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In this paper, a model for the three-dimensional Spacecraft COntrol
Laboraory Experiment (SCOLE) is developed. The objective behind this method
of modeling is to utilize the basic partial differntial equations of motion for this
distributed parameter system and not to use the modal expansion in developing
the model. The final model obtained is in terms of a transfer function matrix

which relates the flexible mast parameters like displacement, slope, shear stress
etc. to external forces and moments.

1. INTRODUCTION

It is widely recognized that the future space exploration would require a
wide array of very large and flexible spacecrafts with very stringent pointing and
vibration suppression requirements. Some of these spacerafts would also be
deployed as an assemblage of a number of flexible members. In order to design
control systems to meet these requirements, accurate dynamical models of the
flexible spacrafts would have to obtained. Generally, the basic dynamical equa-
tions are developed in terms of a system of partial differential equations and one
common approach is to formaulate solutions of these equations in terms of an
infinite modal expansions and use this approach for developing control systems.

In this paper, an attempt is made to work with the basic partial differential
equations and by using Laplace Transforms and incorporating boundary condition
relationships an alternate modeling scheme is proposed. This methodolgy is based
on extensive details documented in reference [1 ] and is applied to NASA Langley
Research Center's SCOLE problem [2,3].

2. NOMENCLATURE

Ux(t,z)

Ox(t,z)

M (t,z)

t,z )

fx(t,z)

Displacement at point z in roll bending

Slope of beam at point z in roll bending

Bending moment at point z in roll bending

Shear stress at point z in roll bending

External force per unit length in roll bending
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I,

Bx

Ux(t,z)

oy(t,z)

My(t,z)

%(t,z)

fy(t,z)

Moment of inertia of area about neutral axis in roll bending

Damping in roll bending

Displacement at point z in pitch bending

Slope of beam at point z in pitch bending

Bending at beam at point z in pitch bending

Shear stress at point z in pich bending

External force per unit length in pitch bending

Iy Moment of inertia of area about neutral axis in pitch bending

By Damping in pitch bending

W(t, z) The angular displacement at z of an element dz of the beam

lp The polar moment of inertia of the cross-section

pp The mass per unit volume

IpG The torsional stiffness of the beam

G The shear modulus of the material

I Modulus of elsticity

p Mass per unit length

3. METHODOLOGY

The partial differential equations governing the roll bending motion are

OUx

_z - 0x (1)

This is obtained from the definition of slope.

_0x 1 1.__1.__M= -_Mx = (2)
_z (EI)x - (El) x

This equation is based on beam theory and here (El)x and (EI)y are considered
equal and represented by (El)

_Mx

_z - ox (3)

This is obtained from the definition of bending moment.
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3z -P 3t 2 fx(t,z)
(4)

3x

This equation is based on Newton's law of motion and the term fx(t,z) = -Bx'-_t
if there is no external force per unit length on the beam.

The corresponding equations for pitch bending are

= 0y (5)
3z

= - My (6)
3z (El)y

_z = _y (7)

_ -fy(t,z)
3z = 9 3t 2

(8)

The following equations describe torsional bending

-_- = --L-1 T

_z 1pc
This is based on torsional flexibility.

(9)

0T_zz_ PlP fi_-'_-_t2 - M_/(t,z) (10)

This equation .,is based on Newton's Law of motion and the term

Mq(t,z) = -Bv'_ --v--if there is no external torque per unit length of the beam.
(lz

Defining the state variables as

q2

q3

q4

i q5

i q8

q9

qlo

Ox

M_
_x

Uy

= Oy , (11)
My
%

T



the following equations are obtained

_q 1

_z " =ql
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Oq2 1

Oz (El) q3

Oq3

=q4

_=0q4 0 2
9(-_T)q 1 - fx(t,z)Oz ot"

(12)

_q8 0 z

= p(0-_')q5 -fy(t,z)

Oq9 1
= _q 10

Oz IpG

Oq lo 0 2

-_z - plp(_t2 )q9 - Mv(t'z)

These equations can be expressed in the form

Oci + F2 _ Cl + u(t,z)
0-i = FOq + F1 0-i Ot7 - (13)

Taking Laplace Transforms of the previous matrix-vector equation, the following
equation is obtained.
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dQ = (F 0 + FlS + F2s 2) Q -Flq(O,z) -F2 [ _(0,z) + sq(O,z) ] + U(s,z)

dQ = (F 0 + FlS + F2 sz) Q + U"'(s,z) (14)
dz _

Here Flis a 10 x 10 null matrix. The matrix F0 is a 10 x 10 matrix with zeros
except the following nonzero elements.

