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Summary

This paper presents an analysis and sample re-

sults of the lateral buckling and vibration of a com-
pressively loaded column whose cross section is piece-
wise constant along its length. The column is
symmetric about its midspan and consists of three
sections, with the center section having a stiffer cross
section than the two identical outboard sections.

Buckling and vibration characteristics of the column
are determined from a numerical solution of the exact

eigenvalue problems. Parametric structural efficiency
analyses are performed using a nondimensionalized
set of governing equations to determine the optimum
ratio between the lengths of the center section and
the outboard sections based on both buckling load
and vibration frequency requirements. In these anal-
yses two relationships between cross-sectional mass
and bending stiffness are considered; one is a low-
efficiency method for increasing the bending stiffness
of the cross section, and the other is a high-efficiency
method. The effect of axial load on vibration fre-

quency is also examined and compared with that of
a uniform column.

Introduction

Simply supported columns undergoing lateral vi-
bration and Euler buckling have similar bending-
moment distributions with low values near the ends

of the column. This suggests that a column with a
tapered cross section that is stiffer in the middle than

at the ends can be more efficient (i.e., have less mass
for a given buckling load) than a uniform column. A
buckling analysis of a midspan, symmetric, uniformly
tapered column is presented in reference 1, and buck-
ling test results for uniformly tapered columns appli-
cable to large erectable space structures are presented
in reference 2. These results have verified the in-

creased structural efficiency of tapered columns com-
pared with uniform columns.

A disadvantage of the continuously tapered col-
umn is that it is more difficult to fabricate than a uni-

form column. The midspan symmetric column with
a piecewise constant cross section shown in figure 1 is
an approximation of a tapered column. This geom-
etry potentially provides some of the increased effi-

ciency of a tapered column without greatly increased
fabrication complexity. This paper summarizes the
results of a study to quantify the structural efficiency
of a midspan symmetric column with a piecewise
constant cross section based on both buckling load
and vibration frequency considerations. The results
derived herein are based on the solution of a non-

dimensionalized set of governing equations and,

therefore, are generally applicable to any column of
this type.
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Figure 1. Simply supported column with piecewise constant
cross section.
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wj
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pj

T

¢jk

¢d

cross-sectional area of jth section

constants in displacement solution for
jth section

flexural stiffness of jth section

length of outboard sections

half-length of center section

normalized mass

compressive load

normalized compressive load

buckling load

normalized buckling load

radius of thin-walled circular cross
section

time

lateral displacement of jth section

longitudinal position coordinates

ratio of length of center section to
total column length

ratio of flexural stiffness of center
section to that of outboard sections

ratio of mass per unit length of center
section to that of outboard sections

magnitude of kth root of characteristic
polynomial for jth section

mass density of jth section

thickness of thin-walled circular cross
section

kth root of characteristic polynomial
for jth section

vibration frequency



_O

normalized vibration frequency

normalized vibration frequency of
column with no axial load

Derivation of Governing Equations

For the present study it is assumed that the center

section of the column shown in figure 1 is of length

2/2 with flexural stiffness (EI)2, area A2, and density

P2; the outer sections are each of length ll with

flexural stiffness (EI)I, area A1, and density Pl.

Because of symmetry in geometry and loading, it
is possible to consider only one-half the column for

analysis. Further, since the fundamental vibration

and buckling modes of the column are expected to

be symmetric, symmetry boundary conditions are

assumed at the column midspan. Figure 2 shows

this analysis model along with the assumed boundary
conditions.

w - _x2 _ o b___w= _P____w=o

Figure 2. Analysis model.

An exact solution of this problem requires the

solution of two fourth-order differential equations,

one governing section 1 (0 < x < ll) and the other

governing section 2 (ll _< x < 11 + 12). In addition

to the four boundary conditions given in figure 2,
four more conditions arise from the enforcement of

displacement, slope, moment, and shear continuity at

the interface between sections 1 and 2 (x =/1). For

convenience, a second coordinate axis (_) is located
with its origin at the column midspan, and the
displacement in section 2 is described as a function of

this coordinate. The governing differential equation
in the jth section is

04wj P 02wj pjAj 02wj

Ox 4 + (EI)j Ox 2 + (EI)j 0t 2 -0 (1)

The left-end boundary conditions in section 1 are

02Wl

_(o) = _ (o) = o (2)

Similarly, the right-end boundary conditions in sec-
tion 2 are

Ow2 03w2 _,
0_ (0) = -5_-(uj = 0 (3)

Finally, the continuity conditions between sections 1
and 2 are

wl (/1) = w2(12) (4)

OWl Ow2 (/2) (5)
Oz (11)= O_

02Wl :1 ", 02W2

(EI)l-_x2 kq) -- (EI)2--_-(12) (6)

03w1:, _ :_,r_ 03w2

(m),-b-7_,,: = -_-.n--_-(12) (7)

Notice that the minus signs exist in equations (5)
and (7) because the x and _ coordinate axes are in

opposite directions.

