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INTRODUCTION

This bibliography contains references from the NASA Scientific and Technical Information
| Database, available on RECON, on the exploration of Mars. The citations include NASA
| reports as well as journal articles and conference proceedings. Historical references
| are cited for background.

\

The Scientific and Technical Information Program of NASA is pleased to contribute this
comprehensive bibliography to the International Space University’s 1991 session as

evidence of NASA's continuing interest and support.

Director, Office of University Programs
NASA Goddard Space Flight Center

Member, 1ISU Board of Directors
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Gladys A. Cotter
Director
NASA Scientific and Technical Information Program
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ACCESSION NUMBER ——— N90-26499"# Wisconsin Univ., Milwaukee. Space Architecture«——— CORPORATE SC

Design Group.

TITLE — GENESIS LUNAR OUTPOST CRITERIA AND DESIGN
AUTHORS —— TIMOTHY HANSMANN, ed. & comp., GARY T. MOORE, ed. &

CONTRACT NUMBER

comp., DINO J. BASCHIERA, JOE PAUL FIEBER, and JANIS
HUEBNER MOTHS  11Jun. 1990\ 119 p

(Contract NASW-4435)

REPORT NUMBERS —— (NASA-CR-186831; NAS 1.26:186831; R90-1; ISBN-0-938744-69-0)
AILABILITY SOURCE — Avail: NTIS HC A06/MF A01 CSCL 05H =—
e

PRICE CODE

This design study--the third in the space architecture series--
focused on the requirements of an early stage lunar outpost. The
driving assumptions of the scenario was that the base would serve
as a research facility and technology testbed for future Mars missions,
a habitat supporting 12 persons for durations of up to 20 months,
and would sustain the following five experimental facilities: Lunar
surface mining and production analysis facility, construction
technology and materials testbed, closed environmental life support
system (CELSS) test facility, lunar farside observatory, and human
factors and environment-behavior research facility. Based upon the
criteria set forth in a previous programming document, three
preliminary lunar base designs were developed. Each of the three
schemes studied a different construction method and configuration.
The designs were then evaluated in terms of environmental response,
human habitability, transportability, constructability, construction
dependability and resilience, and their suitability in carrying out the
desired scientific research. The positive points of each scheme were
then further developed by the entire project team, resulting in one
integrated lunar outpost design. Author
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COSATI CODE

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT
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CORPORATE SOURCE
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SCESSION NUMBER ——— A91-27353* Duke Univ., Durham, NC.
TITLE ——+ A DEPLOYABLE HIGH TEMPERATURE SUPERCONDUCTING

COIL (DHTSC) - A NOVEL CONCEPT FOR PRODUCING
MAGNETIC SHIELDS AGAINST BOTH SOLAR FLARE AND
GALACTIC RADIATION DURING MANNED INTERPLANETARY

MISSIONS

AUTHORS’ AFFILI

AUTHOR —— F HADLEY COCKS (Duke University,‘Durham, NC) British<—— JOURNAL TITLE

Interplanetary Society, Journal (ISSN 0007-084X), vol. 44, March
1991, p. 99-102. refs

ONTRACT NUMBER ——— (Contract NASW-4453)

Copyright

The discovery of materials which are superconducting above
100 K makes possible the use of superconducting coils deployed
beyond the hull of an interplanetary spacecraft to produce a magnetic
shield capable of giving protection not only against solar flare
radiation, but also even against Galactic radiation. Such deployed
coils can be of very large size and can thus achieve the great magnetic
moments required using only relatively low currents. Deployable high-
temperature-superconducting coil magnetic shields appear to offer
very substantial reductions in mass and energy compared to other
concepts and could readily provide the radiation protection needed
for a Mars mission or space colonies. Author
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A87-53091* National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
MARTIAN SETTLEMENT
BARNEY B. ROBERTS (NASA, Johnson Space Center, Houston,
TX) IN: The human quest in space; Proceedings of the
Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar.
20, 21, 1986. San Diego, CA, Univeit, Inc., 1987, p. 227-235;
Discussion, p. 236, 237.
(AAS PAPER 86-117) Copyright

The rationale for a manned Mars mission and the establishment
of a base is divided into three areas: science, resource utilization,
and strategic issues. The effects of a Mars mission on the
objectives of near-term NASA programs, and the applications of
these programs to a Mars mission are examined. The use of
extraterrestrial resources to supply space settlements and thereby
reduce transportation costs is studied; the development of systems
tfor extraterrestrial materials processing will need to be researched.
The possibility of a joint U.S./Soviet Mars mission is discussed by
the symposium participants. LF.

A88-22044*# Martin Marietta Corp., Denver, CO.
HUMAN EXPLORATION OF MARS
BENTON C. CLARK (Martin Marietta Planetary Sciences
Laboratory, Denver, CO) AIAA, Aerospace Sciences Meeting,
26th, Reno, NV, Jan. 11-14, 1988. 6 p. refs
(Contract NAS8-37126)
(AIAA PAPER 88-0064) Copyright

A systems study is underway of astronaut missions to Mars
that could be accomplished over the next four decades. In addition
to an emphasis on the transportation and facility infrastructure
required for such missions, other relevant technologies and mission
constraints are also being considered. These induce on-orbit
assembly, trajectory type, launch opportunities, propellant storage,
crew size, cabin pressure, artificial gravity, life-support systems,
radiation hazards, power/energy storage, thermal contro!, human
factors, communications, abort scenarios, landing techniques,
exploration strategies, and science activities. A major objective of
the study is to identify enabling and significantly enhancing
technologies for accomplishing the goal of the human exploration
of Mars. Author

A88-41289
TRANEPORTATION APPLICATIONS OF ELECTRIC
PROPULSION
GRAEME ASTON (Electric Propulsion Laboratory, Inc., Tehachapi,
CA) IN: Visions of tomorrow: A tocus on national space
transportation issues; Proceedings of the Twenty-fifth Goddard
Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987. San Diego,
CA, Univelt, Inc., 1987, p. 223-228, 231-245; Discussion, p.
228-230.
(AAS PAPER 87-128) Copyright

A comprehensive account is given of the nature and current
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development status of high specific impulse electric propulsion
systems for spacecraft application in earth orbit, lunar settlement,
planetary science, manned Mars mission, and interstaliar travel.
Electrostatic, electrothermal, and electromagnetic systems are
possible; attention is presently given to electrostatic ion,
electrothermal arcjet, and magnetoplasmadynamic thrusters.
Lightweight solar and nuclear space power systems are key
enabling technologies for electric propulsion; nuclear propulsion’s
use will be demonstrated by the Space Nuclear Power Source
Reference Mission. O.C.

A88-52345* Spectra Research Systems, Inc., Huntsville, AL.
MANNED MARS MISSION PROGRAM CONCEPTS
E. C. HAMILTON, P. JOHNSON, J. PEARSON, and W. TUCKER
(SRS Technologies, Huntsville, AL) IN: Space Congress, 25th,
Cocoa Beach, FL, Apr. 26-29, 1988, Proceedings. Cape Canaveral,
FL, Canaveral Council of Technical Societies, 1988, p. 7-1 to 7-5.
NASA-sponsored research.
Copyright

This paper describes the SRS Manned Mars Mission and
Program Analysis study designed to support a manned expedition
to Mars contemplated by NASA for the purposes of initiating human
exploration and eventual habitation of this planet. The capabilities
of the interactive software package being presently developed by
the SRS for the mission/program analysis are described, and it is
shown that the interactive package can be used to investigate
the impact of various mission concepts on the sensitivity of mass
required in LEO, schedules, relative costs, and risk. The results,
to date, indicate the need for an earth-to-orbit transportation system
much larger than the present STS, reliable long-life support
systems, and either advanced propulsion or aerobraking
technology. I.S.

AB8-55451#
INTERNATIONAL MANNED MISSIONS TO MARS AND THE
RESOURCES OF PHOBOS AND DEIMOS
BRIAN O’LEARY (institute for Security and Cooperation in Outer
Space, Phoenix, AZ) IAF, International Astronautical Congress,
39th, Bangalore, India, Oct. 8-15, 1988. 14 p. refs
(IAF PAPER 88-591) Copyright

The potential for a joint manned mission to the moons of
Mars with a possible sortie to the Martian surface is examined.
The advantages of landing on the Martian moons inciude
accessibility, location, the potential for in-situ processing, and the
minimization of mission propulsion requirements. The dangers of
dust storms on the Martian surface are obviated, and the application
of the Space Shuttle external tank (ET) to such a mission is
addressed. The use of the ET for volatile processing at the moons
of Mars is discussed. A four-mission program toward developing
the bases on the Martian moons is discussed, taking the
fequirements and economics into account. C.D.

A89-19391
US AND SOVIET PLANETARY EXPLORATION - THE NEXT
STEP IS MARS, TOGETHER
BURTON |. EDELSON and JOHN L. MCLUCAS  Space Policy
{ISSN 0265-9646), vol. 4, Nov. 1988, p. 337-349.
Copyright

The history of U.S. and Soviet lunar and planetary exploration
efforts is recalled, and arguments in favor of a joint program to

n-HOP>PIB~HNLWD>
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explore Mars are presented. The competitive nature of the previous
and current space programs is discussed; the technological fields
in which the U.S. or USSR has an advantage are indicated; and
the need to follow up on the 1986 Soviet proposal of a joint
mission is stressed. The first steps recommended to the U.S.
administration are (1) establishing a bilateral or international Mars
program concept, (2) setting robotic expioration in the iate 1990s
and manned exploration in the next century as goals, and (3)
convening an international group of engineers and scientists to
make detailed plans. T.K.

A89-37799* Stanford Univ., CA.
USE OF MARTIAN RESOURCES IN A CONTROLLED
ECOLOGICAL LIFE SUPPORT SYSTEM (CELSS)
DAVID T. SMERNOFF (Stanford University, CA) and ROBERT D.
MACELRQOY (NASA, Ames Research Center, Moffett Field, CA)
British interplanetary Society, Journal (ISSN 0007-084X), vol. 42,
April 1989, p. 179-184. refs
Copyright

Possibile crew life support systems for Mars are reviewed,
focusing on ways to use Martian resources as life support materials.
A system for bioregenerative life support using photosynthetic
organisms, known as the Controlled Ecological Life Support System
(CELSS), is examined. The possible use of higher plants or algae
to produce oxygen on Mars is investigated. The specific
requirements for a CELSS on Mars are considered. The exploitation
of water, respiratory gases, and mineral nutrients on Mars is
discussed. R.B.

AB89-43365" National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.
A MANNED MARS ARTIFICIAL GRAVITY VEHICLE
DAVID N. SCHULTZ, CHARLES C. RUPP, GREGORY A. HAJOS,
and JOHN M. BUTLER, JR. (NASA, Marshall Space Flight Center,
Huntsville, AL) IN: Space tethers for science in the space station
era; Proceedings of the Second International Conference, Venice,
italy, Oct. 4-8, 1987. Bologna, Societa ltaliana di Fisica, 1988, p.
320-335.
Copyright

Data are presented on an artificial-gravity vehicle that is being
designed for a manned Mars mission, using a 'split-mission’
concept, in which an unmanned cargo vehicle is sent earlier and
stored in a Mars orbit for a rendezvous with a manned vehicle
about 1.5 years later. Special attention is given to the vehicle
trajectory and configuration, the tether design, and the vehicle
weight and launch requirements. It is shown that an arificial-G
vehicle for a manned Mars missions is feasible technically and
programmatically. Using an artificial-G vehicle instead of a zero-G
vehicle for the piloted portion of a split mission provides
physiological and human-factor-related benefits, does not eliminate
requirements for zero-G countermeasures research (since zero-G
is an abort mode), and could possibly reduce some life science
activities. Diagrams are included. 1.S.

AB89-45833
POTENTIAL APPLICATION OF SPACE STATION
TECHNOLOGY IN LUNAR BASES AND MANNED MARS
MISSIONS
J. M. GARVEY and M. M. MANKAMYER (McDonnell Douglas
Astronautics Co., Space Station Div., Huntington Beach, CA) IN:
Engineering, construction, and operations in space; Proceedings
of the Space '88 Conference, Albuquerque, NM, Aug. 29-31, 1988.
New York, American Society of Civii Engineers, 1988, p.
1308-1319. refs
Copyright

To meet the goals of its Space Station program, NASA is
developing a large set of improved space systems capabilities. In
areas such as power generation and distribution, on-board data
management, and life support, Station technology will represent a
major advance over current systems. Given the substantial
investment required to create these capabilities, it is worthwhile
to consider other potential uses for them. This paper constitutes
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an early attempt to assess such follow-on applications, particularly
in manned space exploration initiatives such as a lunar base and/or
manned Mars expedition. Author

AB9-47067#
MANNED MARS MISSION OVERVIEW
BRUCE M. CORDELL (General Dynamics Corp., Space Systems
Div., San Diego, CA)  AIAA, ASME, SAE, and ASEE, Joint
Propulsion Conference, 25th, Monterey, CA, July 10-13, 1989. 32
p. refs
(AIAA PAPER 89-2766) Copyright

The mission strategies and concepts, technologies and systems,
and program stragegies and implications associated with manned
Mars missions and with establishment of bases on Mars are
discussed. The results of an overview of the existing information
and technologies indicate that the human exploration of Mars and
the establishment of settlements is technologically feasible. It is
suggested that an initial manned base on Phobos may be the
most efficient and inexpensive way to begin the human exploration
of Mars. The propulsion issues and the mission concepts are
discussed with special consideration given to nuclear systems and
extraterrestrial propellant production, as well as to space
infrastructures, systems, and operations necessary for the support
of manned Mars missions. Attention is also given to political and
social issues that will influence the decision and the starting time
of the human exploration of Mars. 1.S.

AB9-54248
TO MARS AND BEYOND
BEN BOVA Air and Space (ISSN 0886-2257), vol. 4, Oct.-Nov.
1989, p. 42-48.
Copyright

The development of propulsion systems with the ability to allow
for human exploration of Mars and further into the solar systems
is discussed. Various types of rocket engines, such as chemical,
nuclear, and electrical, are examined in terms of fuel efficiency
and specific impulse. Consideration is also given to laser propulsion,
a solar sail, and fusion. IL.F.

A90-13570" #
Pasadena.
AN INTERNATIONAL MARS EXPLORATION PROGRAM
DONALD G. REA, GLENN E. CUNNINGHAM (JPL, Pasadena, CA),
MARK K. CRAIG (NASA, Johnson Space Center, Houston, TX),
and HAROLD L. CONWAY (NASA, Washington, DC) IAF,
International Astronautical Congress, 40th, Malaga, Spain, Oct.
7-13, 1989. 7 p.
(IAF PAPER 89-493) Copyright

The scientific reasons for a Mars exploration program are
reviewed, and the robotic phase of such a program is examined.
The functions and requirements of the rovers, surface stations
and penetrators are addressed, as are those of the imaging and
communications orbiters. The navigational functions which support
the aerocapture and landing vehicles are examined. C.D.

Jet Propulsion Lab., California Inst. of Tech.,

A90-16528
MARS IS OURS - STRATEGIES FOR A MANNED MISSION TO
MARS
TIINA O'NEIL, DANIEL THURS, MICHAEL NARLOCK, and SHAWN
LAATSCH IN: The case for Mars lil: Strategies for expioration -
Technical. San Diego, CA, Univelt, Inc., 1989, p. 13-28. refs
(AAS PAPER 87-228) Copyright

The societal, engineering, and scientific aspects of a manned
mission to Mars are investigated, as part of a NASA/University of
Wisconsin sponsored high school student contest. The societal
concerns cover the economic perspective of a multinational venture
providing more resources, ideas, and personnel than a unilateral
effort. Engineering issues consist of ship design, propulsion, and
support systems; propelied by liquid rockets, the Mars Transit
Vehicle (MTV) is conceived as a modular craft composed of several
pods; the space crew would inhabit the first two pods. The scientific
aspect concerns the maijor questions, means, and requirements




to be answered for a manned Mars mission, with objectives that
would include the determination of location and potability of Martian
water deposits. CE.

A90-18548
MARS MISSION AND PROGRAM ANALYSIS
EDWARD E. MONTGOMERY and JAMES C. PEARSON, JR.
(Spectra Research Systems, Inc., Huntsville, AL) IN: The case
for Mars |il: Strategies for exploration - Technical. San Diego, CA,
Univelt, Inc., 1989, p. 293-309. refs
(AAS PAPER 87-249) Copyright

The total initial mass required in the Space station orbit is
estimated for several different operational scenarios culminating
in the retrieval of Mars Space Vehicle stages to the space station
for refurbishment and reuse. Interplanetary and planetary velocity
change requirements are calculated for a 2003 high thrust
conjuction class direct stopover mission to Mars and subsequently
employed in mass fraction equations to estimate mass of the
Mars vehicle and OTVs. The implications on ETO vehicle payload
capacity and launch rate are also presented parametrically.
Evaluations include the effects of aerobraking, propeliant boiloff,
and recovery trajectory. Author

A90-16560
MANNED MARS MISSIONS AND EXTRATERRESTRIAL
RESOURCE ENGINEERING TEST AND EVALUATION
STEWART W. JOHNSON (BDM Corp., Albuquerque, NM) and
RAYMOND S. LEONARD (Ad Astra, Ltd.,, Santa Fe, NM) IN:
The case for Mars lil: Strategies for exploration - Technical. San
Diego, CA, Univelt, Inc., 1989, p. 455-468. Research supported
by BDM Corp. and Ad Astra, Ltd. refs
(AAS PAPER 87-261) Copyright

This paper emphasizes the importance of early involvement of
the test and evaluation perspective and approach in the engineering
analysis, design, and development of capabilities for a manned
Mars mission that incorporates extraterrestrial resource extraction
and use. The effectiveness and suitability of mission equipment
and proposed resource extraction processes must be shown by
test and evaluation involving analysis, simulation, ground test, and
flight test. Facilities and resources for test and evaluation must
be acquired in a timely fashion, and time allowed for test and
evaluation. Author

A90-16651° National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
THE CASE FOR MARS ill: STRATEGIES FOR EXPLORATION -
GENERAL INTEREST AND OVERVIEW
CAROL R. STOKER, ED. (NASA, Ames Research Center, Moffett
Field, CA) San Diego, CA, Univelt, Inc. (Science and Technology
Series. Volume 74), 1989, 743 p. For individual items see
A90-16652 to A90-16690.
Copyright

Papers on the possibilities for manned Mars missions are
presented, covering topics such as space policy, space education
and Mars exploration, economic issues, international cooperation,
lite support, biomedical factors, human factors, the Mars Rover
Sample Return Mission, and possibie unmanned precursor missions
to Mars. Other topics include the scientific objectives for human
exploration of Mars, mission strategies, possible transportation
systems for manned Mars flight, advanced propulsion techniques,
and the utilization of Mars ressurcas. Additional subjects include
the construction and maintenance of a Martian base, possible
systems for mobility on the Martian surface, space power systems,
and the use of the Space Station for a Mars mission. R.B.

