
N91- 2 3o

A CONCEPTUAL MODEL FOR
MEGAPROGRAMMING

October 9, 1990

Will Tm_

MD 0210
IBM Federal Sector Division

Owego, N.Y. 13827

OWEGO(_IBM.COM
(607) 751-2169

ii A Conceptual M_el rot Mel,prolrtmmin _
v

Abstract

"Currently, software is put together one statement at a time. What we need is to put software together one
component at a time."- Barry Boehm, at the Domain Specific Software Architecture (DSSA) Workshop,
July 11-12, 1990.

Megaprogramming, as defined at the first ISTO Software Technology Community Meeting, June 27-29, 1990, by
Barry Boehrn, director of DARPA/ISTO, is component-based software engineering and life-cycle management.
The goal of this paper is to place megaproEramming in perspective with research in other areas of software engi-
neering (i.e., fGiaT_aI methods and rapid prototyping) and to describe the author's experience developing a system
to support megaprogramming.

The paper, first, analyzes megaprogramming and its relationship to other DARPA research initiatives (CPS/CPL
-- Common Prototyping System/Common Prototyping Language , DSSA - Domain Specific Software Architec-
tures, and SWU - Software Understanding). Next, the desirable attributes of megaprogrammi_g software compo-
nents are identified and a software development model (The 3C Model) and resulting prototype
megaprogramming system (I,ILEANNA -- Library lntercormeetion Language Extended by Annotated Ada) are
described.

Keywords: domain modeling, formal methods, inheritance, parameterized programming, rapid prototyping, soft-
ware engineering, and software reuse.

Abstract ii

I A ConceptualModel for Megaprogramming

1.0 Introduction

"Megaprogramming is the type of thing you can go into a 3-star general's office and use to explain what
DARPA is going to do for them to make their software less expensive and have better quality." - Barry
Boehm, at the ISTO Software Technology Community Meeting, June 27-29, 1990.

Software researchers and developers have long pursued the goal of increased software productivity and quality. As
ihe programming profession matures and basic research into programming languages and formal methods advance,
opportunities are emerging to app!y some of these results to the software development process. This paper is
about component-based prograxrtmmg or megaprogrammlng, a term coined by Barry Boehm[2] at DARPA/ISTO,
which is an essential element of the DARPA Software Strategic Plan I. Reusing software components, instead of
re-writing them, is a long held[16], intuitively appealing, if not obvious, approach to increasing productivity and
quality. Systems developed based on reusable software artifacts, in principle, should cost less (partially attribut-
able to a shorter schedule), and contain fewer defects becau_ of the "tried and true" parts used in its composition.
Unfortunately, a one-dimensional view of quality as being the "absence of defects" is not sufficient to explain the
necessary attributes of software that make it reusable (i.e., portability, flexibility, reliability, useabiIity, and under-
standability are other essential attributes). The observation that "quality can not be tested into a program, but
needs to be designed into a prograrn," is especially applicable to megaprogramming.

The goal of this paper is to examine the technical foundations of megaprogramming and to assess their effective-
ness for increasing the interoperability, adaptability, and scaleability of its components (i.e., the quality of its com-
ponents). To this end, this paper is organized into three sections. The first section summarizes and analyzes the
megaprogramming vision initially presented as part of the DARPA Software Technology Plan[2l]. The next
section introduces a conceptual model for reusable software components (the 3C Model[23]) based on separating a
component's context (what can change) from the concept it encapsulates (the interface it ex .ports) and its content
or implementation. The final section describes work in progress on a megaprogrammmg implementation,
LILEANNA[24] (Library Intereonnection language Extended by Annotated Ada), which combines the formal
methods of ANNA[14] and the parameterized programming capability of OBJ[I 1]

2.0 Megaprogramming Vision

"Software productivity improverhents in the past have been accidental because they allow us to "work faster".
DARPA wants people to "work smarter" or to avoid work altogether." - Barry Boehm, at the Domain
Specific Software Architecture (DSSA) Workshop, July 11-12, 1990.

Megaprogramming is envisioned as a giant step toward 2 increasing "development productivity, maintenance pro-
duetivity, reliability, availability, security, portability, interoperability and operational capability[2]." Megaprogram-
ruing will incorporate proven, well-defined components whose quality will evolve, in the Darwinian sense.
Megaprogramming requires the modification of the traditional software development process to support
component-oriented software evolution. Domain-specific software architectures need to be defined and imple-
mented according to software composition principles and open interface specifications. The resulting software
assets need to be stored and accessed in a repository ideally built on a persistent object base, with support for
heterogeneous software components in distributed environments. Finally, additional environmental capabilities
(e.g., hypermedia) are needed to provide software understanding at the component and architectural levels.

The subsections that follow describe some of the focal points of the DARPA Software Technology Plan[.211
related to megaprogramming. In particular, an environment to support megaprogramming (Megaprogrammmg
Software Team) and the generation and promotion of megaprogramming components (Megaprogramming Soft-
ware Interchange) are addres.,_d.

,'T

' Prior.to Doehm's use of the term "megaprogramming", Joseph Goguen[l !] suggested the term ky/m,peo_[eamm/n# to refer
to a similar, if not identical, programming paradigm. The author has suggested us,ng the term
peogramming-wit/_-tl_-large_24] to emphasize the granularity o1"the objects being manipulated.

The analogy used by Barry Boehm was that, historically speaking, one might view machine language programming as
resulting in productivity at a snails pace, assembler language programming -- a turtle's pace, programming in FORTRAN,

'_ cbr A-da "walking, and megaprogramming as walking with seven league boots.

ORIGINAL PAGE IS

OF POOROu/uj'ry

Introduction I

2 A ConceptualModel for Mellnprograrnmin| ',

2.1 Megaprogramming Software Team

"Configuration "_ Co_onents + Interfaces + Documentation
Software Team = Configuration + Pro.cess + Automation + Control." - Bill 5cherlis, at the ISTO Soft-
ware Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software team is to create an environment to:

1. "manage systems as configurations of components, interfaces, specifications, etc.,
2. increase the scale ofunits of software construction (to modules), and
3. increase the range of scales of units of software interchange (algorithms to subsystems)1211."

The key elements of the megaprogramming software team are:

Component sourcea - currently, components under consideration are from reuse libraries (e.g.,
SIMTEL20{5I or RAPII_20]) or COTS (Commercial Off-The-Shelf) software (e.g., GRACE[1 ! or
Booch[3] components). Application generator technology is desirable to provide for adaptable modules
while re.engineered components (e.g., CAMP[17]) could provide additional resources. It is desirable to
move toward new customizable components with a rapid prototyping capability.

Interface definitions -- currently, there exists an ad hoe standard consisting of Ada package specifications
and informal documentation. It is desirable to develop a Module Interconnect Formalism (MIF) with
hidden implementations supported by formal analysis and validation tools.

System documentation -- currently, simple hypertext systems are supporting the (often ambiguous and
incomplete) textual documentation associated with software components. It is desirable to create a
repository-based, hypermedia environment that provides traceability between artifacts and supports the
capture, query, and navigation of domain knowledge.

Proeem structure - currently, there exists no predictable software development process. It is desirable to
develop an evolutionary development life cycle with support to domain engineering, integrated require-
ments acquisition, and reverse/re-engineering.

Process Automation -- currently, CASE tools are either stand-alone or federated (e.g., Unix_). It is desir-
able to integrate the tools and create a meta-programming environment to support process de_ription and
refinement.

• Control/Asaesament -- currently, only a priori software metrics and process instrumentation exists. It is
desirable to integrate the measurement process with tool support and to create a cost-estimation capability.

The megaprogramming software team initially expects to draw resources from the STARS (Software Technology
for Adaptable Reliable Systems) SEE (Software Engineering Environment) program. Future tools will be contrib-
uted by Arcadia122], CPS/CPLI6] (Common Prototypin8 System/Common Prototyping Language), DSSA
(Domain Specitic Software Architectures)[18], POB (Persistent Object Bases), SWU (Software Understanding),
and REE (Re.Engineering)programs. Interface and architecture codification will be supported by a Module
Interconnect Formalism (MIF), which is an outgrowth of the CPS/CPL program.

The goal of MIF is to adequately describe a software component such that its selection and use can be accom-
plished without bolting at its implementation. The component interfaces will include, not only the entry points,
type definitions and data formats (e.g. Ada package specification), but a description of its functionality, side effects,
performance expectations, degree and kind of assurance of consistency between specification .and. implementation
(reliability), and appropriate test cases. DSSA will provide the initial 'avenue for the apptlcatton ot ttus tecla-
nology. (An architecture is a collection of interfaces.) Incremental asset creation and customization will be guided
by the CPS prototyping technology.

Asset capture and re-capture will be supported by SWU's design record, hypertext browsing capability, and REE.
The design record will provide a "common data structure for system documentation and libraries[2 ir,. The sug-
gested data elements in a design record include:

• code,
• test cases,

s Unix is a trademark of AT&T Bell Laboratories.

ORIGINAL PAGE IS

OF POOR OJ U.n3'

, Megsprogrammin| Vision 2

3 A Conceptual Model for Megaprograrnming
q •

• library and DSSA Links,
• design structure,
• access rights,
• configuration and version data,
• hypertext paths,
• metric data,
• requirement specification fragments,
• PDL texts,
• interface and architecture specifications,
• design rationale,
• catalog h_.iLrmation, and
• search points.

2.2 Megaprogramming Software Interchange

"Software Interchange = Software Team + Convention + Repository + Exchange." - Bill Scherlis, at the
ISTO Software Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software interchange is to "enable wide-area commerce in software compo-
nents[21]". The megaprogramming software interchange, which is integrated with the megaprogramming software
team, consists of the following elements:

Conventionalization -- currently, conventions are emerging. It is desirable to create a cooperative decision
and consensus mechanism that supports adaptable, multi-configuration libraries, which present a standard
search capability.

