
NASA Technical Memorandum 104380

.....//V -

#

ti "

RSM 1.0 User's Guide u,

:%.

A Resupply Scheduler Us_g tnteger Optimization

....

=

A.,

Larry A. ¥itema and Robert D. Green :
Lewis Research Center

Cleveland, Ohio

and :

David M. Reed

Wittenberg University

Springfield, Ohio

May 1991

;!i ' :_ </ (ijL' <

(, A '->,'_"i :+ ' :_ (. 7:<'_t t ¸ :

; J/o i ()] 7 1

RSM 1.0 User's Guide

A Resupply Scheduler Using Integer Optimization

Larry A. Viterna and Robert D. Green

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

and

David M. Reed*

Wittenberg Univers ity

Springfield, Ohio 4550L

Abstract

RSM (Resupply Scheduling Model) is a PC based, fully menu-driven computer program. It

uses integer programming techniques to determine an optimum schedule to replace

components on or before a fixed replacement period, subject to user defined constraints

such as transportation mass and volume limits or available repair crew time.

Principal input for RSM includes component properties such as mass and volume and an

assembly sequence. Resource constraints are entered for each period corresponding to the

component properties.

Though written to analyze the electrical power system on the Space Station Freedom, RSM

is quite general and can be used to model the resupply of almost any system subject to user

defined resource constraints.

This report presents a step by step procedure to preparing the input, performing the analysis

and interpreting the results. Instructions for installing the program and information on the

algorithms are contained in the appendices.

*Summer Student Intern at NASA Lewis Research Center.

-i-

Contents

Introduction 1

Nomenclature 2

Preparing and Managing the Input

Resources

Component Properties

Assembly Sequence

Weighting Factor

Input File Management

3

3

5

8

9

9

Performing the Analysis 13

Interpreting and Managing the Output

Displaying Resource Usage

Displaying Component Resupply Schedules

Printing the Results

Results File Management

14

14

16

16

16

Appendix A: Computer Requirements and Installation 18

Appendix B: The Data Input Full Screen Editor 20

Appendix C: Integer Optimization Algorithm 23

Appendix D: Program Documentation 30

References 39

IIL

-ill-

PRECEDING PAGE BLANK NOT FILMED

Introduction

NASA has extensive experience in the development of highly reliable spacecraft. Only a

very few of these spacecraft have been maintained by scheduled resupply flights from

Earth. Other government agencies, particularly the military, have years of experience in

logistics analysis and management. Computer programs developed for those applications,

however, are not readily adaptable to the Space Station Freedom (SSF). For example,

scheduling algorithms for support of a fleet of vessels often use standard linear

programming algorithms which can be inaccurate for small quantities of components

needed to support a single vessel.

RSM (Resupply Scheduling Model) is a PC based, fully menu-driven computer program. It

uses integer programming (IP) techniques to determine an optimum schedule to replace

components on or before a fixed replacement period, subject to constraints such as

transportation mass and volume limits on the Space Transportation System (STS) or

available astronaut extravehicular activity (EVA) time.

Principal input for RSM includes component properties such as mass and volume and an

assembly sequence. Constraints are entered for each period corresponding to the component

properties.

Though written to analyze the electrical power system (EPS) on the Space Station Freedom,

RSM is quite general and can be used to model the resupply of almost any system subject to

user defined resource constraints.

Hardware and software requirements and installation instructions for RSM are given in

Appendix A.

Nomenclature

APL

EPS

EVA

IP

RSM

SSF

STS

A Programming Language

Electrical Power System on SSF

Extravehicular Activity

Integer Programming (Optimization) Problem

Resupply Scheduling Model (computer program)

Space Station Freedom

Space Transportation System

-2-

Preparing and Managing the Input

The user interface to RSM consists of a cursor/keystroke driven menu along the top of the

screen, a data input editor and a file management system. After starting RSM the title screen

appears followed by the menu screen shown in Figure 1.

Figure 1: RSM Main Menu Screen

Menu choices are selected by using left and right cursor motion followed by the [Enter] key.

Alternatively, the first character of the selection can be typed with immediate execution of

that selection.

Resources

Choosing the Input option displays the menu shown in Figure 2. Pressing the [Enter] key

will select the input option and display the menu screen shown in Figure 3. Pressing the

[Enter] key again will select the edit Resources option and display the data input screen

shown in Figure 4. In the fh'st field enter the length (or duration) of one period. This can be a

real number in units such as years or some other time unit as long as it is the same as is used

to define component lifetimes. In the remaining input fields enter unique names for each of

the available resources. In the example shown, mass and labor are defined as the resources

of interest.

Edit_!_ii_ii_!iii!i!iii_iiiiiiiiiiiii!ii_!_!i!i!_i_i_!iiiiiii!ii_!iiii!_iiiiiiiiiiiiiiiiiiiiiii_iiiiiii_i_ii_iiiiiiiiiiiii!i!i!_iiiiiiiiiiii!i!iiiiiii!i!i!!!iiiiiiiii!i_i_iii!iiiii!i_iiiii_iii_ii_iiiii!_i!i_i!i!i!ii_ii!i!_!_iii_iiiiiii_ii

::::.:.::_._::._::ii.:.iii!ii:_.::i.::::i:i:ii:iiiiiiiiiiii_iiiiiiiiiiiiil!iiiii:::i:::::::::!: iiiiiiiiiiii_i_iiiiiiiiiiiii:::::::::::::::::: i_iiiiiii;iiiiiiii_iiiiiiiiii_i!i_!i!iiiiiiiiiiiiii!i!!!!i

.,.,,,,...,...................,.,-.,...,

Figure 2: Input Menu Screen

R

_iiili

iiiiiiill

:?:::::i::::

:::::::::
:::5::::

ff:f:

:T:T:
?;???

Tf:S:

"ff:::

"!i!:i

"'('"

iiiiiiiiii
ili iiiiii

H

L_L _,,L_ ,L

 i!i iii iiiiiiiiiiiiiiiiiii l liiii!iii i i !ii i iii i

Figure 3: Resources and Components Input Edit Menu Screen

-4-

Figure 4: Period Length and Resource Name Input Screen

Press the [Enter] key when finished and the input screen shown in Figure 5 will appear.

Enter the available resources for each period. In the example shown, the mass limit of the

resupply transportation system is 100 for the first three periods and 70 for the remaining

periods. Note that the last row which contains data determines the number of periods of the

scheduling analysis. In the example shown there are 16 periods of length 0.5 for a total

duration of 8.0.

It is important that resource allocations be sufficient to allow the assembly sequence

installations to be met.

