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Abstract

A machine vision algorithm has been developed
which permits guidance control to be maintained
during autonomous proximity operations. At present
this algorithm exists as a simulation, running upon an
80386based personal computer, using a ModeIMATE
CAD package to render the target vehicle. However,
the algorithm is sufficiently simple, so that following
off-line training on a known target vehicle, it should
run in real time with existing vision hardware. The
basis of the algorithm is a sequence of single camera
images of the target vehicle, upon which radial trans-
forms have been performed. Selected points of the
resulting radial signatures are fed through a decision
tree, to determine whether the signature matches
that of the known reference signature for a particular
view of the target. Based upon recognized scenes,
the position of the maneuvering vehicle with respect

to the target vehicle can be calculated, and adjust-
ments made in the former s trajectory. In addition,
the pose and spin rates of the target satellite can be
estimated using this method.

INTRODUCTION

In order to perform a rendezvous and docking oper-
ation in space, it is necessary to determine the atti-
tude and attitude rates of the target vehicle, as well as
the relative position and trajectory of the maneu-
vering craft with respect to that target vehicle. These
parameters are obtained currently by using Shuttle
astronauts' eyes to guide the maneuvering craft to
the desired position so that a grapple with the Shuttle
Remote Manipulator System,(RMS), can be performed
by a crew member. In the future, it will be desirable

to perform these operations with increasing degrees
of autonomy; particularly satellite servicing, and
Lunar and Martian orbiter rendezvous. In order to do
this, a full array of sensors will be required; however it
is likely that vision will remain as the major source of
input data. One of the chief drawbacks of any sensing
system based upon vision data is the sheer number of
those data, with the correspondingly long computa-
tion times required to process the input. It is there-
fore very important to develop methods of data com-
pression which permit analyses in keeping with the

time scale defined by the characteristic motions of the
target/sensor system in question. An algorithm has
been developed which permits small errors or drifts in

trajectory to be identified and corrected, based upon
the view of the target vehicle as seen by a single cam-
era on a maneuvering craft. This algorithm is demon-
strated on a PC computer with EGA or VGA graphics.A
CAD/CAM system, (ModelMATE, by Generic Software,
Inc.), has been used to model the target vehicle. Cur-
rent vision hardware includes Imaging Technology's
PC-Vision frame grabber mounted in a COMPAQ 286,
and a Sony XC-57 CCD camera. This is scheduled to be
upgraded to an ASPEX PIPE machine attached to a Sun
4in the near future. High fidelity graphics models will
be included, and solid models will also be employed.
Figure 1 illustrates one view of the target, a (some-
what fanciful) Hubble Space Telescope. It is assumed
that the target object is located within the field of
view of the camera, and that the target is recognized
by the system; i.e., target identification is not the
issue, although the techniques described herein could
well be used for that purpose also. This algorithm
utilizes the radial signatures of a sequence of images
to determine a calculated position and trajectory for
the maneuvering craft.

The complete program consists of two parts: an off-
line training phase, and a series of run-time calcula-

tions, as the maneuvering craft approaches the target
vehicle. The training phase presupposes the existence
of an accurate three-dimensional CAD model of the
target vehicle, and typically runs for two days on an
80386 type computer for the level of accuracy used in
this work. The training phase consists of the building
of decision trees which permit the association of a

radial signature of the target's image with an angular
orientation of the target vehicle with respect to the
maneuvering craft. Details of the training process will
be presented in the next section.

Following the off-line training, a "desired" rendez-
vous trajectory is selected. It is assumed that the angu-
lar orientation of the target craft is known to within
an accuracy of about 20 degrees at some initial time
t0. An angular normalization is made around the
camera-target axis to align the image axes with those
used during the training phase. Radial signatures of
successive images are extracted as the maneuvering
vehicle attempts to fly its desired trajectory, and these
s_gnatures are normalized to correspond to those
used during the training phase. Points on these radial
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signaturesare fed into a decision tree to determine
wTnether the camera recognizes the view. It is nor-
mal that for each image,several adjacent views are
recognized. Based upon the linear extent of an image
compared to a reference image, the apparent dis-
tance between the camera and the target can also be
calculated. Thus a sequence of images generates a
"point cloud", through which a curve or apparent tra-
jectory can be fit. This permits the next segment's tra-
jectory to be predicted, and corrections to be made to
drive it closer to that which was planned originally. In
addition, or as an alternative, is possible to calculate
the target vehicle's attitude and attitude rates. These
are necessary parameters for an autonomous docking
to be performed.