Repository/Inventory- currently, repositories support code storage only. It is desirable to retain, assess,
and validate other software assets such as architectures, test cases, specifications, designs, and design ration-
ales.

Exchange/Brokerage -- current intellectual property fights.and government acquisition regulations are sti-
fling a software component industry. It is di_sirable to populate certain application domains (via DSSA)
and to support the creation of an electronic softwar_ component commerce by defining mechanisms for
access control, authentication/certification and establishing composition conventions.

The megaprogramming component interchange expects intially to draw soRware components from the reuse
libraries in STARS and DSSA with future support derived from POB, and CPS/CPL (MIF).

3.0 Conceptual Model for Software Components

"Before components can be reused, there needs to be components to reuse."

As discussed in the previous section, megaprogramming requires the definition of proven, wen-defined compo-
nents that are implemented according to software composition principles. This section presents a formal frame-
work for developing reusable software components that leverage the compositional capabilities of the
megaprogramming language LILEANNA (covered in the next section of this paper). A conceptual modelI24] is
described that distinguishes between three distinct aspects of a software component:

1. the coneep_ or abstraction the component represents,
2. the content of the component or its implementation, and
3. the context that component is defined under, or what is needed to complete the definition of a concept or

content within a certain environment.

These three aspects of a software component make the following assumptions about their environment:

1. There is a problem space (application domain) that can be decomposed into a set of concepts (or objects if
one prefers using an object-oriented paradigm).

2. There is a solution space that is characterized by the contents (implementations) of the concepts.

ORIGINAL PAGE IS
OF PO0 OOALrrY

Megsl_rogrsmming Vision 3

4 A Conceptual Mode| _r Megaprogramming

3. The solution space is populated by several dhTerent implementations, or "* .parameterized'" implementa-
tions that can be instantiated by different contexts within the solution space.

Before proceeding further into the material in this section, it is important for one to rea.Uze the subtle implications
that "dynamic binding" has on one's approach to programming. The conceptual model described in this section
assumes a programming language and env_onment with all b_nding of parameters done prior to run time (with
the exception of actunl parameters passed to subprogram operations). The model recognizes that binding can
occur at or before compile time, and at Ioad/Iirzk edit time. This view of binding, to some readers, may appear

limiting (which, in some sense, it is), but this [Lrrdtation, in reality, is a trade-off for early error detection (strong
typing), which, in some application areas, is considered to be of greater importance.

The rest of this section defines the terms context, content, and concept, in more detail and describes their re[ation-

ships to modularization, specification, interlace design and parameterization.

3.1 Three Aspects of a Software Component

This conceptual model for software components is motivated by the need to develop useful, adaptable, and reli-
able software modules with which to build new applications. These three needs are addressed individually by the
model.

1. A useful component meets the high-level requirements of at least one concept necessary to design and
implement a new software application.

2. An adaptable component provides a mechanism such that modules can be easily tailored to the unique

requirements of an application.
3. A reliable component is one that accurately implements the concept that it defines.

This conceptual model for software components, referred to as the 3-C modal, is based on thee aspects of a soft-
ware component: concept, context, and content. These three terms are addressed individually in the subsections
that follow.

3.1.1 Concept

"Domain analysis is the buiidir_,, up of a conceptual framework, informal ideate and relations; the
formalization of common concepts. - Ted Biggcrstaff, MCC.

The concept represented by a reusable software component is an abstract description of "what" the component

does. Concepts are identified through requirement analysis or domain modeling as providing the desired
functionality for some aspect of a system. A concept is realized by an interface specification and an (optionally
formal) description of the semantics (as a minimum, the pre- and post-conditions) associated with each operation.
An Ada package specification (operations, type and exception declarations) for a stack abstract data type, with its
behavioral semantics described in Anna[141, is an example of a reusable software concept.

3.1.2 Content

"The ability to convert ideas to things is the secret of outward success." - Henry Ward Beecher.

The content of a reusable software component is an implementation of the concept, or "how" a coml>onent does
"what" it is supposeci to do. The software component conceptual module assumes that each reusable software

component may have several implementations that obey the semantics of it's concept (e.g., operational specifica-
tions ar_ the same, but the behavioral specifications are different). The collection of (28) stack packages found

among Grady Booth's[31 components is an example of a family of implementations for the same concept (stack).

4 Perhaps "generalized" is a better word.

Conceptuml Model fo¢ So/tware Components 4

$ A Conceptu=JModel for Megaprogramrning

3.1.3 Context

"Understanding depends on expectations based on familiarity with previous Implementations." - Mary Shaw,
SEI.

One of the failures of software reuse is that user's expectations of a reusable software component do not meet the
designer's expectations of the reusable software component (the square-peg-in-the-round-hole syndrome). By
explicitly derming the context of a reusable software component at the concept and content level, and formally
specifying its "domain of applicability", the user can better select and adapt the component for reuse.

The context of a reusable software component takes on three dimensions:

I. the conceptual context of a reusable software component - how the interface and semantics of the module
relate to the interface and semantics of other modules,

2. the operational context of a reusable software component - what the characteristics of the data being
manipulated are, and

3. the implementathm context of a reusable software component - how the module depends on other
modules for its implementation.

Parameterization, inheritance and importation of scope through the use of abstract machine interfaces are all lan-
guage mechanisms that assist in separating context from content. Within the framework of the 3-C model, one
uses these language constructs as follows:

I. one specifies the conceptual context of a software component by using inheritance to express relationships
between concepts (module interfaces). This occurs when two concepts share the same syntax and seman-
tics.

2. one defines the oper=tiomd context of a software component by using genericity to specify data and oper-
ations on the data being manipulated by a module (at the conceptual or implementation level).

3. one decides on the implementation context of a software component by selecting the operations to be used
for and by the implementation of a module. These operations are external to the component. Inheritance
or importation of scope are the two languages mechanisms that support the definition of a module's imple-
mentation context.

One should note the explicit separation of the roles of code-and type inheritance in the model. Type inheritance is
used to express the conceptual context of a module. The conceptual context of a software module forms a true
partial order in that the concept inheriting another concept "is a" subtype of the latter concept. Code inheritance
is used as an implementation mechanism and may or may not be the same as the type inheritance used to express
the conceptual context of the concept associated with the software component for which the implementation is
being created.

An example of conceptual context is a stack that can be used to describe the interface of a deque (double ended
queue). The operational context for a deque is the type of the element being stored. The implementation context
of a particular deque implementation might be a sequence abstraction. That is, the implementation would be
designed to refer to operations in an abstract machine interface found in a sequence concept, which could have
several implementations (e.g., array or linked list). Alternatively, the deque could be indirectly implemented (i.e.,
generated in the megaprogramming sense) by simply

1. renaming some of the operations in an implementation of the stack (i.e., Push and Pop would become
PushRight and Pop_Right),

2. adding some new operations (Push Left and Pop_Left), and
3. inheriting the rest (e.g. Print, Lengt'_, Is_Empty, etc.).

Using the syntax of LILEANNA, the following megaprogram would generate the (parameterized module) deque
described above:

make Oeque[Trtv] ts
Stack [Trtv] * (rename (Push -> Push_Right)

(Pop => Pop_Right)
(Stack -> Oeque)

• (add Push_Left, Push_Right)

end;

Conceptual Model for $oltware Components

6 A ConceptualModel for Megaprogramming

The selection of an implementation, or the content of the concept is determined by trade-offs in context. Clearly,
knowing the characteristics of the type of data structure being manipulated will lead to more emcient implementa-
tions. This can result in the population of a reuse library with several efficient implementations of the same
(parameterized) concept, each tailored to a particular context. At design time, a programmer could identify the
concept and define the context it is being manipulated under based on requirements or operating constraints. At
implementation time, the programmer could instantiate an implementation of the concept with the conceptual
contextual information plus any other contentual contextual information neces,,,ary.

Separating context from concept and content complements the work of Pamas[19] in suggesting that the quality of
software can be improved by isolating change. It has been demonstrated that software is more reusable, or more
easily maint_ned, if the types of possible modifications to the software are taken into consideration at design time.

4.0 LILEANNA

LILEANNA (LIL Extended with ANNA (Annotated Ada) [141) is an implementation of LIL (Library Intercon-
nect Language), proposed by Joseph Goguen [9] as a MCL (Module Composition Language) for the program-
ruing language Ada[25]. LIL is a language for designing, structuring, composing, and generating software systems.
It is based on the work of Goguen and Burstall on the language CLEAR[4] and Goguen on OBJ[8 I. I.IL was first
introduced at the Ada Program Libraries Workshop in Monetary California. It was later refined for publication in
IEEE COMPUTER[10]. Since then it has been the interest of several researchers[7, 12, 13, 24 !.

The primary design goals of LIL were:

I. to make it easier to reusesoftware written in Ada,
2. to facilitate the composition of Ada packages,
3. to support an object-oriented style of design and documentation for Ada,
4. to rapidly prototype new applications by integrating executable specifications with the controlled manipu-

lation of source code,
5. to avoid recompilation, and
6. to support maintenance of Ada programs and families of programs.

The power of megaprogramming in LILEANNA centers on the ability to compose new packages with package
and subprogram expressions via the make statement. Existing packages may be manipulated through package
expressions to specify the instantiation, aggregation, renaming, addition, elimination or replacement of operations,
types or exceptions.

LII.EANNA supports the structuring and composition of software modules from exi_ing modules. One can

1. instantiate a parameterized module to create
a. implementations of operations,
b. a simple package/module, or
c. a parameterized package/module (generic).