Equation (1) is a homogeneous partial differen-
tial equation with constant coefficients. Assum-

ing harmonic motion and applying separation of

variables gives the following form for the lateral
displacement:

wj (x, t) = CeiWteCj x (8)

where C is an arbitrary constant. Substituting equa-

tion (8) into equation (1) gives the following charac-

teristic polynomial in Cj:

so that

P 2 pjAj w2

¢_ + (--E_)j Cj (EI)j = 0 (9)

I p + (p2 + 4pjAj(Ei)jw2)l/2Cjl = +i 2(EI)j

[

:l:. l -P + (p2 + 4pjAj(Ei)jw2) l/2¢j2
2(EI)j

(10)

(II)

The right-hand side of equation (10) yields two

purely imaginary conjugate roots. The right-hand
side of equation (11) yields either a pair of real roots

having the same magnitude and opposite signs or, in

the static case (w = 0), a pair of repeated roots equal
to zero.

Solutions

The equations of the previous section can be

solved to determine the critical buckling load of



the columnby assumingthe vibrationfrequencyto
be zero,or they canbe solvedto determinethe
fundamentalvibrationfrequencyfor a fixedvalueof
axialload.First, thesolutionofthebucklingproblem
will be presentedalongwith numericalexamplesto
assessthestructuralefficiencyofthis typeofcolumn.
Then,the solutionof the vibrationproblemwill be
presentedalongwith similarnumericalexampIesfor
thecaseofnoappliedaxialloadaswellasarangeof
axialloads.

Solution for Column Buckling

For w = 0, ¢12 = ¢22 = 0, and the general
solution can be written as follows for the two sections

of the column:

Wl(X ) =Cllsin(),llX )+C12c_(_llx )+C13 x+C14 (0 __x _ll)

(12)

w2(_) ----C21 sin(A21_) + C22 cos(A21_) + C23_ + C24 (0 < _ < 12)

(13)

where CII, C12, C21, and C22 are arbitrary constants

and )_11 and )_21 are the magnitudes of the roots

¢11 and ¢21 of the characteristic polynomial given,

respectively, by

P (14a))tll= (EI)I

and

P (14b)A21 = (Ei) 2

Application of the boundary conditions in equa-

tions (2) and (3) reduces the solutions to

wl(x) = Cu sin (AllX) + C13x

_2(() = C_2cos(A_I()+ C:4

(0<z_<tl) (15)

(0 <_ <12) (16)

Substituting equations (15) and (16) into the

four continuity conditions (eqs. (4)-(7)) gives the

following system of equations for Cn, C13, C22, and

C24:

Cll sin(All/l) + C1311 = C22 cos(A21/2) + C24 (17)

CllAll cos(All/I) + C13 = C22X21 sin(A21/2) (18)

(EI)lClIA?l sin(Allll) = (EI)2C22A_l cos(A2112) (19)

(_r)_c_!A_ ¢o_(Allz_)= (EI)_C_2A_I_in(A2_Z_) (20)

The existence of a nontrivial solution of equa-

tions (17)-(20) requires that

sin(Allll ) sin(A21/2) -- )_1___1 COS(A21/2)
)_21 c°s()_11/1)

=0

(21)

which agrees with the result presented in refer-

ence 1. Substituting the definitions for /_11 and )_21

from equations (14) into equation (21) gives the fol-

lowing transcendental equation for the buckling load

P=:

[P: l: [ P<-4]
sin L(---_T_j sin L (--_2J

- [(--E-_j cos L(-k-_ j _os L(EZ)2j = o (22)

We now define the dimensionless parameters _, f_,

and Pcr, respectively, as follows:

