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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Centei and local industry to actively support research in the computing and ,_
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershipwith JSC tojointly define and manage an integratedprogramof research
in advanced data processing technology needed for JgC's main missions, including .......
administrative, engineeringand science responsibilities. JSC agreedand ¢nter_into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the t_ojmtitutions to conduct the r_rch. : = _g- :

The mission of RICtS is to conduct, coordinate and disseminate research on Ill

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organi_tions,: Within UH-Clear
Lake,_he mission is being implemented ihrough interdisciplinary involvement of :|_-_= :
faculty and students from each of the four schools: Business, Education, Human _-
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UfI-Clear
Lake establishes relationships with other universities and research organizations,
having comm0n research interests, to-provlde add_ti0nal sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working_j01ntly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

ffntotTie _ve goals of UH-Clear Lake and NASA/JSC.
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The Xpress Transfer Protocol (XTP) -- A Tutorial

Robert M. Sanders and Alfred C. Weaver

Computer Networks Laboratory
Department of Computer Science

University of Virginia

u

Introduction

XTP is a reliable, real-time, light weight transfer t layer protocol being developed by a group of researchers

and developers coordinated by Protocol Engines Incorporated (PED. [I.2.3] Current transpon layer protocols such
as DoD's Transmission Control Protocol (TCP) [4! and ISO's Transport Protocol (TP) [51were not designed for the

next generation of high speed, interconnected reliable networks such as FDDI and the gigabit/second wide area
networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as

a VLSI chip seL By streamlining the protocol, combining the transport and network layers arid utilizing the

increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-
to-end data transmission rates demanded in high speed networks without compromising reliability and

functionality. This paper describes the operation of the XTP protocol and in particular, its error, flow and rate

control, inter-networking, addressing mechanisms and multicast support features, as defined in the XTP Protocol
Definition Revision 3.4. [11

Future computer networks will be characterized by high reliability and very high data transmission rates.

Traditional transport layer protocols, such as TCP and TP4, which were designed in an era of relatively slow and

unreliable imerconnected networks, may be poorly matched for the emerging environment. Although they contain

many necessary features, such as error detection, retransmission, flow control and data resequencing, they are
deficient in many respects -- they do not provide rate control and selective retransmission, reliable multicast is

not supported, their packet formats are complex and require extensive parsing due to variable header lengths and

support of complex modes. These protocols manage many timing events at both the sender and the receiver u for

example, since the sender does not initiate receiver data acknowledgements, both the receiver and sender require

an additional timer. The data transmission rates assumed are no longer valid and may limit the scalability of the

protocols -- in TCP, for example, which was designed in an era of 56Kbps data transmission rates, the flow

window size is small, and based on 16 bit byte sequencing. Finally, the state machines for these transport

protocols were intended for sequential rather than parallel execution. For example, the placement of the checksum
field was considered arbitrary and so it was placed in the header.

XTP provides for the reliable transmission of data in an inter-networked environment, with real-time

processing of the XTP protocol -- i.e., the processing time for incoming or outgoing packets is no greater than
transmission time. XTP contains error, flow and rate control mechanisms similar to those found in other more

modem transport layer protocols 2 in addition to muhicast capability. Timer management is minimized -- in XTP

there is only one timer at the receiver, used in closing the context. XTP has a 32 bit flow window. XTP's state

w

I. The transfer layer is formedby combining the functionalitiesof both the networkand transport layers of the ISO
OSI model into a single layer.

2. Specifically, two other modem transport layer protocols -- Ve_atile Message Trms_tion Protocol (VMTP)
developed at Stanford University by David Cheriton,md Network Bulk Transfer(NETBLT) developed at MIT by
DavidClnxk.
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machine is specifically designed for parallel execution. Address translation, context creation, flow control, error

control, rate control and host system interfacing can all execute in parallel.

The XTP protocol is considered a lightweight protocol for several reasons. First, it is a fairly simple yet
flexible algorithm. Second, packet headers are of fixed size and contain sufficient information to screen and steer

the packet through the network. The core of the protocol is essentially contained in four fixed-sized fields in the u
header -- KEY, ROUTE, SEQ and the command word. Additional mode bits and flags are kept to a minimum to
simplify packet processing.

lib

Types of XTP PDUs

XTP utilizes two frame formats, one for control packets and one for information packets (see Figure i).
J

INFORMATION PACKET CONTROL PACKET

L Common He_zl_r t Information Segment I Common Trailer ] I Common Header t Control Segment I Common Trailer 1

(24 Bytes) (Vtriable _th) (16 Bytes) (24 Bytes) (Variable _th) (16 Bytes) W

Figm'e 1. General Frame Formats

Both formats share a common header segment and a common trailer segment, each of constant length. Each
XTP packet includes a variable length segment between the header and trailer whose segment type determines the

packet type. The important fields are aligned on 8 byte boundaries so that they can be quickly accessed by any

machine with 2 byte, 4 byte or 8 byte alignment. The formats are described in greater detail later, m

The common header specifies the packet type and identifies what portion of the data stream, if any, is

included in the information segment. Optional modes, such as_'sabling error Checking or multicast transmission,
are indicated in the packet header's control flags field. The Common trailer cottons tw6_hecksum fields,

identifies how much of the data stream has been delivered to the receiving client application, and also contains a

flags field. These flags generally control state changes, for example closing the data transmission connection or

requesting data acknowledgement. Message boundaries are also specified in the trailer by setting the end of
message flag (EOM).

