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NOMENCLATURE

b

bw

C

C"

Cd
Ct

d
J

l

Lp(O

LPc(O

n

N
St.

t

Uwake

U

Omax

U F

V"

W"

X

X"

propeller blade chord, mm
wake width measured at mid height of the

wake deficit, mm

empennage chord measured streamwise, mm
mean of the empennage chords measured at

the empennage root and propeller tip
station, mm (c'= 291 for Y-tail, c'= 570 for
I-tail, c'= 261 for dorsal fin)

empennage drag coefficient Xp
design lift coefficient of blade as a function of

radial station

power coefficient, power/(pn3d 5) y
thrust coefficient, thmst/(pn2d4)
propeller diameter, m z
advance ratio, U.,,/(nd)
dimension on airfoil equal to vortex street

spacing; i.e., distance between upper and a
lower surface regions where vortices are

created,m 13
sound pressure level measured with an

effective filter bandwidth of 42 I-Iz,dB

sound pressure level of blade-passage [30
harmonic corrected for broadband

amplification, dB ALPc(f )
propeller rotational speed, rev/sec
propeller rotational speed, rev/min k
Strouhal number p
propeller blade thickness, mm 9
test section airspeed measured 1.3 m upstream

of the fuselage nose, m/sec
airspeed measured in the empennage wake, V

m/sec 0

normalized streamwise velocity deficit in
wake, CtL. - Uw_e)/U**

maximum value of U in the wake

turbulent velocity component in axial direction
(rms), m/sec

turbulent velocity component in vertical
direction (rms), m/sec

turbulent velocity component in horizontal
cross-stream direction (rms), m/see

downstream distance from aft tip of fuselage,
mm

mean distance from empennage trailing edge
to propeller as measured at the empennage
root and propeller tip station, mm

downstream distance from empennage trailing
edge to wake probe as measured along
s_reamline intersecting probe, mm

vertical distance from center of aft tip of
fuselage, mm

horizontal distance from center of aft tip of
fuselage (positive to left facing upstream),
mm

Y-tail angle of attack measured near the tip,
deg

propeller blade pitch angle between 3/4 radius
chord line and plane of propeller as
measured at the 3/4 radius station, deg

propeller blade twist angle relative to the
3/4 radius chord line, deg

change in blade-passage sound pressure level,
dB

acoustic wavelen_gth, m
air density, kg/m a
angle in vertical plane containing propeller,

deg; (3*is down, 90° is to fight facing
upstream

model roll angle, deg; 90* is fight wing down
angle in horizontal plane centered on propeller,

deg; 0* is upstream, 90* is to the left facing
upstream
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SUMMARY

An aerodynamic and acoustic study was made of a

pusher-propeller aircraft model in the NASA Ames

Research Center 7- by 10-Foot Wind Tunnel. The test sec-

tion was modified to operate as an open jet. The 591-mm

diameter unswept propeller was operated alone and in the

wake of three empennages--an I-tail, a Y-tail, and a
V-tail. The radiated noise and detailed wake properties

were measured. Results indicate that the unsteady blade

loading caused by the blade interactions with the wake

mean velocity distribution had a strong effect on the

harmonics of blade-passage noise. In particular, the blade-

passage harmonics above the first were substantially

increased in all horizontal directions by the

empennage/propeller interaction. Directivity in the plane

of the propeller was maximum perpendicular to the

blade surface. Increasing the tail loading caused the

propeller harmonics to increase 3-5 dB for an

empennage/propeller spacing of 0.38 mean empennage
chords. The interaction noise became weak as

empennage/propeller spacing was increased beyond 1.0

mean empennage chord lengths. Unlike the mean wake
deficit, the wake turbulence had only a small effect on

the propeller noise, that effect being a small increase in
the broadband noise. A propeller noise theory, which

incorporated an unsteady blade-loading model, indicates
that the interaction noise trends can be predicted if the

unsteady blade-loading aerodynamic and acoustics are

modeled properly.

INTRODUCTION

The pusher propeller has become a viable option for

the aircraft designer in recent years. A variety of designs

have been proposed and built which have propellers

mounted behind wings, on aft fuselages, and on empen-

nages. In some cases, the pusher propeller is more effi-

cient aerodynamically than a tractor propeller because of

the lower velocity inflow from the upstream body. Fur-

thermore, locating the propeller on the aft portions of

the aircraft allows flexibility in the location of the

power plant. Acoustically, pusher propellers can produce
more cabin noise than tractor designs, although cockpit

noise should be lower with a pusher. Flyover and cabin

noise can be a problem because of the flow disturbances

ingested by the propeller from wakes and engine
exhausts, which translate into radiated noise.

Several studies have been made of the acoustic charac-

teristics of pusher propellers in recent years, notably by

P. Block (1984, 1985, 1986) and others at NASA Langley

Research Center. Those studies dealt with a single pylon

or a single airfoil mounted upstream of a propeller. Wake

measurements were limited. The study described here

involved single and multiple airfoil wakes interacting

with a pusher propeller, and wake properties were mea-
sured in detail.

The present study was an attempt to improve the

basic understanding of propeller-wake interactions and

the radiated noise from a pusher propeller operating

behind an aircraft empennage. An experiment was con-
ducted in the Ames Research Center 7- by 10-Foot Wind

Tunnel #1, which was modified into an open-jet configu-

ration (floor remaining) to minimize acoustic reflec-

tions. The model included a fuselage capable of accepting

three empennage configurations, and a detached propeller

mounted to an electric motor downstream of the empen-

nage. The fuselage was provided by the Lear Fan Corp. in

Rent, Nevada. It was recognized that the location of the

propeller relative to the upstream aerodynamic surfaces

is a critical factor in the strength of the aerodynamic

interaction, just as it is in the case of rotor-stator interac-
tions in ducts 0C,xamer et al., 1972). In the latter case, it

was demonstrated that stator noise caused by interactions

with the wakes of upstream rotors can be quite strong if

the rotor-stator spacing is less than one rotor chord. As

that spacing is increased, the interaction and induced noise

decay rapidly. Therefore, this experiment was designed to

allow flexibility in the location of the propeller relative

to the empennage. Furthermore, significant effort was

put into measurements of the flow field entering the

propeller and the effect of the propeller on the develop-
ment of that flow field. That aerodynamic phase of the

study was sufficiently extensive to be published as a sep-

arate report (Home and Soderman, 1988).
In order to make it available as soon as possible, the

acoustic data acquired in this study was published as a

NASA Contractor Report by Wilby and Wilby (1985).

That report is extensive and laid the basic framework for

this publication. Some of the results of Wilby and Wilby

(1985) were clouded by data scatter. Since then, careful

examination of the data has traced the problem to floor

refections at specific microphones. We believe the prob-

lem data have been eliminated to allow a clearer interpre-

tation of the empennage/propeller interaction. This

report summarizes and correlates the acoustic and aero-

dynamic work reported in the above two references.

Finally, the experimental results acquired here are com-

pared with an analytical method for predicting propeller
noise.



MODELS AND APPARATUS

Empennages and Fuselage

Figures 1 and 2 show the Ames 7- by 10-Foot Wind
Tunnel #I open-jet test section, acoustic measurement

arena, and the three empennage configurations studied--

the Y-tail, V-tail, and I-tail mounted on a model fuselage

without a wing. The Y-tail is shown in figures l(a)-(c).

(An index of figures follows the Contents.) Note that

the empennage is oversized for the fuselage. That is

because the fuselage was available as an empennage sup-
port structure, but was not essential to the simulation.

Instead, the empennage was sized to span the propeller

disc so that tip vortices would not intersect the pro-

peller. It was decided that because tip vortices are strong

sources of flow disturbance, tip-vortex ingestion by the

propeller would be avoided. Tip-vortex ingestion can
dominate propeller or rotor noise generation (Schlinker

and Amiet, 1983), depending on various parameters such

as vortex slrength and angle of incidence relative to blade

normal. It is assumed that aircraft designers would avoid

tip-vortex ingestion also, if at all possible. Figure l(b)

shows the fuselage and Y-tail rolled 90 ° (V = 90*) so

that the sideline microphones would be in a flyover

position. When the model was rolled 90 °, the fuselage
remained aligned with the propeller shaft as it was with

the model upright.

The I-tail, a simple vertical fin, is illustrated in fig-
ure l(d). Figures 2(a) and (b) show the model with the

I-tail positioned relative to the test section inlet and coi-

lect0r. The third empennage configuration, not shown in

the photographs explicitly, was the V-tail, which was

created by removing the lower dorsal fin from the Y-tail.

Figures 3(a) and (b) show a schematic of the empennages
with the appropriate dimensions and sweep angles noted.

The empennages had no elevators or tabs. The Y-tail

upper surfaces were operated at 1° and, where noted, 6 °
angle of attack (¢t) relative to the free stream as

measured in a plane perpendicular to the empennage

surface. All empennage surfaces had streamwise contours

shaped as NACA 0012 airfoils. Thus, at each spanwise
station, the maximum thickness was 12% of the chord.

Propeller and Drive Motor

The propeller was a four-bladed, SR-2 composite
propeller with a 59 l-mm diameter. The SR-2 blades have

been used in several wind tunnel acoustic studies of eight-

bladed propellers at cruise speeds (Block, 1985, 1986;

Block and Gentry, 1986; Dittmar, Blaha, and Jerack, 1978;

Dittmar, Jerack; and Blaha, 1979; Dittmar, 1980). The

blades had zero sweep and a relatively low thickness-to-

chord ratio, tapering to 2% at the tip. The propeller shape

and dimensions are given in figures 4(a)-(c). The hub was

98 mm in diameter. Blade pitch angles were adjusted

manually using a propeller protractor and were chosen

for each airspeed and rotational speed to provide appro-

priate blade loading. The pitch angles, defined as the angle

between the 3/4-radius chord line and propeller disc
plane, were measured at the 3/4-radius station. The blades

were twisted relative to the 3/4-radius chord line as

shown in figure 4(a). Table 1 lists the blade angles used

during the study. This size propeller and empennage

would be approximately 1/3 to 1/5 scale of typical full-
scale aircraft components.

The propeller was mounted on a 711-mm-long shaft
and driven by an electric motor in a nacelle as shown in

figures 1 and 2. Attempts to monitor propeller thrust

with a simple thrust cell on the motor-sliding carriage
failed. Therefore, all performance estimates were made

analytically using the method of Larrabee and French

(1983) described in the Appendix. The propeller/motor

strut was adjustable in the vertical direction for a range

of 178 mm. The fuselage support struts were mounted to

a track system that allowed the fuselage to be moved in

the streamwise direction. This allowed the propeller
noise sources to be fixed in space during the variation of

empennage/propeller spacing, except for the small ver-

tical motion allowed in the motor support strut during
one phase of the study.

Test Section and Acoustic Arena

The 7- by 10-Foot Wind Tunnel test section had the

two side walls and the ceiling removed for a streamwise

distance of 4.17 m. A bell-mouth collector, covered by
76-mm polyurethane foam to minimize acoustic reflec-

tions, was installed at the inlet to the diffuser. This

geometry allows stable flow conditions up to a test-
section speed of approximately 68 m/sec. Above that

speed, flow oscillations develop, resulting from the
well-known open-jet collector/nozzle feedback reso-

nance (Martin, Brooks and Hoad, 1985).

The acoustic test hall surrounding the test section

was approximately 14 by 17 by 9 m high. The steel walls
of the room had been covered with acoustical tile, but

this was inadequate to prevent reflections from the

walls. Therefore, 1.2- by 2.4-m plywood panels, covered

with 101- to 152-mm-thick polyurethane foam in alter-

nating blocks, as shown in figure 5(a), were placed around

the test arena (fig. 5(b)). The panels were tipped back so

any reflections tended to reflect upward and away from

the microphones. Polyurethan foam, 76 mm thick, was

placed on the wooden floor in the test section and in the



test arena to prevent floor reflections. This method was

only partially successful, as will be explained. Optimum
positioning of the sound-absorbent panels was achieved
by reviewing pulse reflections from a starter pistol f'u'ed
near the propeller. No deleterious reflections were found
with the impulsive source, although floor reflections of
propeller tones were later found to be a problem, as will
be discussed.

