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SUMMARY

This paper extends to flexible multibody systems the recent [1-6] results of the author

on the use of spatially recursive filtering and smoothing techniques to multibody dynamics.

The configuration analyzed is that of a mechanical system of flexible bodies joined together

by articulated joints. It is established that the composite flexible multibody mass matrix

34 can be factored as 34 = (I + K)P(I + K*) in which K is a lower-triangular factor, P

is a diagonal operator, and K* is an upper-triangular factor. The operators (I + K) and

P can be constructed by means of a spatially recursive Kalman filter that begins at the

tip of the system and proceeds inwardly toward the base. Similarly, the upper- triangular

factor (I + K*) is constructed by means of a corresponding outward smoothing recursion.

The inverse (I -/_) = (I + K) -1 of the causal factor (I + K) is also a lower-triangular

matrix. This inverse (I - /_) and its upper-triangular transpose (I - £*) can also be

computed by means of filtering and smoothing operations respectively. This means that

the inverse 34-1 of the mass matrix can be factored as 34-1 = (I - £*)D-1(I - £).

The foregoing factorization results are used to develop spatially recursive algorithms for

multlbody system inverse and forward dynamics. The algorithms are what is referred to

as Order N in the sense that the total number of arithmetic operations increases only

linearly with the number of bodies in the system.

1. INTRODUCTION

The problem of flexible multibody system forward dynamics consists of finding the

joint angle accelerations and the flexible body accelerations, given the applied moments

at the joints and the forces due to the elastic deformation of the flexible bodies in the

system. The closely related problem of inverse dynamics is to find the set of joint moments

that must be applied in order to achieve a prescribed set of system accelerations. These

problems are particularly important in the simulation and control design for systems which

are not readily tested in a ground laboratory. Examples of such systems include future

space manipulators (referred to as space cranes) to be used for handling and retrieval of

free-flying satellites and space platform modules. Flexible dynamics problems are also

encountered in multiarm manipulation of such flexible task objects as thermal blankets,

hoses, extensible cables, and spring-loaded mechanisms.

2. PROBLEM STATEMENT

Consider a mechanical system consisting of N flexible bodies numbered 1,..., N con-

nected together by N joints numbered 1,...,N to form a branch-free kinematic chain.

The bodies and joints are numbered in an increasing order that goes from the tip of the

907



system toward the base. Joint k in the sequence connects bodies k and k -t- 1. Joint 0 can

be selected at any arbitrary point in body 1.

A typical flexible body k is characterized by a finite-element model consisting of a

finite number of nodes defined at the spatial locations i. These locations are expressed in

a coordinate system attached to the body. The set of all finite-element nodes for body k

is denoted by 12(k), and the total number of nodes is Nk.

The finite-element model for body k also involves a mass matrix mk and a stiffness

matrix sk, which are assumed to be obtained from a stand-alone structural dynamics

analysis of this body. It is assumed that the flexible body mass and stiffness matrices

are time-independent quantities computed in advance. Alternatively, the flexible body

mass and stiffness properties are characterized by pre-computed vibrational modes and

the corresponding modal frequencies.

A 6-dimensional displacement at node i of body k is denoted by uk(i) = [a(i), x(i)] in

which a(i) is a 3-dimensional rotation and z(i) is a 3-dimensional translation. These nodal

displacements are expressed in a local coordinate frame attached to body k. The corre-

sponding velocities and accelerations are respectively _k (i) and fik (i) and are also expressed

in the same local coordinate frame. The displacement field Uk = [Uk(1),''', Uk(Nk)] pro-

duces an elastic force field fk = Ilk(i),---, fk(Nk)] which can be computed as fk -- --skuk
in terms of the stiffness matrix sk.

The joints labeled are single-degree-of-freedom joints, which allow rotation along the

joint axis only. For these joints, h(k) is a unit vector along the axis of rotation; r(k) is

the active moment applied about the axis ofjointk; 8(k) is the corresponding joint angle

which is positive in the right-hand-sense about h(k). The relative angular velocity and
acceleration at joint k are denoted by 0(k) and 0(k).

The objective in forward d.ynamics is to outline a recursive method for computation

of the joint-angle accelerations 0(k) and the flexible-body nodal accelerations fik (i) for i in

fl(k), given the applied moments F(k) and the elastic forces fk. The objective in inverse

dynamics is to compute the set of forces and moments that must be applied in order to

achieve a set of prescribed accelerations.

