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ABSTRACT

Because of the possibility of adverse interaction between the control
system and the structural dynamics of large, flexible spacecraft, great
care must be exercised to ensure stability and system performance.
Because of the high cost of insertion of mass into low earth orbit, it is

prudent to optimize the roles of structure and control systems
simultaneously. Because of the difficulty and the computational burden in
modeling and analyzing the control/structure system dynamics, the total
problem is often split and treated iteratively. The awkwardness and
inaccuracy of this approach can lead to poor designs.

It would aid design if the control/structure system dynamics could be
represented in a single system of equations. Heretofore this has not been
possible. With the availability of the software PDEMOD it is now possible

to optimize structure and control systems simultaneously. The
distributed parameter modeling approach enables embedding the control

system dynamics into the same equations for the structural dynamics
model. By doing this the current difficulties involved in model order
reduction are avoided.

The NASA Mini-MAST truss is used as an example for studying integrated
control/structure design. Comparisons are made for (1) structure
without control, (2) controls only, and for optimal combinations of
structure and control. Both proof-mass and torque-wheel actuators are

considered. The results give insight with regard to the essential factors
in trading structure and control for space applications.

INTRODUCTION

Certain future space missions will be performed by large, flexible
spacecraft. Because of the high cost of insertion of mass into low earth

orbit, it is prudent to optimize the design of both the structure and
control systems. The current practice is to create a finite element model
of the structure and to use a reduced order modal model for control

synthesis. Unfortunately, this disjoint procedure is inaccurate and is an
impediment to integrated design. There is a need for a dynamics model



which includes both structural and control dynamics which is
parameterized in terms of the design variables.

Distributed parameter modeling has been shown to be quite accurate for
modelling (reference 1.) the dynamics of the first six modes of portal
frames. The root-mean-square error in frequency was about 7/10 of one

percent for the first six modes of two experimental configurations. The
difficulty in modeling complex structures has been an obstacle to the use
of distributed parameter modeling. The development of finite element
software has resulted in the wide-spread practice of modeling flexible
structures with finite element models. The availability of modeling
software such as DISTEL (reference 2.) and BUNVIS-RG (reference 3.)

offers the alternative of modeling complex configurations with distributed
parameter models.

Another advantage of distributed parameter modeling is that control and
sensor dynamics can be incorporated into the equations of motion of the

structural dynamics. Again, the burden of assembling the necessary
equations for complex configurations has become routine because of the
capabilities of the software PDEMOD (reference 4). It is now possible to
optimize structure and control systems simultaneously (references 5. and
6.) for complex spacecraft because of the incorporation of their dynamics

into a single system of equations. The distributed parameter modeling
embeds the control system dynamics into the same equations for the
structural dynamics model so that model order reduction is not

necessary. The resulting structures/controls model is particularly well
suited for integrated design.

In this paper only preliminary comparisons are made for the Mini-MAST
truss (references 7. and 8.) for (1) structure without control, (2) controls

only, and for optimal combinations of structure and control. Both proof-

mass and torque-wheel actuators are considered. The results give insight
into the essential factors in trading structure and control for space
applications. Subsequent, more in-depth study will consider the
transient dynamics aspects using PDEMOD and will use the optimization
techniques of Fogel and Holland (references 9. and 10.).

DISCUSSION

The software PDEMOD enables the generation of models of complex

structural configuration which include the dynamics of the control
system as well as the structural dynamics. This is done using partial
differential equations to describe the dynamics of flexible beam elements
which together with rigid body elements form a connected network of
components of the structure. The coefficients of the sinusoidal and

hyperbolic functions for each flexible element give the mode shapes. The
sensed motion and control forces and moment are expressed in terms of



the same parameters and the influence of control on the configuration is
represented by terms added to the equations for the structural dynamics.

Structural Dynamics

First, the structural configuration is viewed as an assembly of flexible and
rigid elements. It is then necessary to indicate the connectivity of the
elements. This is done by giving the identification of the rigid bodies at
either end of each flexible beam element and the related points of
attachment. The alignments of the flexible beam axes must also be given.

The axis for each rigid body is that of a particular, attached beam.

