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Foreword

The practice of modeling and controlling flexible aerospace systems
grows in importance as the performance needed of active control
systems increases. As the size of spacecraft increases and the

demands of control systems become more exacting, the accuracy
required of the models used for analysis also increases.

The increased complexity, the Increased model accuracy, and the
demands for more precise and higher control system performance

result in an increased burden on the part of the analyst. Although this
burden is somewhat alleviated by advances in software, there remains

the pressure for assuring system stability and performance under
conditions of plant uncertainty. Although robust considerations are
included in many synthesis techniques, the price in terms of reduced
system performance Is often prohibitive.

Because similar difficulties and concerns are encountered for different

applications, it is valuable to enhance the exchange of information with
regard to aircraft, spacecraft and robotic applications. This Is the

fourth workshop In a series which has emphasized the computational
aspects of controlling flexible aerospace systems. It is hoped that the
reports contained in this proceedings will be useful to practicioners of
modeling and controlling flexible systems.

Lawrence W. Taylor, Jr.

NASA Langley Research Center
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OUTLINE

This presentation is an overview of the Active Flexible Wing (AFW)

project and will serve as an introduction to an entire session of the

Computational Control Workshop. Background information concerning the

AFW project will first be presented. This will be followed by a description of

the AFW wind-tunnel model and results from the initial wind-tunnel test of

the AFW model under the current project. Additionally, this presentation will

emphasize major project accomplishments and briefly introduce the topics of

the following five workshop presentations during the session. Summary

remarks and project plans will conclude this presentation.



OUTLIN

• Project Background

• Model Description

• Test Results

• Session Overview

• Summary



ACTIVE FLEXIBLE WING PROJECT

The AFW project is a joint NASA/Rockwell International effort to

demonstrate aeroelastic control through the application of digital active

controls technology. The testbed for this effort is a sophisticated

aeroelastically-scaled wind-tunnel model of an advanced fighter concept. The

model was built by Rockwell International and had been previously tested

under a separate, but closely related, research project. Two primary aspects

of aeroelastic control are being examined under the current project. The first
is active flutter suppression and the second is active control of maneuver

loads during high-speed rolling maneuvers.

The anticipated benefits of this project include the validation of

modelling, analysis, and design methods utilized in aeroservoelastic

applications and the development of an experimental data base for future

research efforts. Other possible benefits from the project may be an

enhanced simulation technology for use in aeroservoelastic work and an

increased experience base in developing and implementing digital control

systems.
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AFW HISTORY

The AFW wind-tunnel model was originally built by Rockwell

International under a joint Rockwell International/United States Air

Force/NASA project. Under this initial project effort, the model was tested

twice in the NASA Langley Research Center Transonic Dynamics Tunnel. The

first test, conducted in 1986, was a static data acquisition effort in which

force and moment loads and control-surface effectiveness measurements

were made. The second test entry, in 1987, was to obtain wing static
pressure measurements and to conduct active controls tests for active roll

control, structural mode control, and symmetric maneuver load alleviation.

The current project was officially started in October, 1987 as a new joint

initiative involving the NASA Langley Research Center and Rockwell

International. The primary goals of this project, as previously described, are

to demonstrate active flutter suppression and rolling maneuver load

alleviation (RMLA). The first test under the current project was completed

during November, 1989. Active flutter suppression was demonstrated during

this test. A second test is planned for February, 1991. A major goal of the

second entry is to demonstrate active flutter suppression and RMLA
simultaneously.
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PROJECT ORGANIZATION

The AFW project has extensive support from various NASA Langley

organizations and from Rockwell International. The chart shows the many

organizations providing critical support to the project, lists individual

members of the AFW team, and shows many of these same personnel in the

photograph inset.

Primary work at the NASA Langley Research Center has spanned three

of the seven center directorates. The Electronics Directorate has been

responsible for coordination of computer allocations for real-time simulation

and personnel support to implement and conduct simulation tests with the

computer hardware associated with the AFW project. The Flight Systems

Directorate has provided several control law designers to develop active

flutter suppression system (FSS) control laws and has also conducted the code

generation for creating the plant math model on the simulation computers.

The Structures Directorate has generated the baseline equations of motion,

conducted extensive flutter analyses, designed control laws for both FSS and

RMLA, and led the ground and wind-tunnel testing of the AFW model.

Additionally, personnel from the Structures Directorate are involved in

aeroelastic calculations using advanced nonlinear unsteady aerodynamic
codes.

Rockwell International has supported numerous aspects of the project

dealing with the physical wind-tunnel model and has provided a finite

element model to assist in the development of the AFW equations of motion.

Rockwell personnel are also developing a flutter suppression system and

roiling maneuver load control laws for testing during the February, 1991

wind-tunnel test.
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WIND-T[ INNEL MODEL PHOTO

TEST APPARATUS

WIND TUNNEL

The AFW model was tested in the NASA Langley Research Center Transonic Dynamics Tunnel
(TDT). The TDT is a closed-circuit, continuous-flow wind tunnel capable of testing at stagnation
pressures from near zero to atmospheric and over a Mach number range from zero to 1.2. The test
section of the TDT is 16.0 ft. square with cropped corners. The TDT has several model support
options. The AFW model was sting supported on the tunnel centerline. The TDT is capable of testing
with either an air or a heavy gas test medium. The AFW model was tested in air under the present
project.

A feature of the TDT which is particularly useful for aeroelastic testing is a group of four bypass
valves connecting the test section area (plenum) of the tunnel to the return leg of the wind-tunnel
circuit. In the event of a model instability, such as flutter, these quick-actuating valves are opened.
This causes a rapid reduction in the test section Mach number and dynamic pressure which may result
in stabilizing the model. During the AFW test, instrumentation on the model was monitored using
electronic equipment that could automatically command the bypass valves to open if model response
exceeded a predetermined criteria of amplitude and frequency.

WIND-TUNNEL MODEL

The wind-tunnel model is shown mounted in the TDT. The AFW wind-tunnel model is a full-

span, aeroelastically-scaled representation of a fighter aircraft concept. It has a low-aspect ratio wing
with a span of 8.67 ft. The fuselage of the model is designed to be rigid. It is constructed from
aluminum stringers and bulkheads with a fiberglass skin providing the appropriate external shape. The
model is supported on the wind-tunnel test section centerline by a sting mount specifically constructed
for testing the AFW model. This sting utilizes an internal ballbearing arrangement to allow the model
freedom to roll about the sting axis. The fuselage is connected to the sting through a pivot arrangement
so that the model can be remotely pitched from approximately -1.5 degrees to +13.5 degrees angle of
attack.

Wing Structure
The wing of the model is constructed from an aluminum honeycomb core co-cured with tailored

plies of a graphite/epoxy composite material. The plies were oriented to permit desired amounts of
bending and twist under aerodynamic loads. The surfaces of the graphite/epoxy material were covered
by a semi-rigid polyurethane foam to provide the airfoil shape without significantly affecting the wing
stiffness.

Control Surfaces

The model has two leading-edge and two trailing-edge control surfaces on each wing panel.
These control surfaces are constructed of polyurethane foam cores with graphite/epoxy skins. Each
control surface has a chord and span of 25 percent of the local wing chord and 28 percent of the wing
semispan, respectively. The control surfaces are connected to the wing by hinge-line-mounted, vane-
type rotary actuators powered by an onboard hydraulic system. Two actuators are used to drive most
of the control surfaces. Only the outboard, trailing-edge control surfaces are driven by a single
actuator. This was required due to limited internal space in this region of the wing. The actuators are
connected to the wing structure by cylindrical rods which are fitted in titanium inserts in the wing.
This arrangement is designed to provide the shear and torsion requirements placed on the wing-to-
control surface connections and yet allow for bending freedom of the wing. This also minimizes the
contribution of the control surfaces to the wing stiffness. Deflection limits are imposed on the various
control surfaces to avoid exceeding hinge-moment and wing-load limitations.
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INSTRUMENTATION

The AFW model was instrumented with a six-component force-and-

moment balance, accelerometers, strain-gauge bridges, rotary variable

differential transducers (to measure control surface deflection angles), a roll

potentiometer, and a roll-rate gyro.
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AFW MODEL DETAILS

Some of the special features of the AFW model are shown in the figure.
In each of the photographs, the freestream flow direction is indicated to assist
in orientation.

The photograph in the upper-left corner of the figure shows a view

from upstream and above the model mounted in the TDT. The upper fuselage

skin is removed to show the internal complexity of the model. Key features
shown are the eight wing control surfaces, the roll brake mechanism located

on the sting, and the wing tip ballast mechanism. The roll brake mechanism

is designed to hold the model in place for "fixed-vehicle" testing and to stop

the roll motion of the model if necessary during rolling maneuver testing.

The importance of the wing tip ballast mechanism will be discussed later.

The lower, left photograph is a close-up view of internal fuselage

details. Major features shown include the onboard hydraulic pump which
supplies pressure to the fourteen control surface actuators and to the model

pitch actuator, the pitch actuator itself, and the pitch pivot through which the

model is attached to the support sting.

The lower, right photograph is a close-up view from above the trailing-

edge-inboard region of the right wing with the right, trailing-edge-inboard

control surface removed to show the hydraulic actuators that drive the
control surfaces.

472
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ROLL PHOTO

A special capability of the AFW wind-tunnel model is the ball-bearing

mechanism built into the support sting which allows the model to have a

rigid-body roll degree of freedom. This feature allows for the testing of

rolling maneuver load alleviation control laws. The figure is a multiple-

exposure photograph showing the model at roll angles of zero (wings level),

30, -60, and -90 degrees. The model is capable of rolling from approximately

-135 degrees to +135 degrees.
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Flutter :

Flutter is a dynamic aeroelastic instability of an elastic body in an

airstream. Flutter onset occurs at a flow condition for which the exciting

forces acting on a body are equal to the restoring forces. These exciting forces

are generally unsteady aerodynamic loads and the restoring forces are

usually a combination of structural forces generated through the stiffness of

the body and aerodynamic forces. Flutter is characterized as a self-excited,

self-sustained oscillation that occurs at a specific dynamic pressure with a

specific frequency for a given Mach number condition.

Classical wing flutter occurs through the coupling of, primarily, the first

wing bending and first wing torsion vibration modes. This was the type of

flutter encountered for the AFW wind-tunnel model. The root locus plot

shown in the figure represents a typical mapping of the poles for a bending

and a torsion mode of a wing. The arrow heads indicate the direction of

increasing dynamic pressure. This plot shows that the frequencies of the two

modes migrate toward a common frequency, _f, and that the bending mode

(lower path on figure) passes into the positive half of the complex plane as

the dynamic pressure is increased, indicating that the flutter condition has

occurred. The lower-right diagram in the figure shows a typical time history

trace of wing acceleration at the flutter condition. This trace characterizes

typical flutter in that it indicates a divergent instability (acceleration

dynamically increasing with time) at a constant frequency tof.
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MODIFICATION OF

MODEL FLUTIER BOIJNDARY

The AFW model was modified for the current project so that flutter

would occur within the operating envelope of the TDT. This modification

consisted of adding a tip-ballast store to each wing panel. A drawing of the

tip store is shown in the figure. The store is basically a thin, hollow

aluminum tube with distributed internal ballast to lower the basic wing

flutter boundary to a desired dynamic pressure range. Additionally, the store

provides a model safety feature. Instead of a hard attachment, the store is

connected to the wing by a pitch-pivot mechanism. The pivot allows

freedom for the tip store to pitch relative to the wing surface. When testing

for flutter, an internal hydraulic brake held the store to prevent such rotation

(coupled configuration). In the event of a flutter instability, this brake was

released. In the released configuration (decoupled configuration), the pitch

stiffness of the store is provided by a spring element internal to the store as

shown in the figure. The reduced pitch stiffness of the spring element (as

compared to the hydraulic brake arrangement) significantly increases the

frequency of the first torsion mode of the wing. This behavior is related to

the concept of the decoupler pylon as discussed in reference 2. The raised

torsional frequency leads to a significant increase in the model's flutter

dynamic pressure which quickly suppressed the motion of the model on

numerous occasions during the test.
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GROUND TESTS

A series of ground tests were conducted on the AFW model including

actuator characterization tests, ground vibration tests, and end-to-end tests.

The model and sting assembly were cantilever mounted from a backstop for

these tests. Hydraulic pressure was supplied to the onboard hydraulic system

so that the model would more closely match the wind-tunnel test

configuration and so that control surfaces could be actuated. The

measurements were made for both the coupled and the decoupled modes of

the wing-tip ballast. The decoupled mode refers to the hydraulic brake

within the tip ballast store being off and, therefore, the structural pitch

stiffness of the tip store being provided through the internal spring
mechanism.

480



GROUND TESTS

• Actuator Characterization

• Ground Vibration Tests

• End-to-End Tests



ACTUATOR CHARACTERIZATION

The control surface actuators were experimentally characterized for

correlation with the AFW math model by conducting actuator transfer

function measurements. The transfer function measurements were obtained

by commanding the actuators with a constant amplitude, sinusoidal signal and

sweeping the signal frequency from approximately 4 Hz to 50 Hz. The figure

shows typical transfer function measurements (control surface deflection to

commanded deflection) for one of the control surfaces at three different

command amplitudes. The control surface pairs were oscillated both

symmetrically and antisymmetrically for these measurements. The command

signal and signals from most of the onboard instrumentation were stored on

FM analog tape so that various combinations of transfer functions could be

determined at a later time.
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GROUND VIBRATION TESTS

A ground vibration test (GVT) was conducted on the AFW model to

determine its natural frequencies, mode shapes, and damping for a number of

primary vibration modes. The GVT measurements were made through the

use of externally mounted accelerometers. The model was excited by a pair

of electromagnetic shakers mounted under the wing surface. The shakers

were driven symmetrically or antisymmetrically to obtain the appropriate

results. Initial structural mode frequencies were determined using sine

sweep commands to the shakers. Damping values were also assessed from

transfer function measurements during the sine sweeps. Following this initial

determination, sine-dwell excitation was utilized to determine the final

frequencies and mode shapes. The figure shows typical experimental results

for the symmetric, coupled tip ballast configuration. Measured natural

frequencies and node lines are compared with analytically predicted results.
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END-TO-END TESTS

Prior to installation of the AFW model in the wind-tunnel, a series of

tests were conducted in which the digital computer hardware was in the loop

with the wind-tunnel model. The purposes

of these tests were to verify the hardware connectivity, to check numerical

sign correlation between model electronics and software setups, to compare

wind-off, open-loop control law measurements with analysis, and to verify

the capability of sending wind-tunnel flow parameters from the TDT data

acquisition system to the AFW digital computer system. The figure gives an

indication of the types of equipment which were interconnected for these

end-to-end verifications prior to the wind-tunnel test.
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TIP BOOM EFFECTIVENESS

This figure shows experimental results which demonstrate the

effectiveness of the tip ballast mechanism. Coupled-ballast flutter conditions

(indicated by symbols in the figure) were found to occur within the operating

capabilities of the TDT. Prior to the addition of the tip ballast, flutter could

not have been encountered in the tunnel. In the decoupled configuration, the

figure shows that the subsonic flutter condition was raised to dynamic

pressures well beyond the coupled flutter boundary as indicated by the

dashed-line boundary to which the decoupled ballast was tested. No flutter

points were determined in the decoupled configuration.
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TEST TIME HISTQ,R][ES

This figure shows both an open-loop and a closed-loop time history

trace obtained for the AFW model during the wind-tunnel test. The open-

loop trace is the antisymmetric flutter condition as measured by a wing

accelerometer at tunnel conditions of M=0.40, q=22I psf. The trace shows an

increasing amplitude dynamic response indicative of flutter onset. During the

wind-tunnel test, this motion caused the automatic safety monitoring system

to activate a number of passive flutter suppression systems (including the tip

ballast decoupling) to stop the oscillation and save the model. Subtle changes

in the character of the wing accelerations can be seen in the time history

trace following the flutter-onset condition.

The closed-loop time history included in the figure (from the same wing

accelerometer) shows that at a flow condition slightly above the open-loop

flutter boundary there are no signs of an organized sinusoidal oscillation that
would indicate a flutter condition.
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SESSION QVERVIEW

This presentation has served as an overview of the Active Flexible Wing

project and has given background material concerning the wind-tunnel model

and the wind-tunnel test. The five remaining presentations in this session of

the Fourth Workshop on Computational Control of Flexible Aerospace Systems

cover more specific aspects of the project. The figure lists the topic and

authors for each of these remaining presentations in this session. The author

giving the presentation is underlined.

The first of the remaining presentations covers the work that was

accomplished to generate a math model of the AFW for flutter suppression

system design and simulation. This presentation will also cover other flutter

analyses that were accomplished using an advanced nonlinear unsteady

aerodynamics computer code.
_

The next presentation covers the three flutter suppression systems that

were designed and tested on the AFW model. The different design

methodologies and performances are discussed in detail.

Following the flutter suppression system presentation, the work

accomplished toward demonstrating rolling maneuver load alleviation is

discussed. This presentation also touches on some of the flutter suppression

system design work being done at Rockwell International in preparation for
the next AFW wind-tunnel test.

The fifth presentation in this session covers the development,

simulation verification, and testing of the digital controller system which was

assembled for carrying out the active control law testing on the AFW model.

The last topic presents a controller performance evaluation capability

which was developed specifically for testing on the A_, but which is

applicable to other multiple-input, multiple-output (MIMO) control systems.

This capability was very important in predicting closed-loop stability while

still in an open-loop condition and in accessing the open-loop instability

condition while testing closed-loop.

=
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CONCLUDING REMARKS

r

Some of the key accomplishments of the October, 1989 wind-tunnel test

are shown on the attached figure. As presented, an assessment of the open-

loop flutter boundary was accomplished near M=0.4 and M=0.9. The tip

ballast was shown to provide a safety margin in terms of where the flutter

conditions occurred between the coupled and decoupled ballast modes.

Additionally, the tip ballast was remotely decoupled several times while

experiencing high dynamic response during the wind-tunnel test and no

adverse reactions were encountered. It is difficult to directly assess the

effectiveness of the tip ballast as a flutter stopper since other passive flutter

suppression devices were always activated simultaneously with the

decoupling of the tip ballast. A major accomplishment of the 1989 test was

the development and testing of the digital controller. The digital controller

hardware and software performed very well during the test. Concerning the

control law tests, aI-I three flutter suppression systems were tested and one of

these control laws took the model to a dynamic pressure 24 percent above

the open-loop flutter dynamic pressure.

In terms of future plans, the 1989 test indicated that improvements in

the math model of the AFW would be very beneficial for future control law

development. Therefore, an extensive task was undertaken to refine the

finite element model. This work is now completed. Also, a free-to-roll math

model has been developed to allow analyses appropriate for rolling maneuver

load alleviation and for free-to-roll flutter suppression testing. Using these

new math models, control laws will be developed for both rolling maneuver

load alleviation and flutter suppression system testing during the 1991 wind-

tunnel test. A major goal of the 1991 wind-tunnel test is to simultaneously

demonstrate rolling maneuver load alleviation and flutter suppression.
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INTRODUCTION

The Active Flexible Wing (AFW) is a full-span, sting-mounted wind-tunnel model that is
currently being used by the NASA-Langley Research Center (NASA-LaRC) and the Rockwell
International Corporation for evaluation of multifunction, digital control laws 1. An understanding
of the model's open-loop aeroelastic behavior is, therefore, essential for closed-loop analysis and
safety during wind-tunnel testing.

Aeroelastic modelling of the AFW includes the structural and aerodynamic definition of the

model via the ISAC (Interaction of Structures, Aerodynamics, and Controls) codes 2. A state-
space aeroelastic model that is appropriate for subsequent closed-loop analysis is generated. One
of the ISAC codes is the linear doublet lattice unsteady aerodynamic theory for computing linear
aeroelastic forces 3. Aeroelastic analyses of the AFW in the transonic aerodynamic regime, where
nonlinear aerodynamic effects are significant, were performed using the CAP-TSD (Computational

Aeroelasticity Program-Transonic Small Disturbance) code 4.
This presentation will address the overall modelling process, including assumptions,

approximations, modifications, and corrections (using experimental data) that went into obtaining
the best "pre-test" aeroelastic model of the AFW. Details of the modelling assumptions required
for the CAP-TSD code are also presented. Results for both the linear and nonlinear aerodynamic
analyses are presented in the form of flutter boundaries. These predicted results are compared with
results from the most recent tunnel entry in the fall of 1989.
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LINEAR MATH MODEL- DEVELOPMENT
Flowchart and Outline

The first step in developing aeroelastic equations of motion for a flexible vehicle is to define
the structural dynamic behavior of the vehicle, that is, the modes of vibration of the vehicle and
their associated frequencies and generalized masses. For this purpose, a NASTRAN finite element
model (FEM) of the AFW was developed by Rockwell International from which symmetric and
antisymmetric sets of modal data were obtained.

Both the symmetric and antisymmetric structural models were used in the ISAC system of
codes. The ISAC codes were used to generate state-space equations of motion to predict open- and
closed-loop aeroelastic responses (with controller). Details of the ISAC codes and procedures for
using test data to improve the accuracy of the equations of motion will be presented. The resultant
equations of motion are then passed on to control law designers and simulation engineers.

Due to the large computational requirements of the CAP-TSD code, only symmetric analyses
were performed. Details of the CAP-TSD code and its application to the AFW are described
following the discussion concerning the linear modelling procedures.





LINEAR MATH MODEL DEVELOPMENT
Configurations Analyzed

Six structural models of the AFW were developed: symmetric and antisymmetric with tip-ballast
store coupled and decoupled. In addition, antisymmetric models were also developed with the roll-
brake on and the roll-brake off. This presentation, however, will address only the roll-brake-on
(no rolling) configurations. The resultant matrix of structural models is shown in the figure.

In the coupled configuration, the wing tip-ballast store is rigidly attached to the wing so that the
motion of the ballast is felt by the wing. In the decoupled configuration, the ballast store is
decoupled from the wing dynamics by means of a very flexible spring attachment between the store
and the wing. The difference between these two configurations can be seen in the figure, which
shows the first wing bending mode for both the coupled and decoupled cases. The coupled
configuration is the more flutter critical of the two conditions. Experimentally, when flutter is
encountered in the coupled configuration, the ballast is mechanically decoupled from the wing so
that the vibration characteristics are altered to those of the decoupled configuration, thereby
eliminating the flutter condition. Equations of motion (system quadruples) were generated for all
of these models for subsequent use in control law design and analysis.

Vibration frequencies were measured during a ground vibration test (GVT) but only those
measured for the coupled configuration were considered to be accurate. These GVT measured
frequencies, and a subset of the original analytical modeshapes, were then used in the analysis of
the coupled configurations.
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LINEAR MATH MODEL DEVELOPMENT
The ISAC Modules

The ISAC compendium of codes consists of four primary modules. DLIN Qoublet Lattice
INput) is a preprocessor to the doublet lattice unsteady aerodynamic code. DLIN takes modeshape
and planform input and computes deflections and slopes of each modeshape at the quarter- and
three-quarter-chord locations of the aerodynamic boxes (shown in a later figure). This information
is then used by DLAT (_D_oublet LATtice), which uses the doublet lattice unsteady aerodynamic
theory, to compute generalized aerodynamic forces (GAF's). The GAF's, along with generalized
masses, frequencies, and dampings, are input to DYNARES (_P.X._amic RESponse) where several
different analyses can be performed. These include the aerodynamic approximation to be
addressed later, flutter analysis, frequency responses, time-history responses, and generation of
the state-space system matrices. The fourth module, DCM (.D_ata Complex Manager), handles the

processing of data arrays from one module to the other.
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LINEAR MATH MODEL DEVELOPMENT

Linear Aerodynamics

The unsteady aerodynamics induced by the flexible motion of the AFW were computed using
the doublet lattice unsteady aerodynamic theory. Doublet lattice theory is a linear, frequency-
domain theory limited to subsonic flows. The AFW was modelled aerodynamically as a half
model with a plane of symmetry (or antisymmetry) at the fuselage centerline. In doublet lattice
theory, lifting surfaces are modelled as flat plates with aerodynamic boxes as shown on the figure.
Aircraft components such as fuselage or stores can be modelled as slender bodies. For this
analysis, however, the fuselage and tip-ballast store were modelled as fiat plates. Modelling of the
tip-ballast store as a flat plate was done by varying the width of the paneling arrangement until the
flutter dynamic pressure matched the flutter dynamic pressure of an analysis in which a slender
body representation of the tip-ballast store was used. The reason for modelling with flat plates
instead of slender bodies was to minimize the number of aerodynamic boxes, thereby increasing
the efficiency of the code for generating equations of motion.
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LINEAR MATH MODEL DEVELOPMENT
Linear Aerodynamics (cont'd)

The output from the doublet lattice code consists of generalized aerodynamic forces (GAF's)
which are tabular functions of Mach number and reduced frequency (03bN, where co is the
frequency of oscillation, b is the root semi-chord, and V is the freestream velocity). In order to
generate time-domain (state-space) equations of motion, however, these aerodynamic forces need

to be in the time domain and not the frequency domain. The typical approach to this problem is to
approximate the GAF s using rational functions 5 of the nondimensional Laplace variable p. The A
coefficients are computed and the bl terms are the lags arbitrarily specified by the user or obtained
using optimization. This then casts the frequency-domain GAF's into the time-domain. This
process, however, can significantly increase the size of the state equations of motion. The number
of states that the plant structural equations are augmented by due to the inclusion of rational
function approximations, developed using a least squares approach, is equal to the number of
modes times the number of lags. Ten modes and two lags result in twenty additional aerodynamic
states. The larger the number of lags, however, the more accurate the approximation to the
aerodynamics. Thus, a trade.off between accuracy and computational size needs to be defined.
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LINEAR FLUTTER PREDICTIONS

Flutter boundaries, computed using the linear doublet lattice unsteady aerodynamic theory, are
shown on the figure for the tip-ballast store coupled and decoupled, symmetric and antisymmetric
cases along with the Transonic Dynamics Tunnel (TDT) operating envelope. The effect of
decoupling the tip-ballast store is evident: flutter boundaries are raised above the tip-ballast-store-
coupled boundaries. For a given configuration, the region below the boundary is stable while the
region above the boundary is unstable. These flutter boundaries are for a previous set of mode
shapes and as such do not represent the latest results. They are being presented only to illustrate
the decoupling effect on the flutter boundary. Results using an updated set of modeshapes and
frequencies for the coupled tip-ballast store configuration are presented later in this paper; the
decoupled flutter boundaries were not recalculated because test results indicated that the boundaries
fall outside the tunnel's operating envelope.
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LINEAR MATH MODEL DEVELOPMENT
Control Surface Effectiveness

Accurate prediction of control derivatives (such as lift due to control surface deflection) is
essential for accurate control law design. In order to improve the analytical predictions of control
derivatives (using the doublet lattice code), a procedure was developed for correcting the analytical
derivatives using wind-tunnel data. The wind-tunnel data consists of measured static loads
induced by control surface deflections at several dynamic pressures and Much numbers from which
effectiveness parameters (derivatives) can be computed and tabulated. The procedure assumes that
each effectiveness parameter (function of dynamic pressure) can be separated into a rigid
component (at zero dynamic pressure) and an elastic increment which can be added to the rigid
component as dynamic pressure (or flexibility) is increased. This assumption is applied to both the
analytical and experimental effectiveness parameters from which two sets of correction factors are
computed: a ratio of experimental to analytical rigid values, fl, and a ratio of experimental to
analytical elastic increments, f2. Note that fl is a constant and f2 is a function of dynamic

pressure. Although these corrections are for static conditions only, they were applied at all
dynamic conditions as well.
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LINEAR MATH MODEL DEVELOPMENT
Actuator Model

Another important ingredient in the development of an accurate state-space model of the AFW
is the modelling of the actuator dynamics. Actuator transfer functions were measured during the
GVT for all control surfaces for the aerodynamically unloaded (zero airspeed) case. Analytical
transfer functions were generated using a least-squares method to fit the discrete experimental
values. A comparison between experimental data and a least-squares fitted model is shown in the
figure. The resultant transfer functions are of zeroth order in the numerator and third order in the
denominator.
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LINEAR MATH MODEL DEVELOPMENT
State-Space Model

Finally, once all of the previously mentioned modelling steps have been taken, a state-space
sytem can be created. This is the plant model which is used by the control system designers for
their design and analysis work. A Dryden gust mode is included in the equations of motion to
model wind-tunnel turbulence (results in two additional states). The loads, consisting of shear,
bending moment, and torsion moment at 14 different locations, were computed using the mode
displacement method.
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NONLINEAR AERODYNAMIC ANALYSIS
CAP-TSD Code

Before open-loop flutter testing of the AFW was to begin, it was desirable to have analytical
predictions of the model's flutter boundary for use as guidance during flutter testing. The range
over which testing was to occur included the transonic Mach numbers. Although linear
aerodynamics are applicable at subsonic and supersonic Mach numbers, unsteady transonic
aerodynamics requires the solution of nonlinear equations. One of these equations is the transonic
small disturbance (TSD) equation. A time-accurate, approximate factorization algorithm that solves
this equation is the CAP-TSD (Computational Aeroelasticity Program - Transonic Small
Disturbance) code developed at the NASA - Langley Research Center. The code can handle
realistic configurations that include multiple lifting surfaces with control surfaces, vertical surfaces,
bodies (pylons, nacelles, and stores), and a fuselage. The structural equations of motion and the
nonlinear aerodynamic equations are coupled and integrated in time. The result of this time
stepping is a time history of the generalized displacements of the vehicle.
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NONLINEAR AERODYNAMIC ANALYSIS

Assumptions and Limitations

A full and accurate understanding of the flutter results that are to be subsequently presented
requires a knowledge of the assumptions and limitations of transonic small disturbance (TSD)
theory and of the CAP-TSD code. TSD theory assumes inviscid, irrotational flow so that the
effects of vortices, boundary layer, and separated flow on the aeroelastic behavior of the AFW will
not be accounted for. Vorticity and entropy corrections were incorporated into the CAP-TSD code
for improved shock modelling but difficulties with this part of the code prevented their use in the
AFW analysis.

Bodies, such as the tip-ballast store and the fuselage, are not given any modal definition in the
current version of CAP-TSD. That is, bodies serve only as aerodynamic influences on the lifting
surfaces. This limitation can and should be corrected in future versions of the code. Another

limitation is that only symmetric modes can be analyzed with a half-model of the AFW so that
analysis of the antisymmetric modes requires both left and right sides. This is not a limitation of
the code but is due to the uncertainty of the loads generated at the centerline of the vehicle due to
anti- or asymmetric motions of the vehicle.
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NONLINEAR AERODYNAMIC ANALYSIS
Model Definition

The computational CAP-TSD model of the AFW consisted of eight symmetric modeshapes
(for the coupled case) and the GVT frequencies for those modes. The grid was dimensioned 134
by 51 by 62 grid points in the x-, y-, and z-directions respectively. The grid density was increased
in regions where large changes in the flow were expected such as at the leading edge, trailing edge,
wing tip, and control surface boundaries. The grid extended ten (10) root chords in the upstream,
downstream, positive z- and negative z-directions, and two (2) root chords in the y-direction.

A computer-generated picture of the CAP-TSD model of the AFW is shown on the facing page.
The picture shows both left and fight sides although only the right side is defined. The modelling
of the fuselage and tip ballast store as bodies is clearly seen. In order to model the effects of the
wind-tunnel sting mount, the computational fuselage was extended to the downstream boundary of
the grid.



(n
m

(/'j
>-
..I

Z

O_

m

-J

0



NONLINEAR AERODYNAMIC ANALYSIS

Static Aeroelastic Analysis

In linear aeroelastic analyses, the dynamic behavior is independent of static parameters such as
airfoil shape and vehicle angle of attack. At transonic Mach numbers, however, this is no longer
true as airfoil shape and angle of attack can significantly affect the dynamic response of the vehicle.
The AFW has an unsymmetric airfoil shape which induces static aeroelastic deformations. The
magnitude of these deformations needs to be known before any transonic dynamic analysis can be
performed since the static results are the initial conditions for the dynamic analyses. A procedure
was therefore developed to directly compute static aeroelastic deformations using CAP-TSD. This
was done by setting the inital values of the generalized displacements to zero and executing the
coupled aerodynamic and structural equations, including some viscous damping, for about two
thousand time steps. This resulted in convergence of the generalized displacements, which implies
static aeroelastic convergence. Static aeroelastic analyses were performed at each Mach number
and dynamic pressure of interest.
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NONLINEAR AERODYNAMIC ANALYSIS

Static Aeroelastic Analysis (Cont'd)

Static aeroelastic deformations should, however, be independent of viscous damping. A study
was carried out to investigate the effects of different values of viscous damping on the static
aeroelastic convergence of the model. The figure shows a representative result of generalized
displacement versus computational time steps for three different values of viscous damping. As
can be seen, the converged value is indeed independent of viscous damping. However, the larger
the damping, the faster the convergence. As a result, all static aeroelastic analyses were performed
using a maximum viscous damping value of 0.99. The converged result then becomes the initial
condition for the dynamic analysis. In order to dynamically excite the system, generalized velocity
excitations are also included.
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NONLINEAR AERODYNAMIC ANALYSIS

Dynamic Analysis (Modal Identification)

Once the dynamic analysis is executed, the resultant time history that is output from CAP-TSD
is processed through a modal identification technique. This technique identifies the modal
components of the response in terms of damping and frequency from which stability information
can be obtained. If the system is stable, the dynamic pressure is increased. At each dynamic
pressure, a static aeroelastic solution is computed followed by the dynamic response and modal
identification. This procedure continues until an unstable root (flutter) is encountered. The flutter
boundaries are defined at each Mach number by the dynamic pressure for which flutter occurs.
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OPEN-LOOP FLUTTER RESULTS

Comparison with Experiment

The open-loop flutter results for the doublet lattice (linear aerodynamics) symmetric and
antisymmetric models (tip-ballast store coupled configuration), the CAP-TSD symmetric model,
and comparisons with experimental results are shown on this figure. At M=0.4, the experimental
flutter instability was antisymmetric and as a result cannot be compared with the subsonic CAP-
TSD result. Comparison with the doublet lattice antisymmetric prediction, however, is within 14%
of the experimental value in terms of dynamic pressure. At M=0.9, M=0.92, and M=0.93, the
experimental flutter instabilities were symmetric flutter instabilities, which compare very well with
the CAP-TSD predictions for those Mach numbers. Both the symmetric and antisymmetric doublet
lattice predictions seem to have missed the overall trend at these higher Mach numbers, as would
be expected for linear theories. The crossing of the doublet lattice symmetric and antisymmetric
flutter boundaries, however, appears to be an accurate behavior as experimental data defines the
antisymrnetric, transonic flutter boundary to be above the symmetric one shown on the figure. The
no-flutter track on the figure is the path, in terms of Mach number and dynamic pressure, along
which the wind tunnel proceeds for which no experimental flutter was encountered. This then
implies that the bottom of the experimental transonic flutter dip occurs at M=0.93 and a dynamic
pressure of 140 psf. The CAP-TSD predicted bottom of the transonic flutter dip is at 50 psf and
M=0.93. This discrepancy may be due to viscous and/or separated flows not accounted for in
TSD theory. It is also possible that the lack of modal definition of the bodies in CAP-TSD
(specifically the tip-ballast store) has a significant effect on this result. The CAP-TSD flutter
boundary was nonetheless very valuable since it was available during the test and warned test
engineers of a potentially dangerous and sudden drop in stability at transonic Mach numbers.
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CONCLUDING REMARKS

This presentation addressed the primary issues involved in the generation of linear, state-space
equations of motion of a flexible wind-tunnel model, the Active Flexible Wing (AFW). The codes
that were used and their inherent assumptions and limitations were also presented and briefly
discussed. The application of the CAP-TSD code to the AFW for determination of the model's
transonic flutter boundary is included as well.
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ABSTRACT

Three flutter suppression control law design techniques are presented. Each uses multiple control
surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together
with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed
control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a
good understanding of the flutter mechanism and produce a controller with minimal complexity and
good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic
Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance
matrices to improve multi-variable robustness. The resulting designs were implemented digitally
and tested subsonically on the Active Flexible Wing wind-tunnel model. Test results presented here
include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square
control surface activity. A key result is that simultaneous symmetric and anfisymmetric flutter
suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic
pressure.
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Presented here is an overview of three flutter suppression control law designs. The designs are part of

a joint effort by NASA Langley Research Center and Rockwell International Corporation to validate
analysis and synthesis methodologies through the development of digital multi-input/multi-output
control laws for a sophisticated aeroelastic wind tunnel model. 1,2 The test vehicle used in this effort
is the Rockwell Active Flexible Wing wind-tunnel model, modified from its initial configuration

through the use of destabilizing wing tip ballasts. The test results refer to testing in the Langley
Transonic Dynamics Tunnel conducted in October and November of 1989.



Nature of Wing Flutter
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Simple Flutter Model

Wing flutter is a dynamic aeroelastic instability which can be of concern for modern lightweight,
flexible, agile fighter aircraft, especially when carrying wing stores. In its classical form, wing flutter
is a condition in which bending and torsion vibrations interact with a surrounding air flow in such a
way that energy is extracted from the air and drives one of the two modes unstable. The sketch in the
upper left depicts an oscillation with a characteristic frequency and divergent growth, as measured by
an accelerometer on a wing during flutter. The sketch in the upper right shows that as dynamic
pressure increases, characteristic roots of the bending and torsion modes migrate to a common
frequency, with one root developing a positive real character indicating exponential growth rather
than decay. The schematic of a simple flutter model 3 suggests how an increase in the angle of attack
due to the torsion mode would drive the wing tip upward while a decrease in angle of attack due to
torsion mode would drive the wing tip downward, in the presence of an air flow, leading to possible
instability. The analysis is complicated by the need to model the distribution of mass, inertia, stiffness
and damping throughout the wing, as well as quasi-steady and unsteady aerodynamic effects.
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The Active Flexible Wing (AFW) is a full-span, sting-mounted wind-tunnel model with the ability to

roll about the sting axis. For the flutter suppression testing in November 1989, the AFW was restricted
in roll. The model has a six-degrees-of-freedom force and moment balance on the load path to the sting
and has an actuator which can adjust the angle of attack of the model. There are four pairs of control
surfaces, as shown in the above figure, with hinge lines near the quarter chord and three-quarter chord
locations. The actuators for the control surfaces and for the angle-of-attack adjustment are powered
by an onboard hydraulic system. The fuselage of the model is fairly rigid compared with the wings.
However, the sting allows some motion up and down and side to side, as well as in torsion.

The three control law designs each used a subset of four pairs of accelerometers and three pairs of
control surfaces. Strain gages on the wing are also available but were not used for flutter suppression
during the 1989 tests. A digital controller was used to process the signals from the accelerometers to
generate commands for the control surface actuators to actively suppress flutter. The accelerometers
and actuators are analog devices so that analog-to-digital and digital-to-analog conversions were
required.

The original configuration of the AFW was used to study rapid rolling maneuvers for a model with
a soft, flexible wing using multiple control surfaces. That configuration did not flutter within the
operating range of the Transonic Dynamics Tunnel. Wingtip ballasts were added to the AFW to lower
the frequency of the first torsion mode to bring it closer to the frequency of the first bending mode and
thereby reduce the dynamic pressure at which flutter occurs to within the range of the wind tunnel.

The tip ballast store, normally coupled in torsion with the wing tip via a hydraulic brake, can be
decoupled by releasing the brake and leaving the store restrained in torsion only by a soft spring.
Upon brake release the decoupled configuration is flutter free to a much higher dynamic pressure 4
Thus, the tip ballast store also provides a flutter-stopper capability.
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The Transonic Dynamics Tunnel (TDT) is specially configured for testing aeroelastic models. 5 It is

a sealed wind tunnel in which Mach number and dynamic pressure can be varied independently by
changing motor rpm while simultaneously changing stagnation pressure in the tunnel through the use
of pumps. With air as the test medium, as it was for the 1989 test, a maximum dynamic pressure of
325 psf is generated at Mach 0.5 with a stagnation pressure equal to atmospheric pressure. Higher
Mach numbers require air to be pumped from the tunnel to reduce the stagnation pressure.

According to analysis prior to the 1989 wind-tunnel entry, when the AFW roll degree of freedom is
restrained, the boundaries for symmetric and for antisymmetric flutter occur near the same dynamic
pressure, as shown in the above figure. Therefore, a designer must design a control law for each
symmetry and plan on having both control laws operate simultaneously.

In order to show the greatest penetration of the AFW flutter boundary within the wind tunnel limits,
each control law was designed with the objective of demonstrating closed-loop stability up to the
325 psf condition at Mach 0.5. Although the wind tunnel is capable of changing Mach and dynamic
pressure independently, the process of pumping air out of the wind tunnel or bleeding it back in is
slower than the process of changing the motor rpm. Also, Mach number effects which are critical in
the transonic flight regime are much less significant for Mach numbers at or below 0.5. In the interest
of gathering as much data as possible, all flutter suppression control law testing was conducted at
a stagnation pressure equal to atmospheric pressure, with Mach number changing as a function of
dynamic pressure.

Wind-tunnel turbulence has a direct impact on the expected closed-loop control surface activity for
active control flutter suppression, due to control law response to the continual turbulence excitation of
the airframe. The magnitude of feedback gains were restricted based upon the control surface rate
capability of the AFW and the expected turbulence level in the wind tunnel.



Character of AFW Flutter
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For the AFW, with the roll brake on, the characteristics of the symmetric and the antisymmetric
flutter are very similar to each other. This is related to the nearly rigid fuselage and to the mounting
conditions. With the roll-brake released (or for a similar vehicle in free flight), the symmetric and
antisymmetric flutter would differ significantly from each other. Because of the similarities, a control
law designed for one symmetry should require only slight modification in order to be effective for
suppression flutter in the opposite symmetry.

The above figure shows a plot of predicted damping as a function of velocity. The damping ratios ((s)

were computed from the eigenvalues of the primary bending and torsion modes for each symmetry,
based upon 41st order state-space models for the AFW incorporating 10 second-order structural modes
with 1 aerodynamic lag state per mode, 3 third-order actuators, and 1 second-order gust. The plot

is shown in a traditional V- g format, where V is velocity and g is the amount of structural hysteresis
damping that would be required for neutral stability. 6 The factor of -2 conversion from damping ratio
to required hysteresis damping is valid to within 1 percent for the range of values shown here.

Because Mach number effects in the subsonic region were judged to be small, the state space models
used to perform the analysis on this page were generated as though a Mach number of 0.5 characterized
the air flow regardless of velocity. This approximation is most nearly true as the wind-tunnel operating
limit is approached. The symmetric and antisymmetric torsion modes were predicted to go unstable at
dynamic pressures of 238 and 252 psf, respectively. The flutter frequency in each case was predicted to
be about 11.5 Hz.

At the predicted velocity for onset of symmetric flutter, analysis indicated that the required hysteresis
damping increased by 1.7E-3 for an increase in velocity of 1 ft/sec. For the corresponding anti-
symmetric case the required hysteresis damping increased by 8.3E-4 for an increase in velocity of
1 ft/sec, indicating the relative predicted onset rates for the two symmetries.

Actuator rate saturation can effectively induce lag and reduce the amplitude of control surface
deflections. At the wind-tunnel limit of 325 psf, the open-loop time-to-double for the symmetric
flutter mode was predicted to be 1/10 of a second. For this level of instability, actuator rate saturation
for even a brief period of time in response to wind-tunnel turbulence could cause unacceptably large
growth of the flutter mode. This reinforces the restriction on the magnitude of feedback gains.