3. STATE SPACE MODEL

The following state space model [1] for propagation of forces, velocities and accelera-

tions makes it easy to express the recursive dynamics algorithms.

The term spatial force refers to a 6 x 1 vector X(i) whose first three components are

pure moments and whose last three components are pure translational forces. Similarly,

the term spatial velocity V(i) describes a 6 x 1 vector of angular and linear velocities.

The spatial accelerations ),(i) are obtained by appropriate [1] time differentiation of the

spatial velocities V(i). If the argument k is used, the corresponding force X(k), velocity
Y(k), and acceleration ),(k) are defined at a typical joint k. If the argument i is used, the

corresponding force Xk (i) velocity Vk (i) and acceleration ,kk (i) are defined at node i of the

body k finite-element model.

The vector X + (k) is used to represent the spatial force on the "positive" side of joint

k. The + superscript indicates that the corresponding variable is evaluated at a point on

body k + 1 immediately adjacent and on the "positive" side, toward the base, of joint k.
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The notation X-(k) is used to represent the force on the "negative", toward the tip, side

of hinge k. Similarly, the notation V+(k) and V-(k) is used respectively for the spatial

velocity on the positive and negative sides of joint k.

To propagate forces, velocities and accelerations between the two typical spatial loca-

tions i and k in the multibody system, define the "transition" matrix [1]

(3.1)

in which L(k,i) is the vector from point k to point i; and L(k,i) is the 3 x 3 matrix

equivalent to L(k, i) x (.). This matrix has the following semi-group properties typically

associated with a transition matrix for a discrete linear state space system:

¢(k,m) = ¢(k,0¢(4m); ¢(k,k) = u (3.2)

and ¢-l(k,m) -- ¢(m,k). This matrix is used in the next section to develop spatial

recursions for the kinematics and dynamics of the flexible multibody problem.

4. FLEXIBLE MULTIBODY KINEMATICS

4.1 Kinematics Internal to a Typical Flexible Body

The velocity V + (k) on the positive side of the joint k and the velocity Vk (i) at nodal

point i in body k are related by

Vk(i) =¢T(k,i)V+(k) +vk(i) for all i C 12(k) (4.1)

in which

vk(i) = ¢T(k,i)HT(k)O(k) + izk(i) i= 1,...,N_-I

vk(i) = CT(k,i)HT(k)O(k) i = Nk (4.2)

In Eqs. 4.1 and 4.2, tik (i) denotes the relative spatial velocity of the mass element at node

i. The set _2(k) is the set of all nodes in the finite-element model for body k. Note that

the last nodal point Nk in body k is assumed to be rigidly attached to the negative side

of joint k. Hence, this point does not undergo an elastic displacement with respect to the

joint k. This is reflected in Eq. (4.2).

4.2 Recursive Kinematics for Flexible Multibody System

The sequence of velocities V + (k) satisfies

LOOP k = N- 1,--., 1

V+(k) = CT(k + 1,k)V+(k + 1)+ cT(k + 1, k)vk+l(1) (4.3)

END LOOP;

with the terminal condition V + (N+I) = 0. By definition, Vk+l (1) is the first 6-dimensional

component of the relative velocity vector Vk+l, i. e., Vk ---- [Vk(1),''',vk(N)]. Note also
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that vg+i = 0. The 6x6N matrix C T (k+ 1,k) is defined as C T (k+ 1,k) = [¢T (1, k),.-. ,0].

Outward integration of this iterative equation leads to

N-1

V+(k) = E cT(j'k)CT(j + l'j)vy+i

j=k

4.3 Recursive Kinematics Using Spatial Operators

To express the kinematic relationships in Eqs. (4.1)-(4.3) in terms of an equivalent

spatial operator [4] notation, define first the spatial operators @, h, C, B, and H as

0¢(2,i) I ...= . . .. h = [I,0]
o

¢(N, 1) ¢(N, 2)..-

C

0 0 -., 0 i/

C(2,1) 0 .-. 0

"- 0

0 0 ... C(N,N-1)

B : diag[B(1),...,B(N)] H = diag[H(1),...

in which the spatial operators B(k) are defined as

,H(N)]

B(k) = [¢(k, 1),¢(k, 2),...,¢(k, Nk)]

Based on this notation, the kinematic relationships in Eqs (4.1)-(4.3) can be expressed as

V = B*V + + v (4.4)

v = B*H*O + h*_; v = _/'2 (4.5)