Pop up Help screens for the input editors of Figures 4 and 5 are available by pressing

function key [F1]. The [Tab] key positions the cursor to the next field. The [Esc] key exits

the input editor without saving the data. Further details of the use of the editor are contained

in Appendix B.

Component Properties

Selecting the Components input option from Figure 3 displays the Component menu screen

of Figure 6. Selecting the Properties option displays the input screen of Figure 7.

Each column is for a different resource. In addition to the lifetime constraints that are always

created, the input in these columns correspond to additional resource constraints. An

-5-

i!!!i!i!iiiiii_iii@iii!iiiiiiii¢i;!iii!iiiiiiiiii¢i_iiiiii_iiiiiiiiiiiiii_ii!_!iiiiii!iii_i_iii_ill_i_i_i_!_i_i_i_i_!i!iii!i!i!iii!ii¢i_i_i_i_i¢_ii_i_iiiiiiii_iiiiiiiii_i_!_i_!ii_iiii_ii_i_i_i_i_iii_!iiiiiii_iii!i_i_i!i_i_ii_!_i_i_!_iii!i_i_i_i_i_i_i_!_i_ii_i_
iiiiiiiiii!iiii i i i iii i ii iiiiiiiiiiiiiiiiiiti iiiiiiiiiii!iiiiiiiiiiiii ii iiiiiiiiiiiiiiiii!iiiiiiiiiii iiiii!ii iiiiii
iiiiiii_iii_iiiiiiii _iiiiiiii iiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiii:!iii!i!iiii!iiiii!iii!ii!iiiiiiiiiiiiiiiiiiiiii!iiiiii!iii!iiiiii!iliiiiiiiiiiiiiiiiiiii!i!i!!ii
iiiiiii_..' ...
ii::i;::::.[::100 50 ,..:,:.....,,z..::v%."._...:.`_...:..:.*.._...._...._:.:_.:......._`..`:_w:....:......_._`.._::...._:;`:.._..`._.:;.:._.:`.._..._s:._s_`_::_..`

_oo _o :_@i;::- i!i_W..:!_!_ii_!:i_S,;;_!:-i,;X?@;{{iXi!@':_:ii:;_:"{;-W_:-:i_;"
........... '%:?:_.i*-£=:£"%::tO:=%?:::-{>_.?:-{_.%?_-i-;.?%15_{:_-¢}-::.?:=?_{::_

i!iii!i_ 70 i_l 24 :_::iv%:_:t_:s_`_:s_./_:_;_.%_:_::_`_:::_:_:_::!t?_:_:%:_:_;:_?:s_:_:s:_:s:``_s:.:_:s_:_:::_%_t._
!i_i:_: 70 ii:: 24

iii__ 70 A 24 _!ii_! _;_:_{{}}i:_{_%{}}%{:_:{{.t{:}_s;{{%_}._it{.}%.}_:_;;%%_{;?:;{{?;_{?;_{_:_t_;_!_;i_%;!%_

;iii!:i_i_:i70 {;:!24 .'.':.S...?:"_

::::::::::_70 {_:{24
i::i::i_:70 _il 24 _:....._:i{i:

Figure 5: Resource for Each Period Input Screen

iliiiiii_i_i!_ii_ _ i "": _::::: ;i:i:::!:::i;:'i: ' ':; _: !.. :::::::::::::::::::::: i:::::::::::!:::

....... ...:..
:+x,: "-:-

........,

..,..,...
:':':':':' I:: :i:!: :!
,:.:,:,:.:
,..:.....
.::.,...

.......,..

....,,.,,,

:,::,:.:,

-iSt_:i

...:...
.....,...,

::::::::::::
:.:-:.:,x,
.:.:.x:,:
:::::;::::::
:,:-:+x.
..:........
...,....::

.:.:.;.;,:,:
:.:+:.:,:.
.:+:+:-:
.:::....
:.:.x.:.:

•.......
........,

:8!8!:!:!
::::::::::::

:::::::::::
:+:.::+
.:.,.....
::::::::::::
.,.,
..:, ..:

.... :.
:::::::::;::

.,......
,. ::....•...: ...

..:......

.........:

......,..,
::.,..,..,
;:::::<:::

.,.........::.
::::::::::::
....,-:
:<:::::::::

:!SIS!:

i:!8i8
::::::::-;

+:<.:.:.: ::::;:/::

:::::::::::: :::::-A

8!:!:!8! ::::::::
4

:::::::::_........ :..:...

!::iiiiiiiii!i!ii!i!ii!i_iiiiiii:->-:......................

Figure 6: Component Input Menu Screen

-6-

Figure 7: Component Property Input Screen

example of this is a mass constraint. Assume there is a limit to the total amount of mass of

replacement parts that can be delivered each period; each component has a mass and

therefore constraints are created to insure that the sum of the number of replaced units of

each component multiplied by its mass is less than or equal to the allotted amount in the

resource input screen earlier.

In column 1 of the properties input editor enter a unique component name.

In column 2 enter "c" or "p" to designate whether this component is to be calculated or

prescribed. A calculated component's schedule is determined from the integer program

analysis. For a prescribed component, the schedule is fixed such that the component is

replaced exactly when its lifetime expires.

In column 3 enter the componenrs lifetime or critical replacement time. It has units such as

years which correspond to the period duration under the resource input editor.

In the remaining columns enter the amounts used by one of these components for each of the

resources.

RSM can be used to model many types of systems depending on how the components and

resource constraints are set-up. The reason for prescribing some components is to decrease

the size of the internal resource constraint matrix. This shortens the time required to solve

the problem and requires less computer memory.

-7-

Some systems have many components that should be prescribed while other systems will

not have any. The following are some general rules for deciding which components to

prescribed:

Components which there are relatively few.

Components which have constraint coefficients which are an order of magnitude

smaller than other corriponents.

Components which have a much longer lifetime than the other components.

Components that meet at least two of these rules or one rule and are not too far from meeting

another rule probably should be prescribed. For these components, a fixed schedule will be

assumed. The program automatically subtracts the required allocation for each additional

constraint in the periods in which they are replaced.