Implementation of FSS Control Laws
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Each of the three Flutter Suppression System (FSS) control laws was designed with the assumption
that there was no coupling between symmetric and antisymmetric response for the AFW. The above
figure illustrates how the symmetric and antisymmetric forms of the control laws were implemented
simultaneously by the digital controller. 7 For each pair of accelerometers, the symmetric signal was
determined as the average of the right and left signals and the antisymmetric signal was determined as
one half of the difference between right and left signals. Similarly, the right and left control surface
commands were determined as the sum and difference of symmetric and antisymmetric commands for
each pair of control surfaces.

The digital implementation of the control laws has certain implications for the control law designer.
The signal amplitude is quantized in the analog-to-digital and digital-to-analog converters due to
finite word length. The sample rate was 200 Hz. An effective 1/2 time step delay on average is
introduced by the sampling because after a signal is passed at the beginning of a time step, no
additional information is passed until the beginning of the next time step. Computation time required
by the digital computer introduces additional delay. The digital-to-analog conversion introduces high
frequency transients to the actuators. Finally, an analog anti-aliasing filter is required to attenuate
signal strength above 1/2 the sampling rate so that higher frequency harmonic signals are not mistaken
for lower frequency signals due to the periodic sampling. A first-order lag at 25 Hz was used for anti-
aliasing in preference to a fourth order Butterworth filter at 100 Hz in order to also reduce response to
structural modes in the 30 to 40 Hz range.

The trailing edge outboard (TEO) control surfaces tend to be the most effective in controlling flutter,
although the actuator hinge moment available for these surfaces is limited compared to the others
because of hardware constraints due to the limited space available in the outboard portion of the wing.
The leading edge outboard (LEO) surfaces have unfavorable aerodynamic loading which does not
tend to restore the surfaces to a neutral position if the actuators become overloaded. The trailing edge
inboard (TEl) surfaces have favorable aerodynamic loading, but are not as effective as the TEO
surfaces. Each of the wing accelerometer pairs is located near the hinge line of one of the control
surface pairs, with the exception of the tip accelerometers (TIP) which are located approximately mid-
chord near the wing tip. The tip accelerometers tend to respond most strongly to the flutter mode,
while at the same time being relatively insensitive to the higher frequency modes when compared with
the inboard accelerometers.

54.1



Flutter Suppression System...

• Increase in Flutter Q: 30 percent

Design Requirements;

• Gain Margin: +/- 6 dB

• Phase Margin: +/- 30 °

• (_RMS: < 75°/sec ( = 1/3 of max )

• _ RMS: < 1.0 ° ( = 75°/sec at 11.5 Hz )

The design objective for all three flutter suppression control laws was to demonstrate closed-loop
stability up to the wind tunnel limit of 325 psf dynamic pressure. This would constitute a 30 percent
increase in the flutter dynamic pressure relative to the lowest predicted open-loop flutter boundary
in the subsonic region. Because of the similarity between the symmetric and antisymmetric flutter,
the control law designs in the following sections are presented as though only one symmetry were
involved.

For those control laws which could be represented by single-input/single-output (SISO) gain and phase
margins, a predicted gain margin of +/- 6 decibels and a predicted phase margin of +/- 30 ° was to be
maintained throughout the test envelope, according to pretest analysis. The control law which required
multi-input/multi-output (MIMO) analysis was judged by potentially conservative multi-variable
margins and the stated requirements were slightly relaxed for that case.

The trail{ng-eclge outboard Controi Surfaces were predicted to have a peak no-load rate capability of
225°/sec. It is desired that no rate saturation occur. If one accepts no rate saturation for a 3 standard
deviation turbulence intensity as adequate for assuring no rate saturation, 8 this constrains the Root
Mean Square (RMS) rate for a 1 standard deviation turbulence intensity to be less than 75 °/sec. At a
predicted flutter frequency of about 11.5 Hz, this translates to a maximum RMS control deflection of
1.0 °,

A fifth requirement for evaluating candidate control laws prior to the wind tunnel entry was to be
able to demonstrate closed-loop stability throughout the test envelope using a batch simulation. The
simulation replicated quantization effects due to finite word length in the signal converters and
imposed rate and displacement limits on the control surface actuators. The simulation also allowed
both symmetries to be run simultaneously in the presence of simulated turbulence excitation with a
separate dynamic actuator model for each of the control surfaces. The actuator models were based
upon measured actuator frequency response data. Variations in the actuators introduce a possible
source of nonsymmetry or coupling between the symmetric and the antisymmetric cases for the
closed-loop system. While this nonsymmetry was generally neglected during design, these effects
were addressed during control law evaluation by means of the simulation.
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Modal Rate Feedback
Adams/Christhilf

= Design Philosophy:

- Synthesized flutter mode rate

- Fixed controller dynamics

- Optimized sensor & control coefficients

Fifth Order .,_"

The control law designed and tested by Adams and Christhilf can be described as using modal
rate feedback. The design philosophy for the Modal Rate Feedback control law is to use linear
combinations of multiple accelerometer signals together with dynamic compensation to synthesize
the flutter mode rate for feedback to multiple control surfaces.9 Multiple sensors are used to identify
the activity of the flutter mode not only by frequency, but also by the geometry of its characteristic
mode shape. Multiple control surfaces are used in an effort to control the flutter mode exclusively.
The coefficients used for the accelerometer pairs, the control surface pairs, and the overall system
gain are generated using an optimization procedure. The four pairs of sensors used were the TIP,
TEO, LEO, and TEI and the two pairs of control surfaces used were the TEO and TEI, as shown in
the above figure.

The controller dynamics were set by the control law designer. Two first-order lags with break
frequencies lower than the frequency of the flutter mode were used to act as stable integrators in order
to transform modal acceleration into modal rate and position. A first-order "washout" filter with a
zero at the origin and a pole at a frequency below the flutter frequency was used to reduce response
to steady state bias errors. Finally, a second-order notch filter was used to adjust the phasing of the
control action at the flutter frequency and to reduce the response to a nonflutter mode. (The notch
for the symmetric case was for a 5.7 Hz sting mode and the notch for the antisymmetric case was
for an 18.3 Hz structural mode.)

The method for generating the comparison between predicted and desired response for use in the
optimization required individual frequency responses for each accelerometer pair due to excitation by
each actuator pair. These can be obtained either through pretest modeling or through experiment. 10
Experimentally derived frequency responses were in fact used during the 1989 wind-tunnel entry to
improve the control law.
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The signals designated in the above figure as _s and _'s represent commanded control surface

deflections and measured local accelerations for a given symmetry. The frequency response for
each acceleration signal due to each control surface command (symmetric or antisymmetric) for
continuous models of the AFW at several dynamic pressures were precomputed for the frequency
range from 2 to 64 Hz and were retained for further analysis. For the purpose of control law design,
frequency responses representing the effects of the time delays and of a candidate set of analog filters
and compensator dynamics were also computed and combined with the frequency responses that
represented the AFW.

The coefficients of the blending and distribution matrices were used to generate linear combinations
of the frequency responses. The blending matrix was actually used to form two dynamically distinct
linear combinations. The difference between these two is that one was formed as a linear combination

of frequency responses that contained the effect of only one integrator, and the other was formed as
a linear combination of frequency responses that contained the effect of two integrators. When
implemented in the wind-tunnel test, the discrete state-space equation used to specify the compensator
dynamics was set up in such a way that one of the two inputs to the compensator bypassed the second
integrator, with the output of the compensator being the sum of the two signals.

The purpose of the blending matrix was to take four local acceleration signals and synthesize two
signals, each roughly corresponding to the acceleration of the flutter mode. The purpose of the
distribution matrix was to take a single command signal, intended to control the flutter mode, and
distribute that command to multiple control surfaces. Isolation of the flutter mode was determined
in part by the analog filtering and compensator dynamics, and in part by the extent to which the
blending and distributing rejected feedback interaction with other modes.

Although there are 8 and 2 coefficients in the blending and distribution matrices, the magnitude of the
largest coefficient of each matrix was factored into a system gain, so that the normalized blending and
distribution matrices had 7 and t degrees of freedom, respectively, which together with the system gain
constituted the 9 degrees of freedom in the formulation of an objective function for an optimization
procedure. The output from the dynamic compensator is a single strand point for the feedback path,
and the optimizer was used to drive the composite frequency response at that point to match a simple,
desired frequency response. The frequency responses representing the compensator dynamics were
computed prior to the optimization and the parameters of the compensator dynamics were not optimized.
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The above figure shows a Nyquist plot, or a polar plot of the open-loop frequency response, for
the sensor output due to commanded control deflections as defined at the single-strand point. The
frequencies used in the AFW analysis span from 2 to 64 Hz. A full Nyquist plot would span
frequencies from minus infinity to plus infinity, but the portion of the plot for negative frequencies is
symmetric about the real axis to the portion of the plot for positive frequencies so that the information
is redundant. The Nyquist stability criterion requires that for each unstable pole of the open-loop
system, the Nyquist plot must form one counterclockwise encirclement of the -1 point in order for
the closed-loop system to be stable. For oscillatory instabilities, the unstable poles occur in complex
conjugate pairs, requiring two encirclements per pair. However, one of the encirclements would occur
for the frequency range from minus infinity to zero, which is not shown.

In the case of actively stabilized flutter, the encirclements will occur in the vicinity of the flutter fre-
quency. Gain and phase margins can be read directly from a Nyquist plot as the amount of shift which
can be tolerated while still encircling the -1 point. Excess lag at the flutter frequency will shift the
positive frequency plot clockwise (and the negative frequency plot counterclockwise) until closed-
loop instability is encountered at a frequency slightly above the flutter frequency. Similarly, excess
lead results in closed-loop instability at a frequency slightly below the flutter frequency.

The response of modes other than the flutter mode will be evident as additional "lobes" on the Nyquist
plot. To the extent that the sensor and control surface blending can isolate the flutter mode, these extra
lobes will be small. If these lobes are not small, they can result in clockwise encirclements of the -1
point, indicating that a previously stable mode has gone unstable at a frequency other than the flutter
frequency.

The desired frequency response is the response that would result from using rate feedback to stabilize
an unstable sinusoidal oscillator. The cost function for the optimization is the sum of the squares
of the difference between the predicted and the desired response, weighted with frequency. The
weights were chosen to emphasize the flutter frequency. Since the frequency response is complex,
the "squaring" is done using complex conjugates, resulting in a real number for the value of the cost
function. A Davidon-Fletcher-Powell optimization routine 11was used to find the system gain and
blending and distribution matrix coefficients for which the cost function was minimized at a particular
dynamic pressure. Each resulting design was evaluated at other dynamic pressures to see that predicted
performance was satisfactory throughout the wind-tunnel test envelope.
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To model turbulence, a Dryden gust spectrum was used which has a nonzero value at zero frequency,
rises 12 percent to a peak at a frequency of 10 Hz, and decreases monotonically to zero at higher
frequencies. An overall RMS turbulence intensity of 1 ft/sec was judged to be a reasonable estimate
of the turbulence in the wind tunnel, and this was apportioned as 85 percent symmetric and 15 percent
antisymmetric. This gust spectrum was applied to assumed symmetric and antisymmetric gust mode
shapes in order to model the effect of the turbulence on the wind-tunnel model.

The above figure shows a power spectral density (PSD) plot for closed-loop rates for the TEO and TEl
control surfaces due to the modeled turbulence at a dynamic pressure above the open-loop flutter point.
(This is shown as a representative example and does not depict the PSD for the control law actually
tested.) The control surface RMS rates in °/sec can be calculated as the square roots of the areas under
the curves when plotted on linear scales.

If the symmetric and the antisymmetric responses to turbulence were completely uncorrelated, the
total control surface activity would be the square root of the sum of the squares of the symmetric and
antisymmetric control surface activity. For design purposes the components were assumed to be
constructively correlated so that straight addition was used to estimate the total activity. The figure
shows response predicted for 1 ft/sec symmetric turbulence, which would be scaled 85 percent before
combining with the antisymmetric turbulence response. The design limit for total control surface
activity was chosen to be 75 °/sec, consistent with predicted actuator rate limits.

The figure shows a local peak in the control surface activity at a frequency of about 11.5 Hz. This
represents the activity required to suppress the unstable flutter mode as it is excited by turbulence. The
figure also shows significant control surface activity in the frequency range from 25 to 40 Hz which
results from nonproductive response to excitation of higher frequency structural modes. In order to
reduce control surface activity, an analog band-reject filter was used. This filter consists of three fairly
broad second-order notches with center frequencies at 32, 40, and 49 Hz. The band-reject filter was
used instead of a low-pass filter in order to keep the resulting lag at the flutter frequency to a minimum,
while still achieving the desired attenuation. The lag at 11.5 Hz due to the filter is about 28 °.
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The above figure shows predicted performance for the modal rate feedback controller resulting from
linear analysis and substantially confirmed by nonlinear batch simulation. "Max Q" refers to the
maximum dynamic pressure, measured in psf, for which the closed-loop system was predicted to be
stable for both linear analysis and simulation. Gain margins and phase margins are shown at a dynamic
pressure of 300 psf, which was chosen as a common evaluation point for the three control laws tested.
Margins were predicted by linear analysis to meet the stated requirements throughout the wind-tunnel
test envelope. Gain margins were verified in simulation at selected dynamic pressures by varying
symmetric and antisymmetric system gains individually until simulation time histories showed
divergence. The gain margins obtained from simulation were comparable to those obtained through
linear analysis. Phase margins were not verified through simulation.

The percentage of maximum allowed control surface activity is relative to the designated maximum
RMS control surface rate of 75 °/sec. The predicted RMS control surface rate was determined by
using the batch simulation with simultaneous symmetric and antisymmetric turbulence excitation.
The simulation indicated that the specified control surface rate limit was not exceeded for either pair
of control surfaces. It also shows significant activity on the TEO and TEl surfaces, although the TEO
surfaces dominate.



Traditional Pole/Zero Design
Srinathkumar/Waszak

• Design Philosophy:

- Simplify problem

- Develop understanding

- Design controller as simple as possible

The control law designed and tested by Srinathkumar and Waszak is generated using traditional
complex plane mappings of poles and zeros. A driving philosophy behind this design effort is to
avoid getting lost in complexities which are of secondary importance with respect to the flutter
control problem and to reduce the problem to its bare essentials. One step toward accomplishing
this is to concentrate primarily on the two structural modes that participate directly in the flutter and
on the SISO zeros in the same frequency range which result from the choice of a particular sensor
pair and control surface pair. Sting modes and their associated zeros are ignored, as are higher
frequency modes. This is possible due to fortuitous effective pole/zero cancellations associated
with chosen control surfaces and sensors, and also due to frequency separation between the flutter
dynamics and higher order modes.

Selection of sensors and control surfaces was a necessary first step in the controller design. The
accelerometer pair at the TIP location was chosen because it is the pair most responsive to the flutter
and also least responsive to higher frequency modes. The TEO control surface pair was chosen as
being the most effective in controlling flutter without the danger of going "hard over" if the actuator
hinge moment capability is exceeded. The TEI control surface pair was added later to reduce the
TEO control surface activity. The commands sent to the TEO and TEI surfaces were dynamically
equivalent in that they differed only by a constant gain factor so that SISO design and analysis
techniques could still be used.

Straight feedback with no dynamic compensation was investigated first to see whether this would be
sufficient to stabilize the system, and if not, what problems would be encountered when attempting to
employ a simple solution. Consideration of the high gain required and the desire to ensure a favorable
root locus path led to the use of a second-order "dipole" filter to be described later in this section. A
final consideration was that the response of the system to steady state bias errors must be acceptably
small, leading to the addition of a first-order washout filter and bringing the controller order up to three.
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For the sketches of poles and zeros presented above for this design, the horizontal axis is greatly
exaggerated relative to the vertical axis in order to show more detail. All poles and zeros not associated
with the compensator should be considered to lie near the imaginary axis. The sketch in the upper left
shows a locus of poles and zeros as a function of dynamic pressure. The poles represent the bending and
torsion modes for the AFW with no active compensation, and the zeros arise from a particular choice of
sensors and actuators. The pair of zeros at the origin results from the fact that accelerometers were
used for feedback. It was found that for the TEO control surface and the TIP sensor, there is a critical

zero which is closely associated with the torsion mode. Note that as dynamic pressure increases the
critical zero and the pole associated with the torsion mode tend to stay near each other until just below
the flutter dynamic pressure at which point the pole breaks away to the fight, crossing into the right
half of the complex plane and indicating instability.

The use of simple feedback will drive the closed-loop roots from the open-loop poles to the transfer
function zeros, as a function of feedback gain. However, given uncertainties in the model of the plant
it is not always clear what path the roots will take. 12 For the lower two figures, the one on the left
shows how the system might be stabilized by simple feedback whereas the one on the right shows a
case where there is no value of gain for which the closed-loop system will be stable.

Even when the desired path is followed, the location of the isolated critical zero near the imaginary
axis indicates that a high gain would be required to drive the unstable root close enough to the zero to
stabilize the system with sufficient damping. One difficulty associated with high-gain controllers is
that the control surface rates required to control the flutter while subject to continual turbulence
excitation would be large and threaten to saturate the capability of the actuators, causing loss of control
of the flutter. Another difficulty associated with high-gain controllers is that higher frequency modes
or actuator roots can be driven unstable 13
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Dipole Filter Dynamics

In order to reduce the feedback gain required for stabilization due to the location of the critical zero
near the imaginary axis, dynamic filtering is required. The intent for this control law is to "soften" the
effect of the critical zero by placing a filter pole near the critical zero and placing a filter zero further to
the left. The result is similar to an inverted notch and will be referred to as a dipole filter.

The location of the critical zero changes as a function of dynamic pressure, whereas the location of the
open-loop filter pole is independent of dynamic pressure unless scheduling of dynamic parameters is
used. Also, the locations of system zeros are difficult to predict analytically and can be difficult to
measure experimentally. In the interest of avoiding scheduling and due to the uncertainty about the
exact location of the critical zero, the filter pole is placed somewhat to the left of the predicted critical
zero, with a damping ratio of about 10 percent. Using frequency domain Nyquist criteria for stability
margin analysis, a 50 percent damping ratio at a natural frequency 20 percent higher than that for the
compensator pole can be shown to be a good choice for the compensator zero location.

The lower portion of the figure shows magnitude and phase plots of the frequency response of the
dipole filter by itself. It can be seen that the dipole filter amplifies the control surface activity in the
frequency range predicted for flutter, which in this case is about l 1.5 Hz. Because the control
surface activity is concentrated at this frequency, the controller makes efficient use of the available
control power and is fairly insensitive to modeling errors outside the frequency range of interest.

Note that although pole/zero cancellation is generally thought to be sensitive to having accurate
knowledge of the plant, the dipole filter was evaluated using variations in the model of the AFW and
it was judged to be tolerant to changes in the frequency of the flutter mode. This is due in part to the
"robust" placement of the filter pole with respect to the critical zero, with the result that the stabilizing
character of the root locus did not change despite the frequency shifts.
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As with the previous control law, the traditional pole/zero design was predicted through analysis and
simulation to provide closed-loop stability up to the limit of the operating range of the wind tunnel.
The gain and phase margins at the common evaluation point compare favorably with the requirements,
and the required margins were predicted through linear analysis to be maintained throughout the test
envelope. Positive and negative gain margins were verified through simulation. Phase margins were
more difficult to determine from simulation, and only tolerance to phase lag was estimated. This was
done by reducing the break frequency on a simulated 100 Hz fourth-order Butterworth anti-aliasing
filter until simulation time histories showed oscillatory divergence, and determining the resulting lag
at the predicted flutter frequency. The 100 Hz fourth-order Butterworth filter was used instead of
the first-order 25 Hz anti-aliasing filter for this analysis.

The rate limit constraints of the actuators were not violated. It can be seen from the percent of
maximum allowed control surface activity as shown in the above figure that although the TEO and
TEl surfaces were both used, clearly the dominant activity is on the TEO surfaces.

In order to test the robustness of this control law design to parametric uncertainties, the control law was
analyzed for closed-loop stability for a variety of wind-tunnel conditions which were not part of the
planned wind-tunnel test envelope. Specifically, an early version of the control law was designed for a
Mach number of 0.9 in Freon and was evaluated at a Mach number of 0.8 in Freon, and 0.5 in air.
This early control law was designed to suppress symmetric flutter, but was used with only minor
modifications to evaluate its effectiveness for suppression of antisymmetric flutter for each of the
listed wind-tunnel conditions. In each case the closed-loop system was predicted stable up to at least
325 psf.



Modified LQG

" Design Philosophy:

Mukhopadhyay

- Start with optimal minimum energy design

- Simplify controller

-Improve MIMO robustness
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The control law designed andtested by Mukhopadhyay is designed using a modified Linear Quadratic

Regulator procedure with a state estimation for output feedback. The philosophy behind this control
law design is to exploit MIMO degrees-of-freedom through a systematic procedure which allows the
designer to perform trade-offs between desired closed-loop performance and considerations of control
surface activity.14This method is truly multi-input/multi-output and requires the use of singular values
for stability margin analysis rather than SISO gain and phase margins. The inputs to the procedure
were modified by the designer to improve the robustness to uncertainty in the modeling of the plant.
These modifications were based upon singular values or on equivalent MIMO measures of gain and
phase margins which can be derived from singular values. 15

The Linear-Quadratic-Gaussian (LQG) method used here results in a controller with a large number
of states so that controller order reduction is required for implementation. After order reduction the
Modified LQG design had 11 states per symmetry. The trailing-edge-outboard and leading-edge-
outboard control surfaces were used, as Well as their co-located accelerometers.



Design Steps

[  'e'Base'IChange Full Order LQG

Weights & Noise Design

States Reduction

_,NO_YES-_, Discrete IAnalysis

The LQG procedure uses a plant state-space model and weight and noise covariance matrices to
generate a model-based, full-order compensator. For a design point at a wind-tunnel condition for
which the open-loop plant is unstable, a full-state-feedback optimal regulator was designed with a zero
weighting matrix for the states and an identity weighting matrix for the controls. This regulator has
the property that for the closed-loop system the unstable characteristic roots are reflected into the left
half plane while all other roots remain unchanged, and represents the minimum control energy solution
for stabilizing the plant. 16A model-based minimum variance state estimator was also d_signed with
0.000001 radian plant input noise, 1/12 foot-per-second gust input noise and 0.32 ft/sec z (0.01 g)
measurement noise.

The full-state-feedback regulator was combined with the state estimator to generate a full-order
compensator which uses only sensor feedback with no direct knowledge of the states of the plant.
Based on nonminimum phase transmission zeros contained in the state-space model and many poorly
controllable and observable states for the control surfaces and sensors used, the noise intensities were

chosen after a few trials so as to produce a low-gain LQG control law which stabilized the plant and
itself had stable characteristic roots.

The next step was to reduce the order of the control law. The full-order LQG control law was reduced
through aprocess of balanced realization and modal truncation, based in part upon evaluation of modal
residues.17Although a lower-order stabilizing control law could be found, a tenth-order control law
was chosen since its performance was close to the performance of the full-order LQG control law. An
1lth state was added as part of a washout filter used to attenuate the response to bias errors.

When a stable reduced-order control law was found, the full-order and the reduced-order control laws
were analyzed and the singular values, frequency responses, and RMS control surface activity were
compared. Based upon this overall evaluation, modifications were made to the LQG weight and
noise covariance matrices to improve robustness to modeling errors and to meet constraints. The final
step was to discretize the continuous control law at a sample rate of 200 samples per second using
Tustin transformations and perform further analysis.
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The above figure shows the plant open-loop poles and fixed-gain, closed-loop roots as functions of
dynamic pressure. To simplify the figure, compensator poles and roots are not shown. Although the
open-loop compensator poles do not change as a function of dynamic pressure, the compensator roots
interact with the roots of the plant in the presence of feedback and therefore change with dynamic
pressure. However, for this design the compensator poles are stable open-loop and the compensator
roots are stable closed-loop for the dynamic pressure range shown.

Typically the poles for the full-order compensator will be located in the same frequency ranges as the
poles for the open-loop plant. During compensator order reduction, compensator poles above about
25 Hz were removed since they tended to have little effect on the control of flutter at 11.5 Hz.

However, it was found through singular value analysis that the stability margins in the frequency range
around 32 Hz needed improvement. Since the open-loop plant poles in this region are stable, an
analog notch filter with a center frequency of 32 Hz was used to prevent the compensator from
driving the modes in this region unstable.

The solid lines indicate the paths of the open-loop poles and the shaded lines indicate the paths of the
closed-loop roots. The crossing point where the 11.5 Hz flutter mode goes unstable is identified in
the figure as 248 psf for the design model of the symmetric plant with no compensation and 350 psf
for the symmetric plant with compensation.
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The Modified LQG control law was predicted through analysis and simulation to provide closed-loop
stability up to the limit of the operating range of the wind tunnel. The gain and phase margins shown
here represent guaranteed minimum margins for simultaneous variations on multiple channels. These
margins can be conservative if they represent an unlikely combination of variations. The margins
shown here do not meet the requirements for SISO gain and phase margins. However, because of
their potential conservative nature, these margins were judged to be sufficient for testing the control
law.

The closed-loop RMS control surface rates in the presence of random gust excitation are within the
specified limits. The percent of maximum allowed control surface activity for each pair of surfaces
indicates that both the TEO and LEO control surface pairs are used to a significant extent, with the
TEO surfaces being the dominant surfaces.



Measured vs Predicted Behavior
Symmetric, Q = 175, Open-Loop, Plant Only
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One thing found during the wind-tunnel test was that the wind-tunnel model did not behave quite as
predicted. One difference which became evident early in the testing was that the frequencies at which
dominant frequency response peaks occurred were somewhat lower than predicted. For a dynamic
pressure of 175 psf, the above figure shows a frequency shift of about 1 Hz for the bending mode for
the symmetric case. Prior to the wind-tunnel test, the analytical model had been adjusted so that the
frequencies at zero dynamic pressure matched the frequencies measured during a ground vibration
test (GVT). The differences between predicted and measured frequencies must, therefore, be related
to aerodynamic effects.

The dynamic pressure for zero damping of the flutter mode was also found to be lower than predicted
by about 30 psf or 13 percent. Large open-loop structural response was encountered in the wind tunnel
at a dynamic pressure of about 220 psf and has been judged to be primarily antisymmetric. Analysis
indicated that symmetric flutter would occur first at about 248 psf, with antisymmetric flutter occurring
at about 252 psf.

Since none of the control laws were scheduled with dynamic pressure, it is more significant to compare
the difference between measured and predicted flutter frequencies at corresponding flutter dynamic
pressures than it is to compare the difference between measured and predicted frequencies at a given
dynamic pressure. This means that the relevant frequency shift for the control law designers was about
2 Hz, as shown in the chart.

The phase characteristics of the response shown in the figure indicate a frequency shift consistent with
the frequency shift for the peak magnitude. In fact, a Nyquist plot for the measured and predicted open-
loop responses shown here would be almost identical because the phase angle for the peak response is
nearly the same for the two and the frequency shift would not be apparent. However, if a control law
has dynamics in the flutter frequency range, the shifted plant dynamics can interact with the controller
dynamics to introduce potentially large phase shifts. Therefore a control law designer should be aware
of the effects of changes in frequency for critical modes, and not rely strictly on phase margins.
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The above figure shows the highest closed-loop stable dynamic pressure achieved by each control law.
Notice that the open-loop plant goes unstable at a dynamic pressure lower than expected, at about
220 psf rather than 248 psf.

The Traditional Pole/Zero design demonstrated closed-loop stability up to a dynamic pressure of about
272 psf. This represents an increase of about 24 percent relative to the observed open-loop flutter
boundary. The controller stabilized the model at the 272 psf condition for several minutes while
time histories for loads and for commanded control deflections due to tunnel turbulence were being

recorded for RMS analysis. The wind-tunnel safety system was activated automatically after the model
responded to a burst of turbulence and the structural loads exceeded preset limits. Since the control
law was able to limit the amplitude of the flutter mode for lower turbulence levels, it is quite possible
that increasing the feedback gain would keep the structural loads due to turbulence within the prescribed
limits, at least in the flutter frequency range.

The Modified LQG controller did not significantly change the observed flutter dynamic pressure
relative to the open-loop case. The closed-loop control surface activity due to turbulence for this
controller was lower than anticipated, suggesting that a higher gain solution might achieve flutter

suppression with an acceptable increase in control surface activity.

The Modal Rate Feedback caused a large structural response at a dynamic pressure below the open-
loop flutter boundary. At the start of the flutter suppression testing for this control law, experimentally
derived open-loop controller performance evaluation (CPE) at 125 psf and 175 psf indicated that
closing the loop would drive the system unstable. The primary cause for this was undue sensitivity
to frequency shifts of the critical structural modes due to the design of the controller dynamics.
However, since the method is able to use experimentally derived frequency responses as inputs to the
optimization, the frequencies of the controller dynamics were shifted to match the observed shift and
the blending and distribution matrices were reoptimized using data collected at 125 and 175 psf.
Subsequent open-loop CPE and closed-loop testing with the redesigned controller showed that the
system performed as expected at 125 and 175 psf. The large response occurred at 185 psf at a
frequency of about 7 Hz. The cause for the large response has not been determined, but it may have
been related to differences between the left and right actuators for the TEI control surfaces.
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The above figure depicts closed-loop control surface RMS rates as functions of dynamic pressure. The
RMS rates were synthesized from commanded deflections since rates were not commanded directly.
The three curves represent the measured response for the three control laws during testing. Since the
TEO control surfaces were dominant for each control law, rates are shown for the TEO surfaces. If
there was a difference between the RMS value for the left surface and the RMS value for the right
surface, the maximum of the two is shown.

Note that all three control laws command about the same level of control surface activity for the
dynamic pressures tested. This reflects the fact that all three were designed with the same turbulence
model and the same design limits. Note also that none of the control laws had difficulty staying within
the design limit of 75 °/sec RMS. In fact, the peak measured rate is only about 1/3 of the limit for
the Traditional Pole/Zero design at 272 psf. This suggests that the turbulence levels used for design
should be reduced prior to the next wind tunnel entry to allow more use of the available control power.



Concluding Remarks

• Three FSS control laws designed and tested

• Analysis predicted that all three would meet objective

• Wind-tunnel model behaved differently than expected

• One FSS control law demonstrated flutter suppression

to 24 percent above open-loop flutter dynamic pressure

Three flutter suppression control laws were designed for the Rockwell Active Flexible Wing. The
control laws were implemented digitally and tested subsonically in the Transonic Dynamics Tunnel
at NASA Langley Research Center. All three control laws were predicted to meet the objective of
significantly raising the flutter onset dynamic pressure, while maintaining stability margins and not
violating control surface rate and displacement limits. Wind-tunnel testing generally confirmed the
analytical predictions for the open-loop character of the AFW, although differences were observed.
Of the control laws tested, only one was sufficiently robust to the observed differences to raise the
flutter dynamic pressure. The Traditional Pole/Zero Design was able to demonstrate simultaneous
symmetric and antisymmetric flutter suppression for several minutes at a dynamic pressure 24 percent
above the observed open-loop flutter boundary, in the presence of turbulence.

The 1989 wind-tunnel test has provided data for assessing the fidelity of the analytical models of
the AFW and for evaluating the robustness of the control laws to "real world" implementation
considerations. Data is available for upgrading the mathematical models of the AFW for possible
distribution to other control law designers. Further, the AFW project team has had an opportunity to
work together in a multidisciplinary effort involving aeroeiastic modeling and simulation, control
law design and analysis, digital controller implementation, and near-real-time controller performance
evaluation.
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Abstract

Three designs are discussed for controlling loads while rolling for the Active Flexible Wing

(AFW). The goal is to provide good roll control while simultaneously limiting the torsion and
bending loads experienced by the wing. Successful development will allow for lighter wing
structures to be used, with the control system insuring loads remain within allowable limits.
Each controller has been designed for testing in the NASA Langley Transonic Dynamics tunnel
on the Rockwell AFW wind tunnel model

The first design uses LQG/LTR techniques to develop a MIMO controller structure between the
control surfaces and roll rate and four separate torsion loads. The control system consisted of
two parts: The loop controller for stability and a pre-filter which generates load commands as a
function of roll command input to the loop controller for performance. Conversion of the
physical requirements to LQG/LTR design parameters is shown.

The second design uses a nonlinear gearing function imbedding implicit load control information
as an element of a modified SISO controller. While only roll rate has an explicit feedback
mechanism, torsion, bending, and hinge load are controlled through the a priory knowledge of
the model's control surface to roll and load transfer functions. System stability and robustness
are shown by analysis and simulation_

The third design integrates the =above RMLA controllers With _a high frequency structural mode

controller. Using the same surfaces as the RMLA control, its object is to reduce high frequency
responses caused by the RMLA and to act as a flutter suppression system. The goal is to operate
the integrated controller beyond the model's natural flutter boundary. Design issues of
integrating the RMLA and structural mode controllers are discussed.

r



Introduction

The Advanced Flexible Wing (AFW) is an aeroservoelastically scaled model of a Rockwell
fighter design. By allowing the wings to be flexible, they may be lighter and the flexibility
exploited for such things as twist and camber control. Additional flexibility, however, reduces
the flutter envelope of the wing and active control schemes may be required to stabilize the wing
modal dynamics. Control systems discussed in this paper cover maneuver, load, and flutter
control systems. An integrated maneuver, load, and flutter controller is a goal of this test
program.

Two roll plus maneuver load control designs are discussed. The first design is based on
LQG/LTR modern control methods to control roll rate and torsion loads at four different wing
locations. The controller is a five input, five output system with 11 internal states. The
controller acts a command tracker, generating surface commands to drive the AFW to the state
requested by the command generator. The command generator works as a prefilter to provide
input signals to the controller corresponding to the desired roll rate and loads profile. With these
two things, the prefilter and the controller, a roll maneuver may be performed with a 40%
reduction in torsion loads on the wing.

The second design uses a nonlinear surface command function to produce surface position
commands as a function of current roll rate and commanded roll rate. It is designed to keep
specified wing loads below some specified value while permitting the greatest possible roll axis
performance. (A conventional control system design would attempt to control the wing loads
continuosly, even when they were well below structural limits. This method degrades roll
performance as some control power is used by the load controller.) This controller, in contrast,
only controls the loads when they reach some threshold, say 80% of structural limits, to permit
the control power to be used for aircraft maneuvers until it is necessary to perform load control.
The trade off for this design method is the controller becomes a nonlinear controller instead of a
linear one with the accompanying increase in design and analysis complexity.

The final design is a flutter suppression control system. This system stabilizes both symmetric
and antisymmetric flutter modes of the AFW. Due to the fact that accelerometers have an output
which is a function of the frequency, load sensors are used to provide the feedback signal. The
control system design is done using classical techniques. An integrated flutter and roll/loads
design is also being developed.

Slide I Description of Control Systems

For a top level design goal, Reducing wing loads while maintaining roll performance is the
objective of the roll controllers. There are two designs to meet this objective: 1) Linear
Feedback (RMLA) using roll rate and load feedback in the controller. This design uses
LQG/LTR modern control techniques as the synthesis method. 2) Feedforward Nonlinear
Optimal using only roll rate feedback for control and having surface command functions
providing load control.

Slide 2 Design Objectives

For both Roll Maneuver designs, similar design goals were used. The stability and time
response goals correspond to the MIL-STD parameters for fighter aircraft. The load control
criteria were chosen to represent a first step to prove the validity of the concept. Higher levels of
load control are achievable at a cost of reduced maneuverability. The robustness criteria is
derived from known measurement uncertainty; plant variations from the analytical models may
well be higher.

Slide 3 Block Diagram of RMLA ,_3



This diagram describes the basic structure used in the RMLA controller. Roll and load
commands go through a pre-filter to provide tracking signals to the RMLA controller. The
controller is a 5 input (roll rate and wing torsion at four locations) 5 output (trailing edge inboard
surfaces together, trailing edge outboard left, trailing edge outboard right, leading edge outboard
left and leading edge outboard right) MIMO design with 11 internal dynamic states (the states do
not necessarily correspond to physical quantities).

Slide 4 Prefilter Design

An integral part of the RMLA controller is the prefilter. The pre-filter's function is to output 5
tracking commands derived from a roll rate input command. The pre-filter output is based on the
open loop dynamics of the AFW. For this design, the roll rate signal was fed directly and the
torsion commands were gain scheduled to the roll rate command.

Slide 5 Linear Performance

A step response to a 1 rad/sec roll rate command shows the good roll rate tracking and load
control of the LQG/LTR RMLA. A command for torsion only shows the decoupling
performance of the controller.

Slide 6 Nonlinear Performance

The response of the AFW+ LQG/LTR RMLA in a complete nonlinear simulation shows the roll
tracking of the LQG/LTR RMLA. A simulation of a 40% load reduction with no change in roll
performance from the nominal case.

Slide 7 LQGFLTR RMLA Summary

The LQG/LTR RMLA controller has achieved the basic design goals. The LQG/LTR RMLA
shows good tracking, channel decoupling, and stability properties.

Slide 8 LQG/LTR RMLA Future Directions

The RMLA controller can be refined in its design by expanding the design to handle non-square
cases. This would allow for inputs to be any combination of control commands and outputs to
be the desired surfaces. The pre-filter may also be improved by designing it as a dynamic model
follower or command generator.

Slide 9 Feedforward Block Diagram

The RMLA Feedforward Nonlinear Optimal Controller block diagram shows how the roll rate
command is input to the control surface functions. The surface functions contain the load
information which provides the load control. The only inputs to this control system are the
commanded roll rate and the actual roll rate. From this information, the surface functions output
surface commands which will produce the desired acceleration about the current roll rate.

Slide 10 Design Method for Feedforward

The design method for the feedforward controller can be stated as 'Control loads only when they
are near limits'. This is accomplished by developing surface control functions by optimization
methods. Using loads as constraints, surface deflections are found which will provide the
desired roll rate and roll acceleration without violating the constraints. The surface functions
will have a linear range where no load constraints have been encountered and a nonlinear range
where constraints are active.

Slide 11 Example of Surface Function

This plot are two views of the control surface functions. Notice the linear region around zero
and the nonlinearities as constraints are encountered. In the 2-d plot, the trailing edge outboard



surfacebecomestheprimaryloadcontrolsurfacewith thetrailingedgeinboardincreasingin
gaintomaintainroll performance.Thisfollowsourintuitiveexpectationsasthetrailingedge
outboardsurfaceshavehighloadauthoritybut low roll powerandthetrailingedgeinboard
surfaceshavethehighestroll power.Givenwearetryingto keeptotalsurfacedeflectionstoa
minimum,thispatternmakessense.

Slide 12 Summary of Feedforward Optimal Design

The feedforward optimal controller is capable of maintaining roll performance while controlling
wing loads. An important consideration is the controller is a linear design in term of roll rate and
roll acceleration. A simulation of this controller is currently underway for test this winter.

Slide 13 Flutter Control Block Diagram

Flutter control is used on the AFW to expand the flight envelope while keeping.the low weight,
flexible wings. The flutter control block diagram show how the flutter suppression system is an
integral part of the aircraft dynamics.

Slide 14 Flutter Suppression Control Law

The Rockwell method for flutter design is similar to that employed by NASA except load
sensors were used for feedback instead of accelerometers. This is because load sensors are also
used for the roll control laws and to eliminate the frequency gain of accelerometers.

Slide 15 Combined Maneuver, Flutter, and Load Control

A proposed design for integrated maneuver, flutter, and load control would exploit the frequency
separation between the maneuver dynamics and the flutter dynamics. The controllers will be
designed separately and combined to produce the total controller.

Slide 16 Combined Maneuver, Flutter, and Load Control Block Diagram

The block diagram indicates how each surface command signals would be combined into the
total controller design. Any combination of flutter controller and maneuver/loads controller
could be used in this scheme.

Slide 17 Future of AFW Controls

A goal of this design/testing program is to demonstrate a snap-roll maneuver beyond the flutter
boundary with load reduction. This would open up new areas of performance for aircraft in such
things as weight reduction and improved agility. Additional work is also being done with new
nonlinear controllers to improve the aircraft performance while coping with conflicting control
requirements.
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Introduction

The Active Flexible Wing (AFW) Program (refs. 1 and 2) is a cooperative effort between the NASA
Langley Research Center and Rockwell International Corporation. The program objective is the validation
of analysis and synthesis methodologies through the development of real-time digital multi-input multi-
output (MIMO) control laws for a sophisticated aeroelastic wind-tunnel model. This model was tested in
the Langley Transonic Dynamics Tunnel during the Fall of 1989.

Flutter suppression (FS) is one of the active control concepts being investigated in the AFW Program.
The design goal for FS control laws was to increase the passive flutter dynamic pressure 30 percent. In
order to meet this goal, the FS control laws had to be capable of suppressing both symmetric and
antisymmetric flutter instabilities simultaneously. In addition, the FS control laws had to be practical and
of low-order, robust, and capable of real-time execution within a 200 hz. sampling rate.

The purpose of this paper is to present an overview of the development, simulation validation, and wind-
tunnel testing of a digital controller system for flutter suppression.
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AFW Digital Controller Designed, Assembled,Coded, Validated, and Tested

The AFW digital controller was designed, assembled, coded, validated, and tested completely in-house.
This represents a "first" for the agency. The accompanying figure illustrates each of these
accomplishments.

DESIGNED shows schematically a digital controller, comprised of various computers, tape drive, disks,
array processor, analog-to-digital conversion boards all residing within the same chassis as a SUN host
central processing unit. Design specifications required that the controller have the capability of receiving
and providing analog and discrete signals from/to the model and user control panel. The Digital Controller
controls the wind-tunnel model by digitizing the incoming sensor signals, processing the cun'ently-
implemented control law, and then providing the appropriate control-surface actuator commands to effect
these laws.

ASSEMBLED/CODED shows an operator sitting at the SUN 3/160 Workstation. Over 22,000 lines of
code in C-language were written during 1989 for the 1989 Wind-Tunnel test. The implementation of
control laws into the control computer is a time-critical path leading up to the hot-bench simulation and
wind-tunnel tests. This means that the control laws need to be generic in form. The digital controller
software can be modified easily and quickly as required, and the generic form of the control systems
allows for changes in a design to be implemented easily and reliably.

VALIDATED shows a color-coded three-dimensional wireframe outline of the AFW model generated by
the NASA/LaRC Advanced Real-Time Simulation (ARTS) facility. The ARTS facility was used to verify
and validate the functionality of the digital controller.

TESTED shows the AFW wind-tunnel model in the NASA/LaRC Transonic Dynamics Tunnel during its
October/November 1989 entry. The digital controller operating an FS conlyol law took the AFW wind-
tunnel model 24% (in dynamic pressure) above its open-loop boundary.



rr
,¢

nnl

Ile

lie

i / // /

V_O a_/J
0 c_ "-"

/////////]

/(1) _ /]
",'_ "a m/_
,,u.. ,_._ _

,, ._u_ m
/0

V_ o _ a_-_-
V/Z/_///////////////////_

/

0

I..I.
n,-
I,,I..i
I-
Z
i

--I
,--I

0
0

Z

I,LI
..I
1.1
0
nr

Z
0
0

1

1



Control System Hardware Schematic

Digital Controller

One of the primary objectives of the AFW Program is to gain practical experience in designing,
fabricating, and implementing a real-time MIMO digital controller and in developing the hardware interface
between the controller and the actual wind-tunnel model and simulator. The hardware components of the
digital controller, on the left side of the figure, show schematically how the host central processing unit
(CPU), the disk and tape drives, and the added boards communicate across the VME BUS. During
closed-loop operation, the ADC boards convert analog sensor signals to digital data; the DAC boards
convert digital actuator commands to analog signals; the host CPU and the user control panel provide user
interface to the signal processing board; the signal processing board ("the controller") controls the real-time
processing; and the array processing board performs floating-point calculations of the flutter suppression
control laws. The entire operation is repeated 200 times a second for real-time operation. To meet these
requirements with reasonable resources, a SUN 3/160 workstation driven by a Unix Operating system
was selected as the "shell" of the Digital Controller.