A90-16652"  National Aeronautics and Space Administration,
Washington, DC.

A STRATEGY FOR MARS: THE CASE FOR MARS IIl -
KEYNOTE ADDRESS

JAMES C. FLETCHER (NASA, Washington, DC) IN: The case
for Mars lll: Strategies for exploration - General interest and
overview. San Diego, CA, Univelt, inc., 1989, p. 3-11.

(AAS PAPER 87-175) Copyright
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Plans for defining a Mars mission and developing the
technologies needed for a Mars mission are discussed. The
information about Mars obtained from the Viking mission is
reviewed. The establishment of a lunar base and the role of such
a base in a manned mission to Mars are examined. The problems
of a long-term mission in microgravity, the possible development
of artificial gravity, the Mars Sample Return mission, and various
scenarios for a manned mission to Mars are considered. R.B.

A90-16653
DECISIONS ON SPACE INITIATIVES
RADFORD BYERLY, JR. (Colorado, University, Boulder) IN: The
case for Mars |il: Strategies for exploration - General interest and
overview. San Diego, CA, Univelt, inc., 1989, p. 19-25. refs
(AAS PAPER 87-177) Copyright

issues related to the process of making decisions on major
space initiatives are discussed. The decision-making processes
for the Apolio, Space Shuttle, and Space Station programs are
reviewed. Consideration is given to current political support for
the Space Station and the question of whether the moon or Mars
should be the next goal of the space program. R.B.

A90-16664" National Aeronautics and Space Administration,
Washington, DC.
PLANETARY PROTECTION AND BACK CONTAMINATION
CONTROL FOR A MARS ROVER SAMPLE RETURN MISSION
JOHN D. RUMMEL (NASA, Life Sciences Div., Washington, DC)
IN: The case for Mars lll: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
259-263.
(AAS PAPER 87-197) Copyright

A commitment to avoid the harmful contamination of outer
space and avoid adverse changes in the environment of the earth
has been long reflected in NASA's Planetary Protection policy.
Working under guidelines developed by the Committee on Space
Research (COSPAR), NASA has implemented the policy in an
interactive process that has included the recommendations of the
U.S. National Academy of Sciences. Measures taken to prevent
the contamination of earth during the Apollo missions were perhaps
the most visible manifestations of this policy, and provided
numerous lessons for future sample retum opportunities. This paper
presents the current status of planetary protection policy within
NASA, and a prospectus on how planetary protection issues might
be addressed in relation to a Mars Rover Sample Return mission.

Author

A90-16667" National Aeronautics and Space Administration,
Washington, DC.
LIFE SCIENCES INTERESTS IN MARS MISSIONS
JOHN D. RUMMEL and LYNN D. GRIFFITHS (NASA, Life Sciences
Div., Washington, DC) IN: The case for Mars lll: Strategies for
exploration - General interest and overview. San Diego, CA, Univelt,
Inc., 1989, p. 287-294.
(AAS PAPER 87-200) Copyright

NASA's Space Life Sciences research permeates plans for
Mars missions and the rationale for the exploration of the planet.
The Space Life Sciences program has three major roles in Mars
mission studies: providing enabling technology for piloted missions,
conducting scientific exploration related to the origin and evolution
of life, and protecting space crews from the adverse physiological
sitects of space fiight. This paper presents a rationale for
exploration and some of the issues, tradeoffs, and visions being
addressed in the Space Life Sciences program in preparation for
Mars missions. Author

A90-16668* Martin Marietta Corp., Denver, CO.

MANNED MARS SYSTEMS STUDY

BENTON C. CLARK (Martin Marietta Planetary Sciences
Laboratory, Denver, CO) IN: The case for Mars lli: Strategies
for exploration - General interest and overview. San Diego, CA,
Univelt, Inc., 1989, p. 297-307.

(Contract NAS8-37126)

(AAS PAPER 87-201) Copyright
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A study is underway to determine attractive system options,
perform trade studies, and provide comparative data for astronaut
missions to Mars. Because of an emphasis in this work on deriving
requirements and candidates for the transportation and facility
infrastructure for such missions, all relevant technofogies and
mission constraints are also being considered. These include
on-orbit assembly, trajectory type, launch opportunities, propellant
storage, crew size, cabin pressure, artificial gravity, life-support
systems, radiation hazards, power/energy storage, thermal control,
human factors, communications, abort scenarios, landing
techniques, exploration strategies and science activities. It is
planned to scope several example missions and to identify enabling
and significantly enhancing technologies for accomplishing the
goals of the human exploration of Mars. Author

A90-16669
PILOTED SPRINT MISSIONS TO MARS
JOHN C. NIEHOFF and STEPHEN J. HOFFMAN (Science
Applications International Corp., Schaumburg, IL) IN: The case
for Mars HlI: Strategies for exploration - General interest and
overview. San Diego, CA, Univelt, inc., 1989, p. 309-324.
(AAS PAPER 87-202) Copyright

This paper describes a piloted mission to Mars early in the
21st century, using near-term technology; results from a mission
study are presented. A trajectory option is identified that allows
piloted round-trip missions to be completed within approximately
one year. These flights are called sprint missions. Study results
show that two vehicles would be required to complete the mission.
The first is an automated cargo vehicle, which has an initial mass
of 600 metric tons (including injection stage) in LEO. The second
vehicle is the piloted spacecraft, which has an initial mass (including
injection stages) of 750 metric tons LEO. Aerobraking is used by
both the cargo and piloted vehicles at Mars and by the piloted
vehicle upon earth return. Key milestones in support of the
proposed mission scenario are identified. Author

A90-16670
MARS 1989 - A CONCEPT FOR LOW COST NEAR-TERM
HUMAN EXPLORATION AND PROPELLANT PROCESSING ON
PHOBOS AND DEIMOS
BRIAN O'LEARY (Future Focus, Scottsdale, AZ) IN: The case
for Mars lli: Strategies for exploration - General interest and
overview. San Diego, CA, Univelt, Inc., 1989, p. 353-372. refs
(AAS PAPER 87-204) Copyright

This study shows that a mission to the moons of Mars with a
sortie option to the Martian surface during 1998-99 is technically
feasible provided a political decision is made by 1990. A number
of reasons favor the 1999 opportunity, including small delta-V
values, low probability of planet-obscuring dust storms, and
near-zero solar flare activity. The space shuttle external tank can
be adapted as a cryogenic propellant and cargo launcher to low
earth orbit (LEO), as a Mars mission module transfer vehicie, and
as a cryogenic storage facility on-orbit and at Phobos/Deimos
(PhD). A synergistic four mission program is proposed wherein
10,000 metric tons of water extracted from PhD could be defivered
to LEO and the surfaces of Mars and the moon by 2005. As a
result, Mars and lunar bases could be established, and a space
industrial infrastructure could grow more rapidly than in other space
development scenarios. The scientific, political and economic
incentives for PhD warrant increased attention in manned Mars
mission, program, and system studies. Author

A90-16671°
Pasadena.
EARTH ORBITAL PREPARATION FOR MARS EXPEDITIONS
ROBERT L. STAEHLE (JPL, Pasadena; World Space Foundation,
South Pasadena, CA) IN: The case for Mars |ll: Strategies for
exploration - General interest and overview. San Diego, CA, Univelt,
Inc., 1989, p. 373-396. refs
(AAS PAPER 87-205) Copyright

Consideration is given to the facilities in earth orbit that would
be required to prepare for a manned mission to Mars. It is suggested
that the facilities required for the development of technology for a

Jet Propulsion Lab., California Inst. of Tech,,
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Mars mission include the Space Station, a variable gravity research
station, and an assembly dock, in addition to ground facilities.
The types of research that would be conducted at each of these
facilities are examined. R.B.

A90-16672* National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
TECHNOLOGY FOR MANNED MARS FLIGHT
BARNEY B. ROBERTS (NASA, Johnson Space Center, Houston,
TX) IN: The case for Mars lll: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
399-411. refs
(AAS PAPER 87-206) Copyright

It is important for NASA to begin development of the
technologies and strategies necessary to support a Mars mission.
Most of the technologies required are long lead time items and
must be started now to preserve the option for Mars landings at
the turn of the century. It is a common assumption that a piloted
mission to Mars could be accomplished with current technology.
Although this is probably true to some degree, the mass in low
earth orbit would be so large that the mission would be impractical
and maybe impossible. Technologies for advanced propulsion,
advanced life support systems, aerobraking, and utilization of in
situ resources can greatly enhance the ability to execute this class
of mission. Author

A90-16686" Utah State Univ., Logan.
BALLOON-BORNE CHARACTERIZATION OF THE MARTIAN
SURFACE AND LOWER ATMOSPHERE
F. J. REDD (Utah State University, Logan), R. J. LEVESQUE, and
G. E. WILLIAMS  IN: The case for Mars |ll: Strategies for
exploration - General interest and overview. San Diego, CA, Univelt,
Inc., 1989, p. 633-645. Research supported by NASA. refs
(AAS PAPER 87-221) Copyright

A recent NASA-sponsored design course at Utah State
University {USU) has focused upon a Mars Lander/Rover system
designed to descend from a Martian orbit and deploy both surface
and balloon-borne instruments to examine the Martian surface and
lower atmosphere. The latter stages of the USU design effort
placed major emphasis on the design of the balloon rover. This
paper presents the results of that emphasis by discussing the
payload requirements, identification of the design parameters,
surface vs. descent deployment, design tradeoft studies,
site-influenced departures from the baseline design, the final design
concept, and the resulting balioon performance. A single hydrogen
superpressure balloon is selected for use in the design mission.
The paper concludes that characterization of the Martian surface
and lower atmosphere by a descent-deployed, balloon-borne rover
is a viable concept that should be actively pursued. Author

A90-17806
EMERGING VIEWS ON A JOINT SOVIET-U.S. MARS MISSION
VADIM VLASOV (Moskovskii Aviatsionnyi Institut, Moscow, USSR)
and MICHAEL POTTER (Egan Group; Georgetown University,
Washington, DC) Space Policy (ISSN 0265-9646), vol. 5, Nov.
1989, p. 269-272,
Copyright

Political and space policy developments in the U.S. and in the
USSR are evaluated, focusing on the way in which these
developments might influence the possibility of a joint U.S./USSR
mission to Mars. Consideration is given to0 economic issues and
political support for space programs in the two countries. A strategy
for working towards a joint Mars mission is proposed. R.B.

A91-10052#
PLANNING FOR HUMAN VOYAGES TO MARS
ERNST STUHLINGER AIAA, Space Programs and Technologies
Conference, Huntsville, AL, Sept. 25-27, 1990. 7 p.
(AIAA PAPER 90-3615) Copyright

Proposals for manned voyages to Mars were made repeatedly
during the past hundred years, based on chemical, electric, and
nuclear rocket systems. Some of the more recent studies offered
detailed design and engineering data for Mars missions. President




Bush’s Space Exploration Initiative in 1989 resuited in extended
compilations of data conceming the Martian surface and
environment; steps toward the establishment of a master plan for
a manned Mars mission should now be taken. A concept for a
Mars mission with a nuclear-electric propulsion system is proposed
in the present paper. Author

A91-10143*#  Jet Propulsion Lab., California Inst. of Tech,
Pasadena.
MARS EXPLORATION MISSIONS
GLENN E. CUNNINGHAM (JPL, Pasadena, CA) AlAA, Space
Programs and Technologies Conference, Huntsville, AL, Sept.
25-27, 1990. 7 p. refs
(AIAA PAPER 90-3779) Copyright

Several robotic exploration missions to Mars that are proposed
for inclusion in the Space Exploration Mission are reviewed. The
missions discussed range from remote sensing orbital missions to
landed missions, such as simple surface stations and roving
vehicles. The discussion covers engineering and science
objectivess of the missions, data acquisition strategy, mission
sequence, types of missions, and a brief description of each of
the missions. V.L.

A91-10157*#  National Aeronautics and Space Administration,
Washington, DC.
TECHNOLOGY AND MARS EXPLORATION
JOHN C. MANKINS (NASA, Washington, DC) and CORINNE M.
BUONI (Science Applications international Corp., Washington,
DC) AIAA, Space Programs and Technologies Conference,
Huntsville, AL, Sept. 25-27, 1990. 10 p.
(AIAA PAPER 90-3797) Copyright

The currently envisioned technology needs of the Space
Exploration Initiative are surveyed. Earth-to-orbit transportation
technology requirements are summarized. Space transportation
needs regarding aerobraking, space-based engines, autonomous
landing, autonomous rendezvous and docking, vehicle structures
and cryogenic tankage, artificial gravity, nuclear propulsion, nuclear
thermal propulsion, and nuclear electric propulsion. For in-space
operations, cryogenic fluid systems, in-space assembly and
construction, and vehicle processing and servicing are addressed.
For surface operations on the moon and Mars, space nuclear
power, resource utilization, planetary rovers, surface solar power,
and surface habitats and construction are discussed. Regenerative
life support, radiation protection, extravehicle activity, are
considered along with factors pertaining to scientific activity in
space and information systems and communications. C.D.

A91-10193*#  National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
OVERVIEW OF THE SURFACE ARCHITECTURE AND
ELEMENTS COMMON TO A WIDE RANGE OF LUNAR AND
MARS MISSIONS
JOHN F. CONNOLLY (NASA, Johnson Space Center, Houston,
TX) and LARRY D. TOUPS (Lockheed Engineering and Sciences
Co., Houston, TX)  AIAA, Space Programs and Technologies
Conference, Huntsville, AL, Sept. 25-27, 1990. 10 p.
(AIAA PAPER 90-3847) Copyright

NASA has studied future missions to the moon and Mars
since the 1960’s, and most recently during the studies for the
Space Exploration Initiative chartered by President Bush. With these
most recent studies, the Lunar and Mars Exploration Program
Office is looking at a number of possible options for the human
exploration of the solar system. Objectives of these options include
science and exploration, testing and learning centers, local
planetary resource development, and self sufficient bases. To meet
the objectives of any particular mission, efforts have focused
primarily in three areas: (1) space transportation vehicles, (2) the
associated space infrastructure to support these vehicles, and (3)
the necessary infrastructure on the planet surface to carry out the
mission objectives. This paper looks at work done by the Planet
Surface Systems Office at JSC in the third area, and presents an
overview of the approach to determining appropriate equipment
and elements of the surface infrastructure needed for these mission
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alternatives. It describes the process of deriving appropriate surtace
architectures with consideration of mission objectives leading to
system concepts, designation of elements and element
placement. . Author

A91-10220#
TRANSPORTATION APPROACHES FOR MANNED MARS
MISSIONS
BRUCE M. CORDELL (General Dynamics Corp., Space Systems
Div., San Diego, CA) AIAA, Space Programs and Technologies
Conference, Huntsville, AL, Sept. 25-27, 1990. 10 p. refs
(AIAA PAPER 90-3892) Copyright

This paper describes the Space Exploration Initiative (SEI)
objectives, as well as some strategies and scenarios which
emphasize program viability, crew safety, efficient transportation
systems, the use of space resources, and the human settiement
of Mars. The space propulsion options which can be easily
accommodated into the SEI program and a SEI strategy featuring
the search for water on Mars are described. Special attention is
given to an example (Exofuel) of possible commercial strategy
involving the Martian moons. In one of several possible Exofuel
scenarios, a water extractor and an in situ propellant production
plant on Deimos produce propellants that are retrieved to a high
elliptical earth orbit, from which they are transferred via a space
tanker vehicle to LEO where they are used to fuel lunar or planetary
spacecraft. A summary is presented of the performance and cost
data generated during the initial analysis of the potential of the
Martian moons for commercial development. LS.

A91-13752*#  National Aeronautics and Space Administration,
Washington, DC.
TECHNOLOGY NEEDS OF THE EXPLORATION INITIATIVE
ARNOLD ALDRICH, ROBERT ROSEN, MARK CRAIG, and JOHN
C. MANKINS (NASA, Office of Aeronautics, Exploration and
Technology, Washington, DC)  |AF, international Astronautical
Congress, 41st, Dresden, Federal Republic of Germany, Oct. 6-12,
1990. 11 p. refs
(\AF PAPER 90-032) Copyright

An overview of the U.S. Space Exploration initiative (SEI) is
presented. The two primary objectives of the initiative are a return
to the moon to create a permanent lunar base and a human
mission to Mars. Even though mission architectural concepts are
not yet defined, previous studies indicate that the SEI will require
developments in numerous areas, including advanced engines for
space transportation, in-space assembly and construction to
support permanent basing of exploration systems in space, and
advanced surface operations capabilities including satisfactory
levels of power and surface roving vehicles, and technologies to
safely support human space operations of long duration. The
process of mission definition has begun and it is shown that it is
possible to identify a family of fundamental functional building
blocks from which all SElI mission architectures will be
constructed. R.EP.

A91-13867#
CONCEPTS FOR SHORT DURATION MANNED MARS ROUND
TRIP
C. L. DAILEY and J. L. HIEATT (TRW Space and Technology
Group, Redondo Beach, CA) IAF, Internationai Astronautical
Congress, 41st, Dresden, Federai Repubiic of Germany, Oct. 6-12,
1990. 5 p.
(IAF PAPER 90-198) Copyright

For the first missions to Mars a stay time of 30 to 60 days is
desired. Nuclear electric propulsion offers this capability at a
significant reduction in total mass required in low earth orbit
compared to either thermal nuclear or chemical propulsion
concepts. Further, nuclear electric propuision vehicles can be
designed for maintenance and reuse. This paper summarizes the
comparison of a single vehicle mission to Mars with the use of
two vehicles, a manned transport and a freighter. The results
indicate that the use of two vehicles provides a significant
advantage in terms of weight to low earth orbit, and that there is

5
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a distinct possibility of designing an efficient single vehicle which
can be used to carry either man or cargo. Author

A91-14015#
THE MOON/MARS ADVENTURE - WHICH ROLE AND WHICH
IMPACTS FOR EUROPE?
FRANCIS THEILLIER and PATRICK EYMAR (Aerospatiale, Division
Systemes Strategiques et Spatiaux, Les Mureaux, France) I|AF,
International Astronautical Congress, 41st, Dresden, Federal
Republic of Germany, Oct. 6-12, 1990. 10 p.
(IAF PAPER 90-411) Copyright

The major results of a study performed by Aerospatiale on the
potential role for Europe in an interplanetary manned mission are
summarized. The scientific, utilitarian, political, and humanitarian
objectives of such a mission are discussed, emphasizing the
importance of those activities which would lead to better knowledge
of the solar system, would scientifically or industrially utilize the
advantage of vacuum, lack of electromagnetic noise, and planet
resources, and benefit outpost and space transportation node
aspects. The dates, deadlines, and duration considered for such
missions, their degree of automation, and the degree of autonomy
provided surface bases are all discussed. A number of scenarios
concerning Europe’s role in a space program are considered. A
scenario is examined in which Europe would postpone for an
indefinite period the exploration and colonization of the moon and
Mars should cooperative agreements fail to be reached. LK.S.

