i
il

N91-22729

Software: Where We Are & What

is Required in the Future

Jerry Cohen
Boeing Aerospace and Electronics

High
Technology
Center. —

Flight Critical Software: Current Status and Future Direction

Gerald C. Cohen
Boeing Aerospace & Electronics
High Technology Center

October 31, 1990 8:34 AM HTCO01

High

Technology
Center — — - —— _
SOSING
The Programmers
ENVIRONMENT
High
Technology
Center
SOSING

e High integrity considerations

® Hard réél-ﬁmé constraints

e Implications of a still evolving systems architecture

® Need to meet delivery schedules with high productivity

e Evolving requirements & specifications

October 31, 1990 8:46 AM HTCGCC00)

High

Technology
Center. ——
NSOLTING
RESULTS
. CASE 1
High
Technology
Cenwr—“ N
' SOSING

e Triplex Digital Flight Control System

e Notsynchronized

® Analog backup

e Each computer samples sensors
independently, uses averages of
good channels

High

Technology CASE 1
Center. -
SOSING
Flight
® Asynchronous operation, skew, and sensor noise led
each channel to declare others failed
® Analog backup not selected
e No hardware failures had occurred
o CASE 1
Technology :
Center. E— ———————————
SOLSING

Analysis
® Failure traced to roll axis software switch
® Sensor noise and a synchronous operation caused
one channel to take a different path through the
control lows
® Fix was to vote software switch
e Extensive simulation and testing performed

® Nextflight-same problem

- Although switch value was voted, unvoted value
was useh

CASE 2

High
Technology
Center -
FOSING
~ @ Single failure in redundant uplink hardware
® Software detected this - continued operation
e Would not allow landing gear to be deployed
® Aircraft landed with wheels retracted -
sustained little damage
® Traced to timing change in the software that
had survived extensive testing '
igh Saab Grippen Flight Test Program
Technology
Center —

FOS/INO

¢ Unstable aircraft

e Triplex DFCS with analog backup

® Yaw oscillations observed on several flights

e Final flight had uncontrollable pitch oscillations
e Crashed on landing

® Traced to control laws

"wlw

High
Technology
Center

SOST/ING

B-1B Defensive Avionics

e fundamental flaw in system architecture

November 5, 1990 2:47 PM HTCOT1

High

Technology

Center — S it —
Present Day Problems

High

Technology

SOSING

® Requirements are incomplete

e Specifications are incomplete or inconsistent
® No way of proving specification satisfies requirements

¢ Implementation performed on host machine
- No relationship to target machine
- Different operating systems on both machines
- No way to guarantee real time operation

® Enormous cost overruns

e Latedelivery

November §, 1990 10:05 AM HTCO12A

High

Technology
Center. -
SOSING
e Software delivered does not behave as intended
e Validation and verification
- practically impossible for large programs
- state space explosion
e Testing procedures are ad-hoc
e No general architecture
e Different languages for different phases of life cycle
e High maintenance costs
Novembaer 2, 1990 11:12 AM HTCA1]
High
Technology

FSOSING

"It appears that 60-70% of all
software problems are related to
requirements/specifications not
being complete or inconsistent

High
Technology
Center

SOSING

Present Day Tools

High
Technology
Center

SOoOSING

Case Tools
e Bubble charts (Yourdon, etc.)
e Data flow
® Control flow

® Bookeeping

High
Technology

Center ———e—— ———

SJOS/ING

They do not:
e perform reliability analysis
e perform architecture design
® perform component design
e perform & produce trade studies
e perform testing
e produce test procedures

e perform configuration management

October 31,1990 10:J0 AM HTCO1S

High
Technology

FOSTING

eThey do:

e Support functional decomposition

o Interfaces allocated to components

e Functionality derived from constraints and performance
Payoff:

e Interfaces defined between functions

® Behavior isvrepresented by functions

e Constraints influence behavior

High
Technology
Center

Overall Benefits

Provides integrated requirements database
Supports impact analysis
Identifies and reduces risk

it supposedly adds structure to the
requirements/specification phase

SOSING

November 2, 1990 11: 14 AM HTC/1SA

High

Technology
Center e p——— =
SOSING
a
Analysis Tools
. u
(reverse engineering)
<rC_ren>
— - \\ -
SA R AP AP PC 0 R BN 8 NI BX RX A F P
— /4“’2;—1&: ’;:7.' — ~N
b T e A T A D T "\'S-_gl
ST TS Y
. " — — -
IR G=neE AN
e S~ e

.

Application () Language: ADA
Reduced graph of the called modulesof rcoot

ORIGINAL PAGE IS
OF POOR QUALITY

High
Technology

Center— —

SOEING

Calling Tree

® Reuse of modules

(in general doesn’t occur in hardware design
for a particular function)

® Shows complexity

® Real time analysis is a problem

Applicaction : RECUESS DeTecTa) Language: ADA

High
Technology
Center

—— — —————
SOS/ING

Automatic Code Generators

e Caede
e Matrix

October 31,1990 12:12 PM HTCD22

REDUNDANT DATA BUS SCFTWARE

flessloryiversion - notvers:§

i NET Moot

==

I T

e _asyg

Desi_PY
[s -
!cwu;": Dosl_ Hede B‘Lm
Addrese
: {Fpor
Rec Pt ddr
CONTROL FLOW
PROCEDURE DATA FLOW PACKAGE

71019 MI074-12

REDUNDANT DATA BUS SOFTWARE

dicegioryivergion - nqluprki]

