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ABSTRACT

Data distribution, degree of data replication, and transaction
access patterns are key factors in determining the performance
of distributed database systems. In order Lo simplify the evalua.
tion of performance measures, database designers and researchers
tend to make simplistic assumiptions about the systenn. In this
paper, we investigate the cffect of modeling assuptions on the
evaluation of one such measure, the number of transaction roll-
backs, in a partitioned distributed dalabase system. We develop
six probabilistic models and develop expressions for the number
of rollbacks under each of these models. Issentially, the models
differ in terms of the available system information. The analyti-
cal results so oblained are compared Lo results from simulation.
rom here, we conclude that most of the probabilistic models
yield overly conservative estimates of the number of rollbacks.
The effect of transaction commutativity on system throughput is
also grossly undermined when such odels are employed.

1. INTRODUCTION

A distributed database system is a collection of cooperating
nodes each containing a set of data items (In this paper, the
basic unit of access in a database is referred to as a data item.).
A user transaction can enter such a system at any of these nodes.
The receiving node, sometimes referred to as the coordinating or
initiating node, undertakes the task of locating the nodes that
contain the data items required by a transaction.

A partitioning of a distributed database {DDB) occurs when
the nodes in the network split into groups of communicating
nodes due to node or communication link failures. The nodes
in each group can communicate with each other, hut no node in
one group is able to conumnunicate with nodes in other groups. We
refer Lo each such group as a partition. ‘The algorithms which al-
low a partitioned DDB to continue functioning generally fall into
one of two classes [Davidson et al. 1985]. Those in the first class
take a pessimistic approach and process only those transactions
in a partition which do not conflict with transactions in other par-
titions, assuring mutual consistency of data when partitions are
reunited. The algorithms in the second class allow every group
of nodes in a partitioned DDB to perform new updates. Since
this may result in independent updates to items in different par-
titions, conflicts among transactions are bound to occur, and the
databases of the partitions will clearly diverge. Therefore, they

require a strategy for conflict detection and resolution. Usually,
rollbacks are used as a means for preserving consistency; con-
l!,(:lulg transactions are rolled hack when patitions are rennited,
Since coordinating the undoing of transactious is a very dillicult
task, these methods are called optinustic sinee they are uscful
primarily in a situation where the number ol ilems in a par-
ticular database is large and the probability of couflicts among
transactions is small.

In general, determining if a transaction that successfully ex-
ecuted in a partition is rolled back at the time the database
is merged depends on a number of factors. Data items in the
read-set and the write-set of thie transaction, the distribution of
these data items among the other partitions, access patterns of
transactions in other partitions, data dependencies among the
transactions, and semantic relation (il anyY ltween these trans-
actions are some examples of these fuctors. bxact evaliation of

rollback probability for all transactions i a database (and hence
the evaluation of the number of rolled back transactions) gen-
erally involves hoth analysis and simulation, and requires large
exceution times [Davidson 19825 Davidson tusi]. To overcome
the computational complexities of cvaluation, desiguers and re-
searchers generally resort to approxiniation techmeues [David-
son 1982, Davidson 1986; Wright 1983, Wiight 193] These
technmiques reduce the computition tine by making sunphfying
assumptions Lo represent the underlying distritmited system. The
time complexity of the resulting techmques greatly depends on
the assumned model as well as evaluation tedhniques.

1 this paper we are interested indeterniming the effect of the
distributed database models on e computational complexity
and acenracy of the tollhack statistios i a pantitioned database.

“The balance of this paper is outlined ax Toltows. Section 2 for-
mally defines the problem under consideration. In Section 3, we
diseuss the data distribution, replication, wnd trausaction model-
ing. Section 1 derives the rollbick statisties for one distribution
model. In Section 5, we compare the analysis methods for six
models and simulation method for one model based on computa-
tional complexity, space complesity, and acenracy ol the imeasure.
Finally, in Section 6, we smimmarize the obtamed tesults.,

2. PROBLEM DESCRIPTION

Even though a transaction 7 in parlition £ may he rolled
back (at merging time) by another transaction Ty i partition [
due to a number of reasons, the following two cases ave found to
be the major contributors [Davidson 1982].

i. P, # P, and there is al least one data item which is up-
dated by hoth 7y and 15 This s referred to as a wrile-wrile
conflict.

i, P, o= 1%, Ty s rolled hack, and it s a dependency parent of
Ty (e, Ty has read at least one data itemy updated by Tz,
and 7T occurs prior to Ty in the serialization sequence).

