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ABSTRACT

Joint inversion of magnetic, Earth rotation, geoid, and seismic

data for a unified model of the coupled core-mantle system is proposed

and shown to be possible. A sample objective function is offered and

simplified by targeting results from independent inversions and summary

travel time residuals instead of original observations. These "data"

are parameterized in terms of a very simple, closed model of the

topographically coupled core-mantle system. Minimization of the

simplified objective function leads to a non-linear inverse problem; an

iterative method for solution is presented. Parameterization and method

are emphasized; numerical results are not presented.
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1. INTRODUCTION

Geophysicists working with different types of data are probing

Earth's deep interior (see, e.g., Lay, 1989). For example, geomagnetic

data have been used to estimate fluid motions near the top of the core

(Ball, Kahle & Vestine, 1969; Voorhies, 1984, 1986a,b, 1988; LeMou_l,

Gire & Madden, 1985; Whaler & Clarke, 1988); seismic data have been used

to estimate laterally heterogeneous mantle structure and core-mantle

boundary - hereafter denoted CMB - topography (Morelli & Dziewonski,

1987); gravity and geodetic data have been combined with seismic

estimates of Earth structure to estimate CMB topography (Hager et al.,

1985); and estimates of surficially geostrophic core motions have been

combined with estimates of CMB topography to calculate the topographic

torque exerted by the core on the mantle and the implied changes in

"solid" Earth rotation (Speith et al., 1986). The latter uses results

from independent or "disjoint" inversions of different geophysical data

types to forwardly model decade fluctuations in solid Earth rotation.

I propose joint inversion of diverse geophysical data types for a

unified model of the coupled core-mantle system. The plan merges

magnetic, Earth rotation, geoid, and seismic data into one objective

function which, when suitably weighted, constrained, and parameterized,

can be minimized with respect to the parameters of a unified deep Earth

model. The goal is to develop, parameterize, and test hypotheses about

Earth's deep interior against all relevant types of data.

Curiously, the philosophical foundation for this type of inversion

has been questioned. Clearly, much can be learned from experiments

designed to isolate those data which are thought to be most sensitive to

some particular property of the Earth. This approach can yield decisive



tests of particular hypotheses; yet one need not always lose sight of

the forest for the trees. Someproperties of Earth's deep interior

(e.g., CMBtopography) can contribute signals to manykinds of data

yet are apparently not uniquely determined by any single kind of data.

In such cases, more plausible estimates of the properties might be

obtained by using more than one kind of data.

To do so, a merged data set maybe compiled and used to estimate

parameters of models of the Earth properties. One can hypothesize that

signals from properties which are not modeled, and from parameters which

are not estimated, do not vastly exceed the residuals indicated by a

weighted least-squares fit of the modeled parameters to the data. This

hypothesis can, in turn, be investigated by fitting more data and more

types of data with more complete models of more Earth properties.

To this end, I offer a sample objective function and parameterize

it in terms of a simplified, mechanically coupled, core-mantle system.

The sample "data" considered are slowly varying geomagnetic potential

coefficients, decade fluctuations in the angular velocity of the solid

Earth, static gravitational potential coefficients, and summaryseismic

travel time residuals relative to a laterally homogeneousEarth model.

The parameters describe a piecewise steady core surface velocity field,

a perturbation density field in the mantle, and a CMBtopography

function. The system is closed by supposing surficially, indeed

tangentially (Backus & LeMou_l, 1986), geostrophic core motions and

relations between perturbation seismic wave speeds and perturbation

density in the mantle. Even for this simple Earth model, minimization

of the sample objective function leads to a non-linear inverse problem;

an iterated, linearized method of solution is presented.
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This sample is intended to provide a foundation for more realistic

deep Earth models which might include: a superior mean state; mantle

dynamics and rheology; richer core dynamics; magnetic, viscous, and

gravitational core-mantle coupling; and thermal and compositional core-

mantle interactions. More work will be needed on the problems of how to

parameterize such models, include more kinds of data (e.g., free

oscillations and plate motions), and apply more constraints (e.g., from

mineral physics and low-frequency gravity and deformation studies); and

on problems of uniqueness, accuracy, and method.