2. Compose/structure modules by
a. combining other modules (inheritance and multiple inheritance) (e.g., merging two module's oper-

ations and types),
b. adding something a to an existing (inherited or instantiated) module (e.g., adding an operation),
c. removing something from the interface of an existing module (e.g., hiding an operation),
d. renaming something (e.g., purely textual changing the name of operation in an interface),
e. selecting from a family of implementations, or
f. replacing something in an existing module (i.d., a pure swap - a remove and add combination).

The result of evaluating a LILEANNA comDosition/megaprogramming statement (i.e., a make statement) is an
executable Ads package specification and body that either is

I. a "stand-alone" flat module (nothing imported), or
2. a hierarchy, with selected functionality imported and perhaps repackaged.

Note that since there is no inheritance in Ada, composition that uses inheritance will need to either import all
modules in the inheritance hierarchy (being careful to rename those which might result in ambiguity), or include

s Where "something" is a sort/type, operation,exception,or in somecases,an axiom.

Concep/ualModel fo¢ _are Components

7 A ConceptualModelforMegaprogramming

all necessary functionality directly in the implementation (package body). In either case, the resulting user inter-
face (package specification) should not be cluttered by such details.

4.1 Formal Foundations of LILEANNA

LILEANNA has its formal foundations in category theory 6 and in initial and order-sorted algebras. These con-
cepts form the basis for advances in algebraic specifications and type theory. Many type systems are based on the
concept of an algebra. An algebra defines a set of values and the operations on them just as an abstract data type
defines the data of :he type and provides operations on them.

Program semantics in LI[EANNA are expressed in first order predicate calculus rather than using re-write rules (a
la OBJ) as a way of implementing conditional order-sorted equational logic.

4.2 LILEANNA Language Constructs and Examples

LILEANNA is a language for formally specifying and generating Ada packages. LILEANNA extends Ada by
introducing two entities: theories and views, and enhancing a third, package specifications. A LILEANNA
package, with semantics specified either formally or informally, represents a template for actual Ada package spec-
ifications. It is used as the common parent for families of implementations and for version control. A theory is a
higher level abstraction, a concept (or a context), that describes a module's syntactical and semantic interface. A
view is a mapping between types, operations and exceptions.

Programs can be structured/composed using two types of hierarchies:

1. vertical: levels of abstraction/stratification, and
2. horizontal: aggregation and inheritance (type and code).

LILEANNA supports this with two language mechanisms

1. needs: import dependencies, and
2. import, pcotect, or extend: three forms of inheritance, and Includes, a subtyping construct.

Theories are an encapsulation mechanism used to express the requirements on generic module parameters. Theo-
ries also play a role in building horizontal and vertical hierarchies by defining the interface requirements for
modules that later can be instantiated with a more concrete implementation. Views map theories to theories, or
theories to packages, or pieces of packages. One powerful feature of LILEANNA is the encapsulation of parame-
ters in theories. With this capability, the semantics of parameters can be formally specified and the domain of
applicability of a module can be explicitly qualified.

The generative capability of the LILEANNA is provided by package expressions, a "super make'" feature for
creating new packages from existing packages through horizontal, vertical and generic instantiation. Package
expressions manipulate Ada packages and their contents based on their relationships to LILEANNA packages,
theories and views. The basic operations, supported are importation in the form of inheritance, specialization in
the form of instantiation, generalization, and aggregation. Finally, the contents of modules can be manipulated
through * .package operators by indicating what entities are being added, hidden, renamed, or replaced.

LILEANNA goes beyond the Ada instantiation capability in that generic packages can be composed to create new
generic packages without themselves being instantiated. Partial instantiations are also possible. A view is used to
instantiate a generic package. Default views can be computed if only package name is supplied. Alternatively,
mappings of formal to actual parameters may form an in-line view as part of a package expression.

The following example illustrates several LILEANNA language constructs. In the example, the package
Integer Set is made from a parameterized LILEANNA package, LIL_Set. This example is very similar to the
instant_tion of an Ada genetic, except that in Ada, the instantiation process is done at compile time In
LILEANNA, the generic instantiation is done prior to compile time. This results in Ada source code which is
ready to be compiled, composed or further instantiated.

6 Goguen has suggested that L1LEANNA is based on another 3-C model -- Category theory, Colimits, and Comma Catego-
ries.

7 Make is a UNIX term and command for the process of selectively compiling and linking compiled outputs to make an
executable module.

LILEANNA 7

8 A Conceptual Model for Megaprogramming

make Integer_Set is LIL_Set[Integer_Vtew] end;

Attention should be paid to the view (shown below), Integer View (from theory Triv to 'the Ada package
Standard), used in the make statement above. There is an expfi_it mapping between the type Element and the
type Integer. The point to be emphasized is that this mapping can be given a name and reused in other
instantiations.

view Integer_View :: Triv => Standard

types (Element => Integer);

end;

is

Alternatively, as shown below, the instantiation could have been stated as

make Integer_Set is
LIL_Set [view Triv => Standard is types (Element => Integer);]

end;

In this case, the view does not have a name, but the mapping is explict to this particular instantiation.

The following example illustrates the use of horizontal and vertical composition. A generic package (Short Stack)
is generated by selecting an array implementation (ListArray) of the list interface theory (ListTheory) ne_'ded by
the LILEANNA package (LIL Stack). It is assumed that the LILEANNA package (LILStacR) has a compa-
rable Ada package (Stack) and that an explicit view may or may not exist between them.

make Short Stack is

LIL_Stack -- inherit Stack Package

needs (List_Theory -> List_Array)
-- supply array package

end;

(horizontal composition)

(vertical composition)

The following is an example of a make statement that instantiates the generic LILEANNA package Sort according
to the view Nat_Default (not shown), which maps the Natural numbers and the pre-defmed linear order relation-
ship onto the theory of partially ordered sets.

wake Sort_Ltsts_0f_Naturals is

S0rt[Nat_Default]

needs (ListP -> Linked_List)

end;

An example of a more involved make statement using multiple inheritance and package operators follows.
based on an existing set of Ada packages that defines an Ada-Logic Interface[151 package for reasoning.

It is

LILEANNA

9 A ConceptualModel ForMegaprogramrning

make New_Ada_LogJc_Interface is
Identifier_Package +
Clause_Package*(hide Copy) +

Substitution,Package +
DataBase_Package +
Query_Package*(add function Query_Fail (C: C|ause;

- L: List_Of_Clauses)
return Boolean)

*(rename (Query_Answer => Query_Results))
end;

The result is a merged package specification where,

I. the Copy operation is not available on Clauses,
2. an additional operation, Query_Fail, now augments those inherited from the specification, Query_Package,
3. the QueryAnswer operation is not available in the resulting interface, instead, the QueryResults operation

can be invoked.

5.0 Conclusion

"We shouM stand on each others shouMers, not on each others feet." - Peter Wegner[26]

Megaprogramming is a new programming paradigm that requires both a critical mass of software components and
a disciplined approach to program design and specification. This paper has presented one approach to megapro-
gramming that is based on a formal model (the 3-C Model) for developing reusable software components. This
model gives insight into the relationships between type inheritance, code inheritance, and parametefization that is
essential for providing the adaptability and interoperability of software components. The corresponding imple-
mentation, LILEANNA, serves as a valuable vehicle for exploring megaprogramming concepts.

6.0

,

,

,

4.

,

6.

,

.

.

References

Beraxd, E.V. Creating Reusable Ada Software. Proceedings of the National Conference on Software Reus-
ability and Maintainability, September 1986.

Boehm, B. DARPA Software Strategic Plan. Proceedings of [STO Software Technology Community
Meeting, June 27-29 1990.

Booch, G. Software Components with Ada. Benjamin Cummings, 1988.

BurstaU, and Goguen, J.A. The Semantics of CLEAR, a Specification Language. Proceedings of the
1979 Copenhagen Winter School of Abstract Software Specification, pages 292-332, 1980.

Conn, R. The Ada Software Repository. Proceedings of COMPCON87, February 1987.

Gabriel, R.P. (editor). Draft Report on Requirements for a Common Prototyping System. in ACM
SIGPLAN Notices, 24(3):93-165, March 1989.

Gautier, R.J. A Language for Describing Ada Software Components. Proceedings of Ada-Europe Con-
ference, May 26-28 1987.

Goguen, J.A. Some Design Principles and Theory of OBJ-0, a Language for Expressing and Executing
Algebraic Specification of Programs. Proceedings of Mathematical Studies of Information Processing,
pages 425-473, 1979.

Goguen, J.A. LIL - A Library Interconnect Language. in Report on Program Libraries Workshop, SR!
International., pages 12-51, October 1983.

LILEANNA 9

10 A Conc_tuaJModel for MegaprogramminI _,_ _..

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Goguen, J.A. Reusing and Interconnecting Software Components. [EEE Computer, 19(2):16-2_, Feb-
runty 1986.

Goguen, J.A. ttyperprogramming: A Formal Approach to Software Environments. Proceedings of Sym-
posium on Formal Approaches to Software Em'rionment Technology, Joint System Development Corpo-
ration, Tokyo, Japan, January 1990.

llarrison, G.C. An Automated Method for Referencing Ada Reusable Code Using LIL. Proceedings of
Fifth National Conference on Ada Technology and Fourth Washington Ada Symposium, March 17-19 1987.

Liu, D B. A Knowledge Structure of a Reusable Software Component in [IL.. Proceedings of ,Sixth
National Conference on Ada Technology, March 14-17 1988.

Luckham, D. and von}lenke, F.W. An Overview of Anna, A Specification Language for Ada. IEEE
Software, 1(2):9-22, March 1985.

biadhav, N. and Mann, W. Abstract Specification of Automated Reasoning Tools: An Ada-l.ogic Inter-
face, Program Analysis and Verification Group, Stanford University, 1989.

