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Abstract

NASA's Space Station Freedom is an example of complex
systems that require both traditional and AI real-time
methodologies. It has been mandated that Ada should be

used for all new software development projects. The Sta-

tion also requires distributed processing. Catastrophic
failures on the Station can cause the transmission system
to malfunction for a long period of time, during which

ground-based expert systems cannot provide any assis-
tance to the crisis situation on the Station. This is even

more critical for other NASA projects that would have
longer transmission delays (e.g. the Lunar base, Mars

missions, etc.) To address these issues, we propose a dis-

tributed agent architecture (DAA) that can support a
variety of paradigms based on both traditional real-time

computing and artificial intelligence. The proposed

testbed for DAA is APEX (Autonomous Power EXpert),
which is a real-time monitoring and diagnosis expert sys-
tem for the electrical power distribution system of
NASA's Space Station Freedom.

1. Introduction

The current, ongoing work of Inference, the "Real-Time
Expert Systems" project for NASA Johnson Space Cen-

ter, under a subcontract to the University of Houston -
Clear Lake, has provided valuable insights into require-
ments for real-time knowledge-based systems being

developed for NASA's Space Station Freedom. NASA's
Space Station Freedom is an example of complex systems
that require both traditional and AI real-time

methodologies. The standard on-board processor on the
Station is an 80836-based workstation with limited

memory. In the ground-based control center, on the

other hand, conventional engineering workstations can be
used for AI applications. It has also been mandated that
Ada should be used for all new software development
projects.

The Station also requires distributed processing. For
example, if expert systems for fault detection isolation

and recovery (FDIR) for the Station were fielded only in
the ground-based control center, communication delays

could cause serious problems. Catastrophic failures on
the Station can cause the transmission system to mal-

function for a long period of time, during which ground-
based expert systems cannot provide any assistance to the
crisis situation on the Station. This is even more critical

for other NASA projects that would have longer trans-
mission delays (e.g. the Lunar base, Mars missions, etc.)

However, current real-time knowledge-based system ar-
chitectures suffer from a variety of shortcomings:

A heavy dependence on inefficient implemen-
tation platforms, usually Common Lisp, which
makes it difficult if not impossible to be

deployed in real-time embedded systems.

• A weak integration with traditional real-time

computing methodologies.

An inability for the architectures to be dis-

tributed among multiple heterogeneous plat-
forms that communicate asynchronously.

We have, previously, implemented an Ada-based expert
system tool, ART-Ada, to facilitate the deployment of ex-

pert systems in Ada, which addresses the first point

above [131, [14], [11], [15].

We propose a distributed agent architecture (DAA) that
can support a variety of paradigms based on both tradi-

tional real-time computing and artificial intelligence.
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2. Distributed Agent Architecture
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Figure 2-1: Distributed Agent Architecture

The distributed agent architecture (DAA) for real-time

knowledge-based systems is depicted in figure 2-1. DAA

has the following technical objectives:

• The overall system performance should satisfy

real-time requirements. Onboard systems

should prevent catastrophic failures during

the absence of assistance from ground-based

systems due to the malfunction of com-

munication systems.

Onboard systems should adapt gracefully to

dynamic environments by trading quality for

speed of response.

Tile architecture should be based on dis-

tributed and cooperative processing, which

will enable migration of knowledge-based sys-

tem modules from ground-based systems to

onboard systems.

Its baseline implementation language should

be Ada. Ada will make it possible to employ

traditional real-time computing methodologies

and to deploy knowledge-based systems in

embedded systems. If both ground systems

and onboard systems are implemented in Ada,

it would be easier to migrate modules from

ground to the Station.

DAA consists of distributed agents that are classified

into two categories: reactive and cognitive. Reactive

agents can be implemented directly in Ada to meet hard

real-time requirements and to be deployed on on-board

embedded processors. A traditional real-time computing

methodology under consideration is the rate monotonic

theory that can guarantee schedulability based on

analytical methods [20], I21]. AI techniques under con-

sideration for reactive agents are approximate or
376

"anytime" reasoning that can be implemented using

Bayesian belief networks as in Guardian [8], [7]. Fuzzy

logic [16], [26], [22] and reactive

planning [1], [5], [10], [17], [18] are also being considered

for reactive agents.

