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ABSTRACT

A study has been conducted to determine the effects of seventh-stage compressor bleed on
the performance of the F100 afterburning turbofan engine. The effects of bleed on thrust,
specific fuel consumption, fan turbine inlet temperature, bleed total pressure, and bleed total
temperature were obtained from the engine manufacturer's status deck computer simulation
for power settings of intermediate, partial afterburning, and maximum afterburning; for Mach
numbers between 0.6 and 2.2; and for altitudes of 30,000, 40,000, and 50,000 ft. It was found
that thrust loss and specific fuel consumption increase were approximately linear functions of
bleed flow, and, based on a percent-thrust change basis, were approximately independent of
power setting.

INTRODUCTION

Bleed air is often extracted from a jet engine's compressor for various applications during
aircraft flight. These applications include fuel tank pressurization, environmental control
system use, anti-icing systems, aerodynamic blowing, and driving compressors and suction
pumps. This extraction of bleed air introduces a performance penalty on the engine. Bleed
usually causes thrust to decrease, specific fuel consumption to increase, and engine turbine
temperatures to increase. All of these parameters have a strong effect on aircraft
performance.

For laminar flow control systems, bleed air from the engine compressor may be required for
powering suction pumps. The effects of such bleed need to be considered during the
conceptual design of laminar flow control systems.

Therefore, a study has been conducted at the NASA Ames Research Center's Dryden Flight
Research Facility to determine the impact of various levels of compressor bleed on the
performance of the F100-PW-220 afterburning turbofan. Interstage bleed taken off at the 7th
stage was considered in this study, although 13th stage bleed is also available on the F100
engine. The Pratt & Whitney steady-state mathematical model, reference 1, was used to
determine the response of the F100-PW-220 engine to the various levels of interstage bleed
for this study. Bleed flow was varied from O to approximately 2.6 percent of compressor flow,
and the changes in thrust, specific fuel consumption (SFC), engine temperatures and
pressures and engine turbine temperatures were examined.

This paper presents the results of the interstage bleed effects for a range of Mach numbers
from 0.6 to 2.2, for intermediate (maximum nonafterburning) power, partial afterburning, and
maximum afterburning for altitudes of 30,000, 40,000, and 50,000 ft for standard day
conditions.

NOMENCLATURE
DEEC digital electronic engine control
FN net thrust, 1b
FTIT fan turbine inlet temperature, °F
h altitude, ft



M Mach number

PLA power lever angle, deg

PCTBL compressor air flow used for bleed air, percent

PTBI total pressure of interstage bleed, PSIA .
SFC specific fuel consumption, 1bm/hr/lbf '
TTBI total temperature of interstage bleed, °F

WBI seventh-stage compressor bleed air flow rate, Ib/sec

DESCRIPTION OF EQUIPMENT
Engine Description

The F100-PW-220 engine, figure 1, is a two-spool low-bypass ratio-augmented turbofan
engine, built by Pratt and Whitney, West Palm Beach, FL. This engine consists of a 3-stage
fan, 10-stage compressor, combustor, 2-stage high-pressure turbine, and a 2-stage low-
pressure turbine. A mixed-flow augmentor exhausts through a balanced-beam nozzle. The
F100-PW-220 engine is equipped with a digital electronic engine control (DEEC), reference
2.

For the F100-PW-220 engine, the compressor bleed may be extracted from the 7th stage
(interstage bleed) or 13th stage (customer bleed). The bleed source varies with Mach
number and altitude. At high power settings and speeds typical of supersonic aircraft, the 7th
stage bleed would normally be used. For this report all bleed air is assumed to be from the
7th stage (interstage) of the compressor, as shown in the inset in figure 1.

F100 Engine Simulation Program (Status Deck)

Pratt & Whitney Aircraft Customer Computer Deck (CCD 1148-0.0) is a steady-state
mathematical model of the Pratt & Whitney F100-PW-200 engine, equipped with a DEEC
which utilizes DEEC PD 2.3 logic. This computer simulation closely approximates the F100-
PW-220 engine that powers the F-15 and F-16 airplanes.

The function of this simulation program is to predict engine performance by using the -
characteristics of the engine's eight components (fan, compressor, primary combustor, high-
pressure turbine and fan turbine, augmentor, exit nozzle, and fan duct). The values for
pressures, temperatures, and mass flows throughout the engine are determined through the
use of aerodynamic and thermodynarnic equations. For this report, the amount of interstage
bleed was varied from O to the maximum capability, which was approximately 2.6 pcrccnt of ..
the compressor airflow.

