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Abstract Nna

The utility of helmet-tracked sights to provide pointing
commands for teleo_ration of cameras, lasers, or anten- Ub

has in aircraft is degraded by the presence of uncom-
manded, involuntary head motion, referred to as biody- 0 b

namic interference. This interference limits the achievable

precisionrequiredinpointingtasks.The noisecontribu- 0 b

tions due to biodynamic interference consist of an additive

component which is correlated with aircraft vibration and
an uncorrelated,non,additivecomponent,referredtoas Uc

remnant. In this paper, an experimental simulation study

is described which investigated the improvements achier- Uf

able in pointing and tracking precision using dynamic
display shifting in the helmet-mounted display. The Ut

experiment was conducted in a six-degree-of-freedom
motion base simulator with an emulated helmet-mounted W

sight. Highly experienced pilot subjects performed preci-
sion head-pointing tasks while manually flying a visual

flight-path tracking task. Four schemes using adaptive and

low-pass fdtm'ing of the head motion were evaluated to
determine their effects on task performance and pilot

workload in the presence of whole-body vibration charac- Yb
teristic ofhelicopterflight.The resultsindicatethat,fir

trackingtasksinvolvingcontinuouslymoving targets, ct,ac,as

improvementsofup to70% can beachievedinpercent

on-target dwelling time and of up to 35% in rms trat:king tt

error, with the adaptive plus low-pass t-alterconfiguration.
The results with the same fdter configuration for the task

of capturing randomly-positioned, stationary targets show

an increase of up to 340% in the number of targets cap-

tured and an improvement of up to 24% in the average
capture time. The adaptive plus low-pass filter combina-

tion was consider_ to exhibit the best overall display

dynamics by each of the subjects.

List of Symbols

a, a' acceleration

adaptive algorithmconvergenceerror

g gravity acceleration

Srdl nonadditive, nonvoluntaryhead motion

estimated nonadditive, nonvoluntary head
motion

nonvoluntary head motion

estimated additive, nonvoluntary head motion

additive,nonvoluntaryhead motion

estimationerror

voluntaryhead motion

estimated voluntary head motion

totalhead motion

adaptive filter weights vector

Xr,Yr reticle position

Xt,Yt target position

biodynamic transfer function

angles

adaptive filter gain

Introduction

Air combat and att_k missions in modern warfare subject

the pilot to heavy workload. A major technological goal is
to reduce this workload by using a helmet-mounted dis-

play (HMD) and by slaving teleoperated devices to head

angular motion. However, aircraft vibration and buffeting
cause unintentional head motion, referred to as "biody-

namic interference"('Refs1,2),which,inturn,causes

visionblurringinHMDs ('Refs3,4)and degradationofthe

neededtrackingand pointingaccuracy(Refs5,6).

This paper discusses a method for reducing the effects of
vibrations on the precision of pilot pointing and tracking.

Research results presented herein are an outcome of coop-
eration under the U.S,/Isracl Memorandum of Under-

standing (MOU) on Helicopter Flight Control and Display



Technology. The overall approach taken is to estimate, in
real time, the nonvoluntary components of head motion

and to use these signals to stabilize the symbols in the

image plane of the display. This image stabilization
reduces the blurring perceived by the pilot involved in

viewing _ (Ref 7) and allows increased pointing

precision. However, there is an important distinction
between the stabilization required for viewing tasks and

that required for tracking tasks. In the viewing task, the
dominant interfeteace is additive and can be handled by
noise cancellation methods. In the tracking task, however,

the remnant noise increases with the intensity of the
vibration and can become dominant. The remnant noise is

not additive and, therefore, cannotbe directly reduced by
the noise cancellation method (Ref 7). As a resulL addi-
tional f'dters are needed to reduce the effects of nonaddi-

five biodynamic interference.

following the nonvoluntary motion of the head. The sub-

jects were instructed to track a stationary or randomly
maneuvering target (in elevation only) using an emulated

I-IMS incorporating dynamic display shifts by means of

adaptive and low-pass filtering in elevation only. The
subjects were vibrated vertically in a six-degree-of-
fir,edom motion base simulator with acceleration ampli-
tudes of 0.3-0.7 m/see 2 rms using sinusoidal and random

motions. The subjects' only task was target tracking. The
results show that, with an adaptive filter, an improvement

of 8-14% in on-target reticle dwelling time and tracking
rrns error was achieved. Using only low-pass filtering,

tracking pedormance was improved by 34-50%. With the

combined adaptive and low-pass f'fltering configuration,

improvements of 30-60% were found, depending on
vibration level and type, and the maneuverability of the

target.

