET

SINGULARITY PARAMETERS ;_iS, x iD

_sAND_DARETHEUNKNOWNS,tAlC]{_} ={b}

A PANEL AND

/ /

(a) (b)

Figure 34.- A nine-panel network and its singularity parameter loeadons. (a) Network, panel, subpaneis. (b) Location of
network singularity parameters and corresponding control points.
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Figure 35.- Panel-singularity parameters and the associated network-singularity parameters.
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Figure 36.- The potential at P owing to the source distributions of panels 6 and 7, in terms of the associated network
singularity parameters.
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Figure 37.- Flat panel E with linear source eQ and influenced point P.
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= (Vl,V 2)

(a)

3 _'_ _ _d£1 v2 = vrt
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fff, igdS = ._fgvid£ - fffg, idS

i=1 -_ Vl=V _
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j = EDGE NUMBER

Figure 38.- Two-dimensional integration by parts. (a) General form. (b) Form for a quadrilateral panel.

0
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Figure 39.- The vector tx _. See figure 41 for definition of 5.
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Figure 40.- Polar coordinates (r,Cp)and edge coordinated/.
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Figure 41.- Relationships between polar coordinates (r,_) and the edge coordinate I.
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Figure 42.- The geometric quantities appearing in equations (73). As drawn, the values for h and 5 are positive.

P(x,y,z) = THE INFLUENCED POINT

Figure 43.- The geometric quantities appearing in equation (81).
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