The information segment contains the user data being transferred, and is also used to pass addresses and other _
misceil_eo_data whe_appropdate. Each data packet contains a coiaff_ous subset 0f*-the_:s_ _ing nil

transferred. In XTP, there is no protocol-imposed upper limit on the number of bytes included in each data packet

each implementation is bounded by the underlying datalink layer. For each implementation this limit is kno_a
as themax_num rransmissioh_t (MTLD-and iSf6_-b---T_ting-the __i" _trTall:er_s_/fie m

datalink'smaximum data fieldsize.XTP supportstwo additionalmodes of datatransferwhich allow out-of-

band, tagged data of constant length (8 bytes) to be included in the data packet along with the user's data. These

ii_fd[ti66aVd-a-ta 15_s aI_ api_m_hgihfoiZma_n segment, e i_th_"ai_ _ir_n_a_end_0_i_e_iJsual u-s_r Iit

data. Their presence is indicated by flags in the header and trailer (the tag). Beginning tagged data are indicated

by the BTAG flag in the common header. Ending tagged data are specified with the ETAG flag in thecommon _.
trailer. ..... M

The control segment contains the receiver's error, flow and rate control parameters' values. This segment

also contains fields used to resyrichronize the transmitter and receiver when necessary.

Multi-Packet Handshaking

In XTP, multi-packet exchange sequences provide user applications with both a t_port-level virtual circuit

capability and a transport-level datagram service. For example, in XTP a connection may consist of an exchange

of three packets, as shown in Figure 2.

w

w
g
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FIRST (A)

CONTROL (C)

FIRST (A)

CONTROL (B) CONTROL (B)

CONTROL (C)

PACKET FUNCTION

• Request context be established
• Transmission of user data

• Request context termination

• Acknowledge context mit request
• Acknowledge user data reception
• Acknowledge context termination

request

• Inform destination that sender
has terminated context

Figure 2. Three PacketConnection-Mode Handshake

The scenarioabove depictshow XTP can reliablysetup a connectionbetween two userprocesses,transmit

data,and closethe connectionwith a minimum of threepackets.In thisscenario,the sourceinitiallytransmits

packet(A).At the destinationtheheaderisexamined and itisdeterminedthatthe sourcewishesto establisha

•sendconnection.Ifthedestinationwishestocomply, acontextisestablished.The packet'sdataarethenqueued

fortransfertothe waitingdestinationuserprocess.

Aftersuccessfullytransferringthe receiveddata to the host,the destinationcomplies by sending control

packet(B).This packetacknowledges the receiptof the data,and indicatesthatthe destinationisalsoreadyto

closethe connection.On receivingpacket(B),the senderemitscontrolpacket(C),and closesitssideof the

connection m thus completing the three way handshake. Any buffers still associated with the connection are

freed, and the sender will no longer respond to control packets arriving for the context. When packet (C) is
received by the destination, the connection is closed.

In XTP the burden of detecting lost acknowledgements is assummed by the sender. The sender requests

acknowledgement by setting the status request bit (SREQ) in the XTP common trailer. A timer (WTIMER) is

used by the sender to determine if the receiver has failed to respond to a sender-generated request for current
status and data acknowledgement. If the timer expires before an acknowledgement arrives, the sender assumes the

acknowledgment was lost, and sends another request for a control packet acknowledging the received data. On the

other hand, when closing, the source acknowledges context termination, so that the receiver can be sure that the

context is closed. If this last packet gets corrupted or lost, the receiver will eventually timeout and close the
connection.

UnlikeTCP, where each datapacketwould be retransmittedafterthetimeout,in XTP only a CNTL packet

containingthe SREQ would be sent.The correspondingreturnedCNTL packet would indicatewhich data

packets,ifany,to retransmit.This isa conservativeprocedurewhich forcesa "synchronizinghandshake"before

retransmitting except when retransmission is explicitlyindicated by the receiver.

Closing an XTP connection is coordinated using the three flags RCLOSE, WCLOSE and END. The local host

sets the RCLOSEo r W_OSE flags in an out-going packet to inform the remote host that it has completed all
reading or writing it intends to perform on the shared connection. Note that in a full duplex connection between

two nodes A and B data would be transmitted in both directions (A.--_B and B-.-)A). Using RCLOSE and

WCLOSE, each direction can be shut down independently.

The END flag is set in an outgoing packet to signal to the remote host that the local host released or closed its

end of the connection. Thus, END is set in the final packet transmitted, and indicates that the context has been

terminated m i.e., that it is gauranteed that no further packets can be exchanged. If, at any time, a packet is
received with the END bit set, the context is assumed closed at the remote end, and the local host releases the
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context.

The "close" protocol based on END, RCLOSE and WCLOSE can uniformly support the three packet graceful
termination of Figure 2, an abbreviated termination, transactions, and abort situations without modification.

Two-packet, transaction-like packet exchange sequences are also allowed in XTP and are referred to as fast
handshakes. For full duplex connections, these modes are less reliable than the three packet connection. The two

packet fast close can be considered a transport level datagram service or the basis for simple request/response
operations.

Note that when a data acknowledgment is requested in XTP, as in the FIRST packet of Figure 2 (packet A),

the acknowledgment is not necessarily provided immediately. In the fast close cases, the receiver delays
acknowledgment until all data received prior to the SREQ have been processed. This includes the data contained
in the packet with SREQ.

XTP contains a second status request flag in the common header flags field which is called DREQ. DREQ
differs from SREQ in that SREQ requests a response immediately from the receiver, and DREQ requests it after

the currently queued data have been received at the receiver. This is useful because the acknowledgement is

delayed until the receiver has freed the buffer space associated with the queued data and is capable of accepting
more data from the sender. Flow control blocking is minimized.

In closing, SREQ behaves like DREQ -- if this were not so, the receiver might generate its final

acknowledgement packet before the data from the last information packet has been delivered to the receiving
client. But the sender could not close the context since unacknowledged data exists. Thus, in closing, SREQ
responses are delayed until all data have been processed.

Flow Control

F/ow control allows the receiver to inform the sender about the current state of its receiving buffers. In XTP,
the receiver's flow control parameters are included in control packets sent from the receiver to the sender. These
parameters are shown in Table 1.