V + = @*C*v (4.6)

with V = [V1,'",VN], v = [vi,.'',vg], _* = [h*,S*H*], X = [fi,0], u = [ui,'.',u;v]

and 0 = [01,." ",Owl. Combination of (4.4) and (4.6) leads to

v : (I + B*e*C*),, (4.7)

While the kinematic relationships in (4.4)-(4.7) apply to spatial velocities, similar relation-

ships can be derived for the corresponding accelerations by appropriate [1] time differen-
tiation.
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RESULT 5.1.

of the composite velocity vector ]( ---- lit, O] as

5. INVERSE DYNAMICS

The total kinetic energy in the multibody system can be computed in term

K. E . = (1/2)._'34._

in which the system mass matrix 34 is

34 = _(I + C_B)m(I + B*¢*C*)_* (5.1)

Eqs. (4.4)-(4.7) and (5.1) lead to a recursive inverse dynamics solution consisting

of an outward sweep in which a sequence of system accelerations are computed. These

accelerations are then multiplied by the appropriate blocks mk of the mass matrix m in

(5.1). Then, an inward recursion is performed to compute the required applied moments.

Because of the factorization 34 = _(I + C_B)rn(I + B*_*C*))/* of the mass matrix 34,
these two recursions are equivalent to multiplication of the system accelerations ._ by the

composite mass matrix 34.

6. MULTIRIGID SYSTEM: A SPECIAL CASE

If the flexible bodies in the system are rigidized, by setting the nodal point velocities

to zero, then the flexible body mass matrix of Sec. (5) becomes the multirigid body mass

matrix analyzed by the author in [1-4].

Multirigid Body Mass Matrix. The multirigid body mass matrix

34 = H_M_*H* (6.1)

in which

M = BmB* = diag[M(1),... ,M(N)] (6.2)

can be obtained from the flexible body mass matrix by setting the elastic state-to-output

operator h to zero. The diagonal block M(k) in Eq. (6.2) is the rigid spatial mass matrix

of the rigidized body k about joint k.

Recursive Evaluation of the Multirigid Body Mass Matrix

The elements rnR(k,j) of the mass matrix in (6.1) can be computed by

R(0) = 0

LOOP k = 1,...,N

R(k) = ¢(k,k- 1)R(k- 1)¢T(k,k - 1)+ M(k)

mn(k,k) = H(k)R(k)HT(k)

x(k) =r(k)gT(k)
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Loop i-- k+ I,-..,N

End i Loop;

END k LOOP;

x(i) = ¢(i,i- 1)x(i- 1)

mR(i,k) = H(i)x(i)

7. FLEXIBLE SYSTEM MASS MATRIX

The goal of this section is to arrive at a spatially recursive algorithm that computes

the flexible multibody system mass matrix by means of an inward recursion from the tip

to the base. The approach used to do this is to first establish the identity in (7.1) below.

Result 7.1. The matrix (I + C C B) m( I + B* _ * C* ) in the flexible multibody system mass

matrix N can be expressed as

(x + CtB)m(I + B*¢*C*) = r + CtBr + rB*¢'C* (7.1)

in which r = rn + CRC*. Furthermore, the diagonal matrix r = diag[r(1),... ,r(N)] is a

block-diagonal matrix whose diagonal blocks r (k) are given by

r(k) = re(k) + C(k,k- 1)R(k - 1)CT(k,k - 1) (7.2)

Inward Recursion for the Flexible Mass Matrix

LOOP k = 1,--.,N;

R(0) =0

r(k) = rn(k) + C(k,k- 1)R(k- 1)CT(k,k - 1)

N(k,k) = _(k)r(k)gT(k)

•(k)= _(k)_r(k)

Loop i = k + 1,...,N;

End i Loop;

END k LOOP;

Spatial Operator Notation

x(i) = ¢(i,i- 1)x(i- 1)

_(i,k) = U(;)_:(i)

In spatial operator notation, the above recursions for the diagonal blocks of the mass

matrix become

r = CRC* + rn; R = BrB*; r = CBrB*C* + m



Theaboveresultsareanextensionto flexiblemultibody systemsof the results obtained

earlier by the author [1-4] for multirigid body systems.

