
\

|

N91-22729

Software: Where We Are & What

is Required in the Future
Jerry Cohen

Boeing Aerospace and Electronics

High

Technology
Center

II I

Flight Critical Software: Current Status and Future Direction

Gerald C. Cohen

Boeing Aerospace & Electronics

High Technology Center

OcttHl,er |% ItPIlOIl:)4,1_ld HT_I

J

High
Technology
Center

The Programmers

ENVIRONMENT

High
Technology
Center I1|

OOf/HO

• High integrity considerations

e

Hard real-time constraints

Implications of a still evolving systems architecture

Need to meet delivery schedules with high productivity

• Evolving requirements &specifications

Octobe* it. t_Jl11Q|:46AM HYC/GCC003

High
Technology
Center

RESULTS

High

Technology
Center

CASE 1

41'04r£A_'O

Triplex Digital Flight Control System

• Not synchronized

• Analog backup

• Each computer samples sensors
,ndependently, uses averages of
good channels

4 ,I

High

Technology
Center

CASE 1

ooJr/A/o

Fliqht

Asynchronous operation, skew, and sensor noise led
each channel to declare others failed

Analog backup not selected

No hardware failures had occurred

High

Technology

Center

CASE 1

Ana'lysis

• Failure traced to roll axis software switch

• Sensor noise and a syn.c.hronous operation caused
one channel to take a different path through the
control lows

O0_/ArO

• Fix was to vote software switch

• Extensive simulation and testing performed

• Next flight-same problem

- Althoucjh switch value was voted, unvoted value.
was used

T=

%

High
Technology
Center

CASE 2

OOf/_O

• Single failure in redundant uplink hardware

• Software detected this- continued operation

• Would not allow landing gear to be deployed

• Aircraft landed with wheels retracted-
sustained little damage

• Traced to timing change in the software that
had survived extensive testing

High

Technology
Center ,

Saab Grippen Flight Test Program

OOE/AfO

• Unstable aircraft

• Tdplex DFCS with analog backup

• Yaw oscillations observed on several flights

• Final flight had uncontrollable pitch osdllations

• Crashed on landing

• Traced to control laws

High

Technology

Center

J'£Ff/A¢O

B-1B Defensive Avionics

• fundamental flaw in system architecture

NO_lmb_r |, t 4JI10 2:47 PM HTC_ t 1

High

Technology
Center

I Ill II

OOJTJAPO

Present Day Problems

High

Technology
Center,

BOd'$AfO

• Requirements are incomplete

• Specifications are incomplete or inconsistent

• No way of proving specification satisfies requirements

e Implementation performed on host machine

- No relationship to target machine

- Different operating systems on both machines

- No way to guarantee real time operation

• Enormous cost overruns

• Late delivery

1$. tt_l tII:OS&M HTOO12A

i l •

High

Technology
Center

J'XF, f/NO

• Software delivered does not behave as intended

• Validation and verification

- practically impossible for large programs
- state space explosion

• Testing procedures are ad-hoc

• No generalarchitecture

• Different languages for different phases of life cycle

• High maintenance costs

_b_r 2, t_Jl_ t t: t2 ,lIJ_ NTC_t |

High

Technology
Center

_OK/NG

It appears that 60-70% of all

software problems are related to

requirements/specifications not

being complete or inconsistent

High
Technology
Center_

IIII

Present Day Tools

High

Technology
Center

OOJlrl_IfO

Case Tools

• Bubble charts (Yourdon, err.)

• Data flow

• Control flow

• Bookeeping

High

Technology

Center__

They do not:

perform reliability analysis

• perform architecture design

• perform component design

• perform & produce trade studies

• perform testing

• produce test procedures

• perform configuration management

Octo_r 31.1MO tO:3OAM H_'_015

High

Technology

Center
OOArlA fO

• They do:

• Support functional decomposition

• Interfaces allocated to components

• Functionality derived from constraints and performance

Payoff:

• Interfaces defined between functions

• Behavior is represented by functions

• Constraints influence behavior

High

Technology
Center

8'_ FfiNO

Overall Benefits

• Provides integrated requirements database

• Supports impact analysis

• Identifies and reduces risk

• It supposedly adds structure to the
req ufrements/specihcatton phase

Nov_N4, 2, IN011:14 AM HTfJtiJJ_

High
Technology
Center

8'8'f/_'0

Analysis Tools
(reverse engineering)

_'C Plm>

NO

JqDplA©atAoa t
let lr

t_od_od gzaph of ehe eallodu_Juleeof root
_tRgsJagez

ORIGINAL PAGE IS

OF POOR QUALITY

Hilfh

Technology

Center _IlUll

Calling Tree

• Reuseof modules

(in general doesn't occur in hardware design
for a particular function)

• Shows complexity

• Real time analysis is a problem

Appl&©a_Lon : RB ¢_

Q

DF..TeCTtG_J r,_Mlu_le: AOA

High

Technology

Center

BOf/NO

Automatic Code Generators

• Caede
• Matrix

Octob_ it. lg_ 12: t 2 I_M _TC022

REDUNDANT DATA BUS S@FTWARE

PH

l0

_e

I
I - 1

Oe,t.P!