The above discussion on reasons for rollback only considers
the syntax of transactions {i.e. read- and write-sets) and does
not recognize any semantic relation between them. To be more
specific, let us consider transactions T, and T; executed in two
different partitions f and P, respectively. Let us also assume
that the intersection between the write-sets of T} and T s non-
empty. Clearly, by the above defimtion, there is a write-write
conflict and one of the two transactions has to be rolled back.
However, if 1) and T commte with cach other, then there is no
need Lo volllack either of the transactions at the tine of partition
merge [Garcia-Mohna 1983 Jajodia and Speckman 1985; Jajodia
and Mukkamala 1990]. [nstead, T needs to be executed 1n /%
and T needs to be executed in Py The analysis in this paper
take this property into account.

In order to compute the number of rollbacks, it is also nec-
essary to define some ordering (O(#)) on the partitions. For
example, if Ty and T} correspond to case (i) above, and do not
commule, it is necessary to determine which of these two are
rolled back at the time of merging. Partition ordering resolves
this ambignity by the [ollowing rule: Whenever Lwo conflicting
but non-commuting transactions are executed in two different
partitions, then the transaction executed in the lower order par-
tition is rolled back.
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Since a transaction may be rolled back due to either (i) or
(i1), we classily the rollbacks into two classes: Class | and Class
2 respectively. The problem of estimating the number of roll-
backs at the time of parlition merging in a partially replicated
distributed database system may be formulated as follows.

Given the following parameters, determine the number of
rolled back transactions in class | (7)) and class 2 (1),

e 1, the sumber of nodes in the database;

d, the number of dala iteins in the database;

p, the number of partitions in the distributed system (prior
to merge);

t, the number of transaction types;

G D, the global data directory that contains the location of
each of the d data items; the GD matrix has d rows and n
columns, each of which is cither 0 or [

e NSy, the set of nodes iu partition k, Vk = 1,2,...,p;

o RS,, the read-set of lransaction type j, 7 = 1,2,...,¢;

'

o WS, the write-set of transaction type j, j = 1,2,...,L;

o Ny, the nunber of transactions of type j received in par-
Lition Kk {prior toamerge), = 1,200 00,k = 1,2,

e CM, Lthe commutalivity matrix that delines transaction
commutativity. If CM,,, = truc then transaction types j,
and j; commute. Otherwise they do not comrmnute.

The average number of total rollbacks is now expressed as R =
I+ R,

3. MODEL DESCRIPTION

As stated in the introduction, the primary objective of this
paper is to investigate the effect of data distribution, replication,
and transaction models on estimation of the number of rollbacks
in a distributed database system.

To describe a data distribulion-transaction model, we char-
acterize it with three orthogonal paramecters:

1. Degree of data item replication (or the number of copies).
2. Distribution of data item copies.
3. Transaction characterization

We now discuss cach of these parameters in detail.

For simplicity, several analysis technigues assume Lhat cach
data item has the same number of copies ﬁor degree of replica-
tion) in the database system [Colfman ct al. 1981]. Some other
techniques characterize the degree of replication of a database by
the average degree of replication of data items in that database
[Davidson 1986]. Others treat the degree of replication of cach
data item independently. X .

Some designers and analysts assume some specific allocation
schemes for data iLlem (or group) copics (c.g., [Mukkamala 1987))).
Assuming complete knowledge of data copy distribution (G )
is one such assumption. Depending on the type of allocation,
such assuinptions may simplily the pesformance analysis. Others
assume that cach data item copy is randomly distributed among
the nodes in the distributed system [Davidson 1986}. )

Many database analysts characterize a transaction by the size
of its read-set and its write-set. Since different transactions may
have different sizes, these are cither classified based on the sizes,
or an average read-set size and average write-set size are uscd to
represent a transaction.  Others, however, classily transactions
based on the data items that they access (and not necessarily on
their size). [n this case, Lransaction types are i(lcntiﬁ.cd with their
expected sizes and the group of data items from which these are
accessed. An extreme example is a case where each transaction in
the system is identified completely by its read-set and its write-
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sel.