Cognitive agents are traditional expert systems that can

be implemented in ART-Ada to meet soft real-time re-

quirements. During the initial design of cognitive agents,

it is critical to consider the migration path that would al-

low initial deployment on ground-based workstations

with eventual deployment on on-board processors. ART-

Ada technology enables this migration while Lisp-based

technologies make it difficult if not impossible.

In addition to reactive and cognitive agents, a recta-

level agent would be needed to coordinate multiple agents

and to provide meta-level control. An important area of

coordination is timeline management. Following [2], we

intend to implement three timelines --- occurred, ex-

pected, and intended --- where each timeline records one

type of information. Any agents can process or post

events in any timelines through the meta-level agent.

3. Reactive Agents

Reactive agents are designed to meet hard real-time re-

quirements. Hard real-time requirements are different

from soft ,'eal-time in that if hard deadlines are not met,

catastrophic failures are likely to occur. Catastrophic

failures include the loss of human lives, the loss of major

hardware components, etc. On the other hand, even if

soft deadlines are violated, no major catastrophic failures

are likely to occur.

It is also critical that reactive agents fit into embedded

processors of the Space Station Freedom. Some AI tasks

can be directly implemented in a procedural language

such as Ada. The use of Ada will enable us to take ad-

vantage of recent progress that has been made in the

area of real-time computing in Ada. A noteworthy ex-

ample is the rate monotonic theory that can guarantee

schedulability based on analytical methods [20], [21].

The rate monotonic theory guarantees schedulability of

multiple tasks if certain conditions are satisfied. There

are some restrictions, however:

• The execution time of a task must be known

because it is a parameter in conditions that

must be satisfied.

• It assigns the highest priority to a periodic

task with the shortest period. Therefore, it

prevents tasks from having priorities based on

other criteria.



• Thetheoryappliesonlyto multipletasks---
periodicandaperiodic--- that resideon a
singleprocessor.

It is not clearwhetherthe theorycanbe usedfor
dynamicscheduling.It is usuallyusedbeforethe
programexecutionto determinewhetherdeadlinescould
bemet. If deadiinesarenot met,periodsof periodic
tasksmustbeadjustedproperly.Webelievethat the
theorycanbeusedto adjustperiodsdynamicallyif they
areallowedto changedynamically.Thetheorydoesnot
prescribehowto findperiodsthatwouldmeetthedead-
lines,however.

With the rightAdd runtimeexecutivethat supports
rate monotonicscheduling,the schedulabilitycanbe
guaranteedin advanceby applyingthetheoryanalyti-
cally. It isexpectedthattheAdd9XProjectwill incor-
poratetheratemonotonicalgorithmin thenextrevision
oftheAddlanguage,whichisdueforreleasein1993.

AnAI techniquethatisusefulforreactiveagentsisap-
proximateor "anytime"reasoning.Forexample,Guar-
dianusesa Bayesianbeliefnetworkto providereactive
diagnosis.Eachnodeof aBayesianbeliefnetworkisas-
soeiatedwith anaction.Whena deadlineis reached,
Guardiansimplyrecommendstheactionassociatedwith
thecurrentnode.If moretimeisgiven,it willcontinue
to refineits beliefandmayrecommenda conflictingac-
tion lateron. We planto implementanapproximate
reasoningmodulebasedonBayesianbeliefnetworksin
Add.

Fuzzylogic-basedsystems[161,[26],[221canalsobe
usedasreactiveagents,usingeithermodelingsoftwareor
fuzzyhardware. In fact, fuzzylogicmaysubsume
probabilistiereasoningusingBayesianbeliefnetworks.
Fuzzysystemsare becomingpopularin Japan[19].
TogaiInfraLogic,Inein Irvine,Californiamanufactures
fuzzy-systemchipsand modelingsoftwarewritten in
C.Fuzzysystemsaresuitableforreactiveagentsbecause:

• Real-timeresponsecanbeachievedby im-
plementingthelogiconachip.

• Fuzzylogicallowsapproximatereasoning.

4. Cognitive Agents

Cognitiveagentsaretraditionalknowledge-basedsys-
temsthat aredesignedto meetsoftreal-timerequire-
ments.AI problemssuchasdiagnosisdemandaccuracy
ofsolutionwithinasoftdeadlineratherthansacrificeof
solutionqualityto meetaharddeadline.Whilereactive
agentsaddressthelatterthroughapproximatereasoning,
cognitiveagentsshouldbebasedonAI techniquesthat
facilitatedeeperreasoning.Forexample,in Guardian,
model-basedreasoningis usedfor cognitivediagnosis
whileaBayesianbeliefnetworkisusedforreactivediag-
nosis.