Tep.Enshia
&llllu
LTV A T e
Lt - sy =

71019 MlO7¢

ORIGINAL PAGF IS
OF POOR QUALITY

Sampling Interval First Sample Ext .Inputs Ext.Outputs Enable
1. 0. 15 17 Parent

svl cmd
owl2 cod .
o | oF
owl) cmd E 1o . < w
(L 9= 0,9 Q.
“ - - =
—w-:: od swl r? corr lu.l/ y M m
n.vuluu cod 1 sw? cf cocr ...I_unv 1 L 1 r1. 0 folve | direction (]
1 o w
sﬁi ww3 r§ ocosx omd ||I|Il||.§ . 0 0
1 140 e |
e:na cnd 1 swd corr od Tl -2 ¢+ 01 -
mpinted | 1 fla gt cor > 2ef o
gﬂhlnld‘lnhr_' 1 vl corr ~L
1 Yi= -U4 ¢+ UY
aﬂ—au cnd v) cory 0o
pYalee_toe ¢ ve cort , 3] 20d 120 U2 ve 2 directd »Uu{ -1
E L
DT Yoltage | f10 TC Cott @Lll =l 2 Y- 0,0
[
act 1 10 act 1 100 w2 —
== r el M | m y D
apet pee 2 | sct jijive pos 2 4 -

MATRIX /NPUT

High

Technology
]
SOSING
Future
High
Technology
SOSING

e Need systems engineering approach

® Systems will be more integrated in the
future

e Need better analysis between hardware &
software

Novembaer £, 1990 10:08 AM HTCD24

Frame 1

Network 1 M
Network 2 }:::::t—:::;-..q_,lqm

-1, 3
50 Hz

R
-~ BB &
- ink Failure

High

Technology
Center. - .
SOFING
® Need portability
® Standard interfaces
® Graphics
e Databases
Novermber §, 1990 10:12 AM HTCD2S
High
Technology

SOSING

e Common software architectures
® Exist for compilers & operating systems

e Does not exist for application software
(hardware years ahead in this regard)

High
Technology

Cenwrm

SOS/ING

e Gradual introduction of formal representation
for validation & verification

e Formal representation of requirements and specification

November 5, 1990 10: 18 AM WTCO27

High
Technology
Center — ——

FSOoOSING

® English Requirements
Spiral Mode

a) If unstable, the spiral mode time to double amplitude shall
be no less than 20 seconds at speed from 1.2 VS1 to VFCU/MFC
(Conventional control)

b) The airplane characteristics shall not exhibit coupled roll-
spiral mode in response to the pilot roll commands

¢) Minimum acceptable: the spiral mode time to double
amplitude shall be greater than 4 seconds '

November §, 1990 4:02 PM HTCO4!

High
Technology
Center e

® Formal statement of “Spiral Mode"” requirements:

a) if Aircraft.State = Unstable then
if Aircraft.State.Mode = “Spiral” and Aircraft.State.Time = tand

Aircraft.State.Amplitude = a and
1.2 * VS1$<$ = aircraft.state.speed $<$ = VFC/MFC then

existst$<$= t18<$= t+20 : Aircraft.State. Amplitude = 2*a

SOSING

b) module PilotCommand

operation RoliControl
postcondition: Aircraft.State.Mode ~ = “CoupledRoliSpiral®

end RoliControl
c) forall s in Aircraft.State :
if s.Mode = “Spiral” and s.Time = t and s.Amplitude = a
forallt$<S=t1 $<Sat+d:

if s.Time = t1 then s.Amplitude$<$ 2 * a
November S, 1990 4:00 PM NTCD4A2

High

Technology
Center“ —
. SOSINOG

Benefits
e Can prove that specifications satisfy requirements

e Can prove various properties of specifications

e traceability
e generate test cases

e Can execute specifications (i.e. OBJ)
¢ reasoning about changes

. High

Technology
Center— e —— e ———————
SOSING
® Need formal verification of software
(10-20 years)
® Actual software
e Formal proof of automatic code generator
High
Technology
Center —— - E——

SOTING

e Need high order language
e OB

e shorter programs

¢ no difference between specification
and programming language

o reuseable code

o decisions tend to be localized

Novembaer 5, 1990 10:40 AM HTCO33

High

Technology
Center ——
. . . oo . SOSINO
Detailed View of a Verification System
. Daesigner
specs \ | i program
Syntax of program o
language Verification | samantics of
ceseweee=e=epl condition
and spaecification generator program language
language
Verification
conditions
Lemmas
Hints Mechanical Theorem Prover Sem‘a?tics' of
' lspwﬁcmon
Inductive anguage
assertions
proved unproved counter
example
November 5. 1990 2:48 PM HTCOA4
High
Technology
Center — -

SOS/ING

® Subset of Fortran
Y Subset of Pascal
e Subset of Ada

® Subsetof “C”

® Gypsy

November 3, 1990 2:48 PM NTCDA3

High
Technology
Center.

SOSING

A Growing Fear

High
Technology

SOosING

“Red Paper”
Bill Totten
President of K.K. Ashisuto
“The Largest Distributor of Independent
Software Products in Japan®.

Octobar 31, 1990 12:12 PM HTCOIE

High
Technology
Center. S

“| believe that the United States is in danger of abandoning another
vital industry to Japan. This is the computer industry; both computer
hardware and computer software. '

| see the same pattern of abandonment and surrender now beginning
in computers that has occurred before in such industries as
motorcycles, automobiles, consumer electronics, office equipment
and semiconductors.”

High
Technology

SOLSING

“Japan’s electronics industry is the worlds best and largest because itis
the most competitive. It is competitive because it is based on standards
rather than on proprietary products. Standards make it easy for new

competitors to enter the industry and make it easy for customers to
switch from one competitor's product to another. The competition

stimulates new ideas for products and new ways to manufacture them

more efficiently.”

Novembar 2, 1998 11:32 AM HTCO38

‘High
Technology
Center

SOoOrfING

“Japanese software products are starting to beat American
software products in Japan for the following reasons:

1. They are comparable in functional capability to the best
American products.

2. They are of much higher qualirty than American software

3. 3-to-1 productivity advantage over the United States in
software development

4. 20:1to 200:1 quality advantage

5. Japanese emphasize management and process; US tends to
emphasize technology (looking for the “silver bullet®).

6. Japanese software managers stay technically up-to-date,
and strive to understand software development ata
detailed technical level; US managers appear more
financially oriented.”

