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ABSTRACT

This paper is concerned with singularities in inviscid two dimensional finite amplitude

water waves and inviscid Rayleigh-Taylor instability. For the deep water gravity waves o_"

permanent form, through a combination of analytical and numerical methods, we present

results describing the precise form, number and location of singularities in the unphysical

domain as the wave height is increased. We then show how the information on the singularity

can be used to calculate water waves numerically in a relatively ei_cient fashion. We also

show that for two dimensional water waves in a finite depth channel, the nearest singularity

in the unphysical region has the same form as for deep water waves. However, associated

with such a singularity, there is a series of image singularities at increasing distances from the

physical plane with possibly different behavior. Further, for the Rayleigh-Taylor problem of

motion of fluid over vacuum, and for the unsteady water wave problem, we derive integro-

differential equations valid in the unphysical region and show how these equations can give

information on the nature of singularities for arbitrary initial conditions.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





I. INTRODUCTION

The study of singularities in the study of differential equations is quite old (for a

review, see Ramani, Grammaticos & Bountis, 1989). Sometimes, a solution to a differential

equation is completely characterized by the number of singularities and their location.

A speciM example would be a differential equation in the infinite complex domain that

admits only meromorphic functions for solutions. In that case, if we were to know the

location of poles and the residues at the poles, we have a way of characterizing the solution

completely when additional information is available about the behavior of solution at

infinity. Some equations do not Mlow any singularity in the physicM region of the flow;

an example is the Laplace's equation. However, these equations do allow singularities in

the appropriately continued functions in the unphysical domain. One relatively simple

example is the steady periodic two dimensional water waves (gravity type). They were

originally studied by Stokes (1849,1880) who developed perturbation expansions in powers

of the wave height. Nekrasov (1921) proved the existence of solutions for sufficiently small

wave height. Garabedian (1957) proved the existence and uniqueness of solutions with

crests and troughs identical.

Actual computation of shapes have been done by Schwarz (1974), Longuet-Higgins

(1975), Chen & Saffman (1980) and Zufiria (1987) among many others. Consider the

conformal map from the standard domain such as a cut circle (shown in Fig. 1) to a

semi-infinite strip shown in Fig. 2, such that A, B and D in Fig. 2 correspond to ( -- 1 ,

0 and 1 respectively. The free boundary then corresponds to ](I - 1 . The conformal

mapping function can be decomposed as:

z(_) = 27r + i ln_ + i f(_) (1.1)

direction (see Fig.2) implies fwhere an assumed 2 7r periodicity in the x

to the branch cut and therefore has a convergent power series representation:

s(¢) = .. ¢"
,_::::o

is oblivious

(1.2)



The convergence of this power series is restricted by the nearest singularity from the origin

in the _ plane. If the interface is smooth (which earlier studies suggest it is for wave

heights less than the limiting Stokes 120 degree cusped wave) then for large n , the

coefficients a,, ,-_ e -_'_ where a = In [¢0], (0 being the nearest singularity of

z(¢) and hence of f(() outside the unit circle. The characterization of such singularities

in the unphysical domain is useful for at least three different reasons. First, if we are able

to characterize the function f(¢) completely in terms of all its singularity outside the

unit circle (i.e. in the unphysical region in this case), then there is a chance of obtaining

exact solutions for the problem. (While exact solutions are known for pure capillary waves

(Crapper, 1971), no such solution is known to water waves of gravity type.) Even if this

is not possible, the singularities of z(¢) in the unphysical plane in the limit of their

approach to the physical domain can be expected to be related to physical feature of

the waves such as large variations of curvature near a crest. FinaUy, from a numerical

standpoint, the knowledge of the singularity in the unphysical plane makes it easier to

design a numerical algorithm that subtracts out the singularities, and reexpresses the

remaining part of the analytic function in terms of a series like (1.2). The series for the

remaining part will have a larger radius of convergence and therefore would require fewer

terms in a truncated series representation for an accurate numerical calculation. While,

the third reason is not as important for steady water waves where previous numerical

work along traditional lines by Schwartz (1974), Longuet Higgins (1975), Chen& Saffman

(1980) and Zufiria (1987) among others are able to describe reasonably steep water waves;

the generalization of the above procedure for time dependent flows has the potential for

far reaching consequences. Further, for idealized time dependent flows that are ill posed

in the usual norms (such as the max norm), the study of singularities in the unphysical

domain (see Orlenna & Caflisch, 1989 for Kelvin-Helmholtz instability and Siegel, 1990 for

Rayleigh-Taylor instability) appears to be a natural way to understand the nature of the

iU-posedness.



The Kelvin-Helmholtz interfacial evolution (i.e. the motion of the interface between

two fluids moving with different velocities across the interface) is an example of such a

flow where an initially analytic interface develops singularities in finite time as suggested

by the asymptotic analysis of Moore (1979, 1985) and later supported by direct numer-

ical computation by Shelley (1989). Caflisch & Orellana (1989) proved the existence of

solutions in the function space of analytic norms up to a time consistent with Moore's

formal asymptotic estimates for the formation of a singularity in the Kelvin-Helmholtz

problem. In the formulation of Caflisch & OreUana (1989), the physical domain is the

real line (unlike the example above for water waves we have just given), and they show

that the occurrence of finite time interfacial singularities are due to singularities in the

unphysieal complex plane hitting the the real axis (i.e. physical domain) at some critical

time. Following the earlier work of Moore, they showed how singularities can be formed

in the complex plane by studying localized approximate equations and found the generic

form of these singularities. Earlier, numerical evidence by Baker, Meiron & Orszag (1980)

suggested that the finite time singularity also occurs in the Rayleigh-Taylor problem (the

motion of the interface between fluids of differing densities) with non zero density ratio

between the lighter and heavier fluids (non-unit Atwood ratio). This is supported by the

analysis of Siegel (1990) based on an approximate localized equation.

These works suggest that the critical time of formation of interracial singularities

can be made arbitrarily small by perturbing initial data by any small amount in the

physical domain if the analytic continuation of such a perturbation in the unphysical

plane is appropriately large. This means that the Kelvin-Helmholtz and the Rayleigh-

Taylor problem are ill-posed if we use any of the commonly used norms such as a Sobolev

norm on the real line. However, for analytic norms that distinguish between behavior of

functions in a complex strip surrounding the real physical domain, the problem is well-

posed till the critical time of singularity formation on the interface. It is clear that despite

the well posedness in terms of an appropriately defined norm, if the critical time value is



finite the practical usefulness of the solutions to these equations is very restricted since

the real observed phenomenon (Emmons, Chang & Watson, 1959) show no evidence of

such singularities. It is clear that one must consider regularizing effects such as a finite

thickness of the vortex layer (Baker & Shelley, 1989), or vortex blob (Bernard & Chorin,

1973, Krasny, 1986), to obtain well posed equations.