4ddk'o|e

lil¢.P It. dldr

CONTROL FLOW

OATA FLOW

_t

kuo,jq

PROCEDURE PACKAGE

71011) M2074-12

REDUNDANT DATA BUS SOFTWARE

71011 M307,

ORIGINAL PAGE IS

oF POO_ EIJALKY

|

¢_r_

,.,,._

(11

High

Technology
Center

001/_0

Future

High

Technology
Center

I

OOi/NO

• Need systems engineering approach

• Systems will be more integrated in the
future

• Need better analysis between hardware &

software

Frame 1

cP

lOP

Network I

Network2

Frame 2

CP

lOP

ms 11 ms ms ms

Network 1

Network 2

Frame 3

CP

lOP

ms ms) ms I ms

Network 1

Network 2

100Hz
FDIR

50 Hz
25Hz

_nk Failure

High
Technololy
Center

II

J'Of/NO

• Need portability

• Standard interfaces

• Graphics

• Data bases

_lw$. INOIO:I2Nd MTCO,15

High

Technology

Center

• Common software architectures

• Exist for compilers & operating systems

• Does not exist for application software

(hardware years ahead in this regard)

High

Technology

Center_ I I
I I

BO_ F/N_

• Gradual introduction of formal representation
for validation & verification

• Formal representation of requirements and specification

Iqo_embe_ 5, I_Jl0 tO:lSA/d MTC_7

High

Technology

Center

8'Of/N_

• English Requirements

Spiral Mode

a) If unstable, the spiral mode time to double amplitude shall

be no less than 20 seconds at speed from 1.2 VS1 to VFC/MFC

(Conventional control)

b) The airplane characteristics shall not exhibit coupled roll-

spiral mode in response to the pilot roll commands

c) Minimum acceptable: the spiral mode time to double

amplitude shall be greater than 4 seconds

blovq_ber S. 111tl44:CU Iqd MT_|

High
Teehnolof_
Center

O'4wJrJN4_

• Formal statement of "Spiral Mode" requirements:

a) if Aircraft.State • Unstable then

if Aircraft.State.Mode • "Spiral" and Aircraft.State.Time • t and

Aircraft.State.Amplitude. a and

1.2 * VS1 $<$ • aircraft.state.speed $<$ • VFC/MF¢ then

existst$<$• tl $<$• t+20 : Aircraft.State.Amplitude • 2*a

b) module PilotComrnand

operation Roll¢ontrol

postcondition: Aircraft.State.Mode -- •

end RollControl

"CoupledRollSpirel"

c) forall s in Aircraft.State :

if s.Mode • "Spiral" and s.Time - t and s.Arnplitude - •

forallt$<$-, tl $<$• t+4 :

if s.Time • tl then s.Arnplitude $<$ 2 * a

Novqmbof$. t _MIQ4:011qd HTC042

High

Technology
Center

Benefits

• Can prove that specifications satisfy requirements

• Can prove various properties of specifications

• traceabillty

• generate test cases

• Can execute specifications (i.e. OSJ)

• reasoning about changes

III

O01/NO

High

Technology
Center_

INImlll

APd_'flAO'L_'

Need formal verification of software
(10-20 years)

• Actual software

• Formal proof of automatic code generator

High

Technology
Center

dt'4Tf/Ne

• Need high order language

• OBJ

• shorter programs

• no difference between spedfication

and programming language

• reuseable code

• decisions tend to be localized

S, I1'! IO:dlGNd HTC033

High
TechnololrY
Center

Detailed View of a Verification System
Designer

specs _ / program

Syntax of program
language

m ms mm _ mm w ms mm mm mm mm mm m_

and specification
language

Verification
condition
generator

Semantics of

program language

OOfl_O

Lemmas

Hints

Inductive

assertions

_ Verificationconditions

MechanicaITheorem Prover _-

proved unproved counter
example

Semantics of

specification
language

_M_ml_ S.film 2: 41iIqd _*TCO_

High

Technology
Center

Jlvd_f/AfO

• Subset of Fortran

• Subset of Pascal

• Subset of Ada

• Subset of "C"

• Gypsy

NmmNm S. ItlN Z:llm),113)43

High

Technology
Center

I I IIIII|I

4r_f/_V_

A Growing Fear

High

Technology
Cen_r

001/NO

"Red Paper"

Bill Totten

President of K.K. Ashisuto

"The Largest Distributor of Independent

Software Products in Japan".

O¢lobB)t, tH0 12:t| PM HTC03Ii

High

Technology
Center

"1 believe that the United States is in danger of abandoning another

vital industry to Japan. This is the computer industry; both computer
hardware and computer software.

! see the same pattern of abandonment and surrender now beginning
in computers that has occurred before in such industries as

motorcycles, automobiles, consumer electronics, office equipment
and semiconductors."

High

Technology
Center

8Df/N_

"Japan's electronics industry is the worlds best and largest because it is

the most competitive. It is competitive because it is based on standards

rather than on prol)rietary Drodu_s. Standards make it easy for new

competitors to enter the industry and make it easy for customers to

switch from one competitor's product to another. The competition

stimulates new ideas for products and new ways to manufacture them

more efficiently."

Pm_,NRLD_. ttR_ll:J2_ NI'CON

"High
Technoloffy
Center

"Japanese software products are starting to beat American
software products in Japan for the following reasons:

1. They are comparable in functional capability to the best
American products.

2. They are of much higher quality than American software

3. 3-to-1 productivity advantage over the United States in
software development

4. 20:1 to 200:1 quality advantage

5. Japanese emphasize management and process; US tends to
emphasize technology (looking for the "silver bullet').

4r_'f/Afo

. Japanese software managers stay technically up-to-date,
and strwe to understand software development at a
detailed technical level; US managers appear more

financially oriented."

N_Nr 5. I_JHi0 10:42 AM HTCO]t

High

Technology

Center
O00A fO

"End Result:

• Quality figures are quoted for Japanese softwareof 8.
defects per 1 million lines of released sol'_vare -_m,s is
recording all problems, not just customer-reportea
defects

* IBM Japan produces software w.hich hasan order.of
magnitude fewer defects than that procluceo oy mnn US
andlBM France

• The low end of Japanese software.productivity is at the

high end of US companies production"

Managing Real-Time Ada
Carol A. Mattax

Hughes Aircraft Corp., Radar Systems Group

MANAGING REAL-TIME Ada

(A COMMON-SENSE APPROACH)

RICIS '90

HUGHES

RAOAR|YIrlIMI GROUP

C.A. MAI"rAx. MANAOID_
soIrrw&RE OalON • DEVELOPMENT
plqocmmofl OMmON

MANAGING REAL-TIME Ada

Ada OFFERS THE ABILITY TO IMPROVE SOFTWARE PRODUCTS IN THE
"ILITIES":