PROCEDURE

The engine simulation program was used to develop the effects of bleed on several engine

parameters. Inputs to the engine simulation are Mach, altitude, power level angle (PLA), .
and bleed flow rate. The Mach and altitude, along with the inlet recovery of the F-16 airplane, .
specified the engine face pressure and temperature for standard day conditions.



A baseline set of results were obtained from the engine simulation with no bleed. Computer
runs were then made with increasing levels of bleed, and the results were ratioed to the no-
bleed parameter values. Altitudes of 30,000, 40,000 and 50,000 ft were used. Mach numbers
appropriate to each of 3 power settings were used: M =0.6to 1.0 for aPLA = 83°
(intermediate power); M = 0.6 to 1.6 for PLA = 110° (partial afterburning), and M=0.6to
2.2 for PLA = 130° (maximum afterbuming).

Data are displayed with calculated data points shown with symbols and straight lines drawn
in between; some uncertainty may result as to where points should lie in between data
points.

Since the results are presented as percent changes, the results are applicable to other
airplanes powered by the F100 series engines.

RESULTS AND DISCUSSION

The effects of compressor interstage bleed flow (WBI) on the bleed pressure (PTBI) and
temperature (TTBI) and three engine parameters are presented. The engine parameters
were net thrust (FN), specific fuel consumption (SFC), and fan turbine inlet temperature
(FTIT). These parameters were plotted as a function of Mach number and percent of
interstage bleed (PCTBL) for flight conditions between 30,000 and 50,000 ft at PLA's of 83°,
110°, and 130°. PCTBL values ranged from 0 to maximum bleed of approximately 2.6 percent.

Compressor interstage bleed flow rate values in 1b/sec at various PLA, Mach number, and
altitude conditions are presented in the Table. The compressor airflow was computed by the
engine simulation and used to generate the percent bleed flows. These values can be used to
convert the percentage bleed flows to absolute mass flows if desired.

Fan Turbine Inlet Temperature, FIT]

Figures 2, 3, and 4 display FTIT as a function of Mach number, PCTBL, and altitude at a PLA
of 83°, 110°, and 130°, respectively. At the lower Mach numbers, the DEEC compensates for
the bleed extraction by increasing FTIT to maintain the scheduled fan airflow. This increase
in FTIT is approximately 20°F for each additional percentage of bleed until the FTIT limit of
1720°F is reached. Once the temperature limit is reached, fan airflow, and hence thrust, will
decrease, as will be shown in later figures.

Compressor Interstage Bleed Pressure

Figure 5 shows the effects of Mach number and bleed flow on PTBI for altitudes of 30,000,
40,000, and 50,000 ft at PLA = 83°. Increasing Mach number results in an almost linear
increase in PTBIL. The first 1 percent of bleed results in a reduction of approximately 3 percent
in PTBI, but the second percent of interstage bleed causes about an 8-percent reduction in
PTBI. For maximum bleed cases, approximately 15 percent of compressor interstage
pressure is lost.



Figure 6 shows the effects of Mach number and altitude and PCTBL on PTBI for a PLA =
110°. Results are very similar to the PLA = 83° data from figure 5.

Figure 7 shows the effects of Mach number and altitude and PCTBL on PTBI for PLA = 130°.
At the lower Mach numbers, the results agree well with the data from the 83° and 110°
PLA's, while at the higher Mach numbers above M = 1.8, PTBI increases less with increasing
Mach. .

mpr. r_Interstage Bleed Temperatur:

Compressor interstage bleed temperature, TTBI, is shown in figure 8 as a function of Mach
number, altitude, and PCTBL at a PLA of 83°. TTBI increases with Mach number, and
decreases slightly with altitude, mos[ly due to the change in engine inlet temperature. As
can be seen, PCTBL had only a minor effect on TTBL, at most approx1mately 10°F

Effects at a PLA of 110° and 130° are shown in figures 9 and 10, respectxvely, and show the
same trends shown in figure 8. At altitudes of 50,000 ft, PCTBL effects TTBI by only
approximately 2°F. Figure 10 shows that at high Mach numbers, TTBI values become high;
at Mach 2.0, TTBI is above 700°F.