Parameter TYPe Locatloa

ALL_ 32 bit sequence tmmber commi scott

DSEQ 32 bit _iuerl_e number cxxnmoa trailer

RSEQ 32 bit sequence ntmab_ cotwatd _llm_l

De_a-lptlon

I + sequence munber of lut byte receiver will accept.

! + sequence number of lut byte tm_eiver delivered to
destitution client process.

I + tequence number of Last I_#e receiver tccepted.

A'LLOC - DSEQ Sizs of receiver's data buffer in/_cs.

RSEQ - DSEQ Number of byte* received tad waiting to be mmsferred to destination client process.

TABLE 1. XTP Flow Coatral Parameterl

ALLOC constrains the sender from introducing more data than the receiver's buffers can accept. The sender
refrains from sending bytes with sequence number ALLOC or higher. Thus, ALLOC is one greater than the

highest byte sequence number _ifthe receiver wiU accept. DSEQ is the sequence number of the next byte to be

delivered to the destination application process, or clienL Likewise, DSEQ can be thought of as one greater than

the sequence number of the last byte delivered to the destination client. AIIbTteytesw==wTdisequence _i_n-ber ies_S_

DSEQ have been successfully transferrecrto the destination client. DSEQ is always]ess th_or equal to _LOC.

Subtracting DSEQ from ALLOC (modulo 232) yields the buffer size allocated in bytes to the context by the

receiving XTP process. Thus, XTP uses a byte-oriented allocation scheme as in TCP instead of a packet-oriented

allocation Scheme as in TP4. An advantage to _s poiicy isthat b_e_0defited allocation iS not-affecte-d-by intemet
fragmentation.

The sender holds data that have been tr_mitted in abuffer until it_0ws the data have been delivered tothe

destination client. As long _data are buffered, it can be ret_mi_tted if necessary. When the sender notes
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thatDSEQ has been extended,itfreesthebuffersassociatedwiththedelivereddata.

RSEQ isthe sequencenumber of the firstbytenot yetreceivedcontiguouslyfrom the network.This can be

the firstbyte inthe firstgap,or the firstbytein thenextdatapacketexpected.As with ALLOC and DSEQ, an

alternativeinterpretationexistsforRSEQ. Allbytesassociatedwithsequencenumbers lessthanRSEQ have been

bufferedby thereceivingXTP processatthedestination,but may nothave been deliveredtothedestinationclient

processyet.Thus, RSEQ isone greaterthanthe largestconsecutivelyreceiveddatabyte sequencenumber. The

sequencenumbers ofallbytesassociatedwithgapsliebetween RSEQ and ALLOC.

Collectively,theseparametersprovidethemeans forXTP toimplementflow controlwhereby thereceivercan

restrictthe senderfrom sendingexcessivedataprematurely.Note thatallsequence number parametersin XTP

occupy 4 bytesm SEQ, RSEQ, DSEQ, ALLOC and thesequencenumber pairscontainedinthe SPAN fieldof

CNTL packetsassociatedwithgapsinthereceiveddatastream.

Itshouldbe observedthateach byte stillin thebitpipe,i.e.,each byte currentlyintransitor stillsubjectto

retransmission,must be uniquelyidentifiable,sothatretransmissionispossible.InTCP/IP sequencenumbers are

limitedto 16 bitnumbers withonly 2t6-.-64K bytespossibleinthe bitpipeatany given pointin time.On the

otherhand,XTP's 232 bitpatternsyieldover 4 billionunique sequencenumbers. Thus, XTP ismore naturally

suitedtonetworkswithbothhighbandwidthand/orhighend-to-endlatencythanTCP/IP.3

Once thesenderhas been informedofthereceiver'sallocationlimitviatheALLOC parameter,itcontinuesto

transmituntilthe allocationhas been reached,withouttheneed forindividualacknowledgements ofeach packet

transmitted.Thus, XTP more efficientlyutilizesthe higherreliabilityof modem networks,such as fiberoptic

LANs. Once the allocationhas been reached,the XTP-sender processsetsthe SREQ parameterin the lastdata

packettransmitted,and thereceiverrespondsasearlierdescribedwitha controlpacketthatacknowledges alldata

received,describesany gapsdetected,and,ifappropriate,advancestheallocation.4

An alternativeallocationpolicyexistsin XTP based on the sizeand availabilityof the receivingclient

application'sbuffers.This mode is referredto as reservationmode. In reservationmode, the transmissionis

determinedby thesizeof the receivinguser'sbuffersreservedspecificallyforthecontext(by settingALLOC to

the size of this reserved buffer). In this mode, the sender must pause between message transmissions until the

receiving client has posted a new client buffer to receive the next message. This is necessary to separate adjacent

messages into different client buffers, since each message may not entirely fill its buffer.

In reservation mode, the reservation buffer size may differ greatly from the normal allocation size, and may be
greater. This mode is similar to the the allocation control mechanisms in the VMTP _7]and NEWBLT {sl protocols.

Rate Control

In some situations flow control is not sufficient to ensure efficient, error-free transmission between the sender

and receiver, even on an extremely reliable network. Imagine a network containing both hardware and software
implementations of the XTP protocol. Since the VLSI chip set will allow much of the protocol to be executed in

parallel, a sending XTP process implemented in hardware may overwhelm a receiving XTP process implemented
in software if it sends multiple, back-to-back packets.

3. Van J'acobsenhasproposedextendingtheTCP protocolto,amongotherthings,include29bitsequencenumbersto
extendthesizeoftheTCP flowcontrolwindow.[el

4. Note that other policies are possible for determiningwhen to set the SREQbit in XTP;,in XTP, the SREQ policy is
determined by theuser application.
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XTP uses rate control to restrict the size and time spacing of bursts of data from the sender. Within any small
time period, the number of bytes that the sender transmits must not exceed the ability of the receiver (or

intermediate routers) to decipher and queue the data -- otherwise they will be overwhelmed and begin dropping
packets, creating gaps in the received data stream. This problem fs independent of the ffff,_bnfr6i}buffer size

problem discussed previously. The receiver may have adequate buffer space available, but back-to-back packets

may arrive faster than the XTP receiver process can analyze them. The XTP parameters used to implement rate
control are shown in Table 2. Together, the two rate control parameters aLlow the receiver to tune the data
transmission rate to an acceptable level.