Fo(21) = 1

-1
F0(3,2) -

(El)

F0(4,3) = 1

-1
Fo(7,6) -

(EI)

Fo(8,7)- 1

1

Fo(9,9) =

The matrix F2 is also a 10 x 10 matrix with zero entries except for the following
elements

F2(4,1) = p

F2(8,5) = 19

Fz(lO,9)=plp

The equa.tion (14) represents a linear system and this can be solved by using
the state-transmon matrix as

Q(s,z) = H(s,z - zo) Q(s, zo) + _ H(s,z -_)_(s,_)d_ (15)

50

The SCOLE model is of finite length; i.e. 0 < z < L. Then, at z = L,

L

Q(s,L) - H(s,L) Q(s,O) + _ H(s,L -_)_(s,_)d_
-- 0

(16)
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To determine Q(s,L) and Q(s,0) which in tum would allow determination of
Q(s,z) for any-z-between 0-and L, ten terminal relations must be specified. These
terminal relations can be expressed in the form of ten ordinary differential equa-
tions in the following vector-matrix form using linear differenual operators.

M (D) q(t,0) + N (D) q(t,L) = F(t) (17)

Here, F(t) represents external control forcing functions ( the physical inputs like
forces"6n the flexible beam or shuttle moments etc. or linear combinations thereof

). Taking Laplace Transforms on both the sides of equation (17), the following
vector-matrix equation is obtained.

M (s) Q(s,O) + N(s) Q(S,L) = F(s) (18)

The vector F(s) is the sum of the Laplace Transforms of F(t) and any initial con-
dition terms_The termination is said to bo homogeneous ir-F(s) = 0.

It is important to note here that each of the differential equations given in
(17) in case of a distributed parameter system may involve quantities at both ends
of the distributed system. This represents termination characteristics of a feed-
back system where quantities at one end are made to depend on quantities at the
other. The boundary conditions for SCOLE model without any external forcing
functions are given as follows.

At the shuttle end where z = 0,

0 Ux

(El)_z2 (O,t) = 0 Moment (19a)

3 uy (O,t) = 0 Moment (19b)
(El) 3z 2

0 Ux

(EI)_z 3 (O,t) = 0 ShearForce (19c)

3 Uy (o,t) = 0 ShearForce (19d)
(El) 3z3

(lpG) 30"_z (0,t) = 0 Torquq (19e)

At the reflector end where z = L, the corresponding boundary conditions are

Ux
(El)_'7-g" (L,t) = 0 (20a)

dz _
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(EI) 8z 2 (L,t) = 0

_u_
(et)_ (L,t)= o

(L,t) = 0
(El) Oz 3
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(20b)

(20c)

(20d)

(lpG) _--_L (L,t) = 0
8z (20e)

In order to obtain a complete representation of the system governed by equa-
tions (16) and (18), we substitute (16) into (18) with z 0 = 0 and z = L;

[ M(s) +N(s) H(s,L) ] Q(s,O) = V(s) (21)

where,

V(s ) = F(s ) - N(s ) f H(s,L - _)_(s,_)d_ (22)

It can be shown that the relationship given in (17) is independent and as a result
[ M(s) + N(s)H(s) ] is of rank I0 for SCOLE and so has an inverse. Hence, we
can write

Q(s,O) = [ M(s) + N(s)H(s,L) ]-1V(s) (23)

Thus,

Z

Q(,;,z) = H(s,z) [ M(s) + N(s)H(s,L) l-iV(s) + f H(s,z-_)_(s,_)d_ (24)
-- 0

If there are no distributed forcing terms and initial conditions, equation (24) can
be written as

Q(s,z) = H(s,z) [ M(s) + N(s)H(s,L) ] -IF(s) (25)

where F(s) is the Laplace transform of the external forcing terms in (16). Hence

the maffix of transfer functions from F(s) to Q(s,z) is given by

G(s,z) = H(s,z) [ M(s) + N(s)H(s,L ] -1 (26)


