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ABSTRACT

In this paper we study uniform high order spectral methods to solve multi-dimensional

Euler equations for gas dynamics. Uniform high order spectral approximations with spectral

accuracy in smooth regions of solutions are constructed by introducing the idea of the Essen-

tially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. Based

on the new approximations, we propose nonoscillatory spectral methods which possess the

properties of both upwinding difference schemes and spectral methods. We present numerical

results for the inviscid Burgers' equation, and for one dimensional Euler equations including

the interactions between a shock wave and density disturbance, Sodas and Lax's shock tube

problems, and the blast wave problem. Finally, we simulate the interaction between a Mach

3 two dimensional shock wave and a rotating vortex.
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1 Introduction

Recently, high order numerical methods have attracted considerable attention/for the sim-

ulation of flows with shock waves and different scales, especially for turbulent flows affected

by shock wave interactions. Those high order methods are expected to produce nonoscil-

latory sharp shock profiles without excessive overall numerical diffusion and, at the same

time, be able to resolve the small scales of the flow field elsewhere. Recent results with

essentially nonoscillatory (ENO) finite difference methods have shown considerable progress

in this direction [9], [17]. Spectral methods, as high order global methods, have been very

successful in the study of turbulent flows and flow transition problems when the solutions of

the fluid problems are smooth. For those problems, spectral methods have been shown to

have an accuracy higher than any algebraic order (so called spectral accuracy) [5]. However

it remains to show that spectral methods will also be successful in computing flows with

shock waves.

In this paper, we continue our previous work [4] in designing essentially nonoscillatory

spectral methods for computing the weak solutions of the hyperbolic system of conservation

laws

ut+ = 0 (1.1)

0) = (1.2)

Here, as usual, u = (ul,...,u,) T is a state vector and f(u),g(u) are the vector-valued

flux functions of s components. The system is assumed to be hyperbolic in the sense that

for any real vector _ = (_1,_,), the matrix _1af_-_+ _2 0g0ualways has s - real eigenvalues and

a comptete set of eigenvectors. The solutions to (1.1) usually develop discontinuities in the

form of shock waves and contact discontinuities.

In applying spectral methods to problems having discontinuous solutions, a key issue is

how to deal with the Gibbs phenomenon caused by the discontinuities of the solutions. The

overall accuracy of spectral methods will be, at most, first order everywhere in the presence

of Gibbs oscillations. There are various filtering techniques to recover spectral accuracy in

regions away from the discontinuities [8], [14]. On the other hand, one-sided filtering can

be used to obtain uniform convergence in regions close to the discontinuities[2]. As another

approach to treat the Gibbs oscillation, in [4] we proposed a nonoscillatory spectral approxi-

mation to discontinuous solutions by adding piecewise linear functions, such as sawtooth-like

functions and step functions, to the conventional Fourier trigonometric or Chebyshev poly-

nomial spaces. Those additional functions are used to resolve the discontinuities in the



solutions causedby shock waves and contact discontinuities. The ceil-averaged form of

(1.1) is used to formulate the numerical schemes, resulting in Codunov-type shock capturing

algorithms. The usual reconstruction step between cell averages and point values of the nu-

merical solutions in such schemes can be performed e_ciently with Fast Fourier Transforms.

However, a common problem with cell-averaged formulation is the costly implementation of

the reconstruction in multi-dimensional problems.

In this paper, we adopt the same philosophy as in [4], however, a more robust and

sophisticated technique will be introduced. With the new technique, we will be able to

achieve global convergence up to any given m-th order (m > 0) and , meanwhile, retain

spectral accuracy in the regions away from the discontinuities. In order to achieve these goals,

we incorporate the main idea of the ENO polynomial interpolations [9] into our construction

of uniform spectral approximations. We also introduce the idea of upwind differencing from

conservative finite difference methods into the design of the spectral schemes. The idea

of upwinding has proven very successful in capturing shock wave fronts and producing the

right entropy solutions. By using local R.iemann solvers and flux limiters, modern shock

capturing finite difference schemes, such as the TVD schemes [9] , MUSCL type schemes

[19], FCT schemes [1], and the more recent ENO schemes [9] [17], produce very satisfactory

shock profiles and entropy satisfying solutions. The nonoscillatory spectral approximations

proposed in this paper will enable us to bring the upwinding idea into the framework of

spectral methods. Meanwhile, the spectral schemes will be based directly on the conservation

laws (1.1), not on its cell-averaged form. Thus, generalization to multi-dimensional cases is

straightforward.

For systems of conservation laws, in order to achieve sharp shock profile without spurious

oscillations, numerical flux operators for the scalar equations are usually applied to the

locally defined characteristic variables. Because of this complication, it has been realized

that the cost of upwinding schemes is much greater than that of the centered difference

schemes. Several attempts have been made to eliminate this shortcoming by combining

centered difference schemes and upwinding schemes. In [13], a mixed method of centered

difference schemes and ENO schemes was studied and, in [6], the authors suggested a type

of nonlinear filtering technique to modify the results of the Lax-Wendroff scheme at each

time step to produce nonoscillatory TVD solutions. Even though it is achieved in a quite

different way from those in [6] and [13], the result in this paper will provide another example

of blending the nice properties of both upwinding schemes and centered difference schemes

(in this case, spectral schemes).