Parameter Loc,,tlon
,|| ..............

RATE

Descrlpttea

Mu,.u'nurn number of bytes receiver will ,,¢.ce_ in each one second time period.control segment

BLq_T control segment Maximum number of bytes receiver will accept per bum of packets. The

mm_nitxer may not transmit moee than BLq_,ST bye. between RTIMER time_uu.

RATE/BURST Maximum number of p-,'ket burns per second.

BURST/RATE Seconds per Packet Burst.The rateumer (RTLMER) issetto thisvalue.

RATE = -i Rate control is disabled _ i.e., sender transmissions are uncotastraineci.

TABLE 2. XTP Rate Control Parsmete_

When a slow XTP receiver implemented in software is listening to a hardware-implemented sender, packet

bursts must be time spaced to guarantee that the slow receiver has sufficient time between back-to-back packet

bursts to complete protocol processing before the arrival of the next burst. With the above parameters, inter-

packet spacing can be achieved as follows. Set the BURST parameter equal to the MTU (maximum transmission

unit) of the underlying network. Thus, each packet "burst" may not contain more than one packer's worth of data.
If the receiver can handle N packets per second, set RATE equal to MTU * N. In this manner, the sender is

constrained to spacing back-to-back packets accordingly. See Figure 3 which plots bytes transmitted versus time

during a one second time period for a hypothetical XTP transmitter.

The RATE and BURST parameters are adjustable, and for each implementation of XTP, appropriate values

could be determined experimentally. Their values would then be included in all out-going control packets from
the receiver. Note that in this example, RATE > > BURST.

In Figure 3, the BURST and RATE parameters have been adjusted such that an inter-burst separation occurs.

Each burst of data is depicted by a ramped triangle. The separations between adjacent bursts ate shown by

horizontal dotted line segments in which no progress is made towards the top of the graph. During each pause in

the transmitter, the slower receiver is allowed to catch up.

Unfortunately, the sender process does not know the appropriate RATE and BURST values to use with a

particular receiver until the first burst of data has been completed; the proper value for ALLOC is also unknown
initially. The appropriate values only become known when the first control packet arrives at the sender. Before

this control packet is returned, the sender must use default values for the variousflow and rate control parameters.

If protocol processing speeds vary widely on a network, the default values for ALLOC and rate control

parameters affect the number of dropped packets during the initial data burst. A conservative approach would be
for the sender to set the default ALLOC to a small number of bytes (say one average sized data packet as defined

by the max/mum transmission unit) and to use the aforementioned approach to setting the default rate parameters
such that packet spacing is sufficient for the slowest receiver on the network. After the initial burst, which also

establishes the context connection, the sender would block, waiting for the returned control packet generated by

the SREQ in the last data packet of the burst. This control packet would contain the more accurate flow and rate

control parameters specifically applicable to the receiver. In this case, few packets would be lost at the cost of

moderately more overhead in the initial burst.

Consider a hardware-implemented router between an FDDI LAN and an Ethemet LAN that can abSoPo back-

to-back packets as fast as they arrive, but has limited buffer space. Rate control can be used to avoid overrunning
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Figure 3. Rate Control of a Hypothetical XTP Transmitter

the muter's buffers. To implement this, BURST could be set equal to RATE, and RATE would be set to the rate

at which the router could relay frames for the context in terms of bytes per second. In this scenario, the

RTIMER's interrupt rate would be once per second, and the number of bytes per second allowed would equal

RATE. As more inter-network contexts become established, the muter may need to restrict the burst rate for
existing contexts with the RATE (=BURST) parameters. Later, as contexts become inactive or removed from the

inter-netw0rk,theroutermay chose to increaseth¢-iib-w_-te-0ftheremai_g-contexts.RATE (=BURST) would

be increasedinoutgoingcontrolpacketsinthiscase.RATE and BURST allow themuter todynamicallycontrol

theflowintothemuter soas toavoidoverwhelming itwithrequests.

XTP's ratecontrolfeaturemay bedisabledby settingRATE equalto-IinoutgoingCNTL packets.

Error Control

When errors do occur in transmission, XTP, like TCP and TP4, must detect the errors and initiate

retransmission of the erroneous data. XTP uses two checksums over the XTP packet contents to verify the
integrityof the datareceivedthroughthenetwork.These two checksums appearinTable 3.The XTP checksum

algorithmswere chosen forspeed and VLSI compatibility;detailsof theiroperationare found inAppendix A of
the XTP Protocol Definition version 3.4. [tl

Itispreferabletoplacethechecksums inthelastfew bytesoftheXTP frame so thatthechecksum calculation

can be concurrentwith packettransmissionor reception.Ifthechecksums were placedinthefrontof thepacket,

theentirepacketwould have tobe accessedtocompute thechecksum beforepackettransmissionbegins.Thus,

two sweeps ove/"the datawould be necessaryQ one forthe checksum, and one for copying-thebytesto the

network.This inefficientapproach isinherentto TCP and TP4, whose checksums occur beforethe information

segment,and avoided inXTp where the chec_ums followth.e reStof thepacketand are found in thecommon
trailer. ............

When either_checksumindicatesthatthepacketreceivedcontainserroneousinformation,thereceiverassumes

the packetisgarbledand discardsit.Ifthesourcewere known, thereceivercould immediatelyinformtheSource

XTP senderprocess thatthe packet was garbled in transit-- allowing the source to begin retransmission.

. ,=2=
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Parameter LocaUoa Description

DCHECK Value _der (4 byte,)

HTCHECK VLlue

'N'ODCHECK Flag

NOCHECK Flag

trader (4bytes)

crailerflags

fidd (I BIT)

4 bytechecksum over ctatafiekis.