The study of singularities is an important first step necessary to understand within an

analytical framework how small amounts of regularization affect the time evolution of the

interface. For the unit Atwood ratio Rayleigh-Taylor problem, the work of Baker, Meiron

& Orszag (1980) suggests that the critical time of singularity formation is infinity. This

is supported by recent numerical work of Baker (1990) that shows that the critical time
/

of singularity formation recedes to infinity as the Atwood ratio tends to unity. Thus, if

this conjecture about critical times is correct, the singularity never appears in the physical

domain in finite time though there is evidence to suggest that singularities appearing in the

complex plane approach the physical domain arbitrary closely. One can then conjecture

that for any given time T no matter how large, there should exist H so that for any

> 0 , there exists /5 so that if the initial conditions are close to each other within

6 in an analytic norm with analyticity strip width H , the corresponding solutions do

not differ from each other by more than e on a Sobolev norm on the real axis upto

time T . If this conjecture is true, one can choose T large enough so that formation

of bubbles and spikes are observed making the unit Atwood idealized problem relevant to

actual experiment. While the use of an analytic norm to make a problem well posed may

be questioned since it should be enough to quantify the differences in initial conditions in

the physical domain for an equation purporting to model a physical phenomenon, one can

argue that neglected effects such as surface tension will prevent the sensitivity of the initial

conditions to high wave number perturbation. Thus, it is conceivable that these neglected

effects may in some way, not fully understood, filter out disturbances that are small in the

physical plane but large in the unphysical plane, thereby justifying the use of an analytic



norm in the theoretical study of the idealized equations.

Even if finite time singularities are apparently avoided in the Rayleigh-Taylor problem

of fluid over vacuum, the continuing distortion causing large variation of the interface

and the accompanying bubble and spike features observed in the experiment appears to

suggest that the conformal mapping function z((,t) from the unit circle to the physical

domain as in Figures 1 and 2 will have singularities continually approaching the unit circle

without actually reaching it. This is indirectly verified by noticing the actual asymptotic

decay of the coefficients in (1.2) for large n in a numerical calculation. It is clear that

any conventional numerical code such as that of Baker, Meiron & Orszag's (1980) will

eventually fail because of limited resolution as the interface became highly convoluted

unless the singularity in the unphysical plane is explicitly subtracted. Thus it appears

that the singularity study in the unphysical plane is an important element in the process

of construction of an efficient and accurate algorithm for highly convoluted interfaces.

The main purpose of this paper is to study the singularities in the unphysical plane

by analytica_y continuing the equations into the unphysical plane for the water wave and

Rayleigh-Taylor problems. An earlier version containing a basic skeleton of this paper was

submitted to the Physics of Fluids (1988) but subsequently withdrawn. There we obtained

the analytically continued equations for steady deep water waves (gravity type) and the

unit Atwood number Rayleigh-Taylor problem. For water waves, we showed analytically

that if we assumed a power law branch point behavior of the analytic function f (as

defined in 1.1) for the leading order then the leading order behavior is of the squareroot

type which was generally consistent with Schwartz's conclusion (1974) based on numerically

implementing a Pade approximate method. However, a Pade approximate method is only

very approximate and indeed erroneous conclusion on singularity nature from Schwartz's

calculations could be drawn when the singularity is too close to the physical domain.

Further the extraction of information from a Pade approximate method is practically

feasible only for the nearest singularity and just to the leading order. Our result (1988)



was true regardless of the distance of the singularity once we assumed a certain general

form. We subsequently found out about earlier work of Grant (1973) (this is referenced

by Schwartz (1974) though that was mistakenly overlooked) that uses the same argument

through in a slightly different formulation. However, in the earlier work of Schwartz and

Grant (as with our earlier draft), there were several unanswered questions. The first is the

relation of the number of singularities with the number of crests and troughs within one

period of the wave.

Second is the actual location of the singularity as a function of height or speed of the

water wave. Schwartz's result is only about the nearest singularity and that too is not

accurate.

Third, the precise form of the singularity including higher order corrections to the

squarerroot singularity were not addressed. Note that the higher order corrections to the

leading order singularity at _ -- C0 restricts the convergence of (1.2) just as much as the

leading order. Finally, earlier work did not address the form of the singularity for water

waves in a channel of finite depth.

These questions are answered in this paper. Using the rigorous work of Painleve (see

Hille, 1979 and Ince, 1956), we establish that the only form of singularity in the finite

plane is of the square-root type such that near _ - C0 (the singularity point)

f(¢) = am(¢ - ¢0) (1.3)
n==0

We then numerically calculate all possible C0 and find that a water wave of one trough

and one crest per period corresponds to a single singular point _0 in the finite _ plane

lying outside the unit circle. We also numerically calculate the dependence of C0 on

the wave height for the class of symmetric waves that have identical troughs and crests

(call it the Stokes waves). We then present an improved numerical method to calculate

the Stokes deep water wave that incorporates the location of ¢0 • This method is not

optimal since it does not actually make use of the complete representation (1.3); however,

here we only present this as an example of developing concrete numerical algorithms,

6



using singularity information. The problem of designing an optimal numerical algorithm

is left for the future. While we could characterize the complete singularity structure of the

analytic function f in the entire complex plane and find the leading order behavior of

f at infinity; we were unable to find an exact solution because of the exceedingly complex

behavior of f at oo . We also discovered other singular points for f inside the unit circle

I and O) in the unphysical Riemann sheet of the two sheeted Riemann surface(at _ ---- _-_

centered at the branch point _ = _0 outside the unit circle. For steady periodic two

dimensional water waves in a channel of finite depth, we also show that the form (1.3) is

valid for the singularity closest to the physical plane for water waves in a channel of finite

depth, where f(¢) as defined in (1.1) is now related to the conformal map z(¢) from an

annular region with a cut (Fig. 3) into a period in the physical flow region (Fig. 4). We

also show that corresponding to such a singularity _0 , there are an infinite set of image

singularities further out in the unphysical domain. These induced singularities need not

be of the form (1.3).