Mcllroy, M.D. Mass Produced Software Components. Proceedings of NATO Conference on Software
Engineering, edited by Naut', P., Randell, B. and Buxton, J.N., pages 88-98, 1969.

McNicholl, D.G., Palmer, C., et al. Common Ada Missile Packages (CAMP) Volume I: Overview and
Commonality Study Results, McDormel Douglas Astronautics Company, :AFATL-TR-85-93, May 1986.

Mettata, E.G. Domain Specific Software Architectures presentation at ISTO Software Technology Com-
munity Meeting, 1990.

Pamas, D.L. A Technique for Software Module Specification with Examples. Communications of the
ACM, 15(5):330-336, May 1972.

Ruegsegger, T. Making Reuse Pay: The SIDPERS-3 RAPID Center. IEEE Communication¢ Magazine,
26(8):816-819, August 1988.

ScherUs, W.L. DARPA Software Technology Plan. Proceedings of ISTO Software Technology Commu-
nity Meeting, June 27-29 1990.

Taylor, R., et al. Foundations for the Arcadia Environment Architecture. Proceedings of Third Sympo-
sium on Software Development Environments, pages !-13, November 1988.

Tracz, W. The Three Cons of Software Reuse. Proceedings of Fourth Workshop on Software Reuse
Tools., 1990.

Tracz, WJ. Formal Specification of Parameterized Prograras in LILEANNA, PhD thesis, Stanford Uni-
versity, 1990. In progress.

U.S. Department of Defense, US Government Printing Office, The Ada Programming Language Refer-
ence Manual, 1983.

Wegner, P. Varieties of Reusability. Proceedings of ITT Workshop on RetL¢ability Programming, Sep-
tember 1983.

References I0

Ada Net
John McBride

Planned Solutions

= J

AdaNET

Presented to
RICIS '90 Software Engineering Symposium

November 8, 1990

Presented by
John MCBride

Planned Solutions, Inc.

AdaNET P 'ogram

• Five Year R & D Effort to Advance the State of Software
Engineering Practice

• National Facility in West Virginia to Increase U.S.
Productivity, Economic Growth & Competitiveness

• Enhance Existing AdaNET System to Provide a Life Cycle
Repository for Software Engineering Products, Processes,
Interface Standards, & Related Information Services

Planned
Solutions, Inc.

Purpose and Scope

• Transfer Software Engineering Technology Within the Federal
Sector & to the Private Sector

• Reusable Software Components Useful in All Phases of
Lifscycle

• Englneerlng Process Descrlptlons for Oeveloplng
Adaptable & Rellsble Systems & Software Worthy of
Reuse

• Interface Standards

- More Conslstency In System Features,
Slmpler System Integratlon,
Aid In the Use of Metrlcs as Quallty Predlctors

• Related Information & Services

- Software Englneerlng Help Desk
Conference Llstlngs

- References
. Networklng to Other Databases
- E Mall

&daNirr |

Planned
Solutions, Inc.

AdaNET Goals

• Establish a National Center for the Collection of

Software Engineering Information

• Provide On-Line Life Cycle Repository

, Promote a Cultural Change Necessary to Improved
Quality & Efficiency

• Provide a Platform for Research in Technology
Transfer

AdsNET 3

Planned

Solutions, Inc.

AdaNET Benefits

• Decrease Software Costs

• Improve Quality of Software Systems

AdeNIiT 4

Planned

Solutions, lnc

AdaNET is a National Resource

_ i_'Software

User

Accessible Via InterNET and TeleNET Public Access Dial Up

Planned
A_aNrr s Solutions, In

Users of AdaNET

Small Companies - Reusable Components and Software
Engineering Help Desk will Allow These
Companies to be More Competitive

Large Companies - Large, Complex Systems can be Built
More Reliably and at Lower Cost with
Reusable Components

Academia - Facilltates Teaching and Research in Software
Engineering With Reusability

U. S. Government. Spinback Benefits to Government Software
Developers

AdaNllr I

Planned
Solutions, Ir_

Major Research and Technology Issues
ii1

Application and
Dissemination Policies Software Reuse Strategies AdaNET Architecture

• Interagency Agreements

. Customer Licenses

• Data Rights

• Title and Use Guarantees

• Liability

• Organization Type

• Chargesand Profits

• International Clients

. Military Restrictions

o

=

• Domain • Modification

• Type • ClseaFflcatlon

• Granularity • Retrieval

• Selection • Aselstance

• Configuration • Qualification

• t

u •

AdaNET Context
• Operating Modes
• Securltyand Integrity
• User Interface

AdaNET Services to Access
Resources

AdaNET Resources
• Information
• Products
• Experts

AdeNET 7

Planned
Solutions, In(

AdaNET Enhancements

AdaNET Service Version Two (ASV2) Current System

- Hosted on Data General

- CEO Office Automation Product Organized Files in Drawers
and Folders

- Keyword and Textual Search

ASV3 (late 1991)
- Unix Based

- Integrate JSC/Barrlos Developed Autolib & Army/RAPID
Derived Technologies

- Natural Language Query, Facets, Keyword Search

ASV4 (late 1994)

Object Management Support for Full Life Cycle Traceability

AdsNIT $

Planned
Solutions, In(

AdaNET User Registration
I I II

Mountain NET

P.O. Box 370

Dellslow, W.V. 26531

(304) 296-1458

(304) 296-6892 FAX

1-800-444-1458 help desk (Peggy Lacey)

AclaNET 10

Planned

Solutions, In

Current AdaNET Products and Services

ReusableSoftware Publications

ArmyAdaSoftwareRepository (227)' • Citations
STARSRepository (in procelt) • Newsletters
NASAJJPLComponents (In proceu) • Standlrdl

Products Conlerencu

• Services (40)" • Announcements
• Software (141) • Piper Cells

SMall
• Abstracts
, Uw ContribuUonu

zr_ contracts

• GuidedStudy (102) • Awerdl
• Self Study (21) • RFPs

(sTe)
(19)
(92)

(112)
(20)

(129)
(21)

(161)
(177)

* - FunctionalAreas
"- UniqueRles

AdaNlrr I

Planned

Solutions, In.

Summary

• Life Cycle Approach to Reuse Can Provide a Significant Impact
on Software Productivity

• Software Engineering Information Provides Knowledge Transfer

• AdaNET is an Operational Program with a Prototype Development
and Evaluation Cycle

AdaNET 11

Planned

Solutions, Int

POSIX and Ada Integration
in the

Space Station Freedom Program

Robert A. Brown
The Charles Stark Draper Laboratory, Inc.

Overview

• POSIX Overview

• POSIX Execution Model

• Ada Execution Model

• SSFP Flight Software Ada Requirements

• POSIX/Ada Integration

POSIX Overview

• Portable Operating System Interface
for Computer Environments

• IEEE sponsored standards development effort

• Voluntary participation
• Concensus standard (75% required for approval)

• Purl_ose
• Define standard OS interface and environment

• Based on UNIX

• Support application portability at source code level

• Family of open system standards

=

POSIX Working Groups

• P1003.0. Guide to POSIX Open Systems Environment

• P1003.1: System Interface

• P1003.2." Shell & Tools

• P1003.3: Testing & Verification

• P1003.4. Realtime

• P1003.5: Ada Language Bindings

• P1003.6: Security Extensions

• P1003.7: System Administration

• P1003.8: Networking

• P1003.9: Fortran Language Bindings

• P1003.10: Supercomputing

• P1003.11. Transaction Processing

POSIX Execution Model
P1003.1

POSIX process
• Address space
• Single thread of control executing in address space
• Required system resources

Process management
• Process creation -- fork() and exec()

• Process group and session
• Process termination -- exit(), abort()

Process synchronization
• Signals -- sigsuspendO, pause()
• Wait for child termination -- wait(), waitpid()

Process delay
• alarm() and sleep()

@

POSIX Execution Model
Realtime Extensions

• Priority scheduling

• Binary semaphores

• Shared memory

• Message queues

• Asynchronous event notification

• Clocks and timers

• High resolution sleep
• Per-process timers

Ada Execution Model

Language Definition

Ada program

• Single address space
• Multiple threads of control
• Required system resources

• Task management
• Task creation -- elaboration, allocator evaluation

• Organization -- task master
• Task termination -- normal completion, exception

• Task synchronization
• Rendezvous

• Task delaY

• Ada delay statement

SSFP Flight Software Requirements

• Multiple real-time programs sharing same processor

• Fixed priority, preemptive scheduler

• Single level dispatcher

• Nor,-olocking i/o and system calls

• Ability to schedule tasks for periodic execution

• Ability to schedule tasks to respond to specific events

Ada Execution Model

Realtime Extensions

• Scheduling
• CIFO cyclic scheduler

• Binary semaphores

• Shared data template

° Precision time services

• Event notification

• CIFO event management

POSIX/Ada Integration
The Problem

• POSIX looks from Program outward
• Semantics defined for processes only
• Single thread assumption

Ada looks from program inward

• Semantics defined for tasks within a program only
• Single program assumption

• Integration of POSIX and Ada
• Extend POSIX semantics to multi-threaded processes
• Extend Ada semantics to multiple programs

POSIX/Ada Integration
A Solution

• Extension of POSIX semantics to multiple threads

• Define system interface for threads
• Redefine existing services for multiple threads

• Signals
• Fork() and exec()

• Per process static data
• Semaphores, events and timers

• Extension of Ada semantics to multiple programs

• Global task scheduling
• Definition of shared package semantics

• Ada interfaces to multiprogramming services
• Process control -- start, stop

• Interprocess communication

Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown, University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer

Systems
Susan Gerhart

Microelectronics and Computer Technology Corp. (MCC)

.6

Q

a

"Applied Mathematics of Software Engineering"

college sophomore through Ph.D. level

Use

logic, set and sequence notation,

finite state machines, other formaJisms

In

• system models

• specifications

• designs and implementations

For

• highly reliable, secure, safe systents

• more effective production methods

• software engineering education

In levels of use

guidance: structuring what t o say __L.
rigorous_ formal:

generated and worked proof obligations

mechanized: using proof assistants tJ. S.