The background noise of this wind tunnel has been
attenuated by the installation of acoustic linings in the
end legs of the circuit and the installation of a large
acoustic splitter in the cross leg upstream of the test sec-
tion (Soderman and Hoglund, 1979).

Microphones

Condenser microphones (B&K 4133), 12.5 mm in

diameter, were placed in positions 1-13 as shown in fig-
ures 6(a) and (b). Microphones 1-6, outside the flow on
the left side of the model, were on a 4.27-m arc centered

on the propeller hub at horizontal angles 60 to 120" (0°
corresponds to the upstream direction). The microphones
were at the propeller hub height. Two microphones,
numbers 10 and 13, were in the same horizontal plane, but
on the other side of the test section at angles of 270 and
290 °. These microphones experienced some flow buffet
from the shear layer. Microphones 11 and 12 were on a
4.27-m arc in the vertical plane containing the propeller
disk (fig. 6(b)). Finally, microphones 7, 8, and 9 were in
the flow closer to the model, as shown in figure 6(a). The
inflow microphones had bullet-shaped nose cones pointed
upstream to minimize flow noise and were essentially
omnidirectional. The microphones remained fixed during
the test program. All microphones, except 11 and 12,
recorded sideline noise with the aircraft model upright
(_ = 0"). With the model rolled on its side (_ = 90°),
microphones 1-9 were under the model and micro-
phones 10 and 13 were above the model. All microphones,
except 7 and 8, were several propeller diameters and
acoustic wavelengths from the propeller therefore and
were, in the acoustic far field (Z, -- 0.6 m at the blade
passage fundamental frequency at 8200 rpm).
Microphones 7 and 8 were about 2.3 propeller diameters
and/or blade-passage fundamental wavelengths from the
hub, which is the beginning of the far-field region.

the digitized data generated by the narrow-band spectrum
analyzer, and correct the results. Software used to acquire
and process the data is listed in the report of Wilby and
Wilby (1985).

A floor-mounted, three-axis traversing mechanism
shown in figure 8(a) (prior to removal of the test section
walls) was used to survey the empennage wake. The
mechanism was located in the left side of the test section

between the shear layer and the model to minimize inter-
ference effects. The computer-controlled apparatus is
described by Home and Soderman (1988). The flow sur-
vey probes used to acquire the pressure and hot-wire data
are illustrated in figure 8(b). The pitot-static pressure
probe was used to determine the velocity distribution in
the wake. The five-hole, directional pressure probe mea-
sured flow direction. The two X-wire probes were used
to measure the three components of turbulence. Details
of the survey instrumentation and hot-wire data-
reduction algorithms are given in the above report.

EXPERIMENTAL METHOD

Coordinate System and Empennage/Propeller
Spacing

The distance between the model fuselage and pro-
peller was varied in both longitudinal (x-coordinate) and
vertical (y-coordinate) directions (z is the horizontal
cross-stream coordinate). The origin for the x,y,z coordi-
nates was the aft tip of the tail cone on the fuselage cen-
terline, as shown in figure 9. A more relevant coordinate
is the distance from the empennage trailing edge to the

propeller, xp. A similar distance is x'--the mean of the
separation o_stance measured at the empennage root and
empennage station opposite the propeller tip. A normal-
ized distance, x'/c', is also used, where c" is the mean of
the empennage chords measured at the same two stations.
Since the empennages were swept aft, in the case of the
I-tail and dorsal f'm, and swept forward, in the case of the

Y-tail, x" is a variable which depends on the empennage
geometry. The normalized separation distance noted for
the Y-tail on the figures refers to the distance from the
propeller to the upper two surfaces, not the distance to
the dorsal fin.

Instrumentation for Data Acquisition and
Reduction

The microphone signals were monitored, recorded,

and processed as shown in figure 7. The computer con-
troller was used to coordinate the data acquisition, store

Wind Tunnel Operation

The wind tunnel was operated at test-section air-
speeds of 46 and 62 m/sec (Mach numbers of 0.13 and

0.18). These low speeds correspond to aircraft approach
and takeoff speeds. During the flow survey



measurements, the flow speed was fixed at 46 m/sec.

Temperature, barometric pressure, and humidity were

measured periodically during the test sequence.

Propeller Operation

The acoustic measurements were made with pro-

peller rotational speeds of 6000 and 8200 rpm. Propeller
rotation was counter clockwise facing upstream. The pro-

pelier tip rotational Mach number ranged from 0.54 to
0.74, and the helical Mach number ranged from 0.56 to

0.77. On a typical general aviation aircraft, both Mach
numbers lie in the range 0.65 to 0.90. Thus, the 8200-rpm

data are most representative of current aircraft. The pro-

peller blade-passage frequencies associated with 6000 and
8200 rpm were 400 and 547 Hz, respectively. The pro-

peller advance ratio ranged from 0 to 1.06, which is close

to typical values of general aviation aircraft. Table 1 lists
the advance ratios, thrust coefficients, and power

coefficient for each test condition. Those parameters were

computed using the propeller aerodynamic theory of
Larrabee and French (1983), which was incorporated into

a computer code listed in the Appendix. The method does

not allow prediction of propeller performance at zero
advance ratio.

Acoustic Data Reduction

Narrow-band acoustic spectra were generated with

the fast Fourier transform (FFT) analyzer from sound

recordings approximately 30 sec long. Some spectra were

acquired on line. The FFT analysis mode was chosen for

sinusoidal signals, which gives the correct spectrum level

for narrow-band peaks. However, this mode results in

relatively wide filter bandwidths of 42 Hz (12.5 x 3.4).

Since the output is "power in the band," the broadband

levels should be reduced by 10 log 42 = 16 dB to give the

power spectral density. (The data are presented without

this adjustment.) Tone levels, of course, are unaffected by
filter width and should not be reduced to give power

spectral density. The data were corrected for gain, shear-

layer refraction, and distance decay by normalizing to a
common distance of 4.27 m using 6 dB per double-

distance extrapolation.

The shear-layer refraction correction was based on

the analytical method of Amiet (1975). That refraction
correction accounts for the apparent directivity shift of

the sound propagating through the shear layer. Noise
measured at 90* from the propeller, for example, came

from an acoustic ray emitted at 96* for a windspeed of

62 m/sec. Thus, the data measured at a given microphone

outside the flow will be labeled for the computed radia-

tion angle, which changes depending on windspeed. The

angles for the microphone data recorded inside the flow
are not affected by these computations. A discussion of

the method and the computer code is given by Wilby and

Wilby (1985). It was determined that spectral broaden-

ing of the blade-passage harmonics due to turbulence

scattering was not important except at the highest har-
monics. Therefore, no such correction was made. The spec-

tral harmonics were corrected, however, for amplifica-

tion from the adjacent broadband noise (harmonic plots

only, not spectral plots). That is, the true levels of the

harmonics in the 42-Hz filter bands were increased by
broadband noise within 10 dB of the harmonic level.

Thus, the apparent harmonic levels in the spectral plots
were corrected for the computed amplification, assuming

that the discrete frequency and broadband components

were uncorrelated, so that the calculated amplification

could be made on an energy basis. For example, if a har-

monic peak occurred at 71.8 dB, and the broadband level in
that band was 67.8 dB, the true harmonic level was esti-

mated to be 10 log (107-18 - 106"78) = 69.6 dB.

RESULTS AND DISCUSSION

The main objective of this report is to correlate the

propeller noise with the key geometric and fluid-

mechanic parameters affecting the noise radiation. First,

however, it will be necessary to summarize acoustic char-
acteristics of the experiment such as background noise of

the facility and test hardware, and floor reflections.

Then, the noise of the isolated propeller will be dis-

cussed, followed by a discussion of the acoustic effects of

each empennage configuration. The important wake prop-

erties will be identified. Finally, the correlation of the

acoustic and aerodynamic data will be made.

Much of the acoustic data are presented as narrow-

band levels at harmonics of blade-passage frequency. That

is because, as will be seen, the narrow-band sound domi-
nated the broadband sound. Furthermore, certain har-

monic levels may be more important than overall sound
levels, when the data are scaled to a full-size aircraft.

Overall sound levels are often used as a key acoustic

parameter in the literature. But in scale-model testing, it

may not be appropriate. For example, the overall noise
level in this study was dominated by noise at the blade-

passage frequency of 547 Hz (8200 rpm). But if the data
were scaled to an aircraft five times the size of the model,

that propeller blade-passage frequency would be reduced

by a factor of five because the tip Mach number would be

held constant for proper simulation. Thus, the peak noise

would be at 109 Hz, and would be less annoying than

noise at higher harmonics, which would fall in the
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sensitive frequency range of human hearing. For this
reason, results are presented for many harmonics of
blade-passage frequency.

Noise Resulting from Facility and Test Hardware

Fuselage and motor nacelle in test section- The
basic test hardware is considered to be the fuselage with-
out empennage, and the motor/nacelle and shaft without
propeller. Figures 10 and 11 show the test hardware noise

out of flow (microphone 2) and in flow (microphone 7),
respectively, at windspeeds of 46 and 62 m/sec. Recall

that as the windspeed changes, the computed directivity
angle changes because the shear-layer refraction is a func-
tion of jet speed. These data are representative of all
microphones and show that the windspeed increase caused
an acoustic increase of 9 to 10 dB out of flow (fig. 10) and
an increase of 7 to 8 dB in flow (fig. 11). The in-flow
noise increase of 7 to 8 dB corresponds to the square of
acoustic pressure proportional to velocity to the fifth or
sixth power, which is indicative of dipole-type sources.
Wind tunnel fan noise, for example, follows that
velocity law. The out-of-flow noise increase of 9 to 10 dB
is more difficult to explain, but may indicate that, in
addition to the above acoustic power-velocity law, addi-
tional noise sources, such as on the collector, developed at
the higher flow speeds.

It was determined that one of the peaks in the back-
ground noise spectrum was caused by vortex shedding
from the microphone support struts, a common phe-
nomenon in wind tunnel testing (Soderman, 1976). The
peaks were visible in the out-of-flow microphone data.
At 46 m/sec the peak occurred at 1780 Hz, and at 62 m/sec
the peak was at 2470 Hz, as seen in figure 10. These fre-
quencies relate to a Strouhal number of 0.28 and a dimen-
sion, l, comparable to the distance between flow-
separation points on the two sides of the strut
(Soderman, 1976), a distance which, in this case, was
about a third of the strut maximum thickness. The vortex

shedding rate is

f=StU**/l (1)

The addition of boundary-layer flow trips to the struts
eliminated the tones. The trips were formed from cloth
duct tape that was robed into long loops with the sticky
side out, and stuck to the struts' leading edges. Thus, a
bulky, sticky protuberance was created that covered the
upper and lower surfaces back to approximately 25%
chord. The resulting flow disturbance broke up the coher-
ent vortex streets. The high noise levels at very low fre-
quencies were caused by the wind tunnel fan, which had a

blade-passage frequency of 147 Hz for a windspeed of
62 m/sec.

When in-flow and out-of-flow microphone signals
are compared at the same airspeed in figure 12(a), it is
clear that the in-flow microphone noise included consid-
erable nonpropagating pressure fluctuations. Fig-
ure 12(a) shows that even after the data are corrected to

the same distance, the in-flow microphone 7 had higher
background noise levels than out-of-flow microphone 5.

Figure 12(b) shows the background noise for all three
in-flow microphones--7, 8, and 9. Microphone 7 had high
levels of low-frequency noise because it was positioned
at the edge of the shear layer. The shear layer spread at
approximately 8° total angle (Soderman and Olson,
1988). The large-scale turbulence and vortices in the shear
layer caused the low-frequency noise at that microphone.
Microphone 9 shows some strut tones that were subse-
quently removed by tripping the flow over the micro-

phone stand, as discussed above. Therefore, the propeller
noise data from each microphone must be compared with
the background noise of that microphone.