This paper is organized as follows: in Section 2, we first briefly review the method

proposed in [4], then present the new method of constructing uniform convergent, up to any
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given m-th order(m > 0), spectral approximations to discontinuous functions. In Section

3, we study the nonoscillatory spectral methods for scalar conservation laws. Extensions to

the system of conservation laws and multi-dimensional problems will be discussed in Section

4. In Section 5, we present numerical experiments for the new methods. First, the uniform

convergence and the spectral accuracy of the proposed spectral approximations are tested

on discontinuous functions. Then we study the global accuracy of the spectral schemes on

a scalar inviscid Burgers' equation and on one dimensional Euler equations which model

the interaction of a pure shock wave with density waves. Also we apply the scheme to

the standard Sod's and Lax's test problems [16] in order to check the convergence of our

spectral schemes to the correct entropy solutions. High order numerical results will also be

presented for solving the interaction between two blast waves [20]. Finally we apply the

spectral schemes to simulate the interactions between a Mach 3 two-dimensional shock wave

and a rotating vortex.

2 Uniform High Order Spectral Approximations

The conventional Fourier spectral space has basis functions {eik=}lkl_<N. The Fourier expan-

sions for discontinuous functions converge very slowly. For instance, consider a sawtooth-like

function

-z for z _<z,,F(z,z,,A) = A 27r- z forz>z,, (2.1)

where x, is the location of the discontinuity and A = F(z+)-F(z;)u_ = [F],. is the jump of

F(z,z,,A) across z,. The partial sum of the Fourier expansion of F(z,x,,A) is

FN(x,x,,A)= y_ h(xo,A)e 'k', (2.2)
Iki<_N

where

A(zo,A) = _Jo F(z,:r.,,A)e-"'dz= A [. (_k_ z°) for k=0.
(2.3)

From (2.3) we can see that the Fourier coefficients h(z°,A) only decay like as

k --. oo. As a result, the convergence of (2.2) will be only first order, and moreover, the

Gibbs oscillations near z, will be in the order of O(1). In order to get rid of the Gibbs

osdllations, in [4] we proposed a technique to construct essentially nonoscillatory spectral

approximations, which we review below.

Let u(z) be a piecewise C _ periodic function with a jump discontinuity at z, with jump

[u],, and let uN(x) be its finite Fourier expansion, the nonoscillatory spectral approximation

is defined by
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A'e-ikUei_= (2.41

lkl<_N ]k[>N

where y isan approximation of x, and A' isan approximation of [u].oand

i [2.
"_= _ J0 _(x)e-_"dx.

Sincethesecondsumin(2.4)isactuallyf(x,y,A')- FN(X,U,a'),wehave

.;_(_)= _ [a_-h(y,A')]e'_x+ ;(_,y,A'). (2.5)
]k[<_N

Therefore u;v(x / defines an approximation in the spectral space {eik'}lkl<N augmented

by sawtooth-like functions F(x, y, A').

The approximation defined in (2.5 / yields nonoscillatory numerical results for discon-

tinuous functions, and spectral schemes using this approximation have given high order

accuracy for one-dlmensionM Euler gas dynamics equations ([2], [3]). In order for (2.5 / to

be nonoscillatory, the approximation for thelocation and the magnitude of the shock should

be reasonably accurate. Second order accuracy in the location and first order accuracy in

the magnitude are needed to ensure the uniform nonoscillatory convergence.

In what follows, we present a different method which will be uniformly convergent up to

any given order rn > 0 and , at the same time, retain the spectral accuracy in the smooth

regions away from the discontinuities. Furthermore, the requirement of accuracy in shock

locations will be much relaxed and an approximation to the magnitude of the shock is not

needed. This makes the computation more robust.

Before we discuss the new approximation method we review two techniques to be used

in our construction. The first one is the essentially non-oscillatory (ENO) polynomial inter-

polation, and the second is the filtering technique for Fourier approximations.

ENO Polynomial Interpolation

We will follow the notation used in [9]. Let u(x I be a function defined on I = [0,27r]

and N ih, h 2,_ For simplicity of illustration, we{:r.i}i= o be the uniform mesh on I, zi = = _-.

assume that u(z) has only one discontinuity at x, 6 I. Now given u(xi), 0 < i < N, define a

piecewise m-th order polynomial interpolant Q,,(x; u) for u(z) at mesh points x_, 0 < i < N

as follows:

Qm(x.i;u) = u(xi) for 0 < i < N, (2.6 /

and

Q._(x;u / = q,_,j+½(x;u) for xj < z <: zj+x, (2.7)
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whereq.,,i+½(x; u) is a polynomial of degree m defined below.