The earlier draft of this paper on the Rayleigh-Taylor problem (1988) did not con-

tain any concrete results on the Rayleigh-Taylor problem other than the derivation of the

governing integro-differential equations in the unphysical plane. Later, but independently,

Orlenna & Cafiisch (1989) (for the Kelvin-Helmholtz problem) and Siegel (1990) (for the

Rayleigh-Taylor problem) showed how the analytic continuation of the equations to the

unphysical domain together with a localized approximation that ignores global integral

terms can result in a set of two first order hyperbolic partial differential equations in the

unphysical domain whose solutions develop singularities. For the Kelvin-Helmholtz prob-

lem, these localized equations were equivalent to equations derived by Moore (1985) from

a different perspective. While these studies have been useful in showing the formation

of singularities far from the real axis (the physical domain in their formulation), they do

not quite address the effect of the neglected integral terms, which are important when a

singularity approaches the real physical domain. For the Rayleigh-Taylor equations, Siegel



(1990) found an exact solution to his localized nonlinear hyperbolic set of partial differen-

tial equations describing the formation and motion of singularity in the unphysical plane

and its approach to the physical domain. With initial conditions consistent with his exact

solutions, he finds that as the Atwood ratio approaches unity (i.e the classical case), the

singularity disappears even in the unphysical plane. It is unclear if this is true with the full

equations and if it is a generic result for arbitrary initial conditions. Further, it is not clear

in Siegel's work how to include the nonlocal integral terms in an analysis and numerical

computation of singularity formation. These nonlocal terms, while negligible when the

singularity is far from the physical domain need not be so when the singularity comes close

to the physical domain. If we make the ansatz that the unit Atwood ratio Rayleigh-Taylor

problem does not have a finite time singularity in the physical domain (as suggested by

Baker, Meiron & Orszag's work), then it would seem reasonable that a highly deformed

feature of the interface such as spikes corresponds to singularity approaching the real phys-

ical domain indefinitely without actually reaching it in finite time. If this is true, the Siegel

(1990) localized equations may not be able to describe the most interesting stages of evo-

lution: the formation and interaction of bubbles and spikes as observed in the experiments

of Emmons, Chang & Watson (1959). If we use a conformal mapping representation as

in (1.1) for the periodic 2-D Rayleigh-Taylor problem, the function f(G t) can be repre-

sented in a power series as in (1.3). Numerical calculations to be reported elsewhere show

that these coefficients appear to decay exponentially with n ; however the multiple of

n in the exponent rapidly goes to zero for large times suggesting that for Atwood ratio

unity, there is indeed a singularity in the unphysical domain that approaches the physical

domain without actually entering it suggesting that Siegel's result for Atwood ratio unity

is not generic. In terms of our exact integro-differential equations for the analytic function

f and a companion function, we are able to show that in the unphysical domain, we

obtain a set of two quasilinear first order partial differential equations when the integral

terms involving f in the physical domain are considered known. There is only one set of

r



characterestics in this problem. Through an appropriate linear combination, one of these

equations is close to the inviscid Burger's equation which is known to develop fold singu-

larity of the square-root type for general initial conditions. We find that such a behavior

can be consistent with our equations though we do not address the question of other pos-

sible forms of singularities. We then suggest how a complete numerical calculation of the

unphysical equations can shed light on the exact singularity structure in the unphysical

plane leading the way for studying detailed bubble and spike structure for the classical

Rayleigh-Taylor problem. Our calculations for early times appears to suggest that a spike

corresponds to a singularity approaching the unit circle, i.e. the physical domain.

2. PERIODIC DEEP WATER WAVE

2.1 Mathematical formulation

We consider a two dimensional periodic deep water wave. We move to a frame of

reference where the wave is stationary and the flow at y = -oo (Fig. 2) is a uniform

flow to the right with speed c , the wave speed. Further, we shall assume for the present

that the waves are symmetric, meaning that there exists some choice of the x origin so

that the profiles have mirror symmetry about the y axis. For the smooth waves that

we are considering, it is clear that such a choice of origin of x must coincide either with

a crest or a trough. For symmetric waves with identical crests and troughs, without any
,!

loss of generality, we make the choice of origin coincide with a trough as shown in Fig.

2; otherwise, the origin will be chosen to be any such location (may not be a trough)

about which there is symmetry. Our results on the form of the singularity hold equally for

nonsymmetric waves (Zufiria, 1987) and we shall find out later how to extend the present

analysis to a generally nonsymmetric wave. Without any loss of generality, the period is

taken to be 27r and acceleration due to gravity g , acting in the negative y -direction

is taken to be unity. In the complex velocity potential W = ¢ + i ¢ plane, the flow

domain within one period in the z -plane is a half strip as shown in Fig. 5. We consider

the conformal map z(_) from the interior of a cut unit circle in the _ plane (Fig. 1) into

9



the interior of the semi-infinite strip in the physical plane (Fig. 2) such that the points A,

B and DinFig. 2 correspond to ( = 1,0 and 1 on the two sides of the cut. Schwartz

(1974) had earlier used the _ plane for his direct numerical calculations. Note that the

free boundary then corresponds to the circular part of the boundary. For waves with equal

troughs and crests, our choice of origin of x and the symmetry of the flow imply that

= -1 corresponds to the crest. We define the analytic function f(() by writing

z = 27r + i(In_ + .f) (2.1)

/,From the condition of wave symmetry,

Im f "-- 0 (2.2)

on the real ( axis in the interval (-1, 1). Further from periodicity, it follows that f is

analytic within the unit circle and does not "see" the branch cut. Thus it is possible to

express f in a convergent power series representation:

f(() = _ a,_ (" (2.3)

0

/,From condition (2.2), it follows that all the a,, are real. We consider waves that have

smooth profiles z(¢) and hence f(() is analytic on the boundary of the unit circle. This

means that radius of convergence of the series in (2.3) is greater than unity. The mapping

¢ plane into the flow domain in the complex velocity potential W -plane is givenof the

by

W(_) = icln¢ + 27r c (2.4)

and thus theNote that equation (2.4) can be used to define ¢ directly in terms of W

singularity of f in the representation (2.1) does relate to the singularity of the actual

flow dw in the unphysical domain. The dynamic condition (Bernoulli's equation) on the"77",

free-surface is

1
--(re) 2 + y = constant (2.5)

10



/,From (2.1) and (2.4), it is clear that (2.5) implies that on _ - e_v , v real in the

interval (0, 2 r) ,
c2 1

Re f = - 2 II+_f¢l 2 (2.6)

Note that any additive constant appearing on the right hand side of (2.6) is eliminated by

suitably redefining f . This corresponds to a choice of origin for y .

We now analytically continue equation (2.6) for any _ not necessarily on the unit

circle. We note for _ = e_v , (2.6) can be written as

f(_) + f(i/_')= --
c2

(1+¢ re) (1 + _ h(_) (2.7)

_From the principle of analytic continuation, (2.7) is valid for any ¢. This analytic contin-

uation was previously realized by Grant (1973) in a differing but equivalent representation.

