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SUMMARY

In this paper, maximum likelihood estimation for distributed parameter models of large

flexible structures has been tormulated. Distributed parameter models involve far fewer unknown

parameters than independent modal characteristics or finite element models. The closed-

form solutions for the partial differential equations with corresponding boundary conditions

have been derived. The closed-form expressions of the sensitivity functions lead to highly

efficient algorithms for analyzing _ound or on-orbit test results. For illustration of this

approach, experimental data of the NASA Mini-MAST trust have been used. The estimations

of modal properties involve its lateral bending modes and torsional modes. The results show

that distributed parameter models are promising in the parameter estimation of large flexible

structures.
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INTRODUCTION

Large spacecraft structures, such as, Solar Array Flight Experiment, Mini-MAST (CSI)

employ large complex trusses in their constructions. Because of their large size and because of

gravitational loads, it is not possible to determine with suitable accuracy their structural dynamic

characteristics from ground-based testing of a full-scale prototype. Analysis of on-orbit response

data will be necessary. In recent years, numerous variations of system identification methods

have been developed. Unfortunately, current approaches to parameter estimation cannot handle

the complex models foreseen to be necessary. As the number of modes increases, the accuracy

will be decreased and the complexity significantly increases.

Two distinct approaches to the solution of large space structural parameter identification

problems have emerged. One is the lumped parameter approach, the other is the distributed

parameter approach [1--51. The obvious fact is that by far the most effort put into the study of

tile identification problem has been based on the lumped parameter model. With the increase

of the number of modes, the number of parameters increases rapidly for the lumped parameter

approach. However, for the distributed parameter approach, the total number of parameters

needed to be identified almost keeps the same.

Distributed parameter model is based on the partial differential equation (PDE). In this

approach, instead of identifying the modal frequency, damping and mode shape deflection of

each mode, only the coefficients of the partial differential equation and initial conditions need

to be estimated.

This paper intends to create a very simple distributed parameter model, combining the use of

maximum likelihood estimation technique (MLE), to identify the modal characteristics of NASA

Mini-MAST truss which is treated as a cantilevered beam with two concentrated masses. Wave

equation and Bernoulli-Euler beam equation are introduced to describe the torsional and bending

behavior of the Mini-MAST truss. Proportional damping will be taken into account simply by

adding a damping term in the PDE's, which is proportional to velocity [6].



4

A seriesof closed-formsolutionsof thePDE'swill beusedtomatchthemeasurementsof the

vibrations.Basedon theoptimal fitnessbetweenthemeasurementresponseandthetheoretical

responsein thesenseof maximizationof likelihoodfunction,thecoefficientsin thePDE'sandthe

parametersdependenton theinitial conditionsareestimated.Theclosed-formexpressionsof the

sensitivityfunctionsarederived,whichcarryout theinnovationsof theunknownparametersin

theiterationprocess.Thecomparisonof theresultswith othermethodsshowsthattheproposed

approachis promisingin theparameterestimationof largeflexiblestructures.

NASA MINI-MAST (CSI) TESTBED

NASA Mini-MAST (see Fig. I) is a generic space truss built primarily for research in the

areas of structural analysis and vibrational control [71. Mini-MAST is deployed vertically inside

a high-bay tower, cantilevered from its base on a rigid foundation. The total height of the truss

is 20.16 meters, containing 18 bays (1.12 meters each) in a single-laced configuration with every

other bay repeating. The deployable/retractable truss beam has a three-longeron construction

forming a triangular cross-section with points inscribed by a circle of diameter 1.4 meters. The

beam has three member types: longerons, battens, and diagonals. Longerons are parallel to the

beam axis and provide beam stiffness and strength in bending. Battens are in the beam face

planes and provide beam stability. Finally, diagonals, also in the beam face planes, provide beam

stiffness and strength in torsion and shear. Two instrumentation platforms, holding actuators and

sensors for CSI control experiment, have been installed at Bay 10 and Bay 18 (beam tip). These

additional components have a significant effect on the structural dynamic characteristics.

In this paper, the real Mini-MAST truss is treated as a cantilevered beam with two

concentrated masses at Bay 10 and Bay 18 respectively (Fig. 2). The continuum model is

equivalent to the real truss in the sense that both have the same dynamic properties, say, natural

fi'equency, damping ratio and mode shape. To keep the equivalency, the structural parameters

of the equivalent must be set up properly. All these parameters will be divided into two types.