2. AN OBJECTIVE FUNCTION SIMPLIFIED

Let r be the position vector in geobarycentric spherical polar

coordinates radius r, colatitude 0, and east longitude _; let t be time;

and let observational data and Earth model predictions be denoted

respectively by d and p subscripts on the following variables:

B is the geomagnetic flux density vector;

Q is the apparent angular velocity vector at the surface of the

solid Earth, technically including plate motions;

g is the gravitational acceleration vector;

T is the travel time of seismic phase C from the source at (r',t')

to the receiver at (r,t);

WX is the weight function which is taken to be the inverse squared

uncertainty in datum of type x at (r,t), but which can be

generalized to a weight matrix for discrete data on the

expectation of correlated errors; and

Xi are multipliers giving weight and proper units to the

Ki which represent geophysical constraints (e.g., small density

perturbations, finite surficially geostrophic core fluid

velocity (Mach number < I), smooth CMB topography, etc.).



One suitable objective function to be minimized in a joint

inversion of geophysical data is

A2= {the weighted residual variance relative to the
magnetic + Earth rotation + geoid + seismic data}

+ {other geophysical constraints}

= Am2 + Aer 2 + Age 2 + As2 + XiAKi 2

or, in the foregoing notation,

ro 2_ • tf

A2=I f f f
ri 0 0 to

{ [Bd(r,t) - Bp(r,t)]2wm(r,t)

+ [fld(r,t) - fip(r,t)]2wer(r,t)

+ [gd(r,t) - gp(r,t)]2wge(r,t)

r'o 2g _F t'f

+[f f If
r'i 0 0 t'o

[Td(_;r',t';r,t) - Tp(_;r',t';r,t)]2

S

W (_;r',t',r,t)r'2sinO'dt'dO'd¢'dr']

[},iKi(r,t)2] }r2sinOdtdOdCdr

It is convenient to view the results of measurements over small portions

of the 4-volume of integration as discrete data. Then

merges
A2 = [dj - pj] Wjk [dk - Pk] + <_iKi >

where dj is an element of the merged data vector, pj is an element of

the merged prediction vector, and repeated subscripts denote summation.

This objective function could be generalized to include other types

of data; yet it already seems too ambitious and the data have already

been reduced and analyzed "disjointly". The suggestion is to build upon

this rich tradition by replacing the diverse data types with either more

tractable models thereof or data residuals relative to such models. One

such approach begins with the following, de-subscripted, "data":

(I) slowly varying, broad-scale spherical harmonic models B of the

observed geomagnetic field (e.g., IAGA 1988);
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(2) length-of-day and polar motion data corrected as possible for

nutation, precession, and tidal effects, either low-pass

filtered or corrected for atmospheric and hydro-cryospheric

effects (e.g., Stephenson & Morrison, 1984), and then fitted

with, say, a piecewise linear function O(t);

(3) broad-scale spherical harmonic models of the steady part of the

gravitational field g (e.g., Marsh et al., 1988) - preferably

corrected for surface topographic and crustal sources; and

(4) summary travel time residuals T relative to a laterally

homogeneous seismic Earth model (e.g., Dziewonski & Anderson,

1981) which specifies the axisymmetric mean state

(Vpo,VSo,Po,Po,Ko,Po) on reference ellipsoids (or spheres).

Effects of external fields on (1) and (3) are small. Effects of plate

motions on (2) are omitted for now; the piecewise linear O(t) fitted to

corrected, low-pass filtered Qd should capture the decade fluctuations

of interest here. Summary travel time residuals in (4) are averaged

over closely spaced ray paths (Creager & Jordan, 1986) to reduce effects

of small-scale structure, oversampling, and colinearity. Alternately,

one might use (4b) a model of laterally heterogeneous phase speeds Vp

and VS, or (4c) spherical harmonic models of the travel time residuals

at all (summary) receivers for each phase from each (summary) source.