Now, lets define

F(¢) = f(¢) + f(1/_') (2.8)

and

Then, (2.7) implies

where /_ = c2 . Introduce

P(¢) = (1 + _/'(1/¢)) (2.9)

(2.10)
( F F¢ + P F =---.ff

El = F -1 (2.11)

Then equation (2.10) implies

r_' P F2 + _= T _ F? (2.12)

Note that on or outside the unit circle, P is not known but must be analytic and nonzero

for smooth water waves as otherwise the derivative of the conformal map z{ on or inside

the unit circle at 1 would have to be zero. Thus the coefficients of F 2 and F 3 must be

analytic everywhere outside the unit circle. If we think of P as given, (2.12) is a special

11



caseof the nonlinear first order differential equations studied by Painleve (SeeHille, 1976

& Ince, 1956 ). For solutions to (2.12), he rigorously established that the only form of

movablesingularity _0 (i.e. a singularity not related to a singularity of the coefficientsof

and F 3 , but to the initial conditions on F ) is such that in some neighborhood of

oo

FI(() = (( (0)1/2 _-_ b, ((-(0) _/2 (2.13)
r* ==:0

It immediately follows that

F(()-- _ b_ (_-(0) '_/2 (2.14)

n=l

P
Since T and _ are analytic everywhere outside the unit circle in the finite ¢ plane,

it follows that all singularities of F outside the unit circle are necessarily of this form.

Further, when [([ > 1 , f(1/() is clearly analytic and so (2.8) and (2.14)imply that

with

rt _-.oo

f(() = _ d,_ (¢'- (o) '_/2 (2.15)

d,_ = b,_ (2.16)

r

for odd n and for even n:

1 d '*/2

d,, = bn _! d(,_/2f(l/()l ¢ =¢, (2.17)

Note that for Stokes highest wave (120 degree cusp), these arguments do not go through

because P(() and f(1/() are not analytic on the unit circle any more. Indeed, by directly

substituting a singularity with a fractional power form into (2.7) near _ = -1 (crest),

one can obtain the leading order behavior (_ + 1) 1/3 corresponding to the functional

form of Stokes (see Lamb (1932)).

To study the behavior of F at infinity, we introduce

1
_1 = - (2.18)

12



in which case(2.10) reducesto

dF

-¢1F

It is clear from (2.3) and (2.9) that near

÷ PF = -_ (2.19)

_1 = 0,i.e ¢ = c_,

P ,,, 1 -t- al_l ÷ 2a2_12 -t- .. (2.20)

For leading order analysis, we substitute P = 1 into (2.19). Let us denote the corre-

sponding solution F by F0 • The equation has an exact implicit solution which can be

written as:

¢I = k e F° (D q- FO)-" (2.21)

where k is some constant. On inversion, this implies that as ( ---* c_ ,

Fo --_ -In¢ + fl ln [fl + In (-/n¢)] + .. (2.22)

Since f(1) is analytic at ¢ = c_ , it follows that the leading order singularity of f at

¢ = c_ is also given by (2.22). One can substitute (2.21) back into (2.20) to find a more

accurate representation of P and then solve equation (2.19) to find a correction to F0.

It becomes clear that this process leads to very complex form of higher order corrections

to the behavior (2.22) as _ --_ c_. Further from (2.10), it is clear that if F is zero at

some finite _ outside the unit circle, and F_ is necessarily singular at that point. This

means that F cannot be analytic at a point in the finite _ plane where F = 0 . Thus

the only kind of zeros of F are the singularity points _0 around which (2.14) holds.

We end this section by noting how the analysis would change for nonsymmetric waves.

First, if we take a semi-infinite strip as in Fig. 2, its image in the W plane will not

be as shown in Fig. 5. since there is no reason to assume Re W = constant at

x = 0 and x = 2 _r. In this case, it is more convenient to take a semi-infinite strip in the

W plane as shown in Fig. 5 and consider the corresponding physical region in the z plane

formed by the conformal image z(W) . This will be some semi-infinite strip with curved

13



boundaries. However, periodicity implies that x(¢ + 2 r c,¢) = x(¢, 4) + 2 7r and that

y(¢ + 2 _',¢) = y(¢,¢) . Thus if we use (2.4) to define (, it is clear that the image of

the flow region in the ( plane is the cut circle as shown in Fig. 1. Once again z(() can be

decomposed as in (2.1), with f(() analytic everywhere within the unit circle, however the

relation (2.2) is no longer valid. This means that the series coefficients an in (2.3) are not

necessarily real. It is clear that that on [_[ = 1 , f*(() _ f(1/() and so the analytically

continued equation (2.7) will not hold. However, if we define a function g(() analytic

everywhere outside the unit circle (including infinity) through the representation

(x)

g(_) _ an= * (-'_ (2.23)

then clearlyon [¢] = 1 , g = f* ,implying that (2.7)has to be replaced by

c2 (2.24)
f(C) + g(C) ---- (1+C £) (1 -- Cg_:)

LFrom (2.24), it is clear that (2.10) will hold provided we redefine P(C) as:

P(C) = 1 - Cg(; (2.25)

The arguments about no fixed singularity in the finite C plane for the associated equation

(2.12) would still hold provided P(_) _ 0 outside the unit circle. We now proceed

to prove that this is indeed the case. Suppose, on the contrary, that there exists some

¢ = _° , [_,[ > 1 at which P(¢,) = 0. From the power series representation of g in

(2.23),itfollows.that I + _ oo , ,,,=0 n a,_¢_- -- 0 . On taking the complex conjugate, and

relatingit to (1 -{-¢f_) through the seriesrepresentation (2.3)for f ,we find that this

'(l+Cf<) it follows that z< (1/C; ) is zero,implies 0 = (1 + Cf¢)l t = 1/¢; " Since z¢ = _-

which it can't be since l/C: is inside the unit circle and the derivative of a conformal map

must be nonzero at everypoint within the unit circle. This proves P is nonzero outside

the unit circle: It is true on the boundary of the unit circle as well, if we assume that the

water wave profile is smooth. Thus all the arguments leading to the representation (2.15)

of f for the symmetric waves hold for nonsymmetric waves as well.

14



2.3 Numerical determination of the number of singular points _0 and their

locations

Here we make a concrete evaluation of the number of singularity points _0 and their

location. Earlier, Schwartz (1973) used Pade approximate methods to extract singularity

information on the nearest leading order singularity. His results were generally consistent

with Grant's (1973) analytical result though there was discrepancy when the singularity

was too close to the unit circle. However, there was no information on how to obtain

higher order corrections and how many singularities there were. Once again, since the chief

interest here is illustrative, we will restrict our numerical calculations to Stokes waves, i.e.

symmetric waves with identical crests and troughs. Without any loss of generality, we can

then assume that one period of the wave contains only one crest and one trough.

First, for any given wave height h defined to be

1

h = _[Ref(-1) - Ref(1)] (2.26)

we calculate wave speed c and a0, al ,... aN_ 2 in an (N- 1) term truncated expansion

of (2.3) and satisfy (2.6) at N uniformly spaced out points on the upper half unit semi-

circular boundary including +1 and -1. This is done through Newton interation, a good

initial guess for small wave height being the well known linear gravity wave solution. The

solution was checked by increasing N and observing the consistency of the coefficients.

The wave profile corresponding to the calculated a,_ agreed with previous calculations

of Stokes waves by Chen and Saffman (1980), providing a check of our numerical code.