The helmet-mounted sight (HMS) enables head teleopera-

tion of devices for pointing or wacking (Ref 8). The hel-

met is equipped with a sensor which measures head often-
tat/on and position with respect to a cockpit-based refer-

ence system. The sight reticle, focused to near int'mity, is
projected onto the semi-_t helmet visor allowing

the acquisition and tracking oftargets.The precisionwith

which this task can be accomplished isaffectedby the

uncommanded translational and angular vibration of the

head. The resultingtrackingerror has been foundto

increase with increased pilot workload (Ref 9). Wells and

Grifl'm (Ref 5), who have studied the biodynamic inter-

ference phenomenon both in the laboratory and in flight,
divided the factors which influencetrackingprecisioninto

three categories, namely:

1. Minor effects: Apparent target size, the shape of the

reticle, right or left eye, seat type, helmet weight, eleva-

tion of line of sight, nature of secondary task.

2. Significant effects: Size of the reticle, azimuth of line

of sight.

3. Major effects: Head vibration, target motion.

Griff'm and Wells (Ref 6) investigated, under laboramxy

conditions, by means of a helmet sight, the effects of head

vibration and target motion on tracking envr. The most

pronounced increase in u-ackingerrorwas in the region
from 3-5 I_ where the biodynamic feedthrough from seat

to head is the largest.

The effects of vibration filtering on tracking precision was

investigated by Lifshitz and Merhav in a previous simula-

tion experiment (Ref 10). The method presented for

improving aiming accur_y is based on head motion mea-
smement and on the shifting of the reticle in the HMD in

such a way as to inhibit much of the apparent motion Of

the reticle. The reticle shift algorithm also provides stabi-

lization signals to prevent the teleoperated device from

The present paper is an extension of the above experi-
ments. Here, multi-axis head-pointing tasks in the pres-

ence of a secondary vehicle control task were presented to

fourpilot subjects. All of the subject pilots are active heli-

copter pilots with considerable experience in military
rotorcraft missions. The results show that improvements

of up to 70% can be achieved in percent on-target
dwelling time and of up to 35% in the rms tracking error,

with the combined adaptive plus low-pass filter configu-
ration. The results with the same falter configuration for

the task of capturing randomly-positioned stationary tar-

gets show an improvement of up to 340% in the number
of targets captured and a reduction of up to 24% in the

average time requi_ to achieve captme. The adaptive

plus low-pass fdter combination was considered to exhibit
the best overall display dynamics by each of the subjects.

Principle of Display Stabilization

The method for stabilizing a true HMD is illustrated in

Fig 1. The target, A/C, is viewed through the semi-

wansparent visor from which the dJaplay is reflected to the

#lot's eye. The hexagon, S, represents a display element
projected to infinity. The acceleration, a, excites the bio-

dynamic interferences in the human operator which is

described by the biodynamic model, Yb- The biodynamic
interference manifests itself as a vertical head vibration

accompanied by an angular head vibration of amplitude,
a, which causes S to shift with respect to A/C. The image

of A/C on the retina remains fixed, and therefore sharp.

under vibrational conditions which are within the range of
the vestibulo-ocuiar stabilizing mechanism. However, the

image of S, fLxed to the display, moves across the retina

causing S to appear blurred.

The head motion sensor, P, provides head position and

orientation signals with respect to the cockpit. These sig-
nals consist of the voluntary (commanded) head motion,

U¢, and the nonvoluntary head motion (biodynamic inter-
ference), Ub, which, in the case described here, is the head
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pitching motion. The total head motion is defined as U t ffi

Uc + Lib The adaptive algorithm provides estimated val-
t_: IIbofUb and Uf of Uc whichisderived fromgf = Ut
- fib. In order to stabilize display elements against the
additive vibration component in a purely viewing task, lib
is fed into the display generator in opposite phase to the
apparent shift of S, so that S appears to be stationary. This
method of stabilization is shown in solid lines in Fig 1.