• RELIABILITY

. MAINTAINABILITY

• PORTABILITY

• SUPPORTABILITY

• QUALITY

THIS PRESENTATION WILL FOCUS ON THE MANAGEMENT PROCESS
RATHER THAN THE TECHNICAL MERIT OF THE PRODUCTS

• PRODUCT IMPROVEMENT BY THE USE OF Ada IS ASSUMED INHERENT
IN CHOOSING AND USING THE LANGUAGE

MANAGING REAL-TIME Ada

THE REAL-TIME SOFTWARE UNDER DISCUSSION IS EMBEDDED
OPERATING SYSTEMS FOR HUGHES MODULAR PROCESSORS,
AVIONICS COMPUTERS SUPPORTING MULTI-SENSOR DATA AND
SIGNAL PROCESSING

• DATA PROCESSING TARGETED TO INTEL i80960 32-BIT JIAWG
STANDARD

• HARD REAL-TIME CONSTRAINTS

PERFORMANCE REQUIREMENTS DEFINED AT HIGH LEVEL THEN
ALLOCATED DOWN AS TIMING "BUDGETS"

• OPERATING SYSTEM "BUDGET" DEPENDS ON APPLICATION USAGE;
DIFFICULT TO ACCURATELY QUANTIFY

• EVEN WITH WELL-DEFINED TIMING CONSTRAINTS, l'l'S NEVER FAST
ENOUGHI EVERY MICROSECOND SAVED REPRESENTS POTENTIAL
ADDED FUNCTIONALITY

MANAGING REAL-TIME Ada

THE TRADITIONAL RESPONSE TO HARD REAL-TIME CONSTRAINTS,
ESPECIALLY IN AN EMBEDDED OPERATING SYSTEM, IS ASSEMBLY
LANGUAGE

THE HUGHES MODULAR PROCESSOR OPERATING SYSTEM IS
WRII"[EN IN Ada

• FIRST GENERATION IN Ada DUE TO DoD MANDATE

• SUBSEQUENT GENERATIONS IN Ada DUE TO BENEFITS IN PROCESS
AND PRODUCT

TRANSITIONING FROM ASSEMBLY LANGUAGE TO Ada IS NOT EASY

• FIRST GENERATION USED "BRUTE FORCE" APPROACH

• IN SUBSEQUENT GENERATIONS, MANAGEMENT PROCESS
TAILORED TO LEVERAGE OFF Ada

CONSEQUENCES OF "BRUTE FORCE"
APPROACH TO Ada

COMPILER PERFORMANCE WAS MUCH WORSE THAN EXPECTED,
ESPECIALLY USING CERTAIN CONSTRUC_

• REAL-TIME PERFORMANCE WAS SIGNIRCANTLY DEGRADED

• RUN-TIME SYSTEM FUNCTIONALITY AND PERFORMANCE WERE
INSUFFICIENT FOR REAL-TIME DEMANDS

• LEARNING CURVE FOR Ada HAS TO BE FACTORED IN

• BAD FORTRAN CAN BE WRITTEN IN ANY LANGUAGE

SUBSTANTIAL OPTIMIZATION WAS REQUIRED TO ACHIEVE
PERFORMANCE GOALS

• • INmAL RELEASE WAS 3 TO 10 TIMES TOO SLOW

BRUTE FORCE APPROACH WORKS BUT IS PAINFUL AND INEFRCIENT

TAILORING THE MANAGEMENT I
PROCESS FOR Ada.

REQUIREMENTS

ALLOCATING PERFORMANCE REQUIREMENTS TO DETAILED TIMING
BUDGETS IS A CRITICAL ACTIVITY IN SPECIFYING REQUIREMENTS FOR
REAL-TIME SYSTEMS

TO ALLOCATE TIMING REQUIREMENTS, THE PERFORMANCE OF
COMPILED CODE MUST BE KNOWN, BUT TYPICALLY ONLY AVERAGE
PERFORMANCE OVER A NARROW SET OF BENCHMARKS IS KNOWN,
IF THAT

COMPILER EVALUATION AND BENCHMARKING IS REQUIRED PRIOR TO
OR DURING THE REQUIREMENTS PHASE

• EVALUATION CRITERIA INCLUDE EFFICIENCY, CODE EXPANSION,
ROBUSTNESS, IDIOSYNCRAClES IN IMPLEMENTATION OF Ada, ETC,

• VARIETY OF BENCHMARKS ARE USED:

• STANDARD PIWG, ETC.

• BENCHMARKS REPRESENTATIVE OF THE REAL-TIME
APPLICATION AND/OR THE MOST SEVERE CONSTRAINTS

TAILORING THE MANAGEMENT I
PROCESS FOR Ada: I

DESI N

HUGHES

ONE OF THE BENEFITS OF Ads IS MOVING DEVELOPMENT ACTIVITIES
FROM INTEGRATION TIME TO DESIGN TIME

• USE PACKAGE SPECS TO DEFINE CSC'S AND TO UNAMBIGUOUSLY
DEFINE INTERFACES

• TEST AT DESIGN TIME BY COMPILATION RATHER THAN AT
INTEGRATION TIME BY TESTING AND REWORK

• CONFIGURE PACKAGE SPECS EARLY

• FLOW DOWN TIMING BUDGETS AND IDENTIFY CRmCAL
COMPONENTS

• RAPID PROTOTYPING SELECTED CRITICAL AREAS PROVIDES
EARLY MEASURE OF WHETHER TIMING BUDGETS ARE
ACHIEVABLE AS WELL AS VALIDATION OF BENCHMARK RESULTS

• REWORK AND REALLOCATION OF TIMING IS THUS POSSIBLE
MUCH EARLIER IN THE DEVELOPMENT CYCLE

TAILORING THE MANAGEMENT I
PROCESS FOR Ada. I
DESIGN (CONT D.)