12
= -- (23)

ll + 12

(EI)2 (24)
/3-- (EI)I

- Pc_ (25)
Pcr= r2(Ei)1/4(ll +/2)2

Notice that a is the ratio of the length of the center

section to the total column length, /) is the ratio of

the bending stiffness of the center section to that of

the outboard sections, and Pcr is the buckling load

of the complete column normalized to that of a col-

umn having the same length and a uniform bending

stiffness equal to that of the outboard sections. Us-

ing these nondimensional parameters, equation (22)
can be rewritten in the form

cos(  )=0,20,
Numerical Examples and Illustration of

Mass Savings

Because of its transcendental form, equation (26),

with (_ and/_ prescribed, must be solved for Pcr nu-

merically. The secant method (ref. 3) is selected be-

cause of its simplicity and stable convergence char-

acteristics. To ensure that the lowest root is found,



asearchis performedto determineaninitial interval
in whichthesolutionexists.Duringthis search,the
left-handsideofequation(26)isevaluatedforsucces-
sivelylargervaluesof Pcr (starting with the lowest

possible value, 1.0) until a sign change is detected.
The initial solution interval is then bounded by the

last two values selected for Per- Further iteration

yields the solution to the desired accuracy.

In order to evaluate the structural efficiency of the

column, it is necessary to calculate not only its nor-

malized buckling load but also its normalized mass.

For this, two additional dimensionless parameters 3'

and M are defined, respectively, as

p2 A2
-- (27)

7 plA1

which is the ratio of mass per unit length of the
center section of the column to that of the outboard

sections, and

-_ = plAlll + p2A212 = 1 + a(_ - 1) (28)
plAl(ll +/2)

which is the mass of the column normalized to that of

a column having the same total length and a uniform
cross section equal to that of the outboard sections.

To illustrate the mass savings possible with this

type of column, two different relationships between

mass and bending stiffness are considered. The

first is a low-efficiency method for increasing the

bending stiffness of the cross section; the second

is a high-efficiency method. In both cases it is

assumed for simplicity that a single material is used

throughout the column. In the first case the mass

and bending stiffness are assumed to be proportional;

thus 7 = /3 in equation (28). To illustrate this

case, equations (29) and (30) give the approximate
relationships for the area and moment of inertia of a

thin-walled cylinder, where r is the radius and 7- is
the thickness:

Area _ 2rrT (29)

Moment of inertia _ 7rr37 - (30)

Increasing the thickness while holding the radius
constant increases the area and moment of inertia

proportionally; thus 7 = ft.

Figure 3 presents plots of the normalized col-

umn mass versus normalized buckling load deter-

mined from equation (26) for an array of length ra-

tios (0.2 < a < 0.6 for fig. 3(a) and 0.6 < a < 1.0 for

fig. 3(b)) and bending stiffness ratios (1.0 _< fl _< 6.0).

The dotted-line curves in these figures show the in-

crease in mass necessitated by the increase in buck-

ling load of a uniform column (a = 1.0). Therefore,

points that lie below these dotted-line curves repre-

sent columns that are more efficient (lower in mass)
than the uniform column. The data are separated

into two parts for clarity. Notice that every curve of

constant a is vertically asymptotic to the buckling
load of a uniform column with a length 1 - a times

the length of the original column, i.e., 2ll. This is

consistent with the fact that when the bending stiff-
ness of the center section is very large, it behaves as

a rigid section.

Uniform 0.5
column !I 5 0 6

3.0 0___ 70.41 "".__ 4

2.5

3

o:0 2 
1.5

Z

1.0 --

%_ I .... I .... I .... I .... I

0 1.0 1.5 2.0 2.5 3.0

Normalized buckling load

(a) 0.2 < o: < 0.6.

3.0

2.5

2.0

1.5

1.0

310
Uniform .J/ij 6

I column _ ..,"'J// (3".9

:
,, .....
| o..*"

| ,.°

| o.O°"

I .o°°"

I .."°"

| ,.'°"

| ..."

| .."

I .,""

!

0 1.0 1.5 2.0 2.5 3.0

Normalized buckling load

(b) 0.6 < a < 1.0.