PROCEDURE

Reference Frame Construction

During both the training and production phases of
the algorithm, the relative positions of the target and
observing crafts are defined by constructing a geo-
desic sphere around the target. This virtual sphere is
attached to the target vehicle, and the observing craft
moves on or outside of the surface. If the observing
craft moves inside of the geodesic, a new sphere must
be constructed in order to account for distortion. It

will be assumed that the geodesic encloses the entire
target vehicle. For each node, or line intersection on
the sphere's surface, a characteristic view is stored.
Actually, usinga relatively new technique which will
be discussed below, the critical information for a
given node is compressed to be only a few numbers,
typically six to eight. These numbers are stored in a
hierarcical decision tree for each node on the sphere.
The geodesic sphere is constructed by repeated bisec-
tions of a regular icosahedron, (a twenty-sided poly-
dedron). Each surface of the icosahedron is an equi-
lateral triangle. By connecting midpoints of the edges
of each triangle, four new triangles are constructed.
If the icosahedron is considered to be the zeroth order

sphere, the number of surfaces on an ith order sphere
is given by:

i

1) nfacesi = nfaces0* 4

where nfaces0 = 20

In terms of the i-1 order geodesic,

la) nfacesi = 4" nfacesi_!

Similarly, the number of edges of an ith order
geodesic is given by:

2) nedgesi = 1.5" nfacesi

Each triangle on the surface of the geodesic has three
edges, each one of which is shared by one adjacent

triangle, hence the factor 1.5. The number of ver-
tices, or nodes is given by:

3) nnodesi: nnodesi_l + nedgesi_!

where nnodes0 = 12 for the zeroth order
icosahedron.

The density of nodes will determine both the accuracy
of the pose calculation and the computer time re-
quired for training. It was found that a third order
geodesic, with 642 nodes and 1280 faces was a good
compromise between accuracy and computing time.

Signature Construction

Having established a coordinate frame, it is necessary
to findthose parameters which will identify a view of
the target uniquely from any location within the
space on or outside of the surface of the c_eodesic.
Binary thresholding permits the most rapio compu-
tation. In addition to providing the radial signature
of the target vehicle, as described below, the binary
image allows calculation of the distance of the cam-
era from the target. During training, the areal extent,
Aref, of the target image is recorded for each of the
642 nodes. The linear distance, from the centroid of

the target image to the camera is given by:

4) dcalc = dref * sqrt (Aref/Aobs)

where dref is a reference distance, (the radius of the

.geodesic), and Aobs is the observed area of the target
image.

Both the training and the on-line or production por-
tions of the program utilize the radial transform to
reduce the raw data from the image of the target
vehicle to a level which can be dealt with by an AT-
class machine. The implementation of the radial
transform is a fairly straight-forward procedure,
which has been coded in C in order to conform to
several available hardware machine vision systems.
The transform itself consists first of locating the
centroid of the binary image of the target vehicle.
Care must be taken to insure that the binary image
outline corresponds to the grey level outline of the
vehicle, and in fact one future project will be the de-
velopment of software to permit the binary image to
be reconstructed should this correspondence fai/due
to lighting or other problems. Following location of
the centroid, the radial distances to the outermost
edge of the binary image is measured. The simulation

demonstration uses 294 radial measurements, cor-
responding to the 294 vertical bins on an EGA graph-
ics screen. The hardware implementation for the PC-
Vision board uses 360 radial bins, starting at East,(bin
0), and running counterclockwise. The radial signa-
ture of the target is obtained by plotting these dis-
tances as a function of bin number. ( Figures 2a-b ).