November 5, 1990 10:42 AM HTCDI9

High
Technology

SOSING

“End Result:

e Quality figures are quoted for Japanese software of 8
defects per 1 million lines of released software - this is
recording all problems, not just customer - reported
defects

e |BM Japan produces software which has an order of
ma ni?udepfewer defects than that produced by IBM US
and IBM France

e The low end of Japanese software _pro::luctivity isatthe
high end of US companies production

Managing Real-Time Ada

Carol A. Mattax
Hughes Aircraft Corp., Radar Systems Group

MANAGING REAL-TIME Ada

(A COMMON-SENSE APPROACH)

RICIS '90

HUGHES CA. MATTAX, MANAGER
SOFTWART DESIGN & DEVELOPMENT
PROCESSOR DIVISION

RADAR SYSTEMS GROUP

MANAGING REAL-TIME Ada

. A‘lj.aT?EFSFERs THE ABILITY TO IMPROVE SOFTWARE PRODUCTS IN THE
||| l |': T

« RELIABILITY

« MAINTAINABILITY
- PORTABILITY

« SUPPORTABILITY
« QUALITY

. THIS PRESENTATION WILL FOCUS ON THE MANAGEMENT PROCESS
RATHER THAN THE TECHNICAL MERIT OF THE PRODUCTS

. PRODUCT IMPROVEMENT BY THE USE OF Ada IS ASSUMED INHERENT |
IN CHOOSING AND USING THE LANGUAGE

MANAGING REAL-TIME Ada HUGHES

« THE REAL-TIME SOFTWARE UNDER DISCUSSION IS EMBEDDED
OPERATING SYSTEMS FOR HUGHES MODULAR PROCESSORS,
AVIONICS COMPUTERS SUPPORTING MULTI-SENSOR DATA AND

" SIGNAL PROCESSING

« DATA PROCESSING TARGET Eb TO INTEL 80960 32-BIT JIAWG
STANDARD

« HARD REAL-TIME CONSTRAINTS

« PERFORMANCE REQUIREMENTS DEFINED AT HIGH LEVEL THEN
ALLOCATED DOWN AS TIMING "BUDGETS"

« OPERATING SYSTEM "BUDGET" DEPENDS ON APPLICATION USAGE;
DIFFICULT TO ACCURATELY QUANTIFY

« EVEN WITH WELL-DEFINED TIMING CONSTRAINTS, IT'S NEVER FAST
ENOUGH! EVERY MICROSECOND SAVED REPRESENTS POTENTIAL
ADDED FUNCTIONALITY

HUGHLES

MANAGING REAL-TIME Ada

« THE TRADITIONAL RESPONSE TO HARD REAL-TIME C
ESPECIALLY IN AN EMBEDDED OPERATING SYSTEM, IOSNASgg‘EAIlII%TLSY’

LANGUAGE

« THE HUGHES MODULAR PROCESSOR OPERATING SYSTEM IS

WRITTEN IN Ada
« FIRST GENERATION IN Ada DUE TO DoD MANDATE

« SUBSEQUENT GENERATIONS IN Ada DUE TO BENEFITS IN PROCESS
AND PRODUCT

» TRANSITIONING FROM ASSEMBLY LANGUAGE TO Ada IS NOT EASY
» FIRST GENERATION USED "BRUTE FORCE" APPROACH

 IN SUBSEQUENT GENERATIONS, MANAGEMENT PROCESS
TAILORED TO LEVERAGE OFF Ada

CONSEQUENCES OF "BRUTE FORCE"
APPROACH TO Ada

~+ COMPILER PERFORMANCE WAS MUCH WORSE THAN EXPECTED,

ESPECIALLY USING CERTAIN CONSTRUCTS
« REAL-TIME PERFORMANCE WAS SIGNIFICANTLY DEGRADED

« RUN-TIME SYSTEM FUNCTIONALITY AND PERFORMANCE WERE
INSUFFICIENT FOR REAL-TIME DEMANDS

« LEARNING CURVE FOR Ada HAS TO BE FACTORED IN
- BAD FORTRAN CAN BE WRITTEN IN ANY LANGUAGE

- SUBSTANTIAL OPTIMIZATION WAS REQUIRED TO ACHIEVE
PERFORMANCE GOALS T

.« INITIAL RELEASE WAS 3 TO 10 TIMES TOO SLOW

BRUTE FORCE APPROACH WORKS BUT IS PAINFUL AND INEFFICIENT

PROCESS FOR Ada:

TAILORING THE MANAGEMENT
GHES
REQUIREMENTS

« ALLOCATING PERFORMANCE REQUIREMENTS TO DETAILED TIMING
BUDGETS IS A CRITICAL ACTIVITY IN SPECIFYING REQUIREMENTS FOR
REAL-TIME SYSTEMS

» TO ALLOCATE TIMING REQUIREMENTS, THE PERFORMANCE OF
COMPILED CODE MUST BE KNOWN, BUT TYPICALLY ONLY AVERAGE
ﬁ:E_IB:E_pMANCE OVER A NARROW SET OF BENCHMARKS IS KNOWN,

COMPILER EVALUATION AND BENCHMARKING IS REQUIRED PRIOR TO
OR DURING THE REQUIREMENTS PHASE

« EVALUATION CRITERIA INCLUDE EFFICIENCY, CODE EXPANSION,
ROBUSTNESS, IDIOSYNCRACIES IN IMPLEMENTATION OF Ada, ETC.

» VARIETY OF BENCHMARKS ARE USED:
STANDARD PIWG, ETC.