Includesthe controlsegmem m controlplckcts:

the inform_ion segment ininformationpackets.

4 byle checksum over header and tra_ler.

Flag_ed tosignifythatDCHECK checksum isnot

pn_sentin eummt packet.

Flag used to signifythatcheduum ealoalauon is

ciisabledin_lrrem _..keZ.

XOR Calculated mine e=clusive-OR operlUons only, Rel_senu theverticalparityof dam bytes.

RXOR EJch intermediausresultisleftrotatedbeforeexclustve-ORm$ inthe next word.

XTP's checkram functionisformed usin| leh toe,ion md exclusive-OR operationsover the 16-bitwords covered.

The 4 byte checksum tsthe concatenationof two 2-byte checksums XOR and RXOR. (XOR IRXOR).

TABLE 3. XTP Checksum Paruneu:n

Normally, this information is available by referencing the packet's KEY field, located in the common header, that

uniquely identifies the originating client process at the node that u'ansmitted the packet. But, the receiver cannot

assume that the KEY field is correct, since the error could conceivably have occurred anywhere within the packet
including the KEY field itself (if the HTCHECK checksum is invalid). Thus, the receiver always discards packets
received with errors.

At the sender, transmission continues as if no error had occurred. The next packet is placed onto the network.

If this new packet arrives correctly, the receiver examines the starting sequence number for the packet. Like the

context identifier KEY, the starting sequence number is contained in the packer's header (in the SEQ field). The
receiver expects the SEQ value of the incoming packet to equal the current RSEQ value for the context. Since a

packet was dropped, the incoming SEQ is larger than RSEQ by the size of the dropped packet. The receiver
accepts the data packet, noting that it arrived out of sequence, and that a gap exists in the data stream. Now the

receiver can utilize the KEY information of the current packet to send back a _ packet to announce the gap.
Having the receiver indicate when a gap has been detected is optional in _ if the receiver fails to send the
CNTL packet, the sender will eventually include a SREQ and block, or timeout.

Gaps And SeleCtive Retransmission

A receiver could describe a gap using a pair of sequence numbers that bound the gap. Instead, XTP describes

the groups of bytes (called spans) which were recc)i_, ms process is known as selective acknowledgement.
Thus, in XTP, the location of gaps is inferred to be between the spanning byte groups selectively ac_wledged.

Each byte group is described with two sequence numbers that bound the bytes received. The first sequence

number in the pair marks the byte where the group stud (i.e., the first _yte in _e:g_up)i The se_nd Sequence

number is one greater than the last byte in the group (i.e., the first byte not contained in the group.) Between each
pair of received byte groups is a gap, or hole, in the received byte stream encompassing one or more bytes.

XTP allows a receiver to track and notify up to 16 separate gaps for any givencontoxt. Th_s capabt_ty is not
required, however-- receivers may chose to ignore all out-of-sequence data. In this case the receiver w0iiid ne_,er

allow gaps to be created, and would force the sender to retransmit both lost data and correctly received out-of-

sequence data. This latter method is referred to as go-back.n re.mission. Since up to 16::b_ _,i-6fa:p_may be
described in any CNTL packet, the SPAN field, which contains descriptors for the gaps. is variable in length.

Each gap spans a portion of the data stream. For 16 individual gaps to accumulate would presumably be a rare

occurrance, and ordy possible when large Voiumes of data are transmitted with-feW $_Qs. Consider a massive

file transfer between mainframes with considerable buffer space. The entire file could be transferred with a single
SREQ in the final data packet. Any lost data could be determined and communicated to the sender in a minimum

number of CNTL packets (one) in most cases. This process, in which only the lost data are retransmitted, is

iw

v

w

W)

Im

II

I

L
I

m

J

w

Ill

m

U

=

Ul

w

I



-9 °

;.v-.

w

w

w

known as selective retransmission.

XTP Timing Considerations

Typically, connection timers are used to detect the possibility that a connection has been severed. In XTP, the
CTIMER is used to monitor for such events. CTIMER expires when the connection has been inactive for 60

seconds. By the time a break is suspected, a number of attempts may have been made to prompt the other "end" to

re-synchronize the protocol. In XTP, these prompts are in the form of CNTL packets (called sync packets). If,
after a number of attempts have been made, the situation has not improved, the XTP process will inform its client
application process of the situation, and if so directed, close the connection.

Re.synchronization is attempted when the sender has issued a SREQ to the receiver and the W"I'IMER times

out before the receiver's CNTL packet has been received by the sender, as earlier described. The XTP sender

process will assume that the packet containing the SREQ was dropped, and transmits another packet containing
an SREQ to the receiver-- a sync packet.

XTI' associates each receiver-generated CNTL packet with the SREQ that requested it. When the sender
issues a sync packet, it increments a counter value (the SY'NC counter for the context), and includes this value in

the SYNC field of the outgoing sync packet. When the receiver receives sync packets from the sender, it copies
the SYNC value from the incoming CNTL packet into the ECHO field of the outgoing CNTL (called an echo

packet). The sender differentiates between old echo packets and the current one by comparing the ECHO value
against the current SYNC counter contents.

When an incoming ECHO matches the context's $YNC counter value, the sender examines the receiver's
current status data. If no retransmissiom are needed, and ALLOC has been extended, the sender resumes with

data transmission. If the receiver has not extended ALLOC, but there are gaps to retransmit, the sender begins
retransmitting the lost data. Otherwise, the sender must wait for the receiver to extend the ALLOC value before
proceeding, and must block.

Sync/echo packets are also used to update the current round trip time (RTI') estimate. The sender sets the

TIME field in the sync packet to the current time at the sender. When the receiver prepares the corresponding

echo packet, it also copies the TIME field of the sync packet into the TIME field of the echo packet. When the

sender receives the echo packet, it estimates the current round trip time by subtracting the echoed TIME value
from the current time. This RTI" estimate is used by the sender in setting the duration of the'WTIMER.