We note that once the a, are known, the analytic functions P(¢) and f(1/_) can

be calculated at any point outside the unit circle. Note also that even when the precision

of the numerically calculated a,, is not great, the calculation of P(() and f(1/¢) is

relatively much more accurate for points outside the unit circle as [_[ < 1 .

Given P , (2.10) is integrated numerically along any path outside the unit circle to

determine F at each point on that path. The known value of F(1) = 2f(1) calculated

from the power series (2.3) provides the initial value. To calculate the total number of
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possible (o

calculated

and their numerical values, we followed a two pronged strategy. First we

1 d( de" + (2.27)
P = 2ri 27ri

for various closed contours in the

whenever the contour did not enclose any singularity (0 of F as it must.

answer was nonzero for a contour C , we deduced that there was a singularity

C , in which case we went around once again to calculate

plane outside the unit circle. The result was zero

When the

¢0 inside

1 d( - 1 d_ _ P
p2 = 2rr--'-i _ 27ri _ (PF 2 + (2.28)

where C2 is a path that coincides with

form in (2.14), it is clear that P2 = 1

C but goes around twice. _From the singularity

whenever there is only one singularity (0 _vithin

the contour. Going around twice for a squareroot singularity ensures that we get back to

the same Riemann sheet. Obviously, P2 = 0 as is p when there are no singularities

within C2. However, if the contour C contains multiple singularities, P2 _ 1 , and in

general we cannot expect the answer to be an integer since going around twice on C2 does

not return us to the same Riemann sheet. However, for gravity waves with equal crests and

troughs, the so called Stokes waves, we could only find one singularity _0 outside the unit

circle as evidenced by P2 = 1 (within numerical precision) when a wavelength contained

one trough and one crest. We consistently found the same value regardless of the size of the

contour around ( = (0 , when the contour was completely outside the unit circle. This

suggests that even in the unphysical Riemann sheet of the two sheeted Riemann surface

generated by the branch point at ( = _0 , there are no other singularities outside the

unit circle. By an iterative choice of contours, one can precisely locate the singularity;

however, we found it much more efficient to calculate _0 directly at the same time P2 is

calculated. We note that equation (2.14) can be locally inverted to give:

= (0 + _ h,, F" (2.29)
n _-2
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and so

!/o dF = ¢o
2ri , F

where the closed path of integration C3 is traversed in the positive sense in the

and corresponds to the image of

(2.10), we get

C2 in the F-plane.

(2.30)

F plane

Using the differential equation

_0 = 21ri c, pF2

where the contour of integration C2 in the _ plane goes around _0 twice when it

contains _0 as evidenced by p _ 0 and p2 = 1 . If the contour encloses no singularity

the answer on the fighthand side of (2.21) must be zero as each of P and F are analytic

and can have no zeros. Besides calculation of p and P2 , this is further evidence that

there are no singularities of F when the contour does not include _0 • To compute any

of the d,, in the representation (2.15), we use (2.16) and (2.17) and the relation of F to

its power series coefficient in (2.14) in powers of (( - ¢'0) 1/2 through contour integration

on a closed path on the two sheeted Riemann surface around _0 . One finds:

a. = de - ¢o) (2.32)

for odd n and for even n,

d,_ - 1 / d_ (_- _0)-_/2-1F(()
1 d,_/ 2

4zri c= 9 ! dQ_/2 f(1/_)[_ = ¢o (2.33)

Table 1 is the result of such numerical calculation for Stokes waves when there is only

one trough and one crest in one wavelength. It shows that (0 is on the negative real

axis and approaches -1 , i.e the crest, monotonically as the waveheight h is increased,

at least in the range of calculation. It is clear that if there are M identical troughs

and crests within one wavelength, there will be M possible (0 at equal modulus and

arguments equalling the arguments of M roots of-1. The bifurcation that Chen &

Saffman (1980) observed of Stokes waves (class 1) to class 2 or class 3 waves respectively,

where the two or three troughs and two or three crests are not identical would correspond
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(in the singularity picture) to a bifurcation where the two or three different (0 are either

no longer equidistant from the origin or are not equispaced in argument values or both.

However, this has not been directly verified here.

2.4. Use of singularity information for an efficient numerical scheme

In the last section we obtained concrete information about the singularity by first

computing the an by conventional methods. As mentioned before, the calculations of

am becomes difficult when the singularity approaches the unit circle and the Stokes limiting

wave is approached. An efficient numerical method should incorporate the singularity

information so that a truncated basis representation does not need as many terms to

describe the interface. One may be tempted to use the representation of f(() in (2.15) as

a basis representation and directly calculate the d_ by satisfying (2.6) on the unit circle.

However, the convergence of this representation is restricted by a possible singularity at

_1 inside the unit circle in the unphysical Riemann sheet of the two sheeted Riemann{0

surface centered at the branch point _ = (0 • We can expect singularities of F , and

hence generally of f both at ¢ = 1/(0 and ( = 0 since P(() is singular at those

points. Since f(1/() is also singular at that point, the chances are that the singularities

will not cancel out in the unphysical Riemann sheet as they do in the physical sheet for

[([ < 1 , and so f(¢) is singular at these points inside the unit circle in the unphysical

Riemann sheet associated with the squareroot singularity at (0 •

As a simple though less than optimal use of singularity information, we can use a

fractional linear map

where

¢3 = (¢ + p) (2.34)
(1 + pC)

p = -¢0- v/(02-1 (2.35)

and the squareroot is understood in the sense of the positive branch for positive arguments.

Recalling that ¢0 is negative and less than -1, it follows that 0 < p < 1 and (2.34) is

a conformal map of a circle into a circle. In the _3 plane, ( = oo and _ = _0 are
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now mapped to ¢'3 = :t: 1 respectively and these are further out from the origin of the

¢3 plane than _0 was from the origin of the ( plane. Thus if we represent

OO

f = a. (2.36)
,,=:o

the coefficients _,, will decay with n for large n faster than in the representation

(2.3). Thus one can start first with the representation (2.3), compute a finite number of

a,, without much precision, then compute (0 as in the previous section. This gives at

least a rough estimate of p and this can be used to introduce the fractional linear mapping

(3 and then continue a second time around, using the representation (2.36) for a finite

truncated representation of f . A continuation process may be followed for systematic

calculation of steeper and steeper waves. Unfortunately, the representation (2.36), while

1 __, 1 as _0 --* -1 implying thatbetter than (2.3), still has the undesirable feature of _

for steep waves, the convergence of (2.36) will still be limited by a singularity approaching

the _3 unit circle.

Clearly, one needs a better algorithm that uses more of the singularity information in

(2.14) than merely its location _0 • This will be the material for further investigations in

the future.