In order to facilitate smooth head teleopomtion of a
device, additional t'dtering of the reticle drive signal must
be provided to compensate for the nonadditive, nonvolun-
tary(remnan0headmotioncomponents,Nna.Notbeing

directly correlated with the cockpit motion, remnant can-
not be suppressed by the adaptive algorithm alone. There-
fore, these components give rise to additional relative
shiftsbetweenthe eye and the displayand impair target
acquisition and tracking. The commanded head motion,
Uc, is by natureof much lower frequency than the
uncommanded signal, Ub. Therefore, Uf, which is an
estimateofUc,islow-passfdteredtoattenuateNna.The

resultinglow-passfilteredUfisthenusedintwowaysas

illustratedby thedashedlinesinFigI.

Vu'st, the filtered Uf signal is subtractedfrom the until-
tered Uf signal (equivalent to high-13assfaltering Uf) to
yield the estimated remnant signal Nna. This estimated
remnant is added to the estimated vibration-correlated

inmrfercnccflbtoobtainanestimateofthetotalbiody-

rmmicinterferencesignalUb. Thisfinalestimateofnon-

voluntaryheadmotionisfedintothedisplaygeneratorin

oppositeplmscwiththemeasuredheadmotion.The result
isanon-blurredfightstabilizedagainstUb andNna.

F'mally,thelow-passfdteredUf signalisfedtothehead-
slavedtelooperateddevice.The resultisgoodcorrespon-
dencebetweentheslaveddeviceandthevoluntaryhead

motion.Inaddition,theslaveddeviceisnotrequiredto

copewithhighfrequencieswhichmay beoutsideitsscrvo
bandwidth.

The stabilization scheme in Fig 1 was discussed with
respect to the elevation axis only. For a fully operational
system,thefalterschemewouldbeimplementedforthe
azimuthaxisaswell.

Experimental Investigation

The experimental program hadtwomaingoals:

I. To determinetheeffectsofvibrationonhead-

pointingaccuracyinthepresenceofasecondarypiloting
task.

2. To quantifythecontributionofthevariousfiltering
schemestohead-pointingprecision.



Experimental Set-up

An overall view of the experimental set-up is shown in

Fig 2. The set-up consisted of the following elements:

- Six-degree-of-freedom motion simulator

addition to external computer commands. Its bandwidth is

approximately 15 Hz and its motion limits are approxi-

mately 0.5 meters in translation and 30 deg in rotation.
The maximum accelerationcapabilityisIg.The cabin

constructioniswood and plastictoavoidinterferencewith

theelectromagnetichead motion sensor.

- Six-degree-of-fre_om head motion (Polhemus) sensor

- Cabin floor-mounted accelerometer

- Lightweight helmet equipped with the head motion
sensorand intercom

- Dataacquisitionand communicationsystem

- DEC Vax 750

- Motorola VME System 1131

Head motion sensor.The head motionsensorisa

Polhemus "3spaceTracker."Itconsistsof(I)thesystem

electronicsunit;(2) thesource,or transmitter, which is

mounted in the canopy above the head; and (3) the sensor,
which is mounted on the helmet. The maximum sampling

tats of the Polhemus is 60 I-Iz, but communication system

limitations reduce the actual sampling rate to 37 Hz. The

static precision in translation is 2.5 mm (rms) and the

angular precision is 0.5 deg (rms). The resolution in trans-
lation is 0.75 mm and 0.1 deg in rotation. Position mea-

surements are transmitted to the computer serially via a
RS232 communication board.

- SiliconGraphics Iris-4D 50 GT graphics station

- Image Technology, Inc., Series 100 Image Processor

(FG-100)

- Barco overhead "IV projector.

OF_iGINAL PAGE

BLACK AND WHITE PHOTOGRAPI-,

Fig2.E.xperimentalset-up.

A detaileddescriptionofitsprincipalsubsystemsis

providedbelow.