Some physical quantities of the real structure, such as length, weight, etc., are called unadjustable
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parameterswhichareassumedto beknowna priori. Anothertypeof parameters,suchasthe

composedparametersappearingin thePDE's, will beadjustedin theestimationprocess.This

typeof parametersis calledadjustableparameters,whichwill be theelementsof theunknown

parametervectorin themaximumlikelihoodestimator.Theparametersof theequivalentof tile

Mini-MAST trussis listed in Table 1.

Thecontrol inputsof Ihesystemare threeorthogonaitorquewheel actuators located at the

top platform (Bay 18). Output pulse responses were obtained by applying single pulse signals

at each input channel. Twenty seconds of output pulse response were collected for each input

channel. A sampling frequency of 50 Hz is used. Two sets of data [8] are selected for our

analysis here. The acquisitions of the selected data are recounted as follows. The first set

of data was obtained from the measurement of the rotation rate about the x-axis, which was

measured by one rate gyro mounted at tile tip platform. The second one was obtained from

the measurement of y-direction displacement, which was measured by one displacement sensor

installed at Bay 18, mounted parallel to the flat face on the comer joints of the structure and

positioned to measure deflections normal to the face. The locations of the actuators and sensors

concerned are shown in Fig. 3.

MODELLING

torsional and bending motions.

equation

In this paper, the analysis of modal characteristics of NASA Mini-MAST truss involves

The damped torsional vibration is described by the wave

<.7'='0 <.90 .0_0

Jb-_ + c-_-[ - k_x 2 = 0 (1)

where O(x,t) angle of twist, Jb = pIb moment of inertia of the beam, k = Glb torsional rigidity, and

C damping constant of pml)ortionality. Two parameters a and b, which relate the coefficients

of the PDE, are defined by

]¢ c

a :_=-:-_, 2b=-- (2)
Jb Jb
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The lateral bending vibration is described by the Bernoulli-Euler beam equation with proportional

damping term

02y Oy .0ly

m-g/_ + _N + kO--_,4 = 0 (3)

where y (x, t) lateral displacement, m = pA mass per length of the beam, and k = E1 lateral

bending rigidity. Two parameters a and b are also defined by

a2 k c=--, 2b =- (4)
71l 17"/

"File solutions of Eqs. (1) and (3) can be written in a generic form (see Appendix)

y (x, t) = _ _I, (x) e -¢'_''''t (Ai coswdit + Bi sin wait) (5)
i

where, y (x,t) represents either angle of twist (O) or lateral displacement y, Ai and Bi the

dependent on the initial conditions, w,,, and wa, = w,, _ - _ the natural frequencycoefficients

and damped natural frequency, respectively, and _i is the damping ratio. All these modal

properties are related to tile parameters a and b by

=,k_, wa, = ¢(akq) _-b 2 , _i=_ (6)

where, q represents the order of power, with q = 1 for torsion and q = 2 for bending. From Eq.

(6), the solution Eq. (5) can be expressed in terms of the parameters a and b,

y(x,t)-= _],(x)e -bt [Aicost¢(ak_)2-b:_ +13isint¢(ak_) 2-b "el (7)
i

_'_ (x) in the solutions (5) or (7) are the eigenfunctions given as follows.

equation:

For torsional

0<x_<x,0_ (_) = _.,,_ (8)
y--(_,a) -t- sink,x xtu < x < 1



where,

For Bernoulli-Euler equation

where,

and

y (k,z) =
sin k,l + _kil cos kil

cos kil - _ kil six, kil

ri (shkiz - sin kix) + (chkix - cos kiz)

., [h _(J.,,l) si. k,z + hdkd) cos k,z + _hk, x] +-

fli [h3 (ki/)sin kiz + hz (ki/)cos kiz + chk, x]

121(kil) = 91 (kil)+2_kil cos 1.',I 6hL.il;

It:) (ki/) = g3(k,l)+2_kd cos kil chkil;

91 (kil) = cos k,l chkil+ sin kd M_k,l,

O< x < XlO

zto<z<l

h2 (kil) = g2( kil) - 2_% kil sin k,l chk, l

h.t ( kil) =91 (kil) - 2-_bkil sin kil ._hk,1

g'e (kd) = cos kil chkil - sin k+l shk,1

(9)

.q:s(k,l) - ,',_s k,l .shk, l I siu k,l ,'hkd, 91 (k,l) -- 'r'_s k,l .shk, l " siu k,l ':hk, l

and ai, fli and r i are the modal participant coefficients.