AlthoughAI systemsusuallyrunonaground-baseden-
gineeringworkstationtoday,it is becomingincreasingly
importantthatthesesystemsarereadilyavailablein real-
timeembeddedenvironments.

InferencehasalreadydevelopedART-Add,an Add-
basedexpertsystemtool,forthisspecificpurpose.ART-
Addsupportsrule-basedreasoningaswellasframe-based
reasoningthat canbeusedto implementmodel-based
reasoning.Whenthe currentversionof ART-Addis
used,thetotalmemoryrequirementforanART-Addap-
plicationwithhundredsofrulesis2-3megabyte.It may
be reasonablefor embeddedsystemsbasedon newer
processorssuchas the Intel 80386and 80960,the
Motorola68000and88000,andtheMIPSRISCchip. It
isimportant,however,tonotethatthecurrentversionof
ART-Addis notoptimized.Theprimaryfocusof the
currentreleasewasto providefunctionality.Inference
plansto releaseanoptimizedversionofART-Addin the
nearfuture.

Becauseof numerousbugsfoundin theAddcompilers
usedforthisproject,wecouldnotmakesomeof theob-
viousperformanceoptimizationsthat couldhavemade
ART-Addfasterandsmaller[11].In additionto compiler
problems,wealsodiscoveredsomefundamentalissues
withtheAddlanguageitselfthatalsoaffectedtheperfor-
manceofART-Add [11]. In particular, the problem with

dynamic memory management has the most significant

impact on the execution size and performance of ART-

Add.

Various reactive planning mett_ods have been

proposed [1], [5], [10], [17], [18]. These planning methods

(a.k.a. universal planning) have been sharply criticized

mainly for the exponential growth of their size with the

complexity of the domain [6]. We plan to study both

sides of arguments and investigate the possibilities of im-

plementing reactive planning agents using some of these

methods in DAA.

Our current research effort is focused on implementing

ART-Ada's own memory manager using an existing tech-

nology. If it is not possible to implement it in Add, we

will implement it in an assembly language. Another area

of research is to improve real-time support in ART-Add.

Several extensions to ART-Add are proposed to address

real-time issues and included in Appendix I.
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5. A Meta-Level Agent

In a distributed architecture like DAA, the problem is

how to provide recta-level control and coordination be-

tween distributed agents. A meta-level agent is a com-

mon blackboard for recta-level control and coordination.

Some examples of recta-level control are:

• to control the data input rate of the

preprocessor --- when a serious problem arises,

the input data rate can be reduced so that

agents spend more resources in dealing with

the current situation;

to assign tasks to agents --- crisis situations

may have to be handled by reactive agents to

provide quick fixes while cognitive agents may

follow up on it later;

to reconcile conflicting recommendations ---

when reactive agents and cognitive agents

make conflicting recommendations, it is neces-

sary to reconcile the differences; and

to schedule operations for effectors --- when

multiple agents try to control effectors, it is

necessary to schedule effector assignments.

Another important area of coordination is timeline

management. Following [2], we intend to implement

three timelines where each timeline records one type of

information. The occurred timeline is used for represent-

ing facts acquired from monitoring sensors. The expected

timeline represent what we expect in the future. The

intended timeline represents goals. The intended

timeline is different from the expected timeline in that

actions can be taken to ensure that goals are met,

whereas no actions need to be taken to produce expected

results. Any agents can process or post event8 in any

timelines through the recta-level agent. We intend to use

ART-Ada to implement the meta-level agent.

• protocol for distributed knowledge bases, and

• protocol for distributed autonomous agents.

Unix interprocess communication protocol (e.g. sockets

and TCP/IP)would be a reasonable low-level protocol

for prototypes. We intend to develop a protocol for dis-

tributed objects because we believe that it is an optimal

layer for interagent communication. Other higher-level

protocols are interesting research topics, but they may

not be as practical as the distributed object protocol.

Eventually, protocols used in prototypical systems should

be replaced with actual protocols supported by the Space

Station Freedom.