I I I II II L •

SOFTWARE ENGINEERING PRACTICES SAY IF YOU SPEND MORE TIME
DESIGNING, INTEGRATION GOES FASTER, WITH LESS REWORK, AND THE
PRODUCT IS BETTER.

ESPECIALLY IN REAL-TIME SYSTEMS, WHERE THERE IS A LEGITIMATE
FEAR THAT THE SYSTEM WILL FAIL TO MEET REAL-TIME CONSTRAINTS,
THERE'S A PUSH TO GET TO THE LAB AS SOON AS POSSIBLE TO SEE
HOW BAD PERFORMANCE IS.

TAILORING THE PROCESS TO SUPPORT Ada FORCES MORE TIME TO BE
SPENT IN DESIGN

• CORRESPONDING SUCCESS IN INTEGRATION HAS BEEN ACHIEVED

• THE FEAR IS STILL THERE. GETTING AN EARLY HANDLE ON TIMING AS
DESCRIBED ABOVE HELPS MITIGATE SOMEWHAT, BUT THE FEAR
NEEDS TO BE MANAGED AS WELL

TAILORING THE MANAGEMENT !
PROCESS FOR Ada: I

DIN

tUGttES

THE DISTINCTION BETWEEN DESIGN AND CODE IS BLURRED WITH Ada,
ESPECIALLY IF Ada CONSTRUCTS AND Ada AS PDL ARE USED TO
DESCRIBE THE DESIGN. NONETHELESS, THERE'S A CODING JOB TO DO.

FOR A TYPICAL REAL-TIME SYSTEM, WHERE EVERY INCREASE IN
PROCESSOR OR COMPILER PERFORMANCE REPRESENTS MORE
FUNCTIONALITY, THE NON-DETERMINISTIC FEATURES OF Ads ARE A
PROBLEM.

• WE STATICALLY ALLOCATE MEMORY, DO NOT USE RUN-TIME
ELABORATION OR RENDEZVOUS, ETC. IN THE OPERATING SYSTEM

IN ADDITION, FOR A GIVEN TARGET AND COMPILER, CERTAIN Ads
CONTRUCTS _Y BE TOO SLOW FOR EFFICIENT REAL-TIME
PERFORMANCE. SUCH CONSTRUCTS ARE IDENTIFIED DURING THE
BENCHMARKING PROCESS

• ALL SUCH RESTRICTIONS ARE DOCUMENTED IN THE CODING STANDARD
OR GUIDELINE

TAILORING THE MANAGEMENT |
PROCESS: !INTEGRATION

PLAN IN TIME DURING THE INTEGRATION PHASE FOROPTIMIZATION

• IT WON'T BE FAST ENOUGH!

DEVELOP TOOLS TO TIME AND BENCHMARK SYSTEM PERFORMANCE
PRIOR TO INTEGRATION

• FOLKLORE AS TO WHERE THE TIME GOES IS OFTEN WRONG

• SOMETIMES POOR PERFORMANCE IS DUE TO A CODING ERROR

• BENCHMARK AND DOCUMENT PERFORMANCE WITH EVERY SIGNIFICANT
REBUILD TO AVOID TIMING BUILD-UP AGAIN

AVOID THE TEMPTATION TO USE ASSEMBLY LANGUAGE EXCEPT WHEN
IT'S REALLY THE LAST RESORT

• CAN COVER UP ERRORS, POOR DESIGN, OR POOR IMPLEMENTATION
WHICH COULD HAVE BEEN CORRECTED USING Ada

TAILORING THE MANAGEMENT
PROCESS FOR ADA:

DOCUMENTATION

tUGttES

• DOCUMENTATION IS A SIGNIFICANT SOFTWARE DEVELOPMENT ACTIVITY
FOR DoD SYSTEMS

THE DOCUMENTATION PROCESS AND PRODUCT CAN BE SIGNIFICANTLY
IMPROVED BY LEVERAGING OFF Ada:

• IRS & IDD: USE Ada PACKAGE SPECS AUGMENTED BY COMMENTS

• USER'S MANUAL, AT LEAST FOR OPERATING SYSTEMS: START WITH
USER SPEC WITH COMMENTS AND AMPLIFY AS DEVELOPMENT
CONTINUES

• DESIGN DOCUMENTATION: USE PACKAGE SPECS AND Ada AS PDL;
SUPPLEMENT WITH DATA FLOWS, ETC.

• AS-BUILT DOCUMENTATION: REVERSE ENGINEER FROM THE CODE TO
ENSURE ACCURACY; SUPPLEMENT AS NEEDED

MANAGING REAL-TIME Ada

• Ada AND REAL-TIME ARE NOT INCOMPATIBLE, BUT GREAT CARE MUS'_
BE TAKEN TO:

• UNDERSTAND THE COMPILER PERFORMANCE

• MANAGE THE DEVELOPMENT PROCESS TO LEVERAGE OFF Ada

• MANAGE THE FEAR OF NONPERFORMANCE TO HARD REAL-TIME
REQUIREMENTS

Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University

cae-.=c_ UGdba_

Software Engineering Institute

Software Systems Program

November 8, 1990

RICIS "90"

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

_ ueao_unlv,_t
Sotltwll'll Engineering Inltltute

SEI Mission

Provide leadership in advancing the

state-of-the-practice of software engineering
to improve the quality of systems that depend
on software.

Ca,,nogeuea_ uNv,,,_
Software Engln44dng Institute

Technology
Flow Paths

Purpose:

To facilitate a
higher quality
communication

¢,_qm Mewmu_wmmt

Software En_ineerin_ Institute

Software Systems Program Objective

Assist the MCCR community in Improving the way
software is developed for real-time distributed
systems

• integrate software and systems engineering

• increase the effective use of technology
- Ads
. design methods
- common architectures
. scheduling algorithms

• Reduce the risk of adopting new technology

m

Software En_lineerin_ Institute

Strategy

Identify and select key technical Issues to Investigate.

Select application domains in which to work.

Establish relationships with influential customers and
vendors in these domains.

Evaluate and prototype potential solutions to selected
technical problems.