» BENCHMARKS REPRESENTATIVE OF THE REAL-TIME
APPLICATION AND/OR THE MOST SEVERE CONSTRAINTS

TAILORING THE MANAGEMENT e
PROCESESS IF?‘JR Ada:
D ,,

. ONE OF THE BENEFITS OF Ada IS MOVING DEVELOPMENT ACTIVITIES
FROM INTEGRATION TIME TO DESIGN TIME

. USE PACKAGE SPECS TO DEFINE CSC'S AND TO UNAMBIGUOUSLY
DEFINE INTERFACES '

. TEST AT DESIGN TIME BY COMPILATION RATHER THAN AT
INTEGRATION TIME BY TESTING AND REWORK

« CONFIGURE PACKAGE SPECS EARLY

. FLOW DOWN TIMING BUDGETS AND IDENTIFY CRITICAL
COMPONENTS

. RAPID PROTOTYPING SELECTED CRITICAL AREAS PROVIDES
EARLY MEASURE OF WHETHER TIMING BUDGETS ARE
ACHIEVABLE AS WELL AS VALIDATION OF BENCHMARK RESULTS

. REWORK AND REALLOCATION OF TIMING IS THUS POSSIBLE
MUCH EARLIER IN THE DEVELOPMENT CYCLE

TAILORING THE MANAGEMENT
PROCESS FOR Ada:
DESIGN (CONT'D.)

 SOTTHARE BUNECAIG PRACTIES ShY 14 SERIR MoRe e
PRODUCT IS BETTER. ’ ORK, AND THE

ESPECIALLY IN REAL-TIME SYSTEMS, WHERE THERE IS A LEGITIMATE
FEAR THAT THE SYSTEM WILL FAIL TO MEET REAL-TIME CONSTRAINTS,
THERE'S A PUSH TO GET TO THE LAB AS SOON AS POSSIBLE TO SEE
HOW BAD PERFORMANCE IS.

TAILORING THE PROCESS TO SUPPORT Ada FORCES MORE TIME TO BE
SPENT IN DESIGN

« CORRESPONDING SUCCESS IN INTEGRATION HAS BEEN ACHIEVED

. THE FEAR IS STILL THERE. GETTING AN EARLY HANDLE ON TIMING AS
DESCRIBED ABOVE HELPS MITIGATE SOMEWHAT, BUT THE FEAR
NEEDS TO BE MANAGED AS WELL

TAILORING THE MANAGEMENT
PROCESS FOR Ada:

HUGHLS

THE DISTINCTION BETWEEN DESIGN AND CODE IS BLURRED WITH Ada,
ESPECIALLY IF Ada CONSTRUCTS AND Ada AS PDL ARE USED TO _
' DESCRIBE THE DESIGN. NONETHELESS, THERE'S A CODING JOB TO DO.

FOR A TYPICAL REAL-TIME SYSTEM, WHERE EVERY INCREASE IN
PROCESSOR OR COMPILER PERFORMANCE REPRESENTS MORE
;gg%{lggALﬂY, THE NON-DETERMINISTIC FEATURES OF Ada ARE A

« WE STATICALLY ALLOCATE MEMORY, DO NOT USE RUN-TIME
ELABORATION OR RENDEZVOUS, ETC. IN THE OPERATING SYSTEM

IN ADDITION, FOR A GIVEN TARGET AND COMPILER, CERTAIN Ada
CONTRUCTS MAY BE TOO SLOW FOR EFFICIENT REAL-TIME
PERFORMANCE. SUCH CONSTRUCTS ARE IDENTIFIED DURING THE
BENCHMARKING PROCESS

ALL SUCH RESTRICTIONS ARE DOCUMENTED IN THE CODING STANDARD
OR GUIDELINE

TAILORING THE MANAGEMENT
PROCESS:

INTEGRATION

« PLAN IN TIME DURING THE INTEGRATION PHASE FOR OPTIMIZATION
« IT WON'T BE FAST ENOUGH!

» DEVELOP TOOLS TO TIME AND BENCHMARK SYSTEM PERFORMANCE
PRIOR TO INTEGRATION

« FOLKLORE AS TO WHERE THE TIME GOES IS OFTEN WRONG
» SOMETIMES POOR PERFORMANCE IS DUE TO A CODING ERROR

» BENCHMARK AND DOCUMENT PERFORMANCE WITH EVERY SIGNIFICANT
REBUILD TO AVOID TIMING BUILD-UP AGAIN

. AVOID THE TEMPTATION TO USE ASSEMBLY LANGUAGE EXCEPT WHEN
IT'S REALLY THE LAST RESORT

« CAN COVER UP ERRORS, POOR DESIGN, OR POOR IMPLEMENTATION
WHICH COULD HAVE BEEN CORRECTED USING Ada

TAILORING THE MANAGEMENT ‘
PROCESS FOR ADA:
DOCUMENTATION

« DOCUMENTATION IS A SIGNIFICANT SOFTWARE DEVELOPMENT ACTIVITY
FOR DoD SYSTEMS

« THE DOCUMENTATION PROCESS AND PRODUCT CAN BE SIGNIFICANTLY
IMPROVED BY LEVERAGING OFF Ada:

« IRS & IDD: USE Ada PACKAGE SPECS AUGMENTED BY COMMENTS

. USER'S MANUAL, AT LEAST FOR OPERATING SYSTEMS: START WITH
ggﬁ_ﬂ} IﬁfJEE% WITH COMMENTS AND AMPLIFY AS DEVELOPMENT

« DESIGN DOCUMENTATION: USE PACKAGE SPECS AND Ada AS PDL;
SUPPLEMENT WITH DATA FLOWS, ETC.

« AS-BUILT DOCUMENTATION: REVERSE ENGINEER FROM THE CODE TO
ENSURE ACCURACY; SUPPLEMENT AS NEEDED

[

HUGHL G

MANAGING REAL-TIME Ada

« Ada AND REAL-TIME ARE NOT INCOMPATIBLE, BUT GREAT CARE MUS"
BE TAKEN TO:

« UNDERSTAND THE COMPILER PERFORMANCE
. MANAGE THE DEVELOPMENT PROCESS TO LEVERAGE OFF Ada

« MANAGE THE FEAR OF NONPERFORMANCE TO HARD REAL-TIME
REQUIREMENTS

Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University

- Carnagie Mellon University
% Software Engineering Institute

Software Systems Program
November 8, 1990
RICIS "90"

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

Carnagie Nellon Universly
i‘ Software Engineering Institute

SEI Mission

Provide leadership in advancing the
state-of-the-practice of software engineering
to improve the quality of systems that depend
on software.

