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Abstract

A technique based on the Minimum Model Error optimal estimation approach is

employed for robust identification of a nonlinear dynamic system. A simple harmonic

oscillator with quadratic position feedback was simulated on an analog computer. With

the aid of analog measurements and an assumed linear model, the Minimum Model Error

Algorithm accurately identifies the quadratic nonlinearity. The tests demonstrate that the

method is robust with respect to prior ignorance of the nonlinear system model, and with

respect to measurement record length and regardless of initial conditions.

Introduction

The widespread existence of nonlinear behavior in many dynamic systems is weU-

documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular,

virtually every problem associated with orbit estimation, flight trajectory estimation,

spacecraft dynamics, etc., is known to exhibit nonlinear behavior. Many excellent

methods for analyzing nonlinear system models have been developed. However, a key

practical link is often overlooked, namely: How does one obtain an accurate mathematical

model for the dynamics of a particular complicated nonlinear system? Identification, the

process of developing an accurate system model from system output measurements, may

provide the answer.

Nonlinear systems are commonly described using linear models. Many efficient al-

gorithms for the identification of linear systems exist and their accuracy and ease of

application encourages their use. However, linearization does not work in every appli-

cation, and even when it does provide a reasonable approximation, the approximation is

normally limited to a small region about the operating point of linearization. In the case
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of systems with severe nonlinear behavior using a linear model to describe such a system

leads to inconsistencies ranging from inaccurate numerical results to misrepresentation

of the system's qualitative behavior. Since nonlinearities are seldomly easily charac-

terized, nonlinear identification techniques may prove beneficial in developing accurate

mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed

in the past two decades (Natke, Juang and Gawronski [3]). Among the most widely

used nonlinear identification methods are describing the nonlinear system using a linear

model, or representing the nonlinear system in a series expansion and obtaining the

respective coefficients either by using a regression estimation technique, by minimizing

a cost functional, by using correlation techniques, or by some other approach. Some

algorithms use the direct equation approach, while others obtain a graphical representation

of the nonlinear term(s) and then find an analytical model for the nonlinearity. The

interested reader can find more information on these nonlinear identification techniques
in Stry and Mook [4].

The diversity of nonlinear identification techniques prompts the choice of an algorithm

based on the needs of the particular application. Typical criteria to look for are: iterations

required, robustness in the presence of measurement noise, number of measurements

needed, robustness with respect to knowledge of the inital conditions, and robusmess

with respect to initial assumptions regarding the form of the nonlinearity. The results

presented in this paper confirm that the Minimum Model Error algorithm excels in the

above mentioned requirements.

In previous papers, the Minimum Model Error algorithm (M/VIE) was explained in

detail (Mook and Junkins [5]), modified for nonlinear identification (Mook [6]), and

shown to accurately identify exotic nonlinearities in higher order systems (Stry and

Mook [4]). In this paper, it is shown how the MME algorithm successfully identifies

nonlinearities using experimental data. An analytical model representing a harmonic

oscillator with quadratic position feedback is studied. Out'put data is obtained from an

analog computer simulation of the nonlinear system and the quadratic term is accurately

identified. It is shown that the Minimum Model Error algorithm is capable of identifying

a nonlinear model which accurately reproduces the analog output regardless of knowledge

an initially assumed model, initial conditions or record length.

MME Algorithm

In this section, we briefly review the MME algorithm and how it is used to identify

nonlinear dynamic systems. A more detailed explanation may be found in Mook and

Junkins [5], Mook [6], and Stry and Mook [4].

The M/VIE may be summarized as follows. Suppose there is a nonlinear system

whose exact analytical representation is unknown, but for which output measurements



areavailable.Using"normal"means(analysis,finite elements,etc.),a systemmodel,
denotedassumedmodel,is constructed.TheMME combinestheassumedmodelwith
themeasurementsto determinethecorrectform of thenonlinearsystem.Theapproach
consistsof addingtheto-be-determinedcorrectiontermto theassumedmodel. A cost

functional composed of the weighted sum of the correction term plus measurements

minus estimate residuals is minimized. The minimization yields optimal state trajectories

in addition to the correction term. A least squares fit of the correction term is performed

to find the form of the dynamic model error.