Six-degree-of.freedom motion based simulator. The

simulator was designed and developed at the Technion's

Aerospace Flight Control laboratory. It has an electrome-

chanical hexalxxt drive system (Steward platform) using

high-torque samarium-cobalt D. C. motors. It is digitally-

controlled and accepts commands from inside the cabin in

ORIGINAL PAGE: IS

OF POOR QUALm

Helmet-mounted sight emulation. In the experiments

described here, an actual helmet sight was not yet avail-

able. Therefore, the simulations were performed by emu-
hating the helmet sight as illustrated in Fig 3. The square,

r, represented a collimated reticle in an actual display,
subtendexl an are 0.65 deg high and 0.65 deg wide. The

target, t, represented by a cross, subtended an arc 0.15 deg
high and 0.21 deg wide. Both symbols were projected on

a semen with a display area 14 deg high and 22 deg wide
placed 5 meters in front of the subjecL The shifting of the

square on the screen, in response to angular head motion,

Ut, was therefore an emulation of a nonstabilized HMD

sight, and was implemented by means of the Polhemus
signals. In order to stabilize the reticle in an actual HMD,

_e square must he shiftedin_..ordancewithOb and

N m (Figl).However, when emulatingthesightdynam-

ics,thecommand forimage stabilizationisUt- 0b = Uf

(Fig3).Furtherlow-passfilteringofUf priortothepro-

jcctor,intheemulation,isequivalenttoaddinga high-

pass filtered (HPF) Uf to 0 b in the actual display to

_nuate Nm.

R must be emphasized that in the experiment s _ussed
herein, the adaptive filter was implemented in the eleva-
tion axis only, due to current computational limitations.

System Integration. The system block diagram is
presented in Fig 4.

The simulatorvibrationmotionwas computed off-linein

the Motorolacomputerand fedtothe motor amplilicrsat

148Hz. The verticalcabinacceleration,a,providedby the

accelerometer was smoothed by a 15 Hz low-pass filter

and sampled by an A/D converter to provide a' which was

fed to the Motorola computer. Depending on the filter

combination, the inputs into the reticle position shifting
algorithm were

4
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In Azimuth:

- Ut

- Low-pass filmred (LFF) Ut

In Elevation:

Targetcharacteristics:Two unique,randomly-generated

targetmotionswithamplitudesrangingfrom 1.6-1.9dcg

rms inazimuthand 1.3-1.5deg rms inelevationwere

selectivelypresentedtothesubjects.Targetrrnsvelocities

were 0.20-0.27dcg/secinazimuthand 0.20-0.22dcg/sec
inelevation.

- Ut

- Low-pass filtered Ut
-Elf
- Low-pass filtered Uf

Both theoutputsofthereticlepositionshiftingalgorithm

and thetargetdynamics were fedintothedisplaygenera-

torwhich drove the overhead "IV projector. For each rim,

the followingdatawere recorded:Ut,Ub, Uf,a',and the

•adaptivealgorithmconvergenceerror,e.Targetposition,

Xt,Yt,and reticleposition,Xr,Yr,were processedafter
eachrun inordertoenableimmediateassessmentofthe

performanceofthesubject.

Simulation Tasks Description

Two primary precisionhead-pointingexperimentswere
performed, each with the same secondary flight control
task:

Experiment 1: Tracking a continuously maneuvering

target.

Task description: Each subject trial started with 15 sec-

onds of exposure to the vertical vibration while manually
flying the secondary tracking task described below. This

initialsegmentallowedtheadaptivefiltertoconvergeand

thepilottocomfortablyse.ttlehisbody postionwhileget-

ringused tothesidearmcontrollercharacteristics.Follow-

ingthisinitial15-secondperiod,thereticleappearedcen-

teredoverthetarget,inthecenterofthedisplayfield.

Duringthenext60 seconds thesubject was instructedto

keep thereticletightlycenteredovertherandomly mov-

ingtargetwhilecontinuingto"fly"thesecondarytracking
task.