WTIMER is set to twice the RTI'. Since XTP acknowledgements are generated at the sender's request (using

SREQ), the RTr estimate more accurately reflects the average round trip time than schemes relying on timeout-
generated acknowledgements.

XTP bounds the time each packet is allowed to "live" in the network using the time-to-live (TI'L) field. The

time value is expressed in 10 millisecond "ticks". In outgoing packets, this field is initialized by the user to a

given number of ticks (in TC"P time-to-live is basedon, the current RTT estimate). At each hop, the Tit., value for
the packet is decremented -- when the value becomes zero or negative, the packet has exceeded its time to live

and is discarded. Note that bounding the time the packet can exist on the inter-network aids in removing packets
which can not be delivered due to pathological situations such as host or router crashes.

Since the TTL field occupies 2 bytes, 64K different values are expressible in the field yielding a range in

values from zero seconds to 655.36 seconds in 10 millisecond steps. For networks with greater propagation time
than 655 seconds, (e.g., a very wide area network) the T/'L mechanism must be disabled. XTP allows the TTL

mechanism to be disabled by setting the initial TrL value to zero. If a packet arrives with a TI'L value of zero, it

is assumed that the policy is to bypass the TI'L decrement'and-discard step, and the packet is relayed onto the
next network with the 'IlL value still equal to zero.

w
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When transmitting, the sender may use a timer to comply with the receiver's rate control requirements for

bytes/second (RATE) and bytes/burst (BURS'I). This timer (RTIMER) must be accurate enough to support the
rate control timing requirements for the given implementation. The duration of the RT_R is set to

BURST/RATE seconds. Each RTIMER timeout reestablishes the limit on the maximum number of bytes which __
can be output on the context during the next RThMER time period.

XTP requires only one timer' at the XTP receiver process, and it is only needed during connection closing.
This timer is set whenever the receiver process issues a CNTL packet with the RCLOSE request set. The timer

estimates the round trip time, and if necessary, generates a new RCLOSE request upon expiring.

Each multi-context route requires a special timer called a Path timer (tx/'IMER). In touters, the PTIMER

duration may extend for days to allow datagram-type service over stable, infrequently used routes. In each end-

node, the FrIMER duration is substantially shorter, and may be measured in minutes or hours,

Addressing Mechanisms In XTP ....

XTP was designed to interface with a variety of datalink layers. In each case, XTP packets must be

encapsulated within the PDUs of the underlying datalink layer. For those protocols capable of multiplexing their _

services among multiple transport layers (say XTP and TCP simultaneously), the datalink layer uses a unique,
stand_ized identifier to distinguish between TCP and XTP packets. In 1990, XTP is expected to be operational '=

on Ethernet, IEEE 802.5, and FDDI; XTP is already operational on top of the User Datagram Protocol (UDP).

Within the XTP layer, each end of a XTP connection must be able to uniquely identify its peer. To w

complicate matters, XTP's inter-network and multicast capabilities impose additional addressing requirements.

Rather than including all relevant addressing data explicitly in each packet, XTP caches the addressing data

contained in the first packet at both the sender and receiver, and uses the KEY field as a lookup index into the

cache to access the actual addresses as needed. As described earlier, this initial packet is a special information

packet of type FIRST. The following packets contain only the KEY, resulting in smaller packets because the KEY
is encoded in fewer bytesl Thus the KEY field is included in every packet, and is located in the common header

segment.

TheKEY iS generated by/.he-node initiating the connection, and included in the FIRST packet !_m!tted to

the receiver. Also included in this FIRST packet are addressing data used to identify the intended receiver. These

addresses are contained in a list for comparison with the receiver's address filter. In multicast mode, more than

One-izceigi_rqs _e_d-for eacli_a_c_. T_ appmpriam iz-ce_et_-fi-om--the-_rig_I oi' tlie FIRST packet, and save

the context idenu_fierTKEY),_ii, source of the dat_nkY-rame containing fire packet (MAC address) and the route

identifier (ROUTE) in a database associated with the context record. Subsequent packets need not contain the

destination network address sin_-th-, triple <MAC;_Y.ROUTE> cari_-_ to lookup the c0ntext_ 7_-: _ _

The KEY field is 32 bits in length, but the context identifier KEY's v_lue is restrictedto a wlue expressible in

31 bits. The extra bit is located in the most significant bit position, and reserved for determirting the dire_cfipn of

the pack_t--i.e., _en=-n-d--6Ffl_ connection #fi'_ra_e-d i_ __c_--ei-._ sent'fr6_ _node which_g6rierated
the KEY value have the bit set to zero; packets received at the node generating the KEY value have the bit set to

one. When the high bit is set, the KEY is referred to as a return key. If the KEY in an incoming packet's header

is a return key, the receiver c_n_use-the key as a Iookup to determ_e=_ context _r Ln incomin_ac_t-_-nce the
receiver generated the original key.

In order to make context lookup faster, the receiver the receiver must be able to substitute a value of its own

_choosing for_ie-fiewlyT6-rming context'sqZEY.-Bui th_ _e_, KEY win only be usefui if the peer uses it when m

transmitting packets on this context. The substitute KEY is transmitted back to the context initiator in the XKEY

field of the next CNTL packeL The receiving XTP context continues to output CNTL packets containing the

original KEY (with the high bit set), whereas the sending XTP context W_adopt the receiver's reque_ed KEY
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when transmitting packets (also with the high bit set). Note that in this case, once KEYs have been exchanged, all

packets will be using return keys _ with the high bit set. See Figure I0. Key exchanging is only possible when

there is a unique receiver (i.e., keys may not be exchanged in multicast mode). After exchanging keys, any
additional packets sent in either direction contain the appropriate return KEY value for the packet's destination.