7. APEX Testbed

The proposed testbed for DAA is a real-time monitoring

and diagnosis expert system called APEX (Autonomous

Power EXpert) for the electrical power distribution sys-

tem of the Space Station Freedom [23], [24]. We will use

APEX to illustrate how DAA can be applied to real-time

knowledge-based systems for Space Station Freedom. It

was previously implemented in KEE and Common Lisp

and is being ported to ART-Ada and Ada at NASA Lewis
Research Center. The APEX testbed will be used to

demonstrate the advantages of this approach.

Load l
Scheduler] - ExpertSystem L

6. Interagent Communication

There are several possible layers in the interagent com-

munication protocol:

• protocol for interprocess communication,

• protocol for telcmctry,

• protocol for distributed objects,

Figure 7-1: Current APEX

Figure 7-1 is a simplified block diagram of the current

APEX implementation while Figure 7-2 is that of the

new implementation based on DAA. In the current im-

plementation of APEX, there are three modules:

378



Reactive ReactiveI [Cognmve 1Planner IDiagn°sticlanJ

D agnost c anJ ._),,,,,,_ f

IDYnamic/- -I Meta-leve_ _.I Jcognitivel

LSchedule_ ,1,II ReasonerS__. t..."f [Planner J

[Preprocessor I [Driver ]

_'_Controller( I"-I Cognitive
[--1 Reactive

Figure 7-2: APEX based on DAA

an expert system module written in KEE and

Common Lisp that detects multiple faults,

predicts possible future faults, and recom-

mends fixes;

a scheduler module written in C based on

linear programming that schedules electrical

power distribution for maximum utilization of

generated electrical power; and

several software controller modules written in

Ada that detect single faults and fix them

immediately [25].

The software controller modules are written in Adu and

deployed on the hardware controllers of the electrical

power distribution system. These modules are designed

to meet timing requirements of less than a second. They

are examples of reactive agents.

The scheduler module is implemented separately from

the expert system module, and runs on a PC com-

municating through a network. It is expected to be

deployed on the Station as a reactive agent because its

absence is unacceptable when the transmission between

the Station and the control center is down. This module

seems to lack dynamic scheduling capability. We intend

to investigate the possibilities of applying AI techniques

for dynamic scheduling. NASA Lewis Research Center is

also considering COMPASS (COMPuter Aided Schedul-

ing System). COMPASS is an interactive planning and

scheduling system developed by McDonnell Douglas, and

is available through NASA Johnson Space Center [3]. It

is written in Ada and uses X windows interfaces.

The expert system module should be distributed; more

critical functionality that requires reactive responses

should be separated as a reactive diagnostician and

deployed on the Station while less critical functionalities

such as trend analysis and long-term prediction can

remain as a cognitive diagnostician in the ground-based

control center. Following [8], [7], the reactive diagnos-

tician based on associative reasoning methods will be im-

plemented as a Bayesian belief network while the cog-

nitive diagnostician based on rule- and model-based

reasoning methods will be implemented in ART-Ada. By

the same token, a recovery planner may have to be

separated into a reactive planner and a cognitive planner.

It is our intention to investigate the possibilities of adopt-

ing reactive planning methods found in various

literatures [1], [5], [10], [17], [18] to implement a reactive

planner.

8. Conclusion

DAA focuses on the cooperation between onboard sys-

tems and ground-based ones, which is not currently well

addressed by the Space Station Freedom Program. It is

not easy to achieve cooperative processing between on-

board systems and ground systems. We believe that it is

technically feasible, but it is difficult because it involves

multiple organizations. Currently, onboard systems and

ground-based systems are handled by different contrac-

tors. If an architecture like DAA is adopted as a general

framework for the Space Station, it could be used as a

"glue" between different contractors.

Many flight-related software components will reside in

the SSCC (Space Station Control Center) because on-

board computing resources are very limited. We believe

that ground-based flight-related software systems should

operate in the same environment as onboard flight

software for two reasons:

If ground-based software components are cru-

cial for flight, it should be considered as part

of the flight software. The same verification

and validation standard that is normally ap-

plied to onboard flight software should also be

applied to these software components.

If ground-based software components are des-

tined to migrate to the Station, it would be

essential for the SSCC to have the same

operating environment as the onboard en-

vironment.
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Because of these reasons, the Ada mandate should be im-

posed on the development of any new ground-based

flight-related software components as well as onboard

software.