Fuselage and empennage in test section-The

effect of the empennage on the sound levels was negligi-
ble (propeller removed). This is shown in figure 13,
which illustrates background noise levels at microphone
2 (0 = 78°) with and without the Y-tail mounted on the
fuselage. Note that the strut vortex-shedding noise at
2470 Hz has been eliminated in this data set by the
attachment of the flow-trip tape to the microphone
struts in the test section.

Propeller alone- Figures 14(a) and (b) show
propeller-alone noise at 8200 rpm and at windspeeds of
46 and 62 m/sec compared with the wind-off case
(fuselage and empennage removed). It is clear that the
propeller generated strong tones at harmonics of the
blade-passage frequency that dominated the broadband
noise, at least to the fourth or fifth harmonic for this in-

flow microphone 7. Out-of-flow microphone data con-
rain tones out to the eighth or tenth harmonic. Compari-
son of the propeller broadband noise with the wind tun-
nel background noise at the same windspeed (figs. 11
and 12) shows that the wind tunnel background noise
dominated the propeller broadband noise at the in-flow
microphone 7. Out of flow, the propeller broadband noise
dominated the wind tunnel background noise by around
5 dB at 46 m/sec windspeed and by only 1-2 dB at
62 m/sec. Thus, the dam analysis will concentrate on the
harmonic levels.

It is interesting that the level of the tones generated
statically agree so well with the tone levels wind on.
(The wind-off and wind-on tones in fig. 14(b) would
agree better if the broadband contributions to the tones
were removed.) Many researchers have reported large dis-
crepancies between static and flight noise attributed to



static ingestion of ground vortices or atmospheric turbu-
lence that create disturbances at the propulsive device

that are not present in flight. No such problem with the

static data is apparent in figure 14, possibly because

(1) the propeller may have induced a very low, but

significant, airflow in the wind tunnel, (2) the wind

tunnel air has low turbulence compared to out-of-doors,

and (3) the propeller was unable to induce a ground

vortex because of its low thrust. In any case, wind-on

data are essential for generation of proper acoustic

directivity patterns and to study the propeller/

empennage interactions.

Figure 15 shows blade-passage harmonic noise levels

for zero windspeed and propeller rotational speeds of

6000 and 8200 rpm (fuselage and empennage removed).

The data show the rapid roll-off of blade-passage har-

monics with frequency, particularly at the lower rpm.

This is characteristic of propeller steady-loading noise
and thickness noise.

The above results show that the spectral peaks are

more important to this study than the broadband noise.
Therefore, the following analyses will emphasize the

blade-passage harmonic levels, corrected for broadband

contribution where appropriate, as discussed in the sec-
tion on data reduction.

Propeller plus fuselage- Figure 16 shows that the

fuselage without empennage did not create a strong

enough wake at the propeller to cause the noise to change.

The aft end of the fuselage was in line with the propeller

hub as shown in figures 1 and 2 and was 152 mm upstream

of the propeller plane. Flow surveys of the fuselage wake
(Home and Soderman, 1988) showed that the fuselage

wake was approximately 100 mm wide at a station

380 mm downstream of the fuselage tip. Thus the wake

would enter the central portion of the 591-mm-diameter

propeller where the blade speeds are relatively low and

the noise generation is relatively weak. Most propeller
noise generation occurs from the outer l/4-radius portion

of the propeller (Hersh, Soderman, and Hayden, 1974).

Data Repeatability and Floor Reflections

Examination of data measured at different dates for

the same test condition indicated that there was signifi-

cant scatter in the level of the harmonics of blade-passage

tones at certain microphones. The broadband levels, on

the other hand, were repeatable. Figures 17(a)-(f) illus-

trate scatter of harmonic levels from microphones 1-6

(out of flow) for repeat conditions. (All reference to

angles incorporates the shear-layer refraction correction

for data recorded outside the jet.) The scatter of around

+3 dB was typical of the data from microphones 1-6 out-
side the test section. However, the scatter from micro-

phones 11 and 12 (figs. 17(i) and (j)) was much less.

Those two microphones, in the plane of the propeller,
were suspended from the ceiling in the acoustic arena sur-

rounding the test section and were relatively far from

reflecting surfaces. This suggests that floor reflections

(or shear-layer distortions) were affecting the propeller

tones recorded by microphones 1-6, despite the 76-mm
absorbent floor lining. A calculation of floor reflections

from a lining with 90% sound absorption shows that the

interference with the direct periodic sound wave could
lead to +2 dB variation in the combined sound level. The

interference could vary if the phase of the signal varied

with time because of source motion or propagation

through the unsteady shear layer. In fact, distortion of

the tonal wave form by the shear layer could be more

important than the floor reflection, an effect that is min-

imum in the plane of the propeller. This distortion will

be shown in the section on time signatures. Another

+1 dB could be expected because of the random nature of

the propeller interaction with an unsteady wake. Fig-

ures 17(g) and (h) indicate that the data scatter from
microphones 8 and 9, which was unaffected by the shear

layer, was smaller than that for microphones 1-6. Conse-

quently, many of the results of this study will be based

on the data from microphones 8-9 and 11-12. Those data

represent noise propagated upstream and downstream of

the aircraft model and to the sideline (or below, with the

model rotated 90°). General trends in the data from the

other microphones will be reported where appropriate.
All data have been corrected to the same distance of 4.3 m

from the propeller hub.

Propeller/Empennage Interaction Noise

Y-tail- The addition of the empennage to the model

caused the propeller blade-passage tone and harmonics to

increase across the spectrum relative to the model noise

without empennage as shown in figures 18(a)-(c), which

correspond to noise at directivity angles, 0, of 15, 96, and

140". The mean empennage/propeller separation distance
was 0.80 mean chords. The broadband noise was not

changed by the empennage except for a slight increase

above 5 kHz. Figures 19(a)-(c) show the same comparison

in terms of harmonic levels only, which allows a clearer

interpretation of the data. (Harmonic levels have been

corrected for broadband contribution as previously dis-
cussed.) The fundamental or first harmonic at 547 Hz

was little affected by the empennage/propeller interac-

tion, but the higher harmonic levels increased 10-20 dB
because of the Y-tail. This is consistent with the idea that

the blade-loading variations resulting from wake interac-

tion occur rapidly relative to a blade revolution so that in

the frequency domain the higher frequencies are affected
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morethanthelowfrequencies.Asfortheconsistencyof

the fundamental blade-passage noise, Trebble and

Williams (1983) showed that propeller noise at the

blade-passage frequency is dominated by the steady-load-

ing rotational noise and is, therefore (we conclude), rela-

tively unaffected by wake interactions. Note that in fig-

ure 18(a) the harmonic levels above the fourth at O = 15",

empennage removed, were masked by the broadband noise
and, therefore, are not shown. Nevertheless, the spectral

plots show that the difference between the two curves

above the fourth harmonic (fig. 19(a)) was at least as

great as the difference at the fourth harmonic.

Microphone 12, at 0 = 96*, did not record a signifi-
cant increase in sound out to the fifth harmonic due to

empennage/propeller interaction as shown in fig-

ures 180a) and 19(b). This is probably because the thick-

ness noise dominates the in-plane noise from approxi-

mately the second to fifth harmonics (Trebble and

Williams, 1983). The unsteady loading noise, becomes

important in the propeller plane only at the higher

harmonics. Block and Gentry (1986) reported a similar

effect on overall noise levels in a study of propeller

interaction with a single upstream pylon. Note that the
harmonic levels above the fifth harmonic were increased

by the propeller/empennage interaction in all directions.

V-tail- The V-tail was created by simply removing

the lower dorsal fin from the Y-tail. Figures 20(a)-(c)

show the effect of the V-tail on the propeller acoustic

spectra, and figures 21(a)-(c) show the same data plotted

as harmonic levels only. The data are similar to the data
acquired with the Y-tail, except for some small differ-

ences in the upstream direction. Thus, the dorsal fin had a

weak effect on the propeller in-flow relative to the two

upper surfaces. This is because the dorsal tip projected

beyond the propeller radius so any tip vortex would have
missed the propeller. Furthermore, the dorsal fin was at

zero yaw angle so it was loaded only by propeller swirl,

which would be weak that far upstream. The dorsal wake
would therefore be weaker than the wake from the two

upper surfaces. The two upper airfoils were relatively

large and had a 2* angle of attack.

1-tail- The I-tail was a simple vertical tail fin. Fig-

ures 22(a)-(c) and figures 23(a)-(c) show the increase in

spectra levels and harmonic levels caused by the I-tail.

The propeller empennage spacing was closer than was

used for the Y-tail measurements, but the trends are sim-
ilar. The higher harmonics of blade-passage noise are

increased by the tail. The greatest effect .is in the down-
stream direction because the propeller-alone tones were

weakest in that direction. The interaction noise actually

radiated strongly in all directions.
Time signatures- The acoustic pressure time signa-

tures give a different perspective on the empennage/

propeller interaction noise. Figures 24(a)-(c) compare

time traces of typical sound waves acquired from many

averages of the data synchronously sampled at the rate of

the blade-passage frequency. The blade-passage frequency

recorded at microphone 12 was converted to a series of

timing pulses and was used to trigger the HP 5423

analyzer. The data have not been corrected for distance or

other effects. Comparing the noise radiated to 105"

toward microphone 7 (in the flow) and microphone 5

(out of flow) along virtually the same path (figs. 24(a)

and (b)), we see a substantial distortion of the wave shape

by the shear layer. The effect may be confused by shear-

layer-induced noise on microphone 7 or by floor reflec-

tions as previously discussed. However, the data from

microphones 7 (in the flow) and 12 (out of flow) are rea-

sonably similar, which confirms the previous conclusion

that the in-plane microphones out of flow (micro-

phones 11 and 12) captured the cleanest data of all the

out-of-flow microphones either because of relative

distance from the floor or because of minimal shear-layer

effects in the direction normal to the shear layer.
When we concentrate on data from inside the flow

and from microphone 12 outside the flow, the acoustic

pressures plotted in the time domain can be used to reveal

the empennage/propeller interaction effects. Figure 25
shows the acoustic pressures measured by microphones 9,

12, and 8 (0 = 15, 96, and 140°), while the propeller alone

was operating at 8200 rpm and with 62 m/sec windspeed.

Because the data were recorded at microphones not

equidistant from the propeller, the time traces were
normalized to equal distance and proper phase based on

estimated decay rates and propagation times. The phase

relationships could easily be erroneous because of the

miscalculation of propagation time of sound refracted by

the shear layer, so the discussion will focus on the rela-

tive amplitudes. Of the three signals, only the one

recorded by microphone 12 passed through the shear

layer. The in-flow microphone data (microphones 8

and 9) show random noise from turbulence superimposed

on the low-frequency acoustic signal. The data clearly

show the strong sound pressure to the side of the pro-

pellet, relative to the upstream and downstream radia-
tion. This is characteristic of thickness noise, although

steady-loading rotational noise could also be present at
the fundamental frequency. It is clear that the upstream

sound was greater than the downstream sound.

Figures 26(a)-(c) show the effect of the Y-tail,

V-tail, and I-tail on the sound pressure trace to the side of

the propeller (0 = 96*). The data show that the Y-tail and
V-tail interactions were similar and had little effect on

the fundamental shape of the pressure signature. This is

consistent with the spectra (fig. 18(b), for example),

which showed little effect of the empennages on the first

several harmonics of blade-passage noise. Ahmadi (1984)

came to a similar conclusion in a study of blade-vortex
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interactionswith a model helicopter tail rotor. The

details of the pressure signatures in figures 26(a)-(c)

were changed by the two empennages, however, which

caused changes in the higher harmonics of the spectra. The

I-tail altered the peak of the pressure time mace in a dra-

matic fashion, which is consistent with the spectral plots

(fig. 22(b)) and the high interaction noise in the higher
harmonics. The time domain data illustrate that the

Y-tail and 1-tail had different interaction effects. It is

proposed that these differences may be explained by

directivity effects dictated by the azimuthal orientation

of the empennage. This will be explored in the next
section.