Simuiamr motion:Vertical,sum ofsinesatfrequenciesof

5 Hz and I0Hz, plusa random component derivedfrom

zeromean gausslanwhitenoisefilteredby asecond-order

LPF withdamping ratioof0.5and cut-offfrequencyof

0.5Hz, representinglow-frequencyturbulence.Accelera-

tionamplitudewas 0.073g rms,withpeak valuesof0.5g.

This vibration spectrum was chosen quantitatively and
qualitatively to simulate the periodic frequency content of

an AH-1S Cobra's two-bladed, teetering rotor system at

cruise airspeed in low frequency, moderateturbulence.

The intensity levels and inclusion of a turbulence model
were selectedtodemonstratedifferencesbetweenfilter

combinationsunderchallengingbutoperationallyrealistic

conditions.

Number of subjects: 3.

Experiment 2: Discretestationary target acquisition.

Taskdescription: Each subject trial started with 15 sec-

Gads of exposure to the vertical vibration while manually

flying the secondary tracking task. Following the initial

15secondsofsecondary task performance,the reticle

appearedinthemiddleofthedisplayareasimultaneously

withthefirsttarget.Individualtargetssequentially

appearedatrandom positionsinthedisplayfieldfora

maximum ofI0seconds.If,duringthisperiod,thesubject

was abletopositiontlmreticlesothatitcompletely

enclosedthctargetfor2.7seconds,a "capture"would be

recorded,thereticlewould changefrom fluoresccn_,een

to fluorescent red, and the target would disappear, rater
an additional 2 seconds, the reticle color would reset to

green followed by the appearance of a new target. If the
subject was not successful in meeting the 2.7-second cri-
te.ria within the allowed 10 seconds, a "miss" would be

recorded, and the target would disappear for 5 seconds
followed by the appemance of a new target. Subjects were

instructed to acquire each target in minimum time in order

to maximize the total number of targets presented in the
fixed trial time.

Targetcharactmstics:Four unique,randomly-generated

targetsetswere availableforpresentationtothesubject.

Simulator motion: Vertical, sum of sines at fi_lUencies of
5 Hz and 10 Hz. Acceleration 0.043 grms, 0.16 g peak to
peak.

Number of Subjects: 4.

Secondary control task: The secondary control task

required the pilot to manually control the apparent flight
path of the simulated helicopter along a curved spatial tra-

jectory represented by a pictoral "tunnel-in-the-sky"

(Fig 5), (Refs 11,12,13). The tunnel image was generated
on-line by the IRIS 4D/50 GT graphics work station and
relayed to the Barco projector where it was mixed with

the emulated target and reticle images. Although projected

as lmrt of a composite image, the tunnel was incrtially
fixedon theprojectionscreenand unaffected by cabin

motion.The tunnelhad asquarecrosssection300 ftwide

and was 33,200ftlong,consistingof4 straightand

3 curvedsectionswithconstantram left-and right-banked

turns.The verticalprofileconsistedofone leveland two

descendingsectionswithslopesof6% and 8%.
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The subjects were instructed to keep the vehicle as close

as possible to the center of the tunnel both laterally and

vertically using a side-arm force conn-oller installed with
an arm rest on the right side of the pilot's seat. A beeping
audio tone was fed to the subject's earphones ff the tunnel

boundary was exceeded and doubled in frequency if the
ex_nce was greater than one tunnel width. The longi-
tudinal control model represented a vehicle with an ideal

hold (constant speed of 120 kt) and ideal zero
angle of attack. The longitudinal controller commanded

piu:h attitude with dynamics aPtm3ximat_ by a f'Lrst-order
lag with a break frequency of 0.5 rad/sec. In the roll axis
the model was a rate command system with ideal turn

coordination.Dynamics were approximatedby a well

damped second-ordersystemwithabandwidthof

5 rad/sec.The predictabilityoftherequiredflightpath,as

viewedby thesubject,was reducedby randomly present-

inga horizontally-mirroredimage oftheoriginaltunnel

path.

4. Vibrating cabin, sight stabilized only by low-pass
filtering (LPF) in elevation and azimuth.

5. Vibrating cabin, stabilized sight by adaptive and LPF
(AF +LPF) in elevation and LPF only in azimuth.

The Subjects and Their Training

Foursubjectsparticipatedin the pointing and tracking
experiments. All of them are active helicopter pilots.