Technology
Flow Paths

- Purpose:

To facilitate a
higher quality
communication

i Camegie Mellen Universily

Software Engineering Institute

Software Systems Program Objective

Assist the MCCR community in improving the way
software is developed for real-time distributed

systems
. integrate software and systems engineering

. increase the effective use of technology
- Ada

design methods

common architectures

scheduling algorithms

. Reduce the risk of adopting new technology

i Camaegie Malion University
Software EngineeriulLInstitute

Strategy
Identify and select key technical Issues to Investigate.
Select application domains in which to work.

Establish relationships with influential customers and
vendors in these domains.

Evaluate and prototype potential solutions to selected
technical problems.

Conduct proof-of-concept experiments in selected
application domains.

Facilitate the introduction of these concepts Into
practice.

Camegie Melion University
Software Engineering Institute

Software Systems Projects

Rate Monotonic Analysis for Real-Time Systems
Software for Heterogeneous Machines |

User Interface - SERPENT

Real-Time Embedded Systems Testbed
Systems Fault Tolerance (proposed)

Real-Time Data Management (potential)

User Interface Development
Serpent UIMS

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

i. Camegie Melon University
Software Engineering Institute

Introduction
* Problems
e Objectives
e Approach
« Serpent Architecture
o Serpent Editor
e Outside Efforts

o Status

i Camegie Meiion University
Software Engineering Institute

User Interface (Ul) Problems

« User interface accounts for large portion of life
cycle costs

 Impacts all aspects of the life cycle

- requirements
- development
- sustaining engineering

Camegie Mellon University
Software Engineering Institute

Life Cycle Problems

* Requirements

- evolutionary, not well specified
- Wwritten specifications inadequate
- customers may not know what is practical

¢ Design/implementation

- very labor intensive
- inadequate existing methods and tools

o After system completed

- frequent and complex changes required
- difficult to take advantage of new I/O media

90-Serpent-reed-3

Camegie Mafion University
Software Engineering Institute

Objectives

o Make user interfaces easier to specify

e Support incremental development of user
interfaces (prototypes)

o Provide for a "bridge" between prototype and
production versions of system

"« Support insertion of new /0 media during
sustaining engineering

Camegis Melion University
Scoftware Engineering Institute

Approach to Reducing Ul Problems

o Provid_e si_ngle tool which supports incremental
specification and execution of interface

» Separate concern of user interface specification
and execution from rest of system concerns

e Apply non-procedural language and graphical
techniques to user interface specification

90-Serpent-reed-5

Camegie Mefion University
Software Engineering institute

Serpent UIMS

o Has specialized language for user interface
specification

Supports /0 media independent applications

Supports both prototyping and production

Supports multiple I/0 media for user interactions

Supports ease of insertion of new I/0 media

i Camegie Melion University
Software Engineering Institute

Serpent Architecture

Application
layer

m TR TR

U

| oo

N

A !“m m

Presentation layer

Sal

X
wingow
system

i
*'z'

|
i

q
f
1

li

90-Serpent-reed-7

% Camegie Melion University
Software Engineering Institute
Slang, Ul Specification Language

o Based on production model

- data driven
- allows multiple threads of control

¢ Provides multiple views of the same data

- implemented with constraint mechanism

- re-evaluates dependent values automatically
when independent values modified

- applies to application values, I/0 media display
values, and local variables

S Camegie Melion University

Software Engineering Institute

Prototyping

o Detailed knowledge of Serpent dialogue model is
not required

o Application not required
o Slang allows definition of local data
o Serpent automatically enforces constraints

e Reasonably sophisticated prototypes can be-.
generated, e.g., visual programming

90-Serpent-reed-9

Camagie Melion University
Software Engineering Institute _

Input/Output Media
o Serpent designed to simplify the integration of /0
media

¢ Currently Integrated

- digital mapping system
- X11 Athena widget set

o Integrations anticipated/in progress

- Motif
- Open Look

$0-Serpent-reed-10

& 3

Camegie Meilon University
Software Engineering Institute

Application
Can be written in C or Ada

Views Serpent as similar to database management
system

Creates, deletes, or modifies data records

Informed of creation, deletion, or modification of
data records by dialogue layer

90-Serpent-reed-11

Camegie Melion University
Software Engineering institute

Serpent Editor

Layouts of user interface are best speclﬂed or
examined graphically

Logic, dependencies, and calculations are best
specified textually

Serpent Editor has two portions

- graphical part for examination and specification
of layout

- structure part for textual specification

Implemented using Serpent

80-Serpent-reed-12

i. Camegie Mellon University
Software Enginesring Institute

Outside Efforts -- ARMY TO&P

e FATDS/CECOM - on contract
- Port Serpent to ATCCS CHS

- Install Serpent at Center for Software
Engineering

- Technical support to Magnavox

o FAAD - preliminary negotiations underway
- Technical support to TRW

90-Sevpent-reed-13

i. Camegie Melon Universty
Software Engineering institute

Outside Efforts -- Standardization Work

« IEEE P1201.3

o OSF

. Urr;ii;lhtwernétlor’i;l'

+ UIMS Working Group

$0-Serpent-reed-14

‘—i Camegie Meilion University
Softwars Engineering Institute

Outside Efforts -- Commercialization

e Dedicated Company
o Consortium.

e Multiple H/'W and/or S/W vendors

80-Serpent-reed-15

i Camagie Maelion University
Software Engineering Institute

Status

o Serpent (with visual portion of editor) in alpha test

o Supported for Sun, VAX (Ultrix), DECStation, HP
(HPUX)

« Beta version of Serpent (including complete editor)
available 4QCY90

$0-Serpent-reed-18

Session 3

Software Reuse
Chair: Robert Angier, /BM Corp.

Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 19390

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@I|BM.COM

Unclassified

Where Does Reuse Start?

Will Tracz

MD 0210
IBM System Integration Division
Owego, N.Y. 13827
OWEGO@IBM.COM or TRACZ@&/EMRA.STANFORD.EDU

Preface

The following is a transcript of the keynote address
for the Reuse in Practice Workshop sponsored by
IDA, SEI and SIGADA. The workshop was held in
Pittsburgh, PA at the Software Engineering Institute,
July 11-13th, 1989. The goal of this talk was to estab-
lish some common vocabulary and to paint a broad
picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear
by. It is also the type of thing that some people swear
at. Software reusc is a religion, a religion that all of us
here today pretty much have acccpted and embraced.
The goal of this talk is to question the foundation of
our faith - to test the depth of our convictions with
the hope of shedding new light on our intuitions. [
do not claim to have experienced divine intervention.
You don’t need to take what I say as gospel truth. [
believe in what 1 say, but what you hear may be
something different. Again, let me encourage you to
disagree - to challenge the position 1 have taken on
the issues 1 will be presenting. Before 1 proceed
further, [need to qualify software reuse by providing a
definition.

Software reuse, to me, is the process of reusing soft-
ware that was designed to be reused. Software reuse is
distinct from software salvaging, that is reusing soft-
ware that was not designed to be reused. Further-
more,. software reuse is distinct from carrying-over
code, that is reusing code from one version of an
application to another. To summarize, reusable soft-
ware is software that was designed to be reused. The
major portion of my talk will focus on examining the
rhetorical question, “Where does reuse start?”

fral

Introduction

If 1 were to ask you, "Where does reuse start?”, your
reply might be, "What do you mean? That seems like
a pretty vague and nebulous question!”

I agree, so I have done a little top-down stepwise
refinement and broken the question up to focus on
three areas - the three P’s of software reuse: product,
or what do we reuse, process, or when do we apply
reuse, and finally personne/, or who makes reuse
happen. I guess [could have called it the three W's
of reuse: what, when, and who.

"Why is this an important question?” you might ask.
The first answer that comes to /my mind is that if you
would like to build a tool to help reuse software, it
would be reasonable to know: 1) what you were
trying to reuse, 2) when you would be doing it, and 3)
who would be using it. That is one reason, a pretty
gnod reason, but not the only reason for asking the
question “Where does reuse start? Rhetorically, if
one could understand the ramifications, implications
and economic justifications of the answer to the ori-
ginal question, “Where does reuse start?”, one would
better be able to answer the question “Where should
reuse start?”” and “What needs to be done to make it
happen?” This is the real question [think we are here
to answer.

Product

If one examines the question of “Where does reuse
start?” by focussing on the products being reused, one
could ask “Does reuse start with code?” There is no
denying that software reuse generally ends with “code”.
But, this still is a pretty broad statement. After all,
code could be source code, object code, a high level
language statement, a function, a procedure, a
package, a module, or an entire program. The issue
raised then is “What is the granularity of the code that
you want to reuse? The larger the granularity, the
larger the “win” is in productivity. The overhead for
finding, understanding and integrating a reusable soft-
ware component necds to be less than designing and

ORIGINAL PAGE IS
OF POOR QUALITY

writing the code from scratch. This supports the
argument for the reuse of higher granularity objects
such as software packages, modules or classes.

Just as we could debate the granularity of the object
being reused, one could argue about the level of
abstraction that is being manipulated. Does reuse
start with a design? A design is a higher level
abstraction compared to an implementation. Let me
emphasize that the advantage of starting reuse from a
design is that a design is at a higher level of
abstraction than an implementation. Or, in other
words, a design has less implementation details that
constrain its applicability.

This brings out a point made in a recent paper | have
been writing called "Software Reuse Rules of
Thumb”. In it | propose two general rules of thumb
for software reuse: 1) to separate context from
content and concept, and 2) to factor out common-
ality, or to rephrase this second rule a bit, to isolate
change. If one applies the first rule of thumb, a
program design, say at the detailed logic level, should
have absent some (but not all) of the contextual infor-
mation that will be supplied at implementation time.
That is, the implementation issues, such as specific
operating system or hardware dependencies, are
neither part of the content, which is the algorithm or
data flow nor part of the concept, which is the func-
tional specification. 1 will address the second rule of
thumb, factoring out commonality, later.

Before proceeding, | would like to emphasize the
importance of representation, especially from a tool
perspective. Remember [stated earlier that one of the
reasons for looking for an answer to the question of
" "Where does reuse start?”” was to provide a rational
for building tools to assist in the reuse process. This
implies that we would like a machine manipulable
reusable design representation. This is not easy! But,
I believe the state of the art is now evolving to a point
where there are results of software reuse starting from
design. The projects, that | am aware of, have been at
MCC, with the DESIRE system, and at Toshiba,
where in the 50 Steps per Module system, they are
working on an expert system to automnatically generate
C, FORTRAN or Ada from low-level design data-
flow charts. Furthermore, they claim success in
reverse engineering existing software by synthesizing
data-flow diagrams for potential reuse.

Continuing our analysis of the question “Where does
reuse start?”, could reuse start with a program’s spec-
ification? By specification, | mean a statement of
“what” a program need’s to do, not “how” it is sup-
posed to do it. There is a simple answer, yes, in
limited contexts, program specifications can be reus-
able. But research in automatic programming tells us

that this is a hard problem to extrapolate outside of
narrow domains.

Speaking from personal experience, we at IBM in
Owego have developed some reusable avionics specifi-
cations. When 1 say specifications, I mean
MIL-STD-2167 System Requirements Specifications
(SRS). They are highly parameterized documents full
of empty tables and missing parameter values. The
systems analyst, in effect, programs a new module by
specifying the values in the tables of the SRS docu-
ment. An application generator then reads the docu-
ment and builds the data structures necessary to drive
the supporting software.