Figures 27(a)-(c) and figures 28(a)-(c) show the

effects of the three empennages on the time signatures in

the upstream and downstream directions, respectively. In
the upstream direction (figs. 27(a)-(c)), the Y-tail had a

somewhat greater effect on the sound radiation than the

V-tail did, presumably because of the weak dorsal fin

wake interaction with the propeller. The magnitude of

the time trace with the V-tall installed was comparable

to the propeller-alone noise, although the differences in

signature shape resulted in higher harmonic interaction

noise (fig. 20(a)). Downstream (figs. 28(a)-(c)), the

interaction noises from the three empennages were fairly

similar. In general, the upstream noise was somewhat
stronger than the downstream noise.

Comparison of acoustic spectra and directivity-

The acoustic directivity showed that (1) in the plane of

the propeller, the interaction noise tended to radiate in

the direction normal to the empennage surface, with a

maximum in the direction of the advancing blade; and

(2) in the horizontal plane, the interaction noise from a

vertical empennage (I-tail) radiated fairly uniformly in

all directions. These and related results will be explained

in the following discussion.
Comparison plots of the harmonic levels for the

three empennages at similar empennage/propeller spac-
ings are shown in figures 29(a)-(f). Figures 29(a)-(c) cor-

respond to propeller/empennage spacings of 232 to

251 mm and figures 29(d)-(f) correspond to spacings of

111 to 175 mm. Because of the larger chord, the
normalized 1-tail spacing, xTc', was smaller than that of

the other empennages in these comparisons. The harmonic

levels from the Y-tail and V-tail were very similar since

the only difference between the two configurations was

the dorsal fin, which had a relatively weak wake, as previ-

ously discussed.

When the harmonic levels of the 1-tail are compared

with those from the other empennages in figure 29, the
data do not show a consistent difference in noise in the

fast five or six harmonics. In the higher harmonics, how-

ever, the propeller noise from the I-tail interactions radi-

ating upstream and downstream were 5-15 dB lower than

from the other empennages. In the plane of the propeller

(0 = 96°), however, the I-tail generated the most noise in
the higher harmonics by around 5 dB because of the

decrease in Y-tail and V-tail noise (figs. 29(c) and (0). In

other words, the I-tail-induced noise was fairly uniform
in all directions, but the Y-tail and V-tail noise decreased

in the plane of the propeller.

These directivity effects indicate that pusher-

propeller noise varies in both the horizontal plane (0)
and the vertical plane (tp) containing the propeller. The

horizontal directivity of the propeller-alone noise

clearly shows the maximum noise radiation (at low fre-

quencies) in the plane of the propeller (see fig. 18(b)).

Figures 29(a)-(c) show that with the empennages in place
the lower harmonic noise is still maximum in the plane

of the propeller, but radiation of the harmonic levels for

n > 4 depend on the empennage geometry. The I-tail direc-

tivity is more or less uniform whereas the Y- and V-tail

directivity is stronger upstream and downstream than in

the propeller plane. Examination of the experimental

setup shows that the in-plane microphone 12 was 30 °

above the horizon looking from the propeller, whereas
the upstream and downstream microphones 9 and 8 were

at the same height as the propeller. If we consider the

normal vector of each empennage surface, we find that

microphone 12 was closer to the I-tail normal vector

than either of the two upper surfaces of the Y-tail. Thus,

if the propeller interaction noise tended to radiate in a

direction parallel to the empennage normal vector, the
Y-tail noise at microphone 12 would be lower than the

1-tail noise, which is what was measured. This directivity
pattern is consistent with a dipole noise source on the

propeller blade, which is more or less perpendicular to

the chord, and has its greatest strength when the blade

_ through the empennage wake.
In other words, the noise variation in the vertical

plane containing the propeller depends on the angle

formed at the propeller axis between the span of an

empennage section and the microphone direction. Block

and Gentry (1986) showed that the noise from an

upstream pylon was minimum along a line parallel to the

pylon span. Figures 30(a)-(d) are acoustic directivity

plots in the plane of the propeller acquired by operating

the model with I-tail upright and then rolled 90 ° onto its

side. That gave eight noise measurements on a circle using

four microphones. The first four harmonics of blade-
passage frequency show little variation with azimuth

(fig. 30(a)). The higher harmonics in figure 30(b),

however, show a directivity peak between 210 and 270 °

(270 ° is to the left facing upstream) that is consistent
with the results of Block and Gentry (1986), at least on

one side of the model. That is, the peak interaction noise

in the vertical plane radiates perpendicular to the

empennage surface. The lack of a clear peak at 90° suggests



thatthenoise was greater on one side of the empennage

than on the other. And of the two sides, the greatest noise

occurred along a surface-normal vector pointing in the
direction of the advancing blade which just passed the

empennage trailing edge. The Y-tail noise directivity in

figure 30(d) shows maximum noise for higher harmonics

occurring at 9 = 180 and 300* (and a minimum at 240*

where microphone 12 was located), which agrees roughly
with acoustic lobes to be expected from the blades

passing the upper empennage surfaces.
To summarize the directivity effects, the data

showed that in the vertical plane containing the

propeller:
1. The maximum interaction noise in the higher har-

monics tended to be normal to the empennage surface, and

the minimum noise was parallel to the empennage sur-
face. The lower harmonic directivity did not show a clear

pattern.

2. Along the surface normals, the greatest higher
harmonic noise occurred in the direction of the advancing

blade that just passed the empennage trailing edge.

In the horizontal plane:

1. The propeller-alone noise was maximum to the

side of the propeller and dominated the empennage/

propeller-interaction noise in that direction. This is
indicative of blade-thickness noise and steady-loading

noise.

2. The higher harmonics of interaction noise (n > 4)
radiated fairly uniformly in all directions for the I-tail,

the only empennage surface that was perpendicular to the

microphone array.
3. The low propeller in-plane noise from the Y- and

V-tails (n > 4) was related to the orientation of the upper

surfaces, which put the in-plane microphone in a weak

radiation direction (see item (1) above).

Tail loading- Increasing the empennage angle of

attack and, thereby, its loading should increase the wake

properties which cause the empennage/propeller-

interaction noise. This was verified by increasing the
Y-tail incidence from 1 to 6 °, as measured in the plane

perpendicular to the surface near the tip, and then

operating the propeller in the wake. Figure 31(a) shows
that the harmonic levels at 0 = 15" increased 3-5 dB

because of higher tail incidence at all but the second
harmonic. The data were acquired with a small

empennage/propeller spacing of 112 mm. With a 305-ram

spacing, the higher tail incidence caused the noise to

increase only 1-5 dB as shown in figure 31(b). These
interaction effects were slightly stronger upstream and

downstream of the propeller than to the side.

Empennage/propeller axial separation-An

important objective of this study was to measure the

propeller noise variation as the spacing between the

empennage trailing edge and propeller was varied. Fig-

ure 32(a) shows that the noise at 0 = 15* decreased as the

Y-tail/propeller spacing was varied from 135 mm to
600 mm, although the trend is confused by data scatter.

Figure 32(b) shows a weaker effect of empennage spacing
on the noise at microphone 12 in the propeller disk plane.

Figure 32(c) gives a clearer picture at 0 = 140" and indi-
cates that the noise at all harmonics decreased as spacing

increased. The mean spacing varied from 0.38 to

1.99 chords. The interaction noise trends upstream

(0 = 15") and downstream (0 -- 140") were more or less

similar except for the scatter in the upstream microphone
data. The I-tail results were similar except that, because

of the large chord of the I-tail, the empennage/propeller

separation distance normalized by chord was smaller for
the 1-tail case. Figure 32(d) shows that the closest

normalized spacing of 0.16 caused the interaction noise
from the I-tail to go up several decibels compared to the

larger spacings.
The separation effect is easier to see in plots of noise

decay versus distance at 0 = 140" for blade-passage har-

monics 1-4 in figure 33(a) and harmonics 5-8 in fig-

ure 33(b). The changes in noise are plotted relative to the
harmonic levels recorded with the closest spacing of

x'/c" = 0.38. In general, there was a steady decay of sound

of around 3-5 dB as the spacing was increased from 0.38 to

1.0 mean chord. Beyond a spacing of 1.0 chord, the sound

decay was nil except for the highest harmonic. Thus, these

limited data suggest that the empennage/propeller inter-

action is strong for spacings less than an average empen-

nage chord, and become rapidly weaker at greater spac-

ings. This is similar to fan rotor/stator interaction

effects reported by Kramer et al. (1972).
Block and Gentry (1986) measured the noise of an

SR-2 pusher propeller interacting with an upstream

pylon using gap-to-pylon chord spacings of 0.1 and 0.3,

which are considerably smaller spacings than were used

in the present study. They showed that increasing the

normalized spacing from 0.1 to 0.3 caused the forward-
radiated noise to decrease around 10 dB and the aft-radi-

ated noise to decrease around 5 dB. We didn't see those

kinds of differences, upstream and downstream. But if we

use their average noise decrease of 7.5 dB, we can combine

their results with ours providing we extrapolate from

x'/c" = 0.3 to 0.38. Figures 33(a) and (b) indicate that such

an extrapolation would give roughly 2.5 dB decay from

x'/c" = 0.3 to 0.4. Thus, if the results of Block and Gentry

(1986) and the present study are consistent, one could

conclude that pusher-propeller noise decreases around

10 dB as the empennage-to-propeller spacing increases

from 0.1 to 0.4 empennage chord, and decreases another

3-5 dB as the spacing increases to 1.0 chord. Beyond that

spacing, the interaction noise is small in most cases (an

exception was the eighth harmonic in figure 330a), which

may be anomalous). The I-tail data taken as close as
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x'/c'= 0.16 are consistent with the above results. A

summary plot showing that noise decay is given in
figure 34.

Empennage/propeller vertical separation-The
vertical location of the propeller relative to the fuselage
tail cone was varied by moving the motor support strut
up and down. The Y-tail was on the model. Figure 35
shows that displacements of 76 mm, up or down, affected
the noise radiation, but not in a clear manner. Some har-

monics went up and some went down. Examination of all
the microphone data indicates that with the propeller hub
76 mm below the fuselage cone, the noise increased 1-3 dB
at many harmonics. On the average, that location caused
the most interaction noise.

Correlation of Acoustics and Aerodynamics

Wake deficit- The aerodynamic measurements
reported by Home and Soderman (1988) included surveys
of the empennage mean-wake velocity distribution with
and without the propeller operating. It was discovered
that the propeller did not have a significant effect on the
wake properties aside from an acceleration of the wake
into the propeller. On the other hand, the acoustic results
reported here show that the wake had a strong effect on
the propeller noise radiation.

Figure 36 shows typical wake-normalized velocity
profiles measured with a pitot/static-pressure probe at
approximately the propeller tip height (y = 305 mm) and
at empennage/probe separation distances (x) from 7 6 top
264 mm. The propeller was removed. The wake profile
started with a strong, narrow deficit and gradually
broadened and weakened as it moved downstream, as
expected. Both parameters, wake deficit amplitude and
wake width, could affect noise from the propeller. The
magnitude of the wake deficit affects the magnitude of
the unsteady propeller loading, which of course radiates
as noise. And, narrow flow distortions cause rapid
changes in blade loading and thereby generate propeller
noise over a broader frequency range than do wide flow
distortions. Other flow surveys, including more Y-tail
wake measurements, are presented by Home and
Soderman (1988).

Figure 37 summarizes the decay of the maximum

wake deficit, U_max of the 1-tail and Y-tail with stream-
wise distance. Urnax is the maximum normalized wake
deficit, U, determined from plots such as figure 36. The
wake intensity decayed rapidly out to a distance of
100 mm (or around 0.25 to 0.33 empennage chord).
Beyond that distance, the decay rate with distance was
much more gradual. Note that the Y-tail wake was
weaker than the 1-tail wake because of the smaller chord

and thickness of the Y-tail. This is consistent with the

theoretical wake-deficit model of Soderman and Home

(1988), which showed that Ureax has the following
functional relationship to empennage chord, drag
coefficient, and distance downstream.