NASA/Rockwell Interface

The hardware components of the interface box are shown schematically on the right side of the figure.
The interface box contains the analog circuitry for processing the analog signals coming from or going to
either the wind-tunnel model or the simulator. The circuitry includes low-pass filters (break frequencies of
1000 hz) to reduce the high-frequency noise and limit voltage spikes, antialiasing filters, and electrical
isolation networks. The antialiasing filters are configured to provide either first-order roll-off or fourth-
order roll-off with either a 25 hz break frequency or a 100 hz break frequency. The sensor signals coming
to the controller can also be filtered through notch filters, specified with each control law to prevent signals
with undesired frequencies from being input to the control law. The isolation amplifiers provide optical
isolation between two electronic systems.
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Components of Digital Controller

Besides the host computer, the Digital Controller consists of several special purpose processors linked to
the workstation via a data bus. These processors include a digital signal processor, a high speed array
processor, and four data translation boards.

The host computer is a SUN 3/160 workstation. It provides the user interface to the digital signal
processor board, which is the heart of the real-time digital controller. All user options, control law
arrays, control parameters, and excitation definitions are specified through the host user interface. The
host downloads signal-processor software and determines and downloads the array-processor
command code to implement a currently-selected control law. It allows real-time changes in selection
of mode of operation, selection of gains, excitation amplitudes and the control surfaces to be used.

The host controls the saving of the digitized data to external files and tapes and provides the display of
important parameters such as control-surface deflections, errors between commanded and actual
deflections, overall control-law gain, and switch selections.

The digital signal processor (DSP) is a Challenger-I board manufactured by SKY Computers, Inc. and is
composed primarily of two TMS 32020 microcomputers and 64K integer words (one word equals 2
bytes) of memory. The DSP is the "real-time digital controller" because it provides the management of
all signal processing and scheduling of control laws. As bus master, the DSP controls, directs, and
sequences the real-time activities and tasks. It controls all the real-time processing of analog input and
output signals. It controls control-law execution by sending commands to the array processor to
implement a desired control law and adds digitized model excitations or bias commands to statically
position control surfaces. It provides the interface to the user control panel lights and switches and
checks for faults; and it sets switches (software flags) for the host computer which specify when
blocks of data can be stored and transferred.

The array processor (AP) is a SKY Warrior I board with 16Mbytes of memory which provides the high-
speed floating-point arithmetic computations required in executing a particular control law. Included in
these computations are unit conversions, scaling, and all matrix computations.

The data translation boards consist of two DT-1401 analog-to-digital converter (ADC) boards and two
DT-1406 digital-to-analog converter (DAC) boards manufactured by Data Translation, Inc. They
provide all the analog data conversions required between the model and the controller. The ADC's are
used to convert the incoming analog sensor signals to digital integer values which can be processed by
the DSP. The DAC's are used to convert integer actuator command signals sent by the DSP into analog
voltages which are then sent to the control surface actuators.

The user control panel, designed and built in-house by NASA, provides the real-time interface to "the
controller". It allows real-time selection of certain options via lighted switches and provides real-time
status of various control parameters through status display lights. These switches are simulated in the
host interface software for use with the simulator and as a backup.
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Digital Controller Simulation Lab

The accompanying figure is a photograph of the Digital Controller Simulation Lab. The components in
Lab include:

Two SUN 3/160's (housed in rolling cabinets under the table)
NASA/Rockwell Interface Box with User Control Panel and Patch Box (shown on the extreme

left). The User Control Panel and Patch Box are located in the top of the box. The power
supply is in the bottom, the anti-aliasing, notch filters, etc. are in the box above the power
supply.

Oscilloscope and Simulation Video Monitor with wireframe image displayed (on table)
Operator's console (to the right of the monitor)
Printer

The Patch Box is used to bypass the hardware in the NASA/Rockwell Interface Box when hooked to the
simulator when software-implemented anti-aliasing filters are used and when trouble-shooting problems
with the hardware.

The oscilloscope is used to monitor specific analog signals for checkout, debugging, and trouble-shooting.
The Simulation Video Monitor provides the controller operator with a visual wireframe image of the model
which includes the dynamics of the model and the motion of the control surfaces.





Digital Controller Software

A generic form of the control law function was identified such that one set of software would accommodate a
given control law while imposing minimal constraints on the designers. The generic structure allows the
designers to choose sensors with options to blend them, freedom of controller order with upper limits,
scheduling of controller parameters with respect to dynamic pressure, and selection of various control surfaces
with or without distribution of controller outputs to different actuators. Components of the Digital Control
System were identified and separate program modules were developed. Their various functions are outlined
below. All the Digital Controller software is written in the high level C programming language except for the
commands required to perform the actual calculations on the array processor. Operation code command
blocks were generated for these.

HOST computer:
There are three primary HOST programs, all of which run simultaneously:

I. HOST INTERFACE providing menus for
Control Law Definition

Controller parameter selection
Calculation of excitation signals for Controller Performance Evaluation
User Control Panel software simulation
Calculation of the excitations for Control Law verification

2. DATA TRANSFER providing capability to
Extract sampled experimental data which is in main memory and/or stored on disk
Format data for external use

Ship data to disk, tape, or external computer
3. INFORMATION WINDOW displays current status of controller parameters:

Actual Control Surface Deflections and percent errors
Mach and q
Roll angle, roll-rate, pitch
Current Sampling Speed
Current switch selections

Type, size, amplitude, and frequency of excitation
Status of data storage
Control Law inputs and outputs

Digital Signal Processor (DSP):
There is one program residing on the Digital Signal Processing board written in C which controls the real-time
execution for

Specifying timing and sampling rate
Controlling sampling of specified input signals
Initiating AID and DIA conversions of signals
Manually positioning the control surfaces
Sending excitation signals to various control surfaces
Initiating Control Law execution by sending command codes to array processor
Performing scheduling of control laws based on dynamic pressure
Initiating data acquisition and storage
Controlling all the "slow cycle communications between the host INTERFACE
program, the Array Processor and the host INFORMATION WINDOW program.

Array Processor (AP):
Control law execution code written using the array processor command language which is stored by the HOST
computor in the Digital Signal Processor memory. When control laws are executed, the DSP sends these
commands to the array processors. This code performs:

Control Law calculations

Scaling and unit conversions

5"94
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Flutter Suppression System Flow Diagram

This figure is a detailed schematic of the various blocks of code involved in the actual FSS control
execution. All blocks of code reside on the Digital Signal Processor (DSP). Commands to operate the
Array Processor (AP) are sent from the DSP to the AP during execution each time cycle. Commands for
adding bias to a control surface or for performing roll trim are added to the flutter suppression commands.
The Roll Trim System feedback is switch selectable. Both the bias commands and the roll trim command

are implemented using an "easy on" procedure. The AP performs the actual floating-point calculations of
the Control Law matrix operations, indicated by the "boxed-in" area in the figure. The conversion to 16
bit integers and the averaging of the signals for the FSS control law are performed on the DSP using fast
masking and binary shifts operations. A subset of the sampled incoming signals and outgoing signals are
sent to memory located on the array processor by the DSP.
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Timing Schedule

The different amounts of time involved in performing the FSS control law functions as delineated in the
block diagram in the previous figure are shown in this figure. The first operation is the sampling of the
required sensors and shipping them to the array processor memory. This block of code requires
approximately 0.68 ms. The actuator commands are then summed and sent to the DIA converters. This

requires approximately 0.06 ms. Data storage for Controller Performance Evaluation is then performed.
This takes approximately .03 ms. Sending the command blocks of code to the Array Processor to execute
the control law requires the most time and is dependent on the number of inputs and outputs, or on the
number of states and blended signals. The maximum time required is approximately 3.2ms. There are 10
different "slow-cycle" blocks of code, each executed every 10 iterations (if operating at 200 hz, this
translates to 20 times a second). Code for performing communication between different programs or
devices is executed during each of these "slow" cycles. Included in this is code to read switch settings
from the HOST Interface program and to send parameters to the HOST Information Window program
which do not need to be updated every iteration. Types of communications parameters passed are:

mode of operation selected,
excitation and symmetry selected,
desired sampling frequency,
whether or not to perform scheduling of the control law,
whether to open or close the feedback loop,
sampling time left at end of cycle,
whether or not add excitation to actuator commands,
whether or not to save data,
type of excitation selected,
Mach number and dynamic pressure.

The sum of each of these blocks of code must be less than approximately 4.5ms in order to operate
without BUS interference. One of the controls laws could not quite meet this goal and had to be slowed
by 5% in order to operate without BUS interference.
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Summary of Problems Resolved

The primary difficulties involved in designing, coding, and assembling this one-of-a-kind digital controller
revolved around four basic problems. The first was that the real-time controller had to operate at 200 hz
within a Unix-based operating system which runs at 60 hz. This necessitated obtaining code from SKY
Computers, Inc. which gave control of the data bus to the Challenger (DSP) computer which was able to
run as fast as calculations would permit. Furthermore, modifications to software library routines supplied
by the SKY Computers, Inc. had to be modified so that controller operations could be initiated by the
DSP.

The second major problem incurred was that no two host software codes could communicate with the
array processor memory or the Challenger memory simultaneously. Since the primary functions of the
host computer fell into three categories:

1) selection of control options, definitions of control laws and excitations, and setting of various
parameters for the controller;,

2) display of current sensor, actuator command, and control law parameters employed by the
controller; and

3) controller performance data storage and transfer (refs. 3 and 4),
different software packages were developed for each. The interfacing of these various packages with the
controller provided an interesting challenge which was met by using the Challenger to pass information
between the various host programs.

The third problem resulted from the fact that the DSP was only capable of performing integer arithmetic. It
had no floating point registers. This was solved by performing most floating point arithmatic on the AP;
however, this entailed transferring data and command codes to the AP. Some processes only required a
crude integer division capability which was implemented within the DSP. It would have been preferable to
have a DSP which was capable of some floating point arithmetic. The 16-bit address registers along with
32K-byte memory map also caused problems in storing data.

The fourth problem revolved around the fact that the data translation boards which were used only
generated 12 bits of resolution. This not only caused some voltage resolution loss, but also necessitated
careful handling of sign extensions and truncations from and to 16-bit integer data by the DSP and used a
significant portion of the 5ms time budget allowed by the 200 hz sampling rate. It also forced special code
to implement voltage limiters on signals which required comparisons of 12-bit 'signed' data with 16-bit
compare registers. It would have been highly desirable to have had 16-bit data translation boards.

As a result of time budget and BUS interference problems, some problems were resolved in a fashion
which was less than desired. The number of signals to be save had to be reduced, the sampling rate of one
control law was reduced by 5 percent, and some deflection-limiting safety features had to be removed.
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Simulation Overview

Pre-test analytical open-loop flutter results for the model indicated that the onset of flutter would be very
rapid. At test conditions of 0.5 Mach number and 300 psf, the predicted flutter frequency was 7.2 hz.
This means that the time-to-double amplitude for flutter was about 0.12 seconds. For closed-loop testing
above the open-loop flutter boundary, any digital control system failure might result in very rapid loss of
the model before "flutter stopper" mechanisms: releasing the tip-ballast store brake and/or effectively
reducing tunnel conditions by opening the tunnel bypass valves - could be effected. Also, the
effectiveness of the use of the tip-ballast store as a "flutter stopper" was unknown prior to the test.
Because there was a lot of concern for the safety of the wind-tunnel model, it was felt that it was essential
to do pre-test verification of the digital controller to gain confidence that the systems functioned properly.
This verification is performed by coupling the digital controller to a computer simulation of the model
being tested in the tunnel. Because the computer simulation sends signals to and receives signals from the
hardware setup, it is referred to as a hot bench simulation (HBS).

The data used to build up the batch and hot bench simulations come from both linear system theory
analysis from which a linear math model is developed and from pre-test test data such as experimentally
generated actuator transfer functions, aerodynamic correction factors, etc.

These are combined to make up a "nonlinear" BATCH Simulation model which includes the linear model

of the plant along with nonlinear rate limiting of the actuators, and'represents the whole aircraft, both left
and right. There are two primary purposes for the BATCH simulation. First is to provide a mechanism for
control law designers to validate their control laws "off-line" from the actual hardware of the HOT
BENCH simulator. Computational time delays and sampling effects are included in the model for this
purpose. The second purpose is to provide a "nonlinear", whole aircraft model for HOT BENCH
simulation.

The purpose of the HOT BENCH simulation is to validate the functionality of the Digital Controller.





Simulation Details

The data used to build up the batch and hot bench simulations come from three sources, (1) a collection of
aeroservoelastic analysis programs known as ISAC, ref. 5, (2) some vibration codes to calculate natural
frequencies, and (3), measured data. From ISAC come the generalized mass and stiffness matrices, and
the generalized aerodynamic forces (GAF's). The generalized aerodynamic forces are calculated in ISAC
by linear lifting surface theory. Complex-valued matrices of GAF's are produced as tabular functions of

reduced frequency (k = b_v). These tabulated aerodynamic matrices can be approximated in ISAC as
rational functions of the parameter "p" where "p"="jk" and j = sqrt(-1). These rational function
approximations (RFA's) can be formulated in a variety of ways. A good summary of the various methods
of forming RFA's can be found in refs 6 and 7.

The other source of data for the batch simulation is experimental. The elastic mode frequencies resulting
from a vibration analysis are replaced with measured GVT frequencies where applicable. The actuator
transfer functions are the result of fitting measured frequency response data with third order transfer
functions. As a result, the right and left actuator models are not equal for actuator pairs. These actuator
models are implemented in the simulations. In addition, the simulated response of the actuators is rate-
limited according the published specifications. Extensive static data was taken in the last wind-tunnel
entry of the roll moments and lift force produced by control surface deflections. When roll (lift) per unit
deflection, both measured and predicted, are plotted as functions of dynamic pressure, they are not the
same. The predictions come from lifting surface theory and the lack of agreement is no surprise. By
judicious use of "effectiveness factors", the predicted roll(lift) can be brought into agreement with the
measured data. Two points of interest where agreement in predicted and measured control effectiveness is
sought is (1), the limiting value as dynamic pressure goes to zero and, (2), the dynamic pressure where
control surface deflection produces no change in roll(lift) due to elastic deformation of the wing, the
reversal point. These effectiveness factors are implemented in the simulations.

Both the batch and hot bench simulations are "whole" aircraft models. The inputs are right and left
actuators and the outputs are right and left measurements. The GAFs, mass and stiffness matrices are in
terms of symmetric and anti-symmetric modes, which are combined in the simulation models.

The batch simulation is intended to be the "truth" (or most correct) model. The hot bench simulation
model will typically be simplified in some fashion to reduce the required computational time. Currently the
hot bench simulation is the same order as the batch simulation, but it is anticipated that as the batch
simulation is updated, the order will increase from 115 to 196. Various methods of model reduction are
being examined to create a reduced order hot bench simulation.
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Wireframe Simulation Image

An ADAGE (Eaglel000) graphics computer generates a color-coded, three-dimensional articulating
wireframe image of the flexing AF'W model. The display presents model pitch, roll and yaw, control
surface deflections and total model deformation which can be magnified for visual clarity. A blue shadow
wireframe of the undeformed model is drawn so that deformations are more easily seen. Examples of both
an aerodynamically deforming model and a flexible/rigid rolling model are displayed in this figure. The
undeformed model can be seen as a horizontal, undistorted "shadow" image.
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From Batch to Hot Bench Simulation

The batch simulation is implemented as if it were a nonlinear system. Dynamic pressure is a parameter that
can be varied during a run. All the states are collected in a large state vector and integrated with a Runge-Kutta
second order integration scheme. The integration step used in the batch simulation is 1/2000 seconds.
Sensitivity studies indicate a small degradation in accuracy with an integration step of 1/1600 seconds and
significant degradation for larger steps.

If dynamic pressure is held fixed, the batch simulation is linear except for the rate limit imposed on the single
pole portion of the actuator transfer functions. There are eight actuators modeled with third order transfer
functions. The second-order part of the third-order actuator models can be lumped with the remaining linear
dynamics. The aeroservoelastic (ASE) equations are highly coupled and currently contain 49 states, broken
down as follows:

8 symmetric elastic mode positions
8 symmetric elastic mode velocities
8 symmetric aerodynamic lag states (1 lag formulation)
2 symmetric gust states (modified Dryden)
7 anti-symmetric elastic mode positions
7 anti-symmetric elastic mode velocities
7 anti-symmetric aerodynamic lag states (1 lag formulation)
2 anti-symmetric gust states (modified Dryden)

49

Together with the 16 states associated with the second-order part of eight actuator models, a coupled linear
system of 65 states, 10 inputs (8 actuator and 2 noise), and 40 outputs can be extracted from the "linear" portion
of the batch simulation. Order reduction techniques can be applied to this dynamic system followed by
conversion to a state transition model based on an integration step of 1/400 seconds.

The anti-aliasing filters are applied to each output signal and result in a diagonal system. The anti-aliasing
filters are therefore not lumped with the actuator-ASE coupled system to avoid making full matrix-multiply
operations if they can be avoided. The anti-aliasing filter dynamics are digitized in a sequential scalar manner
in the hot bench simulation with an integration step of 1/400 seconds.

The nonlinear portion is integrated numerically with an integration step of 1/1600 seconds. Four integration
steps are made to predict the value of the input to the coupled linear system at time (k+l)h where h = 1/400
seconds. Since input to the coupled linear system at time (k+l)h is now available, a trapezoidal state transition
scheme can be employed. Let {Uk} denote the quantity {u(t=kh)} where the vector {u} is a function of time,

t. Given the linear dynamic system

{_¢} = [A]{x} + [B]{u}

if the ramp input signal,

{u(t)} = {Uk}+ (t-kh){Uk+l_-''{uk}_

over the interval
kh < t < (k+l)h

then the following exact solution for {x} at time t = (k+l)h exists:

{Xk+l} = [F]{xk}+ [Go]{uk} + [Gl]{Uk+ I}

where, IF] = e[Alh

[G 0] = (e[A] h_ e[Alh[Al-1/h + [Al-1/h) [AI-I[B]
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[GI] = ( e[Alh[A]-l/h - [I] - [Al'l/h ) [A]'I[BI

The above equations are not valid if [A] is not invertible (i.e. if [A] has eigenvalues equal to 0, such as occurs
with rigid-My modes); however, using Taylor series identities, the equations for [G 0] and [G 1] can be put
into a form that can be calculated:

[Go] = ( i
p=2

1 / e[Alh(-1) p ([Alh) p-2 h [B]

1
[G1] = _-. ([Alh) p2 h [B]

p=2

The matrices [G 0] and [G 1] are calculated by summing the above series until the next term is under some

tolerance. This Taylor series approximation approach may not work in general if [A] is ill conditioned.

It can be shown that integrating the nonlinear portion of the equations with an integration step of 1/1600 and
the linear equations in the fashion above with an integration step of 1/400 gives only a small degradation in the
accuracy of the solutions to the differential equations of motion.

The issue of time scaling deserves some explanation. The Cyber can only integrate the equations of motion of
the plant at 80 frames per second without losing time synchronization. This means that implementation of the
hot bench simulation in a similar fashion as the batch simulation creates an unacceptably slow time scale ratio
(2000:80 = 25:1) due to the 80 frames/second rate of the Cyber (on which the hot bench simulation runs).
Since the linear simulation equations can be integrated with a time step of 1/400 seconds, this means the Cyber
simulation is only running 5:1 (400:80) slow. The control laws are digitized for an integration time step of
1/200 seconds. Thus the digital controller must be clocked at 40 frames per second (200/5) to be dynamically
equivalent. Since there is no human operator in the loop, a slow time scale can be accommodated.

Currently no model reduction is being performed on the extracted 65 state model. This will change in the near
future. The ASE dynamic models being formulated as a result of the Fall 1989 tunnel entry will have the
following set of states:

10 symmetric elastic mode positions
10 symmetric elastic mode velocities
40 symmetric aerodynamic lag states (4 lag formulation)

2 symmetric gust states (modified Dryden)
11 anti-symmetric elastic mode positions
11 anti-symmetric elastic mode velocities
44 anti-symmetric aerodynamic lag states (4 lag formulation)

2 anti-symmetric gust states (modified Dryden)
i30

Combined with 16 actuator states, this leads to a 196 state coupled linear system to be integrated with matrix
state transition equations. Some model reduction will be necessary to retain the current 5:1 time scale ratio and
is being investigated.
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Schematic of Hot Bench Simulation

The digital controller communicates with the central Langley Advanced Real Time Simulation (ARTS)
System via analog lines that are connected to a site rack (ref.8). The ARTS consists of two Cyber 175
computers connected to an array of simulation sites by means of a 50-megabit/second fiber optic digital
data network called Computed Automated Measurement and Control (CAMAC). The CAMAC interface
converts outgoing Cyber 175 digital signals to analog signals and incoming analog signals to digital
signals for the Cyber 175. The simulation of the AFW wind-tunnel model consists of: (1), an engineering
console that controls the simulation, (2), a Cyber 175 wherein the equations of motion are integrated, and
(3), an ADAGE graphics computer that generates a color-coded, three-dimensional articulating wireframe
image of the flexing AFW model.

Both the Cyber and the Adage are dated and are in the process of being replaced. The Cyber
communicates directly with the ADAGE graphics computer through a PPU port on the Cyber. The
ADAGE will soon be replaced with an Eagle 1000. The Eagle will communicate over the the 50 Mbit
optical ring just as the Cyber and the real time console do.



0

i..,-

°1

•> _.

° oI
,o! o[

°__ _'_8

__o._= o___
,,>,oo _ _ _ <,:._-



Digital Controller Achievements

An extremely versatile system has been developed which operates at 200 hz. within a 60 hz operating
system environment. It allows simultaneous Flutter suppression and data acquisition, storage, and
transfer. Normally, a controller system would not be expected to also provide for data acquisition. It
allows not only flexibility in control law implementation both in the number of sensors and actuators
employed, but also in the number of states, and the selection of sensors. It coordinates and synchronizes
the operation of three different computers: a host SUN 3/160, a Digital Signal Processor, and an Array
Processor.

Most importantly, it allowed the successful demonstration of active flutter suppression, and provided the
data for near real-time controller performance evaluation.
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MOTIVATION

Active controls are becoming an increasingly important means to enhance the performance
of aircraft. But, because the process of designing some of the multi-input/multi-output (MIMO)
digital control laws uses relatively untested theoretical methods, it has become crucial to validate
the design methodology through experimentation. For classical single-input/single-output (SISO)
control systems, analysis tools such as Nyquist diagrams were developed and used to determine
the stability and robustness of the closed-loop system. For MIMO systems, Nyquist techniques
are inadequate. However, analytical methods based on the use of singular values of return-
difference matrices at various points in the control loop have been developed recently (references
1 - 3) to examine the stability and robustness of the MIMO closed-loop system.

Flutter testing of aeroelastic wind-tunnel models is, in general, a risky endeavor because
the onset of flutter cannot be predicted precisely using even the most sophisticated analysis tools
available. Closed-loop flutter suppression testing adds an extra risk because the controller itself
can potentially destabilize the model. To reduce these risks, on-line near real-time controller-
performance-evaluation (CPE) methods were developed to assess the stability and the robustness
of MIMO flutter suppression systems.

This presentation describes the development and implementation of this CPE capability and
briefly discusses the structure of the data flow, the signal processing methods used to process the
data, and the software developed to generate the transfer functions. This methodology is generic in
nature and can be used in any type of MIMO digital controller application including digital flight
control systems, digitally-controlled spacecraft structures, and actively controlled wind-tunnel
models. ResuIts of applying the CPE methodology to evaluate (in near real-time) MIMO digital
flutter suppression systems being tested on the Rockwell Active Flexible Wing (AFW) wind-tunnel
model (reference 4) are presented to demonstrate the CPE capability. The AFW wind-tunnel test
program is described in references 5 and 6.
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OBJECTIVES OF CPE

Simplified block diagrams of the basic control problems are presented in the figure. The
plant to be controlled is represented mathematically by a frequency domain transfer matrix, G, with
outputs, y, and inputs, e. The controller is represented mathematically by a transfer matrix, H,
with inputs, y, and outputs, x. An external excitation, u, is used to excite the system in a specified
fashion. This excitation is used to compute transfer functions between outputs and inputs in either
open- or closed-loop systems. The open-loop system is one in which the control law outputs
(commands required for controlling plant response) are not fed back into the system; i.e., the
switch depicted in the figure on the left is open.

Controller performance is evaluated both open and closed loop. The process is outlined
conceptually for the flutter suppression system application as follows:

Open-loop

Step 1:

Step 2:

Closed-loop

Verify the controller, H, by comparing the computed transfer functions with
transfer functions supplied by control law designers.
Predict closed-loop stability based on open-loop information to determine whether
the control law will stabilize or destabilize the system when the loop is closed.

Step 1:

Step 2:

Determine the stability margins of the closed-loop system during the closed-loop
testing.
Determine open-loop plant stability during the closed-loop testing to determine the
open-loop flutter boundary.

6/9
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FLOWCHART OF CPE PROCEDURES

This figure shows a flowchart which outlines the CPE procedures and identifies the
calculations involved. This figure will serve as an outline for a description of the CPE
methodology.

Two basic tasks are involved. The first involves converting the time history data to the
frequency domain and computing transfer functions of each plant response and controller output to
the excitation and then combining them to form the transfer matrices. The second task involves
using the transfer matrices to determine the plant and controller transfer matrices, to obtain the
return difference matrices and their singular values, and to calculate determinants and eigenvalues
to meet the objectives that were stated previously.

The calculation of the transfer functions is described in more detail in the next figure.
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TRANSFER FUNCTION CALCULATION

The first step in computing transfer functions G and H is to acquire time histories of
excitations, u, and responses, x and y. The first and last five seconds of an example time history
of an excitation and a typical response are shown in the figure. The input excitation to perform
CPE was a constant amplitude logarithmic sine sweep with a ramp-in and ramp-out. The initial
frequency was 5 Hz and the final frequency was typically 35 Hz. The duration of the excitation is
approximately 150 seconds. The data was saved at a 200 Hz sampling rate. The sample rate and
low quantization levels explains the jaggedness in the time history plots.

Because of the long time history and large number of data points, overlap averaging was
performed. The overlap-averaging capability allows long time histories to be partitioned into
shorter time spans, taking advantage of long periods of time history data to average out noise. In
addition, a zero-fill capability was available to zero-fill time history data to an exact increment of a
power of two needed for FFF computations. The overlap-averaging capability with zero-fill
provided optimum use of the time history data which were obtained. The size of the time-history
partition as well as the amount of overlap were options which could be chosen.

The next step in computing transfer functions is to employ Fast Fourier Transform (FFT)
techniques and overlap averaging. The FFI"s of the excitation and each response are computed
and from the FFF's the appropriate power spectra and cross spectra are constructed. The transfer
functions are then calculated from the ratio of the averaged cross spectrum at some output resulting
from the excitation to the averaged power spectrum of the excitation. The equations used in the
computation of the transfer function at the controller output, Xu, and at the plant output, Yu, are

shown in the bottom of the figure. N is the number of overlap components making up the
averaged spectrum.

The method was extended in the present study to include additional data-windowing
capabilities. Windowing capabilities include ramp-in/ramp-out, Hanning, cosine taper, and cosine
bell. Hanning windows were used during the flutter suppression testing.

623
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TRANSFER MATRIX FORMATION

This figure shows how the transfer matrices are constructed from the transfer functions for
a two by two controller. Each input to G represents a pair of control surfaces; each output from G
represents a pair of accelerometers.

The first pair of control surfaces is excited with a sine-sweep excitation, Ul, and the
transfer functions of each plant response, Yl and Y2, and each controller output, Xl and x2, with
respect to the excitation, Ul, are calculated. The transfer functions of the plant outputs to the first
excitation make up the first column of the plant-output transfer matrix, Yu, shown in the upper

right of the figure. The transfer functions of the controller outputs to the first excitation make up
the first column of the controller-output transfer matrix, Xu, shown in the bottom right of the

figure.

The second pair of control surfaces is excited with a sine-sweep excitation, u2, and the
transfer functions of each plant response, Yl and Y2, and each controller output, Xl and x2, with
respect to the excitation, u2, are calculated. The second column contains the transfer functions of
the outputs with respect to the second excitation.

The two matrices, Xu and Yu, form the basis of all the remaining CPE calculations.
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COMPUTATION OF PLANT, CONTROLLER AND
RETURN DIFFERENCE MATRICES

In order to accomplish the objectives of open- and closed-loop CPE, the plant transfer
matrix, controller transfer matrix, and return difference matrices must be determined. This chart
outlines how this is accomplished.

Open loop, In the open-loop case, both transfer matrices, X u and Yu, are obtained from

a control system in which the loop is open at the controller output. In this case, the plant transfer
matrix, G, (dimensioned number of sensors by number of actuators, i.e. ns by na) has been
directly obtained from the experimental data and is Yu. The open-loop controller-plant transfer

matrix, HG, (dimensioned na by ha) is also directly obtained from the experimental data and is

Xu.

The controller transfer matrix, H, (dimensioned na by ns) is given by the equation shown

below the arrow. If n a is greater than n s, then this is actually a least square solution.

To perform the first step of the open-loop CPE, the resulting controller transfer matrix, H,
is compared with the designed control law transfer matrix to verify the implementation of the
controller. Specifically, the transfer functions are compared for each output/input pair.

Closed Looo. The difference between closed-loop and open-loop computations is that the
transfer matrices, X u and Yu, are obtained from the closed-loop system. During closed-loop

testing, the plant transfer matrix is determined from the first equation on the top right side of the
figure and the open-loop controller-plant transfer matrix is determined from the second equation.
Noting that the quantity,

is common in both equations, transfer matrices G and HG are obtained simultaneously using
matrix partitioning. The controller transfer matrix, H, is calculated the same whether the system is
open or closed loop.

The matrix product GH is determined by multiplying the two matrices G and H. The
return difference matrices at the plant input (I+HG) and at the plant output (I+GH) can then be
calculated. The significance of these matrices and their singular values, determinants, and
eigenvalues will be described next.
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MEASURE OF STABILITY

DETERMINANT

For MIMO control systems the determinants of the retum difference matrices can be used
as a direct measure of system stability. Since determinants of the return difference matrix at the
plant input and the plant output are identical, only the determinant of one needs to be calculated
(the plant input was chosen). The locus of the determinant of the return-difference matrix as a
function of frequency has properties similar to those of a Nyquist diagram for SISO control
systems. If the open-loop system is stable, an encirclement of the critical point (the origin) for

det(I+HG(o_)) indicates that the controller is destabilizing. Furthermore, the proximity of the

determinant locus to the critical point is a direct indication of how near to an instability the closed-
loop system is. Although Nyquist diagrams for a SISO system can also be used to obtain gain
and phase margins, determinant plots cannot provide similar information for MIMO systems.
Robustness information for MIMO systems can be obtained from minimum singular values, and
how this is obtained is described next.
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MEASURE OF ROBUSTNESS

MINIMUM SINGULAR VALUES

To perform the second step in the open-loop CPE (predicting closed-loop performance
based on open-loop information), it is convenient with a MIMO system to evaluate robustness by
examining the minimum singular values of the return-difference matrices at the plant input,

(_min (I+HG) and the plant output, (_min (I+GH).

System instabilities occur when the minimum singular value of the return difference matrix
becomes zero. Therefore, the proximity to zero indicates the frequency at which the system is
prone to go unstable and provides a quantitative measure of robustness. Reference 3 contains a
derivation which relates guaranteed gain and phase margins to minimum singular values. This
relationship is shown in the figure, which is a reproduction of figure 2 from reference 3, and will
be referred to later when discussing results.

The plot in the lower part of the figure contains information for determining equivalent
guaranteed gain and phase stability margins from the minimum singular values of return difference
matrices at either the plant input or the plant output. In the figure, the quantity on the ordinate is
the minimum singular value; the quantity on the abscissa is gain perturbation, in decibels; the

curves are parametric variations in phase perturbation, in degrees. The heavy curve (alp=zero

degrees) and the heavy vertical line at zero dB have special significance. By using the heavy curve
and heavy vertical line, minimum singular values may be "translated" into equivalent guaranteed
gain and phase margins (with the conventional SISO interpretations of these margins); by usin.g the
parametric curves, minimum singular values may be "translated" into equivalent guaranteed gain
and phase margins (with unconventional interpretations of these margins).

The horizontal dashed line in the figure corresponds to a minimum singular value of
0.37. The conventional SISO interpretation of margins is as follows: the intersections of the
horizontal dashed line with the heavy curve determines gain margins; the intersection of the
horizontal dashed line and the heavy vertical line determines phase margins. Based on these
intersections (the right-most, left-most, and center circles), the closed-loop system has guaranteed
gain margins of-2.6 dB and +4.0 dB in each loop simultaneously and guaranteed phase margins
of +/-22 degrees in each loop simultaneously. The gain margins are understood to be the margins
resulting when there is no perturbation in phase introduced into the closed-loop system; the phase
margins are understood to be the margins resulting when there is no perturbation in gain introduced
into the closed-loop system.

There are an infinite number of unconventional interpretations of these margins.
One will be offered and corresponds to the intersections of the horizontal dashed line with the
+/-20 degree phase perturbation curve. Based on these intersections (the second and fourth
circles), the closed-loop system has guaranteed gain margins of-0.8 dB and +2.1 dB and
guaranteed phase margins of +/-20 degrees in each loop simultaneously. That is, within each loop,
gain may be varied within these limits (with each loop ex .periencing a different perturbation in
phase), and the closed-loop system is guaranteed to remain stable.

The singular values are a conservative measure of robustness in that a set of gain and phase
margins could be constructed that violates the guaranteed margins but fails to destabilize the
system. A less conservative measure are the minimum eigenvalues which are described next.



(I)
(I)
iii
Z

(I)

0
O:
l!_
0
I!1
E.

(I)

IIi

(I)
iii

.J
({
>

D:

.J

(9
Z
(I)

=i
m

Z 0

0

0
T'-

m
-0

el. 0

_D
I,-.

r-

I

0

I



ALTERNATE MEASURE OF ROBUSTNESS

EIGENVALUES

An alternate, and generally Iess conservative, measure of robustness may be obtained by
examining the minimum eigenvalues of the return difference matrices. The minimum eigenvalue
at the plant input and the plant output are identical. Therefore, the eigenvalues are only calculated
of the return difference matrix at the plant input. In general, the properties of the magnitude of the
minimum eigenvalues are similar to the properties of the minimum singular values; both are
measures of how close the return-difference matrices are to a singularity.

With minimum eigenvalues now substituted for minimum singular values, the chart from
the previous page may be used in an identical manner to obtain gain and phase margins. The
interpretation of the margins, however, is different. For a given minimum eigenvalue, in the case
of changing the gains by the same amount in all the loops simultaneously without changing phase,
the values for the gain margin can be determined from the universal gain and phase margin
diagram using the value of the magnitude of the minimum eigenvalue. The same holds true for
identical phase changes in all the loops simultaneously with no gain perturbation. These phase
and gain changes gives a more realistic indication of the margins than those obtained from
minimum singular values.
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IMPLEMENTATION OF CPE METHODOLOGY

This figure shows schematically the hardware used to perform the CPE for the AFW
Flutter Suppression System (FSS). Two SUN 3/160 computers were used to conduct Controller
Performance Evaluation. The computer identified as SUN-l, not only provided basic control and
flutter suppression of the model, but was the source for the excitations needed for CPE. The
excitation was generated digitally and added to the control law actuator commands. The digital
excitation, actuator commands, and sensor measurements used by the control law were stored and
then transferred to SUN-2, equipped with an array processor board. The FTT computations,
transfer function calculations and detailed CPE computations were performed on SUN-2.

The FFT's of the time histories of the excitations and the responses, and the transfer
functions, were computed by a Fortran-77 program, optimized to take advantage of the vector-
processing capabilities on the array processor. The detailed CPE analysis capability was
implemented using MATLAB software operations (reference 8). Functions and procedure files
were written to perform the matrix computations, eigenvalue analysis, and plot the results.
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OPEN-LOOP CPE RESULTS

EVALUATION POINTS

Wind-tunnel test results will be provided for both open- and closed-loop CPE to
demonstrate the objectives which were specified earlier. Both SISO and MIMO flutter suppression
control laws were designed for the AFW wind-tunnel model. During the wind-tunnel test the FSS
control laws were successfully tested and their closed-loop performance was evaluated using the
CPE capability presented in this paper.

Open-loop CPE results are presented first. Shown in the figure is the atmospheric H line
along which wind-tunnel testing was conducted. This curve gives the dynamic pressure and Mach
number variation as the tunnel fan blade speed is increased when the wind-tunnel total pressure is
initially one atmosphere. The two solid circles represent conditions at which open-loop CPE was
performed: the first, at a dynamic pressure of 100 psf, corresponds to a stable plant and a stable
closed-loop system. The closed-loop system was predicted to be stable and therefore the loop was
closed. Closed-loop flutter suppression testing commenced. At a dynamic pressure of
approximately 175 psf, below the flutter boundary of 221 psf, the closed-loop system became
unstable. The safety mechanisms installed in the model and in the wind tunnel tripped and the
dynamic pressure was decreased. The system was then tested open loop and the dynamic pressure
was again increased. Open-loop CPE was performed at a dynamic pressure of 175 psf. The
results for a dynamic pressure of 100 psf will be presented first followed by the results at 175 psf.
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OPEN-LOOP CPE RESULTS

Stable Plant/Stabilizing Controller

This figure contains CPE information exactly the way it comes off the laser printer in the
control room during the wind-tunnel test. The CPE results consist of four plots, which together
give a complete picture of the performance of the controller. In the upper left hand side are the
maximum and the minimum singular values of the return difference matrix at the plant input. On
the upper right are the maximum and minimum singular values of the return-difference matrix at the
plant output. The lower left shows the magnitudes of the minimum eigenvalue of the return
difference matrix. The lower right is the locus of the determinants of the return difference matrix.

This figure corresponds to the first solid circle from the previous figure. During FSS
testing, this CPE information is used in the following way: First, the determinant plot in the lower
right is examined. Since there are no encirclements about the critical point, the prediction is that the
closed-loop system would be stable if the loop were closed. Next the guaranteed gain and phase
margins are determined from the minimum of the minimum singular values (which for this case is
0.17) and the universal gain and phase margin diagram. If the loop is closed, the stability margins
will consist of simultaneous gain margins of-1.5, 1.5 dB for 0 phase perturbation and 8 degrees
of phase margin with 0 dB gain perturbation. A low minimum singular value is observed near a
frequency of 20 Hz which is attributed to a control mode. This is a frequency range where one
needs to be alert for instability when the loop is closed.

During wind-tunnel testing the loop was closed on the control law and the closed-loop CPE
looked very similar. The control surface activity was quite large at a frequency of 20 Hz which
was expected.

The dynamic pressure was then increased. An instability was reached at approximately 175
psf which was below the previously measured open-loop flutter boundary at 221 psf. The loop
was then opened and open-loop CPE was performed at a dynamic pressure of 175 psf. These
results are presented on the next slide.
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OPEN-LOOP CPE RESULTS

Stable Plant/Destabilizing Controller

This figure contains open-loop CPE results at a condition corresponding to a stable plant
and a destabilizing controller. For such a situation, theory predicts that the determinant plot should
contain a cIockwise encirclement of the origin. The determinant plot (lower right) shows just such
an encirclement. This result provided confidence that in the future determinant plots can be used to
predict destabilizing control laws.
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CLOSED-LOOP CPE RESULTS

Evaluation Points

Typical CPE results obtained during the closed-loop wind-tunnel tests are described next.
This figure shows the atmospheric H line along which the wind-tunnel testing was conducted.
Two results will be presented. The first is at a point where it is known that the open loop plant
was stable and the second where the plant was known to be unstable. The controIler was
stabilizing for both cases.
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CLOSED-LOOP CPE RESULTS

Stable Plant/Stabilizing Controller

This figure shows the closed-loop CPE results at a dynamic pressure where the plant is
known to be stable and the controller is stabilizing. The first objective of closed-loop CPE was to
evaluate the stability margins. The guaranteed simultaneous gain and phase margins obtained for a
minimum singular value of 0.34 were determined to be -2.6, 3.8 dB gain margin with 0 phase
perturbation and 27-degree phase margin with 0 dB gain perturbation. The determinant plot on the
bottom right shows no encirclement about the origin (the critical point) which is expected since the
plant is stable and the closed-loop system is stable.

The dynamic pressure was then increased to a point above the open-loop flutter boundary,
and these results are shown on the next slide.
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CLOSED-LOOP CPE RESULTS

Unstable Plant

The CPE results of a closed-loop system where the plant is known to be unstable and the
controller is stabilizing are presented in this figure. Observation of the model in the wind tunnel
indicates that the controller is stabilizing the plant so a counterclockwise encirclement about the
critical point is expected. The determinant pIot shows no clear encirclement. This could be
attributed to poor frequency resolution in the region of the encirclement.

Using the minimum singular value of 0.22, the gain margin for 0 phase perturbation are
approximately -1.7,+2.1 dB and the phase margin for 0 gain perturbation is _+12.5 degrees.
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FLUTTER PREDICTION PROCEDURE
USING CLOSED-LOOP CPE RESULTS

The second objective of the closed-loop CPE was to determine the open-loop stability of
the plant during closed-loop testing. The method chosen was based on the observation that poles
near the neutral stability axis produce large magnitudes in (SISO) transfer functions. Since

maximum singular values of MIMO systems in this respect have similar properties to the SISO
transfer functions, then the minimums of the reciprocal of the maximum singular values could be
used to indicate how close the the poles of a MIMO system are to being neutrally stable and also
the frequencies at which the minimums occur.

During wind-tunnel testing, the plant transfer matrices were obtained during the process of
performing closed-loop CPE. A plot of typical inverse maximum singular values of the plant
transfer matrix computed from closed-loop tests for a dynamic pressure of 200 psf is shown in the
plot on the left. The frequencies (approximately 8.5 and 11 Hz) at which the two local minima of
the inverse maximum singular value curve occur are indicated by the arrows. These frequencies
correspond to the frequencies of the modes which coaiesce to create flutter. These frequencies
were determined for many dynamic pressures and the figure on the right shows a plot of the two
frequencies as a function of dynamic pressure. The dynamic pressure at which the two curves
appear to coalesce indicates a potential point for open-loop flutter.
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CONCLUDING REMARKS

A Controller Performance Evaluation methodology was developed to evaluate the
performance of multivariable, digital control systems. The method was used and subsequently
validated during the wind-tunnel testing of an aeroelastic model equipped with a digital flutter
suppression controller. Through the CPE effort a wide range of sophisticated near real-time
analysis tools were developed. These tools proved extremely useful and worked very well during
wind-tunnel testing. Moreover, results from open-loop CPE were the sole criteria for beginning
closed-loop testing. In this way, CPE identified potentially destabilizing controllers before actually
closing the loop on the control system, thereby avoiding catastrophic damage to either the wind-
tunnel model or the wind tunnel. Open-loop plant transfer functions derived from CPE
computations were used to redesign and improve control laws. CPE results also proved useful in
determining open-loop plant stability during closed-loop test conditions.
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Abstract

Optimal passive and active damping control can be considered in the context of a general

control/structure optimization problem. Using a mean square output response approach,

it is shown that the weight sensitivity of the active and passive controllers can be used to

determine an optimal mix of active and passive elements in a flexible structure.