Decision Tree Construction

The 294 or 360 bins still represent too large a number
of data to analyze,either during tile training or on-
line phases of the program. For each of the 642 nodes
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of the geodesic we wish to have no more than about
10 characteristic features which will identify the node.
It is assumed that the relative angular position is
known approximately, so that there is no ambiguity
between polar symmetric nodes. Additionally, a sta-
tistical approach is taken: it is desired that each
node's state be classified correctly between 95% and
98% of the time.

For the training phase, each of the 642 nodes is
labeled. The camera is assumed to be located on the
surface of the geodetic. In order to train for a specific
node, the radial signature of that node, plus those for
a number of surrounding points are obtained. The
surrounding points are selected to be the mid-points
of the edges, up to three edge lengths away from the
central node, ( Figure 3 ). It is desired that all views up
to and including one edge length's distance from the
central node be recognized, and all views between
one and three edge lengths not be recognized. As can

be seen in Figure 3, 73 radial si,_.natures are extracted
for each node, of which 19 are in ,and54are out .
This operation can be thought of as applying a series

of perturbations to, the target object. The views seen
by the camera will wobble about a central axis.

It is desired to select those particular radial bins which
will identify the view from the given node most ra-
pidly. A decision tree must be constructed, the ter-
minal branches of which label the node as being "in"
or "out", at some level of certainty. There are two
general types of classifiers which can be used to
separate a data set into components. These include

single stage classifiers; such as Bayes linear and quad-
ratic classifiers, Fisher s linear classifier, thresholding
the principal feature, or thresholding a component.
All of these classify the data into two or more classes
in a single step. The present work uses a new tech-
nique of classification called a hierarchic classifier.
This method can be described as a binary decision
tree, in which each terminal branch represents one
pattern class, and the non-terminal nodes of the tree

represent a collection of classes. The root node repre-
sents the entire collection of classes. When an un-
known datum enters the hierarchic classifier at the
root node, a decision rule associated with the root
node is applied to it to determine the next node to
which it should go. This process is repeated until a
terminal node is reached. Each terminal node has an

associated class to which that datum is assigned.

In order to implement a hierarchic classifier a decision
rule must be constructed for each node of the tree. A
decision rule is a single-stage classifier, such as any
one of the types mentioned above. The simplest of
these is that which thresholds a component of the
data. Thus the construction of the entire decision tree

involves three steps: choosing the decision rules at
each node of the tree, finding different ways of
branching from a non-terminal node to its child
nodes, and finding the termination condition for the
branching process. The branching condition at each
non-terminal node is based on a criteria of minimum
entropy or minimum classification error. At each
node of the tree, consider a threshold for each data
component for all samples of the data. This threshold
partitions the data into two classes, those with com-
ponent values less than the threshold, and those with
values greater. The entropy is then computed for left
and right partition classes. If the decision rule is effec-

tire, these values will be significantly different. If Li is
the number of feature vectors in category i classified
to the left child, and Ri is the number classified to the
right, the entropy Hi is defined as:

5) Hi :e,,, Li * In(Li/L) + Ri * In(Ri/R) - (Li + Ri) * In((Li + Ri)/(L + R))

where L = Li, and R = Ri. The index i takes on
the values "on" and "off".

The entropy is computed for all components of the
data and for all thresholds that can partition the data
into two classes at each node of the decision tree. The
threshold and the component which gives the mini-
mum entropy are considered to be the appropriate
ones for that node.

The branching process is terminated when one of the
following conditions is met. If the number of samples
falls below a certain minimum, the entropy calcula-
tion is meaningless. If all samples at a particular node
fall in one category, the branching process is stopped,
and the class of the node is assiQned to that category.
Also, if the entropy calculated by equation (1) falls
below a certain minimum, there is no significant dif-
ference between right and left partitions. In this case,
the right and left children are merged into one node.
It was found that by using these criteria to determine
when to terminate the branching process, the view
recognition accuracy was consistently within the de-
sired 95 and 98 percent rate.