With these three parameters, we can describe a number of
models. Due to the limited space, we chose to present the results
for six of these models in this paper.

We chose the following six modcls based on their applicability
in the current literature, and their close resemblance Lo practical
systems. In all these models, the rate of arrival of transactions
al cach of the nodes is assumed to be commpletely known a priori.
We also assuie complete knowledge of the partitions (i.e. which
nodes are in which partitions) in all the models.

Model 1: Among the six chosen models, this has the max-
imum information about data distribution, replication, and
transactions in the system. It captures the following infor-
mation.

o Replication: Dala replication is specified for each data
item.

e Data distmbution: The distribution of data items among
the nodes in the system is represented as a distribution
matrix (as described in Section 2).

e Tmnsactions: All distinct transactions executed in a
system are represented by their read-sets and write-
sets. Thus. for a given transaction, the model knows
which data items are read, and which data items are

updated. The conmmutativity information is also com-
pletely known and is expressed as a matrix (as de-
scribed in Section 2).

Model 2: This model reduces the number of transactions
by combining them into a set of transaction types based on
commutativity, commonalitics in data access patterns, etc.
Since the transactions are now grouped, some of the indi-
vidual characteristics of transactions ée‘g. the exact read-
set and writes-set} are lost. This model has the following
information.

e Replication: Average degree of replication is specified
at the systemn level.

o Data distribution: Since the read- and write-set infor-
mation is not retained for each transaction type, the
data distribution information is also summarized in
terms of average data itemns. It is assumed that the
data copies are allocated randomly to the nodes in the
system.

o Transactions: A lransaction type is represented by
its read-set size, write-set size, and the number of
data items from which sclection for read and write
is hade. Since two transaction types might access the
same dala item, it also stores this overlap information
for every pair of transaction types. The commutativ-
ity information is stored for each pair of transaction

Lypes.

Model 3: This model further reduce the transaction types
by grouping them based only on commutativity character-
istics. No consideration is given to comnmonalities in data
access patlern or differing read-sct and write-sct sizes. It
hias the following information.

o Neplication: Average degree of replication is specified
at the system level.

o Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly Lo the nodes
in the system.

o Transactions: A transaction type is represented by
the average read-set size and average write-set size.
The commutativity information is stored for all pairs
ol transaction types,

Model 4: This model classifies transactions into three
types: read-only, read-write, and others. Read-only trans-
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actions commute among themselves. Read-write transac-
tions neither commute among themselves nor commute with
others. The others class corresponds to update transactions
that may or may not comnmute with transactions in their
own class. This fact is represented by a commute probabil-
ity assigned to it.

o Replication: Average degree of replication is specified
at the system level.

e Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

Read-only class is represented by aver-

age read-set size. The read-write class is represented

by average read-set and write-set sizes. The others
class is represented by the average read-set size, aver-
age write-scl size and the probability of cominutation.

o Transactions:

Model 5: This model reduces the transaclions to two
classes: read-only and read-wnite. Read-only transactions
commute among themselves. The read-write transactions
corresponds to update transactions that may or may not
commute with transactions in their own class. This fact is
represented by a commute probability assigned to it.

o Replication: Avevage degree of replication is specified
at the system level.

As in model 2, it s assumed that
allocated randomly to the nodes

o Data distribulion:
the data copies are
in the system.

o Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
by average read-set and write-set sizes, and the prob-
ability of commutation.

Model 6: ‘I'his model identifics read-only transactions and
other update transactions. But these two types have the
same average read-set size. Update transactions may or
may not cominute with other update transactions.

o Heplication: Average degree of replication is specified
at the system level.

o Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

Transactions: The read-set size of a transaction is de-
noted by its average. For update transactions, we also
associate an average write-set size and the probability
of commutation.