1 Introduction

Because of the low inherent damping of the typical large flexible structure, some form of vibration control

methodology is necessary to reduce the vibration response to an acceptable level. The control community

has traditionally addressed this problem from an active control viewpoint, and has proposed a multitude of

mathematical techniques for solving this difficult feedback control problem. While elegant in their mathematics,

these analyses often show little consideration for the mass, cost, and reliability of the hardware required for

these control strategies.

An alternate approach to active vibration control is to implement vibration suppression through some type

of passive means. Passive schemes have a long history of use in the satellite business, having been used for

suppression of rigid body motions for many years. The most typical of these are probably the viscous damper

(e.g. a ball in a fluid filled tube), or the magnetic damper. For flexible structures the natural damping inherent

in real materials will cause vibratory motions to damp out, although the time scale may be quite large. There

is currently an effort to identify materials which can significantly increase the material damping with no other

adverse effects.

A question which has seldom been addressed is whether there is a combination of active and passive

techniques which is optimum for a structure to use? The entire question of optimization is one which must

be considered carefully in the spacecraft design area. For the current study we define "optimal" to mean tile

minimum mass structure, while keeping all other constraints within specified limits. Optimal simultaneous

structure/control design is an area of much recent interest in both the structures and the control communities.

The answers obtained to any optimization problem are very much dependent on the initial assumptions, tile

mathematical framework, and the decision as to the definition of optimality. In previous works, the authors

have proposed a stochastic approach to optimal control/structure design whereby the optimization problem is

to find a minimum weight structure subject to fixed output constraints and to fixed control energy constraints

(Refs. 1-3), The controller can be arbitrary, or the controller structure can be set in a specitied way. For

XThis work was supported in part by the Air Force Office of Sponsored Research at the Flight Dynamics Laboratory, V_rright
Aeronautical Laboratories, and also by a grant from CRAY Research Inc. provided through _he Ohio Supereomputer Center in
Columbus, Ohio.
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example, in a perfect information environment, a full state controller yields tile best performance, and hence the

minimum weight structure. If feedback is restricted to outputs, either with or without additional measurement

noise, then the control structure can be modified to a direct output feedback, or filter feedback form. Using

this approach one can, for example, determine the mass reduction possible through additional sensors.

Our approach to include passive control means is to consider the passive damper as a special type of

output controller. For example, a linear dashpot is an element which generates a force opposing relative

motion between two connected locations. This can be considered as an output controller, where the controller

gain is the damping coefficient associated with that element. The task required to complete the optimization

is a difficult one. If we are attempting to minimize the total mass of the structure, what is the mass penalty

associated with the controller (either active or passive) and how does that mass penalty vary with control

energy? In fact we are in no position to answer that question completely in this paper. Rather our approach

will be to consider the problem parametrically, so that sensitivities of the optimal solution to component masses

can be ascertained. The actual optimum can be obtained when appropriate information is available to the

designer.

Tile outline of this paper is as follows. In Section 2 we give a short outline of the control/structure

optimization approach required for this study. A short section on hardware implementations is included as

Section 3 for general inforlnation only, as the authors' quantitative information is this area is incomplete.

Finally, two simple examples are given which show of the benefits and possibilities for this type of analysis,

followed by our conclusions.

2 Mathematical Framework for Control/Structure Optimization

The approach taken in this analysis is to consider the structure from a dynamic response point of view.

We assume that the fundamental structural constraint is to support a load, or to hold various sub-system

components (experiments, etc.) together to a required degree of accuracy in the presence of some form of

excitation. The excitation specification may be either static or dynamic, deterministic or random, but to

quantify tile structure design we generally need to know the applied loads to ensure that stress or displacement

constraints are met. The effect of the control system on this design problem is to effect a trade-off to reduce

the effect of flexibility. As the structure is made lighter and more flexible, the control system can be used to

reduce deflections and stresses to acceptable levels.

Structure/Control Optimization

The mathematical approach taken to quantify the control-structure relationship is to initially regard the

controller structure as fixed and satisfying certain control magnitude constraints, which for this analysis will

be assumed to be a mean square control energy bound. Similarly the external force environment on the

structure is known and is assumed to be stochastic with known mean square energy and spectrum. Within

this framework the optimal structure-control design problem is to find the structural parameters and the control

law to minimize a performance index while satisfying control energy and displacement constraints. This may
be posed as a mathematical programming problem.

Assume the system is given as

= Az + Bu + Gd

y = C:_

z = Hz+v

(1)



wherewehavetheconventionaldefinitionsof thestate(z),control(u),performanceoutput(y),measured
output(z),andinputandoutputdisturbances(d,v, respectively).

The disturbance d is taken as the specified load. Generally we have assumed that d is Gaussian white

noise, d ._ N(0, D), although other forms (e.g. harmonic disturbance) could be used. For this system we pose

the following optimization problem:

Optimization Problem

Minimize the function J(Pl,P2,...), where the pi are structural parameters such as mass, stiffness, area, etc.,

and find the feedback law

u = f(z) (2)

where f(.) is a specified functional form based on the controller type desired. For example, if z = z, then the

problem is full state feedback and f(.) becomes naturally a gain matrix. The resulting optimization becomes a

special form of the linear quadratic regulator. The functional f(.) can specify an (unknown) dynamical system

in the general output feedback problem. For the problem considered in this paper we consider the controller

to consist of two parts: The first is the passive controller which consists of unknown damping coefficients of

the specified form. The second part is a "conventional" full state active controller. The active controls must

satisfy the control energy constraints

while the outputs satisfy

E[uT Ru] = f12 (3)

E[yTWiy] < wi (Output disturbance Inequalities, i = 1,..., n) (4)

The rationale for a fixed control energy constraint is that for an active control implementation, the desired

control should utilize the full control capability to reduce the structural loading. The output inequalities

may be several, in which case one or more constraints may be equality constraints, but others will be strict

inequalities.

Using the Gaussian disturbance case, the expectations can be converted to simple operations on the co-

variance matrix, which is determined by a Lyapunov equation (assuming here linear controls). For details on

this see the references. Using this approach the optimization framework is quite flexible and can be adjusted

to a variety of special types of constraints and controllers. Numerically the resulting optimization problem

can be solved by a variety of general non-linear optimization software. For the full state feedback case, linear

regulator software can be incorporated also.

3 Active and Passive Control Implementation

There are a number of technologies possible for the active and passive control of the damping of flexible

space structures. The simplest in concept are the linear and rotational momentum exchange devices. Linear

momentum devices (LMED's) are extremely simple in concept, yet have proven remarkably difficult to construct
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(for a real space environment). For the LMED there is a trade-off between the magnitude of the proof mass

and the total track length. For the low frequencies contemplated in most large space structures, the LMED's

will probably have a mass which is a large fraction of the structure mass, a generally undesirable feature! For

a fixed geometry track, the force obtained from the LMED is directly proportional to the proof mass itself,

hence we may expect the mass contributed by this controller to be roughly proportional to the square root of

the control energy/32 .

Torque wheel actuators or momentum wheels, are similar in concept to the LMED, absorbing angular

momentum, rather than linear momentum. Track length here however is not a problem; the primary limitation

is wheel speed. Maximum wheel speed is rarely encountered, although some means of dumping stored angular

momentum must also be considered. Note that for a free-free structure every non-zero frequency vibration

mode has zero linear and angular momentum. Hence both these devices need only worry about the saturation

due to vibration transients, not in the steady state. It seems very likely that momentum wheels used for rigid

body control, could easily be accomodated for control of flexible motions also.

Linear thrusters are generally used on satellites for attitude control, and could easily be adapted to the

vibration suppression role. Note that for the rocket, thrust is proportional to mass flow, so that again average

energy consumption would make thrustor mass proportional to f12. In reality for the common reaction jet,

specific impulse is relatively low, and fuel required for a long duration mission could be a significant problem.

This may be no worse than the the LMED mass problem, and seems to be considerably more reliable.

Passive control elements could be one of a variety of viscoelastic materials used as coatings, or internal

strut material. For such materials, the damping coefficient is proportional to the amount, hence the mass,

of the damping material added. Other devices are "passively active" (or is it "actively passive"?) such

as piezoelectric materials (coating or embedded). For most materials considered then the mass added by

damping elements can be considered to be proportional to the mean square energy (/32), or more directly for

the passive damping elements to the damping element "c". The exact proportionality constant is extremely

important in establishing an optimum, as is any fixed mass components not considered here.

4 Two Simple Examples

(a) Longitudinal vibration of a rod

Figure 1: Discretized model for Example (a)

To demonstrate the approach to evaluate the effectiveness of active or passive control, consider the longitudinal

vibrations of a rod, where the rod is discretized to the simple mass-spring-damper system shown in Figure 1.

For this case we will consider only the trade-off between the active control element, assumed to be acting at

mass 3, and the damping element, which is assumed to be inserted between masses 2 and 3. For this problem,



weassumetherodstructuralelementsarethemselvesfixed,althoughin thegeneraloptimizationproblem,the
segmentareas(hencespringconstants)wouldbedesignvariablesalso.ForthisproblemFigure2showsthe
amountofactivecontrolenergyrequiredto meetthedisplacementconstraintE[z_]= a2forvariablepassive
damping.Notethatthiscurvehasa minimumat a fairlylowvalueof damping,meaningthat aspassive
dampinggoesup, theactivecontrollermustworkharderto meettheoutputdisplacementconstraint.This
curveis typical,althoughfordifferentconstraintlevelstheminimumwillshiftandmay,in fact,disappear•
Forthisexamplethesystemmassisconsideredtobefixedbutwemayproposeacostfunctionthento be

J = 71c3 + T2fl 2

Active Damping versus Passive Damping
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Figure 2: Active control energy required to achieve mean square response constraint

Constants ")11and 72 reflect the relative cost (either mass or dollars) of the active and passive control

components. A line of constant cost then is a straight line on Figure 2 with a slope m = -(71/7_) meaning

that the optimal mix of active and passive damping is somewhere to the left of the absolute minimum shown

on Figure 2, and is found from meeting a tangency condition between the curve and the straight line. If the

passive damping cost is much less than the active damping cost (a common assumption in most discussions),

then the optimal passive damping is that value at the minimum of Figure 2.

(b) DRAPER I optimal truss

In solving an optimal structure/controller problem McLaren and Slater [Ref. 3] determined the optimal mass

of the tetrahedral truss model model known as "Draper I" (see Figure 3), for various types of controller



@

Figure 3: The DRAPER I truss model

implementations. For this structure there are six control actuators, situated in each of the base legs of the

truss, and six collocated velocity sensors, giving the longitudinal velocity of each truss leg. The comparison

between full state feedback and direct output feedback then is almost a direct comparison of the active versus

passive control analysis done for the previous simple model. (The comparison is not exact as the results in

Ref. 3 determined the optimal general feedback matrix. For a passive damping study we need to go back and

additionally restrict the gain matrix to be diagonal. This is straight-forward and hopefully will be done soon.)

For this case the problem was to design the optimal structural elements to minimize the mass and to

simultaneously design the controller. The controller mass was not considered part of the performance index,

nor was a fixed controller mass part of the system. The output constraint is to keep the vertex of the truss within

specified limits. For these two cases the final masses are shown in Figure 4. The results indicate that generally

full state designs may achieve almost 50% less mass than the optimum velocity feedback designs. Ideally we

should go back and re-run with these two controllers in parallel, and with relative weights associated with

each. The resultant family of controllers, combined with mass information on the controller implementation,

could then be used to determine an optimal control implementation. Based on the large mass reduction from

full state feedback, its seems reasonable that for this, and probably for most structures, the advantage of an

active feedback scheme can be quantified explicitly.

5 Conclusions

The results shown indicate that there is an easy way to explicitly characterize the relative merits of an active

versus a passive control scheme. No attempt here is made to quantify the exact trade-off due to the uncertainty

in mass figures associated with the controller types. This, and further exploration of controller trade-offs, are

subjects of continuing research.
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Due to time constraints, it was not possible to include a reference list for the many pertinent documents that

are available in the literature. Only earlier material of the authors which fills in many of tile missing details

in this paper is listed below.
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Abstract

This work examines the effects of motor dynamics and secondary piezoceramic actuators on
vibration suppression during the slewing of flexible structures. The approach focuses on the
interaction between the structure, the actuators and the choice of control law. The results
presented here are all simulated but are based on experimentally determined parameters for
the motor, structure, piezoceramics actuators and piezofilm sensors. The simulation results
clearly illustrate that the choice of motor inertia relative to beam inertia make a critical
difference in the performance of the system. In addition the use of secondary piezoelectric
actuators reduces the load requirements on the motor and also reduces the overshoot of the tip
deflection.

The structures considered here are a beam and a frame. The majority of the results are
based on an Euler Bernoulli beam model. The slewing frame introduces substantial torsional
modes and a more realistic model. The slewing frame results are incomplete and represent
work in progress.

1. Introduction

A slewing motion consists of the rotation of a structure about a point. In the case
considered here, a DC electric motor is used to move a beam and/or a frame about the axis of
the motor in order to orient the length of the structure in a new direction (see figure 1). In the
past, slewing maneuvers have been carried out on passive structures, i.e., structures
which have no internal control or sensing mechanisms. Here, the effects of slewing an active
structure are considered. An active or smart structure is defined as a structure with sensors

and actuators integrated within the structure (Wada, 1989). A passive structure does not
contain any integrated control hardware. The slewing of a passive beana has been considered
by several researchers. Garcia (1989) and Garcia and Inman (1990) examine the dynamic
interaction between the structure and actuator in slewing a passive beam. Juang et al (1986),
Yurkovich and Tzes (1990), Cannon and Schmitz (1984) and Hastings and Book (1987)
have all consider the effects of slewing passive beams. Park et al (1989) considered slewing
a passive beam with a secondary voice coil actuator attached to improve vibration
suppression. Their results motivated the work presented here which considers the effects of
slewing an active beam. This presents a multiple input control problem. The active beam
consists of a flexible aluminum beam with embedded piezoelectric actuators and sensors.
The results for the active beam have been presented in preliminary form at the Army Research
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Office Workshop (see Inman et al 1990). The slewing frame example is experimental and
represents work in progress.

The analysis proceeds by forming a Hamiltonian consisting of the elastic and kinetic
energy in the Euler-Bernoulli beam, plus the nonconservative work done on the beam by the
DC motor and piezoceramic actuator. Garcia (1989) illustrated that the dynamic interaction
between the slewing actuator, the DC motor, and the flexible structure can lead to improved
vibration suppression. Traditionally, the slewing control of a flexible single link structure has
been a single actuator problem. Park et al (1989) proposed the use of a "voice-coil" actuator
in addition to the slewing motor; this actuator was rigidly attached to the slewing hub and
actuated the beam near the clamped end. This approach achieved improved structural
dynamic performance and reduced peak motor voltages. However, these performance gains
were at the cost of adding the mass of the coil actuator and its supporting mechanical fixture
to the slewing payload.

We propose that direct structural actuation be achieved in the slewing maneuver by use
of a piezoceramic actuator. This active structure will contain a layered piece-wise distributed,
or segmented, piezoceramic crystal in the case of the beam and an active longeron element
consisting of bending piezoceramics for the flame. The active beam being considered here is
similar to those considered earlier in a damped configuration by Fanson and Caughey (1987)
and Burke and Hubbard (1987). Fanson and Caughey considered a cantilevered flexible
beam controlled by a collocated pair of piezoelectric actuators and strain sensors coupled with
a positive position feedback control law. In the case presented here a piezofilm will be used
instead of a piezoceramic for the strain measurement and piezoceramics are used for
actuators.

A theoretical optimal control study is performed using a linear quadratic regulator (LQR)
control formulation. This is presented only for the beam. A comparison of control laws is
made where the penalty function is varied to change the degree of control effort afforded by
the active beam. The goal here is to illustrate that increased vibration suppression may occur
in slewing maneuvers by taking advantage of control structure interaction and to investigate
the vibration suppression effects of slewing an active structure.

2. System Dynamics

The dynamics of the slewing beam system are developed from Hamilton's principle.
First, the dynamics of a slewing piezo-actuated structure are considered with the effects of a
piece-wise distributed piezo actuator. The actuator dynamics, that is, the interaction of motor
and beam are also modeled. The moment generated by the piece-wise distributed, piezo
actuator is calculated. Finally, the equations of motion for this active slewing structure are
assembled in a lumped mass model representation. The details can be found in Inman et al
(1990) and follws directly from Garcia (1989).

Figure 1 illustrates the coordinates used in defining the equations of motion of a flexible

structure undergoing a slewing motion through an angle 0(t). The deflection of the beam

y(x,t) is defined relative to the rigid motions 0. The torque causing the motion is denoted by

x. The beam, of length L, deforms and rotates in the X-Y plane. Figure 2 illustrates the
model of the motor. Figure 3 illustrates the use of piezoceramics in the slewing beam.
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Fig. 1. Slewing flexible beam schematic.
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Fig. 2. Motor armature circuit and gear box schematic.
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Fig. 3. Schematic of the slewing beam showing the location of embedded
piezoceramic actuators.

3. Control Design

A linear quadratic regulator control law was designed to illustrate the effects of slewing
an active structure versus slewing a passive structure. The results are based on a
beam/motor system designed to take maximum advantage of the interaction between the
structural modes and the motor torque. Both the voltages to the electric motor and to the
embedded piezoceramic were used as control inputs.
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To perform the control analysis, the mathematical model presented in Inman et al (1990)
is discretized in space and manipulated into state space form. Combining the governing
equations and assuming that only n terms are used in a modal approximation (5), the
equations of motion of the slewing active structure can be written in matrix form as the vector
differential equation

Mii+ D Cl +K q =Bfu (1)

where the vector q is defined by qT = [0(t) ql(t) q2(t) ... qn(t)]. The mass, damping and
stiffness coefficient matrices are:

F ib+i s

M = ] II+IsFl(O)

LIn+IsFn(O)

II+IsFl(0)M1 ... In+Isl-'n(0) 1

... M n .J

(2)

I bv bvFl(0) "'" bvFn(0) 1
D = bvFl(0) bvFl(0)2 "'" bvFl(0!Fn(0)

I._bvFn(0) bvFn(0)Fl(0).., bvFn(0) 2

(3)

0
M10_ 2 . 1

K= 0nxl 1 (4)

... M

where Fi = _i'(0), the ith modal participation factor. In addition, Mi is the ith modal mass, ¢oi

denotes the structures natural frequencies and the ith inertia term is given by

L

Ii = Jpx_i(x)dx

The control input vector u is the 2 x 1 vector liT = [ea, Vp] and the control coefficient
matrix is

" R. ]
_F . N---g_KtF n

BT=

[_ 0 g[01(L1)-_(L2)I • I.t[0'n (L1) - q_n(L2)]

(5)

for a single segment piezoceramic actuator.



Active control is performed by using state feedback and solving a standard linear
quadratic regulator (LQR) control law design. The system of Eq. (1) is first put into state
space form by defining the state vector x as

(6)

and the corresponding state matrix

A=[ 0 I_M-IK _MAC
(7)

where 0 denotes the matrix of zeros and I denotes the identity matrix of appropriate
dimension. With this change of coordinates, Eq. (1) becomes

:_ = Ax + Bu (8)

with output measurements defined by

y = Cx (9)

Here the matrix of constants C specifies which coordinates of the vector x are measured.
State feedback control is implemented by specifying the relation

u = - Kfx (10)

The LQR control algorithm then calculates the value of the gain matrix Kf such the cost
functional

J = J(xTQx + uTRu)dt
(11)

is minimized. The matrices Q and R are symmetric positive definite weighting matrices
which are chosen to produce acceptable responses. In the case presented here the matrix Q
was chosen to be

Q=diag[8 3 1 1 8 3 1 1] (12)

which places emphasis on minimizing the angular displacement (and velocity) and the first
modal displacement (and velocity). The control law determined from this weighting attempts
to drive the angular position and structure displacement to zero. The weighting matrix R is
chosen to have two different values to generate a control law with vibration suppression both
with and without the use of the piezoceramic actuator. For the case with the added piezo
actuator, the matrix R is chosen to be

Rl=diag[1.0 lxl0 -4] (13)



Thischoicepenalizestheuseof themotorvoltagein factorof thepiezoelectricactuator
voltage.Forthecasewithoutpiezoactuatorcontrol,theweightingmatrixRischosentobe

R2=diag[1.0 lx108] (14)

A comparisonof theresultsof usingthepiezoceramicactuatorversususingonly the
motortorquefor vibrationsuppressionof thebeamis illustratedin figures5-8. In eachcase
thecontrolor responsewithouttheadvantageof thepiezoceramicisgivenby thedashedline
andthosewith theuseof theactivebeamaregivenbythesolidlines. Figure 5 illustrates
thatthevoltagesuppliedto thearmatureof themotorisreducedby33%(from- 3voltsto-2
volts)whenslewingisperformedonanactivebeamversusapassivebeam.Figure7clearly
illustratesthatthemaximumtipdeflection(overshoot)is reducedbyalmost50%byusingthe
piezoceramicactuator.

4. Closing Remarks

This paper examines slewing control by introducing the concept of using an active
structure to improve performance. Slewing an active structure, as opposed to slewing a
passive structure, offers the advantage of reducing the peak voltage demands on the slewing
motor hence increasing reliability and potentially saving weight (a smaller motor could be
used). In addition the active structure approach promises to substantially reduce maximum
tip deflection of the structure. Simulation results were presented for a beam. These results,
although simulated, use experimentally measured parameters from laboratory tests of the
beam, motor and piezoceramics. The passive slewing beam model has been experimentally
verified using a PID control (Garcia, 1989).

The frame experiment of figure 4 is in progress. The finite element model is developed
and experimentally tested. The active strut has been designed and constructed and is being
installed in the frame. The key experimental results of interest are the strong coupling
between the bending vibration of the frame and the torsional vibration of the frame. While

this is to be expected, the flexibility of the frame (c01 = 1.6 Hz) enhances the problem of
suppressing tip vibration. Preliminary controllability calculations indicate that, unlike the
beam, the secondary piezoelectric actuator is needed to produce large enough control effort to
suppress the torsional modes.

In conclusion, the slewing of flexible structures requires a detailed examination of
control structure interaction and can benefit from the use of "smart" structures. The result is

best illustrated by examining the control input matrix Bf of equation (5). Without modeling

the interaction and flexibility of the structure the matrix, Bf is a scalar (i.e., F = 0). When the

interaction is modeled (r" ¢ 0) the matrix Bf becomes a row vector. When the secondary
piezoceramic actuators are added, the matrix Bf becomes 2xn and the system is approaching
full state feedback which is known to yield the best performance.
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Abstract

The vibration of an experimental flexible space truss is controlled with internal control forces
produced by several proof mass actuators. Four candidate control law strategies are evaluated in
terms of performance and robustness. These control laws are experimentally implemented on a
quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the
final closed loop system is self-equilibrated. The first two control laws considered are based on
direct output feedback and consist of tuning the actuator feedback gains to the lowest mode
intended to receive damping. The first method feeds back 0nly the proof mass's position and
velocity relative to the structure, this results in a traditional vibration absorber. The second
method includes the same feedback paths as the first plus feedback of the local structural velocity.
The third control law is designed with robust Ho_ control theory. The fourth control strategy is an
active implementation of a viscous damper, where the actuator is configured to provide a bending
moment at two points on the structure.

The vibration control system is then evaluated in terms of how it would benefit the space
structure's position control system. This assessment is necessary since the additional actuator
dynamics in the model effectively adds two state variables to the system which could lead to
instabilities in the position control system.

1 Introduction

Proof mass actuators (PMA's) have been considered for use in large space structure

vibration control systems 1. These control systems are usually configured such that the PMA's
provide a closed loop control force based on the output from a combination of both colocated and

noncolocated sensors2, 3. The colocated sensor provides measurements of the position of the
proof mass relative to the structure. A benefit of colocated control is that stable control laws can
be designed that provide vibration attenuation at the point of actuator attachment. Several
experimental implementations of colocated PMA control have resulted in control laws that are

based on the traditional vibration absorber4, 5. In an effort to gain increased vibration attenuation,
noncolocated sensors provide actual structural vibration measurements at the point where
performance is desired. The problem of designing a noncolocated control is constrained by the
requirement that the control law must provide stable vibration suppression at sensor locations on
a flexible structure that is not necessarily well modeled.

This paper addresses the issue of the effective use of the proof mass actuator's control effort
towards the robust vibration suppression of a flexible unconstrained planar frame. An
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unconstrained or free-free structure is used, rather than a constrained or cantilevered structure. It

is observed that in some cases an entire vehicle will vibrate indicating that a constrained analysis is
not appropriate7, 8. The approach taken is to compare several control law and actuator-sensor
combinations when the actuator provides a point force on the structure. As a counterpoint, the
actuator is also mounted to the structure such that the actuator's control effort provides both an
axial force and a bending moment applied at two points on the structure. A control structure
interaction approach is undertaken in the sense that the actuator, sensor, and controller dynamics
are included or accounted for in the structural control design.

The paper outline is as follows: Section 1 gives an introduction to the control structure
interaction problem undertaken here. The flexible structure control testbed is described in Section
2. The PMA control law designs to be compared are detailed in Section 3. The results of
experimental implementation of these control laws are provided in Section 4. The research is
summarized in the final section.

2 Hardware Description

The experimental flexible structure is constructed such that it exhibits the characteristics
commonly associated with large flexible space structures. The structure is light weight, with most
of its mass concentrated at the joints. There are both colocated and noncolocated sensors and
actuators. The structure displays numerous modes of vibration that have a low natural frequency,
are lightly damped, and are closely spaced relative to each other. A soft cable suspension system
is used to simulate the free boundary conditions of space, and to minimize the effects of attaching
the structure to ground.

2.1 Flexible Structure

Figure 1 illustrates the 6-bay, 3 m long plane frame. The width of the structure is 0.5 m,
and the diagonal dimension is 0.707 m. The frame is constructed from aluminum truss links and
joints manufactured by the Mero Corporation. A truss link consists of an aluminum tube, with
nominal cross section dimensions of 22 mm O. D. and 20 mm I. D., terminated in bolt assemblies
which attach to the truss nodes. The truss node is Mero's standard M12 aluminum node. The

links are attached to the nodes and tightened with a torque wrench to 25 in-lb. The total weight of
the structure is 61 N.

The frame is suspended from the ceiling by two soft bungee cables 2 m in length. It was
found necessary to double up the cables to support the total weight of the structure and actuators.
The cables are attached at nodes 2 and 6. These joints were chosen for the suspension points
since they were nearly coincident with the nodes of the first structural mode of vibration, therefore
minimizing the interaction of the structure and its suspension. The electrical cables are suspended
from the ceiling such that they do not carry the weight of the structure, and the mass loading of the
structure by these cables is minimized.

The dynamic characteristics of this structure are evident in figure 2, which shows an
experimental transfer function of node l's linear acceleration in the x direction given an impact at
node 1 in the x direction. The modal properties of the first 8 structural modes of vibration are
given in table 1. The vibration of the frame is characterized by flexural deflection rather than axial
deflection that would occur in a true truss structure. The structure is sufficiently long such that the
low structural vibration modes are not coupled to local member bending modes.

Not all of the dynamic characteristics displayed in figure 2 can be attributed to the structure,
rather the suspension provides a significant portion of the response shown in this test. Three
pendulous modes at approximately 1/3 Hz replaced the three rigid body modes in the x-y plane. A
double pendulum mode at 1.2 Hz replaced the rigid body rotation about the y -axis. Translation in
the z direction and rotation about the x axis are replaced by two translational vibration modes at
1/2 Hz which are due to stretching of the suspension cables. The cables also have transverse
vibration modes that occur at 12 Hz, 37 Hz, and 55 Hz.

t



2. I. 1 Structural Model

A finite element model of the structure was constructed for use in control design. The flame
links were modeled as uniform aluminum tubes whose dimensions are the same as the

manufacturers nominal specifications. The frame joints were modeled as rigid. The combined
mass of the joints and the link bolt assemblies were modeled as a point mass, with zero rotational
inertia, located at each finite element node. Table 2 gives the structural parameters used in the
finite element analysis. In order to simplify the model, Guyan reduction was used to eliminate
translation in both the z and y directions, and rotations about the x axis. Only motion out of the y-
z plane is modeled.

The transverse vibration of the suspension cables was also modeled, since these vibration
modes appear in the control bandwidth. Modeling the suspension gave better agreement between
the pole-zero pairs as shown in figure 2.

2.2 Proof Mass Actuators

The proof mass actuators used are illustrated in figure 3. These actuators were originally

developed at the NASA Langley Research Center 1. The intent of this design is that a magnetic
field is produced by the permanent magnets and the iron in the proof mass that is normal to the
current flowing through conductors in the coil. This electromagnetic coupling is then described
by Eq. 1.

F = nll x B (1)

I represents the current carried in the conductor, n the number of conductors in the gap, B the
magnetic field across the gap, 1 the length of the conductor. An average conductor length is found
from the average circumference around the coil. A useful control force oriented along the axis of
the coil results from this coupling. This force is then applied to the conductors in the coil, and
subsequently the structure. The reaction of this force is applied to the proof mass and causes it to
translate upon a linear bearing. Hence, the PMA can be modeled as providing an ideal point force
at the place of attachment on the structure and a reaction force on the proof mass. This force is
taken to be proportional to the current supplied to the coil. The power amplifier for the actuator is
configured as a current amplifier, which provides a means by which the actuator can be controlled
by a voltage signal. The proof mass actuator characteristics are given in table 3.

A complete model of the PMA should also include the dead mass and rotational inertia
associated with the actuator. The motivation behind this is that for lightweight structures the
actuator's dead mass will constitute a significant percentage of the total mass of the structure. The
addition of a relatively large discrete mass to a structure has the tendency to attract the nodes of the
higher modes of vibration of the structure to the point of attachment. This effect minimizes the
ability of a point force to provide a useful control force to higher modes of vibration. The
rotational inertia of the actuator used here cannot be considered negligible compared to the
structure. The high actuator inertia is in part due to the overall length of actuator measured from
the base.

2.2.1 Actuator Nonlinearities

There are several nonlinearities associated with the actuator, several of these are better

described as saturation limits. The total stroke length of the proof mass is -+0.0127 m. The
actuator produces a useful control force only when the proof mass is free to translate. Therefore,
feedback of the proof mass position relative to the structure is used to maintain the proof mass in

Cd7b"



the center of its stroke. The finite stroke length is the limiting factor for low frequency, large
amplitude motions.

The power amplifier used is operated as a voltage controlled current amplifier On the
amplifier there is a current limiter that provides for a saturation limit on the output. The maximum
output current of the amplifier determines the maximum force output of the actuator. An important
design tradeoff here is to determine how much control effort should be used towards the proof
mass centering force and how much should be available for a control force based on a
noncolocated sensor.

The damping in the actuator is primarily due to friction in the linear bearing and steel shaft
interface. This friction has been described by a typical Coulomb friction relation. The normal
load that generates the friction force is a combination of the weight of the proof mass and a
magnetic force between the permanent magnets and the steel shaft and ball bearings. These
frictional effects further limit the effectiveness of the actuator at low frequencies. Secondly, the
source of the damping is important in the sense that previously implemented PMA control laws
have relied upon available actuator damping to obtain closed loop stability. The problem is that a
large portion of this damping would not be available in a zero-g environment.

The electromagnetic coupling between the coil and the proof mass is described by Eq. 1 for
only a portion of the total stroke. This is illustrated in figure 4. This plot shows the static force
produced by the actuator for a constant input current. Ideally the actuator should output a constant
force for a constant input current independent of the stroke position. During bench testing of the
actuator, this led to closed loop instability.

2.2.2 Attachment to Structure

The structural equations of motion must be modified to include the actuator dynamics. The
structure is originally described by m degrees of freedom x, and if n actuators are used then n

degrees of freedom represented by the relative displacements r i are appended to the equations of
motion. Note that the coupling appears in the mass matrix rather than the stiffness matrix.

Mol _t + Kol x =B fg (2a)

X = {Xfe m nact) T (2b)

Ko I [ Kfem 0mxn= 0nxm 0nxn ] (2c)

0nxm 0nxn ] + Mp2 T mplnxn (2d)

Md = md diag(O,..., 0,1,0,0,. .... O) (2e)

Jd = Jd diag(0 ..... 0,0,1,0 ...... 0) (20

Mpl = mp diag(0 ..... 0,1,0,0 ...... 0) (2g)

Mp2j =mp(0 ..... 0,1,0,0,. .... 0) T, j = l:n

[ Omxn -1
B = tgactInxn3

(2h)

(2i)



2.3 Linear Variable Differential Transformer

A linear variable differential transformer (LVDT) is mounted on each PMA to provide a
measurement of the proof mass position relative to the structure. The LVDT used is a Schaevitz

Eng. No. 500. The input voltage is selected such that a displacement of -+0.375 inch produces -+5
Volts. The sensor bandwidth is 0 - 500 Hz. These sensors produce a measurement that is
colocated with the control force.

2.4 Accelerometers

The structural sensors are Kistler Piezobeam accelerometers. The calibration is 10 mv/g,
and have a frequency range of 0.5 to 5000 Hz. An approximate integrator is then used to integrate

the acceleration signal to provide a measurement of the structural velocity 2. The approximate
integrator is given by the following input/output description

0)c2S (3)
(s) = S2 + f-OcS + ¢'0c 2

This approximate integrator is the combination of a critically damped unity gain second order low
pass filter, and a pure differentiator. The low pass filter provides the integrating action, while the
differentiator removes the DC portion of the input signal. The transfer function is strictly proper,
giving a state space realization for either analog or digital implementation. This type of integrator
is used in order to avoid the integration of any DC bias produced by the accelerometer and
associated signal conditioning.

2.5 Digital Controller

The digital controller used is a Systolic Systems Optima 3. The input and output voltage

range is -+5 Volts The input channels are anti-alias filtered and the output channels are smooth
filtered. The digital to analog converters on this system present a practical design issue, since they
do not saturate. Rather, when the control law produces an output that exceeds the output range of
the converter the conversion process wraps the desired signal value around the available output
range. In other words, if the control law produces a desired signal of 6 Volt, the D/A converters
will produce a -4 Volt signal. The solution to this problem used is to place the static controller
gain on the power amplifiers. This is fine for static compensators or direct output feedback of
sensor signals of known and bounded signal strength, such as the LVDT output. For dynamic
compensators this is not necessarily a robust solution. A second solution would be to place logic
statements in the control software that would provide saturation levels. Such logic statements
would lower the achievable sampling rate.

3 Control Design

The application of a proof mass actuator to the control of a simple flexible structure is
considered in this section. The structure consists of one rigid body mode, and one flexible mode
of vibration. This problem is illustrated in figure 5. This problem has been proposed as a

benchmark robust control problem 14. The difference here is that the control force is produced by
an actuator whose dynamics cannot be ignored. The open loop equations for this system are
given by



Ms+mp+mdmp + -Ks Ks -- gac fg(t) + d(t)
mp mp 0 0

(4)

The measurement equations are for the relative position, 1"1,

yp = KLVDTI"I = [0 0 KLVDT] x (5)

The following values are used for all calculations in this section.

Ms = 1
0.5 < Ks < 2, nominally K s -- 1
mp = 0.2
md=0
gact = 1
KLVDT = 1

In the following subsections several vibration control strategies are considered. The
effectiveness of each system is then evaluated by giving the system an impact disturbance across
masses 1 and 2, and the response of x2 is measured. This type of disturbance does not excite the
system's rigid body mode.

3.1 Controllability

The controllability of this system is then computed with standard techniques 9

rank [B AB A2B ... A5B] = 4 _ 6 (6)

Indicating that the system is not completely controllable. The control force produced by the
actuator should be considered as a force internal to the system, and as such cannot change the
location and motion of the system's center of mass. The lack of complete controllability is
because the actuator cannot control the rigid body mode of the system. A further explanation of
this is the actuator configured as a point force cannot produce a force at zero frequency.
Therefore, a statement of the obvious is that the actuator should be only used for vibration control.
In other words the actuator should be used to give the structure damping. It is also evident that a
rigid body control system must be designed for this system. A design goal for the vibration
control system is that it should enhance the rind body controller.

3.20bservability

The observability of the system is computed from

rank [C CA CA 2 ... CA5] T = 4;e 6 (7)

Indicating that the system is also not completely observable. Similar to the previous section the
rigid body modes of the system are not observable.



3.3 Vibration Absorber

The first control law considered is direct feedback of the relative proof mass position, 1"1,and

velocity, 1'1- This is considered a colocated design, since the resulting closed loop stiffness and

damping matrices are symmetric. Although the LVDT measures the position rl only, it is assumed

that 1'i is available from a lead network or digital derivative. This type of feedback compensation

is a proportional plus derivative control. Equivalently, this type of control may also be thought of
as designing an actuator spring stiffness, ka, and viscous damper, Ca. One criterion for the choice

of the feedback gains, ka and Ca, is that used to design a passive vibration absorber 10,11,4. The
actuator spring stiffness is found from

0_ = mp - (l+_ta)2
(8)

c2 = m,,I.taO_i_2' 1
v (l+lla)3

(9)

I.ta = mp(@ij)2
ka = gactKposKLVDT
Ca = gactKvelKLVDY

Coi- frequency of interest, ith mode

Oij - jth degree of freedom, eigenvector of the ith mode, normalized with respect to the mass
matrix

The resulting closed loop equations of motion are then

Eos o Eoool{  }[ s_ sol{xl}f-itMs+mp+md mp + + -Ks Ks 0 = d(t) (10)
0 mp mp 0 0 Ca 0 0 ka

Alternatively, the feedback gains can be calculated from the following quadratic cost function 11

E[0_q dt] _JTQ dt]J= e2 = z z (11)

This system is stable provided that the feedback gains, ka and Ca, are positive. The constant
gain feedback of sensor signals that are colocated with an actuator does not destabilize the system.
The colocation of sensors and actuators is evidenced by the symmetric closed loop stiffness and

damping matrices.
The spring stiffness and damping coefficient for this example are calculated to be

ka = 0.331
Ca = 0.173



Theresponseof x2for thegivendisturbanceis shownin figure7. Theresponsesshownare
calculatedfor theminimum,maximumandnominalvaluefor thestructuralspringstiffness,Ks.
Thevibrationcontrolsystem'sperformancewhenKsis increasedto itsmaximumvalueis
comparableto itsperformancefor thenominalvalueof Ks.Ontheotherhand,whenKsis
allowedtodecreasetoitsminimumtheperformanceof thesystemisdiminished.

Theperformanceof thistypeof controlis explainedinacontrolsystemsenseasapole-zero
cancellation.Thesecondorderdynamicsof thePMAaddapoleandazeroto thesystem,which
will belessthatthestructure'spoleandzero.Thezeroassociatedwith thestructurewill appearin
betweentheactuatorpoleandthestructuralpole. Thesepolesarecloselyspaced,sincethemass
ratio,I.ta,isusuallysmall.Hence,thestructuralzerowill tendtocanceleithertheactuatoror the
structuralpole,dependingonsensorandactuatorplacement.Becausethistypeof controlrelies
uponpolezerocancellationitseffectivenessfor morethanonemodeof vibrationis limited.

3.4 Direct Velocity Feedback

The second control strategy considered consists of direct structural velocity feedback 13. The
idea being that the actuator will provide a force at a given point on the structure that is directly
proportional and opposite in direction to the structure's velocity at that point. It is pointed that the
control force is determined on the basis of both a colocated and a noncolocated sensor. Therefore,
the stability of the closed loop system must be considered. The difficulty here is the design of the
feedback compensator to provide the proof mass centering force. The control force is given as

fg(t)= c R2- f(rl) (12)

where f(rl) represents the output of the feedback compensator.

In the following subsections the velocity feedback gain, c, is held constant and two feedback

compensators for 1"1are designed. The value used for the feedback gain c is

c =0.5

3.4.1 Direct Output Feedback

In this section a proportional plus derivative compensator is designed for the feedback of the

proof mass relative position, r1. Again, this type of control may be thought of as determining an
equivalent actuator spring stiffness, ka, and viscous damper, Ca. The control force is

fg(t)= c x2- karl - Cal'l (13)

The closed loop equations of motion for this system are then

i s0 i os0]{Xx!}{11 Ms+mp mp + 0 00 0 +-Ks s O = d(t) (14,

mp mp 0 -c Ca 0 ka

This is a noncolocated control system, and as such its stability is in question. The characteristic
equation for this system is evaluated to be



[ Ca)s3  )s2s2 s4+ [M(C--_s+mpp + !,, Ms + mp

((Ca+C)Ks 2caKs_ (_ (2Ms + ]]+ [ M 2 + Msmp) s + [M_mp mp) =0
(15)

Applying the Routh-Hurwitz test to portion of the characteristic equation inside the brackets the
following stability relation is obtained, assuming that each individual parameter is positive

(c 2 + 2CaC + c 2) K2rr_ + [2(c 2 + CaC)K 2 + (-CaC- c2) Kska]Msmp

- cacKska M2 > 0 (16)

When the actuator damping is held at zero, i. e. Ca = 0, Eq.13 reduces to

Ks ka 07)
Ms >mp

In other words, the actuator natural frequency should be less than the structure's natural frequency
of vibration. Also, note that the velocity feedback gain, c, is not present in Eq. 14. Figure 6
illustrates the stability boundary of ka for a range of both Ca and c, for the nominal spring stiffness
Ks. Actuator spring stiffnesses below this boundary result in a stable system. The smallest stable
ka in figure 6 occurs for Ca = 0, independent of c. Also, the surface is relatively flat over most of
the range of Ca and c, indicating that in this case stability is insensitive to actuator damping. In
order to ensure stability robustness against the permissible variations in the structural spring
stiffness, Ks, the minimum permitted value should be used as the nominal of design value.

The feedback gains, ka and Ca, are determined by following the same optimization strategy

that was outlined in the previous section 12. For this example ka and Ca are found to be

ka = 0.105
Ca = -0.0027

The performance of this system is illustrated in figure 8. The system's settling time for both the
nominal and maximum spring stiffnesses is less than that of the vibration absorber design.
Although it is not apparent in this figure, when Ks is varied to its minimum value the system
becomes unstable.

Following this strategy the actuator spring stiffness is found to be less than the vibration
absorber spring stiffness. Performance is improved with an increased feedback gain c. In
comparison to the vibration absorber system the proof mass here exhibits more relative motion
and does more work on the structure.

3.4.2 Robust Control Design

An attempt to design a compensator for the feedback of the relative position, rl, using an H_
robust control design technique was unsuccessful. The system rigid body modes were first
removed from the state space equations of motion by model reduction. The rigid body mode
associated with the proof mass was retained in the system equations, since it is this output that the
compensator is being designed to control. The Hoo design procedure failed because there was a

plant pole on the j0_-axis which then produces a closed loop pole also on the jc0-axis.



3.5 Passive Damper

As a counterpoint to the above control designs the actuator is also configured to act as a
passive linear damper which applies a bending moment at two locations on the structure, as

shown in figure 10. Only feedback of the proof mass relative velocity, _1 is used here. In other
words this is direct velocity feedback. A proof mass centering force is not required since this is
provided for by the structure and fixturing. The actuator can be attached at nonadjacent joint
locations to better distribute the control effort to low frequency modes.