Finally, the most important quantities are the eigenvalues Ki's of the system. They are the

r¢×)ts of the corresponding characteristic equations given as follows,

For torsional equation:

,llo kl _in 2kz lu + dl° kl
2.1_ db g(kl)sin 2 kxlo = 1 (lo)

For Bemoulli-Euler equation:

SI1X C'IIX

DET

-SIIX -CHX

t+ 1 EN.K+hlCSX h35N X ffh2CSX SNX

hlC_X--hlSNX_-c'IIX h3E'SX-h2SN.k++SllX Cb'X-CIIX

2_" P II A r _ ,_'11 X

CSX

-SNX-SIIX

-'_c'.X+_k_CSNX-S. XJ -'_S_IX +2_b _,(C'SX-C'.X j

where,

SNX = sinkxt0,CSX = coskxt0, SHX = sh kxto, and CHX = ch kxto

=0

(11)

ORIGINAL PAGE IS
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Maxinmm Likelihood Estimator

Assume that the ot_tcome Y of an experiment depends on an unknown parameter vector 0.

We want to estimate the best value of 0 according to the observation Y. One of the advanced

technique is based on the Maximum Likelihood Estimate (MLE) principle. The essence of

the MLE method is to maximize the conditional probability density function, i.e., so-called

likelihood function, P (YI0).

Suppose we have the measurement response sequences y (1), y (2),..., y (m). The matrix

Y,,, consisting of all measured outputs is introduced, t';,, = [y (1) , y (2) , ..., y (m)]. If the

probability distribution of Ym has a density P[Y,,,IO], it then follows from the definition of

conditional probability that

711

P [L, I0] = P[y(1),y(2),...,y(m) 10] = I-I P[u(i)lYi-_,°] (12)
i=1

If the assumption of Gaussian distribution is taken, the likelihood function has the form of

Ill

1
eXl,_-lly¢ili- 1 0)-9¢ili- 1L(O) = P It;.101= H , ,0)] T

i=1 (2rr) rap/2 /_1/2 I, --'--

• R -] [u(ili - 1,0) - y(ili - 1,0)]} (13)

where yo (ili - 1,0) is the norminal response calculated by using 00. If the constants are ignored,

we have the log-likelihood function

J(O) =-hi L(O)

: 1 5-2_{[y(il i - .1,O)_)(ili - 1,O)]TR_,[y(ili_ 10)-O(ili-1,O)]+lnR}2
i=1

(14)

Linearizing 0 (ili - 1, O) with respect to the unknown parameter vector O, we have

9(ili - 1,o) = Oo(ili - 1,0) + (Voyi)(O - oo) (15)

888
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where V0yi gradient of y with respect to 0, and Oo is norminal 8 vector. Substituting Eq. (15)

into Eq. (14) for J(O) and setting __lo__d = O, we may obtain.

o = oo+ l_ (v_')_ _-' Ivo_,) (vo_,)T_-' (,j,- _,o) (_6)
Li=I

In this paper, the unknown parameter vector will be

0 = [a, b, Al, A:_, ..., A,,, Bl, B_, ..., B,,] T

The relationship between the modal properties and the unknowns is given in Eq. (6). Thus

we can obtain the modal properties through the solution of the PDE as long as these unknown

parameters are determined. The gradients of y (x, t) with respect to the unknowns in Eq. (16)

can be derived from Eq. (7) simply by taking derivatives.