Polynomial q,,,,i+½(z;u) interpolates u(x) at (m + 1) successive points x_, i,,,(j) <_ i <_

i,.(j)+ra. The stencil of these (ra+l) mesh points win be chosen according to the smoothness

of the data u(x_) around x i. A recursive algorithm to define i,_(j) starts by defining

il(j) =j (2.8)

i.e. qld+½(x) will be the first degree polynomial which interpolates u(x) at z.i, xj-t-1. If we

assume qkd+½(z) is the k - th degree polynomial which interpolates u(z) at

z_k(i),. • • , zih(i)+k , (2.9)

then we need one additional mesh point in order to define qk+ld+½(x). That point may be

the nearest one to the left of stencil of (2.9) (i.e. x_h(i)__ ) or the nearest one to the right of

the stencil of (2.9) (i.e. x_(i)+k+_ ). The choice will be based on the absolute values of the

corresponding (k + 1)-th order divided differences, namely

Ilk(j) - 1 if u[xik(i)_l,... , xih(i)+k ] < u[zih(i),..., Xik(i)+k+_], (2.10)il,+_(j) = ii,(j) otherwise.

The piecewise polynomial Q,,,(z; u) defined in (2.6), (2.7) will give uniform nonoscillatory

approximations to u(x) up to the discontinuities. In fact it can be shown that

d" dk O(h''+1-') (2.11)_-_-;_Q_(_; _) = _-_(_) + for 0 < k < ,_.

except for the cell containing x_. Using sub-cell resolutions [10] this is also correct in the

shocked cell.

Filtering Techniques for Fourier Approximations

When a function u(x) is discontinuous, its Fourier approximation uN(z) will be at most

first order everywhere [7] . However, there are several ways to recover the loss of the spectral

accuracy in the smooth regions of the function u(x) ([8], [14]). The most common way is

to multiply the Fourier coefficients of u(x) by a decreasing scalar factor ak. [ak] _ 0 as

[k[ _ N. Then the resulting series (the filtered approximation) will be denoted by uTv(z),

_(_) = _E _k.__'_. (2.12)
lkl<N

It WaS proven in [20] that, if ak is derived from a scalar function a(t), 0 < t < 1 and

_k = _(_), Ikl< N, and a(t) satisfies the following conditions:



_(0) = 1,

_(1) = 0, (2.13)

o'(k)(0)=aCk)(1) = 0 for l_<k_<K,

then ._(_) will convergeto .(_) in the smoothregionsof .(_) in the orderof O(.--_).
In the actual computations, ak is chosen to decay exponentially in terms of the frequency

number,

at k _2,f

_rk = e- ,Tv, for Ikl < N, (2.14)

where the constant _ is chosen so that aN is the machine zero and 21 is called the order of

the exponential filtering.

Uniform Spectral Approximations

Now we present our new uniform high order nonoscillatory spectral approximations to

discontinuous functions. Again, for simplicity, we assume u(x) is a periodic piecewise U _°

function on [0, 2_r] with only one discontinuity at x,. Also we assume that the discontinuity

has been detected within an interval [Xio,z:].

Let us denote all the mesh points inside interval [x_, x_] as xi,,..., x_.. Then we define a

piecewise m- th order polynomial _o(x) which interpolates the function u(z) at mesh points

x_, iz<i<i_,

[x,, x°] for some j,

q,,,,j+½(z) ifz E [zi, zj+x] fl ' "

_o(x) = P,(x) if x e [0,x'o], (2.15)

P,(z) if x E [x:, 2_r],

where q,,.j+½(x) was defined in (2.8) - (2.10) and Pl(x) and P,(x) are both m'-th order

polynomials on the interval [0, x_] and [x_, 27r] respectively, m' = 2rn + 1, and satisfy the

following conditions,

and

_tm,Q - ½

= q,,._.+½ I,z,),

for 0 _ k < m (2.16)

P[k)(x: 21r) (k) , ,.,_ = q,.,i.+½_z°),

_,x, + = q ,_½(x

for 0 < k < m (2.17)



Conditions (2.16) (2.17) ensurethat _o(x)will be at least globally C m continuous. There

are exact 2m + 2 = m' + 1 constraints on the m'-th polynomials Pl(z) and P,(z) respectively.

Therefore they are uniquely defined. By (2.11), the function _(z) will have the following

property,

_(x,) = u(x,) for il < i _< i,, (2.18)

_o(x) - u(x) = O(h =+1) for x e [x_,,_:]. (2.19)

Next we consider the difference between u(x) and %o(x), v(x) = u(x) - W(x). v(x) will

be a C"* function everywhere in [0,2n] except at zo where Iv(x)],, = O(h=+_). Moreover,

v(x_) = 0, i, < i < i,. Therefore, the filtered Fourier interpolant I[vv(Z ) will converge to

v(z) rapidly,

{)k w

q-1

._(_) = I;,_(x)= _ _,'_',
k=--_

N

i _(u(_,) - _(_0)_-'_''
N i=0

1
1 _(u(_,)- P,(_,))_-'_, + -_ _(uCx,)- p,(_,))_-'_,N

i<Q i>i,.

and at is the filter in (2.14).