4 Experimental Implementation

The experimental implementation of the control laws considered above is addressed in this
section. An impact is given to the structure at node 1 in the x direction and the structure's
acceleration is measured at node 4 also in the x direction. Each response is filtered with a 25 Hz
low pass filter to give a cleaner picture of the actuator's effect. The resulting settling time for each
test is used as a measure of control law performance. The actuator location is chosen in order to
provide the greatest effect on the first vibration mode. The control laws are implemented digitally,
with the sampling rate for each set at 4000Hz. As a basis for comparison the response of the
uncontrolled structure is shown in figure 10. The settling time for this test is greater than 3.5
seconds. It is also evident that the structure must be considered more complicated than a single
degree of freedom.

The vibration absorber was designed to provide damping to the first mode whose frequency
is shifted to 5.8 Hz when the actuator dead mass and inertia are added. The actuator is placed at
node 4. The result of this implementation is illustrated in figure 11. It is seen here that the settling
time is reduced in comparison to the uncontrolled structure, but is greater than 2.5 seconds.
When the actuator was tuned to the second mode at approximately 12 Hz the actuator was made
unstable. This is a result of the nonlinear electromagnetic coupling of the coil and permanent
magnets.

The effect of adding structural velocity feedback is shown in figure 12. The acceleration of
node 4 is integrated by the approximate integrator given in Eq. 3. The cutoff frequency for the
integrator is 1 Hz. Following the stability guideline for this case the actuator spring stiffness is
kept low such that the actuator frequency is below that of the first mode of vibration. The settling
time for this case is an improvement from the vibration absorber. Figure 12 displays a signal of
approximately 1 Hz, which is the double pendulum mode of the structure suspension system.
Closed loop instability for this set of feedback paths resulted when the magnitude of the
disturbance impact caused the proof mass to hit the end of its stroke. These resulting impacts
caused the accelerometer to overload which subsequently made the control computer overflow
which induced the more proof mass impacts.

Figure 13 illustrates that the viscous damper implementation has an effect comparable to that
of using structural velocity feedback. Although, there is more second mode behavior for this
case. The actuator was attached at nodes 3 and 5. In comparison to the point force application of
the actuator where the proof mass uses the entire stroke length, the travel of the proof mass here is
at most 0.25 in.

5 Conclusions

Several structural vibration control laws have been considered analytically and implemented
experimentally. Two of these control strategies are essentially active implementations of passive
control concepts, namely the viscous damper and the vibration absorber. The feedback of the
local structural velocity is an active control idea. A control structure interaction approach was
taken in the sense that the actuator dynamics were included in the control design, and that there are
several nonlinearities in the closed loop system that can lead to instability.
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Mode #

1
2
3
4
5
6
7
8

Experimental
Natural

Frequency (Hz)
6.4
15.1
17.7
29.6
35.4
45.6
58.0
63.3

Damping
Ratio (%)

0.021
0.026
0.010
0.018
0.025
0.014
0.026
0.022

MSC/PAL
Natural

Frequency (Hz)
6.5
15.6
17.7
29.9
35.2
45.2
55.6
60.8

Mode

Type

1st bending
1st torsional

2nd bending
2nd torsional

3rd bending
3rd torsional

4th bending
4th torsional

Table 1: Modal Properties of Flexible Structure



Link O.D. do
Link I.D. di

Density p
Elastic modulus E
Shear modulus G

Joint mass mj
Bolt mass mb

22 mm
20 mm

2.45x 103 kg/m 3
70 GPa
26 GPa

0.0759 kg
0.0578 kg

Table 2: Structure link and joint characteristics

Proof mass mp
Dead mass md
Dead inertia jd

Force constant gact
Friction coefficient

ti

0.225 kg
0.730 kg

0.008 kg-m 2
2.75 N/A
0.01

Table 3: Linear Proof Mass Actuator Properties

2 m

t'//,

6 - Bay Planar Truss

Total Mass - 6.25 Kg

_,,////] Meroform Aluminum Tube Elements
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- Figure 1: Experimental Flexible Structure
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Figure 3: Linear Proof Mass Actuator

v

2
O

II

0.0 ! I

ICoil Current = 1.09 AmpI

ITest: dta12 _ I-0.5 ................................................................................................................................................................

-1.0

-1.5

-2.0
I I I

-0.4 -0.2 0.0 0.2 0.4

Proof Mass Position (in)

Figure 4: Static force versus proof mass position, coil current constant



X 1 X2

II,
I

I

!

L--

Figure 5: Free single mode structure with proof mass actuator

kp

ka

Actuator
.-|

(0.001,2,440)

(c=0.001 ,cp=0,kp=0.2)

(2,0,0.2)

c cp

Figure 6: Constant feedback gain stability map

/ !08-+..A................................_........................................+.......................................-.,.........................................
/ i \ ,., i IKs= 0.51 i

0.6 -I-_--f ....................._-.:_-.--i.................;,.-,_-.;:> _ ............................f ........................................

" .._............. '-.-.-._................. 7.-...-_,................ 'L'-.A .................... 7-.-:'--.-;.................;:':...................

I1',1,, ,1_,., '..m , : _, _ • ,: ; ,,
0 2 -I_---:--__'---_t---_ i_"......._;_ .......:__" .............._ ........._.................l-........,.-+..............,........_...............

u i l., 'I ,_,, t,.!,,\ ,,_,/_i', _, ,-,',---.-.! :_ -., .-.!.
o.on':,l'-f,,-_.,_!/,q',V:_",_

-oz J..!&,.IL]L.\,I_,, .......i
-0.4 --k-'"'%_ ....... ": .....

/ I,_'/ i -- :-/ i
-o._ ....;-................._...:,:/-.F_-_G:".: ÷ _ -- _. ......-I...........":'-:7................................i........................................

" i i i
0 10 20 30

Time

Figure 7:X2 response to disturbance for minimum, maximum, and nominal Ks, vibration absorber
design.



O

ed_

g

0.6_

0.4-

0.2-

0.0-

-0.2 -

-0.4 -

0

I

..._1Ks_-0.51..........................................................................................................................
t

....... !i

P,

°i

i..... !

I

10 20 30

Time

Figure 8:X2 response to disturbance for minimum, maximum, and nominal Ks, with structural
velocity feedback.

Figure 9: Viscous damper configuration.
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SIMULATOREVALUATIONOFSYSTEMIDENTIFICATIONWITH
ON-LINECONTROLLAWUPDATEFOR

THE CONTROLS AND ASTROPHYSICS EXPERIMENT IN SPACE

Raymond C. Montgomery _, Dave Ghosh*

Michael A. Scott , and Dirk Warnaar

ABSTRACT

This paper presen£s a procedure for optimizing the performance of

large flexible spacecraft that require active vibration suppression to

achieve required performance. The procedure is to conduct on-orbit

testing and system identification followed by a control system design.

It is applied via simulation to a spacecraft configuration currently

being considered for flight test by NASA -- the Controls, Astrophysics,

and Structures Experiment in Space (CASES). The system simulator is

based on a NASTRAN finite-element structural model. A finite number of

modes is used to represent the structural dynamics. The system

simulator also includes models of the electronics, actuators, sensors

(including an optical sensor that can sense deflections at locations

along the CASES boom), the digital controller and the internal and

external disturbances. Nonlinearities caused by quantization are

included in the study to examine tolerance of the procedure to modelling

errors. Disturbance and sensor noise is modeled as a gaussian process.

For system identification, the structure is excited using

slnusoidal inputs at the resonant frequencies of the structure using

each actuator. Mode shapes, frequencies, and damping ratios are

identified from the unforced response sensor data after each excitation.

Then, the excitation data is used to identify the actuator influence

coefficients. The results of the individual parameter identification

analyses are assembled into an aggregate system model. The control

design is accomplished based only on the identified model using

multi-input/output linear quadratic gaussian theory. Its performance is

evaluated based on time-to-damp as compared with the uncontrolled

structure.

* Aerospace Technologist, Spacecraft Controls Branch.

* $trucural Dynamics Analyst, Lockheed Engineering and Sciences Co.,

Hampton, VA.

Principal Engineer, Lockheed Engineering and Sciences Co., Hampton,

VA.
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CASES - Controls, Astrophysics, and

Structures Experiment in Space

This paper presents a procedure for optimizing the performance of

large flexible spacecraft that require active vibration suppression to

achieve required performance. The procedure is to conduct on-orbit

testing and system identification followed by a control system design.

Having applied the procedure successfully to the Mini-Mast ground test

article (reference I), this paper considers application in a spacecraft

currently being considered for flight test by NASA -- the Controls,

Astrophysics, and Structures Experiment in Space (CASES).

CASES is a very long focal-length camera. The "film" of the camera

is in the payload bay of the Space Shuttle and the "lens" is at the

opposite end of the 105 ft. boom extending from the payload bay. This

accommodates the astrophysics role of CASES. Relative to this role,

CASES accommodates an Astrophysics/Solar Physics Hard X-Ray Imaging

experiment, thereby addressing two primary science goals. The "lens" is

actually a pinholed plate and the "film" is an X-ray photon counter.

The goals supported by this configuration are identifying energy sources

from the galactic center, and the energy release mechanisms during solar

flares. Precision pointing and stability of the optical axis is

required when high energy photons are counted so that image

reconstruction can be made.

CASES also accommodates research in controls and structural

dynamics. The structural dynamics research capability is enhanced by a

Parameter Modification System which is designed to alter the mode shapes

and frequencies while in orbit. Advanced control law research can. be

accomplished using a variety of sensors and actuators provided by CASES

covered in the next chart.
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CASES INTEGRATED FINITE-ELEMENT MODEL

A finite-element model of the on-orbit CASES configuration has been

assembled from 20SO beam elements. This chart is a sketch of the model

which also indicates the location and type of sensors and actuators

available on CASES. The actuators include small cold gas thrusters and

angular momentum exchange devices (AMEDs). AMEDs are electric motors

with flywheels attached to the armatures to affect moment control. The

sensors include rate gyros, accelerometers, and a novel optical sensor

that detects motion of optical targets distributed along the mast.
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CONFIGURATION FOR BOOM MOTION TRACKER USING RAMS

The remote attitude measurement system (RAMS) employs a laser to

illuminate retroreflective targets. The return from the laser targets

is focused onto a linear CCD (charge-coupled device) array. The output

of the array is processed to indicate the movement of the targets. RAMS

is capable of optically sensing the motions of the boom at multiple

target locations. Twenty-four targets distributed along the 102-foot

boom are optically detected by the RAMS system to monitor boom motion

and %he tip displacement. Additionally, targets are placed on the

tip-plate that allow determining the rigid-body rotation and translation

of the plate. Two slngle-axis sensor heads on orthogonal axes at the

base of the experiment platform are used to detect target motion. The

discrete projections of the target images as perceived from the sensor

heads are used in the control system.
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SYSTEM SIMULATION

The design procedure presented in the paper is applied to the CASES

configuration. This is done by developing a system simulator capable of

accurately representing the on-orbit environment. NASTRAN model data is

passed to a preprocessor that generates a dlscrete-time model of the

CASES dynamics suitable for digital control. Actuator and sensor data

is also input to this module. This data is also used in the control

system design module along with output from the system identification

conducted using simulated open-loop, on-orbit data. The discrete-time

model as well as the control system design are passed on to the

simulator for the closed-loop control system performance evaluation.

Thus, the control system design is based only on results of the system

identification and prior knowledge of the sensors and actuators (assumed

obtained from bench tests and geometrical mounting data for locations of

the components).
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SIMULATOR FEATURES

The finite-element model of the CASES configuration includes 663

grid points, 2050 beam elements, and lumped masses representing the

actuator and sensor components at the tip and mid boom assemblies.

NASTRAN was asked for the modes with frequencies less that 10 Hz.

Open-loop eigensolution analysis provided the necessary mode shapes and

frequencies to build the system simulator. Based on the 40 Hz sample

frequency fourteen modes were used in the simulator. The table below

lists the frequencies and description of these modes {0.5 percent

structural damping was assumed for each mode). In addition to the

structural model, the system simulator also includes detailed models of

the electronics, actuators, sensors (including RAMS) and the digital

ccntroller. Sensor noise and disturbances are modelled as Caussian

random noise. The procedure for modelling the in-situ noise

characteristics off the sensors caused by uncertainty in modelling,

mounting, and quantization is covered later.

TABLE - List of frequencies obtained from the FEM and used in the

simulations.

Mode no. Description Frequency (Hertz)

I-6 Rigid Body

7 1st Bending Y
st

8 1 Bending X

9 Ist Torsion Z

I0 2 nd Bending Y

II 2 nd Bending X

12 3 rd Bending Y

13 3 rd Bending X

14 4 th Bending Y

0

0.033

0 034

0 lSS

0 431

0 441

I 412

I 543

2 744
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0PEN-LOOP RESPONSE TO AN IMPULSE

I N-SEC

The response of the system to an impulse of 1N-sec is shown in the

figure. The important characteristic is that the system does not damp

to an undetectable motion for 4,000 sec and does not fall below i cm for

over 1,000 sec.
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SENSOR RANGES AND NOISE LEVELS AND ACTUATOR LIMITS

The sensor range and noise levels used in the system simulator are

shown in the chart. The expected ra_nge of the sensors is determined during

the excitation period of the system identification tests. 7herefcre,

prior to assigning values for the sensor noise a complete simulation was

performed to determine the peak response of the sensors to each of the

SID excitation tests. To prevent sensor saturation, the expected range

is defined as six times the peak of the actual response of the SID

tests. Thus, the data were carefully inspected, peak displacements were

identified, noise levels were determined and added to the data prior to

performing system identification on the data. The three-sigma noise

range levels correspond to one percent of the expected range for the

inertial sensors. The optical sensor noise levels correspond to 0. i of

one percent of the expected range. The open loop excitation tests

indicated the peak displacements are high near the tip of the boom.

Thus, the noise levels added to the optical sensor increase near the tip

of the boom.

The actuator limits were determined based on the maximum output of

the components in the CASES flight experiment design. In the case of

the bilinear thrusters (BLTs), their maximum force is almost equal to the

static buckling limit of the boom. Here an industry standart safety

factor of 2.5 was applied to the maximum commanded value of the tbmust

resulting in a .43 Ibf limit.



<
0
,.J

706



EFFECTS OF QUANTIZATION

MID-BOOM DEFLECTION

This chart shows the character of the signals that resulted from

application of the actuator command limits of the previous chart. Here

the boom is excited with the mld-station torque wheel at the mode 8

resonant frequency. The effect of quantization in the signal is

apparent by the step-like nature of the sensor output. The maximum

amplitude of the signal is approximately 4 mm peak-to-peak and the

quantization is approximately in .2 mm increments.
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EXCITATION RESPONSE

(8th MODE)

This chart shows the first 4 seconds of the previous chart with she

scale of the ordinate expanded.
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SYSTEM IDENTIFICATION

System identification was carried out using the simulator to

generate data sets as they would be generated in a flight experiment.

The flight computer generated an excitation signal that is implemented

by the actuators on CASES. This generates a response of the structure

which gives rise signals from the CASES sensors simulated.
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SYSTEM IDENTI FI CATI ON APPROACH

An unsuccessful attempt was made to identify the mode shapes using

the sine-sweep and random excitation tests. Because of actuator input

[imitations dictated by flight safety requirements, sine-sweep and

random excitation techniques do not excite the structure sufficiently to

identify mode shapes and actuator influence coefficients. However, the

modal frequencies can be identified. First, ERA (reference 2) was used

to determine the frequencies from a sine-sweep test. It was used again

to _dentify the mode shapes, frequencies, and damping ratios from 2B

sine-dwell tests. These tests were determined from the finite-element

predictions to eliminate unnecessary data processing. In an actual

flight the complete matrix of tests (number of modes by the number of

actuators) would be used. The least squares method (reference 3) and a

closed form solution method (the b-coefficient method, explained herein)

were used on the data to determine the actuator influence coefficients.

The results of the individual parameter identification analyses are then

assembled into an aggregate system model for use in the control system

design phase.

The actuator influence coefficients were identified using least

squares estimation and a closed form solution method. Both techniques

analyze single-input, single-output data. The sensor with the highest

output to noise ratio was selected for determining the actuator

influence coefficient for the corresponding mode-actuator combination.

For the higher frequency modes, quantizatlon effects and low levels of

excitation prohibited least squares estimation from converging. For

these modes the b coefficient method was used. This method is based on

fitting the the envelope of the forced response curve. The equation

governing the envelope for this method is

y(t) =
b [I - e-_°)n t]

n n

which assumes zero initial conditions, small damping, and the presence

of a single mode. The unknown b coefficient is determined from the

knowledge of _ sensor output y at time t. The damping coefficient _ and

the natural frequency _ were previously determined using ERA.
n

The closed form method accurately predicts the magnitude of the

coefficient. However, it does not predict the sign of the coefficient.

The sign is determined by examining the phase relationship of the sensor

output to the excitation input. If the output lags the input by 90 ° ,

the influence coefficient is positive. If the output leads the input,

the coefficient is negative.

713



==

0

Z

I--!
t--"

!--I
LL

I--
Z
LL!

i--I

LL!

Z
I_J
I--I

I,-,I

iJ_
I_L
LtJ

LLI

Z
bJ

_J
1.1.
Z
1"4

0
l..-

LL
Ld

ZZ

_L,J

Ld f.._
_L,J

_L,J

Z
01""

_W
_-..J
1"4

L,J I

P--4I'--
0_

_0
ZC.._
I--.J -J

LIJ

lad

Z

Z

Z

LL

Z

i--

I--

.,d

Z

Z

,.4
.,4

_dl--.



ACTUATOR INFLUENCE COEFFICIENTS

This chart shows the actuator influence coefficients that were

Eenerated in the finite-element analysis and which were simulated

(BFEM). It also shows the results of the system identification of the

same parameters. The elements blocked a_e the best and worst case

system identifcation results.
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SYSTEM IDENTIFICATION RESULTS

Using ERA the mode shapes, frequency, and damping coefficients of

the 8 lowest frequency flexible modes were identified. This chart

tabulates results of the ERA analysis and shows a llne graph of the

mode I sensor influence coefficients plotted against sensor number. For

the line graph, the first 4 sensors are rate gyros. The next 24 are

laser retroreflective targets using one of the detectors and the last 24

are the retroreflective targets for the other detector. Also plotted is

the finite-element simulated value of the parameter. It cannot be

destin_ished from the parameter identification value on this chart.



/

l

U.
l

1

l

0

_Z
LU
(/)

o
c_

Z >.

UJ N

:E
LU
F-

>-

UJ N

W

U.



CONTROL DESIGN PROCESS

The vibration suppression control law is developed using the linear

quadratic gaussian analytic design method (reference 4). This procedure

uses a linear steady-state minimum-variance estimator to obtain the

states for use in a linear fixed gain regulator. The control law chosen

minimizes the time integral of weighted squared disturbance and applied

control signals. The weighting matrix for the disturbance is the

identity matrix divided by the frequency squared. The weighting matrix

for the control input is the identity matrix.

7]9
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CLOSED-LOOP PERFORMANCE

The closed loop performance of CASES was evaluated with the results

of the system identif[catlon information. An updated regulator and

state estimator _ased on the SID results was obtained. This chart shows

the tip displacement (in meters) of the CASES mast due to sinusoldal

excitation [using the tip thruster) at the first resonant frequency of

the structure, lhe upper graph shows the forced response for the first

60 seconds and free decay response after 80 seconds. The lower graph

shows the forced response to the same input disturbance with the

controlled response after 80 seconds. The open-loop system (0.5

percent damping] takes approximately I0 times longer to achieve the s_me

level of damped response as the closed-loop system (5 percent damping].





CONCLUDINGREMARKS

A procedure has beenpresented for the on-orbit design of a control

system for flexible space structures. This procedure has been

successfully implemented in a CASES flight experiment simulation.

Results indicate that system identification will be difficult but can be
done. The actuator influence coefficients are difficult to obtain with

the levels of actuator force allowed. With current actuator force

levels, 5 percent damping can be added to the system.
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DYNAMICS MODELING AND ADAPTIVE CONTROL

OF FLEXIBLE MANIPULATORS

J.Z. Sasiadek

Department of Mechanical & Aerospace

Engineering

Carleton University

Ottawa, Ontario, Canada

Abstract

This paper presents an application of Model Reference Adaptive Control

(MRAC) to the position and force control of flexible manipulators and robots. In this

paper a single-link flexible manipulator has been analyzed as an example [1].

1. Introduction

Control of flexible structures is of paramount importance in various

applications in aerospace, mechanical and construction industry. The problem itself
is not a new one and has been described extensively in literature related to control

of distributed parameter systems. Robots with flexible links are interesting examples

of mechanical systems with the flexible structure. Flexibility of links poses several

difficult problems with position control. One of the most severe problems is vibration

of the end-point caused by links structural flexibility. Design of an appropriate control

system requires a good knowledge of dynamics. In general there are several methods

for dynamics modeling. Two are of special interest: 1. an assumed modes method,
2. finite elements method. Both methods have been described in several books [2] and

papers [3]. If, dynamics of a flexible manipulator or robot has been identified and

PRL_--_Di51G PAGE BLANK NOT FILMED
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determined, an appropriate control system can be designed. Robots have strongly
nonlinear characteristics. This feature is even more visible for flexible manipulators.

Thus, flexible robots require especially efficient control systems. There are numerous

control systems based on feedback or feeedforward principle. The link inertias change

continuously with position, payload and time, therefore control system has to follow

and adapt itself to assure a steady and smooth performance. The adaptive control

seems to be well suited for that purpose. One of the most promising of such systems

is Model Reference Adaptive Control (MRAC). The main advantage of adaptive

control is that the system is payload insensitive and that its performance is steady

over broad range of conditions.

2. Problem Formulation

The problem addressed in this paper was to develop a mathematical model
of a flexible robot. The model has to be accurate and in some applications a real-time

simulation may be required. Dynamics of the manipulator have been used in

designing of its controller. Adaptive control schemes require special attention to make

sure that stability of the system is maintained. The objective is to show that the

adaptive control performs better than "conventional" systems and is suitable for
flexible structure control.

3. Mathematical Model

The mathematical model described in this paragraph has been developed and

described in detailed in [1]. The single link flexible manipulator has been modelled

as a cantilever beam and following assumptions have been made [1]:

- the mass and elastic properties of the link are distributed uniformly along

its longitudinal direction;

- Euler's beam theory is applicable, thus the transverse shear stresses and the

moment of inertia with respect to elastic deformation are negligible;

- the elastic deformation of the link is small;

- the change in potential energy of gravity due to elastic deformation of the link

is negligible.

Single-link flexible manipulator has been shown in fig.1 (all figures from [1]) and

its dynamic performance has been shown in subsequent figures [1].



4. Adaptive Control

Figures 7 to 12 present various dynamic responses with control. The
comparison between those responses and free responses has been shown. Simulation

results show that the adaptive control system performance is satisfactory and is

payload insensitive. It is clear that adaptive control can be used with success for
flexible robots control.

5. Conclusions

Modal expansion method is an accurate representation of flexible

manipulator dynamics.

Three flexible modes approximation can be considered as satisfactory.

The discontinuities in the robot response caused by coupling between the

rigid and flexible modes can be eliminated by an efficient control system.

An adaptive control system reduces the positioning error of the end-effector

and shortens the settling time.
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In this presentation, we contemplate the relative benefits of passive and active

vibration suppression for Large Space Structures (LSS). The intent is to sketch the true

ranges of applicability of these approaches using previously published technical results

for this review. In part also, it is our hope to counter past incidences of overzealous

advocacy of exclusive use of passive damping or exclusive use of active control and

argue, instead, for the proper combination of both approaches.

First, let us consider the various methods of intrastructural damping treatment in

use or being considered for use in LSS. Most of the listed damping techniques work by

constraining a layer or annulus of viscoelastic material so that it is placed in a state of

shear strain. Some devices use the resulting energy dissipation from shear-strain-rate

to damp translational motions, whereas others, such as the rotational damper concept,

employ an annulus of viscoelastic material to damp rotational motion. In addition there

are essentially _add-on" damping treatments using a thin layer of viscoelastic material

covered by a stiff "constraining layer" for the purpose of damping flexural vibrations

in beams or plates. Finally, strut viscous damper concepts are well adapted to the

damping of axial deformations of strut elements within built-up truss structures. These

are all intrastructural damping concepts. There are also inertial damping concepts -e.g.

the tuned-mass damper which we'll discuss in a moment.
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Passive damping approaches offer many inherent advantages for LSS vibration

suppression, i.e., these approaches are inherently stable, usually require no on-line

processing or electronics and are reasonably weight-efficient. These advantages are

presently well recognized and demonstrated. However, a sober assessment must rec-

ognize a number of engineering design and implementation issues that arise in LSS

applications. First, there are inherent performance limitations to passive damping

that we review presently. There are detailed design issues connected with the proper-

ties of viscoelastic materials -e.g. temperature dependence of the damping loss factor,

outgassing, low specific stiffness and strength and viscoelastic creep which has a di-

rect impact on dimensional stability performance of LSS. These negative factors are

not necessarily irremediable - but the successful resolution of these issues in detailed

design does contribute to the cost and complexity of final implementation.

Also, the "bottom-line" performance (e.g. line-of-sight jitter, etc.) achieved by

a given passive suppression system does often depend critically upon the accuracy of

a priori structural dynamic modelling. For example, tuned-mass dampers are partic-

ularly effective only when the target mode frequency is well predicted. With regard

to constrained-layer or truss member damping, effective design requires good-quality

modelling information on the performance - significant modes and their strain energy

maps. If in-mission changes or parameter errors cause significant departures from

design-model dynamics, actual damping can be far less than that predicted or speci-

fied. Thus, while there is no issue with stability robustness, the issue of performance

robustness remains.
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• There is a maximum damping coefficient beyond
which there is no further improvement

• For complex structures, sufficiently large damping
coefficients decrease energy dissipation

Figure 3. Inherent Limitation to Passive (Semi_Passive) Damping



We illustrate the well-known performance limitations of intrastructural passive

damping with the simple cantilevered beam example shown. The point is that the

structural damping does not always increase with further increase in the end-mounted

damper viscoelastic constant, C. In fact, there is a maximum value of C beyond

which there is no further improvement in system damping. In the limit as C increases

without bound, the system poles coalesce with zeros on the imaginary axes and there

is no damping since the damper acts as a rigid constraint. This effect is due to the

fact that spatially discrete dampers modify both the structural mode damping and

the mode shapes. In consequence, it can sometimes happen that sufficiently large

damping coefficients in discrete damper devices can actually decrease energy dissipation

in critical regions of a complex multi-component structure.
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Having taken a brief (but perhaps sobering) look at the pros and cons of passive

vibration suppression, we pose the question of crucial interest here: With respect to

robust performance and simplicity of implementation are active vibration control and

passive damping really so distinct after all? (Or has the debate occurring over the

recent past been largely a war of words?)

Let us explore this question by contrasting a passive approach with a corresponding

active approach to inertial damping.

First, the passive approach considered here is the "tuned-mass" device illustrated

in the Figure. Basically, this consists of a small mass (rn) connected to the structure

with an elastic element (with stiffness k) with viscoelastic material (the dashpot) in the

load path to provide a large viscoelastic damping. This is a very simple and inherently

stable damping augmentation device. On the other hand, although modal damping

augmentation for the "targeted" structural mode can be substantial when the damper

resonance (wd) is near the targeted mode frequency, damping augmentation is slight

when there is frequency mismatch. Overall effectiveness depends on the ratio of the

damper mass to the generalized mass of (Mraode) of the targeted mode (and in the

system context of this particular diagram/_mode Was typically several hundred pounds

so that a large rn would have been required to obtain the desired 20% damping). Thus,

if there's modelling error resulting in significant "detuning', damping will be far less

than predicted and one is stuck with the resulting performance loss. (Of course, a

possible way around this problem is to build in an active electromechanical device

capable of changing the damper stiffness, k, so as to "re-tune" the damper on-line,

during the mission - but this refinement would negate most of the distinction between

°passive" versus "active"!).
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Now, consider an analogous active approach to vibration suppression using the

Linear Precision Actuator (LPACT). The patented LPACT device (see Reference 1)

is a bearinglessvoice coilproof-mass actuator which uses a proof-mass-mounted ac-

celerometer to close a force control loop which serves to override nonlinearitiesand

temperature-dependent effects.With thishlternalforcecompensation loop,the LPACT

has fiatfrequency response from 3-10 Hz to at least5 KHz. The LPACT design cur-

rentlyused in Harris testbeds provides a maximum forceof 5 pounds with 20 microl>-

ound resolution.Each LPACT has a casing-mounted accelerometer for implementation

of vibration controlfeedback.
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The casing-mounted accelerometer is the new "Hybrid Accelerometer', an ad-

vanced acceleration sensor design providing fiat frequency response from DC to at

least 10 KHz.

The diagram illustrates that with the exceedingly high bandwidth and fiat fre-

quency response of the LPACT actuator and colocated Hybrid Accelerometer, it is now

possible to implement a simple collocated rate feedback controller to provide broad°

band damping. Note that the LPACT with its Hybrid Accelerometer form one single

compact "active damping unit."
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Ifas indicated on the leftof the illustration,we use the LPACT to close a stan-

dalone feedback loop, then due to the high band width of the sensor/actuator hard-

ware, the LPACT loop closelyapproximates a passive device - similar to the tuned

mass damper - but with very large inertiaand damping elements. As illustrated,the

LPACT isequivalent to an inertiallyanchored damper with large viscoelasticdaml>-

ing and is thus able to provide very broadband damping (not just frequency-tuned

damping) despite the small actual mass of the LPACT.

Thus, there presently does exist active control hardware that can emulate the

inherently stable operation of passive vibration suppression but with the added flexi-

bilityto provide much largereffectiveinertiaand damping than would be mechanically

possiblewith passive devices.
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The above performance benefits of LPACT sensor/actuator units have been ex-

perimentaUy demonstrated using the Multi-Hex Prototype Experiment (MHPE). The

MHPE (Reference 2,3) is a vibration control testbed developed on Harris IR&D to

study the vibration issues associated with generic Cassagrain configurations with large

multi-segment primaries.

As illustrated in the photograph, the MHPE consists of a secondary mirror and

support platform supported by a Gr/Ep tripod tower connected to the center segment

of the primary reaction structure. The primary reaction structure is an array of seven

Gr/Ep hexagonal box trusses. The array is approximately 4M across. A six member

truss connects the seven-panel array to a circular baseplate (emulating a spacecraft

bulkhead). The total static weight is supported by air-bag isolators and electrody-

namic shakers are interfaced to the baseplate to provide disturbances emulating broad-

band spacecraft-generated disturbances. Line-of-Sight (LOS) jitter and panel-to-panel

misalignments due to vibration are monitored by three complementary subsystems:

(1) a pseudo-dephase-measurement system using a large number of accelerometers and

on-line processing, (2) the Optical Performance Measurement Subsystem using laser

interferometry to measure panel-to-panel misalignments and (3) an optical LOS scor-

ing subsystem using a faceted secondary and optical flats distributed over the primary

reaction structure.





The MHPE was designed to study a number of vibration control issuesin largeRF

or opticalsystems, including both LOS jitterand "Primary Mirror (PM) dephasing'.

The PM dephasing issueillustratedhere, arisesbecause vibrationaldisturbances cause

misalignments of the individual PM segments relativeto one another. According to

the laws of diffractionsuch °dephasing _ of the PM segments can cause considerablere-

duction of the peak radiation intensityin the far field.Often, PM dephasing cannot be

readilycompensated by alignment elements in the system opticaltrain and structural

control of the PM assembly may be desired.
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For active vibration control, the MHPE is instrumented with nine LPACT sen-

sor/actuator units: three LPACTs on the secondary mirror platform to control the

tower bending modes contributing to LOS jitter and six LPACTs mounted within the

outer hex panels to control primary reaction structure panel dephasing. Both data

acquisition and on-line control algorithm implementation are executed via the MCX-5

computer.

The system can implement both centralized, MIMO, control algorithms and/or

decentralized control designs and a variety of designs have been tested and included

in live demonstrations of active vibration control provided to Harris visitors over the

last two years. Here we show data (References 4,8) on the decentralized rate-feedback

control design discussed above.



.m

D

v

_i
w

g
_J

/ll) 3/r(ll:Ongl "-_ llei(:_i S:?.i{@ glne Clilt_l_lincilt _ii%ll l_ol.l'i COnLrOilei'g

,,RPJ',_. 0 2_l'.lE-08 sE_I_E 0 IOOOOE.-Oi s

t
l. II -_

I I

°115

°l.ll

il

I

i

I

I

r.l _lr 5 ;._

_C) bo_h Controllers on %=_ _ secs

Figure ii. The MHPE hybrid control heirarchy features

both performance and fault tolerance.

7#.$-
ORIGINAL PAGE IS

OF POOR OU/U.JTY



The decentralized design is a hybrid design consisting of a high bandwidth (1000

Hz) analog control for damping of very high frequency modes and a lower bandwidth

high gain digital control for enhanced suppression of the lower frequency modes. Over-

all, an order of magnitude suppression of LOS jitter and rms dephasing is obtained for

broadband disturbances. To illustrate this capability for visitors in our live demon-

strations we show open and closed-loop performance for a medley of modes -using

sinusoidal disturbances at modal frequencies in order to make the vibrations palpable

to the human senses. The demonstration sequence starts with lower frequency modes,

which can be felt by touching the MHPE panels and concludes with high frequency

modes which can be clearly heard.

Here, for example, we show via one of the accelerometer measurements, the open

and closed-loop vibration for a 35 Hz mode involving large panel-to-panel misalignment.

The bottom plot shows the complete hybrid controller. Here the mode is excited

sinusoidally with the disturbance maintained throughout the test period. Up to t = 2.2

sec., the control is turned off and open-loop vibration is observed. When, at t -- 2.2

sec., the controller is turned on, the vibration level quickly drops by approximately an

order of magnitude.

= _
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Similar results are obtained for the other performance-significant modes. In addi-

tion, we demonstrate high levels of active damping even for very high frequency modes

(up to approximately 900 Hz). For example, the top plot shows open- versus closed-

loop results when a 411 Hz mode is excited (vibration in this mode is clearly audible).

When the control is turned on at t -- 1.58 sec., the vibration amplitude again drops to

a substantially lower level. Similar attenuation is observed for the other high frequency

modes - up to approximately 900 Hz where the control feedback gain begins to toll-off.

Such results demonstrate simple decentralized control that implements "semi-

active" damping, and show an order of magnitude improvement in dephasing with

rugged bolt-on hardware. Again, an important point is that active control has ma-

tured to produce active hardware permitting control that is at least as effective and as

reliable as passive damping over frequencies below 1 KHz. Added benefits include the

scope to achieve even better performance with more sophisticated control strategies

and the capability to revise these strategies as needed.

Further MHPE experiments have combined active control with passive constrained-

layer damping. Although these activities are the subject of a separate report, we should

note that the active and passive components are clearly complementary, the active con-

trol providing large attenuation from 10 to 900 Hz and the passive damping providing

suppression of the multitude of very closely spaced modes near 1 KHz and above.
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Now that activecontroltechnology has matured to the point that itsHsk and com-

plexityhave been greatly reduced, it'stime to consider an overallapproach combining

activecontrol and passive damping. Individually,these technologies are not panaceas

but the most cost-effectlveroute is the proper orchestrationof both. As indicated in

the chart, the combination of active and passive technologies offersmany synergis-

ticadvantages. In particular a combined active/passivevibration suppression system

may requirelesspower, lessinstrumentation, lesscomplicated control algorithms while

offeringmore robust performance.
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• Base disturbances
broadband over

5-1000 Hz

• Control objective:
reduce vibration
40-60 dB relative to

open loop response
over frequency band
from 5 to 500 Hz

Figure 14. HALO Opt ica l
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The mutually reinforcing benefits of passive stiffness augmentation, passive or

"semiopassive _ damping augmentation and active control are illustrated by some re-

sults obtained approximately five years ago (see Ref. 6). This example involves an ex-

perimental configuration for the HALO (High Altitude Large Optics) structure, which

is a graphite/epoxy truss with eUipsoidal optics, and we postulate the use of HALO as

a test-bed for various vibration control methodologies. To this end, the basic scheme

features the use of electrodynamic shakers to provide broadband force excitations to

the base of the bottom truss structure and to the secondary mirror platform. In par-

ticular three independent base disturbances are postulated having fiat power spectral

density over 5-1000 Hz. The overall vibration suppression objective is to reduce rms

line-of-sight (LOS) and wave front (WF) errors by approximately 60 dB relative to

the open loop. An iterative design process led to the selection of vibration control

hardware consisting of a number of colocated accelerometer/voice coil actuator units

and noncolocated linear DC motor actuators and internal alignment optical sensors.
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In the design studies for the HALO modal, we traded off various levels of advanced

materials usage, semi-passive damping and active control. As indicated in the diagram,

the control system has a two-level architecture consisting of:

1. 21 independent decentralized positive-real controllers (DPRC's) imposing local

feedback between voice-coils and colocated accelerometers.

2. A Centralized Coordinating Dynamic Compensator (CCDC) which provides si-

multaneous coordination of many noncolocated sensors and actuators.

The DPRC's represent a semi-passive damping approach similar to the LPACT

rate feedback loops discussed above for the MHPE. The CCDC is the centralized "ac-

tive _ control component.

With this two-level control architecture, we compared cases involving the original

Gr/Ep structure with a structure wherein the main components are composed of a

Metal Matrix Composite (MMC) offering a four-fold increase in the stiffness of Gr/Ep.
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Figure 16_ Summary of HALO Controller Performance Results:

Line-of-Sight Error



This F_re summarizes LOS jitterperformance resultsfor both Gr/Ep and MMC

structures. Specifically,for both material selectionswe show rms LOS errorsfor the

open-loop, for the semi-passive controllersalone and finally,for the complete control

including the centralized active control design. The increased stiffnessof the MMC

structuregives only modest performance improvement in the open-loop. However, itis

evident that increased stiffnesscombined with semi-passive vibration suppression and

centralizedactive control gives performance improvement well beyond what might be

expected of each design measure individually.The finalperformance, being more than

the sum of itsparts, indicatesthe synergisticbenefitsof comMning passive and active

suppression techniques.
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"Passive" Methods "Semi-Passive" Methods "Active" Methods

Only structural
mechanical properties

utilized--inherently

energy dissipative

• Structural design to
alleviate vibration

• Choice of high-damping
materials; viscoelastic

damping treatments

• High stiffness to weight
materials--MMC

Electromechanical sen-

sors and actuators with

local feedback--each

sensor/actuator unit

energy dissipative

• Collocated sensor/

actuator pairs; positive-
real local controls

• Noncollocated hardware;

but "synthetic" positive

reality

Electromechanical/optical

implementation; net
power input to structure

• Noncollocated sensors

and actuators

• Multi-input, multi-

output control law

• Fixed-gain dynamic

compensation

° Time-varying/

adaptive control

Increasing control efficiency/design flexibility

v

Increasing implementation complexity and reliability concern (cost)
IL4 "

Weight tradeoffs of concern except for high stiffness-to-weight material selection

Fig. 17
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In summary, we have examined the distinctionbetween "passive" and "active"

approaches to vibration suppression for LSS and have found that the distinctionisnot

as sharp as might be thought at first.The relativesimplicity,reliability,and cost-

effectivenesstouted for passive measures are vitiatedby "hidden costs* bound up with

detailed engineering implementation issuesand inherent performance limitations.At

the same time, reliabilityand robustness issuesoften citedagainst activecontrol as risk

factorsare greatly mitigated by recent advances in activevibration control hardware.

Accordingly, we see not a sharp "passiveversus active"dichotomy, but as illustratedin

thischart,a continuum ofvibration suppression measures offeringmutually supporting

capabilities.The challenge for LSS vibration suppression isthe proper orch_tration of

thisspectrum of methods, (via system-level design) to reap the synergisticbenefitsof

combined advanced materials, passive damping and activecontrol.
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IFwlNITEELEMENT MOiJELING OF TRUSS .STRUCTURES] ,r,
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The Pennsylvania State University

4th WORKSHOP ON COMPUTATIONAL CONTROL

OF FLEXIBLE AEROSPACE SYSTEMS

Williamsburg, Virginia

July 13, 1990

FINITE ELEMENT MODELING OF TRUSS STRUCTURES

WITH FREQUENCY-DEPENDENT MATERIAL DAMPING

ABSTRACT

In advanced engineering systems such as large space structures (LSS) or robots, the combination of severe
disturbances, stringent requirements, and structural design constraints can result in structures which exhibit
significant flexibility. The design of stable, fast-responding structural control systems benefits from accurate
knowledge of structural dynamic behavior, including the magnitudes and mechanisms of inherent damping.

Material damping is likely to be an important, perhaps dominant, contributor to damping in "monolithic"
structures and to on-orbit damping in precision spacecraft. The damping of most engineering materials exhibits

a strong dependence on frequency.

A physically-motivated modelling technique for structural dynamic analysis that accomodates frequency-
dependent material damping has been developed. Key features of the technique are the introduction of
augmenting thermodynamic fields (ATF) to interact with the usual mechanical displacement field, and the
treatment of the resulting coupled governing equations using finite element analysis methods. The ATF method
is fully compatible with current structural finite element analysis techniques.

The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure
representative of those contemplated for use in future space systems. Analytical results from modal analyses of
an ATF-damped and an undamped truss structure agree well in terms of modal frequencies, but the ATF analysis
also yields modal damping and complex mode shapes. The undamped frequencies are lower by as much as five
percent in higher modes because the relaxed (static) modulus value is used, as is usual practice. In addition to
preserving the characteristic frequency dependence of material damping, the ATF method reflects the frequency
dependence of material modulus as well.

With the continued development of better analytical tools such as this ATF method, damping will be
modelled more accurately in the design of engineering systems and may ultimately become more accessible to

design specification.
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MATERIAL DAMPING WILL BE IMPORTANT IN PRECISION SPACE SYSTEMS

In advanced engineering systems such as large space structures (LSS) or robots, the combination of severe
disturbances, stringent requirements, and structural design constraints can result in structures which exhibit
significant flexibility. Passive and active damping of these structures is important for several reasons. In terms
of performance, higher damping can reduce steady-state vibration levels and can reduce the time needed for
transient vibrations to settle. Inherent passive damping can reduce the magnitude of control needed, and can
reduce control system complexity. Passive damping can also strongly couple vibration modes which are closely-
spaced in frequency and computed assuming no damping. Most importantly, however, the design of stable, fast-
responding control systems benefits from accurate knowledge of structural dynamic behavior, which depends on
the magnitudes and mechanisms of inherent damping.

Many sources of inherent damping exist for a given aerospace vehicle. A potential classification scheme
for such sources is shown above. In general, damping is not well-quantified in the design process, which results
in significant design decisions being made on the basis of qualititative information. There is considerable room
for improvement in the analysis of damping in aerospace systems. For example, a damping design budget might
allocate contributions to total damping required from individual damping sources.

A case can be made for the importance of material damping in at least some precision space vehicles. In
common built-up structures which operate in the atmosphere, air damping and joint damping typically dominate
system damping. However, air damping is clearly eliminated in space, and the effects of joint damping will be
reduced because of requirements for precision ("tight" joints) and typically low vibration levels (friction
"lockup"). Material damping is thus likely to be an important, perhaps dominant, contributor to damping in
"monolithic" structures and to on-orbit damping in precision spacecraft.
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• ATFMETHOD ADDRESSES FREQUENCY-DEPENDENCE

Material damping is generally a complex function of frequency, temperature, type of deformation,
amplitude, and structural geometry.