A91-14019*#
Pasadena.
ROBOTIC MISSIONS TO MARS - PAVING THE WAY FOR
HUMANS
D. 8. PIVIROTTO, R. D. BOURKE, G. E. CUNNINGHAM, M. P.
GOLOMBEK, F. M. STURMS (JPL, Pasadena, CA), R. C. KAHL,
N. LANCE (NASA, Johnson Space Center, Houston, TX), and J.
S. MARTIN (NASA, Washington, DC) |IAF, International
Astronauticai Congress, 41st, Dresden, Federa! Republic of
Germany, Oct. 6-12, 1990. 8 p.
(IAF PAPER 80-416) Copyright

NASA is in the planning stages of a program leading to the
human exploration of Mars. A critical element in that program is a
set of robotic missions that will acquire information on the Martian
environment and test critical functions (such as aerobraking) at
the planet. This paper presents some history of Mars missions,
as well as resuits of recent studies of the Mars robotic missions
that are under consideration as part of the exploration program.
These missions include: (1) global synoptic geochemical and
climatological characterization from orbit (Mars Observer), (2) global
network of small meteorological and seismic stations, (3) sample
returns, (4) reconnaissance orbiters and (5) rovers. Author

Jet Propulsion Lab., California Inst. of Tech,,

A91-14037#
ANALYSIS OF ALTERNATIVE INFRASTRUCTURES FOR
LUNAR AND MARS EXPLORATION
MICHAEL C. SIMON and PAUL H. BIALLA (General Dynamics
Corp., Space Systems Div., San Diego, CA) IAF, International
Astronautical Congress, 41st, Dresden, Federal Republic of
Germany, Oct. 6-12, 1990. 11 p. refs
(IAF PAPER 90-442) Copyright

This paper reports on an ongoing study to examine alternative
infrastructures for lunar and Mars exploration. This study was
initiated immediately after the July 20, 1989 announcement by
President Bush that the U.S. would undertake manned missions
to the moon and Mars. The first step was to identify four alternative
options: (1) lowest cost, (2) least risk, (3) greatest science and
technology benefits, and (4) maximum human presence in space.
For each option, lunar and Mars surface elements and space
transportation elements were identified which were consistent with
the option’s underlying philosophy. These four cases were then
compared on the basis of such data as transportation element
flights rates, element mass and cost estimates, program schedules,
and funding profiles. Finally, a recommended strategy was
synthesized, based on the attributes found to be most desirable
within these four options. Features of this recommended scenario

include early missions to the moon and Mars, achievgr_nent of
frequent milestones to sustain public interest, and provisions for
international cooperation in meeting objectives. Author

A91-14132#
MARS DIRECT - HUMANS TO THE RED PLANET BY 1999
ROBERT M. ZUBRIN and DAVID A. BAKER (Martin Marietta
Astronautics Group, Denver, CO) IAF, International Astronautical
Congress, 41st, Dresden, Federal Republic of Germany, Oct. 6-12,
1990. 17 p. refs
(IAF PAPER 90-672) Copyright

Both the initial and evolutionary phases of the Mars Direct
plan, including mission architecture, vehicle designs, and
exploratory strategy leading to the establishment of a 48-person
permanent Mars base are discussed. Mars Direct is an approach
to the Space Exploration Initiative which would initiate a program
of manned Mars exploration as early as 1999. The initial phase
would utilize only chemical propulsion, sending four persons on
conjunction class Mars exploratory missions. Two heavy lift
boosters launches are required to support each mission, with the
first launch delivering an unfueled earth return vehicle to the Martian
surface, where it would fill itseif with methane/oxygen bipropeliant
manufactured primarily out of indigenous resources. A second
launch would deliver the crew to the prepared site after propellant
production is completed. The crew would then conduct a 1.5-year
regional exploration and return directly to earth in the prepared
vehicle. L.K.S.

A91-21463*# Martin Marietta Corp., Denver, CO.
MARS DIRECT - A SIMPLE, ROBUST, AND COST EFFECTIVE
ARCHITECTURE FOR THE SPACE EXPLORATION INITIATIVE
ROBERT M. ZUBRIN, DAVID A. BAKER (Martin Marietta Corp.,
Astronautics Group, Denver, CO), and OWEN GWYNNE (NASA,
Ames Research Center, Moffett Field, CA)  AIAA, Aerospace
Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1891. 28 p. refs
(AIAA PAPER 91-0329) Copyright

Both the Martian and lunar forms of implementation of the
Mars Direct architecture are discussed. Candidate vehicle designs
are presented and the means of performing the required in situ
propeliant production is explained. The in situ propeilant process
is also shown to present very high leverage for a Mars Rover
Sample Return mission flown as a scaled down precursor version
of the manned Mars Direct. Methods of coping with the radiation
and zero gravity problems presented by a manned Mars mission
are discussed. Prime objectives for surface exploration are outlined
and the need for substantial surface mobility is made clear.
Combustion powered vehicles utilizing the in situ produced
methane/oxygen are proposed as a means for meeting the surface
mobility requirement. Nuclear thermal rocket propulsion is
suggested as a means to improve mission capability. L.K.S.

A91-21464#
HUMAN PLANETARY EXPLORATION STRATEGY FEATURING
HIGHLY DECOUPLED ELEMENTS AND CONSERVATIVE
PRACTICES
BENTON C. CLARK (Martin Marietta Corp., Astronautics Group,
Denver, CO) AIAA, Aerospace Sciences Meeting, 29th, Reno,
NV, Jan. 7-10, 1891. 13 p.
(AIAA PAPER 91-0328) Copyright

Mission designs which are fundamentally in accordance with a
lowest common denominator approach as well as more ambitious
enhancements to the core design are discussed. This approach
is based upon a modular vehicle design which is straightforwardly
assembled by docking maneuvers and intra-vehicular outfitting. An
overall strategy for parallel development of transportation vehicles
and associated capabilities for human travel to Mars and the moon
is presented which accomodates the desired characteristics. it is
noted that this strategy builds upon and emulates the proven
success of the Apolio Program strategies including the division of
the mission into discrete, self-contained elements with 'clean’
interfaces; the incorporation of conservative design using
redundancy and independent fall-back modes; and the paraliel
developments of hardware elements. L.K.S.




A91-25832
HUMANS TO MARS - CAN WE JUSTIFY THE COST?
CARL SAGAN (Cornell University, Ithaca, NY) Planetary Report
(ISSN 0736-3680), vol. 11, Jan.-Feb. 1991, p. 4-7.
Copyright

The argument over the justification of human space exploration,
with reference to the goals stated in SEI, is outlined. It is noted
that NASA currently estimates SEl to cost $500 billion over the
next 30 years and that this would essentially double NASA’s present
budget. A number of arguments commonly used to justify this
expenditure are reviewed. These include increased knowledge of
planetary geology and environmental sciences, spin-off technology,
and educational incentives. It is suggested that, while the value
of committing enormous anounts of funding to any of these projects
is currently under debate, a number of 'less-tangible’ benefits
provide a persuasive argument for the pursuit of such programs
at a time of budgetary constraints and competing social needs.

L.K.S.

A91-27566
CAN SPACE EXPLORATION SURVIVE THE END OF THE
COLD WAR?
BRUCE MURRAY (California institute of Technology, Pasadena)
Space Policy (ISSN 0265-9646), vol. 7, Feb. 1991, p. 23-34.
Copyright

The achievements in space exploration since 1986 are reviewed.
It is argued that the first age of space exploration was driven by
competition between the U.S. and the USSR. With the apparent
close of the Cold War, it is possible that a necessary shift of
attention to domestic issues in most nations will cause a hiatus in
space exploration. It is thus suggested that a future space
exploration program of proper proportion will only be achieved if
international cooperation is achieved on a large scale and backed
by the necessary political will. It is also suggested that a Mars
mission can provide a focus for space exploration well into the
next century. L.K.S.

A91-27578
ECONOMICAL SPACE EXPLORATION SYSTEMS
ARCHITECTURES
GORDON R. WOODCOCK (Boeing Aerospace and Electronics,
Huntsville, AL) IN: Engineering, construction, and operations in
space |I; Proceedings of Space 90, the Second International
Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York,
American Society of Civil Engineers, 1990, p. 19-32.
Copyright

Economical initial architectures are derived by zero-basing and
the comprehensive application of hardware and software
commonality. It is noted that there is much inheritance from lunar
systems to Mars systems, as well as significant inheritance from
transpretation systems to surface systems. Of the advanced
propulsion technologies applicable to Mars missions, electric
propulsion seems to be more cost effective than high-thrust nuclear
propuision. Electric propulsion trip times are found to be competitive
and to support a crew rotation and resupply operations mode for
Mars which is supportable by high-thrust systems only in the
opposition profile model. It is concluded that strategic provisions
for growth and evolution will yield sustainable architectures, making
it possible to look forward to a sufficiently large human presence
on other planets to accomplish thorough exploration and start
permanent settiements. B.J.

A91-27710
ARTIFICIAL GRAVITY RESEARCH FACILITY OPTIONS
SUSAN K. ROSE and TIMOTHY L. STROUP (Lockheed Missiles
and Space Co., Inc., Sunnyvale, CA) IN: Engineering, construction,
and operations in space II; Proceedings of Space 90, the Second
International Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol.
2. New York, American Society of Civil Engineers, 1990, p.
1354-1363. refs
Copyright

On a long duration manned mission to Mars, the physiological
changes caused by microgravity may be counteracted by artificial
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gravity. This paper evaluates several different classes of research
options - a centrifuge, a free-flying animal facility, and a rotating
manned spacecraft. Relative comparisons are made based on the
initial constraints imposed on the facility, the operational restrictions
for maintaining a healthy crew, based on research to date, and
the science research requirements. The science requirements focus
on the three primary physiological systems altered by microgravity
- cardiovascular deconditioning, calcium loss, and muscle
degradation. Significant design drivers, as well as high priority
research areas and a recommended design approach are
identified. Author

N89-29409# Joint Publications Research Service, Arlington, VA.
JUSTIFICATION FOR MANNED MARS MISSION, TECHNICAL
OPTIONS FOR FLIGHT
V. GLUSHKO, YU. SEMENOV, and L. GORSHKOV /n its JPRS
Report: Science and Technology. USSR: Space p 28-31 18
Jan. 1989 Transl. into ENGLISH from Pravda, (Moscow, USSR),
24 May 1988 p 3
Copyright  Avail: NTIS HC A04/MF A0t

Justifications are presented for and against manned exploration
of Mars. Responses are given to a letter published in Pravda by
a Soviet professor by the Soviet citizentry. The kinds of technical
possibilities at USSR disposal are examined, along with the kind
of spacecraft which could deliver man from planet to planet.

E.R.

N90-26026°# Maryland Univ., College Park. Dept. of Aerospace
Engineering.
PROJECT EXODUS Final Report, 23 Jan. - 14 May 1990
RODNEY BRYANT, comp. and ed., JENNIFER DILLON, comp.
and ed., GEORGE GREWE, comp. and ed., JIM MCMORROW,
comp. and ed., CRAIG MELTON, comp. and ed., GERALD RAINEY,
comp. and ed., JOHN RINKO, comp. and ed., DAVID SINGH,
comp. and ed., and TZU-LIANG YEN, comp. and ed. May 1990
200 p
(Contract NGT-21-002-800)
(NASA-CR-186836; NAS 1.26:186836; ENAE-412;
UM-AERO-90-28) Avail: NTIS HC A09/MF A02 CSCL 22A

A design for a manned Mars mission, PROJECT EXODUS is
presented. PROJECT EXODUS incorporates the design of a
hypersonic waverider, cargo ship and NIMF (nuclear rocket using
indigenous Martian fuel) shuttle lander to safely carry out a three
to five month mission on the surface of Mars. The cargo ship
transports return fuel, return engine, surface life support, NIMF
shuttle, and the Mars base to low Mars orbit (LMO). The cargo
ship is powered by a nuclear electric propulsion (NEP) system
which allows the cargo ship to execute a spiral trajectory to Mars.
The waverider transports ten astronauts to Mars and back. It is
launched from the Space Station with propulsion provided by a
chemical engine and a deita velocity of 9 km/sec. The waverider
performs an aero-gravity assist maneuver through the atmosphere
of Venus to obtain a defiection angle and increase in delta velocity.
Once the waverider and cargo ship have docked the astronauts
will detach the landing cargo capsules and nuclear electric power
plant and remotely pilot them to the surface. They will then descend
to the surface aboard the NIMF shuttle. A dome base will be
quickly constructed on the surface and the astronauts will conduct
an exploratory mission for three to five months. They will return
to Earth and dock with the Space Station using the waverider.

Author

N90-26027*# Maryland Univ., College Park. Dept. of Aerospace
Engineering.

TERRAPIN TECHNOLOGIES MANNED MARS MISSION
PROPOSAL Report, 23 Jan. - 14 May 1990

MICHAEL AMATO, HEATHER BRYANT, RODNEY COLEMAN,
CHRIS COMPY, PATRICK CROUSE, JOE CRUNKLETON, EDGAR
HURTADO, EIRIK IVERSON, MIKE KAMOSA, LAURI KRAFT, ed.
and comp. et al. May 1990 208 p

(Contract NGT-21-002-800)

(NASA-CR-186838; NAS 1.26:186838; ENAE-412;
UM-AERO-90-27) Avail: NTIS HC A10/MF A02 CSCL 22A
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A Manned Mars Mission (M3) design study is proposed. The
purpose of M3 is to transport 10 personnel and a habitat with all
required support systems and supplies from low Earth orbit (LEO)
to the surface of Mars and, after an eight-man surface expedition
of 3 months, to return the personnel safely to LEO. The proposed
hardware design is based on systems and components of
demonstrated high capability and reliability. The mission design
builds on past mission experience, but incorporates innovative
design approaches to achieve mission priorities. Those priorities,
in decreasing order of importance, are safety, reliability, minimum
personnel transfer time, minimum weight, and minimum cost. The
design demonstrates the feasibility and flexibility of a Waverider
transfer module. Author

N91-18138*# Maryland Univ., College Park.
PROJECT EXODUS
/In USRA, Proceedings of the 6th Annual Summer Conference:
NASA/USRA University Advanced Design Program p 105-110
Nov. 1990
Avail: NTIS HC/MF A14 CSCL 22A

Project Exodus is an in-depth study to identify and address
the basic problems of a manned mission to Mars. The most
important problems concern propulsion, life support, structure,
trajectory, and finance. Exodus will employ a passenger ship, cargo
ship, and landing craft for the journey to Mars. These three major
components of the mission design are discussed separately. Within
each component the design characteristics of structures, trajectory,
and propulsion are addressed. The design characteristics of life
support are mentioned only in those sections requiring it.  Author

N91-18139*# Maryland Univ., College Park.
MANNED MARS MISSION
In USRA, Proceedings of the 6th Annual Summer Conference:
NASA/USRA University Advanced Design Program p 111-116
Nov. 1990
Avail: NTIS HC/MF A14 CSCL 22A

Terrapin Technologies proposes a Manned Mars Mission design
study. The purpose of the Manned Mars Mission is to transport
ten people and a habitat with all required support systems and
supplies from low Earth orbit (LEO) to the surface of Mars and,
after an expedition of three months to return the personnel safely
to LEO. The proposed hardware design is based on systems and
components of demonstrated high capability and reliability. The
mission design builds on past mission experience but incorporates
innovative design approaches to achieve mission priorities. These
priorities, in decreasing order of importance, are safety, reliability,
minimum personnel transfer time, minimum weight, and minimum
cost. The design demonstrates the feasibility and flexibility of a
waverider transfer module. Information is given on how the plan
meets the mission requirements. Author
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ASTRODYNAMICS

Includes powered and free-flight trajectories; and orbital and
launching dynamics.

AB4-39240
AEROBRAKING AND AEROCAPTURE FOR MARS MISSIONS
J. R. FRENCH IN: The case for Mars; Proceedings of the
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 245-250. refs
Copyright

The technique of 'aerobraking’ uses drag during successive
passes through the upper atmosphere to circularize a highly
elliptical orbit. A relatively low amount of energy is removed per
pass. 'Aerocapture’ transfers a vehicle into a closed stable orbit
from a hyperbolic flyby trajectory. This technique eliminates all
the energy in one pass. It requires, however, a higher degree of

technology than the first technique, because of the precise control
requirements involved. Details regarding the use of both techniques
in Mars missions are discussed. It is found that aerocapture has
a number of substantial advantages. The mass delivered to fow
circular orbit is increased substantially. It is concluded that the
use of modern technology in aerodynamic braking offers great
potential in the reduction of launch mass requirements for Mars
missions. G.R.