Among these, model 1 is very general, and assumes complete
information of data distribution (G D), replication, and transac-
tions. Other models assume only partial (or average) information
about data distribution and replication. Model 1 has the most
information and model 6 has the least.

4. COMPUTATION OF THE AVERAGES

Several approaches offer potential for computing the average
number of rollbacks for a given system cnvironment; the most
prominent methods are simulation and probabilistic analysis.

Using simulation, one can generate the data distribution ma-
trix (G D) based on the data distribution and replication policies
of the given model. Similarly, one can generate different trans-
actions (of diflerent types) that can be received at the nodes in
the network. Since the partition iuformation is completely spec-
ihied, by searching the relevant colnmns of the € mabrix, 1l
possible 1o determine whether a given Lransaction has heen suee
cessfully executed in a given partition. Once all the successful
transactions have been tdentified, and their data dependencies
are identified, it is possible Lo identify Lthe transactions that need
to be rolled back at the Lime of merging. The generation and
evaluation process may have to be repeated enough number of
times to get the required confidence in the final result.

Probabilistic analysis is especially useful when interest is con-
fined to deriving the average behavior of a system from a given
model. Generally, it requires less computation time. In this pa-
per, we present detailed analysis for model 6, and a summary of
the analysis for models 1-5.

4.1 Derivations for Model 6

This model considers only two transaction types: read-only
{Type 1) and read-write (Type 2). Both have the same average
read-set size of r. A read-write transaction updates w of the data
items that it reads. Ny and Ny represent the rate of arrival of

types 1 and 2 respectively at partition L. The average degree
of replication of a data iten is given as ¢. The system has n
nodes and d data items, The probability that two read-write
transaction commute is .

Let us consider an arbitrary trimsaction T recetved at one
of the nodes in partition k with 1 nodes.  Since the copies of
a data itern are randomly distributed among the n nodes, the
probability that a single data item s accessible in partition k is

given by
)

n
()
Since cach data iten s independently allocated, the expected
pumber of data items available in this partition is dag. Simlarly,
since T accesses 1 ata items (on the average), the probability
that it will be successfully executed is of. From here, the number
of successful transactions in & is estimated as af Ny and a N
for types 1 and respectively

In computing the probability of rollback of Ty due to case (i),
we are only interested e Lransac tions that update a data item in
the write-set of [ and 1ot corntnnting with 74, The probability
that a given data item (updated by T\ is not updated in another
partition A" by & non-conimuting transaction (with respect to Ty)
is given by

b= )

a, =

w |I—m)a;,N“,
o = (1—~) 2)

‘[“l.'

Given that a data item is available in &, probability that it is
not available in k7 is given as
(n_..,,) _ (u_n._n,.)

ALY AN S
ax (")
From here, the probability that a data item available in k is not

updated any other teansaction in higher order partitions is given
as

F(h M) = (3)

5 = I [v(k A+ (1 = 7k K) Be] (1)

Vi Ok >0(k)

The probability that transaction Ty is not in write-write con-
flict with any other non-commuting transaction of higher-order
partitions is now given as
(da.b.)
w

From here, Uie mumber of Lramsae tons rolled back due Lo category
(1) may be exproessed as Iy = Yoo (b= i)y Nak

To compute the rollbacks ol category (i), we need to deter-
mine the probability that Ty is rolled back due to the roliback of
a dependency parent n the same partition, 1f 75 is a read-write
transaction in partition k, then the probability that T depends
on Ty {i.e. read-write conllict) is given by:

(3)
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(rlnk—w)
(m..)
The probability that T, is not rolled back due to the roll back of

any of its dependency parcnts is now given by:

Moo= - {6)

AN

w o= 2

nt

(Agpre + 1 = )
ap Ny

{

-1

where Ne = N + N and w= N /(N + Nuie).

The total nutber of rolled back transactions due to category
(i) is now estimated as [, = oL =\ )ap (Vi + e Naw). The
total number of rolled back Lransactions is ff = It, + I%,.