Assembly Sequence

Selecting the Assembly option of Figure 6 displays the assembly sequence input screen of

Figure 8. The number of components installed during each period are entered here. For

iiiiiiiiiiiiiiiiiiiii_iii_i_i_iii_i_ii_iiii_iiiii!iii!iiiiiii_iii_i__iiii__i__iiii___iii_iiiiiiiiiiiiiiii!_i_ii_iiii_iii_iiiiiiiiii_i!iii_i!i_iii_i_iii_i_i_i_iiiii_iii_iiii__i_iii_iiiii__iiiii_i_iiiiii_ii_ii_iiiiiiiiiiiiiiii_!ii_iiiiiiiiiiiii!iiiiiii_iiiii_i_!iiiiiiii_iiiiiiiiiiiiii!iii]i!i
....;.;.;._._+;.;_._.;.;_;..._.?..??????????????;.???????_.?..y......'._..?????????"? '''" ""_?_?????_?Y???7? i Y?Y? ,? 7 '?,",,,',;?:;,'_'5"?;'???Z?iii?}i??i?:i / _:}Z_!_:

 ii ii iiiiiiiiii ii iii i!ii iiiiii!i i ! !i!i ii iii iiiii ii!i i ii!ii!i iii!!iiii!ii iii:!!i i!i ! ii! ! i! i :ii: i :ii ii i i i i !iiiii iiiiiiilliiiiiiiiiii: i!i!i iiii!!iii i i! i i!!
iii',iii',i',iis.i,; ii;!604

i!.!iii_illDiode
iiiiili_ilHarness
iiiiiii_i

,.,.,.....:.

 iiiii l:
iiiiiiiiiiiiiii !ii i iii !iii!i! ii!iii!t

!_ 6 0 4
!._16 0 12
_}%1

%

.:.._

?:.;:

Figure 8: Component Assembly Sequence Input Screen

-8-

example as shown in the figure, six batteries are installed in the first period, none in the

second, 4 in the third, and none later.

RSM's internal algorithms have the following restrictions:

1. During the component's assembly sequence, no replacements can take place.

Thus, each component's lifetime must be longer than its assembly sequence length.

Note: If a replacement is to take place during the assembly sequence, ignore the

initial installation of the component and make what would be the replacement

during the assembly sequence, the initial installation (i.e. if a component has an

assembly sequence of 2, 0, 0 and the component needs to be replaced in period 3,

input the assembly sequence as 0, 0, 2.

2. The number of components brought up during the assembly sequence determines

how many units must be operational at all times.

3. Each unit must be replaced before or during the period which is the period in

which the component was installed plus the lifetime of the component.

Weighting Factor

Selecting the Weighting Factor option of Figure 6 displays the assembly sequence input

screen of Figure 9. This input defines the coefficients in the objective function of the

internal integer program solver. Nominally these are all set to a value of 1 for equal

weighting of all components. This is used to minimize the total number of components

replaced.

It is possible to use the objective coefficients to investigate a number of interesting

problems. For example by assigning every component a coefficient corresponding to its

cost, the total cost can be minimized.

Input File Management

Selecting the File option from the input menu screen shown in Figure 2 displays the file

management menu screen of Figure 10. Selecting the Save option displays the file save

screen of Figure 11.

RSM supports long filenames. The list of previously stored input files are displayed in

reverse chronological order according to the times there were saved. The size, date, and

time saved are displayed along with the names. Near the top of the screen, RSM prompts for

-9-

!i!i!iiii! i!!iiiiii !!ii!iiii iii! iiii iiiiii!!iiiiiiiii!iiiiiiiiiii ! i ii! ii i!i!i!iiiiiiiiiii! iii!iii ! !!!!i!!i!i iiiiiiiiiii! iii!i!!! !!!!!!ii!iiiiiiiiii i ! !!i! !!!!!iii!iii iiiii iii iiiii iii i i i ii! i i i ii! iii!! ii! !i!
iiiiiii.ilPv])and _] _-_-_.:..__%_i_-_!_--_-_i_i_--!_-i! -_

::: ::," ."_: _.:':._:_._:._4::_":'_:::':_:_:':'._.._!_.":_:. -:_-. ':::_.:':_:.' +-::. "::::..":::::.:':_-:.":-.:.":_:.:':_::_":_:.":_.;.":'::.:.":_:.::::::,.:..-:_

iiiiiiii_i! ..:.::: %1:%::_::_%.%:?:_::_:_!::.i:"._:-::_-:::::::_.:.::::::.:::

_:i:i:i::.'.':iii _":: _:_:_::_H_:_:_':_':'::': ":_::':'_" _:':"_":':':':':': '_:_-':_'_""'_:" ":_:' "_':_:':'::_::"':-::':':':':"'::i::.:':_:::.:':_.. ":':.- ':-: ..":

:!:!:ii .:':.: .::.'::!_...__:::?:-::::.:-_::.:".':_::

:i'.i_. '-'::.::. '_.::,_":_:.:":-:.:.::_. ":_:: ::.:':_::.":-::.?:'."H':-::.":':',.?:_::.-'_::::-?:_;:':-::_'_'_:..'::'.:.."::::,.":'.:.."::_::.:'::::.:.:';-::..":':::..":_':.

_!i_i_:,i_:.,_ _:.':: ::.:..:::.':.::.::%.%::_.'..:..':_:::_:-::?.'.::::::::_..:_::_::_:":_:::::::::::::::::::::::::_::_i.. :_ #:.:-_:!_:-g.:_.:,:i._:-_g-:_:i_-:-:::_:_:!:-:_:!":i?-::.:_:_:_g!:_:i!":_-i-_:_:?:_.i,!':_-:i:!-_:_---::-_.i:!'_::::_:::.__
i::i::i_l i:i:!._ _ii!X_i_!::_i:_::.:.i:i_::_:_:_!_::!:-i;!_:_!!_i:::!:_.i_:::_;_!_:_:_::!_:_ii:_%:::!._i:.!:_i_:_i:::!:_i;_!_.::i_:!._i_!:::__!i::_i_!__i:_:

..I iiiiiiiii_i_fi:::::::

Figure 9: Component Weighting Factors Input Screen

I L.o_dli!_iiii_ii_ii_ !_i_i_i_ii_ii!_i_i_!i_iii_!_i_!!i!_!i_iii_iiiii_ii_iii_iiiii_i_i_i_i!i_ii_!_!!!_!_i_ii_i!ii_iiiii_i_i!i!i_i_i_i_!_i_i_iii_ii_ii_i_i_i_ii_i!ii!i_
iiii_:_:_ii_i_:_:_:_i_/_ii_iiiiiiii_iii_iiiiiiiiiiiiiiiiii_i_i_i_i_ii_iiiiiiiiiii_iiiiiii_iiii!_i_i_i_i_i_i_i_!_i_i_iiiiiii_iii_i_i_iii_!ii_iiiii_i_i_i_i_i_iiiii_iiii!i_i_i_iii_i_iii_ii_ii_iiiiiiiiiiiiiiii_i

!!ii
iiiiii[ii! :i:_:i:):_:i
.:.:+:.: :::::::::::
:::::_::::: :::::::::5:
:,:,:,:.: j:.:.:.:+:

.:.:,:.:.: i.