Net Thrust

The effect of Mach number, PCTBL, and altitude on change in net thrust (FN) is shown in

figure 11 at a PLA of 83°. At flight conditions where the engine is operating below the FTIT. .
limit (M =0.7 ath = 30,000 ft, fig 11 a; M = 0.9 at 40,000 ft, fig 11 b; and M = 1.0 at 50,000
ft, fig 11 ¢), increasing bleed has only a small effect on thrust (approx1matclﬁyr 0.2 percent loss

in thrust per PCTBL). Once the FTIT limit is reached, the effects of the engine control
system are quite significant and thrust decreases rapxdly For altitudes of 30,000 and 40,000
ft, reductions of over 6 percent are shown for maximum bleed cases. However at 50,000 ft,

the FTIT limit is never reached and a dccrcasc of only 0.5 percent occurs for maximum bleed
- cases.

Figure 12 shows the effects of Mach number, PCTBL, and altitude on FN at PLA = 110°.
Results are somewhat similar to the PLA = 83° results. However, the afterburner fuel pump
uses engine bleed air, which results in an increased loss of thrust. This loss below the FTIT-
limiting Mach number is as high as 1 percent, and above the FTTT limiting Mach number, it
exceeds 6 percent.

Figure 13 shows how FN reacts to Mach number, PCTBL, and altitude, at full afterburning,
PLA = 130°. Results are similar to those in figure 12, except in the Mach 1.4 to 1.8 range,
where some augmentor segment changes occur. Again, the afterburner fuel pump requires
more bleed air so an additional reduction of FN occurs. FN is reduced up to 7 percent for
maximum bleed cases. ’

Figure 14 displays percent change in FN as a function of PCTBL at h = 40,000 ft and PLA = ]
110° and 130°. From this figure it can be seen that FN decreases linearly with increasing J



bleed, and that the thrust loss is much greater at supersonic Mach numbers. At maximum
bleed, approximately 6 percent of net thrust is lost.

Percent change in net thrust was found to be almost independent of PLA setting. This can be
seen in Figure 15 where percent change in net thrust is plotted as a function of Mach number
at an altitude of 30,000 ft and a bleed extraction of 1 percent for a three power settings. The
values for percent change in net thrust are found to correspond fairly closely for each PLA
setting.

ific Fuel Consumption, SF

SFC is analyzed as a function of Mach number, PCTBL, and altitude in figures 16, 17, and 18.
Figure 16 shows that at a PLA of 83°, SFC increases, on the average, 1.5 percent for each
percent of increased bleed. The largest percentage increase in SFC for this power setting
was approximately 4 percent, and this always occurred for maximum bleed settings.

In figure 17, the FTIT limit is found to affect the results again. Below this limit (about M =
1.2) SEC increases approximately 0.7 to 0.9 percent for each percentage of bleed extraction,
and above this limit, SFC increases approximately 1.2 to 1.4 percent per percent of bleed
extraction. At 50,000 ft, SFC increases approximately 0.8 percent for each percent increase
in PCTBL.

At full afterburner (fig. 18), SFC reacted similarly for altitudes of 30,000 and 40,000 ft. In
both cases, bleed had the biggest effect on SFC at M = 1.4, where each percentage increase
in bleed increased SFC by approximately 1.5 percent. Maximum bleed settings at this point
caused a 4.2- and 3.8-percent increase in SFC at altitudes of 30,000 and 40,000 ft,
respectively. At 50,000 ft, bleed had a smaller effect on SFC. The most sensitive case is M
=2.2: SFC increases by approximately 1 percent for the first percent of bleed, and by
approximately 1.3 percent for the second percent of bleed. The biggest increase in SFC
occurs at this Mach number for the maximum bleed setting, in which case SFC increases by
about 3 percent.

Figure 19 displays percent change in SFC as a function of PCTBL at 40,000 ft and PLA's of
110° and 130°. It can be seen that this relationship is linear, with a greater increase in SFC
for larger Mach numbers. An approximate 3.8 percent increase in SFC occurs at higher Mach
numbers.

CONCLUDING REMARKS

A bleed study was performed on an F100-PW-220 engine using a Pratt & Whitney status
deck as a mathematical model. Interstage bleed pressure, interstage bleed temperature, net
thrust, specific fuel consumption, and fan turbine inlet temperature were examined as a
function of percent bleed at several flight conditions.