MCC Formal Methods TransitionStudy Sessk_ 1

II III|l

A NonExecutable Spec Language: ASLAN

• State-transition based

• First order logic with equality

• Sections

>_ Types (builtin and user constructed)

,7 Constants & Variables

,, Constraint

_, Transitions

• Generates verification conditions

_ IC -> INV

_ For each t, INV' & PRE'(t) & POST(t) => INV & CON

• Limited type checking

• PASCAL-like syntax

• Levels (of refinemen0

,, Additional VCs

• Derived from Ina Jo research (R. Kemmerer at UCSB)

, | ._ .

T_w_N,,ICICI_l

Portion of an ASLAN Spec

_"_YPE

J

book is structure of (

title: string,

author: string,

subject _ string),

copy,
copies is set of copy

VARIABLE ...

db: library,
smff: asers,

be_ower.(copy): user,

IN aext_id: pcrs_i_tITIAJ..

. db = empty & staff- empty & next_id = 1
.,_INVARIANT

'_l_" I forall c:copy

/ _ isin db -> available(c) xor borrower(c)-_noone)

L. cardinality(db,nextjd- 1)

TRANSITION check out(c:copy, u:user, s:user)
ENTRY c isin db & available(c) & s isin staff &

under_lim(u)

EXIT borrower(c) becomes u

elo

I1 Ir "

Workshop 20 Jtme 1990

ill 17 I

An A SLAN-generated Verification Condition

consistency conjecture for check_out(c:copy, u:user, s:user):

(forall c:copy
c isin db' -> cfavailab_e] xor cfborrower] ~= aoo_e

c is.in db' & c[avaiiabie] & s is,in staff' & mader_li_n'(u)

-c[available] & c[borrower]-u
• &

'_'_ db:db'&

staff = staff')

_>

(forall c:copy
c isin db -> c[available] xor c[borrower] ~= noone

&

true)

" "_tl f,,.- t ¢k'V_ I

"e. i_.iicating _ =o bac_-
)cesshasbeen ,.,,_ fro"e=e-

o_i,_1"t'upm.a,e xt_e, r._ pro-

ile, and r.he Selea operation

n spon=neom_. It is specified

_w

GZ_ _ and=,=_= arede=rod_/='mfotm
dzc=wmt_=

l"_ dectar'a_ong_es ths typsot tl_efurcr_ orconsm_ .hZs e's _ gjvesi= V_=.
Here, I define onlytt_ Z syml_Is us_l intttisank_

S:PX
xGS
xtS

$_T
SvT

{x}
N
S:FX

For _b operadon to be permm/ble, the

preces=ormust. be running a background

wt

de=r:

the process identifier and a flag,
takes one of the vaJues set or

:.-=s_l dm_

o = .'_-:...

p_oce=. This process Ls removed from _"

' '_,,_....._ '............__'OJ_.4) _.- /_¢_

A Crwi_e Cow_ol

CRUISE-ACT

__ PEDAL-MON. TEEr.PED-DEF

__m_ SPEa_D-MON -MAINTAIN-SPSELECF.SP SEIJEC_-SP
_mq, hoot CRUISE-MON - TEEF-PED.DEF and _-SP

s'roe.TErr._-VZD-Ve_
STOP.M,_IN- mpp,e_,_rrAl_-sP)
SCHED.PED zS,,,S_,m_CI"EST-Iq_D-I:_"__co,_)
SC'm_X_MAIN._(_ O_Albrr_ _)

L.?O¢ ,.,

Cruise-Act State

F'_ 4: Cru_ St_¢ Zoom-i,

;,; _e

Tools Catalogue

Languages

• NonExecutable:

Z, VDM (at least 2 flavors), ASLAN, Larch, Estelle, ...

• Executable: (prototyping)

Miranda, OBJ, me too, StateChart, Calibaa,D, Prolog

Static Analysis

FUZZ, ASLAN + (all executable systems)

Language.tailored Environments

Raise, Larch, Gist, Statemate
A

C o_emrre_c y-cemt_ered

CSP, CCS, Unity, Petri-nets, Spec, Lotos,

Temporally focused

L.0, ASLAN-RT, RTL, Timed CSP, Temp_u'a, TempLog,

Theorem Provers

Bover-Moore, HOL, Clio, m-EVES, B, Isabelle, OBJ,

EHDM, Gypsy, uRAE_... - -

A

0,2 qr ts

-- J _...

4L

Project

CICS

Cleanroom

ZEE

Sample Applications
Parties

Oxford PRG

IBM Hursley

IBM FSlJ

NASA SEL

Tektronix

Problem
in Progress

Status

Transaction

Processing

Embedded,

Restructurer

Oscilloscopes

Released,

Measured (??)

Released

Evaluated

On-going

Avalon/C++ C-MU Atomicity Preliminary

GKS, British Standards Graphical, Published

OA Doc. IaStitt_te Documents

I-Iypertext Dexter Group FIypertext Report

Re(. M<_lel De-,m_rk Concepts VDM90

SXL "' GTE La_s Pr_oco@s " _ ase

L.0 t_d_core Protocols In use

CASE Praxis Object Report,

M_nager product

Anti-MacEnroe Sydney Iast. Teamis Line ltepevt

Device Technology Fault Detector (Occam,CSP)

Security Honeywell

Ford Aero.

Digital

TIS

RSRE,
Cambridge

LOCK

Multi-net Gateway

Secure VMS

Trusted Mach

Microprocessor

Tools

NIicrop,assembler,

O.S.

Cyclotron

VIPER

Verified

Stack

CLinc

In progress

Reports

Newsletter

Reports

Oncology U. Wash. Starting

Reactor Parnas, Shutdown Reports,

Control Ontario Hydro Certification Certified

Murphy U.C. Irvine Safety Reports

SACEM French RR Train Control ICSE12

MCC Focmd _ TraasitioaStudy
Session 2

S/4,d,,d

41_ollc..,/a,.,

• /___,._;_J

SOFT NEWS
I • I I I I I

IIiw m_r_ aVacg _ imCd _ the w_# #f_ I_lm.

Software safety focus of new British standard

The B_'idsh Defence Ministry expects

to ix_ue a a n_-* v_'rwate-_ew sca.qdard

this _oring that _illr_u_re the m_ of
formal m_h4xh and mad_-madcad

verit_atbhn ,m _ _t'et_.<riticaJ software.

O_h' dc_'elof>c-rs_ pro_ that their

mfi,_are i._n_x sa/cw-cridc=l _II be

exempt fr, Jm the requirements.
The smn(I,_d. MoD-Scd_055. will Ixm

the LIs4:O/;.L,iF,<.'tnh_ylanguage, limit the
u_ of high-level languages like Ada to
•_ffc _ubsc, L_.mui require the use of samic
an;d_is. Itaim _ts standards for p_
engrineerx. It _ill require _ all end-

neersi_ u_l',mthe sofeware'ssa_," co_-
#iance. c_a_the _ _ takea
accre_ed fiorm;d-meeho_imt_'tiem

within the past two years, _ _

inde['_,_dcr_ e_Iioeer _ dm/_ar
accredi_a(km also sign offon the sy_em.
Thi_ is similar to the respondbili_ and

requirerncflts enforced ml ll/_ems-_[et_.
engineers f_ the _ peo_C

The (3055 standard w_l he i_ e_rect

for two _ar_. durintl __4_ch dine the
Defence .Ministry will revise it on the

basis of indttstrvJs experience. The in tent

is to de_'elop a long4erm standard, said
Ke_in Ge.'u'y. a sofnvare consultant for

the Bridsh naL'y's procurement depm-

ment who is working on the 0055 slan-
dard. The minisu'y is also working on
MoD-Std,0056, a hazan_-anah.sis standard
that will help software dc_ioper_ deter-

mine where to apply formal methods
and mathematical verirg'mion, Ge=ury
said. "Both mathematical vrrir_rio,

and hazard an,'dysis must he performed

to pm_de software with a_cepmble risk.
Neither is adequate alone," mid Nancy
Le_'eson. a software-safetyexpert and a

computer-,xience professoratthe Unb
_rsity of CaliCornia at Ir_ine.

Pre_ of formal methods. The 0055 stan-

dard has been called a "landmatk'by

thm¢ in the sofrw:u'e-sa[et,/and formal-
method_ communities, who ar_e that

_s,!gn!n_L._sponsibility to m(tmu_

necr_, ,'ts has h_en tradithm in hardware

¢n_i_eeHn R, will help encourage
changc._ in _k-_-k)t_nent methods that

_ili hdp _.'e safe _ems. Safety is in-
cre.'_/ng. _ ier_xqant because mft_are b
becnmir_, a greater part ofcrkKat
s_ems like aircraft co_tro_s, reed/ca/

des_:es,nuclcar-I_'er pL_s. eaHy.-war_-

ing defen._ _stetns, and m/ss/Ic cotRrc_s,
they said.

Mo.,_ _ffnvare_engineering gandards

depend em tesdn_, which is no_ ah_'a)?u
rdi.d_. Ctary _id. "Theprn_m wkh
_re is tha__numma_es_al_m_ s_ec-
he_aminm_, g ur_ dli_ "t _-t dt_ s_i_'_

ware _" lie _id. However, mad_-

UIg DeCease _
m mamve

m oeAmm__
ma ema /

v_d_¢

sat'ely_ s_fh_we.

madcal anal.vsis of Formal specifications
notions can he used to find errors in

the spedfications, Leveson said,
The incre_ng number of tools like

Z_"d. V'uenna Des_lopment Method,

Spade, and Malpas will help make the
impS_mentat_ of formal methods pos_-
I_e becatt_¢ these tools can perform

s_adc anal.v,x_ of information flow and

semantics quicld)., rather than in the
years required with manual eechnlque_
Ge_r_, said.