Before starting the actual tests, the subjects underwent an

initial training period in the simulator of approximately
six hours ea_, in the course of which approxinmtely

15 runs for each configuration were executed. After each
subject reached a stable level of performance, data acqui-

sition commenced. On the average, 20 runs were executed

per hour.

The Adaptive and Low-Pass Filters

Configurations Evaluated

In eachofthe two experiments,the following

filter/vibration combinations were tested:

I.Stationarycabin(Static).

2.Vibratingcabin,unstabilizedsight(No Filtering).

3.Vibratingcabin,sightstabilizedonlyby an adaptive

filter(AF) inelevationonly.

The AF is based on the well known least-mean-square

(LMS) algorithm widely used in adaptive noise cancella-

tion appfications. It is an extension of the classical LMS
described in Widrow and McCool (Ref 14). Its main

advantages are small computationalload,global stability,
and robusmess. The extended LMS presented in this paper

has the additional advantages of rapid adaptation to vari-

ations in model parameters and the precise estimation of
the relatively small disturbance, Ub, in the presence of

large voluntary head motion, Uc. This issue is addressed

in Merhav (Ref 15). Other algorithms such as root-least-

square and Lattice fdters, I-Iaykin (Ref 16), Honig and
Messerschmitt (Ref 14) were considered because of their



superiorconvergence in terms of the number of iterations.
However, in view of their larger computational com-

plexity, longer itexation times, and lower robustness
where rapid variations in model parameters are involved,

they wecc not adopted in the present stndy. In view of
these considera_ns and the successful implementation of

the basic LMS in suppressing biodynamic disturbances in
manual control (Refs 17,18) the extended I..MS was used
in the work described here.

The break-point of the high-pass falter for Ut was set to
15 rad/sec since the dominant frequency of the nonvolun-

law head motion was in the region of 4-5 Hz. On the

average, the adaptive filter, as implemented in these

experiments, converges in 2.5-3 seconds. The adaptive
filter algoritlun also incorporates a cut-off mechanism as
explained in Ref 7. The cut-off frequency of the LPF f<x

Nna was set to 2 rad/sec. This choice was a good com-

promise between the need to attenuate these noise compo-
r_.nts and to avoid excessive phase lag in the mo_ion of

the re_l_. Excessive lag in the reticle for large head dis-

placements was satisfactorily reduced by disconnecting
the LPF when angular head rates exceeded 30 deg/sec.

The LPF was reconnected exponentially when head angu-
tar rate decreased to less than 30 deg/sec.

Data Processing

Since 0b and Uf were estimated in the elevation axis only,

data were processed accordingly and divided into two

pens:

1. Evaluation of the performance of the AF: Analysis of

the estimated signals 0b and Uf, the vector of weights, 3Y,

and the convergence of adaptation error, e.

2. Evaluation of the performance of the human operator in

head pointing and tracking experiments:

For Experiment h

a. The dwelling time of the reticle on the target: The per-

centage of time during a run within which the distance

between the respective centers of the target and the reticle
was small_ than half the height and width of the reticle.

b. The rms tracking error. The rms values of the distance
between reticle and target centers were determined in
elevation and azimuth.

For Experiment 2:

a.The total number oftargets presented.

b. The percentage of targets "captured."

c. The average time per target "capture."

The performance of each subject was evaluated for each

of the fdter configurations in each of the two experiments.
Ten data runs were taken per ffltexconfigurationpersub-

ject. Results were determined for each subject and were
averaged across all subjects for each filter configuration in

eachofthetwo experiments.

Experimental Results

Experiment 1 - Target Tracking Task

On-target dwell time and radial tracking error are pre-
sented in Table 1. With no w'bration, the reticle was "on'

target." on the average, for more than 82% of the time and
the rms pointing error was 0.192 deg. The _odic and

turbulence-induced vibrationcauseda decrease in

dwelling time to 37% and an increase in the pointing en'or

m 0.437 degree rms, without filtering. With the AF, the

percentage dwelling time increased by 11% with a
decrease in trackingerrorof 9% relative toNo Filtering.