A90-11016"# Nationa! Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
ATMOSPHERIC ENVIRONMENT DURING MANEUVERING
DESCENT FROM MARTIAN ORBIT
MICHAEL E. TAUBER, JEFFREY V. BOWLES (NASA, Ames
Research Center, Moffett Field, CA), and LILY YANG (Sterling
Software, Inc., Palo Alto, CA) Journal of Spacecraft and Rockets
(ISSN 0022-4650), vol. 26, Sept.-Oct. 1989, p. 330-337. refs
Copyright

This paper presents an analysis of the atmospheric maneuvering
capability of a vehicle designated to land on the Martian surface,
together with an analysis of the entry environment encountered
by the vehicle. A maximum lift/drag ratio of 2.3 was used for all
trajectory calculations. The maximum achievable iateral ranges
varied from about 3400 km to 2500 km for entry velocities of 5
km/s (from a highly elliptical Martian orbit) and 3.5 km/s (from a
low-altitude lower-speed orbit), respectively. it is shown that the
peak decelerations are an order of magnitude higher for the 5-km/s
entries than for the 3.5-km/s entries. The vehicle entering at 3.5
km/s along a gliding trajectory encountered a much more benign
atmospheric environment. In addition, the glider's peak deceleration
was found to be only about 0.7 earth g, making the shallow flight
path ideal for manned vehicles whose crews might be physically
weakened by the long voyage to Mars. L.S.
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GROUND SUPPORT SYSTEMS AND FACILITIES
(SPACE)

Includes launch complexes, research and production facilities;
ground support equipment, e.g., mobile transporters; and
simulators.

A84-39239
SURFACE SAMPLING SYSTEMS
D. S. CROUCH (Martin Marietta Aerospace, Denver, CO) IN:
The case for Mars; Proceedings of the Conference, Boulder, CO,
April 29-May 2, 1981. San Diego, CA, Univelt, Inc., 1984, p.
233-244.
(AAS PAPER 81-245) Copyright

In the future, missions concerned with sampling operations of
the Martian surface will include a search for resources necessary
to support the potential manned colonization of the planet. The
present investigation has the objective to provide a summary of
the capabilities of sampling systems which have been previously
used during lunar and Mars missions. Suggestions are also made
regarding additional systems which could be employed for future
missions, both manned and unmanned. The lunar surveyor
spacecraft is considered along with the Apollo lunar surface drill,
Apolio lunar surface drill components, a lunar sub-surface sample
from a three-meter core hole, Luna 16 and 20 lunar surface
samplers (Russian), mass Viking surface sampler subsystem
components, and a Luna 24 lunar surface sampler (Russian).
Surface sampiers considered for future Mars missions are related
to a surface roving vehicle for the collection of samples in
connection with sample return missions. G.R.

ABB-16096#
LIFE SCIENCE TECHNOLOGY FOR MANNED MARS MISSIONS
THOMAS R. MEYER (Boulder Center for Science and Policy, CO)
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IAF, International Astronautical Congress, 38th, Brighton, England,
Oct. 10-17, 1987. 10 p. refs
(IAF PAPER 87-437)

The paper discusses existing life science technology and
on-going R & D activities applicable to the support of manned
Mars missions. Emphasis is placed on the technologies which
can utilize the resources (water, oxygen, and a buffer gas composed
of nitrogen and argon) that can be obtained from the Mars
environment. It is noted that the availability of local resources
would provide inputs to closed life support systems, easing the
requirements and effects of total closure and compensating for
leakage due to crew egress and ingress. K.K.

AB89-45763
CANDOR CHASMA CAMP
ETHAN WILSON CLIFFTON IN: Engineering, construction, and
operations in space; Proceedings of the Space '88 Conference,
Albuquerque, NM, Aug. 29-31, 1988. New York, American Society
of Civil Engineers, 1988, p. 457-464. refs
Copyright

The paper proposes a camp on Mars, in the Coprates region
of the Valles Marineris rift, just below the equator on Candor
Mensa, 6 deg 12 min S, 73 deg 30 min W. Options for survival
technology are discussed, with attention given to energy and
equipment requirements. Successful mission strategy requires the
participation of civil engineers to create adaptive planning and
technology for an expanding network of camps among the plateaus
and valleys of Mars. B.J.

A90-16681
BUILDING MARS HABITATS USING LOCAL MATERIALS
BRUCE A. MACKENZIE IN: The case for Mars lil: Strategies for
exploration - General interest and overview. San Diego, CA, Univelt,
Inc., 1989, p. 575-586. refs
(AAS PAPER 87-216) Copyright

The basic problems that will be encountered in building and
living on Mars are outlined, and various kinds of habitats that
may be utilized are described. Barrel vaults are examined as first
habitats, and the brick, mortar, fill, scrap, imported materials, glass
blocks, and fiberglass used in their construction are discussed.
The design of more advanced, multistory condominiums on Mars
is addressed. C.D.

A90-16682" National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
'lrnHE ;ISE OF INFLATABLE HABITATION ON THE MOON AND
AR

MICHAEL ROBERTS (NASA, Johnson Space Center, Houston,
TX) IN: The case for Mars )li: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
587-593.
(AAS PAPER 87-217) Copyright

A recurring element in futuristic lunar and Mars base scenarios,
the inflatable dome has some clear advantages over rigid modules:
low mass, high volume, and good packing efficiency at launch.
This paper explores some of the engineering issues involved in
designing such a structure. Author

A90-16684" Martin Marietta Corp., Denver, CO.
TOOL AND EQUIPMENT REQUIREMENTS FOR HUMAN
HABITATION OF MARS
MICHAEL G. THORNTON (Martin Marietta Corp., Denver, CO)
IN: The case for Mars W\i: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, inc.,, 1989, p.
607-616.
(Contract NAS8-37126)
(AAS PAPER 87-219) Copyright

This paper presents an examination of requirements and design
considerations for tools and equipment to establish a continuous
human presence on Mars. Specific problems addressed include;
manufacturing in zero gravity conditions, with or without an
atmosphere, temperature considerations, and use of tools by

astronauts on Mars or while traveling to or from Mars. A design
for a salvage concept for equipment landed on Mars is
presented. Author

A90-16685
AN OVERVIEW OF MARS SURFACE MOBILITY
JUSTIFICATION AND OPTIONS
JAMES R. FRENCH (World Space Foundation, South Pasadena,
CA) IN: The case for Mars ill: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, inc., 1989, p.
619-632. refs
(AAS PAPER 87-220) Copyright

A brief overview of various Mars mobility options is presented.
The vehicle concepts addressed include surface rovers, aircraft,
and ballistic or boost-glide vehicles. Power sources for mobility
are also considered. C.D.

A90-16687
MARS GLOBAL EXPLORATION VEHICLE
J. MARK MCCANN, MARK J. SNAUFER, and ROBERT J.
SVENSON IN: The case for Mars lli: Strategies for exploration -
General interest and overview. San Diego, CA, Univelt, inc., 1989,
p. 647-663. refs
(AAS PAPER 87-222) Copyright

Any establishment of a permanent base on Mars will require a
transponrtation system to facilitate the logistical support of the base
and the scientific exploration of the planet. The design of such a
system of transportation wil require innovative approaches to
powering the vehicles and providing life support. Power, life support,
and vehicle components are analyzed and a possible vehicle
configuration proposed. Emphasis is placed on design criteria and
physical data needed to fulfill the global requirements of such a
system. Author

A90-38894
DEVELOPMENT OF AUTONOMOUS SYSTEMS
TAKEO KANADE (Carnegie-Meilon University, Pittsburgh, PA) IN:
Applications of artificial intelligence VII; Proceedings of the Meeting,
Orlando, FL, Mar. 28-30, 1989. Part 1. Bellingham, WA, Society
of Photo-Optical Instrumentation Engineers, 1989, p. 569-573.
refs
Copyright

Two autonomous land vehicles are discussed: (1) the 'navigation
laboratory’, or Navlab commercial van-based vehicle for
navigational artificial vision research, which carries an extensive
sensor and instrumentation suite, together with human monitors;
and (2) the Autonomous Mobile Exploration Robot, or 'Ambler’,
which is a walking robot for prospective Mars exploration that
employs six legs joined coaxially at the fulcrum of their shoulder
joints. Each leg of the Ambler consists of two shoulder and elbow
joints that move in a horizontal plane to the position of the leg,
and a prismatic joint at the end of the elbow link which effects a
vertical telescoping motion for foot extention or retraction.  O.C.

A90-49380" National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
SPACE RADIATION SHIELDING FOR A MARTIAN HABITAT
LISA C. SIMONSEN, JOHN E. NEALY, LAWRENCE W.
TOWNSEND, and JOHN W. WILSON (NASA, Langley Research
Center, Hampton, VA) SAE, Intersociety Conference on
Environmental Systams, 20th, Williamsburg, VA, Juiy 9-12, 1990.
10 p. refs
(SAE PAPER 901346) Copyright

Radiation shielding analyses are performed for a candidate
Mars base habitat. The Langley cosmic ray transport code and
the Langley nucleon transport code are used to quantify the
transport and attenuation of galactic cosmic rays and solar flare
protons through both the Martian atmosphere and regolith shielding.
Doses at the surface and at various altitudes were calculated in a
previous study using both a high-density and a low-density Mars
atmosphere model. This study extends the previous low-density
results to include the further transport of the ionizing radiation
that reaches the surtace through additional shielding provided by
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Martian regolith. A four-compound regolith model, which includes
Si02, Fe203, MgO, and Ca0, was selected based on the chemistry
of the Viking 1 Lander site. The spectral fluxes of heavy charged
particles and the cormresponding dosimetric quantities are computed
for a series of thicknesses in the shield media after traversing the
atmosphere. These data are then used as input to algorithms for
a specific shield geometry. The resuits are presented as the
maximum dose received in the center of the habitat versus various
shield thicknesses for a base at an altitude of 0 km and 8 km.
Author

A91-10147"#
Pasadena.
SITE CHARACTERIZATION ROVER MISSIONS
DONNA SHIRLEY PIVIROTTO (JPL, Pasadena, CA) AIAA, Space
Programs and Technologies Conference, Huntsville, AL, Sept.
25-27, 1990. 15 p. refs
(AIAA PAPER 90-3785) Copyright

Concepts for site characterization rovers capable of efficient
operation on Mars with human supervision from earth are
discussed. In particular, attention is given to strategies for
developing and evaluating the necessary technology for
implementing the roving vehicles and process technologies required
for a systematic and integrated implementation of technologically
advanced rovers. A vehicle testbed program is also described.

v.L

Jet Propulsion Lab., California Inst. of Tech.,

A91-20230
DEVELOPMENT OF A MARTIAN SURFACE MODEL FOR
SIMULATION OF VEHICLE DYNAMICS AND MOBILITY
DONALD H. CRONQUIST, JR., LOUIS S. MCTAMANEY (FMC
Corporate Technology Center, Santa Ciara, CA), and JOHN J.
NITAO  IN: Mobile robots IV; Proceedings of the Maeting,
Philadelphia, PA, Nov. 6, 7, 1989. Bellingham, WA, Society of
Photo-Optical Instrumentation Engineers, 1990, p. 157-167.
Copyright

A high resolution Mars surface model is being developed for
simulation of vehicle dynamics, mobility and navigation capabilities.
The model provides a topological representation of surface features
and is suitable for interface with dynamic simulations of Mars
Rover vehicles including models for wheel-soil interaction and vision
systems. Portions of the surface model have been compieted and
can be interfaced with other portions of an overall vehicle
performance assessment system also being developed for the
Mars Rover program. Author

A91-20231
COMPUTER MODELLING - A STRUCTURED LIGHT VISION
SYSTEM FOR A MARS ROVER
DONALD H. CRONQUIST, JR. (FMC Corporate Technology Center,
Santa Clara, CA) and JOHN J. NITAO IN: Mobile robots V;
Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989,
Bellingham, WA, Society of Photo-Optical Instrumentation
Engineers, 1990, p. 168-177.
Copyright

A computer model has been developed as a tool for evaluating
the use of structured light systems for local navigation of the
Mars Rover. The systam modeied consists of two laser sources
emanating flat, widened beams with a single camera to detect
stripes on the terrain. The terrain elevation extracted from the
stripe information goes to updating a local terrain map which is
processed t0 determine impassable regions. The system operates
with the beams and cameras fixed except, now and then, the
beams are vertically panned to completely refresh the local map.
An efficient surtace removal algorithm determines the points on
the terrain surface hit by rays in the bundie. The power of each
reflected ray that falls on each pixel of the camera is computed
using well-known optical laws. Author

A91-26619°
Pasadena.
AUTONOMOUS NAVIGATION AND CONTROL OF A MARS
ROVER

Jet Propulsion Lab., California Inst. of Tech.,
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D. P. MILLER, D. J. ATKINSON, B. H. WILCOX, and A. H. MISHKIN
(JPL, Pasadena, CA) IN: Automatic control in aerospace; IFAC
Symposium, Tsukuba, Japan, July 17-21, 1989, Selected Papers.
Oxford, England and New York, Pergamon Press, 1990, p.
111-114. refs
Copyright

A Mars rover will need to be able to navigate autonomously
kilometers at a time. This paper outlines the sensing, perception,
planning, and execution monitoring systems that are currently being
designed for the rover. The sensing is based around stereo vision.
The interpretation of the images use a registration of the depth
map with a global height map provided by an orbiting spacecraft.
Safe, low energy paths are then planned through the map, and
expectations of what the rover's articulation sensors should sense
are generated. These expectations are then used to ensure that
the planned path is correctly being executed. Author

A91-27615
A PRELIMINARY EVALUATION OF EXTRATERRESTRIAL
BUILDING SYSTEMS
PHILIP J. RICHTER and RICHARD M. DRAKE (Fluor Daniel, Inc.,
Irvine, CA) IN: Engineering, construction, and operations in space
Il; Proceedings of Space 90, the Second International Conference,
Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York, American
Society of Civil Engineers, 1990, p. 409-418. refs
Copyright

The general purpose of this paper is to conduct a preliminary
examination of the concepts for habitats to be used for lunar and
Martian bases in the intermediate stage of base occupancy and
development. Four basic structural system types encompassing
six concepts are examined and evaluated. The contribution of the
work discussed is to help develop evaluation methodology, to set
up straw man concepts for purposes of identifying trade studies,
and to set the stage for further evaluations, which it is suggested
take place, at least partially, in a workshop format. Author

A91-27622
A LUNAR OUTPOST SURFACE SYSTEMS ARCHITECTURE
L. A. PIENIAZEK and L. TOUPS (Lockheed Engineering and
Sciences Co., Houston, TX) IN: Engineering, construction, and
operations in space |l; Proceedings of Space 90, the Second
international Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol.
1. New York, American Society of Civil Engineers, 1990, p.
480-489.
Copyright

A concept has been developed that defines mission objectives,
system concepts, surface elements, and outpost layout using a
systematic approach for a lunar outpost surface architecture. NASA
has been studying possible options for the human exploration of
the solar system that involve outposts for the moon and Mars.
These include elements that support mission objectives directly
such as science equipment and elements that support of the base
itself such as habitation, communications, power, and space
transportation. The development of appropriate architectures for
planet surface systems is discussed, focusing on top-level structure
and integration. The outpost facilities can also take care of the
collection, reduction and transmission of data from monitoring
equipment. In addition, human factors and biomedical research
can demonstrate the capabilty of humans to perform on
extraterrestrial surfaces prior to committing to risky endeavors.

R.E.P.

A91-27650
HUMAN OPERATIONS, RESOURCES AND BASES ON MARS
BRUCE M. CORDELL (General Dynamics Corp., Space Systems
Div., San Diego, CA) IN: Engineering, construction, and operations
in space lI; Proceedings of Space 80, the Second International
Conterence, Albuquerque, NM, Apr. 22-26, 1890. Vol. 1. New York,
American Society of Civil Engineers, 1990, p. 759-768. refs
Copyright

This paper discusses various activities involving the
establishment and operation of surface facilities on Mars to support
habitation, surface explorations, laboratory science, and resource



use. After a review of a number of relevant atmospheric and
surface environmental parameters, strategies for Mars exploration
are presented. Several sites on Mars, based on known geology
and topography are evaluated for potential use as human base
sites. Water and other usable resources stored in the Mars
atmosphere are described as well as their extraction processes
and possible products. Magnesium and/or iron appear to be
available as construction metals. The atmosphere and surtace of
Mars are discussed in the context of base construction
operations. R.E.P.

A91-27692
ANTARCTIC TESTBED FOR EXTRATERRESTRIAL
OPERATION AND TECHNOLOGY
LARRY BELL and DEBORAH J. NEUBEK (Houston, University,
TX) IN: Engineering, construction, and operations in space i
Proceedings of Space 90, the Second International Conference,
Albuquerque, NM, Apr. 22-26, 1980. Vol. 2. New York, American
Society of Civil Engineers, 1990, p. 1188-1197.
Copyright

It is proposed that the physical similarities between the Antarctic
environment and the moon and Mars environments as well as
parallels between the general nature of crew activities be used in
the planning of moon and Mars missions. Emphasis is placed on
operational and technological areas such as operations and
logistics; facility planning; design and construction; utility systems;
and the selection, design, and development of automatic and
telerobotic systems. An international research and technology
demonstration facility in Antarctica is planned by the Saskawa
Internatonal Center for Space Architecture. The Antarctic Planetary
Testbed (APT) program will provide a basis for new insights into
planning for moon and Mars missions. 0.G.

A91-27702* New Mexico Univ., Albuquerque.
PRELIMINARY ASSESSMENT OF THE POWER
REQUIREMENTS OF A MANNED ROVER FOR MARS
MISSIONS
MOHAMED S. EL-GENK, NICHOLAS J. MORLEY (New Mexico,
University, Albuguerque), ROBERT CATALDO, and HARVEY
BLOOMFIELD (NASA, Lewis Research Center, Cleveland, OH) IN:
Engineering, construction, and operations in space lI; Proceedings
of Space 90, the Second International Conference, Albuquerque,
NM, Apr. 22-26, 1990. Vol. 2. New York, American Society of
Civil Engineers, 1990, p. 1278-1287. refs
(Contract NAG3-992)
Copyright

A preliminary study to determine the total mass and power
requirements of a manned Mars rover is presented. Estimates of
the power requirements for the nuclear reactor power system are
determined as functions of the number of crew members, the
emergency return trip scenario in case of a total malfunction of
the reactor system, the cruising speed and range of the vehicle,
and the specific mass of the power system. It is shown that the
cruising speed of the vehicle and the soil traction factor significantly
affect the traversing power requirement and therefore the mass
of the nuclear power system. The cruising speed of the vehicle
must be limited to 14.5 and 24 km/hr for power system specific
masses of 150 kg/kWe and 50 kg/kWe, respectively, for the
nuclear power system mass not to exceed 50 percent of the total
mass of the rover. R.E.P.
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LAUNCH VEHICLES AND SPACE VEHICLES

Includes boosters; operating problems of launch/space vehicle
systems; and reusable vehicles.