:::::::::: :.::.:::

:i:i:i:i:i:i ':':':':':

iiiiiiiii!i! ::::::::::
::::::::;:;: :.::.:.

:!:i:i:i:i:i :::::::::

:5::::::::: -
:.:,:,:.:.: -::::::::

:::::::::::
:+:+:.: ::::5::::

i_!i!_ili_i ::::::::::

ii_ii_i!:i

,:,:,:,:-:,; ::::::::::

...,....,,., ::::::::::
:!:!:i:i:i:i i_i:i!:!:!

iiiiii!iiiii :.::::::::..........

............ iiiiiiiii!iiiiiiiiiiiii i i

Figure 10: Input File Management Input Menu Screen

- 10-

i_i_i_i_!ii_i_!_i_!_ii_i_i_ii_sMi_i__;P '_'___...iiiiii!iiiiii!iiiiiiiiiiiiiiiiiiiiiiii!ii!ii!iiiiiiiiiiiii

::;:::::::;: :,:::::x:-
.:.:.;+:_; _+:+:+

iiiiii!iiiiiiiiiiiiiiiiiiiiiiii!iili
Figure 11: File Save Screen

a name to store the current input. The name can consist of any alphanumeric characters, with

the exception that the first character must be alphabetic. Pressing the [Enter] key stores the

current input data. Pressing the [Esc] key exits all file menus without completing the file

operation.

Selecting the Load option displays the file load screen of Figure 12. Again RSM displays the

list of previously stored input data. The specific file is selected with the up and down cursor

keys and pressing [Enter] when the desired file is highlighted.

A file can be renamed similarly by first selecting the old file name using the cursor keys and

then entering the new name at the prompt.

A file can also be deleted by selecting and pressing [Enter]. To prevent deleting a file, the

[Esc] key must be pressed before leaving the delete file menu.

-11-

Figure 12: File Load Screen

- 12-

Performing the Analysis

Once the input has been entered or loaded from a previously stored system, the analysis can

be performed. Choosing the Analyze option in the menu in Figure 1 begins the scheduling

analysis. The status of the iterative solution is displayed during the analysis. Information

includes the number of iterations, the time per iteration, and the total time since the analysis

began. In addition, a message gives the first period in which resources are being exceeded

on each iteration. If the scheduling problem is unfeasible the final message will also indicate

the fh'st period in which the resources were exceeded.

For the example discussed earlier the final status screen is shown in Figure 13. The times

shown are for a Dell System 425E personal computer.

Press the [Enter] key to return to the main menu.

Resupply Schedule Solution

Iteration Count 33

Iteration Time 00:00:00

Total Time 00:00:15

Resources Adequate in All Periods

Solved, Press Any Key

Figure 13: Solution Iteration Final Status Screen

-13-

Interpreting and Managing the Results

Once a scheduling problem has be solved, the results can be displayed, printed, or filed.

Choosing the Results option from the menu shown in Figure 1 will display the menu screen

shown in Figure 14.

Displaying Resource Usage

Selecting the Display option will display the menu screen shown in Figure 15. Selecting the

Resource option will display the resource usage screen shown in Figure 16. The quantity of

the first resource (mass) is shown for each period as a bar chart. Also shown, as a dashed

line, are the resource constraint levels specified in the input. Other resource usage can be

viewed by using the [Page Down] keys.

Note that these display screens use text based bar charts at this time and thus are somewhat

deficient in resolution. For exact values, use the print option to produce numeric results.

Figure 14: Results Management Menu Screen

- 14-

Resources _ _ _ _

i ii_i_i_iii_iiiii!iiiii!i!i!_!i_i_ii_i_iiii_iiiiiiii_iiiiii_ii_!i_!i_!_iiiiiiii!iii!_iii!iii_i!iiiiiiiiii!_!i_i:i_i_i_i

............ iiii iiiiill._,,.,..,...
,........,_

iiiiiiiiiiii
:':::::::::: :_:_::iii:

iiiiiiiiiiii
iii::{iiii:=ii i_;;:ii!

:+: >::,

l!i:iiii:_ii_Oi[i

Figure 15: Resources and Components Results Display Menu Screen

Figure 16: Display of Resource Usage

-15-

Displaying Component Resupply Schedules

Selecting the Components option will display the component resupply schedules screen

shown in Figure 17. The quantity of the first component (Battery) is shown for each period

as a bar chart. Other component resupply schedules can be viewed by using the [Page

Down] keys.

Printing the Results

Selecting the Print option of Figure 14 will print the usage of all resources and the resupply

schedules for all components. The numerical results for the first 7 periods are shown in

Figure 18.

Results File Management

Selecting the File option of Figure 14 displays the file management menu screen of Figure

10. Loading, Saving, Deleting, and Renaming options are identical to the Input File

Management system discussed earlier.

Figure 17: Display of the Component Resupply Schedule

- 16-

Resource Usage

Period 1 2 3 4 5 6 7

Mass 94.200 .000 62.400 10.000 50.000
Labor 47.000 .000 28.400 5.600 28.000

Component Resupply

Period 1

30.000
7.200

40.000
22.400

2 3 4 5 6 7

Battery 6 0 4 0 0 6 0
PV Panel 6 0 4 1 5 0 4
Diode 16 0 12 0 0 0 0

Figure 18: Numerical Results for the First Seven Periods

- 17-

Appendix A: Computer Requirements and Installation

RSM is provided on 5.25 inch. high density floppy diskettes containing the following five

files:

rsm.exe

rsm.atf

example_.rsf

example_.rrf

rsf.dir

The two "example" files can be read from within RSM and contain the system configuration

and analytical results from the example given in this users guide.

There are two possible ways of running RSM, depending on which version of the program is

being used.

RSM can exist as a stand-alone program from DOS. In this "packed" version of RSM, only

the memory within the 640K limit of DOS is available.

If RSM is contained as an IBM APL2/PC workspace (as from the original development),

the workspace must be loaded from transfer format. The advantage to using RSM from

within the APL2 environment is that the program can make full use of any installed

extended memory.

Stand-alone EXE Version

For this version, RSM requires an IBM PC or compatible with at least 640 K of memory and

DOS 3.1 or higher.

To install RSM, simply create a directory and copy the rsm.exe file to it.

To run RSM, change to the directory containing the rsm.exe file and type "RSM" at the

DOS prompt.