8. INNOVATIONS FACTORIZATION

OF THE MASS MATRIX AND ITS INVERSE

The flexible multibody system mass matrix N can be factored as

.M = (I + K)D(I + K*) (8.1)

in which the causal operator K and the diagonal operator P are

(0K = \ H_Bg HCG ]' p =

The Kalman gain operators g and G are defined in terms of the following Riccati-like

equations

p = C(P - GDG*)C* + m (8.2a)

P = B(p - gdg*)B* (8.2b)

G = PH*D-1; g = ph*d -1

D = HPH*; d = hph*

Inverse of the Causal Factor (I + K)

(i + K) = z- z (s.3)

in which /2 is the causal operator

,C.= ( hC_Bg hCCG )H ff2B g HOG

Some of the spatial operators used in this result are defined as

B(k) = B(k)[I- g(k)h(k)]; B = diag[B(1),... ,B(N)]

C(k,k - 1) = C(k,k- 1)[I- a(k- 1)H(k - 1)]

0 0 .-. 0 0)

g(2,1) 0 ... 0 0
5=

0 0 ... C(N,N-1) 0

¢(k,i) = B(k)C(k,k - 1)..-/_(i + 1)C(i + 1,i)

k-1 k

¢ = _ ¢(k,i); ,0 = _ ¢(k,i)[I- a(i)H(i)l
i=l i-----1

This states that the causal factor I + K is causally invertible. Furthermore it states

that the inverse I - £ can be computed by means of a spatially recursive Kalman filter.

This Kalman filter will be described in more detail in the following section. Here, the

immediate objective is to obtain the following factorization for the inverse _-1 of the

flexible multibody system mass matrix _. bigskip
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Innovations Factorization of the Mass Matrix Inverse.

.M-I = (I- 2.*)p-_(I- _.) (8.4)

This result states that the inverse of the mass matrix is the product of an anticausal

factor, a diagonal operator, and a causal factor. Recall that the equations of motion for

the flexible multibody system, disregarding without loss of generality the effects of velocity

dependent coriolis and gyroscopic terms, axe:

x2 = _; 2 = _t-15 (8.5)

in which 7 = [f, F] is a composite vector made up of the elastic forces f and the applied

joint moments F.

Use of (8.4) in (8.5) leads to

2 = (x- z')D-1CZ- L)_

This equation states that the known forces jr must be operated upon by a two-stage filtering

and smoothing process in order to obtain the system accelerations J(. The first operation

involves the causal factor (I -/_) which can be mechanized by a spatially recursive Kalman

filter. The result of the first stage is an innovations process defined as (I - E)F and a

residual acceleration process defined as P-I(I- f.)F. This residual process is operated

upon by an outward smoothing computation represented by the anticausal factor (I-C*) to
.o

obtain the system accelerations X. These filtering and smoothing operations are described

more completely in the following section.

9. RECURSIVE :FORWARD DYNAMICS

Riccati Equation for Articulated Inertias

P+(0) =0 (9.1)

LOOP k = 1,--.,N;

Pk mk+ Ck,k-lP+(k T-- _ 1)Ck,k_ 1

dk = hkp; h_

gk = p; h T d; 1

pZ = (t- g,:h,:)p;

P-(k)= E E ¢(k,i)p+(i,j)¢T(k,J)

lea(k) ien(k)

D(k) = H(k)P-(k)HT(k)

(9.2)

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)
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G(k) = P-(k)HT(k)D-I(k)

P+(k) = [I- a(k)H(k)]P-(k)

(9.8)

(9.9)

END LOOP;

This discrete-step Riccati-like equation computes a sequence of rigid Kalman gains

G(k) defined at every joint angle k and a corresponding sequence of flexible body Kalman

gains gk = 9_:(i,j) defined for every pair of nodes i,j in body k. This inward recursion is

performed simultaneously with a filtering algorithm described below.

INWARD FILTERING: SPATIAL FORCES

Z + (0) = 0 (9.10)

LOOP k = 1,...,N;

z-(k) = Ck,k_lZ+(k- 1) (9.11)

e; = fk -- hkzk (9.12)

e+ = dkle_ (9.13)

z_+ = z; + 9he; (9.14)

z-(k)= _ ¢(k,i)zZ(i) (9.i_)

E-(k) = F(k)- H(k)Z-(k) (9.16)

E+(k) =E-(k)/D(k) (9.17)

Z+(k) = Z-(k) + G(k)Z-(k) (9.18)

END LOOP;

The result of this filtering stage is a sequence of residuals E + (k) defined at every joint

k and a sequence of flexible body residuals e+ (i) defined at every nodal element i of every

flexible body k.