A90-16673
MARS LANDING AND LAUNCH REQUIREMENTS AND A
POSSIBLE APPROACH
JAMES R. FRENCH (World Space Foundation, South Pasadena,
CA) IN: The case for Mars lil: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
413-420. refs
(AAS PAPER 87-207) Copyright

A design for a Mars aerocapture and landing vehicle is described
and some of the rationale behind the concept is presented. The
vehicle is a bent biconic shape which will deliver a lift over drag
ratio between 0.6 and 1.5 depending upon trim angle of attack.
Given sufficiently accurate approach navigation, this vehicle can
reduce landing errors to the order of Mars map errors (say 5 km),
a substantial improvement over previous vehicles. Author

A90-16674" National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.
HEAVY LIFT VEHICLES FOR TRANSPORTATION TO A LOW
EARTH ORBIT SPACE STATION FOR ASSEMBLY OF A
HUMAN TO MARS MISSION
FRANK E. SWALLEY (NASA, Marshall Space Flight Center,
Huntsville, AL) IN: The case for Mars lli: Strategies for exploration
- General interest and overview. San Diego, CA, Univelt, Inc,,
1989, p. 421-431. refs
(AAS PAPER 87-208) Copyright

Heavy lift vehicle configurations are proposed which will meet
the requirements for transporting the elements of a Human to
Mars Mission to a low earth orbit Space Station for assembly.
Both near term derivative type vehiles as well as advanced
technology vehicles are considered. The capability of these vehicies
to accommodate the precursor missions are also examined. The
implications on launch vehicle payload accommodation design and
orbital operations are discussed. Author

A91-10034*#
Pasadena.
A NETWORK OF SMALL LANDERS ON MARS
JAMES D. BURKE and ROBERT N. MOSTERT (JPL, Pasadena,
CA) AlAA, Space Programs and Technologies Conference,
Huntsviiie, AL, Sept. 25-27, 1990. 7 p. refs
(AIAA PAPER 90-3577) Copyright

This paper describes a class of small landers that could form
part of a global network of scientific instrumentation on Mars.
Two types of landers are considered: penefrators that implant
instruments a few meters beneath the surface, and rough landers
that may hit the surface at speeds up to tens of m/sec and
survive through the use of impact-limiting techniques. Because
some scientific objectives, such as seismic and meteorological
investigations, require durations of months and years lander designs
giving long lifetimes in the Martian environment are needed. This
paper describes both past and more recent work at JPL toward
this goal. Author

Jet Propulsion Lab., California Inst. of Tech.,
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SPACE TRANSPORTATION

Includes passenger and cargo space transportation, e.g., shuttle
operations; and space rescue techniques.

N90-26036*#  National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
THE EFFECT OF INTERPLANETARY TRAJECTORY OPTIONS
ON A MANNED MARS AEROBRAKE CONFIGURATION
ROBERT D. BRAUN, RICHARD W. POWELL, and LIN C.
HARTUNG Washington Aug. 1990 79 p
(NASA-TP-3019; L-16661; NAS 1.60:3019) Avail: NTIS HC
AO5/MF A01 CSCL 22B

Manned Mars missions originating in low Earth orbit (LEO) in
the time frame 2010 to 2025 were analyzed to identify preferred
mission opportunities and their associated vehicle and trajectory
characteristics. Interplanetary and Mars atmospheric trajectory
options were examined under the constraints of an initial manned
exploration scenario. Two chemically propelled vehicle options were
considered: (1) an all propulsive configuration, and (2) a
configuration which employs aerobraking at Earth and Mars with
low lift/drag (L/D) shapes. Both the interplanetary trajectory options
as well as the Mars atmospheric passage are addressed to provide
a coupled trajectory simulation. Direct and Venus swingby
interplanetary transfers with a 60 day Mars stopover are considered.
The range and variation in both Earth and Mars entry velocity are
also defined. Two promising mission strategies emerged from the
study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0
to 2.5 year direct mission. Through careful trajectory selection, 11
mission opportunities are identified in which the Mars entry velocity
is between 6 and 10 km/sec and Earth entry velocity ranges
from 115 to 125 km/sec. Simulation of the Earth return
aerobraking maneuver is not performed. It is shown that a low
L/D configuration is not feasible for Mars aerobraking without
substantial improvements in the interplanetary navigation system.
However, even with an advanced navigation system, entry corridor
and aerothermal requirements restrict the number of potential
mission opportunities. It is also shown that for a large blunt Mars
aerobrake configuration, the effects of radiative heating can be
significant at entry velocities as low as 6.2 km/sec and will grow
to dominate the aerothermal environment at entry velocities above
8.5 km/sec. Despite the additional system complexity associated
with an aerobraking vehicle, the use of aerobraking was shown to
significantly lower the required initial LEO weight. In comparison
with an all propulsive mission, savings between 19 and 59 percent
were obtained depending upon launch date. Author
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SPACECRAFT DESIGN, TESTING AND
PERFORMANCE

Includes satellites; space platforms; space stations; spacecraft
systems and components such as thermal and environmental
controls; and attitude controls.

AB4-39229
MANNED MARS MISSION LANDING AND DEPARTURE
SYSTEMS
D. B. CROSS and A. J. BUTTS (Martin Marietta Aerospace, Denver,
CO) IN: The case for Mars; Proceedings of the Conference,
Boulder, CO, April 20-May 2, 1982. San Diego, CA, Univelt, Inc.,
1984, p. 75-82.
(AAS PAPER 81-233) Copyright

The implementation of the Mars landing and departure strategies
considered to date would require large amounts of propeliants.

12

For this reason, these strategies do not appear efficient enough
to support manned Mars exploration missions. An investigation is
conducted of the involved systems and their relation to other
elements of the Mars mission, taking into account possibilities
for saving energy. Attention is given to the impact of sample size
on system design, landing and departure modes, an aerobraking
concept sequence, drag polars, lifting vehicle concepts, a Mars
airplane, and a Mars ascent vehicle. It appears that considerable
advantages to manned exploration can be obtained from orbiting
stations at both earth and Mars. Continued development of
aerocapture and aeromaneuvering vehicles offers the greatest
potential in efficient energy usage for orbit insertion, circularization,
and landing in planetary atmospheres. The manutacture of
propellants on the surface of Mars would provide for large savings
in energy. G.R.

AB4-39231
THE EXTERNAL TANK SCENARIO - UTILIZATION OF THE
SHUTTLE EXTERNAL TANK FOR EARTH TO MARS TRANSIT
T. C. TAYLOR IN: The case for Mars; Proceedings of the
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 109-127. refs
(AAS PAPER 81-236) Copyright

The developments occurring in the case of the Prudhoe Bay
field on the North Slope of Alaska are compared to a situation
which might arise if economically valuable resouces would be found
on Mars. The necessity to develop an oil field in the Arctic
wasteland as economically as possible had led to the reuse of
packing crates at the remote base. A similar situation might develop
if, for instance, a valuable mineral urgently needed on earth should
be found on Mars. Approaches are discussed by which the External
Tank (ET) of the Space Shuttle might provide an aid of particular
cost-effectiveness in the processes required for large scale
resource development of Mars. Attention is given to ET as a raw
material resource, the ET use in facility construction, and ET as a
component in interplanetary vehicles. G.R.

A91-27711° National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
VARIABLE GRAVITY RESEARCH FACILITY - A CONCEPT
PAUL F. WERCINSKI, MARCIE A. SMITH, ROBERT G.
SYNNESTVEDT, and ROBERT G. KELLER (NASA, Ames Research
Center, Moffett Field, CA) IN: Engineering, construction, and
operations in space If; Proceedings of Space 90, the Second
International Conference, Aibuquerque, NM, Apr. 22-26, 1980. Vol.
2. New York, American Society of Civil Engineers, 1990, p.
1364-1373.
Copyright

Is human exposure to artificial gravity necessary for Mars
mission success, and if so, what is the optimum means of achieving
artificial gravity? Answering these questions prior to the design of
a Mars vehicle would require construction and operation of a
dedicated spacecraft in low earth orbit. This paper summarizes
the study results of a conceptual design and operations scenario
for such a spacecraft, called the Variable Gravity Research Facility
(VGRF). Author

N90-17687*#  Nationa! Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
PRELIMINARY INVESTIGATION OF PARAMETER
SENSITIVITIES FOR ATMOSPHERIC ENTRY AND
AEROBRAKING AT MARS
MARY C. LEE and WILLIAM T. SUIT Sep. 1989 30 p
(NASA-TM-101607; NAS 1.15:101607) Avail: NTIS HC A03/MF
AO01 CSCL 228

The proposed manned Mars mission will need to be as weight
efficient as possible. A way of lowering the weight of the vehicle
by using aeroassist braking instead of retro-rockets to slow a
craft once it reaches its destination is discussed. The two vehicles
studied are a small vehicle similar in size to the Mars Rover
Sample Return (MRSR) vehicle and a larger vehicle similar in
size to a six-person Manned Mars Mission (MMM) vehicle.
Simulated entries were made using various coefficients of lift (C



sub L), coefficients of drag (C sub D), and lift-to-drag ratios (L/D).
A range of acceptable flight path angles with their corresponding
bank angie profiles was found for each case studied. These ranges
were then compared, and the results are reported here. The
sensitivity of velocity and acceleration to changes in flight path
angle and bank angle is also included to indicate potential problem
areas for guidance and navigation system design. Author
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SPACECRAFT PROPULSION AND POWER

Includes main propulsion systems and components, e.g., rocket
engines; and spacecraft auxiliary power sources.

A84-39230
SOLAR ELECTRIC PROPULSION STAGE AS A MARS
EXPLORATION TOOL
S. KENT (Delta Vee, Inc., San Jose, CA) IN: The case for Mars;
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981.
San Diego, CA, Univelt, Inc., 1984, p. 83-89.
(AAS PAPER 81-234) Copyright

It is pointed out that the Solar Electric Propulsion System (SEPS)
is an extremely flexible space transportation system capable of
performing high energy and/or extended operations missions. SEPS
will utilize ion propulsion produced by the electrostatic expulsion
of mercury ions with exhaust velocities of over 30,000 meters per
second, compared to a maximum of 5,000 meters per second
with chemical propulsion. The required power will be obtained
from the SEPS solar array wings. Space missions utilizing SEPS
could include the International Comet Mission, a Saturn Orbiter
with dual probes, a close solar probe, an asteroid multiple
rendezvous mission, and earth orbital missions. Informal analyses
have been conducted regarding the employment of SEPS as a
Mars exploration tool. Attention is given to trip times from six to
nine months delivering 2,000-4,000 kg into Mars parking orbit, or
alternatively, a sample return with over 50 kg of Martian rock.

G.R.

A90-16675
PROPULSION SYSTEM CONSIDERATIONS/APPROACH FOR
FAST TRANSFER TO MARS
PAUL A. HARRIS and FRANK J. PERRY (Rockwell International
Corp., Rocketdyne Div., Canoga Park, CA) IN: The case for
Mars lil: Strategies for exploration - General interest and overview.
San Diego, CA, Univelt, Inc., 1989, p. 433-448. refs
(AAS PAPER 87-209) Copyright

The advantages of shorter transit times are discussed, including
impact on vehicle design, and crew physiological and psychological
effects. A hybrid propulsion system combining nuclear thermal and
nuclear electric propulsion is proposed to achieve shorter transit
times and provide abundant electrical power at Mars. Preliminary
comparisons of this hybrid propulsion option with other options
indicate the existence of significant advantages of bimodal nuclear
propuision/power. Propulsion system options for the Manned Mars
Mission are examined parametrically to provide an estimate of
earth departure (Low Earth Orbit, LEO) mass as a function of
transit time to Mars. Author

A90-16676"  National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
NUCLEAR PROPULSION - A VITAL TECHNOLOGY FOR THE
EXPLORATION OF MARS AND THE PLANETS BEYOND
STANLEY K. BOROWSKI (NASA, Lewis Research Center,
Cleveland, OH) IN: The case for Mars lli: Strategies for exploration
- General interest and overview. San Diego, CA, Univelt, Inc,
1989, p. 451-494. Previously announced in STAR as N89-10944.
refs
(AAS PAPER 87-210) Copyright

The physics and technology issues and performance potential
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of various direct thrust fission and fusion propulsion concepts are
examined. Next to chemical propulsion the solid core fission thermal
rocket (SCR) is the only other concept to be experimentally tested
at the power (apprex 1.5 to 5.0 GW) and thrust levels (approx
0.33 to 1.11 MN) required for manned Mars missions. With a
specific impulse of approx 850 s, the SCR can perform various
near-earth, cislunar and interpianetary missions with lower mass
and cost requirements than its chemical counterpart. The gas core
fission thermal rocket, with a specific power and impulse of approx
50 kW/kg and 5000 s offers the potential for quick courier trips
to Mars (of about 80 days) or longer duration exploration cargo
missions (iasting about 280 days) with starting masses of about
1000 m tons. Convenient transportation to the outer Solar System
will require the development of magnetic and inertial fusion rockets
(IFRs). Possessing specific powers and impulses of approx 100
kW/kg and 200-300 kilosecs, IFRs will usher in the era of the
true Solar System class spaceship. Even Pluto will be accessible
with roundtrip times of less than 2 years and starting masses of
about 1500 m tons. Author

A90-16677
APPLICATIONS OF IN-SITU CARBON MONOXIDE-OXYGEN
PROPELLENT PRODUCTION AT MARS
W. MITCHELL CLAPP (USAF, Test Pilot School, Edwards AFB,
CA) and MICHAEL P. SCARDERA (USAF, Falcon AFB, CO) IN:
The case for Mars lli: Strategies for exploration - General interest
and overview. San Diego, CA, Univelt, Inc., 1989, p. 513-537.
refs
(AAS PAPER 87-212) Copyright

Liquid carbon monoxide and liquid oxygen can be manufactured
from the Martian atmosphere. Various energy conversion devices
using this fuel/oxidizer resource are introduced and evaluated,
including fuel cells, diesel cycle engines, gas turbines, and rocket
engines. The performance of these engines in a variety of different
vehicles suitable for travel at Mars is discussed. Finally, possible
missions are shown for vehicles which use in situ manufactured
propellants. Author

A90-16688" National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
POWER CONSIDERATIONS FOR AN EARLY MANNED MARS
MISSION UTILIZING THE SPACE STATION
MARTIN E. VALGORA (NASA, Lewis Research Center, Cleveland,
OH) IN: The case for Mars lll: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, inc., 1989, p.
667-679.
(AAS PAPER 87-223) Copyright

Power requirements and candidate electrical power sources
were examined for the supporting space infrastructure for an early
(2004) manned Mars mission. This two-year mission (60-day stay
time) assumed a single six crew piloted vehicle with a Mars lander
for four of the crew. The transportation vehicle was assumed to
be a hydrogen/oxygen propulsion design with or without large
aerobrakes and assembied and checked out on the LEO Space
Station. The long transit time necessitated artificial gravity of the
crew by rotating the crew compartments. This rotation complicates
power source selection. Candidate power sources were examined
for the Lander, Mars Orbiter, supporting Space Station, co-orbiting
Propellant Storage Depot, and, alternatively, a co-orbiting Propeliant
Generation (water electrolysis) Depot. Candidates considered were
photovoitaics with regenerative fuei ceiis or batieries, soiar
dynamics, isotope dynamics, and nuclear power. Author

A90-16689" Jet Propulsion Lab., California Inst. of Tech.,
Pasadena.
THE SP-100 SPACE REACTOR AS A POWER SOURCE FOR
MARS EXPLORATION MISSIONS
LON ISENBERG (JPL, Pasadena, CA) and JACK A. HELLER
(NASA, Lewis Research Center, Cleveland, OH) IN: The case
for Mars lll: Strategies for exploration - General interest and
overview. San Diego, CA, Univelt, Inc., 1989, p. 681-695. refs
(AAS PAPER 87-224) Copyright

This paper argues that many of the power requirements of

13
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complex, relatively long-duration space missions such as the
exploration of Mars may best be met through the use of power
systems which use nuclear reactors as a thermal energy source.
The development of such a power system, the SP-100, and its
application in Mars mission scenarios is described. The missions
addressed include a freighter mission and a mission involving
exploration of the Martian surface. C.D.

