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ABSTRACT

Because atomic oxygen and solar ultraviolet radiation present in the low earth

orbital (LEO) environment can alter the chemistry of polymers resulting in

degradation, their effects and mechanisms of degradation must be determined in

order to determine the long-term durability of polymeric surfaces to be exposed

on missions such as Space Station Freedom (SSF). The effects of atomic oxygen

on polymers which contain protective coatings must also be explored, since unique

damage mechanisms can occur in areas where the protective coating has failed.

Mechanisms can be determined by utilizing results from previous LEO missions,

by performing ground-based LEO simulation tests and analysis, and by carrying

out focussed space experiments. A survey is presented of the interactions and

possible damage mechanisms for environmental atomic oxygen and ultraviolet

radiation exposure of polymers commonly used in LEO.

INTRODUCTION

Many polymeric materials degrade in low earth orbit (LEO) due to the

damaging environmental effects of atomic oxygen (AO), solar ultraviolet (UV)

radiation, temperature cycling and micrometeoroid/debris impacts. Of these

effects, atomic oxygen and ultraviolet radiation cause the most damage to the

chemistry of polymeric surfaces and, therefore, have important implications on

the durability of these materials.

It is necessary to have an understanding of the mechanisms of damage to

polymers due to AO and UV in order to predict their long-term durability, since

materials used on LEO missions such as Space Station Freedom (SSF) are required

to be functional for between 15 and 30 years. Some speculations as to the damage

mechanisms can be made based on results from previous LEO missions such as

shuttle flights and the Long-Duration Exposure Facility (LDEF) experiments and

ground-based LEO simulation tests and analysis. To further define the damage

mechanisms, focussed space experiments and ground based tests should be performed

utilizing the speculations from these previous tests.

Because of the reactivity of organic polymers to atomic oxygen in LEO,

protective coatings are often required to minimize oxidation of polymers and to

prevent them from becoming a source of contamination to other surfaces. For

polymer/coating systems, it is necessary to explore the mechanisms of damage to

the underlying polymer in areas where the protective coating has failed in order

to predict lifetime of the component.

Polymers which are commonly considered for use on LEO missions include

Kapton (polyimide) and FEP Teflon (fluorinated ethylene propylene). These will

be focussed on in this paper. Kapton is used as a structural material for solar



array blankets because of its mechanical strength and suitable electrical
properties. Teflon with a deposited silver backing possesses a high thermal
emittance and a low solar absorptance which are desirable for thermal control
materials.

LEOENVIRONMENTALDAMAGETOPOLYMERS

Atomic Oxygen Effects

Atomic oxygen is the most prevalent chemical species present in low earth

orbit at anticipated SSF altitudes between 300 and 500 km (150-270 nautical

miles). Atomic oxygen is formed by molecular bond breakage of 02 by solar

photons at wavelengths below 0.243#m [i]. Surfaces which face the direction of

travel of the spacecraft (the ram direction) are impacted with a high flux of

atomic oxygen (approximately 1014 1015 atoms/cm2s) at collision energies of

approximately 4.5eV. A result of the impact between atomic oxygen and an

organic polymer surface is fragmentation of the high molecular weight polymer

chains which leads to formation of a volatile condensible material (VCM) which

could deposit onto nearby surfaces resulting in contamination [2]. For example,

oxidation products of silicones have been shown to produce brown contamination

products on adjoining surfaces on the LDEF spacecraft. Also, results from the

exposures of hydrocarbons to simulated atomic oxygen environments have shown

evidence that gas phase reaction products of CO and CO 2 [3, 4] are emitted which

could contaminate other spacecraft surfaces. Oxidation of polymer surfaces

resulting in erosion and mass loss has been observed for materials aboard shuttle

missions such as STS-5 and STS-8 [5-7]. These chemical changes can lead to

changes in surface morphology, strength and thermal/optical properties.

Mechanistically, polymers react with atomic oxygen via initial reactions

of bond dissociation or oxidation, leading to reactions which form volatile,

condensible species. Figure I summarizes the possible reactions between typical

organic polymers and atomic oxygen [2, 6, 8-12]. The most probable reaction

between ground state atomic oxygen O(3p) present in LEO and saturated organic

molecules mechanistically occurs by means of hydrogen abstraction, while the

reaction of O(3p) and C=C bonds typically proceeds by way of an addition

mechanism [Ii]. The reaction mechanism depends upon the activation energy for

the reaction of a specific polymer with atomic oxygen [13].