The next input needed is the stiffness {EIx, Ely, EAz, Ely) and mass (m/L,

Iy/L} characteristics and the length of each flexible beam element. The
mass and inertia of each rigid body is needed to complete the
information required for the structural dynamics model.

Control Dynamics

The addition of feedback control does not increase the order of the

system matrix unless the applied force or moment is applied to the
interior of a flexible beam element. In such a case it is necessary to add a
node or rigid body with negligible mass at that point. In other cases it is
only necessary to add terms to the matrix elements which already exist.
The dynamics of the sensors and actuators are inserted as transfer

functions multiplying the additional terms. The additional terms are
located in the rows which correspond to the body to which the control
force and/or moment is applied, and in the columns which correspond to
the beam elements which contain the location of the sensed motion.

Optimization

In order to perform optimization for parameter estimation or for criteria
involving structural dynamics, sensitivity functions are usually required.
The sensitivity functions relate the change in the criterion to changes in
the parameters involved in the optimization. Although it is possible to

express in closed form these derivatives it is most unwieldy to evaluate
the expressions. This is because derivatives must be taken of the
determinant of the system matrix which can be quite large. It is more
practical to approximate the derivative numerically by the ratio of the

change in the criterion to the change in the parameter. This was the
approach used in reference 8. for a parameter estimation application.
Changes in the modal frequencies for each of the model parameters was
generated numerically.



Although parameter estimation is an example of optimization, it is the
optimal, integrated control/structural design that we now turn our
attention. The selection of the design criterion and the corresponding
conditions or constraints are of paramount importance. An ill-posed
problem can easily result in nonsensical results which bear no relation to
the actual design problem. Perhaps the most suitable design criterion for
the integrated control/structure problem would be the life-cycle-cost of
the entire system, subject to a set of system performance and structural
specifications. In many cases it suffices to consider only the total
structure and control system mass.

There are alternatives to optimization schemes which require the
sensitivity functions mentioned earlier. Genetic algorithms (GA's), as
introduced by Holland (reference 10), are one form of directed random
search. The form of direction is based on Darwin's theory of the "survival
of the fittest". In GA's a finite number of candidate solutions or designs
are randomly (or heuristically) generated to create an initial population.
This initial population is then allowed to evolve over generations to
produce new, and hopefully better designs. The basic conjecture behind
GA's is that evolution is the best compromise between determinism and
pure chance. GA's have the capability to solve continuous, discrete, and
mixed optimization problems.

There are four main operations in a basic GA: evaluation, selection,
crossover, and mutation. Evaluation is the process of assigning a fitness
measure to each member of the current population. The fitness measure
is typically chosen to be related to the objective function which is to be
maximized. No gradient or auxiliary information is used. Therefore, GA's
are more likely to converge to a global maximum than a hill climbing
algorithm, although no algorithm can guarantee convergence to the global
maximum. Selection is the operation of choosing members of the
current population to be parents for producing the next generation.
Selection is weighted towards the more fit members of the population.
Therefore, designs which are better as viewed from the fitness function,
and therefore the objective function, are more likely to be chosen as
parents. Crossover is the process in which design information is
transferred to the prodigy from the parents. Mutation is a low probability
random operation which slightly perturbs the design represented by the
prodigy. The mutation operation is used to retain design information
over the entire domain of the design space during the evolutionary
process.

INTEGRATED DESIGN PROBLEM

The integrated control/structural design problem to be considered is to
minimize the total system mass while limiting the response to a

disturbance force at the tip of the Mini-MAST truss. This will be
accomplished by the selection of the stiffness of the truss elements, the
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use of a proof mass actuator and a torque wheel actuator, both located at

the tip. The total system mass is increased when (1) the stiffness of truss
elements is increased, (2) the capacity of the proof mass actuator is
increased, and (3) the capacity of the torque wheel actuator is increased.
Prior to involving the software PDEMOD to calculate the dynamic
response of the actively controlled Mini-MAST to the disturbance force,
it is prudent to investigate the best mix of structural stiffness and the use

of active control in a more simple way.