A90-16690" Nationa! Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
LASER POWER TRANSMISSION CONCEPTS FOR MARTIAN
APPLICATIONS
R. J. DE YOUNG, E. J. CONWAY, W. E. MEADOR, and D. H.
HUMES (NASA, Langley Research Center, Hampton, VA)  IN:
The case for Mars lll: Strategies for exploration - General interest
and overview. San Diego, CA, Univelt, Inc., 1989, p. 697-708.
refs
(AAS PAPER 87-225) Copyright

Long-term, highly reliable, flexible power wili be required to
support many diverse activities on Mars and for rapid development
of the Mars environment. The potential of laser power transmission
for supporting science, materials processing, transportation, and
human habitats is discussed. Some advantageous locations for
laser power stations in Mars orbit are developed. Author

N89-13492*#  National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
POWER CONSIDERATIONS FOR AN EARLY MANNED MARS
MISSION UTILIZING THE SPACE STATION
MARTIN E. VALGORA 1987 15 p Presented at Case for
Mars 3, Boulder, Colo., 18-22 Jul. 1987; sponsored by American
Aeronautical Society, JPL, Los Alamos Nationa! Lab., Ames
Research Center, Lyndon B. Johnson Space Center, George C.
Marshall Space Flight Center, Planetary Society
(NASA-TM-101436; E-4472; NAS 1.15:101436) Avail: NTIS HC
AO3/MF A01 CSCL 108

Power requirements and candidate electrical power sources
were examined for the supporting space infrastructure for an early
(2004) manned Mars mission. This two-year mission (60-day stay
time) assumed a single six crew piloted vehicle with a Mars lander
for four of the crew. The transportation vehicle was assumed to
be a hydrogen/oxygen propulsion design with or without large
aerobrakes and assembled and checked out on the LEO Space
Station. The long transit time necessitated artificial gravity of the
crew by rotating the crew compartments. This rotation compilicates
power source selection. Candidate power sources were examined
for the Lander, Mars Orbiter, supporting Space Station, co-orbiting
Propellant Storage Depot, and alternatively, a co-orbiting Propellant
-Generation (water electrolysis) Depot. Candidates considered were
photovoitaics with regenerative fuel celis or batteries, solar
dynamics, isotope dynamics, and nuclear power. Author

N89-26041*#  National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
ADVANCES IN THIN-FILM SOLAR CELLS FOR LIGHTWEIGHT
SPACE PHOTOVOLTAIC POWER
GEOFFREY A. LANDIS, SHEILA G. BAILEY, and DENNIS J.
FLOOD 1989 29 p Presented at the International Conference
on Space Power, Cleveland, OH, 5-7 Jun. 1989; sponsored by
the International Astronautical Federation
(NASA-TM-102017; E-4734; NAS 1.15:102017) Avail: NTIS HC
AO3/MF A01 CSCL 10A

The present stature and current research directions of
photovoltaic arrays as primary power systems for space are
reviewed. There have recently been great advances in the
technology of thin-film solar cells for terrestrial applications. In a
thin-film solar cell the thickness of the active element is only a
few microns; transfer of this technology to space arrays could
result in ultralow-weight solar arrays with potentially large gains in
specific power. Recent advances in thin-film solar cells are
reviewed, including polycrystalline copper-indium selenide
(CuinSe2) and related I-11-VI2 compounds, polycrystalline cadmium
teliuride and related -Vl compounds, and amorphous
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silicon:hydrogen and alloys. The best experimental efficiency on
thin-film solar cells to date is 12 percent AMO for Culn Se2. This
efficiency is likely to be increased in the next few years. The
radiation tolerance of thin-film materials is far greater than that of
single-crystal materials. Culn Se2 shows no degradation when
exposed to 1 MeV electrons. Experimental evidence also suggests
that most of all of the radiation damage on thin-films can be
removed by a low temperature anneal. The possibility of thin-film
multibandgap cascade solar celis is discussed, including the
tradeoffs between monolithic and mechanically stacked cells. The
best current efficiency for a cascade is 12.5 percent AMO for an
amorphous silicon on CulnSe2 multibandgap combination. Higher
efficiencies are expected in the future. For several missions,
including solar-electric propulsion, a manned Mars mission, and
lunar exploration and manufacturing, thin-film photovolatic arrays
may be a mission-enabling technology. Author

N90-18480* #
Pasadena.
ELECTRIC PROPULSION FOR MANNED MARS EXPLORATION
BRYAN PALASZEWSKI /n Johns Hopkins Univ., The 1989
JANNAF Propulsion Meeting, Volume 1 p 421-435 May 1989
Avail: NTIS HC A25/MF A04 CSCL 21H

Advanced high-power electric propulsion systems can
significantly enhance piloted Mars missions. An increase in the
science payload delivered to Mars and the reduction of the total
Earth-departure mass are the major system-level benefits of electric
propulsion. Other potential benefits are the return of the cargo
vehicle to Earth orbit and the availability of high power in Mars
orbit for high-power science and communications. Parametric
analyses for sizing the cargo mission vehicle for Mars exploration
missions are presented. The nuclear-electric propuision system
thruster size, power level, mass, propellant type and payload mass
capability are considered in these system-level trade studies.
Descriptions of the propulsion system selection issues for both
ion and MPD thruster technologies are also discussed. On a
manned Mars mission, the total launch mass for an unmanned
cargo vehicle in low earth orbit (LEO) can be reduced by up to
50 percent over the baseline oxygen/hydrogen propulsion system.
Because the cargo vehicle is sent to Mars prior to the manned
mission, the trip time for the vehicle is not a critical factor. By
taking advantage of the high specific impulse (I sub sp) of an ion
or a Magneto-Plasma-Dynamic (MPD) thruster system, the total
LEO mass is reduced from 590,000 kg for the oxygen/hydrogen
propulsion system to 309,000 kg for the MPD system and 295,000
kg for the ion system. Many factors must be analyzed in the
design of a electric propulsion Mars cargo vehicle. The propellant
selection, the number of thrusters, the power level and the specific
impulse are among the most important of the parameters. To fully
address the electric propulsion system design, trade studies for
the differing ion and MPD propulsion system configurations (thruster
power levels, number of thrusters, propellants and power systems)
must be conducted. Author

Jet Propulsion Lab., California Inst. of Tech,,
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A90-16678
DURICRETE AND COMPOSITES CONSTRUCTION ON MARS
ROBERT C. BOYD, PATRICK S. THOMPSON, and BENTON C.
CLARK (Martin Marietta Planetary Sciences Laboratory, Denver,
CO) IN: The case for Mars |li: Strategies for exploration - Genera!
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
539-550. refs
(AAS PAPER 87-213) Copyright

An experimental program to investigate manutacturing
processes and product qualities of duricretes, as well as composites




formed by combining such material with high-strength fibers
(man-made and biogenic) has begun. Other source materials that
may serve as components include various pigments, such as
powdered C (black), MgO (white), and ferric oxide (red); binders
and sealers, such as elemental and polymeric S; and metaliic
coatings and fibers, such as Mg. Carbon can be produced by the
Bosch process for CO2 reduction to 02 and C; water distilied
from indigenous ice; and the other products converted from MgSO4
in the soil salts. Applications of the construction materials include
habitat enlargement, greenhouse fabrication, solar thermal
absorption structures, storehouses/tanks, utensils, solar flare storm
shelters, towers, and transportation construction. A Mars sample
return mission will provide a more detailed understanding of the
chemical properties of Martian soil, allowing better preparation of
pilot study experiments for the first astronaut mission. Author

A90-16679
THE HYDROGEN PEROXIDE ECONOMY ON MARS
BENTON C. CLARK (Martin Marietta Planetary Sciences
Laboratory, Denver, CO) and DONALD R. PETTIT (Los Alamos
National Laboratory, NM) IN: The case for Mars lIl: Strategies
for exploration - General interest and overview. San Diego, CA,
Univelt, Inc., 1989, p. 551-557. refs
(AAS PAPER 87-214) Copyright

Hydrogen peroxide, H202, could serve as a multipurpose
chemical storehouse of breathing oxygen, water, and energy for a
Martian base. Made from indigenous water and electricity from a
central power facility, it could function also as an energetic fluid
to power mobile operations away from the base. Hydrogen peroxide
is a monopropellant (as well as a bipropellant oxidizer) for rocket
engines, a fuel for producing shaft work from turbines, and a high
explosive that could find uses in construction, mining, and seismic
studies. At the ambient conditions on Mars,it can be handled and
stored not much differently than many hydrocarbon fuels are on
earth. Hydrogen peroxide can serve many other useful functions
such as an antifreeze solution in heat exchangers, a disinfectant,
and a host of manufacturing applications in metallurgy, cements,
and ceramics. H202 could well be the single most valuable
commodity made on Mars, giving rise to a hydrogen peroxide
economy. Author

31
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includes vacuum technology; control engineering; display
engineering; cryogenics; and fire prevention.

A90-16683
FIRE PROTECTION FOR A MARTIAN COLONY
ROBERT M. BEATTIE, JR. (Boeing Military Airplanes, Wichita,
KS) IN: The case for Mars ili: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
595-605. refs
(AAS PAPER 87-218) Copyright

The fire prevention failures that occurred in Apollo 1 and
Challenger accidents are reviewed and used to discuss fire
protection measures that should be taken in a Martian colony.
Fire detection systems, classes of fire, and suppression agents
are described. The organization of fire fighting personnel
appropriate for Mars is addressed. CD.

37 MECHANICAL ENGINEERING
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ELECTRONICS AND ELECTRICAL ENGINEERING

Includes test equipment and maintainability; components, e.g.,
tunnel diodes and transistors; microminiaturization; and integrated
circuitry.

A91-27353" Duke Univ., Durham, NC.
A DEPLOYABLE HIGH TEMPERATURE SUPERCONDUCTING
COIL (DHTSC) - A NOVEL CONCEPT FOR PRODUCING
MAGNETIC SHIELDS AGAINST BOTH SOLAR FLARE AND
GALACTIC RADIATION DURING MANNED INTERPLANETARY
MISSIONS
F. HADLEY COCKS (Duke University, Durham, NC) British
Interplanetary Society, Journal (ISSN 0007-084X), vol. 44, March
1991, p. 99-102. refs
(Contract NASW-4453)
Copyright

The discovery of materials which are superconducting above
100 K makes possible the use of superconducting coils deployed
beyond the hull of an interplanetary spacecraft to produce a
magnetic shield capable of giving protection not only against solar
flare radiation, but also even against Galactic radiation. Such
deployed coils can be of very large size and can thus achieve
the great magnetic moments required using only relatively low
currents. Deployable  high-temperature-superconducting  coil
magnetic shields appear to offer very substantial reductions in
mass and energy compared to other concepts and could readily
provide the radiation protection needed for a Mars mission or
space colonies. Author

N87-17795*#  National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.
ELECTRICAL POWER SYSTEMS FOR MARS
ROBERT J. GIUDICI /n its Manned Mars Mission. Working Group
Papers, V. 2, Sect. 5, App. p 873-887 May 1986
Avail: NTIS HC A24/MF A0O4 CSCL 09C

Electrical power system options for Mars Manned Modules and
Mars Surface Bases were evaluated for both near-term and
advanced performance potential. The power system options
investigated for the Mission Modules include photovoltaics, solar
thermal, nuclear reactor, and isotope power systems. Options
discussed for Mars Bases include the above options with the
addition of a brief discussion of open loop energy conversion of
Mars resources, including utilization of wind, subsurface thermal
gradients, and super oxides. Electrical power requirements for
Mission Modules were estimated for three basic approaches: as a
function of crew size; as a function of electric propulsion; and as
a function of transmission of power from an orbiter to the surface
of Mars via laser or radio frequency. Mars Base power requirements
were assumed to be determined by production facilities that make
resources available for foliow-on missions leading to the
establishment of a permanently manned Base. Requirements
include the production of buffer gas and propeliant production
plants. Author

37
MECHANICAL ENGINEERING

Includes auxiliary systems (nonpower); machine elements and
processes; and mechanical equipment.

N90-29069*# Texas Univ., Austin. Dept. of Computer Science.
SATELLITE-MAP POSITION ESTIMATION FOR THE MARS
ROVER

AKIRA HAYASHI and THOMAS DEAN (Brown Univ., Providence,
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44 ENERGY PRODUCTION AND CONVERSION

RL) /n JPL, California Inst. of Tech., Proceedings of the NASA
Conference on Space Telerobotics, Volume 2 p 275-282 31
Jan. 1989 Sponsored in part by ARPA
(Contract F49620-88-C-0132; NSF 1RI-86-12644)
Avail: NTIS HC A17/MF A03 CSCL 13l

A method for locating the Mars rover using an elevation map
generated from satellite data is described. In exploring its
environment, the rover is assumed to generate a local
rover-centered elevation map that can be used to extract
information about the relative position and orientation of landmarks
corresponding to local maxima. These landmarks are integrated
into a stochastic map which is then matched with the satellite
map to obtain an estimate of the robot's current location. The
landmarks are not explicitly represented in the satellite map. The
results of the matching algorithm correspond to a probabilistic
assessment of whether or not the robot is iocated within a given
region of the satellite map. By assigning a probabilistic interpretation
to the information stored in the satelite map, researchers are
able to provide a precise characterization of the results computed
by the matching algorithm. Author

44
ENERGY PRODUCTION AND CONVERSION

Includes specific energy conversion systems, e.g., fuel cells; global
sources of energy; geophysical conversion; and windpower.

NB89-20545*#  National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
MARS MANNED TRANSPORTATION VEHICLE
MARLA E. PEREZ-DAVIS and KARL A. FAYMON  Jul. 1987
12 p Presented at the Case for Mars Ill, Bouider, CO, 18-22
Jul. 1987; sponsored in part by American Astronautical Society;
Jet Propulsion Lab.; NASA, Ames Res. Ctr.; NASA, Johnson Space
Ctr; NASA, Marshall Space Flight Ctr.; and The Planetary Society
(NASA-TM-101487; E-4627; NAS 1.15:101487) Avail: NTIS HC
AO3/MF A01 CSCL 13F

A viable power system technology for a surface transportation
vehicle to explore the planet Mars is presented. A number of
power traction systems were investigated, and it was found that a
regenerative hydrogen-oxygen fuel cell appears to be attractive
tor a manned Mars rover application. Mission requirements were
obtained from the Manned Mars Mission Working Group. Power
systems weights, power, and reactants requirements were
determined as a function of vehicle weights for vehicles weighing
from 6,000 to 16,000 Ib (2,722 to 7,257 kg), (Earth weight). The
vehicle performance requirements were: velocity, 10 km/hr; range,
100 km; slope climbing capability, 30 deg uphill for 50 km; mission
duration, 5 days; and crew, 5. Power requirements for the operation
of scientific equipment and support system capabilities were also
specified and included in this study. The concept developed here
would also be applicable to a Lunar based vehicle for Lunar
exploration. The reduced gravity on the Lunar surface, (over that
on the Martian surface), would result in an increased range or
capability over that of the Mars vehicle since many of the power
and energy requirements for the vehicle are gravity dependent.

Author
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A84-39233
ECOLOGICAL PROBLEMS AND EXTENDED LIFE SUPPORT
ON THE MARTIAN SURFACE
B. MAGUIRE, JR. (Texas, University, Austin, TX) IN: The case
for Mars; Proceedings of the Conference, Boulder, CO, April 28-May
2, 1981. San Diego, CA, Univelt, Inc., 1984, p. 163-171. refs
(AAS PAPER 81-238) Copyright

Questions regarding the expansion of life from its planet of
origin are considered, taking into account the colonization of Mars
from earth. The advantages of Mars are related to the possession
of gravity, and (apparently) the relatively ready availability of all
the major and minor elements which take part in the functioning
of biological ecosytstems. It is pointed out that in any
human-supporting, extraterrestrial ecosystem, an essentially
complete cycling of all of the important elements must occur unless
supplies external to the community are (sufficiently) readily
available. Attention is given to the results of laboratory work with
some small but closed samples of agricultural ecosystems, the
observed collapse of samples of ecosystems, the avoidance of
the inclusion of plant disease organisms in a self-supporting ciosed
ecosystem, and problems with respect to the microbial flora of
seif-sustaining extraterrestrial colonies. G.R.

A90-16532* National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
SPACE STATION ACCOMMODATION OF LIFE SCIENCES IN
SUPPORT OF A MANNED MARS MISSION
BARRY D. MEREDITH, KELL! F. WILLSHIRE, JANE A. HAGAMAN
(NASA, Langley Research Center, Hampton, VA), and RHEA M.
SEDDON (NASA, Johnson Space Center, Houston, TX) IN: The
case for Mars lll: Strategies for exploration - Technical. San Diego,
CA, Univelt, Inc., 1989, p. 95-106.
(AAS PAPER 87-233) Copyright

Results of a life science impact analysis for accommodation
to the Space Station of a manned Mars mission are discussed. In
addition to addressing such issues as on-orbit vehicle assembly
and checkout, the study also assessed the impact of a life science
research program on the station. A better understanding of the
effects on the crew of long duration exposure to the hostile space
environment and to develop controls for adverse effects was the
objective. Elements and products of the life science
accommodation include: the identification of critical research areas;
the outline of a research program consistent with the mission
timeframe; the quantification of resource requirements; the
allocation of functions to station facilities; and a determination of
the impact on the Space Station program and of the baseline
configuration. Resuits indicate the need at the Space Station for
two dedicated life science lab modules; a pocket lab to support a
4-meter centrifuge; a quarantine module for the Mars Sample
Return Mission; 3.9 man-years of average crew time; and 20
kilowatts of electrical power. C.E.

A90-18657" National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
AN OVERVIEW OF SELECTED BIOMEDICAL ASPECTS OF
MARS MISSIONS
JOHN BILLINGHAM (NASA, Ames Research Center, Moffett Field,
CA) IN: The case for Mars IIi: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
167-169. refs
(AAS PAPER 87-189) Copyright

There are major unresolved questions about changes in
physiology of the crews of future zero-gravity manned Mars mission
vehicles. This paper summarizes the changes induced by long
duration weightlessness in different body systems, and emphasizes




the need for further research into these changes using animal
and human subjects in space and in ground-based simulations. If
- the changes are shown not to be acceptable, it will be necessary
to provide artificial gravity for the crew. Artificial gravity itself
produces some physiological problems, and these also require
extensive study. Both lines of research must be pursued with
some urgency so that the major decision to have or not to have
artificial gravity can be made on the basis of adequate
information. Author

52
AEROSPACE MEDICINE

Includes physiological factors; biological effects of radiation; and
effects of weightiessness on man and animals.

AB84-39234
THE MEDICAL ASPECTS OF A FLIGHT TO MARS
D. WOODARD and A. R. OBERG IN: The case for Mars;
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981,
San Diego, CA, Univelt, inc., 1984, p. 173-180.
(AAS PAPER 81-239) Copyright

Perhaps the greatest problem concerning a manned flight to
Mars is related to uncertainties regarding the effect of a number
of flight-related factors on the physical heaith and weli-being of
the crew. Of particular importance appears the long duration of
the flight, which is probably two and a half years. The flight would
involve a long exposure to various forms of radiation. Other
questions are related to the prospect of having to survive the
debilitating effects of zero gravity, and the further complication of
having to survive the g-forces of landings both on Mars and later
again on earth. The medical problems of such a flight are
considered, taking into account the overall response of the human
body to a zero-gravity environment, health countermeasures to
reduce the worst side-effects of long-term space flight, design
factors which can avoid health problems, and the medical supplies
and facilities which might be needed to maintain health during the
flight. G.R.

A84-39235
MODIFICATIONS OF CONVENTIONAL MEDICAL-SURGICAL
TECHNIQUES FOR USE IN NULL GRAVITY
R. M. BEATTIE, JR. IN: The case for Mars; Proceedings of the
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 181-184. refs
(AAS PAPER 81-240) Copyright

The possibility is considered that during the mission at least
one person of the crew will experience clinical death by
cardio-puimonary arrest. Microgravity-related physical conditions
will make all human resuscitative effors difficult. it is, therefore,
recommended that the crew have well rehearsed standing orders
for methods of clinical resuscitation. A Ready Area is to be prepared
with mechanical chest compression, intermittent positive pressure
ventilatory, and appropriate emergency adjective resuscitative
equipment. Attention is given to details concerning the standing
orders, and the equipment needed for the Ready Area. G.R.