Conduct proof-of-concept experiments in selected
application domains.

Facilitate the introduction of these concepts Into
practice.

CumlgW M_lon Unh_lnm'y

Software Engineering Institute

Software Systems Projects

Rate Monotonic Analysis for Real-Time Systems

Software for Heterogeneous Machines

User Interface - SERPENT

Real-Time Embedded Systems Testbed

Systems Fault Tolerance (proposed)

Real-Time Data Management (potential)

User Interface Development
Serpent UIMS

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

Came_ ueaoeUrMe_
Software Eng|neerlng Institute

Introduction

• Problems

• Objectives

• Approach

• Serpent Architecture

• Serpent Editor

• Outside Efforts

• Status

90-Se/_mt-rlled-1

C_.mp Mek,aUr_y
Software Engineering Institute

User Interface (Ul) Problems

.o User interface accounts for large portion of life
cycle costs

• Impacts all aspects of the life cycle

requirements

development
sustaining engineering

"1 i

Camegm Mmk_n U_

Software EnginNring Institute

Life Cycle Problems

• Requirements

- evolutionary, not well specified
- written specifications inadequate
- customers may not know what is practical

• Design/implementation

- very labor intensive
- inadequate existing methods and tools

• After system completed

- frequent and complex changes required
- difficult to take advantage of new I/O media

90.Serpent-reed.3

Carnegie M4donUnivenlity

Software Engineering Institute

Objectives

• Make user interfaces easier to specify

• Support incremental development of user
interfaces (prototypes)

• Provide for a "bridge" between prototype and
production versions of system

• • Support insertion of new I/O media during
sustaining engineering

,g0-Swpent-rNd-4

SoftwareEngineeringInstitute

Approach to Reducing UI Problems

• Provide single tool which supports Incremental
specification and execution of interface

• Separate concern of user interface specification
and execution from rest of system concerns

• Apply non-procedural language and graphical
techniques to user interface specification

gO-Swpent-r_d-5

Cam_ _ Ur_r_ty
Software Engineering Institute

Serpent UIMS

• Has specialized language for user interface
specification

• Supports I/0 media independent applications

• Supports both prototyping and production

• Supports multiple I/0 media for user interactions

• Supports ease of insertion of new I/0 media

Software Engineering Institute

Serpent Architecture
Appl;cation

layer

90.Sec_nt-ree_- 7

Cam_ie MeaonUnive_ty

Soflware Engineering Institute

Slang, UI Specification Language

• Based on production model

- data driven
-- allows multiple threads of control

• Provides multiple views of the same data

. implemented with constraint mechanism
- re-evaluates dependent values automatically

when independent values modified
- applies to application values, I/0 media display

values, and local variables

90-,.q_o_-rNd-#

. r

CueIKl__ UeM_f

Software Engineering Institute

Prototyping

• Detailed knowledge of Serpent dialogue model is
not required

• Application not required

• Slang allows definition of local data

• Serpent automatically enforces constraints

• Reasonably sophisticated prototypes can be
generated, e.g., visual programming

90-Serpent-reed.9

C_ _ Ur,_.'._j
Software Engineering Institute

Input/Output Media

• Serpent designed to simplify the integration of I/0
media

• Currently Integrated

- digital mapping system
- Xll Athena widget set

• Integrations anticipated/in progress

- Motif
- Open Look

Software Engineering Institute

Application

• Can be written in C or Ada

• Views Serpent as similar to database management
system

• Creates, deletes, or modifies data records

• Informed of creation, deletion, or modification of
data records by dialogue layer

90-Seq_nt-reed- 11

Carnegie Ml_n Untv_gty

Software Engineering Institute

Serpent Editor

• Layouts of user interface are best specified or
examined graphically

• Logic, dependencies, and calculations are best
specified textually

• Serpent Editor has two portions

- graphical part for examination and specification
of layout

- structure part for textual specification

• Implemented using Serpent

90-Semem-rNd- 12

Software Engineering InsUtute

Outside Efforts-- ARMY TO&P

• FATDS/CECOM - on contract

. Port Serpent to ATCCS CHS

- Install Serpent at Center for Software
Engineering

- Technical support to Magnavox

• FAAD - preliminary negotiations underway

. Technical support to TRW

90.Sequel.reed. i3

CarnegieMeaoeUr,'ve_l
Software Engineering Institute

Outside Efforts - Standardization Work

• IEEE P1201.3

• OSF

• Unix Internatlonal

• UIMS Working Group

90-,Seq_-rNd- r4

Software Engineering Institute

Outside Efforts -- Commercialization

• Dedicated Company

• Consortium.

• Multiple H/W and/or S/W vendors

90.S_nt.rNd. 15

CarnegieMellonUniver_ty

Sotlware Engineering Institute

Status

• Serpent (with visual portion of editor) in alpha test

• Supported for Sun, VAX (Ultrix), DECStation, HP
(HPUX)

• Beta version of Serpent (including complete editor)
available 4QCY90

90_-reed- 16

Session 3

Software Reuse

Chair: Robert Angier,/BM Corp.

' ; q ,

Session i0:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division

Owego, NY 13827
(607) 751-2169

net: OWEGO@IBM.COM

Unclassified

fan _ _ i

I_ _ _ inn _ i

Hi n , gNUl

Where Does Reuse Stsrt?

Will Tracz

MD O210
IBM System Integration Division

Owego, N.Y. 13827
OWEGO@IBM.COM or TRACZ_A.STANFORD.EDU

Preface IntroducUon

The following is a transcript of the keynote address

for the Reuse in Practice Workshop sponsored by
IDA, SEI and SIGADA. The workshop was held in

Pittsburgh, PA at the Software Engineering Institute,
July l l-13th, 1989. The goal of this talk was to estab-
lish .some common vocabulary and to paint a broad

picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear

by. It is also the type of thing that some people swear
at. Software reuse is a religion, a religion that all of us

here today pretty much have accepted and embraced.
The goal of this talk is to question the foundation of
our faith - to test the depth of our convictions with

the hope of shedding new tight on our intuitions. I
do not claim to have experienced divine intervention.
You don't need to take what I say as gospel truth. [

believe in what I say, but what you hear may be

something different. Again, let me encourage you to
disagree - to challenge the position I have taken on
the issues I will be presenting. Before I pn_eed
further, I need to qualify software reuse by providing a
definition.