5. COMPARISON OF THE MODELS

As mentioned in the introduction, the main objective of this
paper is to determine the effect of data distribution, replication,
and transaction models on the estimation of rollbacks. To achieve
this, we evaluate the desired measure using six different data
distribution and replication models. The coparison of these
evaluations is based on computational time, storage requirement,
and the average values obtained.

Due to the limited space, we conld not present the delaiird
derivations for the average values Tor models 2.6, The final ex-
pressions, however, are presented in [Mukkamala 1990].

5.1 Computational Complexity

We now analyze each of the evaluation methods {for models
1-6) for their computational complexity.

e In model 1, all t transactions are completely specified, and
the data distribution matrix is also known. To determine
il a transaction is successiul, we need to the scan the dis-
Lribution matrix. Similarly, determining if a Lransaclion in
a lower order partition is to be rolled back due to a write-
write conflict with a Lransaction of higher order partition
requires comparison of write-sets of the two transactions.
Determining if a transaction needs to be rolled back due to
the rollback of a dependency parent also requires a scarch.
Al this requires O(ndt + P4 pttN), where tis the nun-
ber of transaction types and ¥ is the maximuin nnmber of
transaclions executed in a partition prior to the merge.

Models 2-6 have a signilar computation structnre. The num-
ber of transaction tepes (1) is high for model 2 and low for
model 6. Each of these models require O(p*tic + pt?N)
time. As belore, ¢ is the number of transaction types and
N is the maximum number of transactions executed in a
partition prior to the merge.

Thus, model 1 is the most complex (computationally) and maodel
6 is the lcast complex.

5.2 Space Complexity

We now discuss the space complexity of the six cvaluation
methods:

o Model 1 requires O{dn) to stove the data distribution ma-
trix, O(n) Lo store the partition information, O(dt) to store
the data access information, and O(nt) to store the trans-
action arrival information. It also requires O(t’) to store
the commutativity information. Thus, it requires O(dn +
dt + nt + t?) space to store model information.

e Models 4-6 require similar information: O(t} to store the
average size of read- and wrile- sets of transaction types,
O(nt) for transaction arrival, O(n) for partition informa-
tion, and O(1) for commute information. Thus they require
O(nt) space.

e Model 3, in addition to Lhe space required by models 4-
6, also requires Q1) for commutativity matrix. Thus it
requires (fnl + ) space.

e Model 2, in addition to the space required by model 3,
also requires t* space to store the data overalp information.
Thus, it requires O(nt + £*) storage.

“Thus, model 1 has the largest storage requirement and model 6
has the lcast.

5.3 Evaluation of the Averages

In order to compare the effect of each of these models on
the evaluation of the average rollbacks, we have run a number of
experiments. In addition to the analytical evaluations for models
1-6, we have also run simulations with Model 1. The results
from these runs are summarized in Tables 1-7. Basically these
tables describe the number of transactions successfuily executed
before partition merge (Before Merge), number of rolibacks due
to class | (1)), rollbacks due to class 2 (It;), and transactions
considercd to be successful at the completion of merge (After
Merge). Obvionsly, the last term s cotmputed from the earbier
three terms. Tn all these tables, the total number of transaction
arrivals into the system during partitioning is taken to be 65000.
Also, each node is assnmed to receive equal share of the incoming
Lransactions.

e Table 1 summarizes the effect of mumber of partitions as
measured with Models 1.6, Here, it is assumed that each
of the data items in the system has exactly ¢ = 3 copies.
The other assimptions in models 1-6 are as follows:

1. Model 1 considers 130 transaction types in the sys-
teni. Bach is described by its read- and write-sets and
whether it commutes with the other transactions. 90
of the 130 are read-only transactions. The rest of the
40 are read-write. Among the read-write, 15 commute
with cach other, another 10 conimute with cach other,
and the rest of the 15 do not commute at all. The sim-
alation run takes the same inputs but evaluates the
averages by simulation.

2. Model 2 maps the 130 transaction types into 4 classes.
To inake the comparisons simple, the above four classes
(90+154+10+15) are taken as four types. The data

overlap is computed from the inflormation provided in
model 1.