3. STEADY PERIODIC WATER WAVES IN A FINITE DEPTH CHANNEL

For symmetric periodic water waves of finite depth as shown in Fig. 4, the correspond-

ing region in the complex potential W

mapping

¢

plane is shown in Fig. 6. Consider the additional

(3.1)e Io

This maps the physical flow region into the interior of the annular shaped region shown

in Fig. 3 where there is a cut along the positive real axis. The correspondence of the

boundary points to points in the _ plane are marked in Fig. 3. It is clear that

W = icln( + 2rc (3.2)
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as before for water waves of infinite depth. Note that the flat bottom of the water wave

corresponds to the inner circle in the ff plane of radius P0 = e-h and the free boundary

corresponds to [¢'[ = 1 . Also note that h is defined in terms of the W plane image

(see Fig. 6) and need not be the water depth in the physical plane. Now as before, we

introduce an analytic function f through the representation

z(_) = 27r + i [ In ( + f(()] (3,3)

Then it is clear that the periodicity assumption implies that the branch cut in the ¢ domain

is invisible to the function f(_) and it possesses a convergent Laurent series expansion in

the annular region in the _ plane. Further, since Im z = constant on [(I = po, we

obtain Re f = constant on I_l = p0 • Further, for a symmetric water wave, it is clear

that on the segments in the domain coinciding with the real axis, Im f = 0 . These

imply that the Laurent series for f has the form:

f(() = a0 + _ a, ((" - p0 2" (-'_) (3.4)

n :l

If we define
oo

g(¢) = ¢"
n =1

then g(¢) is analytic within the unit circle and

(3.5)

y(¢) = ao + g(¢)-g(po2/¢) (3.6)

Further, with appropriate choice of origin of y the pressure condition is once again

equivalent to

c 2 1

Ref - 2 I1 + ¢'f¢12 (3.7)

The analytical continuation of this equation is once again

¢ F F( + P F = -_ (3.8)
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where

and

F(() = f(() + f(1/() (3.9)

1

P = 1 +-(/'(1/¢) (3.10)

There is now a difference between finite and infinite depth water waves. From (3.6), we

have the analyticity of P(() and f(1/() guaranteed outside the unit circle only for

1 . There are two possibilities: (a) that the solution F to (3.8)[([ between 1 and

in this regioII is free of singularities and (b) that it has a singularity in this region which

must be of the type (2.14) as for deep water waves. In case (a), it immediately follows

that f(() does not have any singularity for 1 < [(] < 1 implying that g(() is

free of singularity in that region as g(p2/() is analytic there. LFrom (3.6), this implies

f(() is analytic over the extended inner range p4 < [([ < 1 as well. This implies that

P(() and f(1/() are analytic for p_4 > [([ > p_2 . Thus, we are back to two cases

(a) and (b) for a new region p_4 > [([ > p_2. It is clear that on repetition of the above

argument that we can ensure that the nearest singularity to the physical domain outside

the unit circle must have the same form (2.15) as for deep water waves. Once we find

such a singularity, call it (0 , it is clear that g(() will have a singularity at that point.

This implies that g(p2() will have a singularity at p_2(0 . This means that P and

f(1/C) win have a singularity at that point. This singularity of the coefficients in (3.8),

will generally induce a singularity of F and hence of f at that point. It is clear that

there will be a sequence of such induced singularities at p_ 2,, (0 , m ranging from 1

to oo . Similarly, inside the inner circle, there will be induced singularities at p20"_/(0 ,

m ranging from 1 to oo . The form of these sequence of induced singularities is different

from that of the deep water wave since Painleve's argument on movable singularities is not

valid here. In Painleve's terminology, we have fixed singularities of F at such points. We

do not address the question of what form the singularity must be at each of these points,

except to note that at ( = p_ 2(0, the nearest induced singularity outside the unit circle,
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one possiblebehavior is:

f(_) _ constant + constant(¢-p_2¢o) 3/2 (3.11)

4. THE PERIODIC RAYLEIGH TAYLOR PROBLEM

In this case, the physical flow domain over a period is again given by Fig.2, where

gravity ( g = 1 ) is now assumed to act in the positive y direction. We assume that

there is vacuum on top of the fluid and that there is no net motion at y = -¢x_ . As

in the case of gravity waves, we decompose the conformal mapping function z((, t) as

in (2.1). The domain in the ( plane is the interior of the cut unit circle in Fig. 3. The

function f now depends on time t as well. We will assume that the initial conditions are

symmetric, so that the interface remains symmetric about each crest and trough for later

times. This assumption is only made for simplicity and generalizations for nonsymmetric

disturbances can be made as for time dependent deep water wave (section 5). This means

that on the real _ -axis in the interval (-1,1), (2.2) holds for f and the complex velocity

potential W satisfies

Im W = 0 (4.1)

But unlike the gravity wave case, there will be no singularity of W inside the unit

circle. Also, as for unsteady gravity waves (section 5), the free surface is not a stream line.

However, for all times, the unit circular boundary corresponds to the free boundary. The

kinematic condition on the free boundary is that

D

D--7In p(x,y,t) = 0 (4.2)

on lnp(x,y,t) = 1,where _ = pe _,with v real. In this representation, Inp, v and

t can be thought of as three dependent variables depending on x , y and t. Switching

the role of dependent and independent variables, the kinematic condition implies that

Re ¢" "- z,] = 0 (4.3)
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Plugging in the representation for z from (2.1) on ICI -- 1 , we find that (4.3) is

equivalent to:

on C = e_ for v

Re [ f' ] _ Re CW¢ (4.4)
1 + (f¢ [1 + ( fel 2

in the interval [0, 2 7r] , The BernouUi's equation on the free surface

for this time dependent problem is

ffWef, 1 IW¢l2
Re [w, /] = --

1 + fife 2 I1 + Cfe12
(4.5)

on the unit circle C = e_ _ . The analytic continuation of this is:

w, ¢wch :+
1 +C/e

we We(llC,t)
1

(1 + C re) (1 + _-+ ye(1/C,t))
= -I1 (4.6)

where
1 1

zwe(z't)i'({'t)/(_,t)
II = Wt(1/C,t) (1 + {/e({,t))

and

f, c we + { we(_/c,t)

1+ Cf_ (I + C/¢) (I + _fe(llC,t))
--/2 (4.7)

where

We rewrite the two equations as

12 -
f_(I/C,t)

1 I
1 + Tfe(T, t)

ft -- R2 W e - R3 fe = R4 (4.8)

and

where

w, -1
¢w_
+ Cf¢

(R1 + R4 + R3 fe + R2 W()- f = -I1

R1

R2

1
-_We(I/C,t)

1 +
1
z fe(llC,t)

(

-- i + Tlf¢(I/C,t)

(4.9)

(4.10)

(4.11)
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R3 - _/2 (4.12)

1 1
_we(T,t)

1R4 = I2 + 1 + T /_(1/¢,t) (4.13)

When _ is outside the unit circle, each of the functions I1 , /2 are regular since they

only involve f and W and their derivatives inside the unit circle. The same is true for

the functions W(1/C',t), f(1/4, t) and theirderivatives. Thus itisclearthat R1, R2,

R3 and R4 are each regular outside the unit circle as well. Equations (4.6) and (4.7)

are actually equivalent to a set of two coupled non-linear integro-differential equations for

f and W . since each of I1 and /2 can be alternately expressed as integrals involving

values of fe and W e on the unit circle by use of Poisson's integral formulae.