Software reuse, to me, is the process of reusing soft-

ware that was designedto be reused. Software reuse is
distinct from software salvaging, that is reusing soft-
ware that was not designed to be reused. Further-
more,, software reuse is distract from carrying-over
code, that is reusing code from one version of an

application to another. To summarize, reusable soft-
ware is software that was designed to be reused. The

major portion of my talk wig focus on examining the
rhetorical question, "Where does reuse start?"

If I were to ask you, "Where does reuse start?', your
reply might be, "What do you mean? That seems like

a pretty vague and nebulous question!"

l agree, so I have done a tittle top-down stepwise
refinement and broken the question up to focus on
three areas - the three P's of software reuse: product,
or what do we reuse, process, or when do we apply

reuse, and finally personnel, or who makes reuse
happen. I guess ! could have called it the three W's
of reuse: what, when, and who.

"Why is this an important question?" you might ask.

The ftrst answer that comes to my mind is that if you
would like to build a tool to help reuse software, it
would be reasonable to know: 1) what you were

trying to reuse, 2) when you would be doing it, and 3)
who would be using it. That is one reason, a pretty

good reason, but not the only reason for asking the
question "Where does reuse startY Rhetorically, if
one could understand the ramifications, implications

and economic justifications of the answer to the ori-
ginal question, "Where does reuse start?', one would
better be able to answer the question %Vhere should
reuse start?" and "What needs to be done to make it

happen?" This is the real question I think we ate here
to answer.

If one examines the question of "Where does reuse
start?"by focussing on the products being reused, one
could ask "Does reuse start with code?" There is no

denying that software reuse generally ends with "code'.
But, this still is a pretty broad statement. Al_er all,
code could be source code, object code, a high level

language statement, a function, a procedure, a
package, a module, or an entire program. The issue
raised then is "What is the granularity of the code that

you want to reuse. P" The larger the granularity, the

larger the "win" is in productivity. The overhead for
finding, understanding and integrating a reusable soft-
ware component needs to be less than designing and

ORIGINAL PAGE IS
OF POORqUmJTY

writing the code from scratch. This supports the
argument for the reuse of higher granularity objects
such as software packages, modules or classes.

Just as we could debate the granularity of the object
being reused, one could argue about the level of
abstraction that is being manipulated. Does reuse
start with a design? A design is a higher level
abstraction compared to an implementation. Let me
emphasiy.ethat the advantage of starting reuse from a
design is that a design is at a higher level of
abstraction than an implementation. Or, in other
words, a design has less implementation details that
constrain its applicability.

This brings out a point made in a recent paper ! have
been writing called "Software Reuse Rules of
Thumb'. In it I propose two general rules of thumb
for software reuse: I) to separate context from
content and concept, and 2) to factor out common-
afity, or to rephrase this second rule a bit, to isolate
change. If one appfies the first rule of thumb, a
program design, say at the detailed logic level, should
have absent some (but not all) of the contextual ud'or-
mation that will be supplied at implementation time.
That is, the implementation issues, such as specific
operating system or hardware dependencies, are
neither part of the content, which is the algorithm or
data flow nor part of the concept, which is the func-
tional specification. I will address the second rule of
thumb, factoring out commonality, later.

Before proceeding, I would like to emphasize the
importance of representation, especially from a tool
perspective. Remember [stated earlier that one of the
reasons for looking for an answer to the question of
%Vhere does reuse start?" was to provide a rational
for building tools to assist in the reuse procem,. This

implies that we would like a machine m_nipulable
reusable design representation. This is not easy! But,
I believe the state of the art is now evolving to a point

where there are results of soflwan_ reuse startin$ from
design. The projects, that I am awan_ of, have been at
MCC, with the DESIRE system, and at Toshiba,

where in the 50 Steps per Module system, they are
working on an expert system to automatically generate
C, FORTRAN or Ada from low-level design data-

flow alums. FurOtermom, they claim success in
reverse eqinemmg existins so/twain by synthesizinS
data-flow diqp'arrm for potential reuse.

Continuin$ our anslysis of the question "Where does
reuse sum?', could reuse start with a l_roip'mn's spec.

ir,eatlaa? By specification, 1 mean a statement of

"what" a program need's to do, not "how" it is sup-
posed to do it. There is a dmpk answer, yes, in

contexts, prolp'L'n _fiom can be reus-
able. But research in automatic programming tells us

that this is a hard problem to extrapolate outside of
narrow domains.

Speaking from personal experience, we at IBM in

Owego have developed some reusable avionics specifi-
cations. When I say specifications, I mean
MIL-STD-2167 System Requirements Specifications
(SRS). They are highly parametex_..ed documents full
of empty tables and missing parameter values. The

systems analyst, in effect, programs a new module by
specifying the values in the tables of the SRS docu-
ment. Art application generator then reads the docu-

ment and builds the data structures necessary to drive
the supporting software.

Completing the waterfall model, we can ask the ques-
tion on whether reuse can start with a problem deft-
nition (requirements). This is an interesting question.
One might ask how7 One could reason that if the

sarne requirementscan be identified as being satisfied
by certain previously developed modules, then clearly
those modules are candidates for reuse. Well that is a

big if. It is significantly dependent on the traceability
of requirements to specifications, the traceability of
specifications to design, and the traceability of design
into code and, also into test ewes, and documemtation.