Let the reference surface of mean radius lal = a _ 6.3712 Mm

enclose the internal sources of scaloidal B and g. On and above this

surface we have

Bd = B(r,t) + 6b(r,t) B = -¥V

with internal scalar magnetic potential



® a n+! n m m m
V = a E [-] E [gn(t)cosm_ + hn(t)sinm_]Pn(cosO)

n:l r m=O

and radial magnetic component

8V

Br(a,t) .... E gi(a,t) Si(O,¢) _ giSi _ gTs
8r i - -

(i)

Here the (gnm,hn m) are the Gauss coefficients, Pnm is the Schmidt-

normalized associated Legendre polynomial of degree n and order m, gi is

an element of the ordered column vector g of radial magnetic field

coefficients, Si is an element of the ordered vector S of spherical

harmonics of degree n(i) and order m(i), and a T superscript indicates

the transpose (Voorhies, 1986b). Moreover,

9d(t) = 9o + 9(t) + 6w(t) (2)

where Go is the mean angular velocity of the solid Earth and 9(t) is the

piecewise linear representation of the decade fluctuations. Furthermore,

with go(r) = -VUo being the mean gravity caused by the mean density

po(r), and with tidal and other time-varying effects represented by 6g,

gd = go(r) + g(r) + 6g(r,t)

Steady g(r) = -VU has steady perturbation gravitational potential

GME ® a n+1 n m m m
U = _ }] [-] E [CncosmlJ + snsinm#]Pn(cos#)

a n=O r m=O

and steady perturbation radial gravitational component

8U

gr(a) .... _ ci(a) Si(8,_) _ ciSi _ cTs •
8r i - -

(3)

Here G is the gravitational constant, ME is Earth's mass, (cnm,sn m) are

the steady perturbation gravitational potential coefficients, and ci is

an element of the ordered vector c of steady perturbation radial

gravitational field coefficients. Finally,
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T(_;r',t';r,t) = Td(_;r',t';r,t) - To(_;r',t';r,t) = Ti = Tdi - Toi (4)

where, for each seismic phase _ and each (summary) source-receiver pair

denoted by i = i(_;r',t';r,t), the (summary) travel time residual Ti is

relative to the travel time predicted by the reference Earth model Toi.

Hopefully gi, fli, ci, and Ti would be corrected for external and crustal

effects; such corrections to low-degree geomagnetic main field models,

piecewise linear fits to low-pass filtered Earth rotation data, a low-

degree gravity model, and perhaps summary travel times should be small.

With the foregoing reduction of data types, and targeting the

evolution of the radial magnetic component and the steady perturbation

radial gravitational component on a, the redefined objective function is

tf 2_ _ m

A2 _ I I i [Br(a,t) Brp(a,t)]2W (a,t)sinOdOd_dt
to 0 0

tf 2wer
+ I [Q(t) - Qp(t)] (t)dt

to
2_

+ I I [gr(a) - grp(a)]2wge(a)sinOdOd_
0 0

S

+ [Ti - Tpi]W ij[Tj - Tpj] + <_iKi(r,t)2> . (5)

Scalar weight functions wm and wge can be derived from the (increasingly

realistic) error covariance matrices for the geopotential field models,

while wer should reflect uncertainty and error in the piecewise linear

fit Q(t). The diagonal elements of the matrix WS should reflect the

standard deviation of each summary travel time residual; hypocenter

uncertainties may suggest non-trivial off-diagonal elements. With eqns.

(I) and (3), Brp(a,t) = 7iSi, grp(a) = _iSi, the three components of

Qp(t) written flip(t) = _i(t), and with Tpk = rk, evaluation of the

weighted surface integrals in eq. (5) yields
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tf m
A2 : I [(gi - 7i) Wij (gj - 7j)]dt

to

tf er

+ I [(fli - _i) Wij (flj- _j)]dt
to

ge
+ [(ci - (i) Wij (cj - (j)]

S

+ [(Ti - Ti) Wij (Tj - Tj)] + <XiKi(r,t)2> . (6)

Other types of geophysical data may be included by adding suitably

weighted terms to the objective function given by eq. (6).

Select changes in the weight matrices of eq. (6) can be made so as

to transform the objective function. For example: (i) geomagnetic and

gravity coefficients can be fitted through degree and order 10 without

biasing the higher degree 7i and _i by setting wmij and wgeij equal to

zero for either i or j greater than 120; (ii) replacing wmij with the

inverse of the error covariance matrix for the radial magnetic

coefficients targets the scalar geomagnetic potential instead of the

radial component alone; or (iii) WSij might be culled to restrict

attention to particular phases like PKP or ScS.

3. PARAMETERIZATION

The parameterization of predictions 7i, _j, {k, and rl offered here

is based on a very simple Earth model with the following attributes.