The decision tree can be represented in the computer
as a series of if-then-else statements. Consider a set of
data with three components, (rl, r2, r3). Five samples
have component values as follows:

Sample rl r2 r3 Category

sl 0.6 1.0 1.0 2

s2 0.4 1.0 0.8 1

s3 0.6 1.0 0.8 2

s4 0.6 1.2 0.8 1

s5 0.6 4.4 0.8 2

Tablel

The categories are assigned here simply as left child or
right child at the terminal node. Figure 4 illustrates
the resulting decision tree. The thresholds are given
for each non-terminal node, and the resulting classi-
fication appears at the terminal node for each sample.
The advantages of the decision tree approach are first
that it identifies which components are important,
and second, it is faster than the single-stage classifier
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techniquesoncethetrainingphasehasbeencom-
pleted.It alsocan be expressed readily in an Expert
System format:

IF (r2 < : 1.1) {
IF (r3 < = 0.9) {

IF (rl < = 0.5)
ASSIGN Category = 1 ; terminal node left

ELSE
ASSIGN Category = 2 ; terminal node right

}
ELSE

ASSIGN Category = 2
}

ELSE

{
IF (r2 < = 2.3)

ASSIGN Category = 1
ELSE

ASSIGN Category = 2
}

Figure 5 illustrates two decision trees constructed for
separate nodes on the geodesic for the Hubble Space
Telescope. "T" stands for a terminal node. If the view
is recognized, the value assigned to the terminal node
is 1; otherwise it is 0. The radial vector is the first
number in the inequality, the threshold value is the
second. Thus "2 #156 < = 455" can be read as "If
radial vector #156 has a value less than or equal to
455, then .... " The initial integer "2" refers to the level
within the decision tree. There are two points to ob-
serve in Figure 5. First, once a terminal node has been
encountered, the calculation is finished. This speeds
up the algorithm considerably. Second, note that one
of the decision trees is quite long compared to the
other. To understand physically what is occurring,
consider a thin flat plate of somewhat irregular shape.
If viewed nearly edge on, a slight wobble or pertur-
bation will cause the outline or signature of the plate
to change significantly. However, if viewed from a
point nearly perpendicular to the plate, the same
amount of wobble will change the outline or signa-
ture only slightly. Thus some viewing directions are
vastly simpler than others to identify. The price paid
to use the hierarchic classifier is that a decision tree
must be constructed for each of the 642 nodes on the

geodesic surface. The total time needed to do this
was about two days, using an AT-class machine.

Decision Tree Application

In the preceding section, the procedures used to train
the classifier have been discussed. Following the
training, the second phase of the algorithm takes
I_lace, namely its application using images from un-

nown directions. It must be assumed however, that
the target vehicle's pose is known to about 20 degrees
at the initial time to; otherwise the time it takes to
locate a group of recognized "on" nodes will exceed
that which it generally takes for the pose to change to
some new, and still undetermined value.

There are two initial corrections which must be
applied to each of the images. The first of these, the
distance correction, has already been discussed,
(equation 4). In some cases it was necessary to add a
correction for the difference in focal length between

the reference and the flight images. ]_he distance
equation then becomes:

4a)
dca_¢= dref * sqrt(Aref/Aobs) * (image_focal_length / reference focal_length)

The other initial correction is for rotation about the

line-of-sight between the crafts. Again, this assumes
an approximately known initial pose.

Having made these corrections, the radial signature of
the unknown image is is extracted, and applied to the
decision trees of all of the nodes in the neighborhood
of the approximate position on the geodesic. If in fact
the camera lies somewhere within this region, some

of the nodes should recognize the view, that is, they
should be turned on . One of the major advantages
of the hierarchic classifier approach is that with sev-
eral of the nodes being activated simultaneously, if
one or two should be missed, the position can still be
calculated. Thus an element of robustness against
bad lighting conditions, reflections and background is
built into the method. Using the distance correction

obtained from equation (4), a calculated ,pos!tion in
three dimensional space is found for each on node.
For each image, there are typically five such points.
As the maneuvering craft moves with respect to the
target, the process is repeated, with new images gen-
erating new points, forming what is referredto as a
point cloud along the trajectory of the maneuvering
craft. The position of the maneuvering vehicle is then
calculated using a multi-dimensional minimization
procedure called the "Downhill Simplex" algorithm.
For a discussion of this method see Press, et al, 1988.
This can be thought of as analogous to a four dimen-
sional best fit through the point cloud. The orbits of
the maneuvering vehicle were calculated in seg-
ments, in order to be able to determine how far that
craft was from the desired path. For the cases of
circular or spiral rendezvous, one radian segments
were chosen. This permitted drift errors to be de-
tected, and the path to be adjusted before the errors
became too great. Thus new paths were planned for

successive segments, allowing the maneuvering craft
to stay close to the desired trajectory.