If these are considered known, then we get a set of 1st order fully nonlinear partial

differential equations. On taking the 4 derivative of each of the equations, we get a

system of quasi linear partial differential equations (P.D.E):

r

we, + Q1 wee + Q2 fee = T1 (4.14)

where in this case

re, + Q3 we e + Q4/ee = T_. (4.15)

Q2 -

Q1 = ¢[R1 + R4 + R3 fe +2R2W¢]
(1 + ¢/¢)

(2W¢[R1 + R4 + R3/_ + R2 We] CWeR3

(I -i-el( )2 (i -i-Cfe )

Q3 = -R2

(4.16)

(4.17)

(4.18)

T1

and

Q4 -- -R3 (4.19)

WEIR1 + R4 + R3 fe + R2W(]

(i d-¢fe)

4w_/e[R_ + R4 + R3 /e + R_We]

(l + ¢/e) 2

eWe[R1, + R4, + R3c .f¢ + R2, We]

(1 -I-(.fe)
+.f¢ - /I, (4.2o)

T2 = R4,+ R_,W e + R3,/e (4.21)
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On taking a linear combination of the two equations, we find that

d d

d--_W¢ + A_-_f_ - TI -{- AT2 (4.22)

on

d

_-_¢ = Q1 -t- _ Q3 (4.23)

where

Q4- Q1 ± _/(Q1 - Q4) 2 ÷ 4Q2Q3
)` = (4.24)

2Q3

We denote the two roots above by )_1 and )`2 corresponding to the the plus and minus

sign respectively. On substituting the expressions for each of Q1 through Q4 from (4.16)

through (4.19), it is seen that

hl = CW_ (¢R1 + ¢R4 - R3) (4.25)
(1 + ¢f¢) R2(1 + ¢f¢)

_2 - ¢w¢ (4.26)
(1 + ¢f_)

On substituting the expressions for R1 , R4 and R3 from (4.10), (4.13) and (4.12), we

discover that the two roots )`1 and ),2 of (4.24) are coincident, implying the system of 1st

order quasilinear P.D.E in (4.14) and (4.15) is parabolic. The slope of the characterestic

is:

On multiplying (4.22) by

Q1 -t- £O3 = -R3 ¢R2W¢ (4.27)
1 + ¢f¢

and introducing the notation:
(1+¢ j_)'

yl = ¢w¢ (4.28)

1
Y2 -- (4.29)

1+ ¢1¢

then equation (4.22) is equivalent to:

Yl,-(Ra+R2Yl)Yl, = _ylY2RI¢ - (1+_I1,)Y2+ 1 (4.30)
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Note that the left hand side of (4.30) is independent of Y2 altogether and if we take

-R3 - R2Yl rather than Yl as our dependent variable, then we get a nonhomogeneous

inviscid Burger's equation, when Y2 along with R1 _ R2 , etc are considered known.

However y2 is an unknown and one needs a separate equation for the evolution of Y2 •

This can be found by multiplying (4.15) by _ _ We find(1+¢t_) '

R3 R3 2
R2 l)y2,= -R2y2yl,+ - 2- R2,yly2-R3,y2+R3,y2

(4.31)

Note that the righthand side of (4.31) contains the differentiated term Yl_ which cannot

be avoided as the system of equations (4.32) and (4.33) are a parabolic set of P.D.E.'s just

like the original set (4.14) and (4.15). However, if instead of considering _ and t as

independent variables, if we consider _, the initial value of (on a characteristic, and t as

our independent variables, then we obtain the following equations for the three variables,

yl(_,t), y2(_,t) and l(_,t) :

YL
Y2, = -R2Y2:"_" +

and

Yl, - (yly2R1, - (1 + (I1,)y2 + 1 (4.32)

R3 R3 2

vY2 "_ Y2 -- CR4, y 2 - R2, YlY2 - R3, Y2 + R3,y_ (4.33)

_t - -(R3 + R2yl) (4.34)

Since Q appears in the denominator in (4.33), the above set of equations is not convenient

for numerical integration. It is more convenient to define:

Y2
Y2 = ,_-- (4.35)

In that case, it is easy to show by using (4.33) and (4.34), (4.32) and (4.33) can be replaced

by

Yl, ---- _YlY2 _e R1, - (1 + (I1,)Y2 _ + 1 (4.36)

- "_'-y2R3" R3( Y22_e - ¢R4¢ _{ _ + R3, Q _22 (4.37)
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In principle, one can integrate this set of three equations (4.34), (4.36) and (4.37) numer-

ically. Notice that the coefficients of each term multiplying the unknowns Yl , Y2 and

( are analytic functions of _ everywhere outside the unit circle. However, since this is a

nonlinear set of differential equations, spontaneous singularity can be occur. If we assume

that the solution to (4.34), (4.36) and (4,37) are locally smooth functions Yl - yl(_,t) ,

y2 = _2(_,t) , ( - ((_,t) of _ , then in terms of the original independent variable

( and t, we will get smooth solutions except where the inverse function theoremfails, i.e,

where Q = 0. Generically, the zeros of an analytic function are simple. This implies that

the inverse function _ - _(_, t) will generically have squareroot slngularites. This would

then imply that Yl and Y2 will have squareroot singularities of the type (_ - (0(t)) 1/2 .

Also, if we directly substitute a representation near ( - _0(t) , the singularity point

in the ¢ plane corresponding to _o(t) where Q

dependence of Yl, Y2 and _ on _ at _ = _0(t)

form:

_- 0 at time t , then an analytic

would imply a local expansion of the

and

yl(¢,t) = Al(t) + A2(t)(_-_0(t)) 1/2 + (4.38)

Y2C_,t) = Bl(t) + B2(t)(¢--¢0(t)) 1/2 + .. (4.39)

On substituting this form into (4.30) and (4.31) and equating the most singular terms, one

finds

and

d

_0 + R3o 4- R2oA1 = 0 (4.40)

d

B2_¢'o + (R3o + R2oA1)B2 - R2B1A2 (4.41)

0 refers to the evaluation of those quantities at _ = Co(t) • It is

R2 is nonzero, the two equations are consistent for nonzero A2 when

where subscript

clear that since

B1 = 0 . Notice that B1 = 0 follows from the assumption that Y2 is finite where

Q =0.
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Thus, a square root singularity appears to be generic for arbitrary initial conditions.

Whether (4.34), (4.36) and (4.37) allow singular solutions in the _ , t variables has to

be investigated through analytical and numerical means.