Differences in the atomic oxygen reactivities of Kapton and Teflon have

been attributed to differing mechanisms of oxidation, and can be related to the

structures of the polymer chain and dissociation energies of the various bonds

present in these structures. Figure 2 shows the structures of the polymer

chains for Kapton and FEP Teflon, and Table I lists the dissociation energies

of various typical bonds present in organic polymers.

Teflon is known to be less reactive with atomic oxygen than Kapton [2, 6,

9] and polyethylene [6] from results of space flight experiments. Ranges of

erosion yields for these materials are shown in Table II, where erosion yield

is a measure of the polymer's reactivity with atomic oxygen and is expressed as

the volume of material lost per incident oxygen atom. This information shows

that Kapton and polyethylene have similar erosion yields, whereas the erosion

yield of Teflon is lower. The lower reactivity for Teflon may be explained by

atomic oxygen attack leading to bond breakage at the side-groups rather than at

the backbone of the Teflon molecule [9]. Breaking of a C-C bond in Teflon



(structure shown in Figure 2) occurs at an energy of 4.3eV, and the C-C bond in
polyethylene, which has the simple structure of (CH2-GH2)n,dissociates at 3.9eV.
One would expect that FEP would undergo oxidation to a similar extent as
polyethylene upon exposure to LEOatomic oxygen if C-C bond breakage were the
mechanismof damagefor both. However, because of the lower reactivity for FEP
Teflon, another mechanismof degradation may be occurring with FEP. It is
suspected that C-F bond dissociation, which occurs at an energy of 5.5eV, is the
primary mechanismof damage. Only about 30%of oxygen atoms possess this energy
in the LEO environment. This may contribute to Teflon's relatively low
reactivity in LEO [2].

For Kapton, which is highly reactive in the LEOenvironment, the probable
cause of degradation is the breaking of the backbone structure [2]. This is due
to the fact that manyof the chemical bonds in Kapton, dissociate at energies
below 4.5eV. ESCAanalysis for Kapton exposed aboard STS-8 showed that the
numberof C-O bonds at the surface of the material increased, while the number
of C-C bonds decreased [6]. This suggests oxidation of the aromatic rings and
the imide rings of the Kapton molecule resulting in fragmentation of the backbone
structure.

Besides the chemical structure of the polymer molecules, other properties
which can affect susceptibility to atomic oxygen damage are degree of
crystallinity, existence of amorphousregions, and permeability to oxygen. Rate
of reaction is affected by surface-to-volume ratio of the polymer structure.

Knopf, et el. [9] propose a mechanismof damage to polymers which is
related to the diffusion of oxygen into a polymer film. In this model, the
diffusion of oxygen into the polymer film is the rate limiting step. Subsequent
oxidation reactions then occur via the pathways shownin Figure i. In materials
where the diffusion of oxygen into the surface is limited (i.e. a thick polymer
film), the concentration of oxygen at the surface is greater than in the bulk
of the material, and the result is fast oxidation at the polymer surface with
accompanyingmass loss and chemical changes at the surface, but little change
in bulk properties. However, for Kapton with a siloxane coating, which is
resistant to oxidation, this proposed mechanism explains that a large
concentration of oxygen maybe prevented from building up in the surface of the
material resulting in slow diffusion of oxygen into the polymer film after an
induction period. This limited diffusion of oxygen results in distribution of
oxygen through the bulk material and causes chemical change to occur through the
bulk of the material. According to this model, cracking and crazing of the
siloxane coating occurs because of the bulk chemical changes resulting from
oxidation after slow diffusion of oxygen into the material [9]. Arnold and
Peplinski [5] propose that gas phase reactions of atomic oxygen and consumption
of atomic oxygen at the reacting polymer surface are reactions which competewith
the oxygen diffusion process as the rate-limiting step in the oxidation of
polymers.

Another polymer which merits discussion is silicone rubber. Silicones
showed low erosion yields in LEO (Table II). This can be explained by the
reaction of silicone rubber with atomic oxygen at its surface leading to the
formation of a thin layer of SiO2 which is atomic oxygen resistant [2]:

SiOR 2 + 0 ..... > SiO(l+x)R2(l.x) .... > SiO 2.