/. -_1/2

 maxo /cC /
t2x )

(2)

Figure 38 shows the decay of wake width with dis-
tance from the two empennages, where the wake width,
bw, was measured at the mid-height of the deficits. The
wake-width spread is much more linear than is the peak-
velocity deficit decay. The wake width increased linearly
from about 8 mm near the empennage trailing edge to
about 20 mm at a distance of 450 mm downstream. When

the aerodynamic wake decay data are compared with the
acoustic decay data (fig. 34), it appears that the wake-
deficit-magnitude decay correlates better with the acous-
tic variation than does the wake-width decay data. Both
the wake-deficit magnitude and the propeller noise decay
rapidly as the propeller is moved downstream 0.5 empen-
nage chord from the empennage trailing edge.

Turbulence- Propeller acoustic radiation consists
of harmonically related tones and broadband noise. The
harmonic components can be related to propeller interac-
tions with the Steady (uniform and nonuniform) inflow-
velocity field. The turbulent velocity field, which con-
tributes to the broadband noise, also can affect the har-
monic noise if-the-t_'bulent eddies have sufficient length

scale and amplitude to induce nearly periodic blade
loading.

Figures 39(a)-(c) show the turbulence in the x, y, and
z directions measured with a hot wire during surveys
through the I-tail wake. The turbulence values u', v', and
w" are normalized by the free-stream velocity U**. The
surveys were made cross stream at several locations aft
of the empennage in a manner similar to the wake mean-
velocity surveys. The data indicate that the maximum
turbulence occurred in the center of the wakes. At a dis-

tance x_ = 44 mm downstream of the empennage trailing
edge, t_e maximum normalized turbulence intensity,

w'/U.., was 0.05, and decayed to 0.03 at Xp-- 288 mm.
Since the decay with distance was fairly gradual com-

pared to the rapid decrease in propeller noise over that
distance, it is likely that the turbulence was not a strong
factor in the generation of noise harmonics 1-8.

Typical frequency spectra (10 log (rms voltage2))
from a single 45* wire are presented in figure 40. The
spectra were generated with a constant-bandwidth
analyzer set at a nominal 25-Hz filter width. Data below
2 Hz were filtered out. The data were acquired near the
propeller tip height (Y = 305 ram), inside and outside the
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vertical tail-fin wake at two streamwise locations. The

propeller-on data were acquired 106 mm upstream of the
propeller tip, and the propeller-off data were acquired
274 mm upstream of the propeller station. Those two
survey stations were 277 mm and 109 mm downstream of
the vertical fin, propeller on and off, respectively. The
spectra outside the wake (76 mm from the center of the
wake) show strong periodic disturbances from the pro-
peller. The peaks in the spectrum occur at multiples of
the blade-passage frequency, which was 550 Hz (number
of blades rimes revolutions per second). The hot-wire
spectra in the wake are much more broadband, although
the propeller disturbances are visible at the first two
harmonics of the propeller blade-passage interactions.
The peak in the wake spectrum at 1.53 kHz corresponds to
a disturbance period, T, of 6.54 x 10-4 sec/cycle (T = l/f).
If one assumes that that disturbance is related to a turbu-

lent eddy traveling at a velocity equal to Uwake in the
center of the wake (40 m/sec), then the eddy length, L, can
be computed from

L= Uwake x T= 40 x 6.54 x 10-4
= 0.0261 m or 26 mm (3)

It should be noted that this eddy length is roughly com-
parable to the measured wake width at the mid-height of
the wake deficit (see fig. 38). If that eddy moves at
40 m/sec, it would pass through the blade disc before two
successive blades could intersect the eddy. Thus, the tonal
contribution from propeller interaction with turbulence
in that part of the turbulence spectrum would be nil.
Eddies at lower frequencies would have adequate length
for multiple blade intersections, but the in-wake data of
figure 40 (propeller off) shows a random distribution of

turbulence energy: no coherent eddy scale can be clearly
seen outside the broad peak at 1.53 kHz. Furthermore, the
turbulence decay with distance did not match the noise
source decay with empennage/propeller spacing. Hence,
turbulence was not a strong factor in the periodic noise
generation, although it did influence the broadband noise
levels slightly as evidenced by the small increase in high-
frequency broadband noise resulting from installation of
the various empennages.

As expected, the turbulence intensities in the wake
were much stronger than those out of the wake. The dif-
ference in turbulence level, propeller on and propeller
off, was due to the unequal distance from the empennage
to the hot wire.

Implications for Propeller Noise Prediction

One of the objectives of the study was to compare the
experimental results with an analytical noise-prediction
method to see whether the pusher-propeller case could be
properly modeled. Most propeller noise-prediction
methods consider the propeller to be operating in free air
with no in-flow disturbances. This is the usual situation

for a tractor propeller. However, methods exist for pre-
dicring the unsteady loading noise. Jonkouski, Home, and
Soderman (1983) describe a simple dipole noise model
resulting from ingestion of a small gust by a propeller.
Viterna (1981) describes a more general equation for
unsteady loading noise of a wind turbine in a tower wake
using the theory of Lowson (1970). Lowson's theory
predicts radiated acoustic pressure by a Fourier transfor-
marion of the blade force variation during the blade revo-
lution. A lift response function of Filotas (1969) (see
also Blake, 1986) can be used to determine the blade

response to the empennage wake intersection. Estimates
of blade-passage harmonic noise levels were made using
Vitema's method after replacing his simple blade-
loading model for a wind turbine, which is not strictly
correct for a thrusting propeller, with the lifting line
theory of Larrabee and French (1983), developed for the
estimation of propeller performance. Given the in-flow
velocity distribution of the propeller (from Home and
Soderman, 1988), the blade loads at 20 radial stations
were computed for each azimuthal position specified. The
steady and unsteady load distribution was then trans-
formed into radiated noise. A computer code was devel-
oped for the aerodynamic loading and noise prediction and
is listed in the Appendix.

Figure 41(a) shows the computed and measured pro-
peller in-plane harmonic noise levels with and without a
wake interaction from the I-tail. The propeller/
empennage spacing was x'= 89 mm. Because the analytical
model did not include thickness noise, the predicted noise
falls a few decibels below the measurements, but has the
same roll-off with increasing harmonic number as the

data. The important interaction effects are predicted. That
is, the predicted first three hai'monics of blade passage
noise are not affected by the wake, but the higher har-
monic levels increase because of wake interaction. This

agrees with experimental results of this study. Fig-
ure 41Co) shows similar agreement between the theory
and data for upstream noise radiation. Therefore, pusher-
propeller noise predictions must include unsteady load-
ing effects. Fortunately, this simple analysis indicates
that the predicrion should not be difficult if the spanwise
blade loading and loading variation around the propeller
disk can be estimated.
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CONCLUSIONS

Measurements of pusher-propeller noise in the

NASA Ames 7- by 10-Foot Wind Tunnel show that the

interaction of empennage wakes with the propeller had a

strong effect on the radiated noise above the first few

harmonics of the blade-passage noise. It was deduced that

the noise was generated by unsteady blade loads on the

propeller as the propeller passed through the mean veloc-

ity deficit of the wake. The turbulence in the wake had

only a minor effect on the propeller broadband noise. The

f'wst few harmonics of in-plane noise were dominated by

thickness and steady-loading noise. The higher harmonics

of interaction noise dominated the propeller noise in all
directions evaluated. The propeller in-plane noise was

maximum in a direction perpendicular to the empennage

surface and minimum in a direction parallel to the span.

As the separation between empennage was increased

from 0.38 to 1.0 mean empennage chord length, the noise

decreased 3-5 dB. Beyond 1.0 chord, the noise decay with

increased spacing was small. For empennage/propeller

spacings less than 0.38 empennage chord, the results of
Block and Gentry (1986) are plotted with the data from

this study to show interaction effects over a large range

of separation distances. The interaction noise increased

when the tail loading was increased.

A simple theory for propeller noise, which incorpo-

rated an aerodynamic and acoustic unsteady loading
model, gave trends consistent with the measured data.

The inflow velocity distribution measured during the

empennage wake surveys was critical to the proper mod-

eling of the unsteady blade loading and radiated noise.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, California 94035-1000

March 14, 1990
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APPENDIX

Analytical Prediction of Propeller Blade Loading and Noise-Generation Computer Code WTPROP2

Program WTPROP2

The data acquired in this study were compared with

an analytical prediction of propeller noise. A pusher pro-

peller interacting with steady flow field and a superim-

posed wake was modeled. The basic theory and computer

code were developed by Viterna (1981) for the prediction
of wind-turbine noise, and has been modified by Soderman

and Home. Propeller noise at harmonics of blade-passage

frequency are computed from a Fourier analysis of the

blade force variation using the method of Lowson (1970).

However, the aerodynamic loading model of Viterna

(1981) for a wind turbine, which is not strictly suitable

for a thrusting propeller, was replaced by the lifting-line

theory of Larrabee and French (1983). Given a velocity
inflow distribution around the propeller disc (from the

wake studies of Horne and Soderman, 1988), the

propeller-loading variation is computed using the
method of Larrabee and French (1983) coupled with a

Filotas function for gust response. The theory of

Larrabee and French (1983) gives the radial distribution

of propeller blade loading at each azimuth location and is
listed in WTPROP2 as Subroutine PROPA. 1 That sub-

routine, in turn, contains Subroutines CLCD and
SIMPSN. The code is written in FORTRAN.

Inputs for WTPROP2 are described in the code and

are input as DATA elements or as line elements in the

program.

Inputs for Subroutine PROPA are read from an input
file PROPA.INP as follows:

Number of blades

Air density
Rotational speed (RPM)

Propeller radius

Forward speed
Chord distribution at radial stations

Pitch angle at radial stations
A1, first angle 2 in linear section of blade lift curve

(C/vs a)
A2, last angle in linear section of blade lift curve

(C t vs ct)
A3, angle at zero lift in linear section of blade lift

curve (C t vs ct)

C t at A1

C t atA2

Cd, drag coefficient at A3
02, dCd/d (ct 2) between A1 and A2

A sample input file is listed as PROPA.INP after

the main program.

A sample output of the PROPA subroutine is listed
as PROPA.OUT after the main program.

1The subroutine was written by F. Felker of the Rotary Wing
Aeromechanics Branch, NASA Ames Research Center.
2ctis the blade angle of attack in this appendix.
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C

C

C

C

C

C

C
C

C

C

C

C
C

C

C

C

C

WTPROP2

THIS PROGRAM CALCULATES THE SOUND LEVEL OF A PROPELLER

USING THE METHOD OF WTSOUND WIND TURBINE NOISE CODE

FROM NASA LEWIS (NASA TM-81737)

THE BLADE LOADING IS FROM LARRABEE AND FRENCH

P. SODERMAN 1/28/88

INPUT PARAMETERS

RPM
R

B

SO

DELTA
PHI

VHUB

CHORD

SLI

EFFR

DIMENSION

PROPELLER SPEED

PROPELLER RADIUS, FT

NUMBER OF BLADES

DISTANCE FROM PROPELLER, FT

AZIMUTH ANGLE, DEG (RELATIVE TO DOWNSTREAM DIRECTION)

ALTITUDE ANGLE, DEG (RELATIVE TO HORIZONTAL)

FREE STREAM VELOCITY AT HUB, FT/S
BLADE CHORD AT 3/4 RADIUS, FT

BLADE LIFT CURVE SLOPE, I/RADIAN

RADIUS AT SPANWISE STATION, FT

DB(30,20),PRMS(100),DBT(20),PSI(3600)

DIMENSION PSQ(30),DBHARM(30)

INTEGER IWK(7350),IER, MCOEF,NPSI

REAL*8 CKRS,BJ(1800),MPHFPS,CKRS2(30),BJO(30),SUMSQ

REAL*8 DTC(21),DPC(21),VHUB,RPM, CL(21),CD(21),ALPHA(21)

REAL*8 THRUST,POWER, EFFICIENCY, CT,CP,EFFR(21),RR(21)
REAL TA(3600),QA(3600)

REAL WK(7350),PSIN,FTA(3600),FTBi3600),FQA(3600),FQB(3600)

COMPLEX X,Y,Z,CI,C2,C3,C4,C5,C6,C7,C8,C9,CI0,TPP,DPP,DPN, SUM
COMPLEX TERM, TERM1, TERM2, SEARS (1800)
COMPLEX XXT (1800), XXQ (1800 )

CHARACTER*8 TIMEX

CHARACTER*9 DATEX

SOUND SPEED, AIR DENSITY
DATA C,RH0/I120.,0.00234/

GUST PARAMETER: 0. WAKE, I. NO WAKE
DATA GUST/0./

DATA NHAR/30/

DATA PSIN/3600./

IPRT=9

OPEN (UNIT=9, FILE = 'WTPROP2. OUT ',STATUS= 'NEW ',FORM = 'FORMATTED ')
REWIND 9

PI=3.14159

DEGRAD=PI/180 .