The structural stiffness of a uniform Bernoulli beam is given by:

K = 3EI/L 3

Because the mass of the truss elements is proportional to their stiffness
the truss mass is:

Masstruss = Masstruss, o[EI/EIol[Lo/L] 3

Note that to keep the same resistance to a disturbance force applied at
the tip of the Mini-MAST the increased stiffness and corresponding mass
increases by the length to the third power.

Because the 66-foot Mini-MAST truss has 18 bays it is possible to alter
the stiffness of the truss elements as each bay to reduce the total mass
while achieving the same stiffness or resistance to a disturbance force at

the tip. The maximum saving that can be achieved appears to be about 17
percent.

A moving or proof mass actuator (PMA) can produce a force to oppose a
constant disturbance force but only for a relatively short period of time
which depends on the size of the proof mass and its stroke. Neglecting
the stationary mass the mass for the PMA can be shown to be:

MasspMA = .5*Force*Time 2/Stroke

Note that the mass of the proof mass actuator is proportional to the time

of application squared but does not depend on the truss length or
stiffness.

A rotating mass or torque wheel actuator (TWA) can produce a moment
which by reaction of the truss structure can oppose a constant
disturbance force but only for a relatively short period. The mass of the

TWA depends on the moment, maximum wheel speed and the time of
application. Neglecting the stationary mass the mass of the TWA can be
expressed as:

MaSSTWA = Moment*Time/(Wheel Speed*Radius 2)



A moment applied to the tip of the Mini-MAST produces a lateral
deflection which can be used to oppose a disturbance force. The moment

per deflection is given by:

Moment/Deflection = 2EI/L 2

The force per deflection is:

Force/Deflection = 3EI/L 3

The mass of the totque wheel actuator (TWA) capable of countering a

particular force for a specific time becomes:

MaSSTWA = .667*Force*Time*Length/(Max Wheel Speed*Radius 2)

Note that the mass of the torque wheel actuator is proportional to both

the time of application of the disturbance force and the length of the
Mini-MAST.

The problem now is to determine the combination of structural stiffness
and the sizes of the proof mass and torque wheel actuators which
minimizes the total mass.

MaSSTotal = Masstruss + MaSSpMA + MaSSTWA

The fundamental variables which determine the best mix is the time, T,

for which the disturbance force is applied and the length, L, of the Mini-

MAST truss. By examining different combinations of truss length, L and
the time, T, for which the disturbance force is applied the regions for
which the truss structure, the proof mass actuator, or the torque wheel
actuator is best in countering the disturbance force can be determined.
The result of such a study shows that the truss structure is best for large
values of the time for which the disturbance force is applied. The proof

mass actuator is best for long trusses, Under only limited conditions is
the torque wheel actuator best for countering disturbance forces.

CONCLUDING REMARKS

Distributed parameter models of structures have important advantages for

problems involving the active control of flexible structures. This is
especially true for repetitive lattice structures such as the Mini-MAST
truss because its dynamics can be accurately represented by only a few
parameters.

Until the advent of software for distributed parameter modeling of

complex flexible structures it was not practical to model complex
spacecraft configurations using distributed parameter models. Now the
software PDEMOD enables modeling complex configurations and can also



include the control system dynamics in the same equations. The need to
resort to model order reduction is eliminated because the closed loop
stability and system performance can be determined without ignoring any
of the modes.

This capability enables working integrated control/structures problems.
An example problem is examined in which structure and active controls
are used to counter the disturbance force at the tip of the NASA Mini-

MAST truss. The regions are determined in which structure, proof mass
actuators, and torque wheel actuators result in the minimum mass
system. Variations of this tradeoff between control and structure

considerations are being pursued.

The development of the PDEMOD software has been underway for about
one year. The formulation and coding has been completed for modelling

general three-dimensional configurations. Modal frequencies and mode
shapes have been generated for the Spacecraft Control Laboratory
Experiment (SCOLE) configuration and the Mini-MAST truss. Graphics
for drawing wireframes of the deflected configurations has been the most
recent addition. Transient response, transfer functions, Timoshenko
beam option and improved root-finding algorithms will be added during
the next year. Copies of the source code will be made available to anyone
interested in modelling new configurations or contributing to the

software development.
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INTRODUCTION