The DEEC was found to compensate for bleed extraction by increasing FTIT to hold a
constant fan airflow. This increase in FTIT was approximately 20°F per percent of bleed.



As Mach increased, a FTIT limit of 1720°F was reached, after which FTIT remained
essentially constant, and thrust decreased.

It was determined that compressor interstage pressure was decreased by approximately 3
percent for the first 1 percent of bleed, and decreased by approximately 8 percent for the
second percent of bleed. Maximum bleed settings resulted in about a 15 percent decrease in
PTBIL

Compressor interstage bleed was found to have little effect on TTBI. For the most severe
cases (with maximum bleed), TTBI only had 10°F changes.

The reaction of FN to interstage bleed was found to be sensitive to the FTIT limit. Below
this limit, FN had little reaction to bleed (about 0.2 percent decrease in FN per percent
increase in bleed). Above the FTIT limit, decreases in FN exceeding 6 percent occurred. For
the afterburning power settings, a larger decrease in FN, up to 7 percent, was seen.

For SFC increases, at PLA = 83°, SFC would increase on an average 1.5 percent for each
additional percent of bleed. For a PLA setting of 110°, SFC is seen to increase 1 percent per
percent increase in bleed. Finally, for PLA = 130°, SFC would increase on an average 1.2
percent for each additional percent of bleed.

Both thrust loss and SFC increases were approximately linear with bleed flow. On a
"percent thrust change" basis, thrust loss was found to be approximately independent of
power setting for the three power settings studied.
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Amount of Interstage Compressor Bleed

PLA Bleed WBI (Ib/sec)
(deg) % M
(PCTBL) 06] 07 0.8 098] 1.0 1.2] 1.4] 1.6 1.8] 2.2
1% 059 0.63 0.68 0.73 0.78
83 2% 118 1.27 1.36 1.46 1.54
261% | 1.54 1.65 1.77 1.89 2.00
1% 0.59 0.68 0.77 0.88 0.99 1.05
110 2% 1.18 1.36 153 1.73 1.96 2.09
2.60% | 1.54 1.77 197 223 254 271
1% 0.59 0.77 0.99 1.10 1.10
130 2% 1.18 1.52 1.96 2.16 2.18
2.60% | 1.54 1.97 2.53 2.79 2.83
(a) h=30,000ft.
PLA Bleed WBI (Ib/sec)
(deg) % M
(PCTBL) 06] 0.7 0.8 09 1.0] 1.2] 1.4 1.6] 1.8] 2.2
1% 0.37 0.40 0.44 048 0.53
83 2% 0.75 0.81 0.88 096 1.05
2.61% | 098 1.06 1.15 1.26 1.37
1% 0.37 0.44 053 059 0.66 0.71
110 2% 0.75 0.88 1.04 1.18 1.31 1.41
2.61% | 0.98 1.15 135 152 1.70 1.83
1% 0.39 0.53 0.66 0.75 0.76
130 2% 0.78 1.04 1.31 1.47 1.51
2.61% | 1.01 1.35 1.70 1.90 1.95
(b) h = 40,000 .
PLA Bleed WBI (Ib/sec)
(deg) % M
(PCTBL) 0.6] 0.7 0.8 o0.9] 1.0 1.2] 1.4 1.6] 1.8 2.2
1% 0.22 0.24 0.26 0.29 0.3t
83 2% 045 0.49 053 057 0.62
2.62% | 0.59 0.64 0.69 0.75 0.81
1% 0.23 0.26 0.31 0.36 0.40 0.43
110 2% 0.45 0.53 0.62 0.71 0.80 0.85
2.62% | 0.59 0.69 0.81 093 1.04 1.11 ,
1% 0.23 0.32 0.40 0.45 0.46
130 2% 0.47 0.64 0.80 0.89 0.91
2.62% | 0.61 0.83 1.03 1.16 _1.19

Table - WBI as a function of Mach, PCTBL and PLA.

(c) h = 50,000 ft.
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Figure 17. The effect of Mach and bleed air flow on SFC; PLA = 110°,
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Figure 18. The effect of Mach and bleed air flow on SFC: PLA = 130°.
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Figure 19. The effect of bleed and M on SFC; h = 40,000 ft.
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