THESE VARIABLES CORRESPOND TO PUSHER PROP RUN 43.1 (I-TAIL)
RPM=8200.

R=0.97

B=4.

SO=-14.

DELTA ml 5.

PHI=0.

VHUB=205.
CHORD=0.29

ETA--I. 0E-30

X--(I.,0.)
Y=(0.,I.)

RPS =RPM/60.
DIA=2. *R

DELTA=DELTA*DEGRAD

PHI=PHI*DEGRAD
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4
C
C
C
C
C
C

C
C
C

C
C
C
C

OMEGA=RPM*PI/30.
DPSI=360./PSIN
NPSI=IFIX (PSIN)
LOOPCOUNT=I
TBSUM=0.
QBSUM=0.
CALLDATE(DATEX)
WRITE(IPRT,4) DATEX
FORMAT(2X,A9,/)

COMPUTEAERODYNAMICSOFBASELINEFLOWFIELD (NOWAKE)

COMPUTELOADINGAT 18 SPANWISESTATIONS

CALLPROPA(VHUB,RPM,DTC,DPC,CT,CP,THRUST,POWER,
*EFFICIENCY,CL,CD,ALPHA,EFFR,LOOPCOUNT,IPRT)

COMPUTETHRUSTANDTORQUEAT EACHSTATION

DOI00 I_3,20
LOOPCOUNT=LOOPCOUNT+I
TB=DTC(I)*0.05*RHO*RPS**2*DIA**4/B
PB=DPC(I) *0.05*RHO*RPS**3*DIA**5
QB=PB/(2.*PI*RPS)/B
TBSUM=TBSUM+TB*B
QBSUM=QBSUM+QB*B
RE=EFFR(I) *R
DRAG=QB/RE
VROT=RE*OMEGA
VRO=SQRT(VHUB**2+VROT**2)
ADVANCE-VHUB/(RPS*DIA)

FINDAZIMUTHANGLESFORWHICHBLADESECTIONINTERSECTSWAKE
ZDISTIS I-TAIL WAKEWIDTH

ZDIST=0.0328*I.2
YDIST=SQRT(RE**2+ZDIST**2)
ANGLE=ATAN(ZDIST/YDIST)/DEGRAD
ANGLE=FLOAT(IFIX((ANGLE+0.05)*I0.))/10.
ANGLE2=90.+ANGLE
ANGLE3-90.-ANGLE

CALCULATEUNSTEADYTHRUSTANDTORQUEDURINGONEREVOLUTION

DOII N=I,NPSI
PSI(N)=-(N-I) *DPSI

IF NOT IN WAKE USE BASELINE THRUST AND TORQUE

IF (PSI(N) .LT.ANGLE3.OR.GUST.EQ.I.) THEN

TA (N) _TB

QA (N) _QB
GO TO i0

END IF

VY=VHUB

IF (PSI(N).GT.ANGLE2) GO TO 7

CALCULATE EFFECT OF EMPENNAGE WAKE

WIND VELOCITY IS A FUNCTION OF ROTOR POSITION PSI

WAKE PROFILE FOR I-TAIL (RUN 43.1)

SPSI=ABS (PSI (N) -90. ) *DEGRAD

ZDIST=RE*SIN (SPSI) *i000.
VY=I26. 2821+1 .0525*ZDIST-0. 0881*ZDIST**2+
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C
C

C
C
C

C

C

*0. 0071*ZDIST**3-1. 083*ZDIST**4*I0 .** (-4)

IF (VY.GT.VHUB) VY=VHUB

VRO=SQRT (VY** 2 +VROT** 2 )

CALCULATE THRUST AND TORQUE VARIATION WITH AZIMUTH

COMPUTE AERODYNAMICS OF FLOW FIELD (WITH WAKE)

CALL PROPA(VY, RPM, DTC,DPC,CT, CP,THRUST,POWER,

*EFFICIENCY, CL, CD,ALPHA, EFFR, LOOPCOUNT, IPRT)

CONTINUE

TA (N) =DTC (I

PC=DPC (I) *0

QA (N) =PC/(2

)*0.05*RHO*RPS**2*DIA**4/B
.05*RHO*RPS**3*DIA**5

.*PI*RPS)/B

C

I000

C

I0 EPSIL=0.02

CALL TIME (TIMEX)
IF ( (PSI (N). GT. (ANGLE3-EPSIL). AND. PSI (N). LT. (ANGLE3+EPS IL) )

*.OR.PSI (N) .EQ. 90..OR. (PSI (N) .GT. (ANGLE2+I0.-EPSIL) .AND.

*PSI(N).LT. (ANGLE2+I0.+EPSIL))) THEN
WRITE (IPRT, 820) TIMEX

END IF

IF (((I.EQ.3) .OR. (I.EQ.II) .OR. (I.EQ.20)) .AND.

* ( (PSI (N) .GT. (ANGLE3-EPSIL) .AND .PSI (N) .LT. (ANGLE3+EPSIL))
*.OR.PSI (N) .EQ. 90..OR. (PSI (N) .GT. (ANGLE2+I0.-EPSIL) .AND.

*PSI(N) .LT. (ANGLE2+I0.+EPSIL)))) THEN
WRITE (IPRT,*) I

WRITE (IPRT, 930) PSI(N),VY

WRITE (IPRT, 932) PSI(N),ALPHA(I),CL(I),CD(I)

WRITE(IPRT, 934) PSI(N),TA(N),QA(N),TB,QB

WRITE (IPRT, 936) PSI (N) ,POWER, TBSUM, QBSUM, EFFICIENCY,

*ADVANCE

END IF
II CONTINUE

820 FORMAT (2X,AS)

930 FORMAT(IX,' PSI =',F5.1,' VY =',F6.1)

932 FORMAT(IX,' PSI =",F5.1,' ALPHA =',F5.2, ' CL _',F6.3,

*' CD -',F6.3)
934 FORMAT(IX,' PSI I',F5.1,' TA =',F6.3,' QA =',F6.3

*,' TB -',F6.3,' QB _',F6.3)

936 FORMAT(IX,' PSI =',FS.I,' POWER =',F6.1,' TBSUM =',

*F7.3,' QBSUM =',F7.3,/,13X,

*' ETTA -',F5.2,' ADV RATIO -',F5.2,/)

DETERMINE FOURIER COEFFICIENTS FOR THRUST AND TORQUE

NF=NPSI/2

MCOEF-NF

OPEN(UNIT-7,FILE-'FILE7.DAT',STATUS='NEW',FORM='FO RMATTED' )
REWIND 7

DO I000 K-I,NPSI

WRITE(7,*) TA(K),QA(K)

CONTINUE

CLOSE(7)
CALL FFTRC(TA, NPSI,XXT, IWK, WK)

CALL FFTRC(QA,NPSI,XXQ, IWK, WK)

DO 21 K=I,NF+I

XXT (K) _-CONJG (XXT (K))

XXQ (K) =CONJG (XXQ (K))

IF(K.EQ.I) XXT(1)=XXT(1)/2.

IF(K.EQ.I) XXQ(1)=XXQ(1)/2.

FTA (K) =REAL (XXT (K) *2. )/NPSI

FTB (K) =AIMAG (XXT (K) *2. )/NPSI
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C
C
C
C

C
C
C
C

C

C
C
C

C

21

12

FQA(K)-REAL(XXQ(K)*2. )/NPSI
FQB(K)=-AIMAG(XXQ(K)*2. )/NPSI
CONTINUE

CALCULATEEFFECTOFUNSTEADYAERODYNAMICS
FILOTASAPPROXIMATIONTOSEARSFUNCTION

SEARS (I)-X
DO 12 NS"2,MCOEF
S IGMA=OMEGA* (NS- 1 ) *CHORD / 2./VRO

CSI = (i. +2. *PI*SIGMA)

CS2 = (i. -PI*'2/2 •/CSI) *SIGMA

SEARS (NS)- (X'COS (CS2) -Y'SIN (CS2))/SQRT (CSI)

IF (GUST.EQ. I.) SEARS (NS)=X

CONTINUE

DETERMINE RMS PRESSURE VARIATION FOR EACH HARMONIC

USING LOWSON'S EQUATION

NPMAX=0

SUMSQ-0 •

DO 30 NN=I,NHAR

CKNB=NN*B*OMEGA/C
CI=2. *X*CKNB*0 •35355/SO/PI

CKRS=CKNB*RE*S IN (DELTA)

CKRS2 (NN)--CKRS

CALL BESSEL FUNCTION

40

42

13

14

IF (EFFR(I).GT.0.15) GO TO 40

IF (NN.LT.NHAR+I) MCOEF=CKRS*5.
IF (NN.LT.20) MCOEF=CKRS*6.

IF (NN.LT.10) MCOEF=CKRS*9.

IF (NN.LT.5) MCOEF-CKRS*I2.

IF (NN.LT.3) MCOEF=CKRS*20.

GO TO 42

IF (NN.LT.NHAR+I) MCOEF=CKRS*3.

IF (NN.LT.20) MCOEF=CKRS*4.

IF (NN.LT.10) MCOEF=CKRS*6.

IF (NN.LT.5) MCOEF=CKRS*8.

IF (NN.LT.3) MCOEF=CKRS*I3.

IF (MCOEF.GT.NF) MCOEF=NF
CALL MMBSJN(CKRS,MCOEF,BJ, IER)

IF (IER.NE.0) THEN

MCOEF-MCOEF-I
GO TO 13

END IF

WRITE (IPRT, 14) IER,NN, CKRS,MCOEF

FORMAT(IX,'IER - ',I4, ' STEP =

*F7.4, ' MCOEF = ',I4,/)
BJO (NN)-BJ (I)
NBES=NN*B

C9=BJ(NBES+I)*X
CI0-NN*B/CKNB/RE*X

SUM-0.
NB=NN*B

NPLIM=MCOEF-I

',I4, ' CKRS - ',

DO 20 NP--I,NPLIM

IF (NP .GT.NPMAX) NPMAX=NP
PPHI-NP* (PHI-PI/2.)

C2=X*COS (PPHI) -Y'SIN (PPHI)

C6=X*COS (PPHI) +Y'SIN (PPHI)
NBESN=NN*B-NP

IF ((NBESN+I) .GT.-I) GO TO 15
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15

17

20

C
25

3O

C

80

I00

C

C

C

C

105

108

C

C

C

C3=-I. **ABS (NBESN+I) *BJ (ABS (NBESN+I)) *X
GO TO 17

C3=BJ (NBESN+I) *X
CONTINUE

NBESP-NN*B+NP

IF(BJ(NBESP+I) .LT.I.0E-35) BJ(NBESP+I)=0.
C7=BJ (NBESP+I) *X

IF (CABS (C3) .LE .ETA.AND .CABS (C7) .LE .ETA) GO

C4=COS (DELTA) *X
C5=NBESN/CKNB/RE*X

C8=NBESP/CKNB/RE*X

TPP_ (FTA (NP+I) *X+FTB (NP+I) *Y) *SEARS (NP+I)

TPN-- (FTA (NP+I) *X-FTB (NP+I) *Y) *SEARS (NP+I)

DPP- (FQA (NP+I) *X+FQB (NP+I) *Y) *SEARS (NP+I)

DPN- (FQA (NP+I) *X-FQB (NP+I) *Y) *SEARS (NP+I)
TERM 1=C2 *C3 * (C4 *TPP-C5 *DPP )

TERM2zC6*C7* (C4 *TPN-C8 *DPN)

IF (CABS (TERM1) .LE.ETA) TERMIz (0., 0. )

IF (CABS (TERM2) .LE. 1.0E-15) TERM2- (0., 0.)
TERM=TERM1 +TERM2

SUM=SUM+TERM

CONTINUE

TO 2O

Z=Cl* (SUM+C9* (C4*TB-CI0*DRAG))

PRMS (NN)_CABS (Z)

IF (PRMS (NN). LE. 0. ) PRMS (NN) =4. 177E-07

DB (NN, I)-20. *ALOGI0 (PRMS (NN)/4. 177E-07)

IF (DB (NN, I) .LT. 0. ) DB (NN, I)-0.