-18-

APL2/PC Workspace Version

For this version, RSM requires the IBM APL2 programming language on a 80386 or 80486

based microcomputer with an 80387 math coprocessor, at least 2 megabytes of extended

memory, and DOS 3.3 or higher. APL2 for the PC is available from:

IBM Direct

Phone: 800--IBM-2468

Part Number 6242936

To install, copy the RSM workspace, "rsm.atf", to the system APL2 directory. Next, enter

the APL2 system. It should be noted that RSM requires seven auxiliary processors: ap2,

ap80, apl00, apl01, apl03, ap124, and ap210. An example invocation would be:

ap1232 ap2 ap80 apl00 apl01 apl03 ap124 ap210

RSM can now be imported from its transfer-format file with the command:

)IN RSM

From here, the user may examine or modify any of the RSM code. To begin execution of

RSM, the main function is called by typing:

RSM

RSM can also be stored in workspace form with the command:

)SAVE RSM

All further use of RSM can now use the command:

)LOAD RSM

-19-

Appendix B: The Data Input Full Screen Editor

This appendix contains instructions for using the data input full screen editors. These

instructions may be viewed during the editor session by pressing the Help key, [F1]. The

help window disappears upon pressing [Escape]. The "Function Key" numbering and

corresponding keystrokes are as follows:

Function Keys

Key N_m_r

F1 - F10

Fll - F20

Keystrokes

[F1] - [F10]

[Shift]/[F1] - [F10]

Quit Editing Session

To quit the editing session without saving the changes you made, press [Esc].

Save Editing Session

To exit the editing session and save these changes, press [Enter].

Cursor Movement

Use the [Tab] key to move the cursor to the right from one column to the next. Use

[Shift]/[Tab] to move the cursor left to the previous column. Press the "Large Plus", [+],

key to jump to the next line of the table. Press [F5] to jump to the top row of the table. Press

[F6] to jump to the bottom row of the table.

Restore Original Data to Screen

To restore the original contents at the cursor position, press [F3].

restore the entire row.

Press [Shift]/[F3] to

Insert a Row

To insert a row on the screen, place the cursor one line below where the new line is to be

located and press [F8]. At the prompt, type in the number of rows to be inserted and press

the [Enter] key.

- 20 -

Toggle between Replace and Insert Modes

At the beginning of an edit session, you will be in Replace mode, in which keystrokes will

write over the previous text. The editor can also operate in Insert mode, in which the

keystrokes will move existing text to the right. To switch from one mode to the other, press

the [Insert] key.

Mark/Unmark Rows

To mark rows of the table for copying, moving, deleting or saving, move the cursor to each

of the desired rows and press [Shift]/[F9]. Each of the rows will be highlighted. Marked

(highlighted) rows may be copied, moved or deleted. To unmark a row, move the cursor to

that row and press [Shift]/[F9]. To mark or unmark all rows, press [Shift]/[F10].

Delete Rows

To delete a row, place the cursor on the row to be deleted and press [Shift]/[F8]. If any rows

are marked (highlighted), these rows will be deleted.

Copy Rows

To copy a row of the table, move the cursor to the row and press [F10].

marked (highlighted), these rows will be copied.

If any rows are

Save Rows

To save rows of the table for later use, mark the rows (see the paragraph above entitled

Mark/Unmark Rows), press [Shifi]/[F6] and enter a name for this group of rows.

Retrieved Saved Rows

Rows saved as described above can be retrieved into

[Shift]/[F5] at the cursor and entering a name.

an editing session by pressing

Discard Saved Rows

To discard a set of rows, press [Ctrl]/[F6].

-21-

Print

To use the printer while in an editor session, press [F2]. The following options will be

available with a single keystroke:

[G] 'Go': Prints any marked rows. If no rows are marked, the entire table will be

printed.

[R] Resets line counter to 0. This aligns the printer to the top of the page.

[L] Advance the printer 1 line.

[P] Advance the printer 1 page.

- 22 -

Appendix C: Integer Optimization Algorithm

This appendix is intended for those who wish to have a better understanding of how the

problem set-up translates into a linear programming problem. RSM is based on a specific

form of the general linear programming problem in which all variables in the objective

function and all variables in the constraints are integers. While more difficult, integer

programming was required for accuracy when modeling systems with small numbers of

components. For a detailed presentation of integer programming problems refer to

reference 1.

As stated in the section on preparing the input, real numbers are permitted in defining the

lifetime and the properties of the components. This is allowed because internally RSM

converts these to integers. To do this, the lifetime is divided by the period duration and

reduced to the next lowest integer. This is conservative in that the component lifetimes

remain the same or are decreased. Similarly, the component properties corresponding to

resources such as mass are multiplied by factors such that they retain 5 significant figures

after being converted to integers.

For each component there is a set of constraints that insure that it is replaced before its

lifetime expires. The additional constraints limit the number of all the components that can

be installed each period. For discussion, the following is an example of a system which

includes one additional constraint (besides lifetime), two calculated components and three

prescribed components. The period is defined as 1 and the weighting factors are also 1. The

input screens shown in Figures C1 through C3 define the problem.

Note that the components which are calculated in the optimization algorithm start with the

letters 'COMP' while the prescribed components are seen as noncritical and start with the

letters NCC. The constraint is designated as CONS1.

-23 -

:.>>.......:::::;::.[::+2000 ._ .._. _:...+>...:..:.-:,::.:....:+ %:..:.._._.:_<..:...::::._:_.::.+_(::...:(+.::_::_:::.:.:._?:+:_%_:_:::.<++:._:++:_%_++:.5+m_+:_+:.++++_._:+:::._+.:._:_:?::_+:._.:+::_+:++A._++

IOO
.:.:.:.:_: ++"..%."-;-:.+"-'.+". _@.+.'%:..+'_2.."%:.+":'.:-.":% .":% ":'L.,"_.::,."<::.,"%:.,":;L.."%:..'%:-.":'_.."+;_+.+':_..":%."%:-."':%,"¢':,.";L..":2.. "L':, "+:L.":1

ii::i::i::_::8oo _:(.:]_-11:!)_

(":._..i "%:_:.'::.ie:.:ia.'q-;x."":-i.:.i':i.." ":'::.,":.'.."::.i,." :.:...":.'..":?',." '?.._;:.."::.' _.'"'_:..,":..." :.'.."::-?:., ."::..' _::. .":,-;." ::--"

_ _._,'_":_ "42 "4. %'. ",,, ".,. "_z. ',.'.., -,,, ",_ ->_>',.., '.... %:. '%, '.,. '.:,-. "+. ",,. '.,. -.-_.",.' ".:-.

i!iiiiiiiii!i!iiiiiiiiiiiiiiii!![iiii iiii !i!