[(£_J (x.I_): ___.d]pi(x) _b, _'_q,,t _Aisint¢(ak_)2_b2 + n,c,,stV/(.k,)-b_]

(17)

{ ,/ ,/OY(a',t)=:__};(:r)tc-bt-A,c,,st (akq)2-b 2 -B, sint (ak_)2-b ""
Ol, i

(18)

(19)

Ou (.,t) = _(x)_-".i,,tv,(.ky):'- - -b_
OB,

(20)

ORIGINAL PAGE IS
OF PCX_ OUALn'Y



Analysis of Modal Properties
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As mentioned before, the procedure by using distributed parameter approach to analyze the

modal properties is quite different from that of the lumped parameter approach. First, based on

the unadjustable structural parameters, the eigenvalues ki and the eigenfunctions }_ (x) (mode

shapes) of the system can be determined through the solutions of the corresponding characteristic

equations before the estimation iteration starts. Second, only the coefficients of the PDE's and

the parameters relevant to the initial conditions need to be estimated rather than the modal

frequency, damping and mode shape deflection of each mode. These two characteristics greatly

decrease the number of unknown parameters and speed up the iterative process.

Solution of the PDE is in the form of infinite series mathematically, so no modal truncation

problem is involved theoretically. However the contributions to the response are always so small

for the higher frequency modes that only the first several modes (five in this paper) are used

in tile analysis.

It is noted that the modal coupling must be considered. Because of the eccentric properties of

both the tip-mass and the tip-actuating pulses, the lateral bending vibration will be excited while

torsional vibration exists and vice versa, ttowever, the experimental data show that bending

modes are hardly recognized in the torsional measurement, and the first torsional mode appears

clearly in tile bending measurement. So the first torsional mode is included in the analysis of

the bending vibration.

From the experiment data it is hard to get any a priori information about the initial conditions

of the response, that is, the initial values of Ai and/3i for iteration. Fortunately the initial values

of Ai and/3_ do not affect the convergency significantly, so they are chosen arbitrarily. However,

the initial values of parameters a and b are very important to the convergency. From the results

of finite element analysis, we can determine the initial values of equivalent stiffness first, then

proceed to reckon the initial values of the parameters a and b.
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lterative accuracy is controlled by the innovation residual of the unknown parameter vector

0, which is defined by

1 P }1/2eo= P- 1
i=1

where, p the number of the unknowns, O(i) the ith element of the unknown parameter vector

O, and n is the number of successive iteration. In the algorithm, e0 < 10 -7 is referred to as

the criterion which controls the iteration.

Table 2 shows the comparison of the estimated frequencies obtained from Finite Element

Analysis (FEA), Eigensystem Realization Algorithm (ERA) [91 and Distributed Parameter Algo-

rithm (DPA). Most modes are comparable to each other. The fifth bending mode from DPA is

extremely higher than that of the other approaches. This is due to inadequacy of the Bernoulli-

Euler beam model used. Because the rotary inertia and shear deformation of the beam are

neglected, the Bernoulli-Euler beam model produces much higher frequencies in the high fre-

quency range. In order to improve the accuracy for high frequency, Timoshenko beam model

is proposed for further investigation.

Figure 4 shows that the reconstructed responses obtained from the estimated parameters and

the measured responses have a reasonably good fitness.

CONCLUDING REMARKS

This paper proposes a distributed parameter model for the analysis of the modal charac-

teristics of NASA Mini-MAST truss. Wave equation and Bernoulli-Euler equation have been

used to describe the torsional and bending vibrations respectively. Closed-form solutions of the

PI)E's are derived. By using the Maximum Likelih_xxl Estimation methcxl to provide the opti-

mal nlalch between the exlx:rimental data and estimated responses, the coefficients in the PDE's

and the parameters dependent on the initial conditions are estimated and the modal properties

can be further determined. The results are comparable to those from other approaches. The

estimates of bending modes in the higher frequency range is expected to be improved by using

091
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Timoshenko beam model. Because the number of unknown parameters is greatly reduced in

the distributed parameter model and the maximum likelihood estimation is feasible based on the

derived closed form solutions of the PDE's, the proposed approach is particularly attractive for

its less computational burden for the large flexible structures.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Sketch of NASA Mini-MAST Truss

Equivalent Cantilevered Beam

Mini-MAST Sensor and Actuator Locations

Comparison of Reconstructed and Measured Responses
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Table1 StructuralParametersof Equivalent Continuum of NASA Mini-MAST Truss

A. Unadjustable Parameters

Length of the Beam L = 66.24 ft.

X-Coordinate of Bay 10 Xlo = 36.80 ft.

Radius of Gyration of the Section r = 1.6237 ft.