The figure on the left is adapted from the frontispiece of the pioneering text, Elastici _tyand Anelasticity of
Metals and illustrates the typical frequency-dependence of material damping. Note that there are a number of
discrete damping peaks, and that a physical (possibly atomic) process is associated with each peak (e.g.,
"transverse thermal currents").

The figure on the right shows some data recently obtained for aluminum in a flexural vibration test. The
frequency dependence of damping is apparent. Similar data were obtained for graphite/aluminum composite
materials, although weaker frequency dependence was observed.

Current popular treatments of damping in structural dynamics are generally not physically-motivated and
do not preserve the fundamental frequency-dependence of material damping. This observation provided the
motivation for the subject work.
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Several methods are currently used to incorporate the effects of material damping into structural models.
These methods include viscous damping, frequency-dependent viscous damping, complex modulus, hysteretic
damping, structural damping, viscoelasticity, hereditary integrals, and modal damping. Modal damping is
probably the most widely used in structural control design applications. Each has some utility, but each suffers
from one flaw or another. For example, a one-dimensional structure made from a single material with viscous
damping would exhibit damping that increases monotonically with frequency--such behavior is not observed in
practice. Although some damping models, such as viscoelasticity, have the potential for better accuracy than
more widely-used methods, they are not commonly used in the engineering community--perhaps because of the
lack of physical motivation, difficulty of use, or lack of data.

Other researchers have noted the inadeqacy of current damping modeling techniques and have addressed
the development of improved methods.

Golla, Hughes, and McTavish (GHM) of the University of Toronto have developed a time-domain finite
element formulation of viscoelastic material damping. Their work was guided by the observation that
experimental results, often recorded in the frequency domain, are of little direct use in time-domain models.
Their results resemble those reported here in an important way--in the introduction of additional "dissipation
coordinates." It might not be surprising that additional degrees of freedom would be required to model material
behavior with increased accuracy. However, the GHM approach is fundamentally a mathematical one,
developing time-domain realizations from frequency-domain models--no attempt is made to provide a physical
interpretation of the dissipation coordinates as thermodynamic field variables with a direct relationship to
microstructural features of real materials. The GHM technique has been successfully used to fit a portion of an
experimentally-determined curve of damping versus frequency, and standard analysis tools can be used to solve
the resulting equations.

Bagley and Torvik of the Air Force Institute of Technology have also developed a relevant model of
material damping. The core of their concept is the use of fractional time derivatives in material constitutive
equations. Their development was motivated by the observation that the frequency dependence observed in real
materials is often weaker than the dependence predicted by first-order viscoelastic models. With four and five
parameter models, they have been able to accurately represent the elastic and dissipative behavior of over 100
materials over frequency ranges as broad as 8 decades. The application of the general fractional derivative
approach to time-domain analysis is an area of continuing research.
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EASI£ FOR ATF

• "INTEqNAL ST.t.TE VARIABLES' OF MATERIALS SCIENCE MOTIVATE

INTRUOUCTION OF 'AUGMENTING THERMODYNAMIC FIELDS" (ATF)

CONSTITUTIVE EQUATION

ATF DYNAMICS

• FREQUENCY-DEPENDENT DAMPING AND MODULUS

f

(SMALL DAMPING)

E

Structural dynamicists are the unintended beneficiaries of a sizable literature on material damping. For
many years, crystallographers and metallurgists have used "internal friction" as a probe into the underlying
structure of materials. By measuring damping as a function of frequency, temperature, load type, and
amplitude, they can detern'tine the mobility and activation energies of various microstructural features of
materials. These researchers have identified a multitude of internal variables and relaxation mechanisms which

range in geometrical scale from crystal lattice dimensions on up to structural dimensions and, in temporal scale,
over a similarly broad range.

The "internal variables" of materials science suggest the introduction of augmenting thermodynamic fields
(ATF') to interact with the usual displacement field of continuum structural dynamics. In the one-dimensional
case where stress is coupled to a single augmenting thermodynamic field (ATF), and where the ATF dynamics
are governed by a first-order relaxation equation, the effective material modulus increases with frequency to an
asymptotic value of Eu, and a damping peak is observed. This is in accord with the observed behavior of many
engineering materials.

The ATF modeling approach essentially implements a continuum version of the "standard anelastic solid."
Weaker frequency dependence, such as that observed in high damping viscoelastic polymers, can be addressed
through the introduction of multiple ATFs.

799



STRAW MAN PROE, LEM

• MODAL ANALYSIS OF ATF-DAMPED TRUSS

• ELEMENTS WITH DIFFERENT ELASTIC AND DISSIPATIVE PROP'S

Longerons Diagonals Battens

T

2m

9 30 meters =

• COMPARE TO RESULTS OF CONVENTIONAL UNDAMPED ANALYSIS

The ATF modeling approach is illustrated through application to the dynamic analysis of a large planar
space truss, shown above. Such a structure resembles those proposed for many future space missions. It is an
efficient beam-type structure built from 3 basic structural elements: longerons, which are parallel to the beam
axis; diagonals, which bisect each rectangular bay; and battens, which are oriented transverse to the beam axis.
The total length of the structure is 30 meters and the truss depth is 2 meters.

Members of the truss of interest are connected through frictionless pins so that no bending moments are
transmitted through the joints, and so that no damping is introduced by the joints. Joint mass and other non-
structural masses are ignored. Finally, each kind of structural element is assumed to be made of a di,ferent
material having different elastic, inertial, and dissipative properties. For this problem, it is assumed that a single
augmenting thermodynamic field is sufficient to characterize the dissipative properties of each material in the
frequency range of interest.

Conventional damping analysis, if damping were considered at all, would likely employ the modal strain
energy (MSE) method to estimate "modal damping." This is an iterative process, requiring analysis of the
undamped structure to determine the frequencies and mode shapes of the undamped modes. The mode shapes are
used to determine the distribution of strain energy over the structure, while the frequencies are used to
determine frequency-dependent elastic and dissipative properties. Modal damping is then estimated for each
mode and, roughly speaking, is numerically equal to the sum of material damping ratios weighted by the fraction
of the strain energy stored in each material. The MSE method can lead to serious errors when modes are closely
spaced in frequency and when the damped mode shapes are much different than the undamped mode shapes.

The vibration modes and frequencies of this ATF-damped truss are sought for comparison to those of the
undamped case. A one-dimensional ATF-damped finite element appropriate for modeling the dynamic behavior
of a single truss strut is developed first, then used in the analysis of the overall structure.
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FINiTE-L, KGTH ROD
EXECJTING LONGITUD;NAL VIBRATION

COUPLED FIELDS: MECHANICAL DISPLACEMENT, u(x)

AUGMENTING THERMODYNAMIC,_ (x)

ENDS MECHANICALLY UNCONSTRAINED

Consider the case of one-dimensional motion, corresponding to longitudinal vibration of a thin rod of

length L. The mechanical displacement along the rod is denoted by u(x) (strain e(x)=u'(x)), and the rod has

uniform mass density p and unrelaxed or dynamic modulus of elasticity E. A single augmenting thermodynamic

field, _(x), is introduced.

The material property 5 describes the strength of the coupling of the two dependent fields, u and _. In the

absence of coupling of the two fields, increments of stress and strain are proportional, with E the relating factor.

Analogously, tx is the material property that relates changes in A, the thermodynamic conjugate of _, to those in

_. B is the inverse of the time constant for uncoupled relaxation of the augmenting field.
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'1GOVERNING EG..ATIgNS

I PDEsl

( PRIMARY FORM

At ends (x =0 and x = L)

I ALTERNATE FORM 1

u(x)=Uo or c_(x)=Oo

ATF are internal variables (no BC)

The equation of evolution for the mechanical displacement field, u(x), is developed from consideration of
momentum balance (zero body forces are assumed). The equation of evolution for the augmenting
thermodynamic field, _, is found through the use of a basic assumption of irreversibIe thermodynamics, namely
that the rate of change of _ is proportional to its deviation from an equilibrium value. This results in a first-
order differential equation, a "relaxation" equation. The result is a set of two coupled partial differential
equations in u and _.

The augmenting thermodynamic field is essentially an internal field, i.e., there are no explicit boundary
conditions that it alone must satisfy. However, the mechanical displacement field must satisfy either displacement
("geometric") or stress ("natural") boundary conditions at each end of the rod, as is the case in undamped
structural dynamics. Note that the stress boundary condition involves the augmenting field, _.

An alternative formulation of this one-dimensional case may be considered. For example, the preceding
primary equations can be expressed in terms of y, the gradient of the _-field. Such a formulation contains only
even spatial derivatives, and leads to some benefits in numerical solution, such as symmetric element submatrices
and better convergence in terms of damping versus frequency.



FINITE ELEMENT TREATMENT

ql % ul/'/}

SINGLE ELEMENT

I METHOD:OF WEIGHTED R:ESlDUALS :1

pi,)- Eu"= - 6',(_+By= (_-)u_ "

L

J"[pDT00TD{q + EDT0'0'TD{u} + 5DTB-QTTIY}t dx=0

o

ALTERNATE FORMS POSSIBLE

MATRIX NOTATION M{q + K{u} + F{_ = 0

The method of weighted residuals (MWR) is used to develop element matrices. The u-y formulation of the
equations has been found to be superior to the u-_ formulation, and is shown above. Integration by parts is

• employed, changing the continuity required of the approximating and weighting functions.

The same functions used to approximate the behavior of the dependent fields in the spatial region bounded
by the element are used as weighting functions--when there is only one dependent field, this is known as
Galerkin's method.

The resulting sets of equations may be written compactly in matrix form, as shown.

In this treatment, both dependent fields are approximated with linear interpolation functions. The
corresponding element and the nodal values for the two dependent fields, u and y are shown in the figure.
Anticipating solution of a first-order matrix eigenvalue problem, and to facilitate global matrix assembly, the
elemental degrees of freedom are ordered as follows.

• T

X= [q',q,P, q2q2 P2 ]



MATRIX EOUATIONS

[M]{ iJ}+[K]{u}={O}

M ° u o}_,o1{°}:{oFIRST-ORDER FORM

i!.o1{,.,}io,El{o}{o10 u + -I0 u = 0

OC ? 0 B 7 0

The structure of the undamped matrix equations of motion are shown in both second-order and first-order
form. The structure of the ATF-damped matrix equations is shown for comparision. The ATF equations are
more complex, describing the dynamics of the augmenting field as well as the coupling of the two fields.

The "augmented mass matrix" is generally symmetric and positive definite, while the "augmented stiffness
matrix" is neither. Certain submatrices, K and H in particular, are generally symmetric and positive
semidefinite, while the properties of the coupling submatrices, B anf F, depend on the specifics of the numerical
approximation scheme employed.
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For future reference and comparison, details of the elemental mass and stiffness matrices for the

undamped and ATF-damped cases are shown. The matrices for the undamped ease are shown in second-order

form, while the ATF-damped matrices are shown in first-order form. Note that the elements of the undamped

matrices also appear in the damped element matrices.

Note that the material modulus, E, is different in the two cases shown. In the undamped case, it is the

static or "relaxed" modulus normally used in structural analysis. In the damped case, it is the "unrelaxed" or

high-frequency asymptotic modulus. The unrelaxed modulus is always greater than the relaxed value.



F,qEE V'3RATION PRr'3LEI  

• FREE LO'"31TUPINAL VIBRATION OF ROD

0 KF u

-I00 u

0 B '--I Y

=X Mo ]{O I

0 0

Ax = XBx

• GENERAL, UNSYMMETRIC EIGENVALUE PROBLEM

• COMPLEX MODES

In order to evaluate the performance of this formulation of an ATF-damped rod element, a specific

problem was addressed, namely the determination of the natural modes of vibration of a free-free rod.

Accordingly, no geometric boundary conditions were enforced.

The elastic properties used correspond roughly to those of aluminum in SI units. The ATF and coupling

properties were chosen to yield a peak damping ratio of 0.01 at the frequency of the 5 th mode. Note that

numerical values for ct and _5 cannot be uniquely specified in this approach.

The matrix equations of motion were formulated and a general unsymmetric eigenvalue problem solved to

yield complex eigenvalues, X, and mode shapes, x. Global system matrices are assembled from element matrices

and geometric boundary conditions are enforced in the usual manner of structural finite element analysis. The

damping ratio, _, for each mode was determined as the ratio of the negative of the real part of the eigenvalue to
the total magnitude and plotted against the magnitude.

Note that the spectrum of eigenvalues contains "vibration modes," "relaxation modes," and "rigid-body
modes." In the complex plane, the damped vibration modes lay near the imaginary axis, slightly in the LHP with

negative real parts; the relaxation modes lie on the negative real axis. These relaxation modes are characteristic
of the response of the y field.
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Typical numerical results for modal damping versus frequency obtained using this approach are shown

above. The solid line shows the results expected on the basis of approximate Fourier analysis of the governing

equations, while the symbols show the results of ATF-damped modal analysis using 10 elements. The square

symbols indicate results obtained using the primary form of the governing equations, while the triangular

symbols show the results of using the preferred, alternate form of the equations.

Preservation of the characteristic variation of material damping with frequency is apparent in the results.

As previously noted, conventional damping modeling techniques are incapable of producing such results. The

frequencies predicted using this method appear to converge from above, as is the case with undamped elements.

The finite element implemention based on the alternate form of the governing equations exhibits the proper

variation of damping with frequency at all frequencies, while the implementation based on the primary equations

"rolls off" too rapidly at high frequencies. Predicted frequencies and damping from both implementations

improve with increasing numbers of elements.



LARGE SPf-,CE TRUSS MODAL ANALYSIS

Longeron_ Diagonals Battens

--T-

2 ,]
.__L__

= 30 meters =

CS area (m2)

Modulus (unrelaxed) (Pa)

Density (kg/m3)

Peak damping ratio

Frequency of peak (r/s)

LONGERON DIAGONAL BATTEN

31 e-5 19 e-5 6.3 e-5

36.72 el0 18.72 el0 8.4 el0

2200 1600 2700

0.005 0.01 0.05

200 2000 8000

The utility of this ATF modeling method is demonstrated in a modal analysis of the previously-described
strawman 10-bay, 30-meter planar truss structure. The damped rod elements just described are modified to

. include the kinetic energy of transverse motion, and to address requirements for interelement continuity of the
augmenting fields.

The table above summarizes the key properties of the truss member materials. In particular, the peak
damping ratios for each material are different, and are found at different frequencies.
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The figure above shows the results of the truss modal analysis in terms of damping versus frequency.

Where conventional analysis using the MSE method would have required considerable effort to generate multiple

modal damping values, the ATF method delivers them in a single, standard modal analysis. In addition, it

delivers more accurate complex modes.

Note that the damping in the lowest bending modes increases quite rapidly with frequency. This is due to

two unrelated factors: First, in this kind of truss structure, the fraction of strain energy stored in the diagonal

members increases with mode number--this is analagous to the effects of transverse shear in an isotropic beam.

Second, in this case, the damping of the material from which the diagonal members are made is increasing at
frequencies below 2000 rad/sec. Also note that the 6th flexible mode is an extensional mode, and has

-onsiderably lower damping than neighboring bending modes.



RE sULTS -- Tc]USS MOO/L ANALYSIS

MODE NO.

4

5

6

7

8

9

10

UNDAMPED

FREQUENCY

(R/S)

228.G

472.2

701.6

887.2

1024.

1102.

1109.

DAMPED

FREQUENC, Y

(R/S)

231.4

480.8

719.3

917.5

1069.

1127.

1168.

DAMPING

RATIO

(10e-3)

0,47

0.46

0.77

1.32

2.04

0.70

2.77

For comparison, an undamped analysis was performed. The table summarizes the frequency and damping

results. The ATF and undamped results agree well in terms of frequency, differing by about one percent for the

first mode. The undamped frequencies are lower by as much as five percent in the tenth mode because the

relaxed (static) modulus value was used for that analysis, as is usual practice.



S!JMMARY

ATF METHOD J AUGMENTING THERMODYNAMIC FIELDS

• PHYSICALLY-MOTIVATED, PRESERVES CHARACTERISTIC
VARIA-ION OF M _',TERIAL 3_MPING WITH FREQUE.,ICY

• FULLY COMPATIBLE WITH CURRENT FE TECHNIQUES

• MIX DAMPED, UP:DAMPED ELEMENTS

• MULTIPLE FIELDS TO FIT DATA

I FUTURE WORK 1

• DAMPING BUDGET

• CONTROLS

• MSE COMPARISON

• OTHER ELEMENTS

• OPTIMIZATION

• IDENTIFICATION

• MATH ASPECTS

A physically-motivated material damping model fully compatible with current computational structural

analysis methods has been developed. Termed the Augmenting Thermodynamic Fields (ATF) method, its key
feature is the introduction of additional fields to interact with the usual displacement field of continuum

structural dynamics. ATF-damped rod elements were developed and provided the basis for a modal analysis of a

large space truss structure.

This method preserves the characteristic frequency-dependence of material damping. The results for a
single augmenting field per material are readily extended to multiple fields. In addition, the method readily

accommodates a combination of damped and undamped elements. Also note that an increase in the accuracyof a

structural dynamic model comes with a cost of dimensionality--additional coordinates are required to represent
additional aspects of material behavior, viz, damping.

With the continued development of analytical tools such as this ATF method, damping will be better

treated in the design of engineering systems and may ultimately become more accessible to design specification.

BIBLIOGRAPHY

Ashley, H., "On Passive Damping Mechanisms in Large Space Structures," AIAA Paper 82-0639, 1982.

Bert, C.W., "Material Damping: An Introductory Review of Mathematical Models, Measures, and Experimental

Techniques," Journal of Sound and Vibration, Vol. 29, No. 2, 1973, pp. 129-153.

Golla, D.F., and Hughes, P.C., "Dynamics of Viscoelastic Structures - A Time-Domain, Finite Element
Formulation," Journal of Applied Mechanics, Vol. 52, December, 1985, pp. 897-906.

Lesieutre, G.A., and Mingori, D.L., "Finite Element Modeling of Frequency-Dependent Material Damping using
Augmenting Thermodynamic Fields," to appear in Journal of Guidance, Control and Dynamics, 1990.

Nowick, A.S., and Berry, B.S., Anelastic Relaxation in Crystalline Solids, Academic Press, 1972.

Torvik, P.J., and Bagle_,, D.L., "Fractional Derivatives in the Description of Damping Materials and
Phenomena," at the l lm ASME Biennial Conference on Mechanical Vibration and Noise, Boston, Sept., 1987.

Zener, C.M., Elasticity and Anelasticity of Metals, University of Chicago Press, 1948. ¢"3, J_D/





An Experimental Study of
Nonlinear Dynamic System Identification

Greselda I. Stry 1 and D. Joseph Mook 2

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, New York 14260

716-636-3058

Abstract

A technique based on the Minimum Model Error optimal estimation approach is

employed for robust identification of a nonlinear dynamic system. A simple harmonic

oscillator with quadratic position feedback was simulated on an analog computer. With

the aid of analog measurements and an assumed linear model, the Minimum Model Error

Algorithm accurately identifies the quadratic nonlinearity. The tests demonstrate that the

method is robust with respect to prior ignorance of the nonlinear system model, and with

respect to measurement record length and regardless of initial conditions.

Introduction

The widespread existence of nonlinear behavior in many dynamic systems is well-

documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular,

virtually every problem associated with orbit estimation, flight trajectory estimation,

spacecraft dynamics, etc., is known to exhibit nonlinear behavior. Many excellent

methods for analyzing nonlinear system models have been developed. However, a key

practical link is often overlooked, namely: How does one obtain an accurate mathematical

model for the dynamics of a particular complicated nonlinear system? Identification, the

process of developing an accurate system model from system output measurements, may

provide the answer.

Nonlinear systems are commonly described using linear models. Many efficient al-

gorithms for the identification of linear systems exist and their accuracy and ease of

application encourages their use. However, linearlzation does not work in every appli-

cation, and even when it does provide a reasonable approximation, the approximation is

normally limited to a small region about the operating point of linearization. In the case

] Graduate Resarch Assistant; NASA Graduate Researcher
2 Assistant Professor
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of systems with severe nonlinear behavior using a linear model to describe such a system

leads to inconsistencies ranging from inaccurate numerical results to misrepresentation

of the system's qualitative behavior. Since nonlinearities are seldomly easily charac-

terized, nonlinear identification techniques may prove beneficial in developing accurate

mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed

in the past two decades (Natke, Juang and Gawronski [3]). Among the most widely

used nonlinear identification methods are describing the nonlinear system using a linear

model, or representing the nonlinear system in a series expansion and obtaining the

respective coefficients either by using a regression estimation technique, by minimizing

a cost functional, by using correlation techniques, or by some other approach. Some

algorithms use the direct equation approach, while others obtain a graphical representation

of the nonlinear term(s) and then find an analytical model for the nonlinearity. The

interested reader can find more information on these nonlinear identification techniques

in Stry and Mook [4].

The diversity of nonlinear identification techniques prompts the choice of an algorithm

based on the needs of the particular application. Typical criteria to look for are: iterations

required, robustness in the presence of measurement noise, number of measurements

needed, robustness with respect to knowledge of the irtital conditions, and robustness

with respect to initial assumptions regarding the form of the nonlinearity. The results

presented in this paper confirm that the Minimum Model Error algorithm excels in the

above mentioned requirements.

In previous papers, the Minimum Model Error algorithm (MME) was explained in

detail (Mook and Jankins [5]), modified for nonlinear identification (Mook [6]), and

shown to accurately identify exotic nonlinearities in higher order systems (Stry and

Mook [4]). In this paper, it is shown how the MME algorithm successfully identifies

nonlinearities using experimental data. An analytical model representing a harmonic

oscillator with quadratic position feedback is studied. Output data is obtained from an

analog computer simulation of the nonlinear system and the quadratic term is accurately

identified. It is shown that the Minimum Model Error algorithm is capable of identifying

a nonlinear model which accurately reproduces the analog output regardless of knowledge

an initially assumed model, initial conditions or record length.

MME Algorithm

In this section, we briefly review the MME algorithm and how it is used to identify

nonlinear dynamic systems. A more detailed explanation may be found in Mook and

Junkins [5], Mook [6], and Stry and Mook [4].

The MME may be summarized as follows. Suppose there is a nonlinear system

whose exact analytical representation is unknown, but for which output measurements



areavailable.Using"normal"means(analysis,firfite elements,etc.),a systemmodel,
denotedassumedmodel,is constructed.The MME combinesthe assumedmodelwith
themeasurementsto determinethecorrectform of thenonlinearsystem.Theapproach
consistsof addingtheto-be-determinedcorrectionterm to the assumedmodel. A cost
functionalcomposedof the weightedsum of the correctionterm plus measurements
minusestimateresidualsisminimized.Theminimizationyieldsoptimalstatetrajectories
in additionto thecorrectionterm.A leastsquaresfit of thecorrectiontermis performed
to find the form of the dynamicmodelerror.

Considera forcednonlineardynamicsystemwhich maybemodeledin state-space
form by the equation

__(t)= A_.z(t) + _.F(t) + f(_(t),__(t)) (1)

where z.(t) is the n × 1 state vector consisting of the system states, A is the n × n state

matrix, __.F(t) is an n × 1 vector of known external excitation, and _.f(z__(/),z_"(t)) is an

n × 1 vector which includes all of the system nonlinearities. State-observable discrete

time domain measurements are available for this system in the form

= tk) + to < < (2)

where _y(tk) is an m × 1 measurement vector at time tk, g-k is the accurate model of

the measurement process, and v k represents measurement noise, v_k is assumed to be

a zero-mean, gaussian distributed process of known covariance Rk. The measurement

vector y(tk) may contain one or more of the system states. To implement MME, assume
that a model, which is generally not the true system model because of the difficulties

inherent in obtaining the tree system model, is constructed in state-vector form as

_(t) = Az_.(t) + F_.(t) (3)

Here, we show a linear model because in practice, linearization is the most common

approach to modeling nonlinear systems. MME uses the assumed linear model in (3)

and the noisy measurements in (2) to find the model error.

The model error, which might include linear terms as well as unknown nonlinear

term(s), is represented by the addition of a correction term to the assumed linear model

as

_(t) = A_(t) + __.F(t) + d(t) (4)

where d(t) is the n × 1 correction term (dynamic model error) to be estimated later.

A cost functional, J, that consists of the weighted integral square of the correction

term plus the weighted sum square of the measurement-minus-estimated measurement

residuals, is formed:

M _ gk (_(tk)'tk)]TRk-1 [_Y(t_) _ }= -J

k=l



__(t)
__(t)

_d(t)

Hk

__(to)

ftf '!+ _d(T)rW_d(r)d_- (S)

where M is the number of measurement times, __(tk) is the estimated state vector and

W is a weight matrix to be determined.

J is minimized with respect to the correction term, __d(t). The necessary conditions

for the minimization lead to the following two point boundary value problem (TPBVP),

(see Geefing [7]),

= Az_.(t) + _.F(t) + d(t) (5a)

= -ATe(t) (5b)

= -2wa_(t) (5_)

= _(t-_) + 2HkR'_li__(tk) - _gk(__(tk), t_)] (5d)

__(to)=0

_g

=_--o or (5e)

•_(t:)= __: o_ __(t:)= 0 (5f)

where _(t) is a vector of costates (Lagrange multipliers). Estimates of the states and

of the dynamic model error are produced by the solution of this two-point boundary

value problem. The estimates depend on the particular value of W. The solution is

repeated until a value of W is obtained which produces state estimates which satisfy the

"covariance constraint", explained next.

According to the covariance constraint, the measurement-minus-estimated measure-

ment residual covariance matrix must match the measurement-minus-truth error covari-

ante matrix. This may be written as

_(tk) --g_k(__(t_:),tk)]T[__(tk) -- g_(_(tk), tk)] _ Rk (6)

During the minimization, the weight W is varied until the state estimates satisfy the

covariance constraint, i.e., the left hand side of Eq. (6) is approximately equal to

the right hand side. The correction term or model error is, therefore, the minimum

adjustment to the model required for the estimated states to predict the measurements

with approximately the same covariance as the measurement error.

After W has been determined such that the state estimates satisfy the covariance

constraint, the final step in the identification procedure is to use a least squares algorithm

to fit the model error d(t) to the unknown dynamic term(s). The error is expanded into

some combination of linear and nonlinear terms, for example,

d(t) = _(t) + _2(t) + ._3(t) +... (_)

where a, _, 7, ..- are unknown coefficients to be determined by least squares. The least

squares approach is explained in detail in Mook[6]



TheTPBVPrepresentedby Eqs. (5a) to (5f) containsjumpsin the costatesand,
consequently,in thecorrectionterm.As evidentfrom Eq. (5d), thesizeof thejump is
directlyproportionalto themeasurementresidualat eachmeasurementtime. Thenoisier
themeasurements,thelargerthejumpsize.A multipleshootingalgorithm,developedby
MookandLew [8],convertsthisjump-discontinuousTPBVPintoasetof linearalgebraic
equationswhichmaybesolvedusinganylinearequationsolver.Multipleshootingalso
facilitatestheanalysisof a largenumberof measurements,by processingthesolutionat
the endof everysetof jumps.

Themultipleshootingalgorithmpresentedby MookandLew [8]wasusedto obtain
the MME solutionsusedin the testspresentedin this paper. It wasassumedin the
examplesthatMME obtainedthedynamicerrortermwithoutknowledgeof theboundary
conditionson z_., so some distortion of the correction term at the initial and final times

was expected due to the constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge

is available at to or If, we constrain )_(t0) = 0 and ._(tf) = 0. Therefore, in all test

cases, the initial and final ten percent of the correction term data was ignored in the

least squares fit.

Application Examples

Two nonlinear equations of motion were studied, which represent the motion of

an undamped harmonic oscillator with different amounts of quadratic position feedback

(identical equations may arise in other physical systems as well). The equations in state

space form are

(_) = (71 20)(_)+ (-0.5026x 2)
(s)

°= _ -1.137x 2 ,
/

(9)

where z is position, and the dot indicates differentiation with respect to time. No forcing

was applied.

In the following discussion, Eq. (8) is denoted Model A and Eq. (9) is denoted

Model B. Different initial conditions were used for each system, for a total of four

different tests. These are shown in Table 1.



Table1. List of conditions used for each test

Tesi #

A1

x(O)

0.000

v(0)
t

0.261

A2 0.000 0.523 -0.526

B 1 0.000 0.087 -1.137

B2 0.000 0.261 -1.137

To utilize MME, the linear part of Eqs. (8) and (9) was chosen as the assumed model,

rendering the model error equivalent to the nonlinear term, c • z 2. Measurements for the

MME nonlinear identification were generated by simulating test A1 to B2 on an analog

computer. Position measurements for all four tests were recorded and nonlinear models

identified. The results were compared with the analytical position and analytical error

term data, c • z 2, which were generated for Models A and B using a digital computer.

MME proved capable of accurately identifying the nonlinear quadratic term in spite of

ignorance of the assumed model, true initial conditions and record length.

Analog computer results

One hundred position measurements were generated on an EAI-2000 analog com-

puter for all four test cases. All measurements with a sampling rate of 4 Hertz were

used in the analysis. Position, velocity, and position squared were chosen as the basis

functions for the least squares fit. It was uncertain if the analog computer would add

some damping to the system or if it was able to correctly reproduce the stiffness term.

By including position and velocity in the least squares fit, stiffness and damping could

be identified if they existed. The identification procedure yielded the numerical values

shown in Table 2.

Table 2. Least Square estimates of the nonlinear terms using measurements

generated by the analog computer.

"res 
#

A1

A2

B1

B2

"'-'I'rue MME

X X

0.000 0.003

True MME Tree MME

X*X X*X

-0.526 -0.528

V V

0.000 0.000

0.000 .... 0.0000.000 0.003 -0.526 -0.526

0.000 0.008 0.000 0.005 -1.137 -1.141

0.000 0.003 0.000 0.0043 -1,.137 -1.135

81,9



The numerical results for the least squares fit of the error term matched the analytically

predicted coefficients with great accuracy. Figures (la-4a) show the analytical position,

analog measurements and position predicted by the MME analysis for all analog tests.

Figures (lb-4b) show the analytical correction term and the error term estimated by M/vIE.

In all cases the MME identification produced good state estimates.

The MME algorithm could accurately identify a nonlinear model regardless of the

initial conditions. As seen from Figures (la) and (4a) (test A1 and B2), the measured

position and the analytical position differ significantly. The analytical position was

digitally recalculated for test A1 and B2 using the initial analog measurements as initial

conditions instead of the initial conditions presented in Table 1. The results are shown

in Figures (5a) and (6a). In this set of plots the analytical position and the measurements

are almost identical. Also, as shown in Figures (5b) and (6b), the analytic correction

term is much more similar to the estimated correction term, confirming that M/VIE does

not need any knowledge of the initial or final state vector value)

MME could identify the nonlinear term accurately idenpendent of the record length.

In test B1 only 40 measurements were employed in the analysis because subsequent

measurements were saturated. The nonlinear term is identified very well.

Note that the data appears to be noiseless, as shown in Figures (la-4a). Successfull

analysis of noisy data using the MME algorithm can be found in Mook[6] and Stry and

Mook[4].
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Figure 1. Test A1 a) Analytical, measured (+), and MME estimated
(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.

3 It was shown in Eqs. (5e) and (Sf), that by setting the initial and final costate values to zero,

does not need any knowledge of the initial or end condidons.
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Figure 2. Test A2 a) Analytical, measured (+), and MME estimated
(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.
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(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.
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Figure 4. Test B2 a) Analytical, measured (+), and MME estimated
(^) position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.
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Figure 5. Test A1 a) Analytical, measured (+), and MME estimated (')

position, b) Analytical and MME estimated (') correction term. The

analytical position was calculated using as Initial conditions the initial

position and velocity measurements from the analog computer.
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Figure 6. Test B2 a) Analytical, measured (+), and MME estimated (')

position, b) Analytical and MME estimated (') correction term. The

analytical position was calculated using as initial conditions the initial

position and velocity measurements from the analog computer.
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Conclusion

In this paper, an MME based algorithm was used to accurately identify the quadratic

term of a nonlinear harmonic oscillator. Data was obtained from an analog computer

simulation of the nonlinear system. It is demonstrated that the method is robust with

respect to (lack of) a priori knowledge of the system dynamics. The identification was

accurate regardless of initial conditions or data record length.
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Abstract

The Mini-Mast is a 20 meter long, 3-dimensional, deployable/retractable

truss structure designed to imitate future trusses in space. This structure has un-

dergone various static and dynamic experiments at NASA Langley Research Center

to identi_, its modal properties so that control laws can be developed and tested.

This paper presents results from a robust (with respect to measurement noise sensi-

tivity), time domain, modal identification technique for identifying the modal prop-

erties of the Mini-Mast structure even in the face of noisy measurements. Three

testing/analysis procedures are considered: (1) sinusoidal excitation near the res-

onant frequencies of the Mini-Mast, (2) frequency response function averaging of

several modal tests, and (3) random input excitation with a free response period.

The results indicate that the robust technique of the paper is more accurate using

the actual experimental data than existing techniques.

Introduction

Recently, many experimental modal analysis (EMA) techniques have been

developed to improve current modal testing and analysis procedures. Modal analysis

techniques can usually be classified as either frequency or time domain procedures.

Some experimental difficulties arise in the frequency domain when the natural fre-

quencies of a system are closely distributed and/or the system contains a high

t Graduate Research Assistant
* Assistant Professor
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degree of damping. In the time domain, noisy output measurements are the most

troublesome for accurate modal identification. However, both time and frequency

domain methods encounter the most difficulty when particular modes are poorly

excited during a testing procedure. For this case, the amplitudes of the poorly

excited modes can be less than the RMS amplitude of the noise. In this paper, a

time-domain identification algorithm which is robust with respect to measurement

noise is used to identify some of the primary modes of the Mini-Mast Testbed at

NASA's Langley Research Center.

The modal identification algorithm used in this paper combines the ERA

identification/realization technique [1] with an optimal state estimation algorithm

called MME [2] to successfully identify modal properties of a structure even in the

face of noisy measurements. The ERA technique is based on the singular value

decomposition of a generalized Hankel matrix composed of discrete, time-domain

measurements. This time-domain technique is capable of accurately identifying

modal parameters for cases involving perfect or low-noise measurements. However,

difficulties may arise when high noise levels are present in the output measurements.

Thus, by combining the MME optimal state estimation algorithm with the ERA

identification algorithm, improved modal identification is achieved through lowering

the algorithm's sensitivity to noise. This ability has been demonstrated in numerous

simulations of different test systems [3-6].

The Minimum Model Error (MME) estimation algorithm is well suited for

the modal identification problem because it does not assume that the model error

is a white noise of known covariance as do other estimation filters (e.g., Kalman

filter). Instead, the model error is assumed to be an unknown quantity and is

estimated as part of the solution. The theoretical advantages of this assumption

are obvious for the present problem, since the model is unknown apriori. Since

the model is comprised of deterministic modes, the identification problem is one

of finding (eliminating) deterministic model error. In several previous studies, the

MME has been shown to produce state estimates of high accuracy for problems

involving both significant model error and significant measurement error [7].

Reducing the noise sensitivity of the Eigensystem Realization Algorithm has

been investigated in several computer simulations. The results were based on 3

and 4 mode simulated truths to which gaussian distributed white noise was added

to simulate noisy measurements. The ERA was found to be extremely accurate

at low noise levels. However, the accuracy is diminished if the measurement noise

is increased enough to effect the lower amplitude modes. This result was also

reported by Juang and Pappa [8]. However, compared with ERA by itself, the



combinedERA/MME algorithmproducedmoreaccurateresultswith respectto
identifying the number of modes, frequencies_ damping ratios, and mode shapes.

For example, in a 4 mode simulation example using noisy measurements with a

variance of 0.004, the ERA algorithm could only identify 3 of the 4 modes. The

combined ERA/MME algorithm, on the other hand, identified all 4 modes and

their respective mode shapes accurately [4]. The purpose of this paper is to extend

this theoretical/simulation background to the Mini-Mast CSI testbed, in order to

examine its identification ability on actual experimental data taken from a large

space structure.

Mini-Mast Testing Procedure

The Mini-Mast is a deployable/retrac:able test truss structure designed to

imitate future trusses to be used in space. A representative illustration supplied by

NASA is shown in Figure 1. The Mini-Mast is approximately 20 meters in length

(18 bays, 1.12 meters each), and has a three-longeron construction forming a trian-

gular cross-section with points inscribed by a circle of 1.4 meters in diameter :10].

The truss is cantilevered vertically to the ground by bolting the lowest three joints.

The joints are made of machined titanium (6A1-4V) to hinge the longeron and di-

agonal members securely. The tubing members are constructed of a graphite/epoxy

composite. The Mini-Mast has undergone various static and dynamic experiments.

The work of this paper is concentrated on the data taken from selected dynamic

tests.

Several types of response sensors are available on the Mini-Mast testbed. The

sensors chosen for the dynamic tests discussed here are Kaman KD-2300 displace-

ment probes. The probes are positioned to measure deflections orthogonal to the

face of the probe, and are mounted in parallel to the .x,lini-Mast's corner joints. All

of the bays except bay 1 are instrumented with three of these displacement sensors.

The operating principle of the sensors is based on the impedance variations caused

by eddy currents induced in a conductive me:al target. 'The displacement is sensed

from the coupling between a coil in the sensor and a particular target. Resolution

of the Kaman KD-2300-10CU at mid range is 0.0025 ram, with a static frequency

response up to 50 kHz

Three testing/analysis procedures are examined. First, frequency response

functions (FRF) were constructed from (1) a finite element model, and (2) experi-

mental data supplied by NASA's Spacecraft Dynamics Branch. A plot i]]ustrating

the type of data used in this analysis is shown in Figure 2.
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Figure 1 NASA's Mini-Mast Testbed

Referring to Figure 2, the frequency response function distinguished by the

crosses represents the finite element or analytical model. The remaining frequency

response function is derived from many sets of experimental data and generated

using SDRC's I-DEAS test analysis package. The first analysis procedure discussed

in this paper identifies the modal properties of the Mini-Mast structure by taking

inverse fourier transforms of the averaged FRF's and using them as input to the

identification algorithm. The identified natural frequencies establish a %ruth" for

comparing the other identification and testing procedures. The second testing pro-

cedure consisted of exciting the Mini-Mast test structure at frequencies close to its

predicted natural frequencies. The time domain responses are then transformed

into the frequency domain where a transfer function is formulated using auto and

cross correlations. Finally, the impulse response (to be analyzed) is found by trans-

forming back to the time domain. The third testing/analysis procedure consisted of

randomly exciting the Mini-Mast structure and then allowing it to free decay until

it comes to rest. Three response points were monitored at bay 10 at a sampling
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rate of 128 Hz The response portion used in the identification/estimation algorithm

included 100 data points from the free response of the structure. The combined

ERA/MME algorithm was compared against the ERA by itself. The results were

compared with respect to the following criteria: (1) the "truth" estab]_ished by the

frequency response function averaging, (2) damping ratio identification, and (3)

modal amplitude coherence factors. Improvements were noted with respect to all

three performance measures.

Frequency Response Function Analysis

The inverse fourier transforms of select frequency response functions were

obtained to get a representative impulse time history. This impulse response data

was then filtered so that a small frequency bandwidth could be investigated closely.

The first frequency bandwidth considered was 0 Hz to 10 Hz. In this region, the first

and second bending modes were observed as well as the first torsion mode. Included

in the frequency range of 10Hz to 20 Hz are a cluster of 108 "local" modes. These

modes are primarily due to the bending of the 54 diagonal truss members. The

final frequency range considered was 20 Hz to 30 Hz. In this range, the second

torsion mode was identified. The transformed time-domain data was used as input

to the combined ERA/MME algorithm. A summary of the steps associated with



this experimentalanalysisis providedbelow.

Modal Identification Algorithm

1. Obtain time-domain measurements from either the inverse transforms of

the frequency response functions or raw data from the Mini-Mast.

2. Apply the Eigensystem Realization Algorithm (ERA) to the measure-
ments obtained from the Mini-Mast test structure.

3. Input a realized model and the measurements into the Minimum Model

Error (MME) algorithm to produce optimal state estimates.

4. Sample the MME produced state estimates at discrete-time intervals to

create simulated measurements of higher accuracy than the original measurements.

5. Apply ERA to the simulated measurements in order to realize/identify

the new modal parameters.

6. Examine the identified modal parameters for some convergence criteria,

and repeat the procedure if necessary.

The first two bending and torsion modes of the Mini-Mast were isolated

as modes of particular interest in this paper. Utilizing a 10*h-order, Butterworth,

low-pass filter, the first two bending modes and the first torsion mode were clearly

identified using the FRF data. Because the exact frequencies of the Mini-Mast

are unknown, a small range is given for each identified frequency to serve as the

"truth". Using the fourier inverse of several averaged data sets, the first bending

mode was identified in the range of 0.87 - 0.88 Hz, the first torsion mode between

4.20 - 4.35 Hz, and the second bending mode was in the range of 6.25 - 6.35 Hz

The second torsion mode was identified with the help of a 10th-order, Butterworth,

band-stop filter. A band-stop filter was chosen in order to filter out the effects of

the 108 "local" modes in the frequency range of 10 to 20 Hz The identified natural

frequency of this mode was between 22.I - 22.7 Hz. An illustration of the frequency

and time domain equivalents used in this analysis are shown in Figures 3 and 4.

The identification results presented above are produced from the combined

ERA/MME algorithm. However, the ERA algorithm alone produced the same re-

sults. This result is expected because the frequency response functions were formed

from an average of several tests. Also, the averaged FRF's were filtered to iso-
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late the particular modes to be identified. The ranges of the Mini-Mast's first four



natural frequenciesof interestaregivenbelow.

wbl _- 0.87 - 0.88 Hz

wtl _ 4.20 - 4.35 Hz

wb2 _ 6.25- 6.35 Hz

wt2 _ 22.1 - 22.7 Hz

Sinusoidal Excitation Analysis

In this section, sinusoidal excitations are applied to the Mini-Mast test struc-

ture. The frequencies of the sinusoidal forces are set near the assumed natural fre-

quencies of the structure in an attempt to produce a more accurate identification.

A torque wheel located at the top of the mast was used to excite the structure,

while the Kaman displacement probes sensed the structure's motion. Once the

measurements from the input and output sensors are collected, a transfer function

of the Mini-Mast can be constructed. The transfer function equation is composed

of cross and auto correlations as:

where

G(j_)- Si=(w)

S_ = auto -- spectral density

Slz = cross - spectral density

G(jw) = frequency response or transfer function

This equation is based on the fast fourier transform of the input/output time

histories. Excluding the initial transient response of the structure due to the torque

wheel force, the frequency response is dominated by the frequency of excitation. Be-

cause of this, a mathematics] problem exists when computing the system:s transfer

function. More specifically, at frequencies other than the excitation frequency, the

fourier transform of the input produces numbers very close to zero. Therefore, a

problem of dividing by numbers that are very close to zero is unavoidable. To

overcome this difficulty, a small amount of gaussian distributed white noise with

variance of 4x10 -6 was added to the measurements. As expected, the addition of

white noise produced larger numbers in the frequency response of the structure

at frequencies other than the excitation frequency. After the transfer function is



formulated,the impulseresponsecanbegeneratedfor input to the identificational-
gorithm. Theimpulseresponseis calculatedby taking theinversefouriertransform
of the structure's transferfunction or FRF.