Figure C1" Resource for Each Period Input Data

Figure C2: Component Property Input Data

- 24 -

iiiii!i iii!i!i!iiiiiiiii iiii_!ii_iiiiiiiiiiiii!_i_!i!_i_iii!i!i!!i!!ii!!iiiii!_!!i!!ii!iiii!!ii!ii!iiiii!i!iii!_iiii!_iiJi_!iiiiiiiii!_i!i_i!ii!!i!_i_!_i!_ii_iiiiiiiii_ii_iiiiiii!!_i
':iii':i_COMP2 ;_- 4 4

iiiii::_NCC1 :_:_}}i4
i::::::::::::__NCC2 :_{:2
...., ...

:::::f:_NCC3 -_-.:10

iiii::i_; %

!!!!_ _

.:.:.:.:+:
:+:+:+

i_ii',iiiii',i!iiiii!i':i!iiiiliiii_:iiii!i!ii',!i[[ii':,ilili_iiii!

Figure C3: Component Assembly Sequence Input Data

Details of the Constraints

Let Ai denote the number of COMP1 to install/replace in period i and Bi denote the number

of COMP2 to install/replace in period i.

Lifetime constraints for COMPI:

A1=3

A2 =2

A3 + A4 + A5 > 3

A3 + A4 + A5 + A6 -> 5

A4 + A5 + A6 + A7 > 5

As+A6+AT+A8>5

A6 + A7 + A8 + A9 > 5

A7 + A8 + A9 + A10 > 5

The first two constraints are for the assembly sequence. The three units installed in period 1

will expire by period 5, so in periods 3, 4 and 5, at least 3 units will need to be replaced; this

is the third constraint. By period 6, all the units will have to be replaced; this is the fourth

constraint. After this every four (the component's lifetime) periods, 5 units will have to be

- 25 -

replaced. The reason the constraints must overlap is to take care of units that are replaced

before their lifetime has expired. Note that normally the number of periods used to replace

the units is the lifetime (4 in this case), however the third constraint only can use 3 periods

because of the assembly sequence.

Lifetime constraints for COMP2:

Bl=4

B2=4

B3 + B4 + B5 + B6 > 4

B3 + B4 + B5 + B6 + B7 > 8

B4 + B5 + B6 + B7 + B8 > 8

B5 + B6 + B7 + B8 + B9 > 8

B6 + B7 + B8 + B9 + BlO > 8

Once again, the first two constraints are for the assembly sequence. By period 6, the lifetime

of the units installed in period 1 will have expired, so 4 units need to be replaced during

periods 3, 4, 5 and 6; this is the third constraint. After this, every 5 (the lifetime) periods, all

the units need to be replaced.

Additional constraint CONI:

First, the amount of the allocation used for the NCCs must be calculated. NCC1 is installed

in period 1 and has a lifetime of 6, so it needs to be replaced every 6 periods (since the model

is only for 10 periods, period 7 is the only replacement period. Similarly, each NCC must be

accounted for.

Note that a value is not subtracted from the initial period because the model assumes that all

units can be installed. Also, the user must be certain not to over-constrain the assembly

sequence periods with additional constraints (i.e. to meet the assembly sequence, period 1

needs an allocation of at least 1100 and period 2 an allocation of at least 1000).

Here are the allocations after the NCCs are replaced.

Period Allocation

1 2000

2 2000

3 800

4 800

5 800

- 26 -

6
7
8
9
10

800

800 - 4 * 50= 600 (NCC1)
800- 10* 50 = 650 (NCC3)
800- 2 * 25 = 750 (NCC2)
8OO

Now the constraintcoefficientscan be made.
COMP1is 100andfor COMP2it is 200

Note that the constraintcoefficient for

100A1+ 200B1< 2000

100A2 + 200B2 < 2000

100A3 + 200B3 < 800

100An + 200B4 < 800

100As + 200B5 < 800

100A6 + 200B6 < 800

100AT + 200B7 < 600

100A8 + 200Bs < 650

100A9 + 200B9 < 750

100Alo + 200B10 < 800

Objective Function

The objective function is the sum of the number of each component multiplied by its

objective coefficient. In the previous example, both the objective coefficients are 1 so the

objective function is:

1A1 +1A2 1A3+...+ 1A9+ 1Alo+ 1BI+ 1B2+ 1B3+...+ 1B9+ 1Blo

Solving the Integer Programming Problem

Unlike linear programming where the Revised Simplex Method is the best method for all

problems, integer programming does not have a method that is best for all problems; the IP

solver used should depend on the type of problem that needs to be solved. In this case, all

the scheduling problems produce the same general type of problem. A few different

methods were tried to solve the problems, a branch-and-bound method and two all-integer

cutting-plane methods. For the scheduling problems, one of the all-integer methods using

a dual-simplex-like method performed significantly better than the branch-and-bound

method.

- 27 -

Followingis theset-upof theinitial tableau.Thefirst rowcontainstheobjectivefunctionof
sizem. The nextm rowsarea m by m identity matrix. Theremainingrowscontainthe
constraintmatrix (withouttherighthandsidebvector);theseequationsmustall begreater
than or equalconstraints. (Note: any lessthanor equalconstraintscanbeconvertedby
multiplying boththeconstraintandthecorrespondingelementin therighthandsidevector
by -1 andequalityconstraintscanbeconvertedbytreatingtheconstraintasagreaterthanor
equalconstraintandaddingalessthanor equalconstraint).Next,inserta flu'stcolumn;the
first m+l entriesare0 andremainingentriesarenegativetheright handsidevectorb.

Example:

Minimize 2X1 + 6X2 + 3X3

Such That

Xl+3X2+X3>5

2X1 + 5X2 - 3X3 > 6

2Xl+3X2+2X3>4

Initial Tableau:

0263

0100

0 0 1 0

0 0 0 1

-5 131

--6 2 5-3

-4 2 3 2

Algorithm:

For the problem:

min cTx

such that

Ax>b

1. If all entries in the first column axe non-negative, the problem is solved, go to step 6

2. Select the first row with a negative entry in column 1, denote it row v. Let K be the set of

indices k, where ark > 0. If K is empty, stop - the problem has no solution.

3. Determine the index, s of the lexicographically minimum column of the columns which

are a member of K.

- 28 -

Note: A vectoris lexicographicallypositiveif thefirst non-zero entry is positive. Vector a

is lexicographically greater than vector b if (a - b) is lexicographically positive.