(I) Geomagnetic secular variation is attributed to piecewise steady

(Voorhies & Backus, 1985) frozen-flux motional induction by a

tangentially geostrophic (Backus & LeMou_l, 1986) fluid velocity

field Vs at the top of a roughly spherical core of mean radius Icl

= c _ 3.48 Mm (no subscript or underscore) which is surrounded by a

comparatively rigid and magnetically source-free mantle.



(2) Decade fluctuations in the angular velocity of the solid Earth are

attributed to the mechanical torque L exerted by the perturbation

pressure p'(c,O,_;t) associated with Vs on the topography h(O,_) of

the CMB. The CMB is the locus of points rc: rc = c + h(O,#).

(3) The perturbation gravity field is attributed to the perturbation

density in the solid Earth p'(r_c+h,O,_) and the effect of CMB

topography h. Density perturbations within the core are omitted.

(4) Seismic travel time residuals are due to h, p', and perturbations in

the bulk and shear moduli K and _.

3.1 Magnetic

In this very simple model, within each subinterval during which

steady flow is presumed the time rate of change of the predicted radial

field at the CMB is, to order zero in h,

Brp(C,t) : Ys'[Brp(C,t)Vs(C)] = FjSj

where the over-dot indicates the partial time derivative and Fj is an

element of the ordered vector of predicted radial magnetic field

coefficients at c. With the diagonal upward continuation matrix ?ij

having elements (c/a)n(i)+2 for harmonic degree n(i),

Brp(a,t) = 7iSi = (?ijrj)Si •

The surficial fluid velocity is expressed in terms of the streamfunction

-Tm and the velocity potential -Um

Vs(C) : rxVsTm + ¥sUm

These expressions imply

Tm : aiSi um : #iSi

7m = Tmk{[FiXijk]aj + [FiYijk]#j}

= Tmk{Xijkriaj + Yijkri#j} = Amlul (7)



where, in the last step, the sumsover i and k have been performed and

_] is an element of the concatenated vector of streamfunction

coefficients aj and velocity potential coefficients pj. Equation (7) is

but 7 = Av. The time-varying elements Aml of matrix A depend on ri,

hence Brp, and thus upon the velocity field coefficients ul. The

inverse problem is therefore non-linear; for the iterative linearized

approach suggested in section 4, the Aml are first calculated from the

gi and are recalculated on each deep iteration (Voorhies, 1987a,b,

1988). Formulae for Xijk = -Xjik, Yijk, and Aml are given elsewhere for

the linear case (Voorhies, 1986b); formulae for the non-linear case have

been presented (Voorhies, 1987a), posted (Voorhies, 1988), and are in

typescripts (available by request) detailing the steady core flow

estimation methods applied routinely at GSFC.

Tangential geostrophy (Ball et al., 1969; Backus & LeMou_l, 1986)

seems awkward to enforce. In contrast, it is easy to damp departures

from a geostrophic radial vorticity balance (Voorhies, 1986b,c). Then

Vs.[VsCOSO] _ 0 and downwelling implies poleward flow (Voorhies, 1987c).

Such flows are but "surficially geostrophic" (Voorhies, 1990);

subsequent supposition of tangential geostrophy allows calculation of

the perturbation pressure field on the sphere c from the vl. Steady

perturbation pressure "maps" so derived at GSFC show fair agreement with

those derived from the work of C. Gire and J.-L. LeMou_l - the first, I

believe, to produce such maps (D. Jault, 1989, personal communication).

3.2 Earth Rotation

The reference mantle has steady principle moments of inertia

(A,B_A,C) in geobarycentric Cartesian coordinates (x,y,z) with go

parallel to the z axis; the time rate of change of the predicted angular

I0



velocity vector is, according to the Euler equations,

_x = [Lx - (no + Wz)(C-B)wy]/A _ [Lx - Qo(C-A)_y]/A

Wy = [Ly + (0o + _z)(C-A)_x]/A _ [Ly + Qo(C-A)wx]/A

Wz = [Lz - Wxwy(B-A)]/C _ Lz/C

with the approximations good to first order in Iwil/Qo << I. Voorhies

(1990) shows that, to first-order accuracy in the asphericity lhl/c << I

and in lYshl << I, the topographic torque is (omitting Lorentz terms)

I

2_

-_ 2QoPcC31 I [h(#,_)vs(rc_-C,O,il)c°sO]sinOdOd_
0 0

With h(O,_) = hiSi one has, to first-order accuracy,

Lk = [hiQ*ijk]_j = Q*ijkhiuj

wk(t) = Qijkhiuj + Ekjwj(t) _ Qijkhiuj + qk(t) (8)

or simply _ : QThv + q. Because wk(t) depends on piecewise steady hvs,

hence hivj, and because qk(t) depends on wj(t), the inverse problem is

non-linear. In the iterative linearized approach (see section 4), the

qk, and perhaps A, BfA, C and off diagonals of the inertia tensor,

should be recalculated on each deep iteration. Then it is convenient to

introduce the matrices QUkj _ Qijkhi and Qhki _ Qijkuj.