3. Model 3. to facilitate comparison of results, considers
the above 4 classes. This model, however, does not
capture the data overlap information.

4. Model 4 considers three types: read-only, read-write
that commute among themselves with some probabil-
ity, and read-write that do not commute at all.

5. Model 5 considers read-only transactions with read-sel
size of 3 and read-write Lransactions with read-set size
of G. Read-wrile transactions commute with a given
probability.

6. Model 6 only considers the average read-set size (com-
puted as 4 in our case), the portion of read-write trans-
actions (=45/130), and the average wrile-sel size for
a read-write (= 2). Probability that any two transac-
tions commute is taken to be 0.4.

From Table 1 it may be observed that:
o The analytical results from analysis of Model 1 is a

close approximation of the ones from simulation.

e The evaluation of number of successful transactions
prior to the merge is well approximated by all the
models. Model 6 deviated the most.

e The difference in estimations of Ry and R, is signif-
icanl across the models. Model 1 is closest to the
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Effects of Distribute

worst accuracy. Model
etter than Models 2,34,

simulation. Model 6 has the
5, surprisingly, 1 somewhat b
and 6.

The estimation of Ity from models 2-6 is aboul 50
times of the estimation from Model 1. The estima-
tions from Model 1 and the simulation are quite close.
From here, we can see that, Models 2-6 yield overly
conservative estimates of the number of rollbacks at
the time of partition merge. While Model 1 estimated
the rollbacks as 1200, Model 2-6 have approximated
them as about 13000.

o This dilferencein estimations seerms to ex
the number of partitions is increased.

ist even when

s the effect of number of copies on the
[ the wmodels. 1t may be observed

o Table 2 summarize
evaluation accuracies o
that

een evaluations from Model 1 and
t at low (c = 3) as well as high
Clearly, the difference is more
{ replication.

o The difference betw
the others is signitican
(c = 8) values of ¢.
significant at high degrees o

=4,pp=6c=38 corresponds to a case
f the 500 data items is available in both
This is also evident from the fact that
essful prior to

o The case py
where each o
the parlition
all the 65000
the merge.

5.
input Lrapsactions are suce

o The results from the analysis and simulation of Model
} are close to those [rom simulation.

o Table 3 shows the effect of increasing the number of nodes
from 10 (in Table 1) to 20. Lor large values of n, all the six
models result in good approximations of successful trans-
actions prior to merge. The differences in estimations of 1ty

and Ry still persist.

Js 5 and 6. While model 6 only re-
Liiis average read-sel size information for any transaction,
model 6 keeps this information for read-only and read-write
transactions separately.  This additional information cn-
abled model 5 Lo arrive at better approximations for ff)
and ;. In addition, the effect of conumutativity on It, and
R, is not evident until m > 0.99. This is counterintuitive.
The simplistic nature of the models is the real cause of this
observation. Thus, even though these models have resulted
in conservative estimates of R, and R, we can’t draw any
positive conclusions about the cffect of commutativity on
the system throughput.

o Table 4 compares maods

o The comments that were made about the conservative na-
ture of the estimates from models 5 and G also applies to
model 2. These results are summarized in Table 5. Even
though this model has much more system information than
models 5 aud 6, the results (f, and 137} are not very differ-
ent. However, the effect of commutativity can now be scen
at m > 0.95.

o Having observed that the effect of commutativity is almost
lost for smaller values of m in models 2-6, we will now look
at its effect with model 1. These results are summarized
in Table 6. Even at small values of m, the effect of com-
mutativity on the throughput is evident. In addition, it
increases with m. This observation holds at both small
and large values of c.