OUTWARD SMOOTHING: SPATIAL ACCELERATIONS

A+(N) =0 (9.19)

LOOP k -- N,..-,1;

O(k) = E+(k) - CY(k)A+(k) (9.20)
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END LOOP;

A-(k) = A+(k) + HT(k)O(k)

a+ (i) = cT (k,i)ak(Nk)

Nk -- 1

j=l

A+(k - 1) -=-CT(k,k - 1)a k

(9.21)

(9.22)

(9.23)

(9.24)

The result of this smoothing stage is a sequence of joint angle accelerations 0(k) and

flexible body accelerations ilk(i).

PHYSICAL INTERPRETATION

The forward dynamics problem is solved by a spatially recursive Kalman filtering

process which begins at the tip of the system and proceeds inwardly toward the base. This

filtering algorithm computes: (1) a sequence of spatial forces z(k) at the flexible bodies

and Z(k) at the joints; (2) a sequence of residuals e+(k) and E+(k); and (3) a sequence of

Kalman gains gk at the flexible bodies and G(k) at the joints. The filtering stage uses as

an input the elastic forces f(k) at body k and the applied joint moments F(k) at joint k.

The residuals and the Kalman gains are stored for subsequent processing by an outward

smoothing stage.
The smoothing stage is an outwardly recursive process which begins at the base of

the system and proceeds from body to body toward the tip. The smoother computes

a sequence of spatial accelerations ak at the flexible bodies and A(k) at the joints. The

smoother also computes a sequence of relative elastic accelerations ik at the flexible bodies

and joint angle accelerations 0(k) at the joints.

Riccati Equation

One of the central features of the inward filtering algorithm is the spatial Riccati

equation in Eqs. (9.1)-(9.9) which accumulates the outboard spatial inertia as the recursive

computations are performed.

This Riccati equation begins at the tip of the system with the initial condition P+ (0) =

0 in Eq. (9.1). This initial condition means physically that there is no spatial inertia

outboard of this fictitious joint.

Eq. (9.2) is used to add to the body k free-free mass matrix mk the spatial inertia of

a fictitious articulated rigid body which is equivalent to collection of bodies outboard of

joint k - 1. This equivalent inertia is transferred from the joint k - 1 to the attachment

nodal point 1 in body k by the transition operator C(k, k - 1).

Eq. (9.3) computes the flexible body k articulated mass matrix. This matrix can be

viewed as a reduced-order body k mass matrix. The order reduction occurs because the

operator h(k) has the effect of constraining the last nodal point Nk in the finite-element

model of body k.
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The Kalman gain g(k) in Eq. (9.4) is a 6N × 6(N- 1) matrix which is used to compute

the projection operator [I- g(k)h(k)]. This projection operator, when multiplied in (9.5)

by the matrix p- (k) leads to the updated matrix p+ (k) which has a null space of dimension

N - 6 in the direction of the operator h(k). Eqs. (9.6) transfers the flexible articulated

body inertia to an equivalent rigid body mass matrix at joint k.

Eqs. (9.7)-(9.9) are identical to the computations involved in crossing joint k in the

multirigid body forward dynamics algorithm in [1]. They involve the following computa-

tions: (1) evaluation of the scalar articulated inertia D(k) about joint k. This inertia is

the inertia about joint k of the composite body outboard of joint k, with all of the degrees

of freedom outboard of joint k being unlocked; (2) computation of the Kalman gain G(k)

in Eq. (9.8) to determine the projection operator [I- G(k)H(k)] in Eq. (9.9). When this

operator pre- multiplies the rigid-body spatial inertia P-(k), the updated spatial articu-

lated P+ (k) results. The spatial inertia P+ (k) is that of a fictitious body which has no

inertia along the joint k axis.

After crossing the joint k in Eq. (9.9), the algorithm lets k --* k + 1 and returns to

Eq. (9.2). The process of crossing a flexible body and a joint has been completed.

Filtering

The filtering algorithm in Eqs. (9.10)-(9.18) is a spatially recursive Kalman filter

based on an inward sequence which is performed together with the Riccati equation just

described. The Kalman filter begins at the tip of the system, the fictitious point "0", with

the initial condition Z+(0) -- 0 in Eq. (9.10), which indicates that there are no external

applied forces at this point. This begins a recursive process which takes as inputs the

sequence of elastic forces f(k) and the sequence of applied joint moments F(k). The out-

puts of this process are a sequence of flexible-body residuals e+ (k) and joint axis residuals

E+(k).

Eqs. (9.11)-(9.13) compute the flexible-body residual e+(k) at body k. First, Eq.