Finally we define the uniform spectral approximation T'u(x) of u(x) by

7_u(z) = 9(z) + v_v(z), for z E [0,2_r]. (2.20)

Then the derivatives of u(x) will be approximated by those of :Pu(x), i.e.

d r d'

_-_u(_) ~ _-_'u(,) for k > O. (2.2i)

To see the accuracy of (2.20) to u(x), let p(x) E C_ (x,,x;) be a mollifier function such

that

p(x)= 1 for x near x., (2.22)

and
f

p( :r.)v( :r.)
"*(_)- t ,_(_)

One can easily see that

if x e [z_,z:], (2.23)
otherwise.

v*(x,) = v(x,) for 0 < i < N, (2.24)



and hence

ZNv*(z) = ZNv(z). (2.25)

As v*(z) C C'(0, 2_r)and isperiodic,by standard estimate itcan be shown [2]that

cllv'(_)ll_
IIv'(_)- l_v'(_)ll_,,_ N-+' '

where c isa constant independent of N.

On the other hand,

[Iv*(x) - v(z)ll,. _ -

_< v2(z) dz

< ,/ [': (,,(_1- _(_)),e_,
- V s._,

Ik'(_)-,,(_,)ll_.,= o(h"+').
by (2.19) we have

It follows from (2.26) and (2.28) that

Thus

= O(h'+_).

I1_,_(=)- =(,=)ILL,-- 11[_(=)+ ZT.,,-(=)]- [_(_)+ _'(=)]11,.,
- 11'-'(=)- I_(=)11_,- O(h"+'),

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

which establishesthe uniform (m + 1)-thorder convergence of the approximation :Pu of u in

the L2 norm. Error estimates in a higher order Sobo!ev norm can be derived similarly.

The spectralconvergence of Pu(x.) to u(z) in the regionsoutside [zt,,z_]followsfrom the

spectralconvergence of v_(z) to v(z) in the smooth regions of v(z).

3 Uniform High Order Spectral Methods

In this section we study uniform high order spectral methods for conservations laws (1.1).

First, we will consider the scalar one-dimensional conservation laws. Extensions to the



system of conservation laws and to multi-dimensional problems will be discussed in Section

4.

We will derive the spectral schemes using the method of lines. The time derivative and

spatial derivatives will be discretized separately. For simplicity we only present the Euler-

forward difference method for the time derivative. In the numerical experiments of Section 5

a high order TVD type Runge-Kutta time discretization [17] is used. The numerical scheme

will be written in the following conservative form,

,u,_'+1 = u_ - A(]j+½ - ]i-½), (3.1)

where u_' ,_ u(xi, tn), x i = jAx, t,_ = nAt, and Az and At are the spatial mesh size and the

time step respectively, A at ^= -_'_,, fi+½ are the numerical fluxes .

It is observed [17] that if there is a function h(z) such that

1 f+_f(_(x)) = _ J_-_ h(_)d_, (3.2)
2

then

/=(u(x_)) = h(_j+½)- h(zj_½) (3.3)
Ax

This suggests that the numerical flux fj+½ should approximate h(xi+½) as Ax --} O.

Weconstructh(x) in the samemanneras in [17]viaits primitivefunctionH(x) modulo
a linear function,

H(x)= _.(h(_)-c)d_, (3.4)

where c is a constant chosen so that H(x) will be a periodic function:

._._ N-1

c = J-'_" h(_)d_ = Ax _ fi" (3.5)
5=0

Assuming that (3.2) holds, then

= [=_+½
H(xj+½) J-_ (h(_)-c)d_

2

k=O -cXj, _

= z_ E/(_(_)) - c(j + 1)A_
4=0

for O<_j <_N.

(3.6)

We then form the uniform spectral approximation operator "PH to H(x),

7aH = _(x) + v_(z), (3.7)



where cp(z) is the piecewise m-th polynomial defined in (2.15) and v_(x) is the filtered

Fourier interpolant of data H(zi+ ½) - W(xS+ ½), 0 < j < N. As before, it is assumed that

the shock discontinuity or contact discontinuity x. (for simplicity of illustration, only one

such discontinuity is assumed to exist) has been detected in an interval [x_,, x_], i.e.

l rx. E [x°, Xo].

If,,e o [x'.,,,;]forsomei, = q..,,+½(,,).
polynomial and

(3.s)

q,,_,S+½(x) is a m-th order

q,,,,i+½(xi+½) = H(x,+½) for i,_(j) <_ i <_ i,,,(j)+m. (3.9)

The stencil in(j),... ,i,,,(j) + m is defined recursively as in (2.8) - (2.10), however the first

point of the stencil il(j) is chosen according to the local Roe-speed as+½,

f("s)
, (3.10)

as+½ = us+l -- uy

i°e°

j, if as+ ½ > 0, (3.11)ix(j)= j+l, if as+ ½ <0.