With initial conditions gi(a,to) = 7i(a,to) and nj(to) = _j(to),

and simply supposing steady flow from to to tf, the magnetic and Earth

rotation portion of eq. (6) is

tf

i
to

m er

[(gi - ?i)Wij(gj - 7j)] + [(fli - _i)Wij(l_j - _j)]dt

tf t m t
J {[J" (gi - 7i)dt']Wij[f (gj - 7j)dt'] +

to to ti

]!



t er t . .
[I (_i - _i)dt']Wij[i (gj - _j)dt']}dt

to to

or, by eqns. (7) and (8),

Au]T m • T T er T= [g - W [g - Au] + [_ - Q hu - q] W [_ - Q hu - q] (g)
_ - _ :_ _ _ -- = _ _ -- _

where the number of underscores denotes tensor rank, the first over-bar

indicates dummy time integration from to to t, and the second over-bar

indicates time integration from to to tf. Besides the explicit non-

linear dependence on hu, there are non-linearities implicit in _(7(_))

and 9(_(_,_)) •

3.3 Geoid

The suggested geoid parameterization is in terms of spherical

harmonic coefficients for a perturbation density which is independent of

radius within each of K layers

p'(rk<r_rk+1,8,_) = [p(rk<r_rk+1)]iSi(8,_) = PkiSi

and the mean state density contrast across the CMB, A# = Pc - Pm, times

the CMB topography

p'(ro=c,(_,_) = AphiSi

The perturbation geopotential is

p' (r')

u(r) = -GIll r'2sinO'dS'd¢'dr'
Ir - r'l

Now gr = -U,r; with lal = Irl > Ir'l, expanding Ir-r'l-1 yields

a 2:T _ r' n(j)+2

gr(a) = -GI i i {[P'(r')]iSi(O',i6')}{[n(j)+1](--)
cO 0 a

Sj (0' ,_')Sj (O,_)}sinS'dS'd¢'dr'
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a 41rG[n(j)+1] r' n(j)+2
=-i [p'(r')]i{ (--) 6ij}Sj(8,_)dr'

c [2n(j)+l] a

K -4_FaG [n (j) +I]

: E Pki{'[k=1 2n(j)+1][n(i)+3]

rk+! n(i)+3 rk n(i)+3

[(_) - (--) ]6ij}Sj
a a

+ Aphi{
-4_aG In(j)+!! c n(i)+3

(-) 6ij}Sj
[2n(j)+l] In(i)+3! a

- [pkiGikj]Sj + [hiHij]Sj -- [PkiGikj + Hijhi]Sj

where 6ij is the Kroenecker delta. Because Gikj (and Hij) are zero for

i#j, the connection between p' and gr(a) is harmonically pure (as is

that between h and gr(a)). It is convenient to reorder the Pkj into a

single vector Pl with I : (k-j)Jmax + j so that PkiGikj : FjlPI and

grp(a) = [FjlPl + Hjihi]Sj _ _jSj _ _Ts . (!0)

The geoid contribution to eq. (6) is thus

ge
[(ci - _i) Wij (cj - _j)]

ge
= {ci - FilPl - Himhm}Wij{cj - FjlPl - Hjmhm}

= [c - Fp - Hh]TWge[c - Fp - Hh] (]I)
-- =m =- = m =m =w

3.4 Seismic

The predicted (summary) travel time perturbation ri is the

perturbation slowness _i(r) integrated along the ray path L(i) for phase

_(i) from source r'(i) to receiver r(i)

r(i) i

Ti = I _ (r) dLi

r'(i)