The modal identificationprocedurestartedby usingthe ERAby itself. Indi-
vidual input/output time historieswereusedto constructa100xl00Hankelmatrix,
from which a 12*h-ordermodel wasrealized. An average of 5 tests were used to

arrive at the identified frequencies for both the ERA and ERA/MME aJgorithms.

Most of the individual time histories only revealed information about a couple of

the modes at one time. Therefore, several different time histories were used to

formulate each identified natural frequency.

The ERA/MME identification algorithm takes advantage of the realized

model ERA produces in order to robustly identify a structure's modal properties.

More specifically, the realized model is used in the MME estimation scheme to

smooth the measurements. However, a concern of particular importance is how

much error is present in the realized model. The realized model was produced from

undoubted noisy measurements and truncated modes. The fact that mode error is

often composed of truncated modes makes the common estimation assumption of

using white noise for model error particularly poor. Minimum Model Error (MME)

estimation addresses this concern by estimating the model error as part of the solu-

tion. The model error is assumed as part of the solution, so no assumptions (such

as white noise) are required. Instead of the need to assume both measurement

and model error covariances, as in the case of the Kalman filter, ordy the measure-

ment error covariance is needed. In addition, a study performed in reference [11]

concluded the following important result. When predicting the measurement error

covariances (the only input covariance needed for the ERA/MME algorithm), it

is important to predict a low covariance in the beginning and slowly increase the

prediction until the best modal amplitude coherence factors are found. The reason

for this is that if the predicted measurement error covariance is lower than the un-

known actual measurement error covariance, then the estimate can never be worse

than the measurements are already. This result allows the user to have faith when

implementing the ERA/MME algorithm. However, if the predicted measurement

error covariance is higher than the unknown actual measurement error covariance,

then the simulated measurements from the estimates could become wo.-'se (more

noisy) than the original measurements. Because of this, it is important _o assume

measurement error covariances low when satisfying the covariance constraint of the

MME estimation technique

Following the six step procedure of the ERA/MME algorithm, only two



iterations were used for identifying the first four natural frequencies. Simple one-

and two-mode models were used in the estimation/identification scheme. The use

of these truncated models highlights the importance of not modeling the truncated

modes as white noise. A table illustrating all of the results is given below.

Table 1 Sinusoidal Analysis Result Comparison

"Truth"

frequency (Hz)

ERA

22.1 - 22.7

frequency (Hz)

0.8470

ERA/MME

22.150

1 bending 0.87- 0.88

1 torsion 4.20- 4.35 4.1175 4.4027

2 bending 6.25 - 6.35 7.0457 6.8943

2 torsion

frequency (Hz)

0.8668

22.091
III III

Comparing the ERA and combined ERA/MME algorithms with the FRF

analysis results indicates an overall improvement when using the combined proce-

dure. More specifically, identification accuracy of the first three frequencies identi-

fied by the ERA/MME algorithm were improved by up to 5% over ERA by itself.

The fourth frequency remained basically the same.

Using available NASA data, inverse and regular fourier transformations were

performed in order to get the impulse time histories needed for time domain modal

identification. Transformed and filtered data is not the type of data the ERA/MME

identification/estimation procedure was intended for use on. This is because the

noise that might have been present in the original test data would have been altered

significantly by these transformations etc. Therefore, the improved results (using

MME estimation) were not as significant as might be expected if raw impulse re-

sponse data or data generated from random input excitations were available. Using

raw data is the next step for testing the ERA/MME algorithm.

Random Excitation/Free Response Analysis

In this section, the Mini-Mast test structure was excited using a random



input with a bandwidth ranging from 0 to 40 Hz. The random excitation was

applied for 26 seconds and then the structure was allowed to free respond until

the response went to zero. Three response points were monitored at bay 10 of

vortices A, B, and C, and the shaker was located at b_' 9. The data sampling

rate was 128 Hz and the free response portion of the time history began at the 33

second mark. The response portion that was used in the identification/estimation

algorithm included 100 data points ranging in time from 34.0 to 34.8 seconds. The

combined ERA/MME identification algorithm was compared against ERA by itself

to examine the advantages of the combined technique. A predicted noise variance

of 1 x 10 -12 was used in the MME estimation scheme to satisfy the covariance

constraint.

To examine if the results of the combined ERA/MME algorithm are better

than the ERA identification results, the modal amplitude coherence (MAC) factors

were calculated for each mode. MAC's estimate the degree of modal excitation

or controllability for each mode. A MAC factor close to 1 means that the mode

was identified well during the testing procedure. As shown in Tables 2 through 5,

the MAC factors are indeed improved for all four primary modes. The damping

ratios also seem to be improved, assuming that the damping ratios of the Mini-

Mast are less than 5% (a reasonable assumption for such a structure). For example,

the damping ratio of the first torsional mode identified by ERA was 0.101 and the

ERA/MME identified it to be 0.0044. Note, the most improved damping ratios and

MAC factors were found to be associated with the torsional modes of the Mini-

Mast. This can be explained by the fact that the shaker was used in only one

direction. Therefore, the linear or bending modes were excited more rigorously

than the torsional modes. This result highlights a major advantage of using the

combined ERA/MME algorithm, namely to help identify modes not excited very

well in a testing procedure.

First, let's examine the identification results of the responses at bay 10, vor-

tex A as shown in Tables 2 and 3. Improvements were made with respect to the

MAC factors for all four primary modes. However, a more distinct improvement

was observed when identifying the 2 torsional modes. Specifically, the first torsional

mode's MAC factor as identified by ERA was 0.8974, while the ERA/MME identi-

fied MAC factor was increased to 0.9842. The MAC factor of the second torsional

mode was identified by ERA as 0.8633, and the ERA/MME algorithm improved it

to 0.9457. The improved MAC's are also supported by the identified frequencies

and damping ratios. The "true" torsional frequencies were identified by the aver-

aged FRF's in the range of 4.20 - 4.35 Hz and 22.1 - 22.7 Hz. The torsional modes

identified by ERA were 4.77 Hz and 22.61 Hz respectively, and those identified by



the combinedalgorithm were4.37Hz and 22.4Hz respectively,a supportivecon-
clusion. The dampingratio of the first torsionalmodeidentifiedby ERA wasover
10% and the ERA/MME technique reduced it to 0.4%. Hence, when examining

the MAC factors, natural frequencies, and damping ratios, the combined algorithm

produced improvements with respect to each one.

The identification results from the responses at bay 10, vortex B are given

in Tables 4 and 5. The MAC factors for each identified mode are again improved,

but not as significant as in the prexfous case. The most improved mode was the

first torsional mode. The MAC factor identified by ERA was 0.9546, while the

ERA/MME algorithm improved it to 0.9719. The natural frequency associated

with this mode was identified by ERA to be 4.56 Hz and the ERA/MME procedure

identified it to be 4.39 Hz. Recall, the "true" natural frequency identified by the

averaged FRF's was in the range of 4.20 - 4.35 Hz. The damping ratio was also

reduced from 2.87% (using ERA) to 0.72% (using ERA/MME).
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Table 2 ERA Vortex A Results

"Truth"
,=

frequency (Hr.) frequency (Hs) damping ratio MACF (0-1)

I bending 0.87 - 0.88 0.8821 0.0377 0.9981

1 torsion 4.20 - 4.35 4.7713 0.1019 0.8974

2 bending 6.25 - 6.35 6.1479 0.0287 0.9901

0.0322 0.8633torsion
II

22.1 - 22.7 22.607

I I

ERA

Table 3 ERA/MME Vortex A Results

"Truth"

frequency (Hz)

1 bending 0.87 - 0.88
,,,

1 torsion 4.20- 4.35

2 bending

2 torsion

6.25 - 6.35

22.1 - 22.7

ERA/MME

frequency (Hz) damping ratio MACF (0-1)
l

0.8814 0.0240 0.9993

4.3719 0.0044 0.9842

6.2156 0.0299 0.9962

22.443 0.0164 0.9457
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Table 4 ERA Vortex B Results

,,|

"Truth" ERA(b)

frequency (Hz) frequency (Hz i damping ratio MACF (0-1)
t im imlllll

1 bending 0.87 - 0.88 0.8585 0.1206 0.9914
.ll

1 torsion 4.20 - 4.35 4.5576 0.0287 0.9546

2 bending 6.25 - 6.35 6.2174 0.0209 0.9925

22.1 - 22.7 22.3242 torsion 0.0283 0.9472

Table 5 ERA/MME Vortex B Results

"Truth" ERA/MME (b)

frequency (Hz) frequency (Hz) damping ratio MACF (0-1)

1 bending 0.87- 0.88 0.8590 0.1217 0.9930

i torsion 4.20 - 4.35 4.3978 0.0072 0.9719

2 bending 6.25 - 6.35 6.2004 0.0211 0.9955
m

2 torsion 22.1 - 22.7 0.027222.227 0.9488



Mini-Mast Identification Summary

Three different modal testing techniques for identifying some of the primary

modes of NASA's Mini-Mast testbed were examined. The frequency response func-

tion analysis served to create a "truth" which the sinusoidal excitation and impulse

response tests could be compared against. The authors believe the "truth" is accu-

rate because of the many tests that produced the averaged results. The sinusoidal

testing procedure included adding white noise to the original measurements so that

a transfer function could be approximated. The transfer functions were then trans-

formed into the time domain for input to the identification algorithms. Results

from the identification algorithms revealed improvements (up to 5%) in identify-

ing the first three natural frequencies of the Mini-.Mast. The third test included

shaking the Mini-Mast structure with a random input for 26 seconds and then

allowing the structure to come to rest. The results of this test gave the best im-

provements when compared with the other tests because the developed algorithms

were intended for use on raw impulse response or free response data. The other

tests employed FFT's and inverse FFT's to construct the impulse responses. The

identification of the torsional modes were especially improved using the combined

identification/estimation algorithm. The identification improvements were based

on; (1) the damped natural frequncies identified by ERA and ERA/MME being

closer to the FRF averaged identified frequencies, (2) The damping ratio identifi-

cation, specifically having damping ratios approximately 2% or less, and (3) the

modal amplitude coherence (MAC) factors being close to 1. The most improved

case was found in the identification of the first torsion mode. The ERA identified

MAC factor was 0.8984 and the combined ERA/MME improved the MAC factor

to 0.9842. Also, the damping of this mode was identified by ERA to be 0.1019 and

the ERA/MME identified it to be 0.0044, a noticeable improvement if the damping

is indeed close to 0.

The fact that the MAC factors of the torsional modes were lower than the

bending modes (for both the ERA and ERA/MME identification techniques) allows

us to conclude that the torsional modes were not excited very wen during the modal

test. This concern, along with improvements in the identification of the damping ra-

tios and natural frequencies, was addressed by the ERA/MME identification scheme

(specifically by the results of the free decay tests given in Tables 2 through 5). The

combined identification/estimation algorithm can therefore improve time domain

identification methods in the case of noisy output measurements or poorly excited

modes.
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"Truth" Low-Pass Filtered ERA @Vortex A

(f = 40 Hz)

frequency (Hz) frequency (Hz) damping ratio MACF (0-1 i

1 bending 0.87 - 0.88 0.8731 0.0622 0.9942

1 torsion 4.20 - 4.35 4.3591 0.0311 0.9266

bending 6.25 - 6.35 6.3199 0.0268 0.9855

22.1 - 22.72 torsion 22.343 0.0443 0.7489

"Truth" Low-Pass Filtered ERA @Vortex B

(f = 4o Hz)

frequency (Hz) frequency (Hz) damping ratio MACF (0-1)
I

1 bending 0.87 - 0.88 0.8396 0.0211 0.9489

1 torsion 4.20 - 4.35 4.5066 0.2984 0.8797

2 bending 6.25 - 6.35 6.2918 0.0573 0.9853

22.1 - 22.7torsion 21.240 0.0825 0.7792
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3

2. Bayesian Statistical Decision Theory Framework for System Identification

1. Unknown state of the world denoted by state vector {x(t)}.

. A set of models Mr, M2, ....M t with a priori probabilities P(Mi), which describe the

evolution of the state x(t)

° Unknown parameters 0i associated with Model M i and prior probibilities p(OilMi)

. Vector of observations {y (t)} related to the state of the system {x(t)}, according to

probability distributions, p({y(t)}[ {x(t}, Mi)

. Loss function l: (M, l_I) which expresses the loss to the decision maker of choosing

model M when M is the true model.
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BayesianSolutioa:

ObtainposteriordistributionsP(Mil {y(t)}) andselectMi whichminimizesthe

expectedvalueof the lossfunction.

BayesRule:

P(Mi] {y(t)})= p({y(t )}l Mi) P(M i)
p({y(t )]:-)

p({y(t)}[Mi} ) = f® p({y(t)}[ Mi, 6i) p (Si)d# i

Likelihood Function:

L(Mi,_i) = p({y(t)} I Mi,8 i)



Maximum Likelihood Estimation

A

o 0ML maximizes p({y(t)} I 6) or its logarithm, LL(8) = log p({y(t)} 10)

Cramer-Rao Lower Bound:

(0)> [E oLL(0)COV
L

(SLL(0)) T]
8O

-I

O

0

The quantity in brackets is the Fisher Information Matrix which is very useful for

determining Identifiability and for Input Design.

when p({y(t)} 10) is Gaussian and 0 effects the conditional mean linearly, LL(0)

is quadratic in 0 and MLE is same as Weighted Least Squares.

0ML can be obtained by a sequence of Expectation A Maximization steps

(E--M Algorithm), each one of which is simpler than direct maximization

of the Likelihood Function.

E--step: Estimate state given parameters

E-step: Estimate parameters given state statistics.
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Combined Model Structure Determination

and Parameter Estimation for

Linear Systems

xt+ l=Ax t +Bu t +Ke t

Yt =Czt +Du t+e t

t = I, ... N

Stochastic Realization:

Given {Yt' ut}' identify system order n and matrices A, B, C, D, K and Coy (et).

Deterministic Realization:

Given impulse response parameters CA k-lB, identify A, ]3, C and n

SolutioIls:

o Deterministic (Ho--Kalman, B_lanced Realization, EKA)

o Stochastic (Akaike, Mekra, Aoki, QMARKOV, CVA, SRA)



Stochastic Realization Algorithm

DEFINE:

pt = column [ Yt_l ut, Yt_2, ut_i , .... ]
Past

ft=column[Yt, Yt+l, Yt+2 ,..-.]
Future

Correlation of Past & Future:

H = E (ft Pt'), Hankel Matrix

Singular Value Decomposition:

H= UEV'
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Identification Results

1. Membrane Simulation:

Data provided by Mark Norris, AFAL

O

O

Two lightly damped modes at 0.5Hz

5 velocity measurements contaminated with different levels

of multiplicative noise (1% to 1,000%).

SRA results are satisfactory for 300% noise!
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an_ --

Free avg 300% noise 150 pts J = 40 K = 20 L = i00 M = 1 N 6

ans =

Magnitude Phase Freq Damping Air Force Values

ans =

0.9808

0.9808
0.9920

0.9920

0.9899

0.9899

2.3658 3.7655 0

-2.3658 3.7655 0

0.3120 0.4968 0

-0.3120 0.4968 0

0.3206 0.5105 0

-0.3206 0.5105 0

0082 0 0

0082 0.5000 0.0100

0256 0.5000 0.0100

0256 0 0

0318 0 0

0318 0 0

ans =

Singular Values

ans

8

9

i0

ii

12

13.

14

15

16

1.0000

2.0000

3.0000

4.0000

5.0000

6 0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

7.4279

7.4144

2.8451

2.8444

2.2254

2.2090

1.6678

1.6350

1.6062

1.5315

1.5038

1.4938

1.4624

1.4458

1.4098

1.3894

cyy0 =

Columns 1 through 3

1.954367688700000e+00

-9.804237999999993e-03

1.222204885150001e-03

1.715561279090000e-01

-4.222937015000000e-01

Columns 4 through 5

1.715561279090000e-01

-1.606591878000000e-01

-9.804237999999993e-03

1.533202479950000e+00

-1.735176744450000e-03

-1.606591878000000e-01

2.431914045500003e-02

-4.222937015000000e-01

2.431914045500003e-02

1.222204885150001e-03

-1.735176744450000e-03

4.806341140050000e-04

1.414021973600000e-03

3.260060618799988e-04
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AFAL Grid Data

Data provided by Mark Norris, AF Astronautics Lab

Three sets of data at 100hz.

0

(i) PMASS Input (2000 pts)

(ii) X-TORQUE Input (24,000 pts)

(iii) Y-TORQUE Input (24,000 pts)

SRA identifies all ii modes in all cases and proivides good estimates of freq.,

dampings and mode shapes.

o ERA identifies all 11 modes only for combined X and Y Torque inputs

Damping estimates from SRA are satisfactory with 2000 pts of P-MASS Input.

SRA gives satisfactory identification results with single output.
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ans =

Grid avg 100Hz 24000pts J = 60 K = 40 L = 200 M = 1 N = 22

arts =

Magnitude Phase Freq Damping Air Force Values

ans =

0.9978

0.9978

0.9987

0.9987

0.9980

0.9980

0.9986

0.9986

0.9986

0.9986

0.9991

0.9991

0.9994

0.9994

0.9993

0.9993

0.9991

0.9991

0.9994

0.9994

_.9994

0.9994

1.1919 18.9699 0.0019 0.8100 0.0023

-i.1919 18.9699 0.0019 1.6610 0.0016

1.1350 18.0648 0.0011 4.3550 0.0013

-1.1350 18.0648 0.0011 5.2120 0.0017

0.9013 14.3439 0.0023 6.2910 0.0013

-0.9013 14.3439 0.0023 10.7550 0.0011

0.7822 12.4486 0.0018 12.1530 0.0016

-0.7822 12.4486 0.0018 12.3840 0.0016

0.7659 12.1900 0.0018 14.2540 0.0019

-0.7659 12.1900 0.0018 17.9550 0.0015

0.6813 10.8428 0.0013 18.7720 0.0010

-0.6813 10.8428 0.0013 0 0

0.1066 1.6967 0.0053 0 0

-0.1066 1.6967 0.0053 0 0

0.0512 0.8142 0.0132 0 0

-0.0512 0.8142 0.0132 0 0

0.3986 6.3441 0.0022 0 0

-0.3986 6.3441 0.0022 0 0

0.3292 5.2401 0.0019 0 0

-0.3292 5.2401 0.0019 0 0

0.2750 4.3775 0.0021 0 0

-0.2750 4.3775 0.0021 0 0

ans =

Singular Values

ans

5

6

7

8

9

i0

ll

12

13

14

15

16

1.0000

2.0000

3.0000

4.0000

.0000

.0000

.0000

.0000

.0000

.0000

0000

0000

0000

0000

0000

0000

7.4654

6.0473

4.9555

3.1561

2.9364

2.8078

2.4539

2.3086

1.0343

0.9902

0.7768

0.7767

0.7255

0.7051

0.1895

0.1849
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0 In 5 Out 100Hz 2000 Pts J = 40 K = 20 L = 100 M = 1 N = 26

arts =

Magnitude Phase Freq Damping
Air Force Values Computed Values

ans =

0 9853

0 9853

0 0163

0 9984

0 9984

0 9985

0 9985

0 9989

0 9989

0.9986

0.9986

0.9972

0.9972

0.9985

0.9985

0.9982

0.9982

0.9992

0 9992

0 9993

0 9993

0 9992

0 9992

0 9994

0 9990

0 9990

1.4770

-1.4770

3.1416

1.1810

-1.1810

1.1336

-1.1336

0.9029

-0.9029

0.7821

-0.7821

0.7675

-0.7675

0.6840

-0.6840

0.3981

-0.3981

0.3355

-0.3355

0.2752

-0.2752

0.1078

-0.1078

0

0.0508

-0.0508

23.5089

23.5089

82.3967

18.7954

18.7954

18 0411

18 0411

14 3699

14 3699

12 4471

12 4471

12 2151

12 2151

i0 8855

i0 8855

6 3367

6 3367

5 3394

5 3394

4 3797

4 3797

1.7151

1.7151

0.0099

0.8082

0.8082

0 0100

0 0100

0 7948

0 0013

0 0013

0 0014

0 0014

0 0013

0 0013

0 0017

0 0017

0 0036

0 0036

0 0022

0.0022

0.0044

0.0044

0.0023

0.0023

0.0024

0.0024

0.0078

0.0078

1.0000

0.0190

0.0190

0.8100

1 6610

4 3550

5 2120

6 2910

i0 7550

12 1530

12 3840

14 2540

17 9550

18.7720

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0023

0.0016

0.0013

0.0017

0 0013

0 0011

0 0016

0 0016

0 0019

0 0015

0 0010

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.0019

.0078

.0024

.0023

.0044

.0022

.0036

.no17

.0013

.0014

.0013

ans =

Singular Values

ans =

1 0000

2 0000

3 0000

4 0000

5 0000

6 0000

7 0000

8 0000

9 0000

i0 0000

ii 0000

12 0000

2.5860

2 3951

2 3470

2 0355

1 9648

0 2399

0 2144

0.2021

0.1929

0.1778

0.0959

0.0919
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X-29 Flutter Flight Test Data

o Data provided by Mike Kehoe, NASA Dryden (33,000 points, 400hz).

o X-29 Flutter modes are excited by natural turbulence

o SRA identifies all the modes from each data channel.

o Damping and frequency estimates in good agreement with NASA values.

o SRA parameter estimates based on 2,000 points are satisfactory.
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a_s =

nasa3 33000 rmrtfl sO J = 130 K = 70 L = I00 M = 1 N = 14

arts =

Magnitude Phase Freq Damping Nasa Values

ans =

0.6474

0.9845

0.9845

0 9774

0 9774

1 0000

0 9941

0 9941

0 9924

0 9924

0 9973

0 9973

0 9936

0 9936

0

0.4328

-0.4328

0.3760

-0.3760

0

0.2502

-0.2502

0.1979

-0.1979

0.1348

-0.1348

0.1694

-0.1694

27.6811

27.5681

27.5681

23.9821

23.9821

0.0023

15.9314

15.9314

12 6095

12 6095

8 5838

8 5838

i0 7909

i0 7909

1.0000

0 0361

0 0361

0 0606

0 0606

1 0000

0 0236

0 0236

0 0387

0 0387

0 0197

0 0197

0 0377

0 0377

8.5900

10.6400

12.7900

15.7200

0

0

0

0

0

0

0

0

0

0

.0182

.0370

.0224

.0286

0

0

0

0

0

0

0

0

0

0

ans =

Singular Values

ans =

1.0000

2 0000

3 0000

4 0000

5 0000

6 0000

7 0000

8.0000

9 0000

i0 0000

ii 0000

12 0000

13 0000

14 0000

15 0000

16 0000

17 0000

18 0000

19 0000

20 0000

21 0000

22 0000

23 0000

24 0000

60.7314

41.1338

38.8540

23.9111

23.5237

5 4193

5 0483

4 6103

4 4074

3 6840

3 4194

1 2080

1 0580

0 6707

0 6336

0.4258

0.3790

0.3534

0.3174

0.1659

0.1548

0.1426

0.1332

0.1189
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SUMMARY

In this paper, maximum likelihood estimation for distributed parameter models of large

flexible structures has been fonnulated. Distributed parameter models involve far fewer unknown

parameters than independent modal characteristics or finite element models. The closed-

form solutions for the partial differential equations with corresponding boundary conditions

have been derived. The closed-form expressions of the sensitivity functions lead to highly

efficient algorithms for analyzing _ound or on-orbit test results. For illustration of this

approach, experimental data of the NASA Mini-MAST trust have been used. The estimations

or modal properties involve its lateral bending modes and torsional modes. The results ahow

that distributed parameter models are promising in the parameter estimation of large flexible

structures.

_' l>h.D. Candidate, Dept. tff Mechanical Eagmecrmg and Mechamcs

'," .-ksstx:iate Profc,:sor, Dept. of Mechanical Enginecnng and M¢ch;.fflics

,_ Chief Scientist, (_uitlance and C,mLrt_l l)ivisl_n
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INTRODUCTION

Large spacecraft structures, such as, Solar Array Flight Experiment, Mini-MAST (CSI)

employ large complex trusses in their constructions. Because of their large size and because of

gravitational loads, it is not possible to determine with suitable accuracy their structural dynamic

characteristics from ground-based testing of a full-scale prototype. Analysis of on-orbit response

data will be necessary. In recent years, numerous variations of system identification methods

have been developed. Unfortunately, current approaches to parameter estimation cannot handle

the complex models foreseen to be necessary. As the number of modes increases, the accuracy

will be decreased and the complexity significantly increases.

Two distinct approaches to the solution of large space structural parameter identification

problems have emerged. One is the lumped parameter approach, the other is the distributed

parameter approach 11--5]. The obvious fact is that by far the most effort put into the study of

the identification problem has been based on the lumped parameter model. With the increase

of the number of modes, the number of parameters increases rapidly for the lumped parameter

approach. However, for the distributed parameter approach, the total number of parameters

needed to be identified ahnost keeps the same.

Distributed parameter model is based on the partial differential equation (PDE). In this

approach, instead of identifying tile modal frequency, damping and mode shape deflection of

each mode, only the coefficients of the partial differential equation and initial conditions need

to be estimated.

This paper intends to create a very simple distributed parameter model, combining the use of

maximum likelihood estimation technique (MLE), to identify the modal characteristics of NASA

Mini-MAST truss which is treated as a cantilevered beam with two concentrated masses. Wave

equation and Bernoulli-Euler beam equation are introduced to describe the torsional and betading

behavior of the Mini-MAST truss. Proportional damping will be taken into account simply by

adding a damping term in the PDE's, which is proportional to velocity [61.
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A series of closed-form solutions of the PDE's will be used to match the measurements of the

vibrations. Based on the optimal fitness between the measurement response and the theoretical

response in the sense of maximization of likelihood function, the coefficients in the PDE's and the

parameters dependent on the initial conditions are estimated. The closed-form expressions of the

sensitivity functions are derived, which carry out the innovations of the unknown parameters in

the iteration process. The comparison of the results with other methods shows that the proposed

approach is promising in the parameter estimation of large flexible structures.

NASA MINI-MAST (CSI) TESTBED

NASA Mini-MAST (see Fig. 1) is a generic space truss built primarily for research in the

areas of structural analysis and vibrational control [71. Mini-MAST is deployed vertically inside

a high-bay tower, cantilevered from its base on a rigid foundation. The total height of the truss

is 20.16 meters, containing 18 bays (1.12 meters each) in a single-laced configuration with every

other bay repeating. The deployable/retractable truss beam has a three-longeron construction

forming a triangular cross-section with points inscribed by a circle of diameter 1.4 meters. The

beam has three member types: longerons, battens, and diagonals. Longerons are parallel to the

beana axis and provide beam stiffness and strength in bending. Battens are in the beam face

planes and provide beam stability. Finally, diagonals, also in the beam face planes, provide beam

stiffness and strength in torsion and shear. Two instrumentation platforms, holding actuators and

sensors for CSI control experiment, have been installed at Bay 10 and Bay 18 (beam tip). These

additional components have a significant effect on the structural dynamic characteristics.

In this paper, the real Mini-MAST truss is treated as a cantilevered beam with two

concentrated masses at Bay 10 and Bay 18 respectively (Fig. 2). The continuum model is

equivalent to the real truss in the sense that both have the same dynamic properties, say, natural

frequency, damping ratio and mode shape. To keep the equivalency, the structural parameters

of the equivalent must be set up properly. All these parameters will be divided into two types.

Some physical quantities of the real structure, such as length, weight, etc., are called unadjustable

884.
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parameters which are assumed to be known a priori. Another type of parameters, such as the

composed parameters appearing in the PDE's, will be adjusted in the estimation process. This

type of parameters is called adjustable parameters, which will be the elements of the unknown

parameter vector in the maximum likelihood estimator. The parameters of the equivalent of the

Mini-MAST truss is listed in Table 1.

The control inputs of the system are three orthogonal torque wheel actuators located at the

top platfornl (Bay 18). Output pulse responses were obtained by applying single pulse signals

at each input channel. Twenty seconds of output pulse response were collected for each input

channel. A sampling frequency of 50 tlz is used. Two sets of data [8] are selected for our

analysis here. Tile acquisitions of the selected data are recounted as follows. The first set

of data was obtained from the measurement of the rotation rate about the x-axis, which was

measured by one rate gyro mounted at the tip platform. The second one was obtained from

the measurement of y-direction displacement, which was measured by one displacement sensor

installed at Bay 18, mounted parallel to the fiat face on the comer joints of the structure and

positioned to measure deflections normal to the face. The locations of the actuators and sensors

concerned are shown in Fig. 3.

MODELLING

torsional and bending motions.

equation

In this paper, the analysis of modal characteristics of NASA Mini-MAST truss involves

The damped torsional vibration is described by the wave

020 00 _ 0"20

]b-ffi + c-ffi - k-g-j 2 : o (1)

where O(x,t) angle of twist, Jr, = plb moment of inertia of the beam, k = Glt, torsional rigidity, and

C damping constant of proportionality. Two parameters a and b, which relate the coefficients

of the PDE, are defined by

k c
a 2 = -- 2b = -- (2)

]b' ,16
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The lateral bending vibration is described by the Bernoulli-Euler beam equation with proportional

damping term

cg"_y Oy . O ay
_-8_ + ':-5/+ kO'_.a= 0 (3)

where y (x, t) lateral displacement, m = pA mass per length of the beam, and k = E1 lateral

bending rigidity. Two parameters a and b are also defined by

a2=__,k 2b=C (4)
7-t't In

The solutions of Eqs. (1) and (3) can be written in a generic form (see Appendix)

v (_',t) = _ L (:_)_-_'_"" (A_costo,.t + B, sin to,_,t) (5)
i

where, y(x,t) represents either angle of twist (8) or lateral displacement Y, Ai and Bi the

on the initial conditions, to,,, and to,l, = to,,, V_ - _ the natural frequencycoefficients dependent

and damped natural frequency, respectively, and _i is the damping ratio. All these modal

properties are related to the parameters a and b by

b

_i- a "_/c[ (6)
to,,,= to ,= - ,

where, q represents the order of power, with q = 1 for torsion and q = 2 for bending. From Eq.

(6), the solution Eq. (5) can be expressed in terms of the parameters a and b,

i

]'_ (x) in the solutions (5) or (7) are the eigenfunctions given as follows.

equation:

_ (._) = L g(k,t) + 1 sin k,z
COtl

7(Lt) + sin k,x

0 < x < XlO

xit_ <_ x < 1

For torsional

(8)

,£86



where,

For Bernoulli-Euler equation

where,

and

,j (k/t) =
sin kil + _k/l cos kd

cos kil - _kil sill kil

r/(shk/z - sin k/x) + (chk/x - cos k/x)

,_, [h, (k,/) sin k,x + h l(kil) cos k/x + _l,k,x] t-

fli [1,3 (kil) sin kix + It2 (ki/)cos kix + chkix]

hj (kit) = gi ( kil)+ 2 ))-_bkilcos k,l _hkil;

h3 (kil) = g3(kil)q 2_,_k/l cos kil chkil;

gl (kil) = coskd chkil+ sillk/l shk, l,

0<<_x < xlo

a:lo <x < l

h2 ( kil) = g2( kil) - 2_.bkil sin kil chkil

h._(k'd) =g4 U,d) - 2_k.d _i,__'d _hkd

g'e ( kil) = cos kil chkil - sin kil shkil

(9)

4.1:s(k,I) .... c_s k,l ._hk, l t ._ilLk,l chk,l, g.t (kd) -- cos k,l .shk, l- sitl k,l chk,l

and ¢_i, /:li and ri are tile modal participant coefficients.

Finally, the most important quantities are the eigenvalues Ki's of tile system. They are the

roots of the corresponding characteristic equations given as follows,

For torsional equation:

Jl0
klsiu2kxm + --f-_bkl g(kl)sin _ ka:to = 1 (IO)

For Bernouili-Euler equation:

5'IIX CtIX

I.)E'I'

-SItX -CtlX

t_| 5"N X_ h t C SX h 3 5"N X "t- h 2 C'S'X SNX

h I CSX-h 4 5"NX+tdlI,_" Ij3t,'SX-h_SN,k'+SIIX t_SX-CIIX

7, t,'ll X ,I._'11 X

CSX

-SNX-SIlX

-2_;IIX_t_kI(_'NJ_'-_IIIX} -;tNIIA',_kI(C;S'J_'-,:llX,!

where,

SNX = sinkxl0, CSX = cos kxto, SHX = sh kxto, and CHX = ch kxlo

=0

(II)

ORIGINAL PAGE IS

OF _ OUALrrY
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Maximum Likelihood Estimator

Assume that the outcome Y of an experiment depends on an unknown parameter vector 0.

We want to estimate the best value of O according to the observation Y. One of the advanced

technique is based on the Maximum Likelihood Estimate (MLE) principle. The essence of

the MLE method is to maximize the conditional probability density function, i.e., so-called

likelihood function, P(YI0).

Suppose we have the measurement response sequences y (1), y (2),..., y (m). The matrix

Y,,, consisting of all measured outputs is introduced, I'_,, = [y(1), y (2),...,_ (m)]. If the

probability distribution of Ym has a density P[Y,,,]0], it then follows from the definition of

conditional probability that

1/'1

P [t5,,101= P[u(1),u(2),...,u(m)lO] = I-I (12)
i=1

If the assumption of Gaussian distribution is taken, the likelihood function has the form of

lilt /
L(O) = I'[t';,ltlO ] = H 1 exl, -1[_(ili- 1 0)-O(i[i- 1 0)1T

i:1 (2_r) '"v/2 Rn/" " ' '

• R -1 [_3(i[i- 1,0) -i)(i]i - 1,0)]}
(13)

where Uo (ill - 1,0) is the norminal response calculated by using 0o. If the constants are ignored,

we have the log-likelihood function

L(0)

1 '" }= _ _--_{ [tj (ili - 1,0)- _j(ili- 1,0)] T R-l[y(ili - 1,0)- fj(ili- 1,0)] + lnR

(14)

Linearizing 9 (ili - 1,0) with respect to the unknown parameter vector 0, we have

O(ill - 1, O) = Oo (ill - 1, O) + (V0_i) (0 - 0o) (15)
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whereVagi gradientof g with respect to 0, and ao is norminal 0 vector. Substituting Eq. (15)

into Eq. (14) for J(O) and setting 0Jb-gl0=# =---0, we may obtain.

]= Oo -1- (VOyi)T ./_-i (Vg_Ji) (V0Yi) T R -1 (Yi - rio) (16)

I.i=1

In this paper, the unknown parameter vector will be

0 = [a, b,-4t, A2, ..., A,,, B|, B2, ..., ./3',,] T

Tile relationship between the modal properties and the unknowns is given in Eq. (6). Thus

we can obtain the modal properties through the solution of the PDE as long as these unknown

parameters are determined. The gradients of y (x, t) with respect to the unknowns in Eq. (16)

can be derived from Eq. (7) simply by taking derivatives.

2', [O,j ki ,,t tV/(,,k_)_ b.,_Oa (x, t) = _ _, (x) e-b_ _ -A, sin -
i V/(,,ki) - b-'

+ B, co_tV/(,,k_)2- b21

(17)

{ ,/ot-;(.,t) = _i(:,)t,_ -_' -A,,,,,_t (,,k_)_-
i

+ v/(ak._)2 - b2 Aisint_/(ak])2 - b2

(18)

Og
(z,t) = Ii (z)c _'co_t_(._) _-b-_

0.4i
(19)

Og sin t ¢(ak_) 2 _b eOB_(',' t) = :_i(x) e-b' (20)

OPdGINALPAGE IS
OF POO_ QUALITY



Analysis of Modal Properties

10

As mentioned before, the procedure by using distributed parameter approach to analyze the

modal properties is quite different from that of the lumped parameter approach. First, based on

the unadjustable structural parameters, the eigenvalues ki and the eigenfunctions }_ (x) (mode

shapes) of the system can be determined through the solutions of the corresponding characteristic

equations before the estimation iteration starts. Second, only the coefficients of the PDE's and

the parameters relevant to the initial conditions need to be estimated rather than the modal

frequency, damping and mode shape deflection of each mode. These two characteristics greatly

decrease the number of unknown parameters and speed up the iterative process.

Solution of the PDE is in the form of infinite series mathematically, so no modal truncation

problem is involved theoretically, ttowever the contributions to the response are always so small

for the higher frequency modes that only the first several modes (five in this paper) are used

i, the analysis.

It is noted that the modal coupling must be considered. Because of the eccentric properties of

both the tip-mass and the tip-actuating pulses, the lateral bending vibration will be excited while

torsional vibration exists and vice versa, ttowever, the experimental data show that bending

modes are hardly recognized in the torsional measurement, and the first torsional mode appears

clearly in the bending measurement. So the first torsional mode is included in the analysis of

the bending vibration.

From the experiment data it is hard to get any a priori information about the initial conditions

of the response, that is, the initial values of Ai and/3 i for iteration. Fortunately the initial values

of Ai and/]i do not affect the convergency significantly, so they are chosen arbitrarily, ttowever,

the initial values of parameters a and b are very important to the convergency. From the results

of finite element analysis, we can determine the initial values of equivalent stiffness first, then

proceed to reckon the initial values of the parameters a and b.

89o
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Iterative accuracy is controlled by the innovation residual of the unknown parameter vector

O, which is defined by

= - [O,,(i)-O,,_l(i)] _
e° P 1 i=_

where, p the number of the unknowns, 0 (i) the ith element of the unknown parameter vector

0, and n is the number of successive iteration. In the algorithm, e0 < 10 .7 is referred to as

the criterion which controls the iteration.

Table 2 shows the comparison of the estimated frequencies obtained from Finite Element

Analysis (FEA), Eigensystem Realization Algorithm (ERA) [9] and Distributed Parameter Algo-

rithm (DPA). Most mcxles are comparable to each other. The fifth bending mode from DPA is

extremely higher than that of the other approaches. This is due to inadequacy of the Bernoulli-

Euler beam model used. Because the rotary inertia and shear deformation of the beam are

neglected, the Bernouili-Euler beam model produces much higher frequencies in the high fre-

quency range. In order to improve the accuracy for high frequency, Timoshenko beam model

is proposed h)r further investigation.

Figure 4 shows that the reconstructed responses obtained from the estimated parameters and

the measured responses have a reasonably good fitness.

CONCLUDING REMARKS

This paper proposes a distributed parameter model for the analysis of the modal charac-

teristics of NASA Mini-MAST truss. Wave equation and Bernoulli-Euler equation have been

used to describe the torsional and bending vibrations respectively. Closed-form solutions of the

PI)E's are derived. By using the Maximum Likelihocxl Estimation methcxl to provide the opti-

inal match between the experimental data and estimated responses, the coefiicients in the PI)E's

and the parameters dependent on the initial conditions are estimated and the modal properties

can be further determined. The results are comparable to those from other approaches. The

estimates of bending modes in the higher frequency range is expected to be improved by using
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Timoshenkobeammodel. Becausetile numberof unknown parameters is greatly reduced in

the distributed parameter model and the maximum likelihood estimation is feasible based on tile

derived closed form solutions of the PDE's, the proposed approach is particularly attractive for

its less computational burden for the large flexible structures.

.
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Fig. 2

Fig. 3

Fig. 4

Sketch of NASA Mini-MAST Truss

Equivalent Cantilevered Beam

Mini-MAST Sensor and Actuator Locations

Comparison of Reconstructed and Measured Responses
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Table 1 Structural Parameters of Equivalent Continuum of NASA Mini-MAST Truss

A. Unadjustable Parameters

Length of the Beam L = 66.24 ft.

X-Coordinate of Bay 10 xl0 = 36.80 ft.

Radius of Gyration of the Section r = 1.6237 ft.

Mass per Length pA = 0. 1076 slug/ft.

Ratios of Weights:

Bay 10-body/Beam: _ = 0.4760

Tip-body/Beam: _ :. 1.4547

Ratios of Moments of Inertia:

Bay 10-body/Beam: _ = 0.6206

Tip-body/Beam: _ = 0.6206

B. Adjustable Parameters: Initial Values for Iteration

Longitudinal Stiffness EA = 10,530,000 Lb

Bending Rigidity EI = 27,760,000 Lb.ft. 2

Torsional Rigidity Glp = 1,970,000 Lb.ft. 2



Table2 Comparisonof EstimatedFrequencies(Hz)

15

A. BendingModes
No. F.E.A. E.R.A. D.P.A.

1 0.80 0.86 0.768

2 6.16 6.18 6.637

3 32.06 32.39 29.773

4 44.86 43.23 50.923

5 70. i 8 67.27 102.973

B. Torsional Modes

No. F.E.A. E.R.A. D.P.A.
II

1 4,37 4.19 4.527

2 21.57 22.89 21.671
m

[

3 39.01 38.06 42.521

4 54.27 51.55 56.509
,,m , ,

5 72.87 67.27 70.559
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APPENDIX A

Solution to the Bernouili-Euler Beam Equation

In using distributed parameter approach to identify the structural systems, one of the most

important procedures is to solve the partial differential equation.

Here, only solution to the Bernoulli-Euler beam equation will be provided. Solution to the

torsional vibration equation can be derived by following similar procedures.

The Bernoulli-Euler beam equation describing lateral bending is

0'tV 1 02y
O.cI--_-t- a2 oqt2 : 0 (A. !)

where, a 2 - E_L The general solution to Eq. (A.I) may be expressed as
m pA"

i

(A.2)

where, Y] (;_:) are tile eigenfunctions which are of tile fonn

}] (:c) = C't sill kia: + C'., ,:os kix + C'3stt kix + C,tch kiz (A.3)

Now we derive the specific form of the solution for the equivalent Mini-MAST truss --

cantilevered beam with two lumped masses. The procedure consists of three steps as follows.

For the right segment, i.e. x = xl0 "-' I.

The PDE for the lateral vibration of the right segment is

O_gtt 1 02Vu (A.4)_+ -0
Ox4 a 20t 2

The boundary conditions for the free end (x = l) are:

U,t):0/)a ,a
F_,I°o_ (l,t) = m-_ (l,t)

g

(A.5)

After tile separation of variables
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we have a Ytl - ()DE,

,-IIIIR (x)- k4Y_(x) = o (A.6)

with B.C.'s

The general solution to Eq.

{ Ul(t) = o

(A.6) and tile corresponding derivatives are as follows,

(A.7)

Y,,¢ (x) = C1 sin kx + C_ cos kx + Cashkx + Cachkx

rl

t n (x) = K (C1 cos kx - C.,. sin kx + C3chkx + C4shkx)

}'/_ (x) = 1( 2 (-C'I sill kx --C'z cos kx + C3._hkx + C4chkx)

I""' (:_) = K 3 (-6h cos k:_ 4 6'n 2 sin kx + C3chkx h- C4.shkx)

(A.8)

By using tile B.C., we have

' CI =- Cj (gl (kl) + 2"_klcosklMtkl) + C4 (g3(kl) + 2_klcosklchkl)
C.., = C3 (g4(kl)- .9_r_klsinkl._hkl),,b + C4 (g.__(kl)- 2_¢_iklsinklchkl )

where,

gl (kl) = cos klchkl -t- sin klshkl

g'e ( kl) = cos klchkl - sin kl_hkl

g3 ( kl) = cos klMtkl + sin klchkl

g4 (kl) = cos kIMlkl - sin klchkl

Thus, 'Yn (:r) and its derivatives can be expressed in terms of the coefficients C3 and C4.