It should be noted, however, that the very reaction which makes silicone durable

to atomic oxygen, makes it a source of contamination to neighboring surfaces,

since the organic side groups lost are volatile condensible materials.

Certainly these simple models cannot explain all the intricacies of



reactivity of polymers with atomic oxygen in low earth orbit. For example, it

is valuable to determine the oxidation dependencies upon atomic oxygen energy,

flux or fluence, and, to date, there have not been focussed flight experiments

to address these issues [5, i0].

One of the important reasons for understanding the atomic oxygen reaction

mechanisms is that ground-based facilities are needed to accurately simulate the

LEO environmental degradation effects. Because of the need for materials to last

15-30 years for the Space Station Freedom, it will be necessary to conduct

ground-based tests which reliably predict the long-term durability of materials.

In addition, the results of well-defined flight experiments will provide results

to be used in modelling to extrapolate the long-term environmental effects.

Utilization of ground-based experiments correlated with in-space mechanistic o

modelling could allow credible predictions of long-term durability to be made.

Solar Ultraviolet Radiation Effects

The wavelength range of solar ultraviolet radiation present in LEO is

between approximately 0.i and 0.4#m which is a small portion of the solar

irradiance curve shown in Figure 3. The total energy provided by radiation in

this wavelength range is approximately 8% of the solar constant, where the solar

constant is defined as the total energy provided by the sun over all wavelengths

up lO00_m and is equal to 136.7 mW/cm _ [15]. This ultraviolet radiation is

energetic enough to cause the breaking of organic bonds as shown in Table I and

Figure 4. Although the solar radiation below 0.2 _m represents less than 0.001%

of the solar constant [15], its presence may promote breakage of important

organic structural bonds, such as C-C and C-O, and fuctional groups.

Absorption of a photon of ultraviolet radiation by an organic molecule

causes the molecule to be raised to an excited state. If the molecule has enough

energy in this excited state, bond dissociation could occur. These dissociated

radical species are reactive intermediates and can diffuse within several atomic

distances from their origination point, depending upon the temperature and

physical properties of the polymer [16], and participate in further reactions.

Figure 5 shows a generic representation of the reactions of a typical organic

polymer molecule with ultraviolet radiation. Besides bond dissociation, other

mechanisms of returning the excited molecule to the ground state could occur.

For example, the excited species could return to its original chemical state

accompanied by a release of light or heat. Another possible mechanism occurring

with an excited state molecule is the electronic transfer of energy from one

functional group on a molecule to another before a relaxation event occurs. This

significantly increases the possibilities for reactions of molecules with

multiple functional groups.

Solar ultraviolet irradiation can lead to crosslinking of polymer surfaces

which may lead to embrittlement and possibly to surface cracking. UV radiation

has also been shown to degrade mechanical properties of polymeric materials as

is shown in the degradation in the tensile strength of Mylar [17]. Because

atomic oxygen is present in LEO, it is expected that the reaction intermediates

from the photon absorption will react with reaction intermediates from the

oxidation process. This photo-oxidation can lead to discoloration and reduced

transparency of some polymers. Chemical changes in the molecule as a result of

these reactions may also lead to the formation of polar groups which may affect

electrical properties [18].

A high value of solar transmittance in the wavelength range between 0.3



and 0.6 #m is necessary for polymers used as second surface reflectors for
thermal control coatings. Ultraviolet radiation degradation of this
transmittance mayresult in decreased efficiency of the thermal control surface.
Laboratory experiments have been performed to determine the effects of UV
radiation on the optical properties of various types of polyimides [19]. Of
particular interest, in terms of ultraviolet radiation degradation mechanisms,
is the fact that the most stable polyimide materials were those which contained
both oxygen and -C(CF3)2 bonds, and the poorest performers were those which
contained sulfur atoms within the polymer molecular structure.

Use of Polymers in the LEO Environment

Because of the degrading effects of atomic oxygen and solar ultraviolet

radiation on polymeric materials, much work has gone into studying methods of

protecting polymers. Laboratory experiments have been performed on candidate

materials. For solar array blanket use, many methods of coating or modifying

Kapton have been explored to determine whether they offer protection from atomic

oxygen erosion [20-22]. Two methods of modification have been the incorporation

of fluorine into Kapton and the copolymerization of silicone with Kapton

(referred to as polysiloxane-polyimide). Ground-based evaluation of these

materials in atomic oxygen simulation facilities have shown that these do not

offer adequate protection from oxidative erosion to prevent failure of the

material as a solar array structural support for its required lifetime [20, 22].