SUMSQ-SUMSQ+PRMS (NN) **2
CONTINUE

RMST-DSQRT (SUMSQ)

IF(RMST.NE.0.) GO TO 80
DBT (I) -0.

GO TO I00

DBT (I) =20. *ALOGI0 (RMST/4. 177E-07)

IF(DBT(I) .LT.0.) DBT(I)=0.
CONTINUE

COMPUTE TOTAL SOUND FROM ALL 18 SECTIONS OF BLADE

ASSUME IN PHASE PRESSURE ADDITION ALONG THE SPAN

DO 108 NN=I,NHAR
SUMMz0.

DO 105 I-3,20

PSQ(NN) _i0.** (DB (NN, I)/20.)
SUMM_SUMM+P SQ (NN)

CONTINUE

DBHARM (NN) -20. *ALOGI0 (SUMM)
CONTINUE

WRITE INPUT AND OUTPUT

WRITE (6,550)

IF (GUST.EQ.0) WRITE (IPRT, 555)
IF (GUST.EQ.I) WRITE(IPRT, 557)

WRITE (IPRT, 620) RPM
WRITE(IPRT, 630) R

WRITE(IPRT, 640) B

WRITE (IPRT, 650) SO

WRITE (IPRT, 657) VHUB

WRITE (IPRT, 659) DELTA/DEGRAD

WRITE(IPRT, 660) PHI/DEGRAD

TABULATE HARMONIC LEVELS
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C

C

C

C

WRITE(IPRT,2000)

DO158 I=3,11
DO157 NN=I,NHAR/3
WRITE(IPRT,2005)I,NN,DB(NN,I),I+9,NN, DB(NN,I+9)

157 CONTINUE
WRITE(IPRT,685)DBT(I),DBT(I+9)

158 CONTINUE
WRITE(IPRT,2006)
DO160 NN=I,NHAR
WRITE(IPRT,2007) NN,DBHARM(NN)

160 CONTINUE

900

DO900 I-I,NHAR
WRITE(IPRT,950)
WRITE(IPRT,951)
CONTINUE

550 FORMAT

555 FORMAT

557 FORMAT

620 FORMAT

630 FORMAT

640 FORMAT

650 FORMAT

657 FORMAT

659 FORMAT

660 FORMAT

685 FORMAT

2000 FORMAT
2005 FORMAT

2006 FORMAT

2007 FORMAT

950 FORMAT

I, CKRS2 (I) ,BJO (I) ,FTA (I), FTB (I), FQA (I), FQB (I)
REAL (SEARS (I)), AIMAG (SEARS (I))

*' FTA(I) - ',F7.4, ' FTB(I)

*,F7.4, ' FQB(I) -. ',F7.4)

951 FORMAT (IX, ' RE (SEARS (I)) =

CLOSE (9)
STOP

END

(/////,' WTPROP SOUND LEVEL PROGRAM - I TAIL RUN 43.1')

(/,' 120% WAKE WIDTH')

(/,' NO GUST CASE ************',/)
( ROTOR SPEED, RPM ',FI0.1)

( ROTOR RADIUS, FT ',FI0.2)

( NUMBER OF BLADES ',FI0.1)

( DISTANCE FROM ROTOR, FT',FI0.1)
( WIND SPEED AT HUB, FT/S ',FI0.1)

( AZIMUTH, DELTA, DEG ',FI0.1)
( ALTITUDE, PHI, DEG ',FI0.1)

( OASPL',FI0.0,gx, ' OASPL',FI0.0,//)

( HARMONIC SOUND LEVEL,dB' ,/)

(2X, I2,2X, I2, 6X, F5. i, 9X, I2,2X, I2,6X, F5. i)

(/,' TOTAL HARMONIC SOUND LEVELS, dB',/)

(2X, I2,10X, F5. i)
(IX,'I s ',I2,' CKRS = ',F7.4,' BJO(I) = ',F7.4,

= ',F7.4,' FQA(I) = '

',F9.7,' IM(SEARS(I)) = ',F9.7)

C*WWWWWW*WWWW*WWWW*WW*WWW****WWWWWWWWW**W*W***W**WWW***WWWWWWW*WW

SUBROUTINE PROPA (V, RPM, DTC, DPC, TC, PC, THRUST, POWER,

*ETA, CL,CD,ALPHA,RR, LOOPCOUNT, IPRT)
C

C

C

C

C

C

C

C

C

C

C

i0

PROGRAM TO ANALYZE THE PERFORMANCE OF AN ARBITRARY PROPELLER

AT A SPECIFIED THRUST OR POWER, AND ARBITRARY OPERATING CONDITION

METHODOLOGY BASED ON LARRABEE PAPERS

PROGRAM USES 21 RADIAL STATIONS: 0, 0.05, 0.I, ...... 0.95, 1.0

INPUT IS IN FILE "PROPA.INP"

OUTPUT IS IN FILE "PROPA.OUT

UNITS ARE RADIANS AND FT EXCEPT FOR SELECTED INPUT AND OUTPUT

(FOR USER FRIENDLINESS)
IMPLICIT REAL*8 (A-H, O-Z)

REAL*8 LAMBDA, N
DIMENSION CL(21),CD(21),ALPHA(21),RR(21),X(21),F(21),BIGF(21),

&CHORD (21) ,PHI (21), BETA (21), DTC (21) ,DPC (21) ,A(21) ,AP (21),

&GAM(21) ,W (21) , SIGMA (21)
COMMON/AIRDAT/ALPHAI,ALPHA2,ALPHA3,CLI,CL2,CDI,CD2

DATA PI/3.141592654/

OPEN(UNIT=I0,FILE='PROPA.INP',STATUS='OLD ')

REWIND I0

READ(10,10)

FORMAT (/////)
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2O
C

3O
C

40

C
C
C

VTEMP_V
READ(10,*) NB,RHO,RPM,RADIUS,V
VmVTEMP
READ(I0,20)
FORMAT(/////)

DO30 I-1,21
READ(I0, *) RR(I), CHORD(I), BETA(I)
CHORD(I)-CHORD(I)/12.
BETA(I)-PI/180. *BETA(I)
CONTINUE

READ(i0,40)
FORMAT(//)
READ(I0, *)AI, A2,A3,CLI, CL2,CDI,C2
ALPHAI--AI*PI/180.
ALPHA2=A2*PI/180.
ALPHA3=A3*PI/180.
CD21 (180./PI) *'2"C2

LAMBDA-V/RPM*60./2./PI/RADIUS

ADVANCE=LAMBDA* P I

INDUCED FLOW CALCULATIONS

DO i00 I=2,21
X(I) =RR (I) /LAMBDA

F (I) -NB/2./LAMBDA*DSQRT (LAMBDA**2+I.) * (i.-RR (I))

i00 BIGF (I) -2./PI*DACOS (DEXP (-F (I)) )
C

C FIND CORRECT PHI AND ALPHA BY ITERATING

C

DO 1000 I-2,20

ALPHATs5. *PI/180.

200 CALL CLCD (ALPHAT, CLT, CDT)

PHIT=BETA (I )-ALPHAT

SIGMA (I) _-NB*CHORD (I)/2./PI/RR (I)/RADIUS

RHSI=SIGMA (I)/BIGF (I)/4. * (CLT*DCOS (PHIT) -CDT*DSIN (PHIT)) /

&DSIN (PHIT) **2
RHS2--SIGMA (I)/BIGF (I)/4. * (CLT*DSIN (PHIT) +CDT*DCOS (PHIT)) /

&DSIN (PHIT) *DCOS (PHIT)

AT-RHSI / (i. -RHS I)

APT-RHS2/(I. +RHS2)
PHINEW=DATAN (LAMBDA/RR (I )* (i. +AT) / (I. -APT) )

DIFF=DABS (PHINEW-PHIT)

IF (DIFF.LE.0.000017) GOTO 900
ALPHAT-ALPHAT+ (PHIT-PHINEW)/2.

GOTO 200

900 PHI (I) -PHINEW

CL (I) =CLT

CD (I) =CDT

ALPHA (I) -BETA (I )-PHI (I )

A (I)=AT

AP (I) -APT
CONTINUE .....i000

C

C

C

C

COMPUTE THRUST AND POWER

DTC (I)_-0.

DPC (I) =0.

DTC (21)-0.
DPC (21) _0.

DO II00 I=2,20

DTC (I)=PI*'3/4.* ( (I-AP (I))/DCOS (PHI (I)) )**2*RR(I) **3*

&SIGMA(I) * (CL(I) *DCOS (PHI (I))-CD (I) *DSIN (PHI (I)) )

DPC (I) =PI*'4/4 .* ( (I-AP (I))/DCOS (PHI (I)) ) **2*RR (I) **4*
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ii00
C

&SIGMA(I)*(CL(I)*DSIN(PHI(I))+CD(1)*DCOS(PHI(I)))
CONTINUE

CALLSIMPSN(DTC,TC)
CALLSIMPSN(DPC,PC)
N=RPM/60.
THRUST=TC*RHO*N**2*(2.*RADIUS)**4
POWER=PC*RHO*N**3*(2.*RADIUS)**5/550.
ETA=THRUST*V/550./POWER

COMPUTECIRCULATIONDISTRIBUTION

GAM(i) s0.
GAM(21)_0.
DO1200 I-2,20
W(I)=DSQRT( (RPM/60.*2. *PI*RR(I) * (I-AP (I)) ) **2+

& (V* (I+A (I)) )**2)

1200 GAM (I) =W (I) *CL (I) *CHORD (I)/2.
C

C PRINT OUT INPUT

C

IF (LOOPCOUNT.GT.I) GO TO 2905

WRITE (IPRT, 2000 )

2000 FORMAT(2X, 'PROPELLER ANALYSIS PROGRAM'/2X, 'INPUT PARAMETERS'//

&2X, 'BLADE' , 6X, 'AIR', 5X, 'PROP' ,4X, 'PROP' ,4X, 'DESIGN'

&/2X, 'NUMBER' , 3X, 'DENSITY' ,3X, 'RPM' , 4X,

& 'RADIUS ',3X, 'VELOCITY ',

&/10X, 'SLUG/FT^3 ', 1IX,

&'FT' , 6X, 'FT/SEC')

WRITE (IPRT, 2100 )NB, RHO, RPM, RADIUS, V

2100 FORMAT (3X, I2,5X, F8.6, 2X, F6. I, 3X, F5.2,3X, F7.3)

WRITE (IPRT, 2200 )

2200 FORMAT (//10X, 'CHORD, ',5X, 'BLADE'/3X, 'r/R', 4X, 'INCHES',
& 5X, 'ANGLE ')

DO 2250 I=i,21

CHORD (I) -12. *CHORD (1)
BETA(I) _BETA (I) "180./PI

2250 WRITE (IPRT, 2300) RR (I) ,CHORD(I) ,BETA(I)

2300 FORMAT (2X, F5.3, 3X, F6.3,5X, F5.2)
WRITE (IPRT, 2350)

2350 FORMAT (//3X, 'ALPHA1 ALPHA2 ALPHA3 CLI CL2

& CDI CD2 ')

WRITE (IPRT, 2400) AI, A2, A3, CLI, CL2, CDI, C2

2400 FORMAT (2X, F8.4, IX, FS. 5, IX, F8 .5, IX, F8.5, iX, F8 .5, IX, F8.5, IX, F8 .5)
C
C PRINT OUT RESULTS

C

WRITE (IPRT, 2500)
2500 FORMAT(//2X, 'COMPUTED RESULTS'/4X, 'r/R CL CD

& PHI GAMMA dCT/dr dCP/dr ')

2600

C

CL(1)=0.