Consider a forced nonlinear dynamic system which may be modeled in state-space

form by the equation

_(t) = A_(t) + F(t) + f_(__(t), _(t)) (1)

where z(t) is the n × I state vector consisting of the system states, A is the n × n state

matrix, _.F(t) is an n x 1 vector of known external excitation, and f(£(t),_(t)) is an

n x 1 vector which includes all of the system nonlinearities. State-observable discrete

time domain measurements are available for this system in the form

__(tk) = #_k(_(t_),tk) + v_, to <_ tk < t! (2)

where __(tk) is an rn × 1 measurement vector at time tk, #-k is the accurate model of

the measurement process, and v k represents measurement noise. _vk is assumed to be

a zero-mean, gaussian distributed process of known covariance Rk. The measurement

vector _(tk) may contain one or more of the system states. To implement MME, assume

that a model, which is generally not the true system model because of the difficulties

inherent in obtaining the true system model, is constructed in state-vector form as

_(t) = A_(t) + _.F(t) (3)

Here, we show a linear model because in practice, linearization is the most common

approach to modeling nonlinear systems. MME uses the assumed linear model in (3)

and the noisy measurements in (2) to find the model error.

The model error, which might include linear terms as well as unknown nonlinear

term(s), is represented by the addition of a correction term to the assumed linear model
as

_(t) = A_(t) + _.F(t) + d(t) (4)

where d(t) is the n x 1 correction term (dynamic model error) to be estimated later.

A cost functional, J, that consists of the weighted integral square of the correction

term plus the weighted sum square of the measurement-minus-estimated measurement

residuals, is formed:

M

J"- _{[t( tk)- ffk(_--.(tk),tk)] T/_kl[t(tk) - gk(__.(tk),tk)]}

k=l



fro_!
+ _a(_-)rw d(_-)d_- (5)

where M is the number of measurement times, __(tk) is the estimated state vector and

W is a weight matrix to be determined.

J is minimized with respect to the correction term, _d(t). The necessary conditions

for the minimization lead to the following two point boundary value problem (TPBVP),

(see Geering [7]),

i(t) = A_(t) + F(Q + _d(t) (5a)

-_(0: -At;(t) (55)

d(t) : -_w__(t) (5_)

@

•_(io)=_ or __(to)=O
__(tl)= __: o.,. __(tl)= o

(5_)

(5f)

Estimates of the states andwhere _(t) is a vector of costates (Lagrange multipliers).

of the dynamic model error are produced by the solution of this two-point boundary

value problem. The estimates depend on the particular value of W. The solution is

repeated until a value of W is obtained which produces state estimates which satisfy the

"'covariance constraint", explained next.

According to the covariance constraint, the measurement-minus-estimated measure-

ment residual covariance matrix must match the measurement-minus-troth error covari-

once matrix. This may be written as

_(t_) - gk(__(tk),tk)]T_(tl,) -- g___(_(tk), tk)] _ Rk (6)

During the minimization, the weight W is varied until the state estimates satisfy the

covariance constraint, i.e., the left hand side of Eq. (6) is approximately equal to

the right hand side. The correction term or model error is, therefore, the minimum

adjustment to the model required for the estimated states to predict the measurements

with approximately the same covariance as the measurement error.

After W has been determined such that the state estimates satisfy the covariance

constraint, the final step in the identification procedure is to use a least squares algorithm

to fit the model error d(t) to the unknown dynamic term(s). The error is expanded into

some combination of linear and nonlinear terms, for example,

d(t) = az(t) + _z2(t) + 7za(t) + ... (7)

where ct, _, 7, ... are unknown coefficients to be determined by least squares. The least

squares approach is explained in detail in Mook[6]



The TPBVP represented by Eqs. (5a) to (5f) contains jumps in the costates and,

consequently, in the correction term. As evident from Eq. (5d), the size of the jump is

directly proportional to the measurement residual at each measurement time. The noisier

the measurements, the larger the jump size. A multiple shooting algorithm, developed by

Mook and Lew [8], converts this jump-discontinuous TPBVP into a set of linear algebraic

equations which may be solved using any linear equation solver. Multiple shooting also

facilitates the analysis of a large number of measurements, by processing the solution at

the end of every set of jumps.

The multiple shooting algorithm presented by Mook and Lew [8] was used to obtain

the MME solutions used in the tests presented in this paper. It was assumed in the

examples that MME obtained the dynamic error term without knowledge of the boundary

conditions on _, so some distortion of the correction term at the initial and final times

was expected due to the constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge

is available at to or If, we constrain _(t0) = 0 and A(t.f) = 0. Therefore, in all test

cases, the initial and final ten percent of the correction term data was ignored in the

least squares fit.

Application Examples

Two nonlinear equations of motion were studied, which represent the motion of

an undamped harmonic oscillator with different amounts of quadratic position feedback

(identical equations may arise in other physical systems as well). The equations in state

space form are

(9)

where z is position, and the dot indicates differentiation with respect to time. No forcing

was applied.

In the following discussion, Eq. (8) is denoted Model A and Eq. (9) is denoted

Model B. Different initial conditions were used for each system, for a total of four

different tests. These are shown in Table 1.