Completing the waterfall model, we can ask the ques-
tion on whether reuse can start with a problem defi-
nition (requirements). This is an interesting question.
One might ask how? One could reason that if the
same requirements can be identified as being satisfied
by certain previously developed modules, then clearly
those modules are candidates for reuse. Well that is a
big if. It is significantly dependent on the traceability
of requirements to specifications, the traceability of
specifications to design, and the traceability of design
into code and, also into test cases, and documentation.

Here is where a hypertext system'’s information web is
ideal for linking these artifacts together. With a
hypertext system, you can walk the beaten path to
find out what code to reuse. But, there is a catch. As
Ted Biggerstafl has repeatedly stated, there is no free
lunch. You have to pre-engineer the artifacts to fit
into the network, and spend the time and effort to
create the links. Finally you need to somehow sepa-
rate the context of the objects from the content. One
mechanism for achieving this goal is through
parameterization. Parameterization is a way to extend
the domain of applicability of reusable software.
Parameterization allows a single module to be general-
ized over a set of solutions.

To summarize, the issue we have been exploring
related to the question of “Where does reuse start?” is
really the question “What software artifact does reuse
start with? Part of the answer lies in the fact that we
know that software reuse generally ends with the reuse
of code. Where it starts depends on: 1) how much
effort we want to place in developing the reusable
artifact that we want to begin with, 2) how effectively
we can link it to an implementation, and 3) (maybe
not so obvious) how effectively we generalize the
implementation.

There is a fourth dependency having to do with the
process of software reuse. This is topic I will address
subsequently. First I would like to reflect on the gen-
eralization issue of an implementation. One must rec-

ognize that as we progress down the waterfall model,
from requirements to implementation, each artifact
adds more detail. An implementation is one
instantiation of a design. There could be several
implementations of a design just as there could be
several designs that satisfy a specification but that
have different performance and resource attributes.
The key is factoring out the commonality by sepa-
rating the context from the concept and content. The
concept becomes the functional specification. The
content becomes a template or generic object. The
context becomes possible instantiation parameters.
We have identified some of the dimensions and impli-
cations related to which software artifact to start reuse
with. | have concluded that code is a safe place to
start and is, in most cases, the place one ends up. |
also have mentioned that hypertext is the way to
establish the traceability between requirements, spec-
ification, design, tests and implementation.

Process

~ Tuming to the software development process, one
could observe that most software reuse starts at the
implementation phase. One could modify the software
development process to include a step where, at
implementation time, one would look for existing
software to save having to write new code that would
do the same thing. With a little luck, this usually
works. But with a little foresight, this usually works
better. How often is it the case that the code one
“wants to reuse has to be modified because either it
was not implemented to exactly fit the new context it
is being reused in, or it was not implemented to
provide a parameter for adapting it to a different
context, or the design was such that it placed unneces-
sary constraints on the implementation? If the soft-
ware designer had not placed the (somewhat) arbitrary
design constraints, then the implementation could be
used as is.

Therefore, with a little foresight, reuse might better
start at design time. The implementer could then lev-
erage off the functionality of existing implementations.
This is where the bottom-up aspect of reuse meets the
top-down functional decomposition aspect of most
design processes. One could argue that object-
oriented design would eliminate this problem. Let me
say that object-oriented design helps reduce the
problem of the design not meeting the implementa-
tion, but parameterization still is the key for control-
ling this process.

One could just as easily extend the same argument for
looking for reuse opportunities at design time, for the
same reasons, to the specification and requirements

analysis phases of the software life cycle. Again, by
identifying earlier on in the software development life
cycle, what is available to be reused, trade-offs can
made in the specifications, or designs can be tailored
to leverage off the existing software base.

Let me now_infroduce somewhat of a new phase in
the traditional waterfall model that has been added
explicitly to support software reuse. | define domain
analysis to be a generalization of requirements analysis
- instead of analyzing the requirements for a specific
application, the requirements of a generic application
are quantified over a domain. Applying my two rules
of thumb: commonality is factored out and context is
separated from concept and content. Reusable
objects are identified, and their context defined.

If one recognizes that the software development life
cycle needs to be modified in order to inject software
reuse technology, then, relating to personal experience,
reuse opportunities and potential can be identified -at
code review time, or at design review time. If one
looks at the Programming Process Architecture used
in IBM, one can see these criteria called out as being
integral parts of the inspection process.

But then again, instead of reuse being addressed
during the software development cffort, maybe reuse
could start as an after thought (project follow-on).
After one pass through the software development life
cycle, the second time through one can begin to see
the commonality between applications. Quoting Ted
Biggerstaff's rules of three “If you have not built three
real systems in a particular domain, you are unlikely
to be able to derive the necessary details of the
domain required for successful reuse in that domain.”

As a'side point, there is a second rule of three.
“Before you can reap the benefits of reuse, you need
to reuse it three times.” The empirical evidence | have
seen to date bear this out.

A better choice for where reuse should start is at the
beginning of a project (project start up). Here, the
software development process can be defined, reusable
software libraries can be set up and standards as well
as tools developed.

To share with you again my personal experience, in
one large Ada project, A Computer Integrated Manu-
facturing (CIM) effort involving 350K SLOCS, the
project had a PRL - Project Reuse Lead. He was
responsible for sitting in on all design and specifica-
tion reviews to identify commonality between subsys-
tems and support the communication and application
of reuse technology. Because of software reuse, fac-
toring out commonality, the size and development
effort of the project was reduced by over 20%. This

ORIGINAL PAGE IS
OF POOR QUALITY

is a successful example of where reuse started at the
beginning of a project.

But, then again, maybe reuse could start at the end of
a project (project wrap-up). | am reminded of the
General Dynamics approach for developing reusable
software related to an early version of the DARTS
system. lHere, after a project was completed, and
before the design and development team was assigned
to a new project, they locked everyone up in a room
and wouldn't let them out untd they developed an
archetype of the system. That is, they recorded how
and what to modify in the system so that it could be
reused in the future.