Mass per Length t,A = 0.1(176 slug/ft.

Ratios of Weights:

Bay 10-body/Beam: _ = 0.4760

Tip-body/Beam: _ = 1.4547

Ratios of Moments of Inertia:

Bay 10-body/Beam: _ = 0.6206

Tip-body/Beam: _ = 0.6206

B. Adjustable Parameters: Initial Values for Iteration

Longitudinal Stiffness EA = 10,530,000 Lb

Bending Rigidity El = 27,760,000 Lb.ft. 2

Torsional Rigidity Glp = 1,970,0(X1 Lb.ft. 2



Table2 Comparisonof EstimatedFrequencies(Hz)

15

A. BendingModes
No. F.E.A. D.P.A.

1 0.80 0.86 0.768

2 6.16 6.18 6.637

3 32.06 32.39 29,773
,,

4 44.86 43.23 50.923

5 70.18 67.27 102.973

B. TorsionalModes

F.E.A. E.R.A. D.P.A.

4.37 4.19 4.527

21,57 22.89 21.671
i_ lira I II

39.01 38.06 42.521
I I I I II

54.27 51.55

No.

1

2

3

4

5 72.87 67.27

56.509

70.559
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APPENDIX A

Solution to tile Bernouili-Euler Beam Equation

In using distributed parameter approach to identify the structural systems, one of the most

important procedures is to solve the partial differential equation.

Here, only solution to the Bemoulli-Euler beam equation will be provided. Solution to the

torsional vibration equation can be derived by following similar procedures.

The Bernoulli-Euler beam equation describing lateral bending is

Oty 1 c92y
+ - 0 (A.1)

C,qt.4 a 2 012

where, a 2 - El The general solution to Eq. (A.l) may be expressed as
-- pA"

y (x, t) = E ]r_(x) [Ai cos wit + Hi sin w,/] (A.2)
i

where, _ (:r) are the eigenfunctions which are of the form

"}"i (x) : CI sin kix -t- 6'2coskix + C'3sh k,x + Cach kix (A.3)

Now we derive the specific form of the solution for the equivalent Mini-MAST truss --

cantilevered beam with two lumped masses. The procedure consists of three steps as follows.

For the right segment, i.e. :r = xl0 ,-_ I.

The PDE for the lateral vibration of the right segment is

04yn 1 02yn
+ = 0 (A.4)

9x4 a 20t 2

The boundary conditions for the free end (z = l) are:

(l,t) = o (A.5)(t,t) = (l,t)• g O_°

After the separatkm of variables

vl_(_:,t) = _5_(x) T (0

899



we have a _t_ - ()DE,

_l,'llll_t (_) - k4yR(.) = 0 (A.6)

with B.C.'s

r]l (0 = 0"V'" _,Pr_l k 4* ;t (t) = - _St(t)
rvb

(A.7)

The general solution to Eq. (A.6) and tile corresponding derivatives are as follows,

YJt (x) = Ct sin k:c + C2 cos kx + Cashkx + C4chkx

r!

l R (x) = K (C'l cos kx - C.z sin kx + Cachkx + C4shkx)

• IIi It (x) = /(:t ( -C'I sin kx -- C'2 cos kx + C3shkx -÷-C,lchkx)
(A.8)

Y"' (x) = h "3 (--Cl cos kx + Ca sin kx + Cachkx + C4Mtkx)R

By using the B.C., we have

(A.9)

where,

gl (kl) = cos klchkl + sin klshkl

g., (kl) = cos klchkl - siu klahkl

g3 (kl) = cos klMLkl + siu klchkl

g4 ( kl) = cos kIMtkl - sin klchkl

Thus, t_t (x) and its derivatives can be expressed in terms of the coefficients C3 and C4.