Formal methods and mathematical vet'-

ificadon are often considered Ioo dll_

cultm apl_. Gearyconceded."l'here is
a _ of urine, bu_k'squ_ _
tl_ there are a ka _keTpee_ _'_

ctm_ az(xmd after looking at k." he said.
Geary cited IBM's B¢idsh de_ent
center, which decided for commercial

r¢'._)n$ _ not for g_'ernmem or other
o_csidc requirements _ to use the Zed

f_rmal meth,M on CICS d_velopment.

"Pcmplc's resistance is t'_._,_1on igno-
rance." C<arv said.

:mnthcr murce _'resi._tance is the con-
fus_ httwc_n formati. _¢matical

rneth_M.s as_l _ai correctness.

"C.rrecm<ss is a _goai for

real _._tems. F_r e_ample, do you have a

'cm-re_' akr_ia_e.;" L_--_m_ said. "A
mm'e realistic a_l,usoful,go_,is to build
a ._mem _at _t_._es a_ven set offunc-
_/o_a_ and missum requirements while a_

the mine dme trHng to satis(y constraints
of._,_, security,, and<osc" she said.

Man?'. of_ _s _ Irad¢-offs in

_ cnrn_ared_formalmethods to

ur'aditional hardware engineering: "Engi-
aeers _ formal mathematical models

a_l _ me anai_mis methods to deter-
mint _-ther the medici hascertain

des/red prol_rdes," si_ said. "which
lhould be the role of formal methods in

softwareengineering." (_n's
"S._'ety_ a 5oftw'are Quall_" essayin this

Issue'sQualityTime, on p_. 8g.89. gives

more details about this pro<e_)

"Both soRware engtne,_ns _ hard-
ware engineers specifydle_," C,eary

said. "The only difference is how umgible

[the productl b,'he mid.
,_ill. m_raure enginee_ do Ibce a bur-

den thattheir ha_

gene_lly do not: the coeqldC'_y " of, their

product, said Man.,m Thamm. chairman
of Praxis,_aerns. a _neering

comuking firm in Balk, _gtand, that

does much work in safe_ engineering.
Tr-adidonal engineers I_ brid_ebuild-

ers "nemr had technktm'sTer design.
which b more important _r sofovare
became d_t's where _ _e_it_
comes in. h's mx a ._l't_re pee_em but
, d_-_p<o,_-_ _," _ _d.

ORIGINALPAGEIS
OF POORqu .rrY

0

Figure I Structure of the Framework

Components :_

I-I'mrarchy

¢lltm

• "rm eml ¢em:elm
• Illemo_ lar SwNImlo

oewd_m

i|

P JUSt I :

leoum_rrs

purl:
IktlllrT II.m_f11;

IMIErS: II_gTV IfWIOlg_

Jtu_gr/91andm_
• Fwil Trim
• FlllA
._A
.V&V

,tPPLICA_ION
ST,ta41)_ll_

ORIGINAL PAGE I$

ORIOINAL PA(
OF PO0_

Sub-Obj._t/_
uq I

t

clarity and preckiea

maa_meat or"

s_f ccUm_c_d

_idKy

Objecti_.. _ute Specification

m _ i i i i

S__ " _---T

syntax_d-mt_
represen_t/m_; ap_lic_ion sv_:ific

l.anguag_g_neering no_ block
dlagranul, _ntatJon

diagrams, algebra, s trarmforrm, discrete

equations;_u'_-ral lanTu _ase annotations;
structured natural language; s-ubsetx _f
languages

a/_r_tion; modularity; info_atiou

,,a,,_o.- _ ¢_ _.d
t_ecum'es;semmmim-for ncrc_oms; review
and insp_'tion; " af . ___," ---

I

|

l

xzc _e_.

. .r[.

modelling; data
distains; fini_ t_t,e
m_hines/sta_
transition diagmm_
structure diaiWim

m

formal rnazhematical

modelling;, da_ flow

diagrams; finite state
machines/state

transition _;

ma/mm _

m_.kems_

inspections; focmal

"rool_
|

F

#

/. "

management of

complexity

self consistency of

specification

syntax and senumUcs; graphical
representation; application svccitic

language_-asmeenns aotatmdg_ block
diagrams, _'roce_ ana tJu_rumenta_bm

diagrams, algebra, z transfo.m, discrete

equations; natural language annotations;

structured natural language; subsets of

languages

abstraction; modularity; information

hiding; structured design technique

animation -- _ and
theories; senuag_cs kx" _; review

II

and iaapectioa; execaVioa of _

prototyt_ag of selected prope_es;

testmg;" _; experimentation;
experience in the fie|d; divet'sity o(tools

and people; use of _bset o£ pcogtammiag

language; languages tha_ can cope with
different levels o(abstraction

 ¢k tw

di_grffin=;_ .t.tu

transitkm dissrsms;

structure _t_n_

formal mathe_

modelling;, data

diagrams; finite ga_

m_hines/sta_

transition diagranM;

structm'e diagr_mn

prototypinglanimati_m;
s/muI_ion; functional

fo .d

fm=.d
re, m

formal design revica_

fomad p¢o_ _f
pcogram: mea_ ch, cait

aaa_
walkthroughs;
functional testing

• #

J

K.4 I_ ot" pooc_s

106 As il amy mCiaee_i _ e_ieavo_r, the _t_ of the dev_

t pror k essential to the achievement and assurance o_"_. _ k a

requirement tha£ the system is wh_ it seems, that documentation k adeq_ and under

coniigum_ion control and that the claims made about the system are valid.

Sub-Objectives

a_tive and effective

management comtro_

commitment of senior

management to safety
and quality

motivated md

competent .td

Objective: integrity of process

Techniques IBC techniques

QMS to ISO 9000; independent QA;

au_ configuration management;
manual configuration management; clear
detine_iou of authority and responsibility
for sal'ety; adequate project planning, cost
estimation and monitoring tools _nd

procedures

awareness cam_ _¢a_,<m
approval schemes; demoz_bra_ion of
ecoscm_c I_es_s; _u_or_ _ec_on;

_y; __ _ _,_
_- l _"

application domain and o_ so(tware

techniques used in project; qualj.'Ecatio_ to

fi;
safety culture

checklists: Fagan
uq-ctions; formal
desi_ reviews

107 Note: Within thistechnicalframework only recommendations concerning

management controlsand competency of staff"can be made. Other factorsare impoctaa¢

and should be add_ during the project (eg safetycultureconsidered in the mlection

of contractors_).Similarly,broad securityissueshave not been considered.Itmay be

po_ble _ fu_t.uevendons of the Framework to referenceout these objectivesto a QMS

standard.

" _ ,.,,._'e_._

(i) Maintenance and moditica_ion activities are inadequate. It shoeld be tpp_
that maintenance can be a dominant source of common mode failures in red-uda_

systems. Also, maintenance will be paxticulaxly important in long lifetinte syetems
or systems which are expected to evolve.

(ii)

(iii)

Security of the embedded code isviolated.GenerM considerationof sec=rityaxe

outside the scope of thisframework, forfurtherdiscussionsee the pub_s from

the DTI Commercial Security Centre [9].

Failuresin the system violatethe statedconditionsunder which the ia_ is

ensured. The detection,tolerationand management of such changes are a_Iressed

in the sectionon validity(K.2) and are not considered furtherin thissectios.

109 The need formaintenance of the hardware and software willa_'ectthe designof

the software structureand faulthandling,reportingand recovery mechanisms. This is
a_i_ in sectionK.2.

II

m_Remm_ _

integrity of
modifications

security:soRwam

code unchanged

'_e_qnes [teclmiqnee

m eace aid
rmmual coa_garatioamaaagement;

automated configurationmanagement;

__ pcocedums;ar_M_ih'ty

qu_difted stair; development facilities;
Quality Management Systems

application of design standards and
development standards to modifications;

regression testing;, procedures for assessing

i|1

robust storage media; security:
administrative accesscontrols; passwords;

safety critical data not changed by
operational staff; encryDtion and other

faalt tolerant techniques

error correcting codes

%jo

comprehemuk_a

empizical and analytic
evidence

__iom of residual

lifecycle; s_is_cticm c_ othe¢ f_

objectives

See %atisfactia, of s_ci.fic4zio='. [m

addition require: proof deliverable;

appropriate V&V techniques -- d_

]gfieal reasoninf, doeume_
revmws; evaluation of operaZing experience

of identicaJ and similar systerm; use of

proven or certificated components

dam, limits; des/gn guidxnee (e.g. 'no

single failure criterion') on system level

diversity

diversity of tools r te_hai,_,,-- ,,_nl, *-d

_-- rv_v, _,_ _

_diwemity of o_her boo_ z_imm_
f_sult d_eceion _d c_;

O_ areal uechmcat review

 uuu of
progrmn; checktim4;
FaOn inspectkms;

formal design re_;

boundary value

auaJysi#; error

guessing; error

seeding; performmmce

modelling; siaatlatk_

test coverage;

functional testing

checkJieu; Fwgm

iupe_ou;

m_iews; fault

_on and

diagnosis

demcmtratim to iavolv_'aeac of c_mtomer; QA _ a dteckilem; Fagan

second or third parties QMS; liason with customer QMS; inspections; formM

compliance with I/eadth and Sa/ety _ desip revi_

Work Act sad other fete-rarer
and standards; safesy record io_ or

accomplishment summary; certific_iou o(

_ ____,__----__ p_ple, procedures and components

acce ted mat Tmatical infe|ence svs_lp I or formal m_thema_ical

'-c6 ":.__ modelling
reason _ p !] . _.......... _....