No sum is performed over superscripts. For local (P or S) phase speed

V = Vo + AV = (So + _)-], So _ I/Vo and _ _ -AV/Vo 2 to first order in

IAVI/Vo << I. The suggestion here is to represent _(r) in a manner

similar to p'(r). Then

13



i i i
(rk<r_rk+l,O,_) : [_ (rk<r_rk+l)]jSj(O,_) : _kjSj

where _ikj is the jth spherical harmonic coefficient of the slowness in

the kth layer for phase g(i). The path L(i) will depend upon _i(r), so

the inverse problem is non-linear. I suggest both descending and

ascending path segments of respective lengths Ldki and Laki in layer k

be determined initially from the meanstate and subsequently from the

results of the previous deep iteration. These ray path segment lengths

are assigned to the mean location of the segment (Oik,_ik). In this

approximation, with the sumover k madeexplicit for descending and

ascending segments,

ri =

K i i i d I i i i a

Z [@kjSj(Ok,¢k)] Lki + E [@kjSj((_k,_k)] Lki
k=1 k=K

i i i i

- uihjSj(6u,_u) - vihjSj(Ov,_v)

where, to account for the effect of CMB topography on the path length,

(i) ui = vi = 0 for paths not touching the CMB (e.g., P, S, PP, PS,

etc.); (ii) ui : so(ro:c+)/sincu and vi = so(ro=c+)/sincv for

reflections with incident angle Cu and reflected angle Cv at (Ou,¢u) =

(Ov,_v) (e.g., PcP, PcS, etc.): and (iii) ui = [So(C-) - So(C+)]/sincu

and vi = [So(C-) - So(C+)]/sin_v for phases leaving the mantle with

incident angle Cu at (Ou,¢u) and reentering the mantle with exit angle

Cv at (Ov,_v) (e.g., PKP, PKS, etc.). Note Cu and Cv can be corrected

using previous estimates of h.

The foregoing expression for Ti can be rewritten as

d i a i u v

Ti = Zijk_kj + Zijk_jk - Mijhj - Mijhj

with the understanding that for seismic phase i on path L(i) between

source r'(i) and receiver r'(i) zdijk (or zaijk) is the length of the

14



descending (or ascending.) ray path segment in layer k times spherical
r

harmonic j evaluated at the segment midpoint, while MUij (or MVij) is

the travel time correction due to CMB topography at the point of core

entry (or exit). This expression is more compactly represented by

concatenating (i) the zd and za tensors into Z, (ii) the _i matrices
-- w

for P and S slownesses into _, and (iii) the MU and My matrices into

-M; then reorder the elements of _ (and Z) into vector _ (and matrix D):

Ti _ Dilfl + Mijhj • (12a)

There remains the thorny problem of relating perturbation slowness

to perturbation density. The differential slownesses for P-waves or S-

waves are

d_P : d(Vp)-I : -Vp-2dVp

d_S = d(Vs)-I : -Vs-2dV S

With bulk and shear moduli K and F, Vp2 = (K + 4#/3)/P and VS2 = F/P, so

dp = Vs-2dF - 2pVs-ldVs

dp = Vp-2dK + (4/3)Vp-2d# - 2pVp-ldVp

which, upon linearization about the mean state (Vpo, VSo, #o, Ko, Fo),

are viewed as two equations in the three unknowns dp, dK, and dF. We

can solve for

dF = pK-I[Vs2dK + 2#VpVs(VsdV S - VpdVp)]

where (Vp2 - 4Vs2/3) = K/# : (Sp/SP)ad is the adiabatic sound speed.

Unfortunately, dp cannot be determined without additional information on

dK (or d#).

The suggestion is to treat perturbation slowness as if directly

proportional to perturbation density; however, the constant of

]5



proportionality may vary radially (with the mean state). Lateral

variations of this 'constant' are omitted for simplicity - as are

anisotropies in the fourth rank-tensor of elastic constants and the

complexities of attenuation. Then the perturbation density coefficient

for spherical harmonic j in layer k is

-1_ s -1 sPkj = [C k'] 'j = [Ckk'] _k'j

or, in the vector notation,

_I = Cll'Pl' (12b)

The elements of the diagonal matrix C are the different constants in

each layer- be it mainly olivene; olivene-spinel; ferro-magnesian

silicate perovskite; stishovite, non-stoichiometric ferro-magnesio-

w_stites, and ferro-silicides; or iron (Knittle & Jeanloz, 1989).