(9.11) determines the spatial force z-(k) that exists in body k due to the previously

determined force Z +(k - 1) at joint k - 1 reflecting the presence of all of the bodies

outboard of this joint. In Eq. (9.11), this force is multiplied by the operator h(k) to obtain

the predicted output force h(k)z-(k). The flexible body innovations e-(k) in Eq. (9.12)

can be viewed as an "error" quantity equal to the difference between the actual force f(k)

due to the body stiffness and the predicted force h(k)z-(k) due to the preceding bodies

1,..., k - 1 outboard of joint k - 1. The residual acceleration process e+ (k) is computed

from e- (k) by dividing by the articulated spatial mass matrix d(k) which emerges from the

Riccati equation. This division is indicated in Eq. (9.13). The flexible body residual e+ (k)

has a very interesting physical interpretation. It corresponds to the inertial acceleration

that the finite-element nodes in body k would undergo, if the "future" degrees of freedom

were locked.

The computation in Eq. (9.14), which determines the updated spatial force distribu-

tion z + (k) in body k, has the effect of unlocking the 6 degrees of freedom associated with

the all of the nodal points in body k except the last one.

Eq. (9.15) sums the spatial force estimates z +(k) at the nodal points in body k and

transfers them to joint k. The result of this summation is the 6-dimensional spatial force

Z-(k). This force reflects at joint k the effect of all of the preceding bodies. The next



steps,conductedin Eqs. (9.16)- (9.18),crossor unlock joint k. These steps are identical

to that used in the multirigid body algorithms [1] and result in the updated spatial force

Z+(k) on the positive, inward toward the base, of joint k.

At this juncture, the filtering algorithm lets k --* k + 1 and returns to Eq. (9.11) to
start the computations necessary to cross the next body.

Smoothing

The smoothing process in Eqs. (9.19)-(9.26) is an outward recursion which starts

at the base of the system and proceeds outwardly to its tip. The smoothing process

produces a sequence of rigid-body spatial accelerations A(k) at the joints and of flexible-

body accelerations a(k) at the nodal points of the flexible bodies. It also produces the

relative accelerations _2(k) at the flexible bodies and the joint-angle accelerations 0(k) at

the joints. The smoother uses as inputs the sequences of residual accelerations e+ (k) and

E+(k). It also uses the Kalman gain sequences g(k) at the flexible bodies and G(k) at the

joints.

The outward smoothing sequence begins with the terminal condition A+(N) = O,

which corresponds to the assumption that the base of the system is immobile. Eqs. (9.20)

and (9.21) can be viewed as specifying the computations necessary to cross joint k in the
outward direction.

Eq. (9.22) computes the spatial acceleration ak(Nk) of the attachment point Nk.

Eq. (9.23) computes the spatial accelerations a+(i) a t the internal finite-element nodes

of the flexible body k. The "+" indicates that the corresponding acceleration is that of

a rigid body frame attached to a rigidized flexible body obtained by setting the elastic

displacements to zero. The elastic displacement accelerations at the finite-element nodes

are computed by Eq. (9.24). Eq. (9.25) then computes the total inertial accelerations

of the finite- element nodes in body k. The spatial acceleration of the first node, also

referred as an attachment node, is then propagated by Eq. (9.26) to the positive side of

joint k - 1. At this stage, the algorithm lets k --* k - 1 and returns to Eq. (9.20) to begin

the computations associated with the next body k - 1.

Modal Expansions

The above algorithm has been expressed in terms of nodal coordinates to model the

flexibility of each of the flexible bodies in the system. In many cases, it is more conve-

nient to use what are typically referred to as modal coordinates. A modal model for a

flexible body is obtained by doing a modal or eigenfunction analysis of the finite-element

model for the same body. Use of these expansions leads to a spatially recursive forward

dynamics algorithm that is almost identical in form to that of (9.1)-(9.26) above, but in

which the quantities (displacements, velocities, accelerations, forces, and mass) involved

are interpreted in terms of modal coordinates as opposed to the nodal coordinates used in

(9.1)-(9.26).

10. CONCLUDING REMARKS

The inverse and forward dynamics problems for flexible multibody systems have been

solved using the techniques of spatially recursive Kalman filtering and smoothing. These

algorithms are easily developed using a set of identities associated with mass matrix factor-

ization and inversion. These identities are easily derived using the spatial operator algebra
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developed by the author. Current work is aimed at computational experiments with the

described algorithms and at modeling for control design of limber manipulator systems. It

is also aimed at handling and manipulation of flexible objects.
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