Another important issue raised by DAA is the assess-

ment of risks caused by communication delays. Average

communication delay may be less than a minute in nor-

mal operating conditions, which is not significant. On

the other hand, there might be longer delays caused by

"blind spots" in the communication networks or by

hardware failures in the transmission systems. NASA

should assess any risks of having catastrophic failures on

the Station due to the absence of support from ground-

based systems during these communication delays.
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I. Proposed Real-Time Extensions to

ART-Ada

1.1. Performance Monitoring and Tuning

The performance of an expert system varies widely

depending on how it is implemented. It is often neces-

sary to monitor activities in the pattern matcher (e.g. the

number of pattern instantiations, partial matches, activa-

tions, etc.) or the execution time of a rule RHS (right-

hand side) action in order to determine areas for op-

timization. Performance analysis can be aided by a set of

tools that graphically display the information.

Unlike conventional software, rule-based systems are

sensitive to the ordering of patterns in rules. Currently,

the only way to optimize pattern ordering is to monitor

activities in the pattern and join networks and optimize

them manually. It may be possible, however, to

automate this manual optimization process. It has been

reported that an automated tool was successfully used to

optimize join ordering [9]. An optimization algorithm

can be automatically applied to a rule-based program to

find near-optimal pattern ordering for the entire

program.

1.2. Temporal Reasoning and Trend Analysis

In a real-time expert system, it is often necessary to

reason about and perform statistical analysis on temporal

data -- data that change over time. In order to avoid in-

formation overloading, several levels of abstraction

should be used. Raw data should be preprocessed to sup-

press noises and redundant data. Historical data should

not participate in the pattern-matching process directly.

Rather, high-level abstraction acquired by applying tem-

poral reasoning and trend analysis to the historical data,

should used in the knowledge base.

We propose to implement a set of functions that can be

layered on top of ART-Adu as a separate library for tem-

poral reasoning and trend analysis. This library is based

on the concepts, monitors, events and timers. A

monitor is used to store historical data in a ring buffer

outside of the knowledge base. A monitor is referred to

only by its name, which is stored in a hash table. Events

are used to extract temporal relations between

parameters. Events are a collection of time that satisfies

certain conditions. Rule-based systems are usually data-

driven. In a real-time system, however, processing must

be driven by time as well as data. A timer can be used

to implemented time-driven processing. For more details

on monitors, events and timers, see [12].
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1.3. Dynamic Rule Priority

In real-time AI architectures, the priority of a task

should be dynamically determined based on the timing

constraints and the resource requirements of the

task [8], [4]. In the current version of ART-Ada, the

priority of a rule cannot be changed dynamically. If the

priority of a rule is allowed to be changed at runtime,

rule scheduling strategy can also be modified dynami-

cally.

In the following example, the closer the distance is, the

higher priority will be assigned to the rule activation. In

fact, the same rule can be activated with different

priorities if its priority can be modified dynamically. In

order for the rule dynamic priority to function properly,

the priorities of all activated rules in the agenda must be

refreshed before a rule is selected for execution.

If the execution time of a rule is known, it can be used

to adjust its priority. It is often desirable to assign a

higher priority to a rule with a shorter execution time.

In fact, it is the strategy used by the rate monotonic

theory [20], [21]. In the following example, duration is

the execution time of a rule RHS action. The execution

time can be either measured or cstimated.

(defrule foo
(declare (salience ?s = 1/?d))
(declare (duration 1 sec))

(schema ?enemy-plane (distance ?d))
=>

(...))

1.4. Message Passing between Distributed Expert

Systems

Multiple cooperating ART-Ada applications can run on

loosely-coupled multiple processors. ART-Ada supports

object-oriented programming. A method is a function as-

sociated with an object or a class that can be inherited.

When a message is sent via an ART-Ada function send,

an appropriate method will be invoked. If objects are

distributed over multiple processors, and a data diction-

ary is used to define mapping between a processor and an

object, the message passing mechanism through send can

be used without modification to ixnplement distributed

message passing. When a message is sent, tile system can

simply check the data dictionary and send the message to

the appropriate processor. Fach AIIT-Ada application

can use an asynchronous function to check its message

queue between every rule firing.
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