(A. lO)

¢c4 [ha(kt)_in k_ + h:,(kt),:o_ k. + _h_:x]

Yl_ (x) = C'3K [hi ( kl) cos kx - h4 (kl) sin kx + chkx]

tC,111( [ha ( kl) cos kx - It,,

l)_(a:)" = Cal('[-hl'"" (klJsiuk,-

(kl) siu kx + M, kx]

h4 (kl) coskx + _hkx]
(A.11)

+C4K 2 [-ha (kl)sinkx - h2 (kl)coskx + chkx]

rillIt (x) =- C3 K3 [-hi (kl) coskx + h4 (kl)sinkx + chkx]

+C4K a [-ha (kl)coskx + h2 (kl) sinkx + shkx]

9C)0 A.2



where,
h, (kl) = gi (kl) + 2_klc,,sklshkl

ha(k/) = 93(ki) + 2_klcosklchkl

ha(kl) = ga(kl) - 2_; klsin klshkl

(A.12)

St__m_22 For the left segment, i.e. x = 0 ,_ xlo.

The PDE for the lateral vibration of tile left segment is

04yL 1 O2yt.
_+
Ox 4 a2 Or2

=0 (A. 13)

Tile boundary conditions for tim fixed end (x = 0) are:

uL(0,t) = 0_(o,t)=o
After the separation of variables

(A.14)

w, (x,t) = t2 (x) T (t)

we have a l_ - ODE

.11111L (x) - K4_ (x) = O (A.15)

with B.C.'s

The general solution to Eq.

_2 (o) = o_2 (o) = o
(A.15) has the form of

(A.16)

Y/, (x) = dl sill kx + d2 cos kx + da_hkx + d4chkx (A.17)

By using the B.C., we can express Yr (x) and its derivatives in terms of the coefficients d3

and d4

_2 (x) = da (.hk. - _i,_to:,,)+ ,t4 (,:hk. - co_k_)

1_ (x) = ask (chkx - cos kx) + d4I< (shkx + sin kx)

)'_' (z) = d:_h'=' (M,X.:c + sin kx) + d4K 2 (,'hkx + ,:o_ kx)

L (x) d3/¢ 3 (chkx -F cos kx) + d4 Ks (shkx - sin kx)

(A.18)
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The compatible conditions at tile common point, x = xlo, between the two segments.

I. Tile lateral displacement must be tile same, i.e., ])"£(xto) = Y1l (a:lo). Thus,

,13 ( shkx,) - sin kzto) 4- d4 (chkzlo - cos kzlo)

= C3 [hi (kl)sin l,'xlo + h4 (kl)cos kxlo + shkzlo]

+C4 [h3 (kl)sill kzl0 + h2 (k/)cos k:clo + chkxlo] (A. 19)

II. Tile slope of tile center line of the beam must be the same, i.e, ]_ (zio) = ]1_'_(zio). Thus

d3 ( chkx lo - coskxl0) + d4 ( _hkz lu + sink.rl0)

- C' [hi (kl)c()skxio h4 (kl)sinkxlo + chkzlo]

+C'4 [/,3 ( kl) cos kz to - h2 (kl) sin kx lo + .shkx lo] (A.20)

Ill. The bending moment must be tile same, i.e, ]__' (xio) v-,, (:rio). Thus,• ---- "R

(t3 (_hk:vto + si,l kxio) + (l.t (chkxlo + cos k:cto)

= C'3 [-hi (kl) sill kXlO - h.l (kl) cos kxlo + Mlka'lo]

-t C.',t [-h3 (kl) sin kxlo -- h2 ( kl) cos kx lo + chkxlo] (A.21)

IV. Because of the inertia of the lumped weight Wlo, tile shear has a jump at x = Xlo, i.e.,

Eli'[" (:rio) T _rv"' IVIo= _-, n (xio) T + --I_. (_lo) <9
9

which yields

• .. (xlo) - T--_btk YL (:_l(,)
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Thus

d3 ( chkx lo + cos kx |o ) + d4 (shkx lo - sinkxlo)

= C3 [-hi (kl) coskxlo + h4(kl)sinkzlo + chkxlo]

+C'4 I-h3 (kl)cos kx lo + h2 (kl)sin kxlo + shkxio]

lVlo kl Ida (shkx lo - sin kx lo ) + d4 (chkx lo - cos kxt0)] (A.22)

Then a set of equations forms from Eq. (A. 19) to Eq. (A.22)

C3_hk:clO + C,lchkxlo - d3_hkxlo - d4chkxlo = 0

C3 (hi sin kx io -I- ha co_ kx io ) + C4 (ha sill kx lo + he cos kx lo )