Then we have the following spectral algorithm

Algorithm I (Spectral ENO-Roe)

• Step 1, define H(xs+½),0 < j < N by (3.6) and their uniform spectral approximation

PH(m) by (3.7);

• Step 2, let

f j+½ = T'H(xi+½ ) + c = _o(xS+½ ) + -_xvN(xj+½ ) + c,

where constant c is defined in (3.5).

Remarks

.

(3.12)

The evaluation of -_v_(xi+½) , 0 <__j <_ N can be performed efficientlyvia the

Fast Fourier Transforms with the total number of operations of order O(N log N);

Regarding the first term, ._.aT(x..,n, , ,,_), 0 _< j _< N, only for those mj+½ E [ml0,x;], do

we need to do the ENO interpolation and the numerical differentiation. If mS+½

is located outside [xz,, x_], the derivatives can be computed analytically without

additional computer cost;

°

10



3. The formal spatialaccuracy of Algorithm I willbe spectrallyaccurate in the

smooth regions of the solution and uniformly m-order elsewhere;

4. (Entropy Correction) the fluxes/j+½ defined in (3.12)are based on the Roe flux

which admits "expansion shocks". We use an entropy correction discussed in

[17],see also Harten [11]for the originationof such corrections.

4 Euler Equations of Gas Dynamics

In this section we extend the scalar Algorithm I from the previous section to the system of

Euler equations for gas dynamics for polytropic gas. With all variables in bold face denoting

vectors,we have the followingEuler equations:

., + f(u)_=0, (4.1)

u = (p,._,E) T, (4.2)

f(u) = qu + (0, P, qp)r, (4.3)

1 2
P = (7- 1)(E- 5p q ). (4.4)

Here p, q, P and E are the density, velocity, pressure and total energy respectively, m = pq

is the momentum and 7 = 1.4 is the ratio of specific heats of a polytropic gas.

The eigenvalues of the Jacobian matrix A(u) = _5"_ are

At(u) = q - c, A_(u) ----q, Aa(U) = q + c, (4.5)

where c = (TP/p)½ isthe sound speed.

The corresponding right-eigenvectorsare

where

is the enthalpy.

(1) (1) (1)r1(u) -- - c ,r2(u) = q ,ra(u) -- -{-c ,
1 2

qc "sq + qc

1 2

H = (E + P)lp = c_/(') , - 1) + _q,

(4.6)

are

The corresponding left eigenvectors {lk(u)} which are bi-orthonormal to {r_(u)} in (4.6)

(4.7)

]

lt(u) : 2(b2 +q/c,-btq- l/c, bt),

12(u) = (1-b2,b_q,-b_),

13(U) ---- l(b2 - q/c,-blq + 1/c,b_),

11



where

b, = ('y- 1)/c u, (4.8)

1 2b
b2 = _q 1. (4.9)

As in the case of scalar conservation laws, we first define a vector counterpart H($j+½),

0 < j < g of (3.6). The scalar quantities f(u(zk)) in (3.6) are replaced by the vectors

f(u(zk)). We then generalize the construction of the uniform spectral approximation oper-

ator 7_H to vector-valued functions in the following way. As before, the assumption about

the shock location (3.8) still holds here. We have the uniform spectral approximation

PH(z) = @(z) + V[v(Z), (4.10)

where the components of the vector-valued function @(z) will be piecewise m-th order poly-

nomials and v_-(z) will be the filtered Fourier interpolant of vector quantities H(zj+½) -

¢(zj+½),0 _< j < g.

• (z) will be defined separately according to whether z is inside or outside the interval

l r
[z,,z,]. For z e [zj,zS+,] N [zz0,z;] for some j, first let q_t)_+½(z) be the ENO polynomial

interpolant of the characteristic variables H(k)(zi+½),j- m < i < j + m. Here as usual

the characteristic variables H(k)(z_+½) are the projections of H(zi+½) on the locally defined

characteristic fields. In this paper, we define the local characteristic fields with respect to

the Roe-averaged state as+ ½ between the states us, us+l , i.e.

H(k)(z,+½) = lk(fiS+ ½)H(z,+½) (4.11)

for j - m < i < j + m, 1 < k < 3. See [15] for the definition of ai+ ½.

We thus have

q(k) (4.12)re,S+½(zi+½) = H(k)(zi+½) for i,.,,(j) < i < i,.,(j) + m.

and, in the recursive process of choosing the stencil i,,(j), the first point i_(j) is determined

according to the sign of the local eigenvalue:

j if $(k)(aj+½) > O,i_(j) = j + 1 if $(k)(fls+½) < O.
(4.13)

We then define the vector-valued function _(z) as

3

@(z) = E q_!j+½ (z)rk(fiS+½)
k=l

for Z E [ZS, ZS+I ]. (4.14)
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On the other hand, when x is outsideof the interval [x_,x_], wedefine@(x)in the same

way as in (2.16) and (2.17). Therefore, in those regions the componentsof @(x) will be
m' = 2m + 1-th order polynomials. Globally, the components of @(x) will be C" function

for • E [0, 2_r] and

• (_,+½) = H(xi+½), if _+½ E [xlo,x:]. (4.15)

Now we present our algorithm for (4.1)

13



Algorithm II (Spectral-ENO-Roe)

• Step 1,definevectorquantitiesH(zj+½), 0 __j __ N by (3.6)and theiruniform spectral

approximation _H(x) by (4.10);

• Step 2, let

_X ¢IX

where c is defined as in (3.5) with fj replaced by fj.