If, within each layer, perturbations in temperature, pressure, and

composition were directly proportional to density perturbations and if

the partial derivatives of K with respect to temperature, pressure, and

composition were laterally homogeneous, then (12b) would be fully

justified. Hopefully, the information on dK needed for a more realistic

equation of state can be obtained from mineral physics or mantle

dynamics. Because dp, d#, and dK, hence dV S and dVp, are caused by

temperature, pressure, and composition perturbations associated with

departures from the mean state of hydrostatic equilibrium with an

adiabatic temperature gradient, both a perturbation equation of state

and the equations of motion for the mantle will likely be needed. Then

mantle circulation will have to be parameterized, the parameters

included, and estimates thereof constrained to fit plate motion and
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deformation data. (A parameterization of mantle circulation might also

be tied to a parameterization of elastic anisotropy).

In the interim, eqns. (12b) and (12a) allow the seismic portion of

eq. (6) to be written

S S

[(Ti - Ti) Wij (Tj - rj)] = [Ti - DiICll'Pl' - Mimhm]Wij

[Tj - DjlCll'Pl' - Mjmhm]

= [T - DCp - Mh]TwS[T - DCp - Mh] (13)

4. INVERSION

With parameterization eqns. (9), (11), and (13), the constraint

enforcing the geostrophic radial vorticity balance written (Bu)TAm(Bv),

and optional biases towards prior estimates of the fluid flow uo,

topography hO, and density po (possibly from 'disjoint' inversions), the

objective function given by eq. (6) becomes

A2 = [g - Au]TWm[G - Au] + [_ - QThv - q]Twer[_ QThu q]

_ =_ - =_ _ _ -- - _ _ -- _

+ [c - Fp - Hh]TWge[c - Fp - Hh]

+ [T - DCp - Mh]TW s [T - DCp - Mh]

+ (Bu)TAm(Bu) + (u - uo)TAv(u - uO)

+ (h - hO)TAh(h - hO) + (p po)TAp(p - po) (14)

In addition to the non-linearity explicit in the Earth rotation term

(_hu = Qhu = QUh), recall that A depends upon _, hence u; q depends upon

w, hence both h and u; and D and M depend uppn _, hence upon # and h.

The minimization of A2 is therefore a profoundly non-linear problem.
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The attack on this problem offered here is based on iterative solution

of the linearized problem.

Initial estimates of A, q, D and M can be calculated from either

the 'data' or the meanstate. Initial estimates of _h and QV=can be

calculated from models of h and _ obtained by 'disjoint' inversion. Use
m

the initial estimates ui, hi, and #i with i = I (or 0 if necessary) to

solve the forward problems of piecewise steady motional induction,

changes in Earth rotation, geoid determination, and calculation of

travel times. Such forward calculations give the predictions 7, _, _,

and r. The differences between the 'data' g, fl, c, and T and these

predictions are the residuals 6g, 6n, 6c, and 6T. These residuals

provide the 'data' for the first joint inversion (6g, 6fl, 6c, and 6T).

They also define the residual objective function, which is parameterized

in terms of prior estimates (uO, hO, pO), initial values (vi, hi, #i),

and parameter corrections (6ui, 6hi, 6pi). The residual objective

function (not shown) is minimal only if it is extreme, so parameter

corrections can be estimated by setting the partial derivatives of it

with respect to the parameter corrections equal to zero.

In the linearized treatment, the elements of A, q, Qh, Qv, D, and M

in the residual objective function are treated as if independent of the

parameter corrections. Then the partial differentiation is easy and,

to first order, the corrected parameters are the initial parameters

(ui, hi, pi) plus

-1

- m-T. + _-_TWe_'{ATW 6g [6_-QV6h-q] - BTAmBvi - Av[ui-uo]} (15a)
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-im er'--
6h = {QvTW QV + HTWgeH + MTwSM + Ah}

{Q_Twer [6_-Qh6_-q] +

HTw ge (6c-F6p) + MTw s[6T-DC6p] - Ah [hi-ho] }

(15b)

-1
6p : {FTWgeF + [DC]Tws[DC] + As}

{FTWge[6c-H6h] + [DC]TwS[6T-M6h] -Ap[pi-po]} (15c)

Clearly, equations (15) are not fully reduced because of the terms

QU6h (15a), Qh6u and F6p (15b), and H6h and M6h (15c) on the right.