In addition to the circular and spirial trajectories, this
was done using an actual Space Shuttle V-Bar ap-
proach trajectory. This required using equation (4a)
to determine the distance correction, and image dis-
tortion also became a serious problem. As for the
circular and spiral cases, it was possible to correct for
distortion to some extent by constructing a virtual
geodesic with a smaller radius, even to the point of
enclosing just a portion of the target vehicle. This
relearning obviously becomes very expensive compu-
tationally, and really defines one of the limits of use-
fulness of the algorithm.

In addition to being able to calculate the trajectory
for the maneuvering craft, it is possible to calculate
the attitude or pose, and attitude rates for the target
vehicle. In fact, if the two vehicles are at constant
distance from each other in some global coordinate
system, the attitude/attitude rate calculation is en-
tirely equivalent to the maneuvering vehicle trajec-
tory determination. The six numbers describing the
pose and spin of the target vehicle are needed for an
autonomous docking or grappling to occur. There-
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fore, the hierarchic classifier approach has a much
wider potential application than was originally
intended.

CONCLUSIONS

A new method of determining the trajectory of a
maneuvering craft with respect to a target vehicle has
been described. This method utilizes a hierarchic

classifier with input data from a single camera, to
calculate either the trajectory of the maneuvering
craft, or to determine the pose and spin parameters
of the target vehicle, or both. The advantages of this
method are that it is faster during on-line calculations
than the single-stage classifier methods, it is robust
with respect to partial or noisy input data, and it iden-
tifies the important components of the target image.
The algorithm also runs on commonly available com-
puter systems.

Currently, the algorithm exists as a simulation demon-
stration, with some pieces havinq been ported to a
hardware machine system. It is I_lanned to continue
this porting process, and demonstrating the algorithm
using physical models, as well as actual images of sat-
ellites in space. This latter will permit testing of the
robustness of the algorithm; both Earth and space

backgrounds will appear in the images, as well as sha-
dows and reflections on the target vehicle.
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FIGURE 1 FIGURE3

Space Telescope Training viewpositionsfor a node. There are 19 "ON'
positions(openboxes), and54 "OFF"positions (closed
boxes) for training each of the 642 nodeson the geodesic.
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The radial signature, (Fig 2a), is obtained from the binary

image of Figure 2b, by measuring the radial distance
from the centroid (+) to the outermost edge of the object.
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A decision tree for the data in Table I is illustrated. Left branches

represent component values less than the threshold at a branching node,

whereas right branches represent component values above the threshold.

The sample is assigned to the category (left or right) at the terminal
node.

Node 12 Node 13

0 #187 <= 486

1 #259 <= 459

2 #7 <= 1293

3 T 1

3 T 0

2 #18 <= 983

3 #69 <= 380

4 T 1

4 T 0

3 T 1

1 #189 <= 349

2 T 1

2 T 0

0 #149 <= 830

IT 0

1 #176 <= 616

2 #150 <= 1146

3 #170 <= 515

4 T 0

4 #293 <= 1044

5 #31 <= 480

6 T 0

6 #117 <= 415

7 #182 <= 477

8 T 0

8 T 1

7 T 1

5T 0

3 T 0

2 #286 <= 1444

3 T 0

3 #176 <= 660

4 #0 <= 995

5 T 1

5T 0

Figure 5

Two decision trees used in the operational phase. One is short,

representing a relatively unambiguous view of the target, whereas

the other is long, which indicates that the view from that node is

difficult to recognize. The node numbers do not indicate relative

locations of the two views.
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