• Difficulties of Current Practice

• Advantages of Distributed Parameter Modeling

• Difficulties of Modeling Complex Structures

• Capabilities of PDEMOD Software

• Integrated Design Objective Functions

• Necessary Additions to PDEMOD

* Example Controls-Structures Design Problem

• Insights Offerred by Particular Tradeoffs

• Concluding Remarks
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Issues in Modeling Complex Structures

Finite Element Modeling

Excessive Complexity

• Parameter Estimation is Difficult

Model Order Reduction Required for

Control Analysis

Distributed Parameter Modeling

• Fewer Model Parameters

Parameter Estimation Straightforward

Closed-Loop StabilityAnalysis does not

Require Order Reduction
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Number of Model Parameters

Solar Array Example:

1000
Independent Modal

Characteristics

600

200
Interdependent Modal

Distributed

01

Characteristics
Parameter Model
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Number of Modes



Modeling Software
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Distributed Parameler Modeling

Flex Beam Element:s/Rigid Bodies

(Bend-x, Bend-y, Twisl, S/rclch)

- Parameter Estimation

lit 51.ruc/ural Damping

O Conl.rol Syslcm Dynamics

• Paramclric Sl.uctics



I Beam Model

y(L)

X(L- '/Z(L)

T(O)

Mx = Ely a_(O)

My =- ElxUx'_'(O)

Mz = Elyu_(O)

The Moments and Forces at (0) in Beam Axes are

Fx - EIyuy(O)

vy : - ElxUx'_o)

Fz : EAzu_'(O)

MBeam =

MK

My

_ Mz

FBeam

F_

Fy

rz_

]he sign oI the forces and moments at tile outboard

end of the beam are opposite to those el the inboard

end.



Beam # 2
Body # 2

Body # 1 Beam # 1

Beam #

3 Dimensional
Body #3

I

Flexible Beams(Bend, Twist, Elongate)

Rigid Bodies (Full Inertia Matrices)



I Partial Differential Equations )

Bernoulli-Euler Equations will be used for bending

m u x + E lxu x = 0

IntJy _ E lytJy = o

String Equations are used for elongation and

torsion.

.. ,_,

mu z • EAzU z = 0

plt_u ¥ + E l_J¥ = o

Examination of each equation will establish the

relationship between the "b'" parameters and

frequency, to.

From (mu x + Elxu x - o ) we get:

It

4
m m 2 Ux _ b x ElxU x

follows that

1II

(bxL --
mE



I Forces and Moments

The forces

Fbeam = PF

and moments

A X

Bx

Cx

D
X

Ay

By
Cy

Dy
A z
B Z

B

in body axes are:
m

M beam = PM

A X

Bx

Cx

Dx

Ay
By

Cy

Dy
A

Z

Bz

B
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Equations of Motion

Force Equations:

Moment Equations:

A, --Qq • TT_;_E{Tbeam 'PM + Rbeam _Tbeam tPF}
' bodyj bodyj bodyj

Constraint Equations:

T2u2(o)- R2T2u_co) = T1 ul(o) - RiTlu;(o)

_2_(o_ = _,o,co>



Body 1

Body 2

Body 3

Constraint

System Equations
i II I I I i

i

Beam 1

..... F..o.r..c.e_(_).
Moment(co)

..... .F..o.r.c_e..(_)
Moment(_)

0

u(L)
......u'_}........

Beam 2_
\

0

..... .F_.o.r..c..e..(¢9_)_
Moment(co)

..... .ff..o.r._c..e_L¢91
Mornen t(tz)

u(o)
.......,-_) ........

Characteristic Equation:

iA(co)l = 0



U X = Axsin([]z ) + Bxcos(Dz ) +

Cxsinh([_z) + Dxcosh(Dz )

rUx] /Ji2 Coefficients .....--.--,)
@/L, form State Vector ......,u = Uyl =Qu . ___

/ Trlgono.rnetric and-"_

_ Hyperbg_, LFunctiO_!?s _)

Similarly for u', Force, Moment, etc.



Control System t

Output feedback control systems can be modeled

directly using the structural model.