A90-16537
ASTRONAUT INTERDISCIPLINARY AND MEDICAL/DENTAL
TRAINING FOR MANNED MARS MISSIONS
HAROLD E. FILBERT (Martin Marietta Corp., Denver, CO) and
DONALD J. KLEIER (Colorado, University, Denver) IN: The case
for Mars Iii: Strategies for exploration - Technical. San Diego, CA,
Univelt, Inc., 1989, p. 161-170.
(AAS PAPER 87-238) Copyright

This paper presents a general discussion of the medical and
dental needs of astronauts on a manned Mars mission and a
study of tradeoffs in meeting those needs. The discussion is based
on the concept of interdisciplinary astronaut training/skills for

53 BEHAVIORAL SCIENCES

prolonged manned space missions. The authors focus on the
advantages of at least two years of intensive training in general
medical practice and dentistry, with emphasis on space medicine
and remote practice skills for all astronauts assigned to the mission.
Existing, federally-funded training programs and facilities to
accomplish the task are cited. Author

A90-16658* National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
ARTIFICIAL GRAVITY FOR LONG DURATION SPACEFLIGHT
MALCOLM M. COHEN (NASA, Ames Research Center, Moffett
Field, CA) IN: The case for Mars Ili: Strategies for exploration -
General interest and overview. San Diego, CA, Univelt, Inc., 1989,
p. 171-178.
(AAS PAPER 87-190) Copyright

This paper reviews the fundamental physical properties of
gravitational and centrifuga! forces, describes the physiological
changes that result from long-term exposure to the nearly
gravity-free environment of space, and explores the nature of these
changes. The paper then cites currently employed and advanced
techniques that can be used to prevent some of these changes.
Following this review, the paper examines the potential use of
artificial gravity as the ultimate technique to maintain terrestrial
levels of physiological functioning in space, and indicates some
of the critical studies that must be conducted and some of the
trade-offs that must be made before artificial gravity can intelligently
be used for long duration spaceflight. Author

A91-14071#
RADIATION SHIELDING ESTIMATION FOR MANNED SPACE
FLIGHT TO THE MARS
V. E. DUDKIN, E. E. KOVALEV, A. V. KOLOMENSKIH, V. A,
SAKOVICH (Institut Mediko-Biologicheskikh Problem, Moscow,
USSR), V. F. SEMENOV (AN SSSR, Institut Vysokikh Temperatur,
Moscow, USSR) et al. |IAF, International Astronautical Congress,
41st, Dresden, Federal Republic of Germany, Oct. 6-12, 1990.
4p. refs
(IAF PAPER 90-544) Copyright

The problem of shielding the crew from radiation during Mars
missions is studied. Radiation hazards caused by Galactic cosmic
rays (GCR) and solar cosmic rays (SCR) are considered, and it is
noted that a radiation-proof shelter can reduce the hazards
associated with SCR, while the shielding from multicharged GCR
ions may be required for a habitation section of the spacecraft.
The pulse operation of a nuclear rocket engine may also require
some additional shielding of the crew and liquid-hydrogen tanks
against reactor radiation. It is pointed out that any long-term
residence within the earth radiation beit can be avoided by using
certain combinations of space flight conditions, while Martian
mission conditions may be attained by soiving the problem of
optimal distribution of the mass components for shadow shielding
of the reactor and for shielding of the radiation-proof shelter and
habitation section. The lowest estimate of the spacecraft mass
including the radiation-shielding mass is found to be 500-550
tons. V.T.

53
BEHAVIORAL SCIENCES

includes psychological factors; individual and group behavior; crew
training and evaluation; and psychiatric research.

A90-16659" Anacapa Sciences, Inc., Santa Barbara, CA.
HABITABILITY DURING LONG-DURATION SPACE MISSIONS -
KEY ISSUES ASSOCIATED WITH A MISSION TO MARS

JACK STUSTER (Anacapa Sciences, Inc., Santa Barbara, CA) IN:
The case for Mars lll: Strategies for exploration - General interest
and overview. San Diego, CA, Univelt, inc., 1989, p. 181-191.
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(Contract NAS2-11690)
(AAS PAPER 87-191) Copyright

Isolation and confinement conditions similar to those of a
long-duration mission to Mars are examined, focusing on 14
behavioral issues with design implications. Consideration is given
to sleep, clothing, exercise, medical support, personal hygiene,
food preparation, group interaction, habitat aesthetics, outside
communications, recreational opportunities, privacy, waste disposal,
onboard training, and the microgravity environment. The results
are used to develop operational requirements and habitability
design guidelines for interplanetary spacecraft. R.B.

A90-16660
CREW SELECTION FOR A MARS EXPLORER MISSION
BENTON C. CLARK (Martin Marietta Planetary Sciences
Laboratory, Denver, CO) IN: The case for Mars lll: Strategies
for exploration - General interest and overview. San Diego, CA,
Univelt, Inc., 1989, p. 193-203.
(AAS PAPER 87-192) Copyright

Issues related to the selection of crew members for a manned
mission to Mars are discussed. The crew skills and character
needed for a Mars mission are outlined and six basic types of
crewmember skills needed for a mission are outlined. Consideration
is given to the age and characteristics of crewmembers, safety,
privacy, communication, and the issue of mission nomenclature.

R.B.

A90-16661° National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
HUMAN ASPECTS OF MISSION SAFETY
MARY M. CONNORS (NASA, Ames Research Center, Moftett Field,
CA) IN: The case for Mars lI: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
205-213. rets
(AAS PAPER 87-193) Copyright

Recent discussions of psychology's involvement in spaceflight
have emphasized its role in enhancing space living conditions
and incresing crew productivity. While these goals are central to
space missions, behavioral scientists should not lose sight of a
more basic flight requirement - that of crew safety. This paper
examines some of the processes employed in the American space
program in support of crew safety and suggests that behavioral
scientists could contribute to flight safety, both through these formal
processes and through less formal methods. Various safety areas
of relevance to behavioral scientists are discussed. Author

A91-10023#
ANTARCTIC ANALOGS OF HUMAN FACTORS ISSUES
DURING LONG-DURATION SPACE MISSIONS
LARRY BELL (Houston, University, TX) AlAA, Space Programs
and Technologies Conference, Huntsville, AL, Sept. 25-27, 1990.
7p. refs
(AIAA PAPER 90-3564) Copyright

The Sasakawa International Center for Space Architecture
(SICSA) has undertaken requirement definition and planning studies
for an international research and technology testbed facility in
Antarctica to support future space mission simulations. This paper
discusses the relevance of such an antarctic facility as an analog
for examining human factors issues and requirements for
long-duration space missions. It also highlights applications,
benefits and limitations of other analogs from which important
human factors lessons may be learned. Author

A91-10091°#  National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
LONG DURATION MISSION SUPPORT OPERATIONS
CONCEPTS
T. W. EGGLESTON (NASA, Johnson Space Center, Houston, TX)
AlAA, Space Programs and Technologies Conference, Huntsville,
AL, Sept. 25-27, 1990. 8 p. refs
(AIAA PAPER 90-3682) Copyright

It is suggested that the system operations will be one of the
most expensive parts of the Mars mission, and that, in order to
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reduce their cost, they should be considered during the conceptual
phase of the Space Exploration Initiative (SEI) program. System
operations of Space Station Freedom, Lunar outpost, and Mars
Rover Sample Return are examined in order to develop a similar
concept for the manned Mars mission. Factors that have to be
taken into account include: (1) psychological stresses caused by
long periods of isolation; (2) the effects of boredom; (3) the
necessity of onboard training to maintain a high level of crew
skills; and (4) the 40-min time delays between issuing and receiving
a command, which make real-time flight control inoperative and
require long-term decisions to be made by the ground support.B
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MAN/SYSTEM TECHNOLOGY AND LIFE
SUPPORT

Inciudes human engineering; biotechnology; and space suits and
protective clothing.

AB84-39232° National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
EXTENDED MISSION LIFE SUPPORT SYSTEMS
P. D. QUATTRONE (NASA, Ames Research Center, Moffett Field,
CA) IN: The case for Mars; Proceedings of the Conference,
Boulder, CO, April 29-May 2, 1981. San Diego, CA, Univelt, Inc.,
1984, p. 131-162. refs
(AAS PAPER 81-237) Copyright

The life support systems employed in manned space missions
have generally been based on the use of expendables, such as,
for instance, liquid oxygen. For the conducted space missions,
such systems have advantages related to volume, weight, and
economy of power consumption. However, this situation will change
in connection with Shuttle Orbiter missions of extended duration,
permanent manned facilities in low-earth orbit, and ultimately
manned planetary vehicles. A description is given of suitable
regenerative lite support systems for such extended manned space
missions. Attention is given to advanced life support systems
technology, air revitalization, CO2 reduction, oxygen generation,
nitrogen generation, trace contaminant control, air revitalization
system integration, control/monitor instrumentation, water
reclamation, solid waste management, manned testing and life
support integration, an enhanced duration orbiter, a space
operations center, manned interplanetary life support systems, and
future development requirements. G.R.

A84-39238° National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
THE ATMOSPHERE OF MARS - RESOURCES FOR THE
EXPLORATION AND SETTLEMENT OF MARS
T. R. MEYER (Bouider Center for Science and Policy, Boulder,
CO) and C. P. MCKAY (NASA, Ames Research Center, Space
Science Div., Moffett Field, CA) IN: The case for Mars;
Proceedings of the Conference, Boulder, CO, April 29-May 2, 1981.
San Diego, CA, Univelt, Inc., 1984, p. 209-232. refs
(AAS PAPER 81-244) Copyright

This paper describes methods of processing the Mars
atmosphere to supply water, oxygen and buffer gas for a Mars
base. Existing life support system technology is combined with
innovative methods of water extraction, and buffer gas processing.
The design may also be extended to incorporate an integrated
greenhouse to supply food, oxygen and water recycling. It is found
that the work required to supply one kilogram of an argon/nitrogen
buffer gas is 9.4 kW-hr. To extract water from the dry Martian
atmosphere can require up to 102.8 kW-hr per kilogram of water
depending on the relative humidity of the air. Author

A90-16531* New York Univ., New York.
THE CASE FOR CELLULOSE PRODUCTION ON MARS




TYLER VOLK (New York University, NY) and JOHN D. RUMMEL
(NASA, Life Sciences Div., Washington, DC) IN: The case for
Mars )Il: Strategies for exploration - Technical. San Diego, CA,
Univelt, Inc., 1989, p. 87-94. refs
(Contract NCA2-101)
(AAS PAPER 87-232) Copyright

From examining the consequences of not requiring that all
wastes from life support be recycled back to the food plants, it is
concluded that cellulose production on Mars could be an important
input for many nonmetabolic material requirements on Mars. The
fluxes of carbon in cellulose production would probably exceed
those in food production, and therefore settlements on Mars could
utilize cellulose farms in building a Mars infrastructure. Author

A90-16534
A ZERO-G CELSS/RECREATION FACILITY FOR AN
EARTH/MARS CREW SHUTTLE
ALICE EICHOLD (California, University, Berkeley) IN: The case
for Mars lll: Strategies for exploration - Technical. San Diego, CA,
Univelt, Inc., 1989, p. 129-138. refs
(AAS PAPER 87-235) Copyright

This paper presents a zero-gravity architectural design for a
module on an earth/Mars crew shuttle. Although in the early stages
of development and of uncertain immediate cost-effectiveness,
Controlled Ecological Life Support (CELSS) promises the most
synergetic long-term means for providing food, air and water as
well as accommodating "homesickness'. in this project, plant growth
units have been combined with recreation facilities to ensure that
humans have daily opportunities to view their gardens. Furthermore,
human exercise contributes toward powering the mechanical
systems for growing the plants. The solution was arrived at by
the traditional architectural design process with an empirical
emphasis. The solution consists of smaller volumes for exercise
facilities and plant growth units contained within a large geometrical
sphere. Moisture and heat-generating activities thus share facilities
and favorable gas exchanges are exploited. Author

A90-16656 Life Systems, Inc., Cleveland, OH.
LIFE SUPPORT SYSTEM CONSIDERATIONS AND
CHARACTERISTICS FOR A MANNED MARS MISSION
FEROLYN T. POWELL (Life Systems, Inc., Cleveland, OH) IN:
The case for Mars lii: Strategies for exploration - General interest
and overview. San Diego, CA, Univelt, inc., 1989, p. 135-155.
Research supported by NASA and Life Systems, Inc. refs
(AAS PAPER 87-188) Copyright

Both the Low Earth Orbit (LEO) Space Station and future
manned space missions require Environmental Control and Life
Support Systems (ECLSS) that provide safe, comfortable
environments in which humans can live and work. The ECLSS
functions and requirements (performance and design load) for these
missions are defined. Options for closing the ECLSS cycle are
discussed and the level of closure planned for the initial orbital
capability (IOC) Space Station are quantified. The impacts of the
remaining ECLSS expendables on advanced missions are
discussed. Also discussed are the new ECLSS requirements related
to generation of food (via plants, animals and/or fish). The paper
focuses on the ECLSS design drivers associated with a manned
Mars mission. These drivers include environmental, operational
and interface drivers. Characteristics of the I0C Space Station
ECLSS are given to provide a quantitative feeling of the magnitude
of the ECLSS for a Mars mission. Author

A90-49313*  National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
ACTIVE THERMAL CONTROL SYSTEMS FOR LUNAR AND
MARTIAN EXPLORATION
MICHAEL K. EWERT, PATRICIA A. PETETE, and JOHN DZENITIS
(NASA, Johnson Space Center, Houston, TX) SAE, Intersociety
Conference on Environmental Systems, 20th, Wiliamsburg, VA,
July 9-12, 1990. 13 p. refs
(SAE PAPER 901243) Copyright

Several ATCS options including heat pumps, radiator shading
devices, and single-phase flow loops were considered. The ATCS
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chosen for both lunar and Martian habitats consists of a heat
pump integral with a nontoxic fluid acquisition and transport loop,
and vertically oriented modular reflux-boiler radiators. The heat
pump operates only. during the lunar day. The lunar and Martian
transfer vehicles have an internal single-phase water-acquisition
loop and an external two-phase ammonia rejection system with
rotating inflatable radiators. The lunar and Martian excursion
vehicles incorporate internal singie-phase water acquisition, which
is connected via heat exchangers to external body-mounted
single-phase radiators. A water evaporation system is used for
the transfer vehicles during periods of high heating. Author

A90-49430* National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
A METHODOLOGY FOR CHOOSING CANDIDATE MATERIALS
FOR THE FABRICATION OF PLANETARY SPACE SUIT
STRUCTURES
GILDA JACOBS (NASA, Ames Research Center; Sterling Software,
Inc., Moffett Field, CA) SAE, Intersociety Conference on
Environmental Systems, 20th, Williamsburg, VA, July 9-12, 1990.
9p. refs
(SAE PAPER 901429) Copyright

A study of space suit structures and materials is under way at
NASA Ames Research Center, Moffett Field, CA. The study was
initiated by the need for a generation of lightweight space suits to
be used in future planetary Exploration Missions. This paper
provides a brief description of the Lunar and Mars environments
and reviews what has been done in the past in the design and
development of fabric, metal, and composite suit components in
order to establish criteria for comparison of promising candidate
materials and space suit structures. Environmental factors and
mission scenarios will present challenging material and structural
requirements; thus, a program is planned to outiine the methodology
used to identify materials and processes for producing candidate
space suit structures which meet those requirements. Author

A91-10159#
ADVANCED EXTRAVERICULAR ACTIVITY REQUIREMENTS IN
SUPPORT OF THE MANNED MARS MISSION
WILLIAM R. POGUE, GERALD P. CARR (CAMUS, Inc., Huntsville,
AL), and NICHOLAS SHIELDS, JR. (RECCEN Corp., Huntsville,
Al) AlAA, Space Programs and Technologies Conference,
Huntsville, AL, Sept. 25-27, 1990. 8 p. refs
(AIAA PAPER 90-3801) Copyright

The support requirements for an extended human exploration
of the Martian surface by a crew of eight are examined. Emphasis
is given to EVA activities at the base camp and to extended EVA
and the environmental conditions impacting on the latter. The roles
of hardware and machine system requirements in EVA are
addresed. C.D.

A91-12594" National Aeronautics and Space Administration.
Ames Research Center, Moffett Fieid, CA.
CREW SUPPORT FOR AN INITIAL MARS EXPEDITION
YVONNE A. CLEARWATER (NASA, Ames Research Center,
Moftett Field, CA) and ALBERT A. HARRISON (California,
University, Davis) British Interplanetary Society, Journal (ISSN
0007-084X), vol. 43, Nov. 1990, p. 513-518. refs
Copyright

Mars crews will undergo prolonged periods of isolation and
confinement, iravei unprecedented distances from sarth and be
subjected to formidable combinations of hardships and dangers.
Some of the biomedical, psychological and social challenges of
the first manned Mars expedition are reviewed and means of
aligning humans, technology and space habitats in the interests
of mission success are identified. Author

A91-14737* National Aeronautics and Space Administration,
Washington, DC.

CONTROLLED ECOLOGICAL LIFE SUPPORT SYSTEM
MAURICE M. AVERNER (NASA, Washington, DC)  IN: Lunar
base agriculture: Soils for plant growth. Madison, WI, American
Society of Agronomy, Inc., Crop Science Society of America, inc.,
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and Soil Science Society of America, Inc., 1989, p. 145-153.
refs
Copyright

The NASA CELLS program is based upon the integration of
biological and physiochemical processes in order to produce a
system that will produce food, a breathable atmosphere, and
potable water from metabolic and other wastes. The CELSS
concept is described and a schematic system diagram is provided.
Central to the CELSS concept is the Plant Growth Chamber, where
green plant photosynthesis produces food, and aids in the
production of oxygen and water. Progress to date at the Breadboard
Facility at the Kennedy Space Center is summarized. The
Breadboard Facility will implement the basic techniques and
processes required for a CELSS based on photosynthetic plant
growth in a ground-based system of practical size and results will
be extrapolated to predict the performance of a full-sized system.
Current available technology and near-future forecasts for plant
growth techniques (focusing on maximum productivity), food
sources (to select optimal CELSS plants), and waste management
and contaminant control are discussed. L.K.S.