(4.16)

Remarks

° All of the remarks following Algorithm I of the previous section apply to Algo-

rithm II. However, the entropy correction is used only on the genuine nonlinear
^

fields. The total number of operations in the computations of all fj+½,0 < j < N

will be of order O(Nlog N). Moreover, the characteristic decompositions are

[Co,Co] where a shock discontinuity or contactonly needed for those z j+½ in t "

discontinuity has been detected;

. (Generalization to Mulit-dimenslonal Cases) For the system of conservation laws

in two dimensions (1.1), we apply Algorithm II to f(u) and g(u) separately.

Characteristic decompositions will be performed on their corresponding charac-

teristic fields when needed. The same idea can be applied to higher dimensional

cases.

5 Numerical Results

In this section, we will carry out several numerical experiments with Algorithm I & II. In

implementing these algorithms, we have to choose the order of ENO interpolations in (3.7)

or (4.10) and the interval [z',,z:] as defined in (3.8), which is detected to contain a shock

or contact discontinuity. In most of the tests, we choose third order ENO interpolation, i.e.

rn = 3, unless it is mentioned otherwise. The interval [Zlo, z:] is usually chosen to contain 6

- 8 mesh points around a discontinuity. The numerical results show insensitivity to the size

of [x°,z°]l" as long as it contains all the transition points in the numerical shock. To detect

the shock we have used the basic check on the gradients of the numerical data. Define

= ma (lu(j) - u(j - 1)1,lu(j + 1) - u(j)l ) (5.1)

14



If tj > rnam(3.0_j__,3.0_j+2, a), where ct is chosen dynamically according to the structure

of the shock wave, then we decide that the interval [z¢-1, z_+l] contains a discontinuity.

Because of the global high order of the scheme, a falsely detected shock location in a smooth

region of the solution would not destroy the overall accuracy of the scheme.

To retain the spectral accuracy in the smooth region of the solutions, we apply high order

exponential cut-off filters in (2.14). It is our experience that a very weak filter (i.e. high

order) will suffice to get high accuracy in the smooth region.

Time Discretization for Chebyshev Methods'

The time derivative in (4.1) is discretized with the Runge-Kutta method. We have used

the third order Runge-Kutta method proposed in [17] which yields TVD (total variation

vanishing) results if the spatial discretization is TVD.

For periodical problems, the spatial derivative is approximated by Fourier trigonometric

polynomials. When the solution is nonperodic, Chebyshev polynomials are used instead. A

common difficulty, however, with Chebyshev methods is the stringent time step restriction.

In general, the time step At has to be in the order of O(_-T) where N is the order of the

Chebyshev polynomials. This is a direct consequence of the clustering of Chebyshev collo-

cation points near both boundaries. For many hyperbolic problems, this dense distribution

of mesh points near boundaries is not necessary, as for most of the test problems in this

paper. Recently in [12], a novel mesh transformation is proposed to relax the restriction

of the Chebyshev methods on time steps. If z denotes the physical coordinate and _ the

computational coordinate, the following transformation is considered in [12] :

sin -1 az

- sin -1 a [zl < 1, l_l < 1. (5.2)

If _ = cosi_, 0 < i < N is the Chebyshev mesh in the _-space, then z_ = !=sin(sin -1 a_)

will be the corresponding mesh in the z-space. Because of the stretching nature of the

transformation (5.2), mesh points zi will be more uniformly distributed in the physical z-

space. A Chebyshev polynomial in the transformed _- space will be used to approximate the

derivative with respect to _, and the derivative with respect to z will be computed as follows

d _ d d_ = _ d (5.3)
dx a= sin-1  cos(sin

In our computations, we have observed an improvement of one magnitude in the time step

with a = 0.999; at the same time, the resolution of the numerical method is also enhanced

in the interior of the physical domain. We refer the reader to [12] for more details about the

evaluation of the transformation.

15



Uniform Spectral Approximation for Discontinuous functions

We consider the following piecewise C °O function

{ - sin(2(_+ 0.7.)) + 1g($) = e 'in'z sin 2 z

-2z - 1 - sin3...._._z
f 6

--_c<x< 2_ -- --iTr,

Ix[<__ E_r,
2
Elf < =_< 7r.