With the AF+LPF configuration, the percent dwelling
time increased by 73% with a decrease in tracking error of
35% relative toNo Fllte_g. With the LPF alone, the

percent dwelling time increased 64% and the tracking
ezror decreased 28%.

The No Falterconfiguration allowedthesubject the great-

est degree ofdirectcontrol over the reticle (minimum

Configuration

Table L Average Results of Target Tracking Experiment 1.
I

Dwelling lime Dwelling time Radial Radial tracking error

(%) imwovement relative tracking error improvement relative
tono faltering(%) (deg) tono filtering(%)

Stationary 82.8 0.192
No filters 37.7 0.437

AF 41.8 10.9 0.396 9.4
LPF 61.8 63.9 0.313 28.4

AF + LFF 65.1 72.7 0.284 35.0
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lag), but passed all of the additive and non-additive vibra-

tion to the helmet sight. The result was a severe degrada-
tion of tracking performance.

The relatively small improvement in performance with the

adaptive triter alone is explained by reference to Fig 6.
Figure 6(a) shows an example of the total measured head
motion while aiming at a stationary target and with a

vibrating cabin. Most of the additive head motion is
removed from the signal by the AF, as seen in Fig 6(0)
from the lack of 5 Hz and 10 Hz additive vibration

feedthrough. However, very little of the remaining rem-

nant is su_ since it is not con'elated with cabin
vibration and therefore cannot be suppressed by the AF.

The non-c_'related remnant head motion, acceamated by
the random turbulence, severely disrupts the AF's conver-

gence process, which on the average lasts 2.5-3 seconds.
The triter-induced excitation of the reticle in elevation

could not be eliminated by the pilot and occasionally

caused a workload-related degradation in azimuth track-

ing performance as well. The most successful, but
extremely limiting, pilot technique was to minimize

unnecessary voluntary head motion and then to move the
head only very slowly.

Only small differences were found between the respective
performance with the LPF alone and the AF+LPF config-

urations. The iximaty reason is that the LPF, which was
designedtosuppressthe non-additivebiodynamicinter-

ference,Nmt,atteanmte.smost oftheremnantnoise,as

seen in Fig 6(c), in addition to much of the additive inter-
ference. The addition of the AF to the LPF resulted in

better suptre_on of the additive biodynamic component.

Considering the narrow reticle positioning constraints of

the tracking task (0.3 deg). the slight reduction in ampli-
tode of the reticle motion when the A1e and LPF were

combined compared to the LPF-only case very likely

accounted for the slighdy higher scores achieved.

Subjects in this simulation indicated that, as they became

more expexienced, they learned how to achieve the opti-
mum balance between general muscle relaxation and
directed attention to the task, which significantly

increased their overall performance.

Experiment 2 - Target Acquisition Task

From Table2,one can secthat,on average,boththetotal

number oftargetsdisplayedand thepercentageoftargets

v
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Fig 6. Sample time history of a) total head motion, Ut; b) estimated voluntary head motion, Uf; and c) low-pass Rltered

Uf during tracking of a continuously moving target.



Table 2. Average Results of Target Acquisition Experiment 2.
'--7 '""

Configuration Number of targets Percentage of targets Time per capture (sec)
auempted captured (%)

Stationary 9.06 98.5 4.99
No fdmrs 6.12 21.2 7.82
AF 6.47 46.2 6.95
LPF 8.09 86.8 6.14
AF + LPF 8.35 94.0 5.92

Improvement relative to no filtering (%)

Configuration Number of targets Percentage of targets Tune per capture
captured

AF 5.7 118 11.1
LPF 32.2 309 21.5
AF + LPF 36.4 343 243

captured, 98%, were quite high without vibration. Task
performance, with the introduction of sinusoidal-only
vibration was very poor, with the average of _'gets dis-
played falling 30% and the numberof targets captmexl
falling to 21%. Addition of the AF only resulted in an
increase in the targets displayed by 6%, and the number of
targets captured by 118%, relative to No F'fltering.The
LPF-only configuration produced a further increase in
targets displayed, 32%, and a large percentage improve-
meat in targets captmed, 309%. Addition of the LPF to
the AF further improved the number of targets presented
to 36% and the number captured to 343% compared with
No Fdu_'ing.