The address segment included in the FIRST packet contains two main fields m a fixed length descriptor field
indicating the addressing format used, and a variable length field containing the actual list of addresses. At
present, compatible formats are supported for both Darpa Interact and ISO formats. [91 Formats for

accommodating Xerox XNS [I°1 style addresses, U.S. Air Force Modular Simulator project (MODSIM) addresses

and Source Route addresses axe under study and should be available in future versions of the XTP protocol.

Address filtering occurs at the receiver when determining whether to establish the connection requested by the
sender of a FIRST packet. Beforehand, the receiving client describes to the XTP receiver process the set of

network addresses to which it will connect. When a FIRST packet arrives, the receiver compares its address

segment contents against the receiving client's address filter to determine whether to accept the packet or not.

In the event that the network topology is known, and network addresses do not require more than 4 bytes,
XTP can use a direct addressing mode. In this mode, the KEY field contains the actual destination address rather

than an index used to look up the context. This direct addressing mode is invoked by setting the DADDR flag in
each packet. The DADDR flag is located in the common header.

XTP Inter-Network Routing

When connecting to a process on a remote network, a connection must be established through one or more

routers until the destination network is reached, and finally to the remote host on which the receiver client resides.

The router receives the packet on the first network, makes a routing decision, and outputs the packet onto the
second network. The router must be capable of determining the appropriate node on the new network to which

the packet should be transferred, based on the destination address information contained in the packet. As in the
single network case, this addressing information can be cached.

The ROUTE field serves a similar purpose to the KEY field and is utilized by the router to locate the proper
addressing data in its cached address translation map for a packet traveling on a given route. As with the KEY,

ROUTE values can be exchanged between adjacent touters and/or the endpoint nodes.

When a FIRST packet arrives at the router, the router saves the incoming ROUTE value in the data structure

associated with the route upon which the packet is travelling. Packets generated at the router to he returned to the

context initiator will use the return form of this ROUTE value. The Router has the option of generating its own

ROUTE values for the next host or router in sequence to use on the given route. When relaying the FIRST packet

towards the destination, the router merely substitutes its preferred ROUTE value in the header, overwriting the
original ROUTE value chosen by the context initiator.

Packets arriving at the router from the destination-end of the connection will contain the return form of the

router's desired ROUTE value. The destination-end of the connection may choose to exchange ROUTE values

with the router. If so, it will set the XROUTE field to its chosen ROUTE value when transmitting its first CNTL

Packet. The router will note the XROUTE value, and use its return form in future packets to the destination-end.

The router relays the CNTL packet towards the sender-end of the connection. In this CNTL packet, the

original KEY value and ROUTE value receivecl fr0m-_e'_n'd_-e_nd _ the FIRST packet are substituted into the

CNTL. packet he__er, both in return_' f0rm. If _._uter_chp__ses to exchange ROUTE values with the sender-end, it

creates a second ROUTE number, associated with the address of the destination, and includes.this ROUTE value
in the XROUTE field of the CNTL packet sent back tO the sender node on the first network.

Once the CNTL packet arrives at the sender node, the sender adopts the router's XROUTE value, and includes

the return form of it in subsequent packet transmissions for the given connection, in the ROUTE field. Thus, the
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routermay use differentROUTE valuesfor packetstravelingin differentdirections.Note thatthe touters

overwritetheROUTE fieldvaluesincoming from packetsgeneratedby theotherrouter.New ROUTE fieldvalues

are generaied a_teach hop. .....

Each individual route can exist for an extended period of time, (i.e., perhaps even for days inside touters.) By
allowing more than one context to share a route, the cost of initializing and maintaining the route can be shared

among contexts. Additionally, the rate control for the shared route can also be shared. Sharing routes allows the

routers to combine redundant table entries in internal routing tables and minimize their space requirements. XTP
supports route sharing, and inheritance bet, n con xts. : ........ ......................

In XTP, an existing route can be utilized by a newly-forming context by setting the ROUTE value in the

header of the FIRST packet to the ROUTE num_oc-rassociated with.the particular route. This nurnbi_r iS available
in the context re_r_6f_y ach_-e d6ntext_tirrenfly _qhgthe:/ouie. ........ _..... .......... "............... ::_

One complication of route sharing is that the router can not detect when the route is no longer being used
without being explicitly _6St6i:l t6-release the route. In XTP, the special information packet type ROUTE is
used by touters and nodes to tear down routes. When a node knows that it is finished using a given route, it issues

a ROUTE packet to the router, which contains a RELEASE request embodied in the information segment. Thg

router responds by issuing its own ROUTE packet acknowledging the request and releasing the route.

XTPFragmentation Issues

XTP also supports fragmentation of data packets when necessary. The need arises when two connected

networks have different max/town transmissibn unit sizes, as mentioned earlier. In this case, the routers perform

the fragmentation transparently. The resulting set of smaller packets are referred to as fragments, although they

are legitimate XTP frames themselves. Each fragment contains its own header, a portion of the original packeCs
data segment and its own trailer. - ....

XTP CNTL packets are sufficiently small that they do not require fra_entation. The largest CNTL packe_

contains a 24 byte header, 16 byte trailer, 40 byte constant subset of the control segment and 16 SPAN grOUl_

containing 8 bytes each, also located in the control segment The maximum number of bytes in a CNTL packet is
thus208 bytesplus themedia framing.

During fragmentation,the muter must refrmnfrom exactlyduplicatingtheoriginaldatapacket'sheaderand

trailerintothesmallerfragmentsbecausecertainoptionflagsarenon-replicatable.For example, theSREQ bitin

thecommon trailermust notbe replicated-- ifitwere,each fragmentWould solicititsown _ packetstatus

responsefrom thereceiver,when onlyone was desired.Partialexceptionsaxethefirstfragment'sheaderand the

lastfragment'strailer.The firstfragment'sheaderisan exactduplicateof theoriginalpacket'sheader.ALlother

fragments contain different SEQ numbers; and perhaps other-diffeieric_s--from the 8i.igi-h_il h_ader_ _ The |ast
fragment's trailer would be an exact duplicate of the original trailer except that the HTCHECK header-trailer

checksum is calculated over a different header from the original packet's HTCHECK.