While this is one approach for developing reusable
software, it scems like putting the cart in front of the
horse. But, then again, it is reasonable, upon the
completion of any project to identify likely compo-
nents to add to a reuse library.

Finally, we are all in this for the bottom line. Let me
state my version of the Japanese software factory’s
motto: “Ask not what you can do for your software,
but what your software can do for you.” It makes
sense, dollars and cents, to capitalize on existing soft-
ware resources and expertise. But, you need to
develop a business case to justify the additional cost of
developing reusable software.

To summarize, the issue we have just explored related
to the question of “Where does reuse start?” is really
the question “Where in the software development life
cycle does reuse start? Where it starts depends on 1)
how one modifies the software development process
to identify opportunities for reuse, and 2) how one
either modifies or extends the software life cycle to
identify objects to make reusable. The bottom-line is
that software reuse is a good example of software
engineering discipline.

LPersonnel

Turning to the last dimension [identified related to
the question of “Where does Reuse Start?”, we will
focus on the key players in the reuse ball game. The
first player to come to bat is the programmer. Does
reuse start with a programmer? Most programmers
are responsible for the design and implementation of

software. If they can identify a shortcut to make their
job easier, or to make them appear more productive
to their management, then they probably will be moti-
vated to reuse software. But, while programmers
nnghtbemclmedtoreusesoﬁmd'nwuﬁm orit
was the path of least resistance, or if they are told to,
the real issue is “Who is going to create the software
toreusemtheﬁm plaee?' There needs to be a crit-

ical mass of quality software for programmers to draw
upon in order for them to fully subscribe to the reuse
paradigm! So, how do we bootstrap the system?

Maybe managers can instill a more altruistic attitude
on their programmers. This, of course, becomes a
question of budget cost and schedule risks associated
with the the extra time and cffort needed to make
things reusable.

Reuse is a long term investment. Maybe the expense
of developing reusable software should be spread
across a project! With reuse raise to the project level,
there would higher potential for a larger retum on
investment, plus more insight and experience in prior-
itizing what should be made reusable. Again, there is
no free lunch, A project manager would have to
authorize the cost. But project management is gener-
ally rewarded for getting a job done on time and
under budget. There is no motivation for making the
next project look good. This shortsightedness needs
to be resolved with top management.

Indeed, this is the case, both here and abroad. At
NTT, GTE, IBM, TRW, to name a few companies,
reuse incorporation and deposition objectives are
being set. For instance at NTT, top management has
set a reuse ratio goal of 20% on all new projects, with
a deposition ratio quota of 5%. That is, all new pro-
grams ideally should consist of at least 20% source
code from the reuse Library and all new programs
should try and deposit at least 5% of their source
code to the reuse library (subject to the acceptance
guidelines, constraints, and ultimate approval of the
Reuse Committee).

But, upper management edicting reuse to happen
doesn’t insure success. That is why there is a strong
argument for reuse to start in the classroom
(educator). The education system, while it is good at
teaching theory, might embrace a little more of the
engineering discipline and teach software building
block construction or composition of programs.
Courses are needed in domain analysis, application
generator construction, and parameterized program-
ming, as well as the availability of pre-fabricated,
off-the shelf components structured to facilitate the
construction of new applications in a classroom
setting. Again, critical mass is needed to bootstrap the
system.

Besides the reuse mind set, maybe reuse should start
with a tool set (tool developer). Personally, I do not
see the need for exotic and elaborate tools to support
reuse. Although, | am biased towards using a muiti-
media hypertext system for the capture and represen-
tation of domain knowledge, which I consider crucial
to understanding what and how to reuse software.

ORIGINAL FAGE IS

Have I run out of people who possibly could start the
reuse ball rolling? Have [saved my heavy hitters for
last? Should reuse start with the customer? It
depends on the customer! A large customer, like the
Department of Defense, could easily demand certain
reuse requirements be met. Of course, there might be
a small initial overhead cost associated with getting
the ball rolling, but once the system was primed, once
application domains were populated with certified,
parameterized, well documented, reusable compo-
nents, then long term benefits could be reaped.

[have added the salesperson to this list of individuals
who could play a role in determining where reuse
might start. The reason is that if a salesperson knows
the marketplace and knows potential customers, then
they could play a key role in building the business
case necessary to justify the capitalization of software
for reuse.

Finally, I have added the systems analyst as being a
person who possibly could be instrumental in starting
software reuse. 1 admit, he joined the team late, but
he turns out to be a clutch player. Back to the issue
of putting the horse in front of the cart. Before you
can reuse software, you need software to reuse. Who
are you going to call? The domain analysts! Who are
the most qualified individuals in an organization to [)
analyze a problem domain, 2) determine logical sub-
systems and functions, and 3) determine the contents

or requirements of modules and anticipate the dif-
ferent contexts that they might be applied under? The
systems analysts. They have made life so difficult for
some of us programmers in the past by providing
incomplete or inconsistent or, worse yet, too detailed
specifications. This is a wonderful opportunity to
work together toward a common goal.

To summarize, the issue we have been exploring
related to the question of “Where does reuse start?”
has been identifying the roles played by certain indi-
viduals in an organization related to making software
reuse happen. In retrospect, several of the key players
had non-technical roles in the game! A point that
bears distinction and should come as no surprise.

Summary

In conclusion, the goal of my presentation was to
bring to light issues surrounding software reuse. To
force you to question what you might have accepted
on blind faith. [have probably raised more questions
than [have answered, but, that is good. Hopefully it
will provide you opportunities for discussion. Finally,
I have shown, as a wise old owl once stated, “It is not
what you know, but who, you know?" that often is
necessary for success. Software reuse is no exception
to this rule. Software reuse is a people issue as well as
a technology issue.

ORIGINAL PAGE IS
OF POOR QUALITY