(A.9)

(A. l 0)

Yn (:t.) = Cj [hi (kl) sin kx + h4 (kl) cos kz + shkx]

+c4 [h3(k.O_i,,kx + h..,(kt) co_k_ + _hkx]

-tO4I,"[h_(kt),-,,._k_ - h_(_0 _i,tk_ + _t,kx]

I)'[ (x) = C:jh - i--It, (k.l)sin kx - h4 (/,./)cos k.c + ._hkx]
(A.11)

+C4 K 2 I-h3 (kl) sin kz - h2 (kl) cos kx -t- chkx]

,'111n (x) = C3h "3 [-h_ (/¢I) cos kz + t,4 (kl)sinkx + chkz]

+C4K 3 [-h3 (kl)coskx + h2(kl) sinkx + shkx]
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where,

h, (a'0 : ,a,(k0 + 2_ktcoskUhkl

h2(kl) 9,.,(kl)- 2_(_klsinklchkl

h_(k0 ,a_(kt)+ 2_ktcosklcl, kl

h,(k0 y,(kt)- 2_k/_inkUhk/

(A.12)

Step2 For the left segment, i.e. x = 0 --, xl0.

The PDE for tile lateral vibration of the left segment is

Otyz 1 02yL

0,.4 + a2 0t 2 -0

The boundary conditions for tile fixed end (x = 0) are:

VL(O,t) = 0_(o,t)=o
After tile separation of variables

(A.13)

(A.14)

we have a Y -L ODE

with B.C.'s

vL (:_,t) = _2(_) T (t)

_..1111t (*) - Ic4rt (_) = 0

The general solution to Eq.

_2 (o) = 0_(0) = 0
(A.15) has the form of

YL (*) =dt siu kx + d._ cos kz + daahkx + d4chkx

(A.15)

(A.16)

(A.17)

By using the B.C., we can express YL (x) and its derivatives in terms of the coefficients d3

(A.18)

and d4

"_2"L(_) = ,5 (_hk. - si,, k:,.)+ ,t4(chk. coskz)

t_ (x) = date (chka: - cos kx) + d,I( (shkx + sin kx)

t'_f (:c) = daI(" (M,k, 4- sin kx) + ,141¢2 (chkx + cos kz)

L-J,"(.) = ,Sff a(,.hk. + ,:,,sk.) + d,,z(a (_hkz - si,l k.)
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Step3 The compatible conditions at tile common point, x = xl0, between the two segments.

I. The lateral displacemeut must be the same, i.e., Y =l. (xIo) _/¢ (xlo)- Thus,

d3 (_hkxlo - sill kxlo) + d4 (chkxlo - cos kxl0)

= C'3 [ht (kl)sinkxlo + h4 (kl)coskxto + shkxlo]

+C4 [ha ( kl)sin kxlo + h2 ( kl)cos kXlO + chkxlo] (A.19)

1I. Tile slope of tile center line of the beam must be tile same, i.e, YL (xl0) = Y/_ (xlo). Thus

d3 (chk:clo - cos kxlo) + d,t (shkxlo + si,l kxlo)

C'= .3[ht (kl)coskxlo - ha (kl) sinkxlo + chkxto]

4C'4 [h3 (kl) cos kxlo - h2 (kl) sin kxlo + ztlkxlo] (A.20)

1II. The bending moment must be tile same, i.e, 1"_' (xlo) = v,,-1¢ (xm). Thus,

d3 (6hkxlu + sin k.rlo) + d4 (chkxlo + coskxto)

= C3 I-hi (kl) sinkxlo - h4 (kl)coskxlo + _hkxto]

-FC4 [-h:_(kl) sinkxl0 - h2 ( kl) cos kxlo + chkx lo] (A.21)

IV. Because of the inertia of the lumped weight Win, the shear has a jump at x = xlo, i.e.,

EIY_" (xto)T = EIY_' (xl,,) T + WJ-2YL (xlo) _b
g

which yields

i'l" (x lo) = _'"' Wio l/d

c_302 A.4



Th us

d_ (chkxlo + cos kxl0) + d4 (,hkxlo - sin kxl0)

= C'3 [-h| (kl) cos kxl0 + h4 (kl) sin kxlo + chkxlo]

+C'4 I-ha ( kl) cos kxlo + h2 ( kl) sin kxlo + shkxlo]

IVl o

i<Vbkl [d3 (shkxlo - sin kxlo) + d4 (chkxlo - cos kxlo)]
(A.22)

Then a set of equations fl)rms fronl Eq. (A. 19) to Eq. (A.22)

C3shkxlo + C, lchkxlo - dashk.clO - d4chkxlo = 0

C3 (hi sill kxlo + tt,t cos kXlO) + C4 (h3 sin kxlo + he cos kxlo)

+d3 sin kXl0 -t- dl cos kxl0 = 0

C3 (hi cos kxlo - h..t sin k,t:lo + chkxto) + C4(h3 cos kxlo

-h2 sill kxlo + _hkxl0 ) + d3 (cos kxlo - chkxlo )

-d,t (silt kXlO -F _/*kxlo) = 0

C3 (2chkx,o) + C4 (2_hkxn)) + d3 [(-2chkxlo) + _kl(sinkx,o- .s/,k':ci0)]

(A.23)

The condition for set (A.23) having non-trivial solution is that the determinant of the set

(A.23) equals to zero, that is

SI1X C'tlX

DE'I'

- Stl X -C II X

It i b'N X_- h 4 c; _'X h 3 3"N X 4 h2 C'NX SN X

hlCSX--hISNX+C'll X h3C!SX-h2SNX-_SII X CSX-CtlX

2 C" 11 X 2 3"11 X

CNA"

--,_NX--StlX

-'_c.x ) _ta _l(sux- s. x) -_s. x + _ k,(csx- c. x)
*'b "'b

=0

(A.24)
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Actually, Eq. (A.24) is the characteristic equation of the Bemoulli-Euler beam equation used

in this paper, from which the eigenvalues Ki will be derived. Solving the characteristic equation

by using binary searching technique, we can obtain the eigenvalues Ki,

Ki = {}.0172, 0.0507, 0.1074, 0.1405, 0.1998,

0.2258, 0.2263, 0.2268, 0.2278, 0.2283,...

After determining the eigenvalues Ki's we can solve the set (A.23) for the coefficients

C3, C4, d3 and da. In fact, there are infinite number of solutions to the set (A.23) because

C'3, C,t, d3and d 4 are not totally independent. Assuming the solution to the set (A.23) is

C

'3 = oqCi

C4 = fl, C'i

d3 -= 7"_Ci

d.i = 6'i

(A.25)

then, from Eqs. (A.11) and (A.18) we have the characteristic functions

L, (:c ) = ,'i (6hkix - sin k'ix ) + (chk,x - cos kix )

]; (x) = _'/_, (x) = _i [ht (kil)sin ki.," + h4 (/ql) cos kil + M_kix] (A.26)

-Ft3i [h3 (ki/) sin kix + h.., (kil) cos kil + chkix]

O<z<xlo

xto < x < I

By superposition, then, the solution to the PDE should be

v(.,t) = (x) T, (t)
i

= _ 1; (:c)[A, c,,s_,t + B, sii,_,t] (A.271
i

where, w_ = h'i2a.

When proportional damping is taken into account, the PDE describing damped lateral

vibration will be

692V 0 v 634y

,,t-0-_-_-=,+ c-b--/ + k_ = 0 (A.28)
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ltere, two parameters a and b, which relate the coefficients of the PDE, are defined,

a 2 = k _ El2b c
171

(A.29)

The substitution of _ (x, t) = _ 2/1,(t) ]] (x) into Eq. (A.28) yields
!

E +cT:, + =0
i

which bears further a set of independent equations under the generalized coordinates 7'. (t) by

the orthogonality property of the eigenfunctions,

m,_, + c,T, + k,T, = 0 (A.30)

where,

Eq.

jfl] 1[ .'1
mi = tn ] i'd:r

1 I

ki k /o° ...... m, . :, _ .9
: 1ili (Ld: = IIILU_, ] i'dd;

o :'_ci = c I i'd,c

(A.30) can be expressed in modal foma

generalized mass

generalized stiffness

generalized damping

7'i + 24,_,,,2h, + ..fl Z = 0 (A.31)

where,

c|
2_,w,,, =

mi

.2 k,
¢'J rh _ -

'ttli

Note that the damping ratio _i is related to the eigenvalue Ki through the parameter a and b.

In fact,

1 ci 1 c b
(i - - = "7-3 (A.32)

2w,,, 2w,,,171i m
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Eq. (A.31) turns out to be the equation of motion of a simple mass-spring-dashpot system.

Therefore, the ith-component of the response can be expressed as

T, (t) = c -('''',t (A, costad, t -t- B, sinta,/,t) (A.33)

where,

c i c

(iw,,, = 2m, 2m b

Tht, s, 7] (t) can be expressed in terms of paranaeters a and b,

Tl(t)=c-bt(A, cost¢(ak_)2-b2 + B, sint¢(ak_)2-b "-) (A.34)

By supcrposition, finally, tile solution to the ['.'q. (A.28) should be

,u(,,:, t) = ___ _, (:,:)T, (t)
i

i
2-b2 + B/sil|tV/(ak_)2-b '2) (A.35)

where, }] (x) are the eigenfunctions shown in Eq. (A.26).
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N91-
SPATIAL OPERATOR APPROACH TO FLEXIBLE

MULTIBODY SYSTEM DYNAMICS AND CONTROL

G. Rodriguez

Jet Propulsion Laboratory

California Institute of Technology

SUMMARY

This paper extends to flexible multibody systems the recent [1-6] results of the author

on the use of spatially recursive filtering and smoothing techniques to multibody dynamics.

The configuration analyzed is that of a mechanical system of flexible bodies joined together

by articulated joints. It is established that the composite flexible multibody mass matrix

can be factored as .M = (I + K)P(I + K*) in which K is a lower-triangular factor, P

is a diagonal operator, and K* is an upper-triangular factor. The operators (I + K) and

P can be constructed by means of a spatially recursive Kalman filter that begins at the

tip of the system and proceeds inwardly toward the base. Similarly, the upper- triangular

factor (I + K*) is constructed by means of a corresponding outward smoothing recursion.

The inverse (I - _) = (I + K) -1 of the causal factor (I + K) is also a lower-triangular

matrix. This inverse (I- Z) and its upper-triangular transpose (I- Z*) can also be

computed by means of filtering and smoothing operations respectively. This means that

the inverse M-1 of the mass matrix can be factored as .M-_ = (I - L*)D-I(I - L).

The foregoing factorization results are used to develop spatially recursive algorithms for

multibody system inverse and forward dynamics. The algorithms are what is referred to

as Order N in the sense that the total number of arithmetic operations increases only

linearly with the number of bodies in the system.

1. INTRODUCTION

The problem of flexible multibody system forward dynamics consists of finding the

joint angle accelerations and the flexible body accelerations, given the applied moments

at the joints and the forces due to the elastic deformation of the flexible bodies in the

system. The closely related problem of inverse dynamics is to find the set of joint moments

that must be applied in order to achieve a prescribed set of system accelerations. These

problems are particularly important in the simulation and control design for systems which

are not readily tested in a ground laboratory. Examples of such systems include future

space manipulators (referred to as space cranes) to be used for handling and retrieval of

free-flying satellites and space platform modules. Flexible dynamics problems are also

encountered in multiarm manipulation of such flexible task objects as thermal blankets,

hoses, extensible cables, and spring-loaded mechanisms.

2. PROBLEM STATEMENT

Consider a mechanical system consisting of N flexible bodies numbered 1,. --, N con-

nected together by N joints numbered 1,... ,N to form a branch-free kinematic chain.

The bodies and joints are numbered in an increasing order that goes from the tip of the
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system toward the base. Joint k in the sequence connects bodies k and k + 1. Joint 0 can

be selected at any arbitrary point in body 1.

A typical flexible body k is characterized by a finite-element model consisting of a

finite number of nodes defined at the spatial locations i. These locations are expressed in

a coordinate system attached to the body. The set of all finite-element nodes for body k

is denoted by [lIk), and the total number of nodes is Nk.

The finite-element model for body k also involves a mass matrix rnk and a stiffness

matrix Sk, which are assumed to be obtained from a stand-alone structural dynamics

analysis of this body. It is assumed that the flexible body mass and stiffness matrices

are time-independent quantities computed in advance. Alternatively, the flexible body

mass and stiffness properties are characterized by pre-computed vibrational modes and

the corresponding modal frequencies.

A 6-dimensional displacement at node i of body k is denoted by uk(i) = [a(i),x(i)] in

which a(i) is a 3-dimensional rotation and x(i) is a 3-dimensional translation. These nodal

displacements are expressed in a local coordinate frame attached to body k. The corre-

sponding velocities and accelerations are respectively 6k (i) and fik (i) and are also expressed

in the same local coordinate frame. The displacement field uk = [uk(1),..., uk(Nk)] pro-

duces an elastic force field fk =- [fk (1),..., fk (Nk)] which can be computed as fk = --SkUk
in terms of the stiffness matrix sk.

The joints labeled are single-degree-of-freedom joints, which allow rotation along the

joint axis only. For these joints, h(k) is a unit vector along the axis of rotation; F(k) is

the active moment applied about the axis of jointk; 0(k) is the corresponding joint angle

which is positive in the right-hand-sense about, h(k). The relative angular velocity and
acceleration at joint k are denoted by 0(k) and 8(k).

The objective in forward dynamics is to outline a recursive method for computation
of the joint-angle accelerations 0(k) and the flexible-body nodal accelerations ilk(i) for i in

_(k), given the applied moments F(k) and the elastic forces f_. The objective in inverse

dynamics is to compute the set of forces and moments that must be applied in order to

achieve a set of prescribed accelerations.

3. STATE SPACE MODEL

The following state space model [1] for propagation of forces, velocities and accelera-

tions makes it easy to express the recursive dynamics algorithms.

The term spatial force refers to a 6 x 1 vector X(i) whose first three components are

pure moments and whose last three components are pure translational forces. Similarly,

the term spatial velocity V(i) describes a 6 x 1 vector of angular and linear velocities.

The spatial accelerations ,k(i) are obtained by appropriate [1] time differentiation of the

spatial velocities Y (i). If the argument k is used, the corresponding force X(k), velocity

V(k), and acceleration _(k) are defined at a typical joint k. If the argument i is used, the

corresponding force Xk(i) velocity Vk(i) and acceleration _k(i) are defined at node i of the

body k finite-element model.

The vector X + (k) is used to represent the spatial force on the "positive" side of joint

k. The + superscript indicates that the corresponding variable is evaluated at a point on

body k + 1 immediately adjacent and on the "positive" side, toward the base, of joint k.
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The notation X-(k) is used to represent the force on the "negative", toward the tip, side

of hinge k. Similarly, the notation V + (k) and V-(k) is used respectively for the spatial

velocity on the positive and negative sides of joint k.

To propagate forces, velocities and accelerations between the two typical spatial loca-

tions i and k in the multibody system, define the "transition" matrix [1]

¢(k'i) = ( UO L(k,i))u
(3.1)

in which L(k,i) is the vector from point k to point i; and L(k,i) is the 3 x 3 matrix

equivalent to L(k, i) x (.). This matrix has the following semi-group properties typically
associated with a transition matrix for a discrete linear state space system:

¢(k,m) = ¢(k,0¢(i,m); ¢(k,k) = U (3.2)

and ¢-l(k,m) = ¢(m,k). This matrix is used in the next section to develop spatial
recursions for the kinematics and dynamics of the flexible multibody problem.

4. FLEXIBLE MULTIBODY KINEMATICS

4.1 Kinematics Internal to a Typical Flexible Body

The velocity V + (k) on the positive side of the joint k and the velocity Vk (i) at nodal

point i in body k are related by

vk(i) = ¢_(k,i)v+(k) + vk(i) for all i _ n(k) (4.1)

in which

Vk(i) = CT(k,i)HT(k)O(k) + gk(i) i= 1,''',gk-1

vk(i) = CT(k,i)HT(k)O(k) i----- Nk (4.2)

In Eqs. 4.1 and 4.2, uk (i) denotes the relative spatial velocity of the mass element at node

i. The set 12(k) is the set of all nodes in the finite-element model for body k. Note that

the last nodal point Nk in body k is assumed to be rigidly attached to the negative side

of joint k. Hence, this point does not undergo an elastic displacement with respect to the

joint k. This is reflected in Eq. (4.2).

4.2 Recursive Kinematics for Flexible Multibody System

The sequence of velocities V+(k) satisfies

LOOP k = N- 1,..-, 1

v+(k) = ¢T(k + 1,k)V+(k + 1) + CT(k + 1,k),,+l (1) (4.3)

END LOOP;

with the terminal condition V + (N+I) = 0. By definition, vk+_ (1) is the first 6-dimensional

component of the relative velocity vector vk+l, i. e., vk = [Vk(1),''',Vk(Y)]. Note also
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that v_r+l = 0. The 6 x6N matrix C T (k+ 1, k) is defined as C T (k+ 1, k) = [¢T (1, k),- --, 01.

Outward integration of this iterative equation leads to

N--1

V+(k)-- _ cT(J,k)cT(j + I,J)v5+I

y=k

4.3 Recursive Kinematics Using Spatial Operators

To express the kinematic relationships in Eqs. (4.1)-(4.3) in terms of an equivalent

spatial operator [4] notation, define first the spatial operators ¢, h, C, B, and H as

l/ 0i/¢(2,1) I ..-: . . .. h : [/, 01

¢(Y, 1) ¢(N,2)-..

/ooc(2.,1) 0 0C:
0

\ 0 0 C(N,N- 1) 0

B = diag[B(1),...,B(N)] H:diag[H(1),.--,H(N)]

in which the spatial operators B(k) are defined as

B(k) = [¢(k, 1), ¢(k, 2),..-, ¢(k, Nk)]

Based on this notation, the kinematic relationships in Eqs (4.1)-(4.3) can be expressed as

V = B*V + + v (4.4)

v = B*H*O + h*_i; v = _/*)( (4.5)

V + = _*C*v (4.6)

with V = [V1,...,V_r], v = [vl,"',VN], )t* = [h*,B*g*], X = [ti,0], u = [ul,''',UN]

and 0 = [01,.-. ,0jv]. Combination of (4.4) and (4.6) leads to

Y = (] + B*¢*C*)v (4.7)

While the kinematic relationships in (4.4)-(4.7) apply to spatial velocities, similar relation-

ships can be derived for the corresponding accelerations by appropriate [1] time differen-
tiation.
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5. INVERSE DYNAMICS

RESULT 5.1. The total kinetic energy in the multibody system can be computed in term

of the composite velocity vector X = [_, 0] as

g.E. = (1/2))(*_X"

in which the system mass matrix _ is

= )¢(I -F C_B)rn(I + B*¢*C*))t* (5.1)

Eqs. (4.4)-(4.7) and (5.1) lead to a recursive inverse dynamics solution consisting

of an outward sweep in which a sequence of system accelerations are computed. These

accelerations are then multiplied by the appropriate blocks mk of the mass matrix m in

(5.1). Then, an inward recursion is performed to compute the required applied moments.

Because of the factorization 9_ = )t(I + CCB)m(I + B*¢*C*))_* of the mass matrix _{,
these two recursions are equivalent to multiplication of the system accelerations X by the

composite mass matrix _.

6. MULTIRIGID SYSTEM: A SPECIAL CASE

If the flexible bodies in the system are rigidized, by setting the nodal point velocities

to zero, then the flexible body mass matrix of Sec. (5) becomes the multirigid body mass

matrix analyzed by the author in [1-4].

Multirigid Body Mass Matrix. The multirigid body mass matrix

= HCM¢*H* (6.1)

in which

M = BmB* = diag[M(1),... ,M(N)] (6.2)

can be obtained from the flexible body mass matrix by setting the elastic state-to-output

operator h to zero. The diagonal block M(k) in Eq. (6.2) is the rigid spatial mass matrix

of the rigidized body k about joint k.

Recursive Evaluation of the Multirigid Body Mass Matrix

The elements rnR(k,j) of the mass matrix in (6.1) can be computed by

R(0) =0

LOOP k = 1,..-,N

R(k) = ¢(k,k - 1)R(k - 1)¢T(k,k - 1) + M(k)

rnR(k,k) = H(k)R(k)HT(k)

x(k) =r(k)HT(k)
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Loop i = k + 1,...,N

End i Loop;

END k LOOP;

x(i) = ¢(i,i- 1)x(i- 1)

mR(i,k) = H(i)x(O

7. FLEXIBLE SYSTEM MASS MATRIX

The goal of this section is to arrive at a spatially recursive algorithm that computes

the flexible multibody system mass matrix by means of an inward recursion from the tip

to the base. The approach used to do this is to first establish the identity in (7.1) below.

Result 7.1. The matrix (I+ CCB)m(I + B* _*C*) in the flexible multibody system mass

matrix 34 can be expressed as

(I + C¢B)rn(I + B*¢*C*) = r + CCBr + rB*¢*C* (7.1)

in which r = m + CRC*. Furthermore, the diagonal matrix r = diag[r(1),...,r(N)] is a

block-diagonal matrix whose diagonal blocks r(k) are given by

r(k) = rn(k) + C(k,k - 1)R(k- 1)CT(k,k - 1) (7.2)

Inward Recursion for the Flexible Mass Matrix

R(0)--o

LOOP k = 1,-..,N;

r(k) = re(k) + C(k,k- 1)R(k- 1)CT(k,k- 1)

34(k,k) = U(k)r(k)Ur(k)

Loop i = k + 1,...,N;

End i Loop;

END k LOOP;

Spatial Operator Notation

x(i) ---¢(i,i- 1)x(i- 1)

34(i,k) = U(i)_(_)

In spatial operator notation, the above recursions for the diagonal blocks of the mass
matrix become

r = CRC* + m; R = BrB*; r = CBrB*C* + rn
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The above results are an extension to flexible multibody systems of the results obtained

earlier by the author [1-4] for multirigid body systems.

8. INNOVATIONS FACTORIZATION

OF THE MASS MATRIX AND ITS INVERSE

The flexible multibody system mass matrix 34 can be factored as

.M = (I + K)D(I + K*) (8.1)

in which the causal operator K and the diagonal operator D are

X= HCBg HCG ]' D =- 0 D

The Kalman gain operators g and G are defined in terms of the following Riccati-like

equations

p = C(P -GDG*)C* + m (8.2a)

P = B(p - gdg*)S* (8.2b)

G = PH*D-i; g = ph*d -i

D = HPH*; d = hph*

Inverse of the Causal Factor (I + K)

(I + K) -i = I-/_ (8.3)

in which _ is the causal operator

= \ Hk_Bg HOG ]

Some of the spatial operators used in this result are defined as

B(k) = B(k)[I- g(k)h(k)]; B = diag[B(1),... ,B(N)]

C(k,k - 1) = C(k,k- 1)[1- a(k- 1)H(k - 1)]

o o i)C= C(,1) 0 ... 0

0 ... C(N,N-1)

¢(k,i) =_(k)O(k,k - 1)... _(i + a)C(i+ 1,i)
k-1 k

¢ = _ ¢(k,i); _ = _ ¢(k,i)[I- G(i)H(i)]
i=1 i=I

This states that the causal factor I + K is causally invertible. Furthermore it states

that the inverse I - _ can be computed by means of a spatially recursive Kalman filter.

This Kalman filter will be described in more detail in the following section. Here, the

immediate objective is to obtain the following factorization for the inverse M-i of the

flexible multibody system mass matrix _. bigskip
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Innovations Factorization of the Mass Matrix Inverse.

_-1 = (X- L*)D-1(I- £ ) (8.4)

This result states that the inverse of the mass matrix is the product of an anticausal

factor, a diagonal operator, and a causal factor. Recall that the equations of motion for

the flexible multibody system, disregarding without loss of generality the effects of velocity

dependent coriolis and gyroscopic terms, are:

g; 2=  -lf (8.5)

in which Y = [f, F] is a composite vector made up of the elastic forces f and the applied

joint moments F.

Use of (8.4) in (8.5) leads to

2=(z-z*)p-l(i-z.)5

This equation states that the known forces Y"must be operated upon by a two-stage filtering
and smoothing process in order to obtain the system accelerations X. The first operation

involves the causal factor (I- £) which can be mechanized by a spatially recursive Kalman

filter. The result of the first stage is an innovations process defined as (I - £)F and a

residual acceleration process defined as /)-1(i- £)7. This residual process is operated

upon by an outward smoothing computation represented by the anticausal factor (I-_*) to
obtain the system accelerations )(. These filtering and smoothing operations are described

more completely in the following section.

9. RECURSIVE FORWARD DYNAMICS

Riccati Equation for Articulated Inertias

P+(0) =0 (9.1)

LOOP k = 1,--.,N;

Pk = rnk + Ck,k_lP+(k - 1)C[,k_ 1

- T
dk = hkPk hk

- T -1
gk = Pk hk die

= (z- gkhk)p;

P-(k)= _ _ ¢(k,i)p+(i,j)¢T(k,j)

i_n(k) jen(k)

D(k) = g(k)P-(k)HT(k)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)
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G(k) = P-(k)HT(k)D-I(k)

P+ (k) = [I - G(k)H(k)]P- (k)

(9.8)

(9.9)

END LOOP;

This discrete-step Riccati-like equation computes a sequence of rigid Kalman gains

G(k) defined at every joint angle k and a corresponding sequence of flexible body Kalman

gains gk = gk(f,J) defined for every pair of nodes f,j in body k. This inward recursion is

performed simultaneously with a filtering algorithm described below.

INWARD FILTERING: SPATIAL FORCES

z +(o)= o

LOOP k = 1,.--,N;

(9.10)

z-(k) = Ck,k_lZ+(k- 1) (9.11)

e_ = fk -- hkZk (9.12)

e+ = dklek (9.13)

z + = z[ + gke k (9.14)

Z-(k)= E ¢(k'i)z+(i) (9.15)

E-(k) = F(k)- H(k)Z-(k) (0.16)

E+(k) = E-(k)/n(k) (9.17)

Z+(k) = Z-(k) + G(k)S-(k) (9.18)

END LOOP;

The result of this filtering stage is a sequence of residuals E + (k) defined at every joint

k and a sequence of flexible body residuals e+ (i) defined at every nodal element i of every

flexible body k.

OUTWARD SMOOTHING: SPATIAL ACCELERATIONS

LOOP k = N,...,1;

A+(N) = 0 (9.19)

O(k) = E+(k) - GT(k)A+(k) (9.20)
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END LOOP;

A-(k)--- A+(k) + HT(k)O(k)

ak(g ) = Nk)

a+ (f) = cT (k,i)ak(Nk)

N_ --1

= e:(;) - (s,;)a: (J)
5=1

= + a (i)

A+(k - 1) = CT(k,k - 1)a k

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

The result of this smoothing stage is a sequence of joint angle accelerations 0(k) and
flexible body accelerations uk (i).

PHYSICAL INTERPRETATION

The forward dynamics problem is solved by a spatially recursive Kalman filtering

process which begins at the tip of the system and proceeds inwardly toward the base. This

filtering algorithm computes: (1) a sequence of spatial forces z(k) at the flexible bodies

and Z(k) at the joints; (2) a sequence of residuals e+(k) and E+(k); and (3) a sequence of

Kalman gains gk at the flexible bodies and G(k) at the joints. The filtering stage uses as

an input the elastic forces f(k) at body k and the applied joint moments F(k) at joint k.

The residuals and the Kalman gains are stored for subsequent processing by an outward
smoothing stage.

The smoothing stage is an outwardly recursive process which begins at the base of

the system and proceeds from body to body toward the tip. The smoother computes

a sequence of spatial accelerations ak at the flexible bodies and A(k) at the joints. The
smoother also computes a sequence of relative elastic accelerations {_k at the flexible bodies

and joint angle accelerations 0"(k) at the joints.

Riccati Equation

One of the central features of the inward filtering algorithm is the spatial Riccati

equation in Eqs. (9.1)-(9.9) which accumulates the outboard spatial inertia as the recursive

computations are performed.

This Riccati equation begins at the tip of the system with the initial condition P+ (0) =

0 in Eq. (9.1). This initial condition means physically that there is no spatial inertia

outboard of this fictitious joint.

Eq. (9.2) is used to add to the body k free-free mass matrix mk the spatial inertia of

a fictitious articulated rigid body which is equivalent to collection of bodies outboard of

joint k - 1. This equivalent inertia is transferred from the joint k - 1 to the attachment

nodal point 1 in body k by the transition operator C(k, k- 1).

Eq. (9.3) computes the flexible body k articulated mass matrix. This matrix can be

viewed as a reduced-order body k mass matrix. The order reduction occurs because the

operator h(k) has the effect of constraining the last nodal point Nk in the finite-element

model of body k.
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The Kalman gain g(k) in Eq. (9.4) is a 6N × 6(N- 1) matrix which is used to compute

the projection operator [I- g(k)h(k)]. This projection operator, when multiplied in (9.5)

by the matrix p- (k) leads to the updated matrix p+ (k) which has a null space of dimension

N - 6 in the direction of the operator h(k). Eqs. (9.6) transfers the flexible articulated

body inertia to an equivalent rigid body mass matrix at joint k.

Eqs. (9.7)-(9.9) are identical to the computations involved in crossing joint k in the

multirigid body forward dynamics algorithm in [1]. They involve the following computa-

tions: (1) evaluation of the scalar articulated inertia D(k) about joint k. This inertia is

the inertia about joint k of the composite body outboard of joint k, with all of the degrees

of freedom outboard of joint k being unlocked; (2) computation of the Kalman gain G(k)

in Eq. (9.8) to determine the projection operator [I- G(k)H(k)] in Eq. (9.9). When this

operator pre- multiplies the rigid-body spatial inertia P-(k), the updated spatial articu-

lated P+ (k) results. The spatial inertia P+(k) is that of a fictitious body which has no

inertia along the joint k axis.

After crossing the joint k in Eq. (9.9), the algorithm lets k _ k + 1 and returns to

Eq. (9.2). The process of crossing a flexible body and a joint has been completed.

Filtering

The filtering algorithm in Eqs. (9.10)-(9.18) is a spatially recursive Kalman filter

based on an inward sequence which is performed together with the Riccati equation just

described. The Kalman filter begins at the tip of the system, the fictitious point "0", with

the initial condition Z+(0) = 0 in Eq. (9.10), which indicates that there are no external

applied forces at this point. This begins a recursive process which takes as inputs the

sequence of elastic forces f(k) and the sequence of applied joint moments r(k). The out-

puts of this process are a sequence of flexible-body residuals e+ (k) and joint axis residuals

Z+(k).

Eqs. (9.11)-(9.13) compute the flexible-body residual e+(k) at body k. First, Eq.

(9.11) determines the spatial force z-(k) that exists in body k due to the previously

determined force Z +(k - 1) at joint k - 1 reflecting the presence of all of the bodies

outboard of this joint. In Eq. (9.11), this force is multiplied by the operator h(k) to obtain

the predicted output force h(k)z-(k). The flexible body innovations e-(k) in Eq. (9.12)

can be viewed as an "error" quantity equal to the difference between the actual force f(k)

due to the body stiffness and the predicted force h(k)z-(k) due to the preceding bodies

1,... ,k - 1 outboard of joint k- 1. The residual acceleration process e+(k) is computed

from e- (k) by dividing by the articulated spatial mass matrix d(k) which emerges from the

Riccati equation. This division is indicated in Eq. (9.13). The flexible body residual e+(k)
has a very interesting physical interpretation. It corresponds to the inertial acceleration

that the finite-element nodes in body k would undergo, if the "future" degrees of freedom
were locked.

The computation in Eq. (9.14), which determines the updated spatial force distribu-

tion z + (k) in body k, has the effect of unlocking the 6 degrees of freedom associated with

the all of the nodal points in body k except the last one.

Eq. (9.15) sums the spatial force estimates z + (k) at the nodal points in body k and

transfers them to joint k. The result of this summation is the 6-dimensional spatial force

Z-(k). This force reflects at joint k the effect of all of the preceding bodies. The next



steps,conductedin Eqs. (9.16)- (9.18),crossor unlock joint k. These steps are identical

to that used in the multirigid body algorithms [1] and result in the updated spatial force
Z+(k) on the positive, inward toward the base, of joint k.

At this juncture, the filtering algorithm lets k _ k + 1 and returns to Eq. (9.11) to
start the computations necessary to cross the next body.

Smoothing

The smoothing process in Eqs. (9.19)-(9.26) is an outward recursion which starts

at the base of the system and proceeds outwardly to its tip. The smoothing process

produces a sequence of rigid-body spatial accelerations A(k) at the joints and of flexible-

body accelerations a(k) at the nodal points of the flexible bodies. It also produces the

relative accelerations _(k) at the flexible bodies and the joint-angle accelerations 0"(k) at

the joints. The smoother uses as inputs the sequences of residual accelerations e+ (k) and

E+(k). It also uses the Kalman gain sequences g(k) at the flexible bodies and G(k) at the
joints.

The outward smoothing sequence begins with the terminal condition A +(N) = 0,

which corresponds to the assumption that the base of the system is immobile. Eqs. (9.20)
and (9.21) can be viewed as specifying the computations necessary to cross joint k in the
outward direction.

Eq. (9.22) computes the spatial acceleration ak(Nk) of the attachment point Nk.

Eq. (9.23) computes the spatial accelerations a+(i) at the internal finite-element nodes

of the flexible body k. The "+" indicates that the corresponding acceleration is that of

a rigid body frame attached to a rigidized flexible body obtained by setting the elastic
displacements to zero. The elastic displacement accelerations at the finite-element nodes

are computed by Eq. (9.24). Eq. (9.25) then computes the total inertial accelerations

of the finite- element nodes in body k. The spatial acceleration of the first node, also

referred as an attachment node, is then propagated by Eq. (9.26) to the positive side of

joint k- 1. At this stage, the algorithm lets k --_ k - 1 and returns to Eq. (9.20) to begin
the computations associated with the next body k - 1.

Modal Expansions

The above algorithm has been expressed in terms of nodal coordinates to model the

flexibility of each of the flexible bodies in the system. In many cases, it is more conve-

nient to use what are typically referred to as modal coordinates. A modal model for a

flexible body is obtained by doing a modal or eigenfunction analysis of the finite-element

model for the same body. Use of these expansions leads to a spatially recursive forward

dynamics algorithm that is almost identical in form to that of (9.1)-(9.26) above, but in

which the quantities (displacements, velocities, accelerations, forces, and mass) involved
are interpreted in terms of modal coordinates as opposed to the nodal coordinates used in

(9.1)-(9.26).

10. CONCLUDING REMARKS

The inverse and forward dynamics problems for flexible multibody systems have been

solved using the techniques of spatially recursive Kalman filtering and smoothing. These

algorithms are easily developed using a set of identities associated with mass matrix factor-

ization and inversion. These identities are easily derived using the spatial operator algebra
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developed by the author. Current work is aimed at computational experiments with the

described algorithms and at modeling for control design of limber manipulator systems. It

is also aimed at handling and manipulation of flexible objects.
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A MODEL FOR THE THREE-DIMENSIONAL SPACECRAFT

CONTROL LABORATORY EXPERIMENT

Y. P. Kakad

Department of Electrical Engineering

University of North Carolina at Charlotte

Charlotte, NC 28223

In this paper, a model for the three-dimensional Spacecraft COntrol
Laboraory Expei'iment (SCOLE) is developed. The objective behind this method
of modeh'ng is to utilize the basic partial differntial equations of motion for this
distributed parameter system and not to use the modal expansion in developing
the model. The final model obtained is in terms of a transfer function matrix
which relates the flexible mast parameters like displacement, slope, shear stress
etc. to external forces and moments.

1. INTRODUCTION

It is widely recognized that the future space exploration would require a
w!de array of very large and flexible spacecrafts with very stringent pointing and
vibration suppression requirements. Some of these spacerafts would also be
deployed as an assemblage of a number of flexible members. In order to design
control systems to meet these requirements, accurate dynamical models of the
flexible spacrafts would have to obtained. Generally, the basic dynamical equa-
tions are developed in terms ot a system ot partial differential equations and one
common approach is to formaulate solutions of these equations in terms of an
innnite modal expansions and use this approach for developing control systems.

In this paper, an attempt is made to work with the basic partial differential
equations and by using Laplace Transforms and incorporating boundary condition
relationships an alternate modeling scheme is proposed. This methodolgy is based
on extensive details documented in reference [1 ] and is applied to NASA Langley
Research Center's SCOLE problem [2,3].

2. NOMENCLATURE

Ux(t,z)

Ox(t,z)

Mx(t,z)

Crx(t,z )

fx(t,z)

Displacement at point z in roll bending

Slope of beam at point z in roll bending

Bending moment at point z in roll bending

Shear stress at point z in roll bending

External force per unit length in roll bending
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I,

Bx

ux(t,z)

Oy(t,z)

My(t,z)

Oy(t,z)

fy(t,z)

Moment of inertia of area about neutral axis in roll bending

Damping in roll bending

Displacement at point z in pitch bending

Slope of beam at point z in pitch bending

Bending at beam at point z in pitch bending

Shear stress at point z in pich bending

External force per unit length in pitch bending

ly Moment of inertia of area about neutral axis in pitch bending

By Damping in pitch bending

_g(t,z) The angular displacement at z of an element dz of the beam

lp The polar moment of inertia of the cross-section

pp The mass per unit volume

IpG The torsional stiffness of the beam

G The shear modulus of the material

I Modulus of elsticity

p Mass per unit length

3. METHODOLOGY

The partial differential equations governing the roll bending motion are

_z - 0x (1)

This is obtained from the definition of slope.

a0,, 1 1
- (el)x Mx =-_Mx (2)bz

This equation is based on beam theory and here (EI)x and (El)y are considered
equal and represented by (El)

_Mx

Oz - ox (3)

This is obtained from the definition of bending moment.
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3z - p 3t 2 fx(t,z) (4)

3x
This equation is based on Newton's law of motion and the term fx(t,z) = -Bx'_- t
if there is no external force per unit length on the beam.

The corresponding equations for pitch bending are

0Uy = 0y (5)
3z

- - My (6)
3z (EI)y

Oz = _y (7)

-5(t,z)
3z = 9 3t 2 (8)

The following equations describe torsional bending

= l--L- T
_z IpO

This is based on torsional flexibility.

(9)

3T
pip _ - Mv(t,z )Yzz- or-

(lO)

This equation his based on Newton's Law of motion and the term

Mv(t,z ) = -B q-_z if there is no external torque per unit length of the beam.

Defining the state variables as

ql

q2

q3

q4

q5

q6

q7

q8

q9

qlo

Ux

0x
Mx

Uy
0y

%

T

(11)
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the following equations are obtained

3ql

az - ql

3q3

az - q4

3q4 a 2

_zz - P(--_q-.)qdt_ 1 -fx(t,z)

3q5

az - q6

aq7

az - q8

(12)

a 2

3q8oz - P(_t2 )qs - fy(t'z)

3q9 1

az - lpG q 10

3qio 3, 2

-Sz - °2"(7)q9 - Mv(t'_)

These equations can be expressed in the form

aq _ + F2_t7 + u(t,z) (13)3z =F°q +F1 37

Taking Laplace Transforms of the previous matrix-vector equation, the following
equation is obtained.
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aO
= (Fo + FlS + F2s 2) Q - Flq(O,z) - F2 [ cl(O,z) + sq(O,z) ] + U(s,z)

dz- .... i

d_

a_ = (FO + FlS + F2 s2) _Q + U(s,z) (14)

Here FliS a 10 x 10 null matrix. The matrix Fo is a 10 x 10 matrix with zeros
except the following nonzero elements.

F0(21 ) = 1

-1
F0(3,2 ) -

(El)

Fo(4,3) = 1

-1
FO(7,6 ) -

(El)

Fo(8,7) = 1

1
Fo(9,9) -

IpC

The matrix F 2 is also a 10 x 10 matrix with zero entries except for the following
elements

F2(4,1) = p

F2(8,5) = p

F2(lO,9)=plp

The equation (14) represents a linear system and this can be solved by using
the state-transition matrix as

Z

Q(s,z) = H(s,z - zo) Q(s, zo) + _ H(s,z -_)_(s,_)d_
-- i

zo

(15)

The SCOLE model is of finite length; i.e. 0 < z < L. Then, at z = L,

L

Q(s,L) = H(s,L) Q(s,O) + _ H(s,L -_)_(s,_)d_
-- -- 0

(16)
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To determine Q(s,L) and Q(s,0) which in turn would allow determination of
Q(s,z) for any-z-between 0-and L, ten terminal relations must be specified. These
terminal relations can be expressed in the form of ten ordinary differential equa-
tions in the following vector-matrix form using linear differential operators.

M (D) q(t,O) + N (D) q(t,L) = F(t) (17)

Here, F(t) represents external control forcing functions ( the physical inputs like
forces-6n the flexible beam or shuttle moments etc. or linear combinations thereof

). Taking Laplace Transforms on both the sides of equation (17), the following
vector-matrix equation is obtained.

M (s) Q(s,O) + N(s) Q(S,L) = F(s) (18)

The vector F(s) is the sum of the Laplace Transforms of F(t) and any initial con-
dition terms_The termination is said to bo homogeneous if-F(s) = 0.

It is important to note here that each of the differential equations given in
(17) in case of a distributed parameter system may involve quantities at both ends
of the distributed system. This represents termination characteristics of a feed-
back system where quantities at one end are made to depend on quantities at the
other. The boundary conditions for SCOLE model without any external forcing
functions are given as follows.

At the shuttle end where z = 0,

0Ux
(El)-7---g- (O,t) = 0 Moment (19a)

dz _

bUy (0,t) = 0 Moment (19b)
(El) 8z 2

(E1)_z_ (0,t) = 0 ShearForce
(19c)

Ouy (o,t) = 0 ShearForce
(El) Oz 3

(19d)

(lpG) Oo-_z(O,t) = 0 Torquq (19e)

At the reflector end where z = L, the corresponding boundary conditions are

Ux
(E1)_'S'W- (L,t) = 0 (20a)

dz _

927



-7-

Ou,,

(El) Oz--_ (L, t) = 0 (20b)

0 Ux

(EI)_z3 (L,t) = 0 (20c)

(El) Oz 3 (L,t) = 0 (20d)

(IpG)- z (L,O- 0 (20e)

In order to obtain a complete representation of the system governed by equa-
tions (16) and (18), we substitute (16) into (18) with z 0 = 0 and z = L;

[ M(s) +N(s) H(s,L) ] Q(s,O) = V(s) (21)

where,
L

V(s) = F(s)- N(s)I H(s,L - _)U'(s,_)d_
0

(22)

It can be shown that the relationship given in (17) is independent and as a result
[ M(s) + N(s)H(s) ] is of rank 10 for SCOLE and so has an inverse. Hence, we
can write

Q(s,O) = [ M(s) + N(s)H(s,L) ]-1V(s) (23)

Thus,

Z

Q(_,,z) = H(s,z) [ M(s) + N(s)H(s,L) l-IV(s) + _ H(s,z-_)_(s,_)d_
-- 0

(24)

If there are no distributed forcing terms and initial conditions, equation (24) can
be written as

Q(s,z) = H(s,z) [ M(s) + N(s)H(s,L) ] -1F(s) (25)

where F(s) is the Laplace transform of the external forcing terms in (16). Hence
the marx of transfer functions from F(s) to Q(s,z) is given by

G(s,z) = H(s,z) [ M(s) + N(s)H(s,L ] -1 (26)
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