The polysiloxane-polyimide material did show durability to ultraviolet radiation,

however, and a sample exposed to UV did not show an increased susceptibility to

damage due to short-term atomic oxygen exposure [23].

The most promising coating to date for protection of Kapton has been a

magnetron sputter deposited coating of SiO x (where x is thought to be near 2) of

approximately 1300_. Results of atomic oxygen exposure of this coating show that

it has potential to provide adequate protection to last the expected life of the

Space Station Freedom solar array blanket, provided the number of defects

(pinholes and scratches) in the coating can be minimized [22]. Because

protective coatings of this type are not perfect in their ability to coat the

substrate without defects and are subject to abrasion damage, it is necessary

to coat both sides of the two layers of clad material which comprise the solar

array blanket, as well as to explore the effects of atomic oxygen damage to the

underlying polymer at sites where protective coating is lacking. This phenomenon

of atomic oxygen erosion of the polymer at coating defect sites is referred to

as undercutting. Atomic oxygen undercutting processes, which are discussed

elsewhere [21, 24, 25], are related to the intrinsic stress of the protective

coating, coating adherence and the angle or angular sweep of atomic oxygen
attack.

Synergistic effects of atomic oxygen and ultraviolet radiation must be

evaluated when determining the overall durability of a material. A study

performed by Koontz, et al. [26] determined that the reaction rate for FEP Teflon

with atomic oxygen in a flowing afterglow source was significantly increased by

the presence of vacuum ultraviolet (VUV) radiation provided by a krypton

resonance lamp. They found the reactivity of Kapton with atomic oxygen in the

presence of VUV increased, but not as significantly as that of Teflon. Studies

of this nature can provide insight as to mechanisms of polymer degradation due

to LEO synergistic environmental effects as well as provide guidance as to

requirements for proper ground based simulation facilities.



CONCLUSIONS

Because of the intricacies of the reactions of atomic oxygen and

ultraviolet radiation in the LEO environment with polymers, it is difficult to

make definitive predictions as to the modes of damage and the expected lifetime

of materials exposed to these synergistic degradation processes.

Focussed flight experiments, well-defined laboratory tests with _ in situ

analytical capabilities, and analytical modelling will assist in determining

damage mechanisms and rates for the reactions of polymers or polymer/coating

systems with atomic oxygen and solar ultraviolet radiation. These results will

then enable well-informed extrapolations from short-term data as to the

durability of materials to atomic oxygen and solar ultraviolet radiation.
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TABLE I - Dissociation Energies of Common Polymeric Bonds

Chemical Bond Dissociation (_m) Wavelength Typical Material Ref.
Energy of Energy

C-H 3.5-4.4 0.36-0.28 Aliphatic polymers 27

C6Hs-H 4.8 0.26 Aromatic polymers 27

-C6H,-C('=O) - 3.9 0.32 Kapton, Mylar 2

-C6H3-H 4.8 0.26 Aromatic compounds 2

C=C 6.3 0.20 Aliphatic compounds 17

C=C 8.7 0.14 Aliphatic compounds 17

O=CO 5.5 0.23 Carboxylic acid 27

C=O 7.7-7.8 0.16 Aldehydes, ketones 17

-CH2-CH2- 3.9 0.32 Mylar, polyethylene and
aliphatic compounds 2

CF3-CF3 4.3 0.29 FEP Teflon 2

-CF2-F 5.5 0.23 FEP Teflon 2

CH3CF3 4.4 0.28 -(CH2-CF2)o- 2

C-N 3.2 0.39 Kapton 17

C-S 2.8 0.44 Vulcanized rubber 17

-Si-O- 8.3 0.15 Silicones and SiO2 2

-Si-CH_ 3.1 0.40 Silicones 2

-Zr-O- 8.1 0.15 Protective ctg. 2

-AI-O- 5.3 0.23 Protective ctg. 2



TABLE II - Erosion Yields for Polymers Commonly Used in LEO

Erosion Yield
Material Reference

X 10 -2' cm3/atom

24
0.037

FEP Teflon Preliminary LDEF
0.35 Results

Kapton 3.0 24

3.7 24

Polyethylene 3.3 24

Silicone Rubber 0.05-1.5 24

10
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