Here is where a hypertext system's information web is
ideal for linking these artif_-ts together. With a

hypertext system, you can walk the beaten path to
Fredout what code to R_me. But, there isa catch. As

Ted Biggerstaffhas repeatedlystated,thereisno free

lunch. You have to pre-engineer the artifacts to fit

intO the network, and spend the time and effort to
create the links. Finally you need to somehow sepa-
rate the context of the ob_'ts from the content. One

mechanism for achieving this goa/ is through
parameterization. P_tion is a way to extend
the domain of applicability of reusable software.
Parameterization allows a single module to be general-
ized over a set of solutions.

To summarize, tl_ issue we have been exploring
relatedtothequestionof "Wlme does reuse start?" is

reallythe question"What softwm,e artifactdoes reuse
startwith?" Partof theanswerliesinthefactthatwe

know that software reuse 8enmdly ends with the reuse
of code. Where it starts depends on: 1) how much

effortwe want to place in developi_ the reusable
artifact that we want to beon with, 2) how effectively
we can link it to an implementation, and 3) (maybe
not so obvious) how effectively we generalize the
implementation.

There is a fourthdependency havinlto do with the

processof softwtrereuse.ThisistopicIwilladdress

subsequently.FirstIwould liketoreflecton thegen-

eralizationissueofan implementation,One must rec-

ognize that as we progress down the waterfall model,
from requirements to implementation, each artifact
adds more detail. An implementation is one
instantiation of a design. There could be several
implementationsof a designjustas therecould be

several designs that satisfy a specification but that
have different performance and resource attributes.
The key is factoring out the commonality by sepa-
rating the context from the concept and content. The

concept becomes the functional specification. The
content becomes a template or generic object. The

context becomes possible instantiation parameters.

We have identified some of the dimensions and impli-
cations related to which software artifact to start reuse

with. I have concluded that code is a safe place to
start and is, in most cases, the place one ends up. i

also have mentioned that hypertext is the way to
establish the traceability between requirements, spec-
ification, design, tests and implementation.

ProceSS

Turning to the software development process, one
could observe that most software reuse starts at the

implementation phase. One could modify the soRware
development process to include a step where, at

implementation time, one would look for existing
software to save having to write new code that would

do the same thing. With a little luck, this usually
works. But with a little foresight, this usually works
better, tlow often is it the case that the code one

wants to reuse has to be modified because either it

was not implemented to exactly fit the new context it

is being reused in, or it was not implemented to

provide a parameter for adapting it to a different
context, or the design was such that it placed unneces-
sary constraints on the implementation7 If the soR-
ware designer had not placed the (somewhat) arbitrary

design constraints, then the implementation could be
usedasis.

Therefore,with a littleforesight,reusemight better

startatdesigntime. The implementercouldthen lev-

erageoffthefunctionalityofexistingimplementations.
Thisiswhere thebottom-up aspectof reusemeetsthe

top-down functionaldecompositionaspectof most

design processes. One could argue that obiect-

orienteddesignwould eliminatethisproblem. Let me

say that object-orienteddesign helps reduce the

problem of the designnot meetingthe implementa.

tion,but parameterizationstillisthe key forcontrol-

lingthis process.

One could just as easily extend the same argument for
looking for reuse opportunities at design time, for the
same reasons, to the spedlkatloa and requirements

analysis phases of the software life cycle. Again, by
identifying earlier on in the software development life
cycle, what is available to be reused, trade-offs can
made in the specifications, or designs can be tailored
to leverage off the existing software base.

Let me now. introduce somewhat of a new phase in
the traditional waterfall model that has been added

explicitly to support software reuse. I define domain
analysis to be a generalization of requirements analysis
- instead of analyzing the requirements for a specific

application, the requirements of a generic application
are quantified over a domain. Applying my two rules

of thumb: commonality is factored out and context is

separated from concept and content. Reusable
objects are identified, and their context defined.

If one recognizes that the software development Life

cycle needs to be modified in order to inject software
reuse technology, then, relating to personal experience,
reuse opportunities and potential can be identified-at
code review time, or at design review time. If one
looks at the Programming Process Architecture used

in IBM, one can see these criteria called out as being
integral parts of the inspection process.

But then again, instead of reuse being addressed

during the software development effort, maybe reuse
could start as an aP,er thought (prelect follow-on).

ARer one pass through the software development Life

cycle, the second time through one can begin to see
the commonality between applications. Quoting Ted
Biggersta_s rules of three "If you have not built three

real systems in a particular domain, you are unlikely
to be able to derive the necessary details of the

domain required for successful reuse in that domain."

As a "side point, there is a second rule of three.
"Before you can reap the benefit/of reuse, you need
to reuse it three times." The empirical evidence I have
seen to date bear this out.

A better choice for where reuse should start is at the

beginning of a project (project start up). Here, the

software development process can be defined, reusable
software libraries can be set up and standardsas well

astoolsdeveloped.

To sharewith you againmy personalexperience,in

one largeAda project,A Computer IntegratedManu-

facturing(CIM) effortinvolving350K $LOCS, the

projecthad a PRL - Pmiect Reuse Lead. He was

responsiblefor sittingin on alldesignand specifica-
tionreviewsto identifycommonalitybetween subsys-

tems and support the communication and application
of reuse technology. Because of soRware reuse, fac-

toring out commonality, the size and development
effort of the project was reduced by over 20%. This

ORIGINAL PAGE IS

OF POOR qI.IAUTY

is a successful example of where reuse started at the
beginning of a project.

But, then again, maybe reuse could start at the end of
a project (project wralPUp). 1 am reminded of the
General Dynamics approach for developLng reusable
software related to an early version of the DARTS

system, llere, after a project was completed, and
before the design and development team was assigned

to a new project, they locked everyone up in a room
and wouldn't let them out until they developed an

archetype of the system. That is, they recorded how

and what to modify in the system so that it could be
reused in the future.

While this is one approach for developing reusable
software, it seems like putting the cart in front of the
horse. But, then again, it is reasonable, upon the

completion of any project to identify likely compo-
nents to add to a reuse fibrary.