(5.4)

g(z) i8 defined periodically on the outside of [-_r, 9r], thus g(z) has three discontinuities in

the interval [0, 29r]. The profile of g(x) is plotted as the solid line in Fig.2. Now, given the

mesh value g(zi), zi = W', 0 < i < N, we use (2.20) and (2.21) to approximate g(zi+½)

d Xand _g(j), 0 < j <_ N respectively. In Fig. l(a), (b), we plot the errors in function

values and first derivative values respectively in file logarithm scale for different N's, i.e.

N = 32, 64,128,256. In all of the runs, we use a 16th order of exponential cut-off filter and

the third order of ENO interpolation in (2.15). We clearly see the uniform convergence and

spectral accuracy in the smooth parts of the function g(z).

Linear Advection of Discontinuous Solution with Subcell Resolution

In order to reduce the smearing in contact discontinuities by shock capturing schemes,

Harten [10] suggested a sub-cell resolution technique to treat one-dlmensional contact dis-

continuities in the context of the cell-averaged ENO finite difference schemes. Later on, this

idea was extended to the point:value version of the ENO finite difference scheme in [17]. We

test the subcell resolution by our spectral methods.

Consider the initial boundary value problem of the following linear hyperbolic equation

2$t : 2Lz,
_(_,0) = g(_),
_(0,t) = _(2_,t)

:_6 [0,2_-] (5.5)

where g(z) is defined in (5.4).

In Fig. 2(a), (b), we plot the numerical solution for N = 200 after one and two period-

icities, i.e. t = 29r, t = 49r. In both runs, we have used the 10th order exponential cut-off

filters.

=
=

Inviscid Burgers' Equation

In this classic example of shock wave computation, we consider the initial value problem

with sine wave initial conditions,

_, + (-2)- = 0,
u(z, 0) = a + fl sin z

_(o,t) = _(2_,t),
x e [0,2G (5.6)
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wherea -- 0.3,/3 = 0.7.

The solution to (5.6) develops a shock discontinuity at time _ = ! When a _ 0, the

solution consists of a moving shock wave after _ = _. As the exact solution for this problem

can be obtained by iterativemethods, we use this example to test the global accuracy of

the scalarAlgorithm I with m = 3 (i.e.the third order of ENO interpolationisused in

(3.7)).In table i, we listthe global LI error of the numerical solutionsand the LI error

in the smooth region of the solutionat time _ = 2 and N = 32,64, 128,256. In computing

the global LI error,we exclude the occasional one transitionpoint across the shock, and

the smooth region istaken as the region which is 0.8 away from the shock location. The

third column of Table 1 shows the global third order accuracy in LI norm of Algorithm

I, and the fifthcolumn shows the increasingorder of accuracy in the smooth region. In all

of the runs, the time step has been chosen such that further decreasing of the time step

does not improve the finalaccuracy. Therefore, the dominant errorscome from the spatial

discretization.In Fig. 3, solutionsat time _ --2 and N = 32 are plotted (plus)against the

exact solution(solidlines).In Fig. 4(a),the errorsfor N = 32,64,128,256 at time _ = 2 are

plotted in logarithm scale.For a comparison, we plot the errorswith the same parameters

forthe third order ENO finitedifferencescheme in Fig. 4(b).

One-Dimensional EuIer Equations for Gas Dynamics

We solve the system of equations (4.1) with different initial data.

1) Interaction of a shock wave and density waves

We consider the following initial condition for (4.1),

pt = 3.857143, qz = 2.629367, Pt = 10.333333 -1 < • < -0.8, (5.7)p, = 1 + esin5_rx, q_ = 0, P, = 1 -0.8 < z < 1,

where e = 0.2.

In Algorithm II, we choose the third order ENO interpolation and the 16th order

exponential cut-off filters. In Fig. 5(a), we display the density profile for N = 200 at

t = 0.36, the solid lines are the solutions obtained by the third order ENO finite difference

methods with 800 points. For a comparison, we plot the solution obtained with the second

order MUSCL schemes with N = 200 in Fig. 5(b).

2) Sod's problem and Lax's problem

Wc now consider the standard Riemann problem of (4.1)with the followinginitialdata

[16],

a) Sod's problem

17



b) Lax's Problem

(phq_,P_) = (1,0,1) - 1 _<_x _<O,

(P,,qr,Pr) = (0.125,0,0.10) 0 _ x __ 1;

(p,,qhPl) = (0.445,0.698,3.528) - 1 _< x _< O,

(pr,q_,P,) - (0.5,0,0.571) 0 _< x _< i.

For the Lax's problem, the sub-cell resolution has been applied on the linear degenerated

field near contact discontinuities. In both of the problems, we use the third order ENO

interpolation in Algorithm II and the 10th order exponential cut-off filters. In Fig. 6

(a)-(c) the solutions of the Sod's problems with N = 150 at time t = 0.4 are plotted, while

Fig. 7(a)-(c) display the solutions of the Lax's problem with N = 150 at time t = 0.26. In

both cases, the solid lines are the exact solutions.