CD (i) -0.

ALPHA (1 )m0.

PHI (1)=PI/2.

CL (21) =0.

CD (21) -0.

ALPHA (21) =0.
PHI (21) =BETA (21) *PI/180.

DO 2600 I=1,21

ALPHA (I) =ALPHA (I) "180./PI

PHI (I) =PHI (I) "180./PI

WRITE (IPRT, 2700) RR (I), CL (I) ,CD (I) ,ALPHA(I) ,PHI (I), GAM (I),

&DTC (I) ,DPC (I)
CONTINUE

ALPHA
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2700 FORMAT (2X, F7.4,2X, F7.4,2X, F7.4, 2X, F7.4,2X, F7 .4,2X, F7 .4,
&2X, F7.4,2X, F7.4,2X, F7 .4)
WRITE (IPRT, 2800)

2800 FORMAT(/2X,'THRUST, LB POWER, HP EFFICIENCY

& J CT CP ')

WRITE (IPRT, 2900 )THRUST, POWER, ETA, ADVANCE, TC, PC

2900 FORMAT (IX, F8.2, 5X, F8.2, 7X, FI0 .4,5X, F6.2,5X, F5.3,5X,
&F5.3)

2905 CLOSE (I0)
RETURN

END

C

**************************************************************

SUBROUTINE CLCD (ALPHA, CL, CD)

C FINDS CL AND CD THAT CORRESPOND TO AN INPUT ANGLE OF ATTACK
C USING SIMPLE EQUATIONS
C WRITTEN FOR PROGRAM PROPA

C EQUATIONS FROM LARRABEE PAPERS

IMPLICIT REAL*8 (A-H, O-Z)

COMMON/AIRDAT/ALP HAl, ALPHA2, ALPHA3, CLI, CL2, CDI, CD2
IF(ALPHA.LE.ALPHAI) GOTO i000

IF(ALPHA.GE.ALPHA2) GOTO 2000

CL=CLI+ ((CL2-CLI) / (ALPHA2-ALPHAI) )* (ALPHA-ALPHA1)
CD_'CDI+CD2 * (ALPHA-ALPHA3) **2
GOTO 3000

1000 CL=DCOS (ALPHA) *CL1/DCOS (ALPHA1)

CD=DABS (DSIN (ALPHA))
GOTO 3000

2000 CL=DCOS (ALPHA) *CL2/DCOS (ALPHA2)

CD-DABS (DSIN (ALPHA))
3000 CONTINUE

RETURN

END

C

SUBROUTINE SIMPSN (DATA, RESULT)
C SIMPSON'S RULE INTEGRATION OF INPUT DATA

C WRITTEN FOR PROGRAM PROPA

C ONLY WORKS WITH DATA VECTOR 21 ITEMS IN LENGTH WITH AN
C INTERVAL OF 0.05

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION DATA (21)

RESULT=0.05/3. * (DATA (I) +DATA (21) +

&4. * (DATA (2 )+DATA (4 )+DATA (6 )+DATA (8 )+DATA (i 0 )+ DATA (12 )+

& DATA (14) +DATA (16) +DATA (18) +DATA (20) )+

&2. * (DATA (3 )+DATA (5 )+DATA (7 )+DATA (9 )+DATA (11 )+DATA (13 )+
& DATA (15) +DATA (17) +DATA (19)) )
RETURN

END
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PROPA.INP

PROPELLERANALYSIS
INPUTPARAMETERS

BLADE AIR
NUMBERDENSITY

SLUG/FT^3
4 0.002378

PROGRAM

PROP PROP AIR
RPM RADIUS VELOCITY

FT FT/SEC
8200.0 0.97 205.0

INPUTBLADEGEOMETRY

CHORD,
r/R INCHES

0.000 0.000
0.050 1.200
0.i00 3.000
0.150 3.600
0.200 3.660
0.250 3.670
0.300 3.670
0.350 3.670
0.400 3.670
0.450 3.670
0.500 3.670
0.550 3.670
0.600 3.650
0.650 3.620
0.700 3.600
0.750 3.530
0.800 3.480
0.850 3.350
0.900 3.160
0.950 2.790
1.000 0.000

BLADE
ANGLE
83 00
78 00
69 00
61 00
53 00
46 70
41 00
37 50
33 50
31 50
29 50
27 70
25 7O
24.20
22.70
21.30
19.70
18.70
18.00
17.00
16.90

INPUTBLADEAIRFOILAERODYNAMICCHARACTERISTICS
ALPHA1ALPHA2ALPHA3CLI CL2 CDI CD2
-8.0 I0.0 -1.5 -0.6 1.0 .005 .001175
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PROPA.OUT
PROPELLERANALYSISPROGRAM
INPUTPARAMETERS

BLADE AIR PROP PROP
NUMBERDENSITY RPM RADIUS

SLUG/FT^3 FT
4 0.002378 8200.0 0.97

DESIGN
VELOCITY
FT/SEC

205.000

CHORD,
r/R INCHES

0.000 0.000
0.050 1.200
0.I00 3.000
0.150 3.600
0.200 3.660
0.250 3.670
0.300 3.670
0.350 3.670
0.400 3.670
0.450 3.670
0.500 3.670
0.550 3.670
0.600 3.650
0. 650 3. 620
0.700 3.600
0.750 3.530
0.800 3.480
0.850 3.350
0.900 3.160
0.950 2.790
1.000 0.000

BLADE
ANGLE
83 00
78 00
69 00
61 00
53 O0
46 70

41 00

37 50

33 50

31.50

29.50

27.70

25.70

24.20
22.70

21.30

19.70

18.70

18.00

17.00

16.90

ALPHA1 ALPHA2 ALPHA3 CLI CL2 CDI CD2

-8.0000 i0.00000 -1.50000 -0.60000 1.00000 0.00500 0.00117

COMPUTED RESULTS

r/R CL

0.0000 0 0000

0.0500 0 0594

0.I000 0 1383

0.1500 0 1776

0.2000 0 1526
0.2500 0 1499

0.3000 0 1249
0.3500 0 1577

0.4000 0 1359

0.4500 0 1779

0.5000 0 1998

0.5500 0 2143

0.6000 0 2061

0.6500 0.2099

0.7000 0.2034

0.7500 0 1944
0.8000 0 1679

0.8500 0 1634

0.9000 0 1650

0.9500 0 1438

1.0000 0 0000

CD

0 0000
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

ALPHA PHI

0.0000 90.0000

0060 -0.5825 78.5825
OO88

0109
0095

0094

0082

0098
0087

0110
0123

0133

0128
0130

0126

0120

0104

0101

0102
0091

0000

0.3056 68.6944

0.7473 60.2527

0.4670 52.5330

0.4357 46.2643 6

0.1548 40.8452 6

0.5234 36.9766 8
0.2786 33.2214 8

0.7516 30.7484 ii

0.9981 28.5019 14

1.1606 26.5394 16

1.0690 24.6310 17

1.1108 23.0892 18

1.0390 21.6610 19

0.9373 20.3627 19

0.6382 19.0618 17

0.5878 18.1122 17
0.6058 17.3942 17

0.3671 16.6329 14

0.0000 16.9000 0

GAMMA

0 0000
0 6230

3 8979

6 5627
6 2941

8537

3147

8031
3281

3114

5389

8574

3594
7922

3442

2838

4139

2537

3267
0246

0000

THRUST_ LB
52.0745

FORTRAN STOP

POWER, HP

25.9487

dCT/dr

0.0000

0.0002

0.0039

0.0103

0.0136

0.0189

0.0211

0.0345
0.0376

0.0605

0.0822

0.1050

0.1184

0.1391

0.1546

0.1656

0.1600

0.1687

0.1794
0.1534

0.0000

dCP/dr

0 0000

0 0003

0 0038

0 0099

0 0127

0 0176

0 0196

0 0324
0 0354

0 0583

0 0808

0 1051

0 1195

0 1425

0 1600

0 1728

0 1674

0 1789

0 1941

0 1689

0 0000

EFFICIENCY J CT CP

0.7480 0.77 0.083 0.086
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Table 1. Propeller operating conditions and estimated performance

Blade angle Advance ratio Thrust coeff. Power coeff.

Windspeed, m/sec N,rpm 13,deg J Ct Cp

0 6000 6 0 -- --

0 8200 6 0 -- --
46 8200 16 0.57 0.05 0.04
62 6000 30 1.06 0.16 0.23
62 8200 21 0.77 0.08 0.09
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(a)

Figure 1. Model propeller, empennages, and fuselage in the Ames Research Center 7- by 10-Foot Wind Tunnel test

section. (a) Y-tail, (b) Y-tail empennage seen from below.
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(c)

Figure 1. Concluded. (c) Open test section and Y-tail with sound-absorbing panels used to minimize acoustic
reflections, (d) I-tail.
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(I-TAIL)
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Figure 2. Schematic of model in test section relative to inlet and collector. (a) Plan view, (b) elevation view.
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_ PROPELLER

DISC
Y-TAI L

--_ 120 cm_--

'/\ _"OTAT,ONO_
"-'L --_ / I PROPELLER

33 cm_9/c _ I

Y-TAIL, SIDE VIEW
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2g.5 cm

Y-TAIL, REAR VIEW

I-TAI L

(a)

_Fp.OPELLER

--_ _-8 cm I

I-TAIL, SIDE VIEW

Figure 3. Geometry of empennage. (a) Lookingdownstream,Co)dimensions.
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Figure 3. Concluded. (c) Chord distribution versus span station.
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Figure 4. Concluded. (b) Blade planform, (c) blade airfoil sections at 12 radial stations from the root to tip.
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(microphone 9) Y-tail, (b) O= 96 ° (microphone 12) Y-tail, (c) 0 = 140° (microphone 8) Y-tail, (d) O= 96 ° (micro-

phone 12) I-tail.
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Figure 33. Decay of blade-passage harmonic levels with
propeller/empennage normalized spacing (relative to noise
at closest spacing). 0 = 140 °, Y-tail installed,
Uo. = 62 m/sec, N = 8200 rpm. (a) Harmonics 1-4,
Co)harmonics 5-8.

.d

-5

-10 -

-15 -

.5
I

x']c'

1.0 1.5 2.0
!

DATA FROM

BLOCK AND GENTRY (1986)

DATA FROM
PRESENT STUDY

Y-TAIL

Figure 34. Summary plot of noise decay versus propeller/
empennage normalized spacing (relative to closest spacing
used by Block and Gentry of x'/c" = O.1). Noise decay is for
blade-passage harmonics 1-8. Data from present study are
for Y-tail installed. 0 = 140 °, Uo. = 62 m/sec,

N = 8200 rpm.
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Figure 35. Effect of vertical displacement of propeller
relative to fuselage centerline on harmonic noise levels.

0 = 15°, Y-tail installed, U,,. = 62 m/sec, N = 8200 rpm,
x'/c'= 0.83.
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Figure 36. Wake flow field of the I-tail in terms of the
mean axial velocity deficit profile at several downstream

stations (Xp). y = 305 mm, propeller off, U** = 46 m/sec.
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Figure 38. Wake width at mid-height of wake-deficit
profile plotted versus distance from the empennage.
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Figure 39. Turbulence distribution measured during cross-
stream surveys through the I-tail wake at y = 305 mm;
propeller off. (a) Axial turbulence, u'/U**, Co) cross-
stream turbulence in y-direction, v'/U**.
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Figure 41. Predicted and measured propeller harmonic noise levels with and without empennage/propeller interaction.
(a) In-plane noise, Co) upstream noise.
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