A method is under development for combining packets at a muter which have identical ROUTE fields. The

combined packet is referred to as a SUPER packet, and contains a special experimental header referred _0 as a

SUPER header. The individual XTP packets can be recovered if the SUPER packet must be fragmented.

XTP Multicast Mode

XTP defines a multicast mode of operation where one sender can broadcast the same data stream or datagram

sequence to multiple receivers simultaneously (one-to-many).

XTP's multicast mode is similar in operation to the single receiver mode in many respects, The transmitter
issues a FIRST packet, and subsequent DATA pacf_¢tS. SREQ is Used to s6U_it_packets. Error control is

supported using the go-back-n retransmission scheme; selective retransmission is not supported. Note that in
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multicast connections the allocated buffer space in each receiver may vary in size. Essentially, data transmission
proceeds at the pace of the slowest receiver.

When a multicast receiver detects out-of-sequence data, it multicasts the CNTL packet, called a reject packet.
so that all other receivers on the connection realize that an error has occurred.

If the multicast involves a large number of receivers, the sender will be inundated with reject packets as all

receivers clammor to announce the error. To dampen this effect, XTP requires receivers to refrain from sending
the multicast reject packet when aware that the sender has been properly notified. The receivers monitor the

network for other reject packets during the time the packet is being prepared and waiting for transmission. If

another reject packet arrives, destined for the sender on the same multicast context, the receiver compares its own

RSEQ value to the one contained in the newly arrived packet. RSEQ is significant because this is the next byte
the multicast receivers will accept -- remember, no gaps ate allowed in multicast mode. If the receiver's own

RSEQ number is greater than or equal to the packer's RSEQ number, the receiver refrains from sending its own
reject packet. In this case, the rollback requested in the existing reject packet covers the request at the current

receiver also. If, on the other hand, the receiver's own RSEQ value is smaller than the packet's, the receiver

outputs its own reject packet. The basic idea is to guarantee reliable reception at all receivers of the data stream,
without complicating the sender's task.

XTP also allows the multicast mode to operate in a less reliable "no error" mode in which receivers discard

garbled packets, and in_form their host of the occurrance, but no reject packet or retransmission scheme is used.

This technique is appropriate for, say, broadcasting sensor data in a control system m the data are generated
continuously, and a particular lost value is quickly replaced with a more current reading.

Prioritization Issues In XTP

XTP supports prioritization of packet processing at both the sender and receiver using preemptive priority

scheduling. Thus, if the server is currently processing a low priority packet as a higher priority packet arrives for

service, the server is preempted from processing the lower priority packet and begins processing the higher
priority packet. Only after all higher priority packets have been completed or blocked will the server return to the

low priority packet. The granularity of pre-emption (i.e., whether on a byte, frame, or message basis) is currently
under study.

In XTP, two preemptive schedulers exist m one for incoming packets, and one for outgoing packets. For both
the reader and sender prioritization schemes, _ supports 232 different priorities. Each context is associated

with a particular priority level. Multiple contexts can be at the same priority level simultaneously.

For outgoing packets, the priority level is encoded into a 4 byte integer and placed into the SORT field before

transmission. When the packet arrives at the remote receiver, the SORT field is examined, and the packet is
enqueued according to its priority.

In XTP, the priority level is inversely proportional to the value of the integer encoding -- i.e., larger SORT

field values have lower priority. This scheme is static, in that the priority level remains constant as the packet

travels through the network. XTP also supports a dynamic preemptive scheduling scheme based on deadline

times and synchronized system clocks with 100 microsecond resolution. In this mode, the original SORT field

value represents a future clock time (the deadline) whose priority is proportional to the immediacy of the

deadline. As the system clock time advances towards the deadline, the packer's priority level increases. As with
the static SORT mode, lower SORT values also correspond to higher priority levels, and are used to determine the

queue into which the packet should be placed.

The two scheduling schemes just described are not allowed to co-exist on any given XTP network. Each

network may utilize one or the other, but not both simultaneously. Alternatively, priority operation may be
disabled altogether.
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Byte Ordering _

An interesting feature of the XTP packet format concerns the Order in which bytes are arranged rin a word for

various computers. This ordering affects the sequence in which the bytes are placed onto the network. Bytes
within a word can either be arranged from highest to lowest address,.or from lowest to highest address. Different

equipment manufacturers support different byte ordermgs. Since no standard exists, XTP provided anatural way
to support both orderings transparently.

These two orderings are referred to as big-endian, and little-endian. In big.endian, the most significant byte

is transmitted first. In little-endian the least significant byte is transmitted first. Thus big-endian transmits from
most significant byte to least significant byte, and little-endian transmits vice versa.

The problem is to encode in each packet an indication of which byte ordering was used by the sender to

prepare the packet, and in such a way that a receiver adhering to either byte ordering scheme can determine the

correct order of the bytes. This was solved in XTP using two bit flags. The position of the two flags were chosen
so that they map into each other even if the byte ordering is guessed incorrectly. The two flags are both set to the

same value by the sender. These flags are called the LI'ITLE bits, and are found in the highest and lowest byte of
the first four bytes in each packet's header segment (the command word). When the LITTLE bits are set to one,

the sender issued the packet using little-endian byte ordering. If the LITTLE bits equal zero, the packet is in big-
endian format. If necessary, the XTP receiver process remaps each sequence of 4 bytes into the ordering
preferred by its host.

More Details Available

A more complete tutorial is available from the Computer Networks Laboratory at the University of Virginia.
Copies may be ordered by writing:

........... J

Professor Alfred C. Weaver

Director, Computer Networks Laboratory

Department of Computer Science
Thornton Hall

University of Virginia

Charlottesville, Virginia 22903

weaver@virginia.edu
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