In Experiment2, the improvement in perftmnaw_

periods of comparativerelaxation.Theresultantcyclic_al
variationinmuscletension,breathingpattern,andoverall
level of anticipation andanxietycould havehadasignifi-
canteffect on the levelof remnantexperienced.

Large head movements for targetacqusition with LPF and
AF+LPF required subjects to slow their head motion just
priorto the reticle intercepting the target to allow the reti-
cle, with its attendant lag, to "coast" onto, or very near to
the target. In the lauer case, the additional head move-
meats required to complete target acquisition were small
aad easily acomplished, due to well-tailored low-pass
filtming of the nonaddirive no_se. All subjects agreed the
_mlting stabilized reticle res_nse could be improved
with reduction of the lag, but indicated that they rapidly

between LPF and AF+LPF was slightly higher _ in _ comfonabie with the demonstrated head-
Experiment 1. The sinusoidal component of the vibration
was the same forboth tasks. The fil_ we_ not required
to cope with the large random Vibrationsbut still had to
_with tJ_eNna genetawA as the result Ofa very precise
_fioning _ c0mb_ed with a minimum time_-_et
constraintfor score. The improved ability of the AF+I.J_
to deal with the additive biodynumic interference com-
pe_d to theL_ _ evident.The AF+LJ'Fyielded a 7%
increase in the number of targets captured and a 4%
decrease in the average capture time.

following dynamics.They acceptedthe lag in favorof the
improved dwell time and uacking precision.

Secondary Task Effects

At the startof the waining period, all subjects were
instructed that the targeting tasks were primary, with the
lunnel-wacking effort secondary. The tunnel was to be
followed to the best of one's ability but not at the expense
of target wac.kingor acquisition.

An additional somr.e of remnant excitation in the target

acquisition task may have resulted from explicitly return-
ing an indication of success or failure to the subject during

each target appeatmuz.Unlike the uacking_sk which
_lUired the cominuousdiligence of the subjectand
returned no explicit indication of tracking quality, the
acquisition task eficited an intense effort to "scc_" for
several periods of up w I0 seconds imerspersed with short

Reaction to the manual tunnel-tracking task was very con-
sistent across subjects. In the initial stages of waining, all
subjects found the secondary conm31task to be quite

challenging when combined with the targeting tasks. This
was particularly trueof the targetacquisition task in
Experiment 2, where the static target with freed exposure
time forced the subject to fixa_ on the target to optimize
the probability of capture. By the completion of the

10



Iralning period, however, all subjects were accomplishing
the primary _ while consistently flying within the
tmmel, largely with peripheral vision. By the end of actual
production runs, the subjects generally agreed that the

tunnel task did not significantly affect their perceived
performanceintheprimaryheadtrackingtask.

Conclusions

A moving base ground simulation experiment was con-
ducmd to assess the contribution of various t-alterschemes

m head-pointing precision during target tracking and

acquisiton tasks while accomplishing a secondary vehicle
control task. Pilot subject performance was measured
under conditions of vertical vibration comprising both

sinusoidal and random components. The results of this

experiment indicate that the contribution of the adaptive
filter m the helmet sight stabilization, in the presence of a
random component in whole-body vibration, was small

due to the dominance of the nonadditive biodynamic

interference. However, the adaptive toter su_ in

suppressing most of the additive biodynamic interference
component. The nonadditive biodynamic interference
component, which is the dominant biodynamic interfer.

encecomponent inpointingand trackingtasks, was suc-

cessfully Rltcredby thelow-passfihcr.Ingeneralallthe

subjectsre.achedsimilarlevelsofpeaformance.The track-

ingand pointingaccuracywiththeadaptivepluslow-pass

filter configuration proved to be the best, and in the case
ofthetargettrackingtask,theresultscloselyapproached

thepointingprecisionachievedwithoutvibration.

The results generally agree with the previous preliminary
single-axis studies and confirmthevalidity of the filtering

schemesinthepresenceofabackgroundvehicularcontrol
tasL
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