Table 1. List of conditions used for each test

Tesi #

A1

x(O)

0.000

v(O)

0.261

A2 0.000 0.523

B1 0.000 0.087

B2 0.000 0.261 -1.137

To utilize MME, the linear part of Eqs. (8) and (9) was chosen as the assumed model,

rendering the model error equivalent to the nonlinear term, c • z 2. Measurements for the

MME nonlinear identification were generated by simulating test AI to B2 on an analog

computer. Position measurements for all four tests were recorded and nonlinear models

identified. The results were compared with the analytical position and analytical error

term data, c • z 2, which were generated for Models A and B using a digital computer.

MME proved capable of accurately identifying the nonlinear quadratic term in spite of

ignorance of the assumed model, true initial conditions and record length.

Analog computer results

One hundred position measurements were generated on an EAJ-2000 analog com-

puter for all four test cases. All measurements with a sampling rate of 4 Hertz were

used in the analysis. Position, velocity, and position squared were chosen as the basis

functions for the least squares fit. It was uncertain if the analog computer would add

some damping to the system or if it was able to correctly reproduce the stiffness term.

By including position and velocity in the least squares fit, stiffiaess and damping could

be identified if they existed. The identification procedure yielded the numerical values
shown in Table 2.

Table 2. Least Square estimates of the nonlinear terms using measurements

generated by the analog computer.

Test True MME True MME True MME

# X X v v X*X X*X

A1 0.000 0.003 0.000 0.000 -0.526 -0.528
r _,,,

A2 0.000 0.003 0.000 0.000 -0.526 -0.526

B1 0.000 0.008 0.000 0.005 -1.137 -1.141

B2 0.000 0.003 0.000 0.000 -1,.137 -1.135
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The numerical results for the least squares fit of the error term matched the analytically

predicted coefficients with great accuracy. Figures (la-4a) show the analytical position,

analog measurements and position predicted by the MME analysis for all analog tests.

Figures (lb-4b) show the analytical correction term and the error term estimated by MME.

In all cases the MME identification produced good state estimates.

The MME algorithm could accurately identify a nonlinear model regardless of the

initial conditions. As seen from Figures (la) and (4a) (test A1 and B2), the measured

position and the analytical position differ significantly. The analytical position was

digitally recalculated for test A1 and B2 using the initial analog measurements as initial

conditions instead of the initial conditions presented in Table 1. The results are shown

in Figures (5a) and (6a). In this set of plots the analytical position and the measurements

are almost identical. Also, as shown in Figures (5b) and (6b), the analytic correction

term is much more similar to the estimated correction term, confirming that MME does

not need any knowledge of the initial or final state vector value. 3

MME could identify the nonlinear term accurately idenpendent of the record length.

In test B1 only 40 measurements were employed in the analysis because subsequent

measurements were saturated. The nonlinear term is identified very well.

Note that the data appears to be noiseless, as shown in Figures (la-4a). Successfull

analysis of noisy data using the MME algorithm can be found in Mook[6] and Stry and

Mook[4].
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Figure 1. Test A1 a) Analytical, measured (+), and MME estimated

(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.

It was shown in Eqs. (5e) and (5t3, that by setting the initial and final costate values to zero, MME
does not need any knowledge of the initial or end conditions.
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Figure 2. Test A2 a) Analytical, measured (+), and MME estimated
(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially Identical to the measurements.
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Figure 3. Test B1 a) Analytical, measured (÷), and MME estimated
(') position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially identical to the measurements.



0 000( o00

|
w

S/

-0 200-

0 200-

, , , . _ !,O0[ - D' -

•A.I_A ' ; - -o,_.-o,-

4, • • •

6 _

6 A
6 A

0

6,5 l

(6)

Figure 4. Test B2 a) Analytical, measured (+), and MME estimated

C) position, b) Analytical and MME estimated (') correction term.

The MME estimates are essentially Identical to the measurements.
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Figure 5. Test A1 a) Analytical, measured (+), and MME estimated (')

position, b) Analytical and MME estimated (') correction term. The

analytical position was calculated using as initial conditions the initial

position and velocity measurements from the analog computer.
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Figure 6. Test B2 a) Analytical, measured (+), and MME estimated (')

position, b) Analytical and MME estimated (') correction term. The

analytical position was calculated using as initial conditions the initial

position and velocity measurements from the analog computer.

Conclusion

In this paper, an MME based algorithm was used to accurately identify the quadratic

term of a nonlinear harmonic oscillator. Data was obtained from an analog computer

simulation of the nonlinear system. It is demonstrated that the method is robust with

respect to (lack of) a priori knowledge of the system dynamics. The identification was

accurate regardless of initial conditions or data record length.
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