4. Find the largest Itj that maintains aj - Itj as lexicographically positive for all jeK, where aj

and as are the j and s columns of A. This can be done by the following method:

If aj and as begin with an unequal number of zero, let Itj = oo, other wise let ej and es be the

first non-zero terms in columns j and s. If es does not divide ej, let j = [ej/es], where [a]

denotes the greatest integer less than or equal to a. If es does divide ej then if aj - (ej/es) as is

lexicographically positive then let It j=ej/es else let Itj = ej/es - 1. Let Its = 1. Let;_ = max (jeK)

agu_

5. Let q = {bvfL} and pj = {aj/'L}, where { a} denotes the smallest integer greater than or equal

to a.

Let b = b + q as (where b is the in'st column of the tableau and as is the s column of the

tableau)

Let aj = aj - pj as for j :g: s, where aj is the j column of the tableau).

6. The solution is contained in the first column of the tableau. The first entry is the value of

the objective function. The next m entries are the values of the variables in the objective

function.

Final tableau:

10021

2 3-2-1

1-1 1 0

0 0 0 1

0 0 1 0

3 1 1 -5

3 3-1 0

The value of the objective function is 10 and X1 = 2, X2 = 1 and X3 = 0.

- 29 -

Appendix D: Program Documentation

This appendix is intended to aid those who wish to expand, alter or maintain RSM code. The code is

written in APL2 on an IBM PC, thus a knowledge of APL is necessary. Also a solid background in

linear/integer programming is necessary. The code is readily dividable into three separate sections:

the preprocessor section for entering the scheduling data, the solving routines for solving an integer

programming problem, and the interface between them.

RSM is documented with extensive internal comments. This appendix describes the main

functions and then presents an APL generated function name list with descriptions for most

of the important functions. This is followed by a flowchart, and finally a description of the

data structure.

In addition, while in the APL environment, two functions are available to aid in the

understanding of the RSM program.

The first function can be used to obtain a one line explanation of a function or variable. The

syntax is as follows:

EXPLAIN 'function name'

For example:

EXPLAIN 'DATACHECK'

CHECKS DATA BEFORE SOLVING PROBLEM

A second function finds all occurrences of a string in all functions in the workspace. The

syntax is as follows:

WHERE 'string'

Input Entry Functions:

RSMAINP is the main input control function. Two input editors are used, a table editor

SCRNTAB and a multiple field input editor SCRNMFI.

Interface Between the Input Entry and the Integer Program Solver:

The interface between the two sections of code is the function FORMULATE; it takes data

from the preprocessor data structures and converts it into an IP in the standard form

described above. FORMULATE uses DONCC to calculate the allocations used by the

prescribed components.

-30-

Integer Programming Functions

The main IP function is CUT and it uses two other functions, GETLAMBDA and

GETLEXMIN. The algorithm works for minimization problems (or maximization

problems with negative coefficients for the objective function - a minimization problem in

disguise).

-31 -

RSM APL Function Name List and Description

BARCHT

CREATES A CHARACTER BASED BARCHART OF VALUES IN X

BARCHTALIM

INSERTS LIMIT SIGN IN BAR CHART

BARCHTASCL

SCALES BAR CHART Y AXIS

CCTAB

CONVERTS COMPONENT DATA TO A TABLE FOR EDITING

CHKDATA

RETURNS A ZERO IF DATA IS OK

CONTROL

TOP LEVEL CONTROL FUNCTION

CUT

SOLVE ALL-INTEGER PROBLEM

DATACHECK

CHECKS DATA BEFORE SOLVING PROBLEM

DATAATYPE

RETURNS 1 FOR EACH NUMERIC DATA MEMBER, 0 FOR EACH CHARACTER DATA

DESCRIBE

DISPLAY PROGRAM DESCRIPTION

DIR3

RETURNS A DOS D/RECTORY

DISPASOLNSCR

DISPLAY THE SOLUTION TO THE PROBLEM

DISPASURPLUS

DISPLAY THE AMOUNT OF ALLOCATIONS USED

DONCC

CONSTRAINT ALLOCATIONS SUBTRACTING THOSE FOR PRESCRIBED COMPONENTS

EMUL8087

INITIALIZED THE 8087 EMULATOR

FILEADELT

DELETES A SYSTEM FILE

FILEADIR

RETURNS A FORMATrED FILE LISTING OF QUALIFIED NAMES USING LONG NAMES

FILEAINFO

DOS DIR. USING AUX PROCESSOR 103 (ORD=0 FOR CHRON,ORD=I ALPHABET ORDER)