bmgua_e ,- _ ii-_

..- x

/r__ SpecTra Screen Mock-up

Results
1 --

I I
II I

l I

I 1

l l
l

type:: d_claratic_

date:: Jun 14 10:05.1990

author:: greene

Contents:: books is set of book"

_gure 7 Co_e_ o_t_ l_cl _ LabeLedbooks

Besides the one-of links (denoting the set membership relation), there are is-of-

type and depends -upon links (v is -of -type t whetl v is • state variable and t is its

type and Dmcl d/depends-on Decl d2 when the declaration d2 mentions the formal

entity dectamd in d/). These links are by default invisible (to cut down on the clutter) but

can be _ althe use_"srequest.For example, a usercan clickon a u'ansitionnode (a

node _ the emtry md ex/t conditio_ of an ASIAN transition)and ask for all of

me .od_ m _e _ o._ _ _oe depen_ SpecTra_en hish_ghts
of the nodes ia die specificati_ which can be reached by starting at the clickedupon node

and following depends-upon links.Thus the graphical reln, es_ta_on of an ASIAN

specification is _ to browse tka the texmaJ represematioa. SpecTra is tlso able to

l_ghSgbt alldse modes whiclk_ qxm a use_ _ rode, This eases the task of

specificzti_ mcdi&:i_n as m_s cm be lma_ to _ mhe pros _ ube sgecilcatkm wt_:h

wiztbea_ec,oS_ acSasee.

U_II _se sew rode and links types, foruud ASLA_ specifications can b_ entered sad
_ Gem. Additioaally, I/P/A _ informal _ may coexist

ia dm 4mbme id _ese i_fonaal notiom may be Uaked to tbe portion of _ f_ _-
iflcatkm wtidt is dtetr fomalizafloa. For example, in the process of coming up with m-
quiremems for the h'lnry database, the following issue arose. Should the concepts book
and c_p7 be identified? Arguments (pro tad con) were given and it was decided that these
two a_ioas shouldbe distinguished.The position taken was that • bookwas somethin_
absaact and that • copy was an insumce of that abstraction. The links between this posi-

0'91GINAL p

m2

al:c

Capyr,_,t)_CC1_

Figure 2 _ of tlm risk and
integrity levels to the Sale_ _¢le Model

O

r Hazard. j

Risk

Assess,mentI

,,-_,_-,_,-,_
-

_qB_mmm
,_] _.

--iF - -

Designation of
Safety Related
Systems

!

Safety Ip_ ,----- Validation

Risk and Safety
Integrity Levels:

influencingF_ actors

• Legislation
• International

Standards
• National Standards
• Safety Regulatory

kuthod_ Guldelines

8

._ ._ \\

Vahdatlon Design and I _I Veriflcatl°n I
Planning Implementati°n ! _ i

" I

0'9/Q/A,

Operation and
Maintenance

H,/p<,.#_ _/_,¢R,,,.,.

MCC
Formal Methods Transition Study

Call for Participation

April, 1990

Interestisgrowing worldwide in the applicationof

precisemathematical techniquesto the specification

and design of hardware and software systems. In

fact,European successesin this area, commonly
calledFormal Methods, have already led govern-

ments torequirethatthe techniquesbe used forsafe-

ty criticalsystems.

MCC's Software Technology Program proposesa one-

year in-depth study of Formal Methods techniques

and the toolsthat supportthem. Drawing upon sig-

nificantresearch experienceat MCC, we willassess
the stateofthe artworldwide and determinethe im-

plicationsfora varietyofNorth American industries.

This proposal describesthe background, rationale,

and contentsofthe funded study,includingitstime-

lineand deliverables.Our goal isto provideexecu-

tiveswith the information they need to ascertain

theirown companies' requirements in the Formal
Methods area.For those whose interestcallsforfur-

thertechnologydevelopment, thisstudy willalsoes-

tablisha plan forappropriateresearchand develop-

ment work.

Background, R_tionale: Formal Methods, a body
of techniques supported by powerful reasoning tools,
offer rigorous and effective ways to model, design,
and analyze systems. Several research groups, pri-
marily in Europe, have generated specification, im-
plementation, and verification techniques for a broad
class of systems, and have cast the techniques into in-
dustrially usable f_orms. Their affiliated companies
have already employed several of these techniques in
the development of real-world hardware and soft-
ware applications. Attention by governments and in-
dustry is increasing as well, due in large part to a
growing concernwith the high risksoffaultycomput-

er controlin systems criticaltolifeand property.In-
deed, certaincombinations of Formal Methods are

now seen as necessary forensuring that these sys-

tems meet existingregulationsand standards,or

that they avoid legal liabilityrepercussions.And

there are other, broader applications for these tech-
niques as well; in particular, they can help circum-
vent many of the expensive problems of general soft-

ware development practices,such aslatediscoveryof

errorsand poorcommunication among end users,de-

signers,specifiers,and implementors.

MCC isin a unique positiontobuildon the progress

in Formal Methods. Even today,a number oftools

and techniquesdevelopedinMCC researchlaborato-

riescan be brought tobear.For example, So_ware's

issue-baseddesign methodology can be integrated

with Advanced Computing Technology'sdeclarative

language technologyand with externallydeveloped
Formal Methods-based toolsets.MCC researchers

have proposed severalnovelways inwhich toexploit

MCC-developed techniquestoadvance Formal Meth-
ods research.Moreover, researchersin the Software

Technology and Computer-aided Design programs

are investigatingCoDesign--desigu and analysis

techniquesspanning bothhardware and software.So

thatwe may capitalizeon worthwhile outsidedevel-

opments as they occur,MCC's InternationalLiaison

Officecloselymonitors the maturation of Formal

Methods techniquesinEurope and gauges industrial

and government interestinbothEurope and theU.S.

At the same time,MCC's experienceswith technolo-

gy transfer continue to give us bountiful insights into
the problems and operations of MCC's sponsoring or-

ganizations.

Content of Study:. We propose to study Formal
Methods issues as theydirectly relate to North Amer-
ican companies. First, we will determine how Formal
Methods can help these companies meet demands for

higher quality, possibly regulated software-intensive
systems. Second, we will pinpoint how the companies
can exploit Formal Methods in current environments
for more productive software development processes.

The study will explore the issues and topics that per-
rain to a full-scale Formal Methods research effort at

MCC, including:.

Fundamental concepts of Formal Methods--what is a
formal method, and how does it work?

Training and instructional material--sample course

outlines, evaluation of course offerings.

Modes of using formal methodsmspecifieation, verift-
cation, documentation, refinement; integration
with object-oriented and other widespread ap-
proaches; consistency of artifacts from require-
ments through code.

Survey of major applications--summaries of Formal
Methods projects to date, interpretations of col-
lected project data, evaluation of successes and
failures, derived guidelines for applications.

Tools survey---catalogof editors,syntactic/semantic

checkers,theorem provers,and othertools;MCC

experimentswith North American and European

toolsets;assessment ofstateoftoolsets.

Models of formal-based sol, ware development--injec-
tion of techniques into standard productivity,
risk, and QA models; scenarios of future develop-
ment processes.

Regulatory and legal trends in safety and security--
the high-integrity market sector; research fund-
ing patterns (U.S., Europe, and Japan); forecasts
of error and development costs, adoption pat-
terns,optimisticand pessimisticscenarios.

Transitionaltips--whatto teach,to whom, and fol-

low-through;projectsto try;pitfalls,motivation,
and so on.

Experimental results---resultsofusing MCC technol-

ogy and personnel,alongwith imported tools,in-

structors,consultants,and other studies,to ap-

ply Formal Methods to industriallyrelevant

problems. These experiments will illustrate

many ofthe above topics.

Research needs and strategy.

Timeline and Deliv_rabl_l: The proposed study
will be conducted from September 1, 1990, to Septem-
ber 30, 1991. At the end of this period, participants
will receive a comprehensive report covering the top-
its outlined above, together with video overviews,
tool demonstrations, and thorough accounts of exper.
imental protocols and results. Drafts of the report's
topics will be available at quarterly intervals; mid-
term and final reviews and information sessions will
occur at the MCC site; and at least one formal inter-

action will be designed according to the specific inter-
ests of each participant (within the domain expertise
limits of MCC personnel).

The study in its entirety will be proprietary to partic-
ipants for one year, after which MCC may distribute
it more widely. Selected sections reporting experi-
mental results and new insights of interest to the re-
search community may be published as technical re-

ports and papers during the course of the study, both
to further the field and to establish the MCC Formal

Methods initiative in the research community.

Costs: Costs for the study will be targeted to ten
participants at $60,000 each. Membership is open to
all MCC shareholders and associates; non-member
companies can opt to participate in MCC for the one-

year study period only, paying a special Project Asso-
ciate fee of $7,500 in addition to the study participa-
tion fee. Should there be more than ten participants,
additional personnel will be added to increase the

study's scope and depth.

A full-scale, multiple-year Formal Methods initiative
will be proposed in mid-1991. While the study's re-
port will motivate many of the initiative's activities,
it will not constitute a full definition of those activi-

ties. Study participants have no commitment beyond
September 1, 1991; however, if a participant does
elect membership in the initiative, it may deduct
$25,000 from the cost of membership over the first
two years.

Per_gnnel: The MCC researcherswho willconduct

the study are broadlyexperiencedin the theoryand

applicationofFormal Methods techniquesand tools.