¢ In Table 7, we summarize the effect of variations in num-
ber of copies. In Tables 1.6, we assumned that each data
item has exactly the same number of copies. ‘This is more
relevant to Model 1. Thus we only consider this model in
determining the effect of copy variations on evaluation of £,
and ffy. As shown in this table, the effect s significant. As
the variation in number ol copivs is increased, the number
of successful Lransactions prior Lo merge decreases. Hence,
the number of conflicts are also reduced. This results in

d Dutabase Modeling on Evaluation of Transaction R
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ollbacks

a reduction of ) and Ry
not very significant, the differe

6. CONCLUSIONS

AS long as the variations are
nees are also not significant.

have introduced the problem of estimating
rtitioned distributed database sys-
temn. We have also introduced the concept of Lransaction commu-
tativity and described its elfect on transaction rollbacks. For Lhis
purpose, the data distribution, replication, and transaction char-
acterization aspects of distributed database systems have been
modeled with three parameters. \We have investigated the effect
of six distinct models on the evaluation of the chosen metric.
These investigations have resulted in some very interesting ob-
servations. This study involved developing analytical equations
for the averages, and evaluating them for a range of parameters.
We also used sitnulation for one of these maodels. Due to lack
of space, we could not present all the obtained results in this
paper. In this section, we will summarize our conclusious from
these investigations.

We now sununarize these

In this paper, we
the number of rollbacks in a pa

conclusions.

¢ Random data models that assume only average information
about the system result in very conservative estimates of
system throughput. One has to be very cautious in inter-
preting these results.

Adding more system information does not necessarily lead
to better approximations. In this paper, the system infor-
mation is increased from model 6 to model 2. Even though
this increases the computational complexity, it does not
result in any significant improvement in the estimation of
number of rollbacks.

cific system. lere, we define the
{ransactions completely. Thus it is closer to a real-life sit-
uation. Results (analytical or simulation) obtained from
this model represent actual behavior of the specified sys-
However, resnlts obtained from such a model are too
Le extended Tor other systems.

Model 1 represents a spe

ten
specihie, and can’t

Pransaction commutalivity appears to significantly reduce
vransaction rollbicks iu a partitioned distributed databasc
system. This factis only evident from the analysis of model
1. Oun the other hand, when we look at models 2-6, it is
possible Lo conclude that commutativity is not helpful un-
less it is very very high. Thus, conclusions from model 1
and models 2-6 appear to be contradictory. Since mod-
els 3-6 assuine average transactions that can randomly se-
lect any data item to read (or write), the evaluations from
these niodels are likely to predict higher conflicts and hence
more rollbacks. The Lenefits due Lo commutativity seem to
disappear in the average Lehavior. Model 1, on the other

hand, describes a specific systemn, and hence can accurately
compute the rollbacks. 1t is also able to predict the benefits
due to commutativity more accurately.

The distribution of number of copies seems to affect the
evaluations significantly. Thus, accurate modeling of this
distribution is vital to evaluation of rollbacks.

In addition to developing several system models and evalua-
tion techniques for these models, this paper has one significant
contribution to the modeling, simulation, and performance anal-
ysis community.

If an abstract system model with average information is
employed to evaluate the effectiveness of a new technique
or a new concept, then we should only expect conservative
estimates of the effects. In other words, if the results from
the average models are positive, then accept the results.
If these are negative, then repeat the analysis with a less
abstracted model. Coneepts/techniques that are not ap-
propriale for an average system inay still he applicable for
sotne specific systems.
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Table 1. Eifect of Number of Partitions on Rollbacks