FILEALOAD

RETRIEVES SYSTEM INPUT FROM A FILE

FILEARENM

RENAMES A SYSTEM INPUT FILE

FILF_SAVE

SAVES LISTED VARIABLES TO A QUALIFIED FILE AND UPDATES DIRECTORY

FORMLTA1

CALLED BY FORMULATE, NEEDS EXTERNAL PASS OF: RHSIDE TEMP

- 32-

FORMLTAR
GENERATESRESOURCECONSTRAINTMATRICESFORFORMULATE

FORMULATE
MAKESLIFETIMECONSTRAINTSFORA COMPONENT

FORMASTAT
DISPLAYSTATUSOFTHEFORMULATION

FAERASE
AP103FUNCTIONTOERASEA FILE

GETLAMBDA
RETURNSLAMBDAVALUEFOROA-TFING METHOD

GETLEXMIN

RETURNS THE LEXICOGRAPHICALLY LEAST COLUMN IN THE MATRIX B
IN

EMULATES THE)IN COMMAND

INITANUM

CALCULATES NUMBER OF COMPONENTS, CONSTRAINTS, AND PERIODS

INPACOMP

ENTER COMPONENT INFORMATION

INPACOMPA 1

ENTER COMPONENT INFORMATION

INPACOMPA2

ENTER COMPONENT ASSEMBLY SEQUENCE

INPACOMPA3

ENTER COMPONENT WEIGHTING FACTOR

INPACOMPACI-IK

CHECKS COMPONENT DATA TABLE AND RETURNS ERROR MESSAGE

INPADELT

DELETES AN INPUT FILE

INPAFILE

INPUT DATA FILE MANAGER

INPALOAD

LOADS AN INPUT DATA FILE

INPARC

ENTER RESOURCES AND COMPONENTS

INPARENM

RENAMES AN INPUT FILE

INPARSR

ENTER RESOURCE INFORMATION

INPARSRA2

UPDATE COMPONENT DATA

INPzLRSRACHK 1

CHECKS RESOURCE NAMES AND PERIOD DURATION AND RETURNS ERROR MESSAGE

INPASAVE

SAVE A SYSTEM INPUT FILE

MATHCOPR

TURNS ON MATH COPROCESSOR EMULATION IF NEEDED

-33 -

OUT
EMULATESTHE)OUT COMMAND

RESADELT

DELETES A RESULTS FILE

RESADISP

DISPLAY THE RESULTS

RESAFILE

RESULTS FILE MANAGER

RESALOAD

LOADS A RESULT FILE

RESAPRT

PRINT THE RESULTS

RESARENM

RENAMES A RESULTS FILE

RESASAVE

SAVE A RESULTS FILE

RSM

MAIN FUNCTION FOR RESUPPLY SCHEDULING MODEL

RSMAEND

PREPARE TO LEAVE PROGRAM

RSMAERR

OVERALL ERROR HANDLING FOR RSM

RSMAEXTRTNS

DUMMY FUNCTION FOR FLOW CHART DOCUMENTATION

RSMAINIT

INITIALIZES VARIABLES FOR RSM

RSM_dNP

ENTER AND FILE INPUT

RS_S

DISPLAY, PRINT AND FILE RESULTS

RSMASOLVE

SOLVE THE PROBLEM

SCRNMFI

MULTIPLE FIELD INPUT SCREEN

SCRNTAB

SCREEN TABLE OUTPUT FIELD WITH HEADER AND SCROLLING (DKS VERSION)

SOLVASTAT

DISPLAY STATUS OF THE SOLUTION

- 34 -

Flowchart of RSM APL Workspace

RSM

:MATHCOPR

:EMUL8087

:RSMAERR

:CONTROL

:RSMAINIT

:RSMAEXTRTNS

:DESCRIBE

:RSMAINP

-INPARC

:INPARSR

:SCRNMFI

:DATAATYPE

:INPARSRACHK1

:INPARSRA2

:SCRNTAB

:INPACOMP

:INPACOMPA 1

:CCTAB

"SCRNTAB

:INPACOMPACHK

:INPACOMPA2

:SCRNTAB

:DTZ

:INPACOMPA3

:SCRNTAB

:INPAFILE

:INPALOAD

:FILEALOAD

:INPASAVE

:b]LEASAVE

:DIR3

:FILEAINFO

:IN

:FILEADIR

:OUT

:INPADELT

:FILEADELT

-35-

:FAERASE

:IN

:OUT

:INPARENM

:FILEARENM

:IN

:OUT

:RSMASOLVE

:DATACHECK

:DTZ

:INITANUM

:CHKDATA

:FORMULATE

:FORMASTAT

:FORMLTA1

:FORMASTAT

:DONCC

:FORMLTAR

:CUT

:GETLAMBDA

:GETLEXMIN

:SOLVASTAT

:RSMARES

:RESADISP

:DISPASURPLUS

:BARCHT

:BARCHTASCL

:BARCHTALIM

:DISPASOLNSCR

:BARCHT

:BARCHTASCL

:BARCHTALIM

:RESAPRT

:RESAFILE

:RESALOAD

:FILEALOAD

:INITANUM

:RESASAVE

:FILEASAVE

-36-

:DIR3

:FILEAINFO

:IN

:FILEADIR

:OUT

:RESADELT

:FILEADELT

:FAERASE

:IN

:OUT

:RESARENM

:FILEARENM

:IN

:OUT

:RSMAEND

- 37 -

Data Structure Formats

The two main data structures are CONSLIST and COMPSTRUC. The following is the

set-up for the ith entry of each data structure.

Each entry of CONSLIST contains three elements.

D(DCONSLIST[1-])[1] - character vector containing the constraint's name

D(DCONSLIST[I])[2] - numeric vector containing maximum allocation for each

period

D(DCONSLIST[I])[3] - numeric vector containing maximum allocation after the

prescribed values are calculated

Each entry of COMPSTRUC contains six elements

D(DCOMPSTRUC[I])[1] - character vector containing component's name

D(DCOMPSTRUC[I])[2] - numeric scalar containing the component's weighting factor

D(DCOMPSTRUC[I])[3] - numeric scalar containing component's lifetime

D(DCOMPSTRUC[I])[4] - character scalar designating calculated or prescribed

D(DCOMPSTRUC[I])[5] - numeric vector containing component's assembly sequence

D(DCOMPSTRUC[I])[6] - numeric vector containing component's constraint coefficients

-38-

References

1. Greenberg, Harold, Integer Programming, Academic Press, Inc., New York,

NY, 1971

- 39 -

National Aeronau_ca and

Space Admlnistrm_on

Report Documentation Page
!

1. Report No. I

INASA TM -104380

4. Title and Subtitle

RSM 1.0 User's Guide

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

May 1991
A Resupply Scheduler Using Integer Optimization

7. Author(s)

Larry A. Viterna, Robert D. Green, and David M. Reed

9. Performing Organization Name and Address

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135 - 3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546 - 0001

6. Performing Organization Cede

8. Performing Organization Report No.

E -6185

10. Work Unit No.

474-12-10

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Larry A. Viterna and Robert D. Green, NASA Lewis Research Center; David M. Reed, Wittenberg University,
Springfield, Ohio 45501 and Summer Student Intern at NASA Lewis Research Center. Responsible person,

Larry A. Viterna, (216) 433-5398.

16. Abstract

RSM (Resupply Scheduling Model) is a PC based, fully menu-driven computer program. It uses integer program-

ming techniques to determine an optimum schedule to replace components on or before a fixed replacement period,
subject to user deemed constraints such as transporation mass and volume limits or available repair crew time.
Principal input for RSM includes component properties such as mass and volume and an assembly sequence.

Resource constraints are entered for each period corresponding to the component properties. Though written to

analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model
the resupply of almost any system subject to user deemed resource constraints. This report presents a step by step

procedure to preparing the input, performing the analysis and interpreting the results. Instructions for installing the
program and information on the algorithms are contained in the appendices.

17. Key Words (Suggested by Author(s))

Scheduling
Resource allocation

Optimization

18. Distribution Statement

Unclassified - Unlimited

Subject Category 16

19. Security Clessif. (of the report) 20. Secudty Clessil. (of this page) 21. No. of pages

Unclassified Unclassified 44

NASA FORM 162Q OCT 88 *Forsale by theNationalTechnicalInformationService,Springfield,Virginia 22161

22. Price*

A03

National Aeronautics and

Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Offi¢ia! Business

Penalty for Private Use $300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

II111

r4 tt,()rl,]l AOf I-)p<7 i Jtll _>{_r tf'_

N A'._ A 451