Figure 3. Mass versus buckling load where mass is propor-
tional to bending stiffness,
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Forincreasesinbucklingloadupto afactorof 3,
it appearsthat theoptimumvaluefor thelengthra-
tio a is approximately 0.7 because this corresponds

to the lowest curve on the plot. Mass savings is

calculated by determining the percent difference be-
tween the lowest curve and the uniform column curve

(a = 1.0) at any given buckling load. It is seen
that a mass savings of 10 to 12 percent can be real-

ized by increasing the bending stiffness of the center

70 percent of a column rather than the entire length

of the column. Again, this conclusion is based on

the assumption that mass and bending stiffness are

proportional.

In the second relationship considered between

mass and bending stiffness, the mass is assumed

to be proportional to the cube root of the bending

stiffness, i.e., 7 = 3v/-_ in equation (28). This

case is representative of high-efficiency methods for

increasing the bending stiffness of the cross section,

and it is illustrated by a thin-walled circular cross
section in which the radius is increased while the

thickness is held constant. (See eqs. (29) and (30).)

Figure 4 presents plots of the normalized column

mass versus normalized buckling load for this case.

As before, the dotted-line curves in this figure show

the increase in mass using a uniform column (a =

1.0), and the data points below these curves represent
columns that are more efficient (less massive) than
the uniform column.

2.0

E 1.5

e_

1.0

Uniform

column

a=Of3 13=@=4

I

f

I

_ • - - | 1 i • . . i .... i .... ! .... i
I

0 1.0 2.0 3.0 4.0 5.0 0

Normalized buckling load

2.0

1.5

1.0

Uniform

column -_ 5

4 _ ../_ 1.o
I -'"*'_1_ 0.9

3 0.7

....

!

r '
.... I .... i .... t .... t .... |

1.0 2.0 3.0 4.0 5.0

Normalized buckling load

(a) 0.3 < a < 0.7. (b) 0.7 < a < 1.0.

Figure 4. Mass versus buckling load where mass is proportional to cube root of bending stiffness.

As was determined in the first case, it appears that the optimum value for the length ratio _ is approximately

0.7. In this case a mass savings of about 6 to 8 percent is realized by increasing the bending stiffness of the

center 70 percent of a column rather than the entire length of the column. Again, this conclusion is based on

the assumption that mass is proportional to the cube root of the bending stiffness.

Solution for Column Vibration

For vibration of the column under a specified axial load P, the general solutions are as follows:

Wl(X,t)=eiWt[Cllsin()qlx)+C12cos()qlx)+C13sinh(A12x)+C14cosh(A12x)] (0<x<ll) (31)

W2(_, t) = V iwt [621 sin()_21_) + 622 cos()_21_) + 623 sinh(A22() + C24 cosh(A224)] (0 < _ N/2) (32)



where, as before, Vii, C12, C21, C22, C13, C23, C14, and C24 are arbitrary constants and _11, )`12, )`21, and

)`22 are defined as

I p + [p2 + 4plAl(Ei)lco 2] 1/2),11 = 2(EI)l

p + [p2 + 4p2A2(Ei)2co 2] 1/2
)`21

2(EI)2

_p + [p2 + 4plAl(Ei)lw2] 1/2A12 = 2(EI)l

_p + [p2 + 4p2A2(Ei)2w2]l/2)`22 ----- 2(EI) 2

(33a)

(33b)

(34a)

(34b)

Upon application of the boundary conditions in equations (2) and (3), the general solutions reduce to
.w"

w 1 (x, t) = eiwt [ell sin()`llX) + C13 sinh()`12x)] (0 < x </1) (35)

w2(_, t) = e i_t [C22 cos(X21_) + C24 cosh(A22_)] (0 < _ _</2) (36)

Substituting equations (35) and (36) into the continuity conditions (eqs. (4)-(7)) gives the following system

of equations that are written here in matrix form:

sin(All/l) sinh(A12/1) -cos()`21/2) -cosh()`22/2)

cos()`ll/1) _11 c°sh()`12/1) -_ sin()`21/2) _ sinh(,_22/2)

A 2 A 2
--sin()`ll/1) (_)2sinh(A12/1)/3(_)cos()`21/2)-_(_)cosh()`22/2)

--cos(All/l) (_'11)3 cosh()`12/1)_ (-;_1111)3 sin()`21/2) j3 (_) 3 sinh()`22/2)

C11 }

C13

c22

C24

= 0 (37)

where ;3 is the bending stiffness ratio defined in

equation (24).