mo=thp,=6c=1 m=4p=p3=3c=3
Model | Belore 14y 1, Alter || Before I It Aler
# Merge Mevge | Merge Merge
Sihn. 50200 100D 205 0 18495 || 31150 0 0 31450
| K200 100 199 19041 Ji4no V] 0 31450
2 48315 3597 10322 34397 27069 3160 B945 14664
3 48315 3164 10194 31465HT 27069 2798 9410 14861
4 48618 3667 10243 34708 27657 3255 9444 14958
5 47276 2679 10238 34360 24207 1507 9106 13594
6 46593 4R52 RH70 34171 22356 2937 6673 12747
Table 2. Elfect of Number of Copies on Rollbacks
m=dpp=06e=2 m=4m=06c=38
Model || Before I i, After || Before Ry Ry Aflter
# Merge Merge || Merge Merge
Sim. 34600 200 15 34385 65000 4000 4970 56030
1 GO0 200 0 34100 65000 4000 4981 56019
2 31069 1998 h119 23952 GH000 8000 ITTTT 39223
3 31069 160l A3y 24134 GHODD 8OOV 17786 39214
4 SER95 179X A200 24377 65000 8000 17786 39214
5 23203 1508 2326 19309 65000 8000 17875 39125
6 QTR 3413 1701 22024 65000 8000 17860 39140
Table 3. Elfect of Number of Nodes on Rollbacks
m=10p, =1, c=5H mo=10,p; = 10,c=12
Model || Before 1ty I, After | Before R, I, After
# Merge Merge | Merge Merge
Siin. 61250 1000 6240 51010 (] 65000 5000 6231 53769
1 61250 1000 6231 H51019 | 65000 5000 6231 53769
2 61021 9090 21183 307561 65000 10000 22277 32723
3 61021 8G9 212860 30746 65000 10000 22286 32714
4 GIIOD 9031 21326 30743 | 65000 10000 22286 32714
) GODGE V061 21292 30613 ) 65000 10600 22375 32625
6 GOSTGH 9363 20036 30577 65000 10006 22360 32640
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Effects of Distributed Database Modeling on Evaluation of Transaction Rollbacks

Table 4. Lllfect of moon Rollbacks (Models 5and 6: py =4, p, =6.c=3

Model 5 Model 6
m || Before R, N, After | Before n I, After
Merge Merge || Merge Merge
0.00 47276 2670 10238 31360 16593 38H2 8570 41171
0.50 47276 2679 1u298 1300 16593 38hH2 RH70 3117
0.80 47276 2679 tu2a8 34300 163593 3852 8570 31171
0.90 47276 2679 U233 31360 16593 384 d571 31171
0.95 47276 207X U239 34300 16593 3774 NT7T4 41175
0.99 47276 2208 1ULGS 31108 16593 2082 10109 34301
1.00 467206 i} 0 6726 16593 U] 0 16593
Table 5. Llfect of 10 on Rollbacks (Model 20 py =1, py = 6)
c=4 c=28
m || Before I3 1, After || Before Iy R, Aflter
Merge Merge || Merge Merge
0.0 48315 3597 10422 34397 65000 8000 17973 39027
0.27 48315 3507 L322 34397 65000 8000 17973 39027
0.40 48315 3597 10322 34397 65000 ROO0  1TYTS 39027
0.77 48315 3597 10322 31397 65000 S000  1TYTS 39027
0.95 48315 3205 10708 31402 G5000  TGOU O IR3LE2 0 39028
0.99 48315 86 128S2 0 3T 65000 4321 21642 39037
1.0 48315 0 0 X315 65000 0 65000
Table 6. Lllect of v on Rollbacks (Model 1: mo=.ps=06)
c=3 =X
m it Belore It 1, Aler || Before Ity R, After
Merge Merge || Merge Merge
0.0 50200 4000 1199 1500] 65000 8OO0 6379 50621
0.27 50200 1000 199 49001 65000 4000 4981 56019
0.40 50200 K00 1949 19201 65000  1ROU 2743 60407
0.77 50200 0 u 50200 [IRIVIH] 0 0 65000
1.0 50200 U 0 50200 65000 [V} 0 65000

Table 7. Eiffect of Variations in # of € ‘opies on Rollbacks

(Model 1: py =4, p, = 6owfe i =027 wofc:m = 0.0)

m=dp,=06c=3

Copy Before i n, After
Distribution Merge Merge

dy = 500 w/e 50200 1000 199 49001

\\'U/l‘ 50200 1000 1199 45001

dy = dy = 100,d5 = 300 w/c 48300 1000 997 46303
wo/c 48300 4200 1793 42307

&= d, = 167.d, = 166 w/o 41100 200 0 41200
\\'U/(‘ 11400 2000 597 38803

G = di =y = dy =i, =100 | w/c 40100 200 0 40200
\\’U/(‘ 40400 16O0 797 38003

d, = ds = 250 w/ie 28700 0 0 28700
wofc 28700 1200 199 27301
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