Thus, we are now at the stage of outlining a numerical procedure for the study of the

exact form of a time moving singularity for the classical Rayleigh-Taylor problem. The first

stage consists of expressing each of f and W in a truncated power series representation

in _ satisfying (4.4) and (4.5) on the unit circle to find the ordinary differential equations

for the evolution of the power series coefficients. This can be done efficiently by use of

fast Fourier transforms. Once these coefficients are calculated, we are in a position to

calculate each of R1 , R2 and other analytic functions for each _ outside the unit circle

for any time t. Equations (4.34), (4.36) and (4.37) then needs to be solved numerically

to find yl(_,t) , _2(_,t) and _(_,t) where _ is theinitial value of _. If these

solutions are indeed smooth functions of _ , then we track _0(t) , where Q = 0 . Then

¢0(t) - _(_0(t), t) will be the location of the fold (i.e. generically squareroot singularity )

in the _ plane. This program needs to be carried out for a study of the evolution of each

singularity in the unphysical plane. This information on the singularities can possibly be

used to devise an efficient and accurate numerical method to study a continually deforming

interface.

Now we comment on the relation of the observed spikes with these singularities. Once

a singularity is formed, say for the variable Yl , it will propagate in the direction of the

characteristics. To find the characterestics directions, we take

f((,0) = --e ( (4.42)

W((,0) = -e _ (4.43)

where 0 < e << 1 . Then for early times, inside the unit circle

solution corresponds to:

f(C,t)= - Ce'

[_[ < 1 , the linearized

(4.44)
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W(_,t) = -e_e' (4.45)

Using this expression to calculate each of R1 through R4 outside the unit circle

I_1 > 1 by using (4.10) through (4.13) and using (4.44) and (4.45), we find -R3-R2yl is

real and positive for I_] > 1 . This implies that if any singularity forms on the negative

real axis, it is swept towards _ = -1 , the location of the initial crest (notice it will be a

trough if gravity were pointing downwards). However, this is only a heuristic suggestion.

Confirmation must await direct calculations.

5. THE TIME DEPENDENT DEEP WATER WAVE PROBLEM

We now consider the time dependent water wave problem. Once again we decompose

z(_,t) as in (2.1):

z(ff, t) = 2 rr + i( In ¢ + f) (5.1)

f = f(ff, t) . However, unlike the the case of Rayleigh-Taylor problem, we alsowhere

decompose

W(¢,t) = icln _ + 27r c + icw

where the log singularity at ( = 0 is due to the uniformly translating flow at y =

(5.2)

-c_ Fo_

the class of time dependent flow for which the flow at y = -c_ is a constant flow, it

seems natural to assume that each of f((,t) and w(f,t) do not have a singularity at

= 0 and therefore possess a convergent power series representation for If] < 1 given

by

/(¢,t) = _ a.(t)¢" (5.2)
n=0

o0

.(¢,t) = _ b.(t)¢" (5.3)
_-----0

The time dependent Bernoulli equation and pressure condition implies:

1 { dW.2} = 0 (5.4)¢,+Y+_ Idz

Translating this condition with (¢,t) as independent variables rather than (z, t) implies:

[ ] 1Re Wt WC z_ + + Im z = 0 (5.5)
- z-7 2 Iz lr
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Substitution of (5.1) and (5.2) into (5.4) implies

[ ] c2 (1 -.I-('w() 2(1 + ewe) f, + I I + Re f = 0
Re icw, - i c (1 +¢:¢) 2- (':_'_(:

(5.6)

The kinematic condition (4.3) is valid and in this case becomes:

Re [ic_w( - (1 + ¢* f_) f_] = 0 (5.7)

Equations (5.6) and (5.7), which are only satisfied on

analytically continued outside the unit circle I¢1 >

to define analytic functions g and c_ related to

representation:

I¢l = 1 now have to be

1 . For that purpose, it is convenient

f and w respectively through the

g(¢,t) = 2., a'_(t) ¢-" (5.8)
n=o

oo

_(C,t) = _ b:(t)(-" (5.9)
n=O

Note that since f and w are each analytic functions of ¢ inside the unit circle, it

follows from the representation (5.8) and (5.9) that g and a are analytic functions of

¢ for I¢1 > 1. We also note that on ICI -- 1, the complex conjugate f° = g and

[f¢]o = _C2 g¢ , and similar expressions connect a with w . Equations (5.5) and (5.6)

can then be written as:

ic ic ic (i-l-Cw() ic (1-Ca()g,+C2(l+Cwc)(1-¢oq):-_-_,-- _-a, 2 l+(f( f' + 2 1--¢g( 2 (l+¢f<)(1-Cg() + ,, If + g] = 0
(5.1o)

ic 1 1
•_¢w( + -_-¢_( -- : (l --Cg()f, -- :(l-FC.f()g, = 0 (5.11)

Equations (5.10) and (5.11) provide the analytically continued equation off the unit circle.

a and g can then be considered as known functions if we calculate w and f through

a power series representation on the unit circle. We can solve for w and f everywhere

outside the unit circle just by solving a system of parabolic quasi-linear p.d.e.s outside the

3O



unit circle. These are the same as (4.30) and (4.31), except that the right hand side of

(4.30) has to be replaced by:

_yly2RI¢ - (-1 + _I1_)Y2- 1

and 11 is now given by

ic(1 - a¢ )gt

= + (1 - Cg<) + g

Also in the formulae for R1, R2, R3, R4, /2, Yl and Y2 in the last section, every

occurrence of Wt has to be related by by icw, , _W¢ by ic(1 + _w¢) Wt(1/(,t) by

_icolt 1 1, -(W<(-(,t) by -ic(1-_a¢), f,(1/_,t) by g, and 1/<(_,t) by -(g< The

direct numerical study of (4.30) and (4.31) is likely to clarify questions on time dependent

water waves including the question whether for some or generic initial conditions, the

singularity formed in the unphysical ( plane can actually hit the physical domain in finite

time, however small the initial amplitude. This remains an important open question (P.G.

Saffman, private communication).
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Table 1: Dependence of Co on wave height H

// c _o
0.0199989 1.0002 -18.402

0.0998750 1.0050 -3.7186

0.1056818 1.0056 -3.5162

0.1262381 1.0080 -2.9563

0.1888844 1.0180 -2.0113

0.2431296 1.0220 -1.5960

0.3580657 1.0660 -1.1544

0.41015 1.0860 -1.0466
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1. Fig. 1: The complex _ cut unit circle.

o_ 2.aft ...................................... L... K
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2. Fig. 2: The physical z = x + iy plane.
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3. Fig. 3: The _ annular region with a cut corresponding to finite depth water waves.
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4. Fig. 4: The physical z -- x ÷ iy plane for finite depth water waves.
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Fig. 5: W = _ + i_ plane for steady deep water wave.
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6. Fig. 6: W plane corresponding to finite depth steady water waves.
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