As in the case of the buckling problem, it is of in-

terest to nondimensionalize the vibration eigenvalue

problem to allow general solution curves to be con-

structed. In addition to the dimensionless length,

bending stiffness, and mass-per-unit-length parame-

ters defined in equations (23)2(25), a dimensionless
vibration frequency _ and compressive load P are

defined, respectively, by

CO

= (3s)

i (EI)116plAl(ll + /2) 4

P

P = rr2(Ei)l/4(l 1 +/2)2 (39)

Hence, the vibration frequency and compressive load

are normalized to the fundamental frequency and

buckling load, respectively, of a uniform column of

the same length with bending stiffness and mass per

unit length equal to that of the outboard sections

(ref. 4).

All the parameters in equation (37) may now be
written in terms of the five dimensionless quantities:

a, 3, 7, P, and _. The resulting expressions are

All/1 = 2 + + c_2 (40)

A12/1 = 2 -2 + +_2 (41)

6



A2112 = _ + + "7_,_2

_/2

/
I/2

f- -- /--2 \ 1/2q 1/2

/
=. j

(42)

(43)

(44)

A21 I + + 7/3ff_2

A11 _ + + ffj2

-- /--2 ,,1/23 1/2
_= _-==2-_-_ _2 | (46)

J

Numerical Examples for Column
Vibration

Equation (37) must be solved numerically to

determine the normalized vibration frequency &,

given values for the other nondimensional param-
eters. Again, the secant method was used to de-
termine the lowest value of _ that causes the de-

terminant of the matrix in equation (37) to vanish.
The determinant of equation (37) was calculated us-

ing a Gaussian elimination procedure presented in
reference 5.

Natural vibration of columns without azcial

load. In the last section the structural efficiency of

columns with piecewise constant cross sections was

quantified based on buckling performance. It is also

of interest to determine the vibration performance

of these columns with no axial load. Consequently,
equations (37) and (28) were solved to determine the

vibration frequencies and masses for the same array

of length ratios (0.2 _< cr < 1.0) and bending stiffness
ratios (l.0 < _ < 6.0) considered in the buckling

solutions. As before, two cases were considered in-

volving the mass per unit length of the cross section.
In the first case it was assumed that the mass and

bending stiffness of the cross section are proportional

(i.e., "y =/_). In the second case it was assumed that

the mass is proportional to the cube root of the bend-

ing stiffness (i.e., 7 = 3v/_)-

Figure 5 presents a plot of the normalized col-

umn mass versus normalized vibration frequency for

the first case (7 = _). It should be noted that for

a uniform column (a = 1.0), there is no change in
the frequency as the bending stiffness and mass are

increased proportionately. The significant result de-

termined from figure 5 is that all column geometries

considered exhibit frequencies that are lower than the

uniform column having the same mass. Therefore, in
the case where the distributed mass of the column is

proportional to its bending stiffness, a column with

piecewise constant cross section is less efficient than

a uniform column, based on vibration frequency, in

contrast to results based on buckling load.

0,s1.0
3.0

FUniform

column2.5

a = 0.2

2.0
6

1.5 5

1,o P=7=2 ........

.5

0
, , . , I , , , , I , • • , [ , t i m I . . . , I , t i | |

.25 .50 .75 1.00 1.25 1.50

Normalized vibration frequency

Figure 5. Mass versus vibration frequency where mass is propor-

tional to bending stiffness.

Figure 6 presents plots of the normalized column

mass versus normalized vibration frequency for the
second case (7 = 3V_)- The dotted lines in these

figures show the increase in mass for a uniform col-

umn (a = 1.0); thus the data points below these

lines represent columns that are more efficient than
the uniform column based on fundamental vibration

frequency. Again, the data are separated into two

parts for clarity.

The trends displayed in figure 6 are similar to

those presented in figures 3 and 4 and discussed in the

buckling analysis of the last section. In this case the

total column mass can be minimized by stiffening the

center 70 to 80 percent of the column. Furthermore,

7



the useof this designresultsin a masssavingsof
approximately10to 15percentrelativeto auniform
columnwith thesamevibrationfrequency.

Vibration of columns under axial load. The
effect of axial load on the fundamental vibration fre-

quency of a uniform column is analyzed in refer-

ence 6. The normalized formula for calculating this
frequency can be written as

i P (47)g'=Wo 1

where _o is the normalized natural frequency of

the column (no axial load), Per is the normalized
buckling load of the column, and P is the normalized

axial compressive load in the column.