+d3 sin kxl0 + dl coskxl0 = 0

C3 (hi co,'s kxlo - h.l sill kxlo + chkxlo) + C4(h3 cos kxlo

-h,, sin kXlO + ,_hkX.lO) + d3 (cos kxto - chkxlo)

-all (sin kxlo + Mikxlo) = 0

[
w chkxlo)] 0+d,t t(-2_hkxlo) + _kl (cos kXlO -- =

(A.23)

Tile condition for set (A.23)

(A,23) equals to zero, that is

_tlX (:tlX

DE'I"

h I SNX+htL:SX h33"NX_h2C'_'X

h I CSX --h 4 ..qNX 4- C IIX

2(,' I1 X

having non-trivial solution is that the determinant of the set

--._'tlX --CIt X

SN X C._'X

h3CSX-h2SNX_SIIX CSX--CflX -._NX-SIIX

_s. x -_c'u x"_-_b kt(s_ x-sll x _ -2S'" X* 2_b *t(CSX-_'" X)

=o

(A,24)

A.5
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Actually, Eq. (A.24) is the characteristic equation of the Bernoulli-Euler beam equation used

in this paper, from which the eigenvalues Ki will be derived. Solving the characteristic equation

by using binary searching technique, we can obtain the eigenvalues Ki,

Ki :-- 0.0172, 0.0507, 0.1074, 0.1405, 0.1998,

0.2258, 0.2263, 0.2268, 0.2278, 0.2283,...

After determining the eigenvalues Ki's we can solve the set (A.23) for the coefficients

C'a, C4, da and d4. In fact, there are infinite number of solutions to the set (A.23) because

C3, C.i, daand d4 are not totally independent. Assuming the solution to the set (A.23) is

C3 = oqCi

6'4 = fljC',

d3 = riCi

d,l = Ci

(A.25)

then, from Eqs. (A.I i) and (A.18) we have the characteristic functions

li (*) =

I _, (.c ) = ri ( M_k,x - sin kix) + ( chkix - cos kix )

I3_, (.) = a_ [h, (k,l) _i,, lqa, + h., (k,l) cos t'3 + _hk,x]

+/4i [ha (kil) sin kix + h,, (k,l) cos kil + chk, x]

0 < z < x,o

x,o _<x < l

(A.26)

By superposition, then, the solution to the PDE should be

where, cai = h'i2a.

i

= _ Yi (:_)[Aicosw,t + B, sinw,t]
i

(A.27)

904 A.6

vibration will be

(92y (99 04 y

m_ 2 + "0-7 + kOdr4 = 0 (A.28)

When proportional damping is taken into account, the PDE describing damped lateral



ttere, two parametersa and b, which relate the coefficients of tile PDE, are detined,

a = k _ E1

ra pA

2b- c
(A.29)

The substitution of y (:c, t) = y]_T, (t) }] (x) into Eq. (A.28) yields
!

+ + : o
i

which bears further a set of independent equations under the generalized coordinates 7', (t) by

the orthogonality property of the eigenfunctions,

,,_,7_,+ c,T, + k,T, = 0 (A.30)

where,
1

7iti = m li'd:c

I I

]c_= k 1,1 i a.c =

ci = c li'd,c

Eq. (A.30) can be expressed in modal form

r')

l ,"dx

generalized mass

generalized _tifflmSS

generalized daml)ing

(A.31)

where,

ci

711i

w2 k,
l|t

Itlt

Note that the damping ratio _i is related to the eigenvalue Ki through tile parameter a and b.

In fact,

1 ci 1 c b

_i - 2w,,, mi -- 2w,,, m ak_ (A.32)
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Eq. (A.31) turns out to be the equation of motion of a simple mass-spring-dashpot system.

Therefore, the ith-component of the response can be expressed as

T, (t) : ,:-(.,_..L (Ai c,,_o,_ t + I%_inwa, t) (A.33)

where,

ci c
_ico., = _ = _ = b

2m i 2m

,, ,,/i_(,,a.Jd,

Thus, Tj (t) can be expressed in terms of parameters a and b,

- b"

(A.34)

By SUl)crposition, liaally, tile solution to the Eq. (A.28) should be

,J(:., 0 = if_2}; (:,:)T, (t)
i

i

where, 1_ (x) are the eigenftmctions shown in Eq. (A.26).
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