They are also experts in tracking and forecasting
technologytrends.The study coordinator,Dr. Susan

Gerhart, has led a major U.S. formal verification

projectand participatesin internationalFormal

Methods strategicactivities.Other projectmembers

areexpertsina varietyoftools(alreadyassembled at

MCC), techniques,and theoriesand have applied

them to industriallyinterestingproblems. This

unique group has been cooperatingforayear and will

be complemented by consultingexpertisefrom out-

sideMCC as wellas from relatedMCC projects.

tw"mo_ tn?orm_/oB,co_a_

Susan Gerbart Ted Ralston
(Stt) LM-S4eJ (SlS)S_47
$e__,om ra_ton@mec_om

_eetronlos and Computer Tochnology Corporation
U00 W. Baloonss Center Drive

Auein, Tsxss 78760

Issues Related to Ada 9X
John McHugh

Computational Logic, Inc.

,q

.............. II

r
.... I Jl

Recent Ada 9X
Activities

John McHugh

Baldwin / McHugh Associates
Durham, North Carolina

8 November 1990

_t Ada 9X Activities ill;
I

r

IOVERVIEWI
I Ill

I

• Ada 9X

• The 9X process

• Issues for Critical

Systems

Ada 9:(Activities

Page I

r
... JI

ISO Standards such as Ada must be

reviewed for possible revision every 10
years. The review process can

• Leave the standard unchanged
• Withdraw the standard

• Initiate a revision process

Ada 83 is undergoing a revision. The new
language will be known as Ada 9X.

• The current expected value for X Is 3.

Ada 9X Activities.....................................

r
]The Ada 9X Process

The Ada 9X process is being managed by
the Air Force out of Eglin AFB, Fla. The
project manager Is Christine Anderson.

• Revision requests submitted 88-89

• Requirements workshops 89-90

• Distilled to revision Issues by IDA

• Requirements document - drafts fall 90

• Inputs still coming from Interest groups

• Mapping contractor (Intermetrics) will map

requirements into revised language
Ada 9X Acflvlflu

Page 2

The following represent my own, distinctly
minority view of the process.

• The ground rule that calls for upward
compatibility at all costs does more harm
than good as it guarantees a more complex
language.

• As Ada tries to be all things to all people,

dialects and subsets will become necessary.

• A rational approach is probably not possible.
Without It, Ada 9X will not be a substantial
Improvement over Ada 83 and Ada will
eventually collapse under its own weight,

Ada 9X Actlvi_es,

_pr -II

As a part of the revision that Ada is

undergoing, the trusted systems

community has raised a number of

Issues. They are summarized in the

following slides.

Adla 9X Activities iiilJ
_.4

Page 3

Requirement A I

IDENTIFY AND JUSTIFYALL ELEMENTS OF THE
STANDARD THAT PERMIT UNPREDICTABLE
PROGRAM BEHAVIOR.

e.g., Program blockage

Integer (1.5) "_ Integer(1.5)

INTENT IS TO ELIMINATE WHERE POSSIBLE
AND FORCE ANAL YSlS AND COST BENEFIT

DECISION ELSEWHERE.

_lt Ada 9X Activitiel

IREQUIREMENT A -continued]
IIII

1) Eliminate most erroneous cases

2) Eliminate "incorrect order dependency"--define
order-dependent semantica

_Ada 9X Activities , , ,

3) Define undesirable Implementatlon dependency (UID)

4) UID has defined effect, not cause for "program error"

5) Implementatlons shall attempt to detect rernalnlng
erroneous and UID cases

6) Speclflc cases of undefined varlables:

a. MaJorlty - URG posltlon on LHS usage

b. Mlnorlty - catch all usage

_.,4
IIIIIll

Page 4

-. 7.

f- [REQUIREMENT BI "_
EXPOSE IMPLEMENTATION CHOICES

1) Language choices (LRM alternatives)

2) Implementation strategy (storage management,
scheduling, etc.)
- Static choices

- Dynamic choices
- What can user control?

- How can information be shared with others?
tools?

Choices Include:

a) Parameter passage
b) Optimization

c) Heap vs stack vs ...storage management

With

Ada 9X Activities IMH

]REQUREMENT C]

ALLOW USERS TO CONTROL

IMPLEMENTATION TECHNIQUES

Certain Implementation choices lead to
explosive growth in possible execution
behaviors.

Implementations must honor-or reject with

warnings-user directives for Items such as
parameter passing mechanisms, orders of
evaluations, etc.

This is analogous to the representatlon
specification for data.

!

Ada 9X Activities

Page 5

f
..... llllllJ ..

[REQUIREMENT D I

IMPLEMENTATIONS SHALL AI"rEMPT COMPILE
OR RUNTIME ANALYSIS FOR KNOWABLE
INSTANCES OF UNSOUND PROGRAMMING AND
ISSUE WARNINGS/EXCEPTIONS AS
APPROPRIATE.

- Aliasing

- Unsynchronized sharing

- Uninitiallzed variables

- Etc.

It Ada 9X Activities ...
II

[REQUIREMENT E]

PROGRAM BEHAVIOR TO BE DEFINED OR
PREDICTABLE IN THE FACE OF OPTIMIZATION

We call for further study on the following

- Canonical order of evaluation vs radical

optimizations

- Exceptions

- Side effects

- Possibility of pragma control

tl
Ada 9X Activities I I

Page 6

f
I • I .. I

FORMAL STATIC SEMANTICS AS PART OF

ADA 9X STANDARD

The formal definition to be accompanied by tools that
facilitate use for answering questions about the legality
and meaning of programs.

While this does not necessarily change the language,
development of the definition and tools may contribute
to language changes.

N.B. Parameterize formal definlUon for Implementation
decisions and architecture/environment.

_t Ada 9X Activities,..,, _

DYNAMIC SEMANTICS AS ONGOING EFFORT WITH
AIM OF INCORPORATIONS IN NEXT STANDARD.

This area has enough uncertainty to keep it off the Ada
9X critical path. On the other hand, development of
portions of the dynamic semantics as part of the Ada 9X
effort should aid in evaluating and understanding
proposed language changes.

N.B. Parameterlze formal definition for Implementation
decisions end architecture/environmenL

Ada 9X A_vl_es - Iill IIIIII

J
II

Page 7

REQUIREMENT H

_.SSERTIONS

MAJORITY
1) Need dynamic semantics for assertions

to be useful for proof
2) Suitable form not known

- Extend Ada expressions
- Ada vs spec functions
- Etc.
.'. Wait, but work on Issue

MINORITY
1) Anna exists
2) Anna is better than nothing

.'. Use Anna for now

15

DON'T PRECLUDE LATER

CHOICE/DECISION _._
Ada 9X Activitles........................

• Requirements A, B, and D are largely
reflected in the Requirements Document

• Requirements C and H have been largely
Ignored.

• Requirement E has resulted in special
consideration being given to the critical
systems community.

• Requirements F and G have been
completely rejected, but ...

Ada 9X Actlvltlt_i IHH'i Ill

Page 8

r LI........... I II

PRDA Issued by Ada 9X project last
spring.

• Supports Ada 9X mapping team
by providing formal analysis of
selected language topics

• "Creeping formalism" approach to
demonstrating utility of formal
methodology

• May have some influence on Ada 9X
language

A team led by ORA was issued a contract
during the last days of FY 89.

ItAda 9X Activities...

r lllllltl
"

IResearch Issues and Efforts I

The language precision team will work with
Interrnetdcs to model specific aspects of the Ada
language where the application of formal
techniques appears to have promise. These
include optimization and tasking. While the project

is probably worth while, the approach may be less
than sptisfactory for a number of reasons.

m
Ada 9X Activities ,_

J

Page 9

_ wJ jF, w

/

_ Ada 9X

... II II1.. [.

IFeatures Interact I
T

In isolation, most Ada features are
innocuous. It is in combination that
they cause problems. The LPT
approach risks ignoring the
Interactions

• Overloading

• Separate Compilation

• Private types

• Signals and handlers

• Tasking

• Optimization and code generation

Activities...-'_

IConsider Optimization I
-- mill I I

Optimization and code generation are difficult to
separate. One man's optimization strategy is
another's code generation paradigm.

•Ada has no explicit low level parallelism. Most
modern architectures do, even if it is only a
pipeline or a coprocessor.

• Array and vector processors have prlmitivas
that are of a higher level than the Ada
primitives that they implement.

• The ability of the programmer to explicitly
handle exceptions from predefined operations
makes visible lmplemantation details that are
better hidden.

Ada 9X Activities
J

Page 10

Reconsider Optimization

The interaction of exception handling, global data,
and separate compilation with low level parallelism
makes code generation difficult.

• Reordering exception raising operations can
create unexpected program states or even turn a

legal program into an erroneous one.

• If the exception is unhandled, this may not
matter.

• If the exception is handled in another

compilation, the dependencies are difficult to
track.

• Without global analysis, the wrong choices are
sure to be made sometimes.

_t Ada 9X AcU_Ues !!,,,,, ,,r ..

I

IMeanwhL]e back at

I

The first Ada 9X Mapping Issues document

produced by Intermetrlcs addresses no Issues
that are of specific Interest to the critical systems
community. The Issues addressed Include:

• Type extensions and polymorphism

• Pointers to static objects

• Changes In visibility rules for operators

• etc.

Ada 9X Activities

Page 11

•,-.. •

it

..... III IHI .

_ _/Vhat...........................lies_...................Ahead'PITI_TTIV_ITr_rTIIII_•............. _'"'"'"'"_""_ .. _
• IIIII I

D

The process will Inexorably wend its way
towards a revised Ada. While some of the

warts of the present language may be
removed in the process, it is certain that
others will spring up to take their place.

The process is under the control of those with
a certain vested Interest in the status quo.

What is lacking is a long term, radical view of
what ought to be. If Ada 9X, like Ada 83 fails
to serve the needs of portions of the
community, where can they go? What

alternatives do they have?

Ada 9X Activities

Page 12