However, (15a) can be used to eliminate 6u from (15b) and (15c) can be

used to eliminate 6p from (15b). The resulting expression can be solved

for 6h. Then 6u and 6p can be determined by back substitution into

(15a) and (15c).

To make this clear, symbolically rewrite eqns. (]5a-c) as

6u = V-I[G - E6h]

6h = T-I[c U6u m S6p]

6_p : R--][P X6h]

Then

(16a)

(16b)

(16c)

6h = [T - UV-]E - SR-]X]-I[c - UV-IG - SR-IP] (17)

Substitution of eq. (17) into (16a) yields 6u; substitution of (17) into

(16c) yields 6p. Clearly CMB topography is assigned the pivotal role.

The corrected parameters can be used to solve the forward problem

again and obtain new residuals. Then the corrections can be estimated

again. After a satisfactory number of such "shallow" iterations, the
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elements of A, q, Q_, Qh, D, and M can be recalculated using the

predicted values 7(t), w(t), _, and Vp(r) and Vs(r). Such recalculation

is termed "deep" iteration; it might even include earthquake relocation.

Then shallow iteration can be tried again, followed by another deep

iteration, etc.. Shallow iteration is merely intended to provide a

refined set of corrected parameters for use in the seemingly more

burdensomerecalculation of matrix elements required for deep iteration;

it is considered optional for the small parameter corrections

anticipated. Shallow iteration allows more use of residuals calculated

by accurate numerical solution of the (time-dependent, non-linear)

forward problem; such residuals ought not be replaced by coarse linear

approximations. Clearly, the iteration process can be repeated until

either an adequate fit is obtained or the Earth model is abandoned.

Convergenceof the iteration schemeis, of course, assured if the

biases favoring prior estimates vo, hO, and po (typically measured by

by the diagonal elements of positive definite _u, Ah, and A#) are strong

enough. Convergence is apparently neither prohibited nor guaranteed

when either confidence in the prior estimates is eroded or when the

prior estimates are replaced with the most recent estimate. In the

latter case (which seems consistent with deep iteration), the (Au,_h,Ap)

might serve as convergence factors which keep the corrections so small

as to avoid severe violation of the linearization when seeking small

weighted residual variance. More sophisticated methods of non-linear

optimization are possible, but lie outside the scope of this paper.

Even in the linearized case, care is needed to avoid baseless bias,

over-parameterization, and confusion of anticipated parameter error

estimates (from the covariance) with the significance of the residuals.
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5. DISCUSSION

To obtain such a very simple deep Earth model complete through

harmonic degree and order 10 with a 9-layer mantle, at least 1,440

parameters need to be determined by iterative Iinearized least squares:

120 coefficients representing the CMB topography, 240 coefficients

representing the core velocity field per time interval, and 1,080

coefficients describing the perturbation density. Symmetric storage of

a 1440 x 1440 symmetric matrix requires but 106 words of computer

storage. If more than one interval is considered, then more core flow

coefficients are needed. For a 10th degree, single-interval model with

29 layers, there would be 3,840 parameters; symmetric storage of a

3,840 x 3,840 matrix would require 7.4xi06 words. Such matrices can be

manipulated and, if well-conditioned, inverted with existing computers.

The condition of the matrix depends upon the "data" selected, the

assigned weights, the number of parameters estimated, and the confidence

assigned to prior estimates. Note that truncation of the model need not

suppose that higher degree parameters are zero; only that such unmodeled

parameters contribute to the residuals and may contribute to model

error. If the weights are to reflect covariance of unmodeled signal as

well as data error covariance, expectations regarding unmodeled signal

may be developed by studying the residuals obtained during numerical

experimentation and, of course, the unmodeled processes themselves.

In the very simple Earth model considered here, CMB topography

provides the essential link between the diverse geophysical data types.

Of course it is by no means clear that the connection between the

magnetic side of the problem and either the geoid or the seismic sides

of the problem is strong enough to warrant detailed calculations. This
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connection is provided only through the three componentsof the decade

fluctuations in earth rotation. Yet this connection can be strengthened

by including the kinematic effect of CMBtopography on core flow and

thus the predicted secular geomagnetic variation. Furthermore, this

connection might be strengthened upon parameterization of a more

realistic Earth model, inclusion of more data types, and application of

more physical constraints - as outlined in the introduction.
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