Finally, we are all in this for the bottom line. Let me
state my version of the Japanese software factory's
motto: "Ask not what you can do for your software,
but what your software can do for you." It makes
sense, doOars and cents, to capitafize on existing soft-

ware resources and expertise. But, you need to

develop a business ewe to justify the additional cost of
developing reusable software.

To summarize, the issue we have just explored related

to the question of "Where does reuse start_ is really

the question "Where in the software development life
cycledoes reusestart._' Where itstartsdependson I)

how one modifiesthe softwaredevelopment process

to identifyopportunitiesfor reuse,and 2) how one

eithermodifiesor extendsthe softwarelifecycleto

identifyobjectsto make reusable.The bottom-_ is

thatsoftwarereuse isa 8ood example of softwsze

engineeringdiscipline,

Pm'_d

Turning to the last dimension I identif_ related to
the question of "Where does Reuse Start._, we will
focus on the key players in the reuse bell game. The

tint player to come to bit is the Ixolgmuner. Does
reusestartwith a _? Most pro8ranunen

ate responsible for the design and implementation of
software. Iftheycan identifya shortcut to make thor
job easier, or to make them appear more productive

to their manqlement, then they probably win be mot/-
vated to reuse software. But, while prollranunen

might be inclined to reuse _oftwam if it w_ fun,or it
was the path of leastresistance,or if they are toldto,

the real issue is "Who is 8oin| to create the softwm

to reusein the f=st place?" The_ needsto be a ='it-

ical mass of quality software for programmers to draw
upon in order for them to fully subscribe to the reuse
paradigm! So, how do we bootstrap the system?

Maybe managers can instill a more altruistic attitude
on their programmers. This, of course, becomes a
question of budget cost and schedule risks associated
with the the extra time and effort needed to make

things reusable.

Reuse is a long term investment. Maybe the expense

of developing reusable software should be spread
acrossa proiect[With reuse rahe to the project level,
there would higher potential for a larger return on
investment, plus more insight and experience in prior-
itizing what should be made reusable. Again, there is
no free lunch, A project manager would have to
authorize the cost. But project management is gener-
ally rewarded for getting a job done on time and
under budget. There is no motivation for making the
next project look good. T_s shortsightedness needs
to be resolved with top management.

Indeed, this is the case, both here and abroad. At
NTT, GTE, IBM, TRW, to name a few companies,

reuse incorporation and deposition objectives are
being set. For instance at NTT, top management has
set a reuse ratio goal of 20% on all new projects, with
a deposition ratio quota of 5%. That is, all new pro-
grams ideally should consist of at least 20% source
code from the reuselibraryand allnew programs

should try and depositat least5% of theirsource

code to the reuselibrary(subjectto the acceptance

guidelines, constraints, and ultimate approval of the
Reuse Committee).

But, upper management edicting reuse to happen
doesn'tinsuresucce_. That iswhy them isa strong

argument for _ to start in the classroom

(ed.estm'). The educationsymna, whileitisgoodat
teaching theory, might embrace a little more of the
engineering discipline and teach softvmxe building
block construction or composition of programs.
Courses are needed in domain analysh, appfication

generator construction, and l_rsmetefized program-
ruing, as well as the avagability of pre-fabricated,
off-the shelf components structured to feeilitate the
construction of new applk:ations in a classroom
setting. Again, critical mass is needed to bootstrap the

system.

Besides the _ mind set, maybe reuse should start

with a toolset(tml dkm_01m). Personally. Ido not

see the need for exotic =rid elaborate tools to support

reuse Although, l sm biased towards using a multi-
media hypertext system for the cqmm= and represen-
ration of donmn knowledtp, which I comid_ cn_-ial
to underm_inl what and how to reuse softwa_.

OR G;NALPAG
OF POORqU&Lrr '

Have [run out of people who possibly could start the
reuse ball rolling? Have [saved my heavy hitters for
last? Should reuse start with the customer? It

depends on the customer! A large customer, llke the
Department of Defense, could easily demand certain
reuse requirements be met. Of course, there might be
a smaLl initialoverhead costassociatedwith getting

theballrolling,but once the systemwas palmed,once

applicationdomains were populated with certified,

parameterizcd,well documented, reusablecompo-

nents,thenlongterm benefitscouldbe reaped.

I have added the salespersonto thislistof individuals

who could play a rolein determiningwhere reuse

might start.The reasonisthatifa salespersonknows

the marketplaceand knows potentialcustomers,then

they could play a key rolein buildingthe business

casenecessaryto justifythe capitalizationof software

forreuse.

Finally, I have added the systems analyst as being a

person who possibly could be instrumental in starting
software reuse, l admit, he joined the team late, but

he turns out to be a clutch player. Back to the issue
of putting the horse in front of the cart. Before you

can reusesoftware,you need softwareto reuse.Who

areyou goingtocall?The domain analysts!Who are

the most qualified individuals in an organization to 1)
analyze a problem domain, 2) determine logical sub-

systems and functions, and 3) determine the contents

or requirements of modules and anticipate the d_f.
ferent contexts that they might be applied under? The
systems analysts. They have made Life so difficult for

some of us programmers in the past by providing
incomplete or inconsistent or, worse yet, too detailed
specifications. This is a wonderful opportunityto

work together toward a common goal.

To summarize, the issue we have been exploring
related to the question of "Where does reuse start?"

has been identifying the roles played by certain indi-
viduals in an organization related to making software

reuse happen. In retrospect, several of the key players
had non-technical roles in the game! A point that

bears distinction and should come as no surprise.

Summary

In conclusion, the goal of my presentation was to
bring to fight issues surrounding Software reuse. To

force you to question what you might have accepted
on blind faith, l have probably raised more questions
than I have answered, but, that is good. Hopefully it

will provide you opportunities for discussion. Finally,
I have shown, as a wise old owl once stated, "It is not

what you know, but who, you know_ that often is
necessary for success. Software reuse is no exception
to this rule. SoRwam reuse is a people issue as well as

a technology issue.

ORIGINAL PAGE iS

OF POOR QUALITY