Interaction of blast waves

The initial data suggested in [20] to simulate the interactions of two blast waves is as

follows

uz 0<x<0.1,
u(x,0) = UM 0.1 < X < 0.9, (5.8)

ua 0.9 _< x _< 1,

where Pc = PM = PR = 1, qz, = qM = qR = O, Pz, = 10 a, PM = 10-a, PR = 10 2.

The solutions to this problem possess drastic fluctuations under the impact of inter-

actions; it is a good test of the stability of Algorithm II. The complex structure of the

solutions after the clash of two blast waves demands a stable high order method to capture

the details of solutions. Unlike the finite difference methods, the spectral methods do not

require exterior mesh points to treat boundary conditions. We apply characteristic boundary

conditions on both boundaries. As the boundaries are treated as solid walls, we impose the

condition that velocity variables vanish on both boundaries, i.e. q0 = 0, qN = O.

In Fig. 8(a)-(c) and Fig. 9 (a)-(c), we plot the solutions of the state variables with

N = 300 at time t = 0.028 and t = 0.038, respectively. The former is an instant before the

clash and the latter is one after the clash. The solid lines in both Fig. 8 and Fig. 9 are the

solutions obtained with the third order ENO finite difference methods with 800 mesh points.

In Fig. 10, the solutions of density with N = 400 are also plotted.

Interaction between a Two-dimensional Shock Wave and a Rotating Vortex
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The equationsin considerationwill be (1.1) with

u = (p,m,, m_,E), (5.9)

f(u) = q_u+ (O,P,O,q_P), (5.10)

g(u) = q,ju + (O,O,P,q,jP), (5.11)

where q_, qv are velocity components in x- and y - directions respectively, mx= pq_ and
2my= pq_are _- and y- momentumsrespectively.P = (_- 1)(E - ½pq_),q2= q_+ %.

We apply one-dimensional Algorithm II on the fluxes f(u) and g(u) separately. The

right and left eigenvectors for the Jacobian matrices of 8.__'_, au can be found in [17].

The physical domain will be the rectangle [0, 3] x [-1.5, 1.5]. A Mach 3 planar shock

wave moves from the left to the right. A rotating vortex is initially located to the right side

of the shock. As the time progresses, the shock will hit the vortex and interact with it. The

shock front will be deformed by the interaction, and pressure waves are generated from the

interactions. In the computations, we define the velocity fields of the vortex as those induced

by two rotating concentric cylinders with radius rl and r2 respectively, rl < r2. Initially the

vortex is located at (xc, yc). The outside cylinder is stationary and the inside one rotates

with the angular velocity w. Let O(r) be the radius velocity at a distance r from the center

of the vortex, we have

wr if0<r<rl,
_(r) 1 1 __d._ ifrl_<r<= w;(_+ b J r2,

0 if r _> r2,

(5.12)

where,= _ - _, b = _,_- _, _ = _/(_- _o)2+(y_ yo)_.Wechoose_1= 0.15,T_=
0.75,w = 7.5.

Therefore the x - and y - velocities induced by this vortex at (x, y) will be

#x = -Y-Y°_(T), (5.13)
r

-- Xc~
o_ - _(_), (5.14)

r

where x_ = 2.25,y_ = 0.

The initial conditions for the simulation will be as follows:

pl = 3.857143,

q_l = 2.629367

%1 = 0,

Pl = 10.333333,

if x < Xo,

(5.15)

(5.18)
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and

PT _ 1,

q_ =

q_ = _,

P_ = i,

if m > too,

(5.17)

where Zo is the initial shock position, Zo = 1.5.

We impose characteristic boundary conditions on both left and right boundaries. A

periodic boundary condition is considered in the y-direction and hence we are actually sim-

ulating the interaction between an array of periodically distributed vortices and a planner

shock wave. To relax the time restrictions of the Chebyshev approximation in the z - di-

rection, we apply the mesh transformation (5.2) with a = 0.999. The shock has been made

stationary by a translation in the mean flow direction. The second order ENO interpolation

and the 10-th order exponential filter have been used in (4.10).

Fig. 11(a),(b) are the contour plots of the pressure and density fields at time t = 0.4,

while Fig. 12(a),(b) are the close-ups of the pressure and density at time t = 0.4. Fig. 13 is

the pressure profile at time t = 0.4.

Concluding Remarks

Centered difference methods including spectral methods are efficient and accurate, while

upwinding difference methods offer the advantages of sharp monotonic shock profiles. We

have explored, in this work, the possibilities of blending the advantages of the ENO finite

difference methods and the spectral methods. Numerical results have shown the robustness

and feasibility of this approach at a small extra cost over the standard spectral methods.
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Table 1: Global L1 error and L1 error in the smooth region for the Burgers' equations at

time _ = 2, the smooth region is defined to be 0.8 away from the shock location

N

32

1.49(-4)

64

Z70(-5)
128

3.70(-6)
256

2.95(-7)

Global Order Smooth region

2.5

2.9

3.7

Order

1.17(-4)

4.3

5.86(-6)
6.5

6.54(-8)

10.0

6.36(-11)
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