Collocated Force Control
I I

Fbody i = Kuu i +Koui

This controller would add

t e r Ill:

!.{
AAi,i - mi Ku' jmKu } Qui

Collocated Moment Control

J

Mbody i = Kt(u i -,-K¢(fJ_

This controller wou,ld add

term:

AAi,i = l-il{Ku_ + jmKu/} Qua.

to the appropriate

to the appropriate

Higher order compensation for controller can be

included as complex functions of m.

Uncollocated controllers would have the same form

but would have different indices to reflect the
locations of sensors and actuators.
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l l)imensionality /

Because 12 modal parameters are invlolved for each beam, A

like number of equations are involved in the eigen value

solution. The SCOI.E coniiguratlon is an example el such a simple

coniiguration. _ _ 4 )

12

The Mini-MAST, a cantilevered beam with lumped masses at the

tip and bay l 0 will involve 24 equations.

A hexagonal shape with bodies at each point and at its center

will involve 144 equations.

144

Clearly, numerical difficulties can be expected to limit the

complexity of a coniiguration that can be handled.



PDEMOD Schedule
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Configurations Modeled

Solar Arrly

Flight Experiment

Spacecraft Control

l, aboratory Experiment
Mini-MAST-

Sketches of the Three Spacecraft-Type Structures for which
Distributed Parameter Models are Consm.tcted.
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Figure 14. Schematics of Distributed Parameter Models for Bending and
Torsion of the Mini-MAST Truss.



Optimization*

a = _(o)TM-_(_(O)
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Genetic algorithms (GA's) are one form of directed random search. In GA's, a

finite number of candidate solutions are randomly genereated to create an initial

population. This initial population is then allowed to evlove overt generations to

produce new, and hopefully better designs. The basic motivation behind the

development of GA's is that they are robust problem solvers for a wide class of

problems. The basic conjecture behind GA's is that evolution is the best compromise
between determinism and chance.

GENETIC OPTIMIZATION

o Darwins "Survival of the Fittest"

o Related to Simulated Annealing

o Requires Function Evaluations (no Gradient
Information required)

o Seeks to Maximize a "Fitness" Index - related to

objective function

o Works with Multiple Designs Simultaneously

o Identifies "Nearly Optimal" Alternatives

o Suitable for Parallel Processing



The genetic algorithm was used to determine the optimal continuum beam

characteristics of the two sections of the NASA LaRC Mini-Mast for bending in one

plane of motion. The objective of the design was to minimize the total structural mass

subject to constraints on the tip displacement. As would be expected, the optimizer
increases the stiffness of the lower section of the Mini-Mast while decreasing the

stiffness of the upper section.

DESIGN PROBLEM

o FEM Representation of Continuum Model of Mini-Mast
(PDEMOD soon to follow)

o Design Variables - EI(z) of Two Sections
(d*EI(z)nominal)

o Problem Statement - Minimize Total Mass Subject to

Dynamic Displacement Constraints

o Results

o Nominal - d(1) = d(2) = 1

Total Mass = 7.1208 slugs
Constraint Violation = 5.3%

o Optimized Design - d(1) = 1.2059 d(2) = 0.4647

Total Mass = 6.2412 slugs
Constraint Violation = None



The GA search was run for 40 generations with a population size of 20 members.

Thus, the total nuber of function evaluations was 800. The convergence history of the

GA is shown below. At a given generation number, the maximum fitness value

represents the most fit member in the population whereas the average fitness is the

mean fitness of the entire population. It can be seen that the average fitness increases

with each new generation, which is a property of the particular GA used. It is also

seen that the maximum fitness (i.e. optimal solution) is obtained in an early

generation.

CONVERGENCE HISTORY

r.,o

350

300

solid - maximum illness

250 dashdot - average fitness

150

l(X)

50

) I , I I i I I I I -

0 5 10 15 20 25 30 35 40 45

GENERATION NUMBER

o Each Generation Represents 20 Function Evaluations

(corresponding to 20 Designs)

o Average "Fitness" of the Multiple Designs Increase

Quickly 3t39



Example Design Problem

Article: Mini-MAST Truss

Disturbance: V = Vma x

Specification: uti p < Uma x

Controls: Proof Mass Actuator

Torque Wheel Actuator

Objective: J = min{mtrus s + mproof

+ mtorque}



Control/Structures Optimization
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