Although it appears impossible to establish equa-

tion (47) analytically for a column with a piece-
wise constant cross section under axial load, nu-

merical examples should shed some light on the

question of its applicability. Table I presents the

values of length, bending stiffness, and distributed

mass ratios for five selected column configurations

along with the numerical solutions for their normal-

ized buckling loads and natural vibration frequen-
cies. The sixth row in table I lists the values se-

lected for the axial load (P/Pcr). (Note that the

negative numbers indicate tension and the positive

numbers indicate compression.) Finally, the last two
rows of table I present the numerical solution for vi-

bration frequency ((_/&o)numerieal) and the solution

determined from equation (47) ((&/Wo)eq. (47)) for
each configuration. It can be seen that these so-

lutions agree very well, the differences likely being
attributable to numerical inaccuracies.

2.0

1.0

| .1_ l I

0 1.0 1.5 2.0

Normalized vibration frequency

Uniform 2.0
.d° "°"

column -_..,"""°° °-'*

0.7

0.6" /..-6

0.5/a /

0.3 _

, \ "f" [3=_=2 Z......... o
! I

!

1.0

Uniform ..//

column -_/ ,6/""f_/ 0.80"9

........: _(--,- ¢x= 0.7

.,,-'°

"J

____

,...lll,lltli.l,,l.I

1.5 2.0

Normalized vibration frequency

(a) 0.2<_<0.7. (b) 0.7 < a < 1.0.

Figure 6. Mass versus vibration frequency where mass is proportional to cube root of bending stiffness.

Figure 7 is a plot of equation (47) superimposed over the data points presented in table I. Although

the set of configurations considered is certainly not exhaustive, it represents a reasonable range of the

dimensionless parameters. The results strongly suggest that equation (47) indeed predicts the correct vibration

frequency for columns with piecewise constant cross sections. If so, then to determine the effect of axial load

on vibration frequency in a column of this type, it is necessary to calculate only the buckling load and natural

vibration frequency of the column, then apply equation (47) to determine its vibration frequency under axial
load.
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Table I. Numerical Examples of Column Vibration With Axial Load

Parameter

OL .........

w

P_'_r ........

_,_o ........

P/Pcr ......
(tD//_o) numerical

(47)

0.4
4.0
4.0

2.0107
0.8463

-0.75
1.3167
1.3229

0.4
4.0

1.5874
2.0107
1.2354

-0.5
1.2225

_.2247

Configuration

3

0.6
2.0

1.2599
1.8123
1.2162

0.25
0.8661
0.8660

4

0.8
2.0
2.0

1.9738
0.9970

0.5
0.7050
0.7071

0.8
6.0

1.8171
5.5849
1.7673

0.75
0.5004
0.5000

.5

[ i i i i | . _ ,

-I.0 -.5

_¢o/o)o

3

0 .5 1.0

P/Pcr

Figure 7. Effect of axial load on fundamental vibration

frequency.

Concluding Remarks

The results of an analytical study of the buck-

ling and vibration characteristics of a column with
piecewise constant cross section have been presented.
Parametric structural efficiency analyses determined
that for increased buckling resistance, the optimum
ratio between lengths of the stiffened center section
and the entire column is approximately 0.7. Also,
it was determined that a column using this ratio of
lengths offers a mass savings of 6 to 12 percent rel-
ative to a uniform column having the same buckling

load. Furthermore, the magnitude of this mass sav-
ings was shown to be dependent on the relationship
between bending stiffness and mass per unit length
of the column cross section.

Similar parametric structural efficiency analyses
were performed using a nondimensionalized set of
the governing vibration equations. From these anal-
yses it was determined that the relationship between
bending stiffness and mass per unit length of the col-
umn cross section has a great effect on the efficiency
of the column from a vibration standpoint. If the
mass per unit length and bending stiffness are pro-
portional, a column with a piecewise constant cross
section is less efficient than a uniform column, based
on fundamental vibration frequency. However, if the
mass per unit length is proportional to the cube root
of the bending stiffness, a column with a piecewise
constant cross section is more efficient than a uni-

form column, based on either fundamental vibration
frequency or buckling load.

Finally, numerical results strongly suggest that
the relation between axial load and fundamental

vibration frequency for a uniform column also holds
for a column with piecewise constant cross section.

NASA Langley Research Center

Hampton, VA 23665-5225

January 31, 1991
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