A91-14738" National Aeronautics and Space Administration. John
F. Kennedy Space Center, Cocoa Beach, FL.
CELSS BREADBOARD PROJECT AT THE KENNEDY SPACE
CENTER
R. P. PRINCE and W. M. KNOTT, Ill {(NASA, Kennedy Space
Center, Cocoa Beach, FL) IN: Lunar base agriculture: Soils for
plant growth. Madison, WI, American Society of Agronomy, Inc.,
Crop Science Society of America, Inc., and Soil Science Society
of America, Inc., 1989, p. 155-163. refs
Copyright

The CELSS Breadboard Project is described, noting that it was
initiated to study aspects of a CELSS for long-term space missions.
Topics for extensive investigation included air and water
regeneration, engineering control, and food production. The many
options available for growing food crops in commercial plant growth
chambers were investigated and the best of this information was
translated to the Biomass Production Chamber (BPC). The chamber
contains 20 sq m of crop growing area under 96 400 W HPS
lamps; sixteen 0.25 sq m plant growth trays used on each of four
growing shelves for a total of 64 trays; and one 256-L nutrient
solution reservoir with the appropriate continuous-flow, thin-film
plumbing for each shelf. A heating, ventilating, and air-conditioning
system maintains atmospheric conditions and serves to distribute
oxygen and carbon dioxide and maintain pressure at 12 mm of
water. The control and monitoring subsystem, which uses a
programmable logic controller, manages the BPC subsystems.

LK.S.

A91-23461
BIOGENERATIVE LIFE-SUPPORT SYSTEM - FARMING ON
THE MOON
FRANK B. SALISBURY (Utah State University, Logan)  (lAA,
IAF, AN SSSR, et al., Symposium on Man in Space, 8th, Tashkent,
Uzbek SSR, Sept. 29-Oct. 3, 1990) Acta Astronautica (ISSN
0094-5765), vol. 23, 1991, p. 263-270. refs
Copyright

Plants can be used to recycle food, oxygen, and water in a
closed habitat on the moon, on Mars, or in a spacecraft. A variety
of crops might be grown, probably in underground growth units to
avoid harmful radiation and micrometeorites. Artificial light will be
necessary, although some sunlight might be brought in via fiber
optics. Transpired water will be condensed in coils exposed to
space and shaded from sunlight. Oxygen and CO2 levels will be
maintained by controliing photosynthesis and waste oxidation.
Plants will be grown hydroponically. Wheat has been produced at
the rate of 60 g/sq m per day, which could feed a human
continuously from a farm only of 13 sq m, but nearly continuous
light equivalent to sunlight is required along with ideal temperatures,
enriched CO2, suitable cultivars, etc. Author
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A91-23462
REGENERATIVE LIFE-SUPPORT SYSTEM DEVELOPMENT
PROBLEMS FOR THE MARS MISSION
V. N. KUBASOV, E. N. ZAITSEV, V. A. KORSAKOV, A. S.
GUZENBERG, and A. A. LEPSKII (NPO Energiia, Moscow,
USSR) (IAA, IAF, AN SSSR, et al., Symposium on Man in Space,
8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3, 1990) Acta Astronautica
(ISSN 0094-5765), vol. 23, 1991, p. 271-274.
Copyright

The advantages and disadvantages of physiochemical and
biotechnological compiexes of life support systems are discussed.
These systems are each analyzed on the basis of technological,
economic, and biomedica! parameters. The complex of
technological and economic parameters includes the mass, power
consumption, reliability, maintainability, and crew labor outlay both
in the initial condition and under operating conditions. The most
likely trends of manned cosmonautics development for the nearest
decades are discussed. Analysis results show that the
physiochemical complex is more advantageous than the
biotechnological one for all cases considered. This conclusion is
based on significant differences in energy utilization factors: 70-90
percent for the PhChLSS and 5-10 percent for the BLSS. System
selection is also discussed. L.K.S.

A91-23463
PROVIDING A SOUND HABITAT FOR MAN IN SPACE
MARIA STRANGER-JOHANNESSEN (Centre for Industrial
Research, Oslo, Norway) (IAA, IAF, AN SSSR, et al., Symposium
on Man in Space, 8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3,
1990) Acta Astronautica (ISSN 0094-5765), vol. 23, 1991, p.
275-277. refs
Copyright

The problem of microbial growth on materials in a closed
environment is discussed, drawing inferences from analogous
situations which occur in new buildings which are more tightly
sealed and widely employ air conditioning. It is noted that the
'sick building syndrome’ has contributed to serious problems such
as legionnaire's disease and that the potential of such
microbiological hazards must be researched and guarded against
in long-term space habitats. ESA has begun work on microbiai
contamination control measures and requirements. Procedures are
being established as a basis for the microbiological cleanliness of
the manned space environment and for the avoidance of
microbiological growth on materials and equipment. Severali testing
techniques are being studied which will aliow both a rapid screening
of materials’ resistance to microbiological growth and proper
durability testing of materials and equipment to be used for up to
30 years in space habitats. L.K.S.

A91-23464
MANNED EXPEDITION TO MARS - CONCEPTS AND
PROBLEMS
LIUBOV' B. STROGONOVA (Institut Mediko-Biologicheskikh
Problem, Moscow, USSR) and LEONID GORSHKOV (NPO
Energiia, Moscow, USSR) (IAA, IAF, AN SSSR, et al., Symposium
on Man in Space, 8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3,
1990) Acta Astronautica (ISSN 0094-5765), vol. 23, 1991, p.
279-287.
Copyright

The concept of long-term interplanetary flight is discussed, and
some main criteria for interplanetary spacecraft are presented.
The present state of space technology for interplanetary spacecraft
is considered, and it is argued that the knowledge accumulated
at present by cosmonauts is sufficient to begin preparation for a
manned flight to Mars. An eight-stage program for such a flight,
which is projected to have a duration of two years, is presented.
The biomedical aspects of long-term interplanetary flight and the
complications arising due to lack of technical supply for the solution
of such problems are considered. The questions of the biological
security of the earth after the planetary flight and of international
cooperation in interplanetary expeditions are also addressed. KS

L.K.S.




N90-26499°# Wisconsin Univ., Milwaukee. Space Architecture
Design Group.
GENESIS LUNAR OUTPOST CRITERIA AND DESIGN
TIMOTHY HANSMANN, ed. & comp., GARY T. MOORE, ed. &
comp., DINO J. BASCHIERA, JOE PAUL FIEBER, and JANIS
HUEBNER MOTHS 11 Jun. 1990 119 p
{Contract NASW-4435)
(NASA-CR-186831; NAS 1.26:186831; R90-1;
ISBN-0-938744-69-0) Avail: NTIS HC A0O6/MF A0O1 CSCL 05H
This design study--the third in the space architecture
series--focused on the requirements of an early stage lunar outpost.
The driving assumptions of the scenario was that the base would
serve as a research facility and technology testbed for future Mars
missions, a habitat supporting 12 persons for durations of up to
20 months, and would sustain the following five experimental
facilities: Lunar surface mining and production analysis facility,
construction technology and materials testbed, closed
environmental life support system (CELSS) test facility, lunar farside
observatory, and human factors and environment-behavior research
facility. Based upon the criteria set forth in a previous programming
document, three preliminary lunar base designs were developed.
Each of the three schemes studied a different construction method
and configuration. The designs were then evaluated in terms of
environmental response, human habitability, transportability,
constructability, construction dependability and resilience, and their
suitability in carrying out the desired scientific research. The positive
points of each scheme were then further developed by the entire
project team, resulting in one integrated lunar outpost design.
Author

N91-16570#  Messerschmitt-Boelkow-Biohm G.m.b.H., Bremen
(Germany, F.R.).
COMMON APPROACH FOR PLANETARY HABITATION
SYSTEMS IMPLEMENTATION
FRANK STEINSIEK and UWE APEL 1990 11 p Presented at
the 20th International Conference on Environmental Systems,
Williamsburg, VA, 9-12 Jul. 1990 Previously announced in IAA
as A90-49425 Prepared in cooperation with Erno
Raumfahrttechnik G.m.b.H.
XMBB-UO-0115-90-PUB; ETN-91-98549) Avail: NTIS HC/MF
03

Possible concepts for orbital, lunar and Martian habitations are
based on ESA-European Manned Space Infrastucture (EMSI)
program philosophy are presented. The key requirements for the
design of an orbital habitat were reviewed, such as atmospheric
pressure, temperature, radiation and gravity levels. The human
factors such as life cycle, ergonomy and psychological needs were
examined. A common approach for these three cases may be to
use as much available hardware in each step of the scenario as
possible. The implementation of the habitation systems offers the
possibility to work in an evolutionary way, starting with the EMSI
Columbus based hardware. ESA
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Includes exobiology; planetary biology; and extraterrestrial iife.

A898-51522* National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.

STABLE CARBON ISOTOPE FRACTIONATION IN THE
SEARCH FOR LIFE ON EARLY MARS

L. J. ROTHSCHILD and D. DESMARAIS (NASA, Ames Research
Center, Moffett Field, CA) (COSPAR, Plenary Meeting, 27th,
Topical Meeting and Workshops on the Life Sciences and Space
Research XXMi(2): Planetary Biology and Origins of Life, 20th,
21st, and 23rd, Espoo, Finland, July 18-29, 1988) Advances in
Space Research (ISSN 0273-1177), vol. 9, no. 6, 1989, p.
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159-165. refs
Copyright

The utility of measurements of C-13/C-12 ratios in organic vs
inorganic deposits for searching for signs of life on early Mars is
considered. It is suggested that three assumptions are necessary.
First, if there was life on Mars, it caused the fractionation of
carbon isotopes in analogy with past biological activity on earth.
Second, the fractionation would be detectable. Third, if a
fractionation would be observed, there exist no abiotic explanations
for the observed fractionation pattern. 1.S.

A89-51523* Florida State Univ., Tallahassee.
LIFE ON MARS - HOW IT DISAPPEARED (IF IT WAS EVER
THERE)
E. IMRE FRIEDMANN and ALI M. KORIEM (Florida State University,
Tallahassee) (COSPAR, Plenary Meeting, 27th, Topical Meeting
and Workshops on the Life Sciences and Space Research XXIlI(2):
Planetary Biology and Origins of Life, 20th, 21st, and 23rd, Espoo,
Finland, July 18-29, 1988) Advances in Space Research (ISSN
0273-1177), vol. 8, no. 6, 1989, p. 167-172. refs
(Contract NSG-7337; NSF DPP-83-14180)
Copyright

Information available on Mars chemistry suggest that conditions
on early Mars may have been suitable for life. This paper examines
the possible events that led to the disappearance of life, assuming
it existed, from the surface of Mars. The sequence of events
leading to lite extinction on early Mars assumes the following
steps: (1) a decrease of temperature and humidity levels, leading
to a selection of microorganisms for tolerance of low temperatures
and arid conditions; (2) further deterioration of environment leading
to withdrawal of cold-adapted organisms to protected niches under
the surface; (3) further cooling producing heavy stresses in these
organisms; and (4) further deterioration of the environment resulting
in extinction. This sequence of events is considered parallel events
documented for the microbial community in the Ross Desert of
Antarctica, where TEM examinations of the material detected
progressive stages of cell damage and death. L.S.

A89-51527* National Aeronautics and Space Administration.
Ames Research Center, Moffett Fieid, CA.
PEROXIDES AND THE SURVIVABILITY OF
MICROORGANISMS ON THE SURFACE OF MARS
ROCCO L. MANCINELLI (NASA, Ames Research Center, Moffett
Field, CA) (COSPAR, Plenary Meeting, 27th, Topical Meeting
and Workshops on the Life Sciences and Space Research XXIII(2):
Planetary Biology and Origins of Life, 20th, 21st, and 23rd, Espoo,
Finland, July 18-29, 1988) Advances in Space Research (ISSN
0273-1177), vol. 9, no. 6, 1989, p. 191-195. refs
Copyright

This paper discusses the possibility that any terrestrial
microorganisms brought to Mars might survive the unhospitable
environment of that planet, with special attention given to the
effects of highly oxidizing material that is now known to cover the
Martian surface. Data obtained by the gas exchange experiment
on Viking indicate that, if all of the released oxygen is assumed
to come from H202, the concentrations of H202 on Mars range
from 25 to 250 ppm. Laboratory data indicate that certain soil
bacteria are able to survive and grow to stationary phase at H202
concentrations as high as 30,000, indicating that, if there is H202
at the level of 250 ppm or even an order of magnitude greater on
the Martian suriace, this fact aione wouid not make the suriace
of Mars self-sterilizing. 1.S.

AB89-51528"* National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.

PLANETARY PROTECTION ISSUES IN ADVANCE OF HUMAN
EXPLORATION OF MARS

CHRISTOPHER P. MCKAY (NASA, Ames Research Center, Moffett
Field, CA) and WANDA L. DAVIS (Search for Extraterrestrial
Intelligence Institute, Los Altos, CA) (COSPAR, Plenary Meeting,
27th, Topical Meeting and Workshops on the Lite Sciences and
Space Research XXlI(2): Planetary Biology and Origins of Life,
20th, 21st, and 23rd, Espoo, Finland, July 18-29, 1988) Advances
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in Space Research (ISSN 0273-1177), vol. 9, no. 6, 1989, p.
197-202. refs
Copyright

The major planetary quarantine issues associated with human
exploration of Mars, which is viewed as being more likely to harbor
indigenous life than is the moon, are discussed. Special attention
is given to the environmental impact of human missions to Mars
due to contamination and mechanical disturbances of the local
environment, the contamination issues associated with the return
of humans, and the planetary quarantine strategy for a human
base. It is emphasized that, in addition to the question of indigenous
life, there may be some concern of returning to earth the earth
microorganisms that have spent some time in the Martian
environment. it is suggested that, due to the fact that a robot
system can be subjected to more stringent controls and protective
treatments than a mission involving humans, a robotic sample
return mission can help to eliminate many planetary-quarantine
concerns about returning samples. 1.S.
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Inciudes educational matters.

A90-13598#
TOGETHER TO MARS - AN INTERNATIONAL STUDENT
CONTEST CULMINATING IN THE INTERNATIONAL SPACE
YEAR
LOUIS FRIEDMAN and TIMOTHY LYNCH (Planetary Society,
Pasadena, CA) |AF, International Astronautical Congress, 40th,
Malaga, Spain, Oct. 7-13, 1989. 6 p.
(IAF PAPER 89-543) Copyright

Plans are presented for an international student contest on
the human exploration of Mars to be conducted in the International
Space Year, 1992. The rules of the contest, plans for awards,
and types of entries that may be submitted to the contest are
considered. Possible topics for the contest are presented, focusing
on the theme of life support for humans for flight to and from and
exploring Mars. R.B.

A90-16654"  National Aeronautics and Space Administration,
Washington, DC.
A MANDATE FOR SPACE EDUCATION
JESCO VON PUTTKAMER (NASA, Office of Space Flight,
Washington, DC) IN: The case for Mars lil: Strategies for
exploration - General interest and overview. San Diego, CA, Univelt,
Inc., 1989, p. 57-72.
(AAS PAPER 87-182) Copyright

Issues related to public education in preparation for a manned
Mars program are discussed. Consideration is given to the near-
and long-term goals of the space program, the benefits of human
expansion in space, and long-range planning for fundamental
problem areas in space education. important concerns for space
educators are outlined. R.B.
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Includes management planning and research.

A91-24875*#  National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.

QUALITY ASSURANCE PLANNING FOR LUNAR MARS
EXPLORATION

22

KAY MYERS (NASA, Johnson Space Center; Barrios Technology,
Inc., Houston, TX) Total Quality Management Conference, Palm
Springs, CA, Feb. 7, 8, 1991, Paper. 7 p.

A review is presented of the tools and techniques required to
meet the challenge of total quality in the goal of traveling to Mars
and returning to the moon. One program used by NASA to ensure
the integrity of baselined requirements.documents is configuration
management (CM). CM is defined as an integrated management
process that documents and identifies the functional and physical
characteristics of a facility’s systems, structures, computer software,
and components. It also ensures that changes to these
characteristics are properly assessed, developed, approved,
implemented, verified, recorded, and incorporated into the facility’s
documentation. Three principal areas are discussed that will realize
significant efficiencies and enhanced effectiveness, change
assessment, change avoidance, and requirements managemsnEt.P
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Includes cost effectiveness studies.

A84-39243" National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
THE COST OF LANDING MAN ON MARS
H. C. MANDELL, JR. (NASA, Johnson Space Center, Houston,
TX) IN: The case for Mars; Proceedings of the Conference,
Boulder, CO, April 29-May 2, 1981. San Diego, CA, Univelt, Inc.,
1984, p. 281-292.
(AAS PAPER 81-251) Copyright

in a period where the space program budget is generally static
at about 1/3 of the level reached during the Apollo program,
manned planetary flight is not considered by NASA planners to
be a realistic near term goal. Much of NASA’s current planning is
based on the perception that manned planetary flight would be
more costly than the Apollo lunar landing. This paper demonstrates
that with current technological improvements in avionics, structure,
and space transportation, the landing of an American on Mars
would cost only 1/3 to 2/3 of the lunar landing; on a per capita
basis such a program would cost less than $200, compared to
Apollo’'s $325 (all dollars in 1981 base). Given the fact that a
manned Mars landing is the last such exploration feat left to this
generation, the cost should clearly not be a major deterrent.

Author

A90-16655
FINANCING A MARS PROGRAM
CHANDLER C. SMITH (Ball Corp., Ball Aerospace Systems Group,
Boulder, CO) IN: The case for Mars lll: Strategies for exploration
- General interest and overview. San Diego, CA, Univelt, Inc.,
1989, p. 83-106. refs
(AAS PAPER 87-184) Copyright

The prospects for financing a Mars program are evaluated,
including estimates of the approximate amount of money required
to implement a program. The financial issues related to other
large-scale efforts, such as the Apollo program, the Manhattan
project, and the Tennessee Valley Authority are reviewed and
compared with the financing of a Mars program. Consideration is
given to economic base forecasts, government spending
predictions, the impact of an aging population, and the possibility
of nontraditional sources of revenue for a Mars program. R.B.

A91-14089#

WHAT IS THE COST OF SEI? AN APPROACH TO
ESTIMATING THE LIFE CYCLE COST OF THE SPACE
EXPLORATION INITIATIVE

RICHARD L. WEBB (General Dynamics Corp., Space Systems
Div., San Diego, CA) IAF, International Astronautical Congress,




41st, Dresden, Federal Repubfic of Germany, Oct. 6-12, 1990.
12 p. refs
(IAF PAPER 90-601) Copyright

The paper presents an approach for estimating the Life Cycle
Cost (LCC) of four alternative Space Exploration Initiative (SEI)
program scenarios. SE! philosophy and goals are considered of
primary importance in the cost estimation of the program. The
following primary issues have been identified: the cost of system
unreliability, the cost and benefits of international participation,
methods for estimating 'new ways of doing business’, quantification
of cost risk, cost as a measure of milestone achievement, and
‘affordability.’ It is pointed out that the possibilities for international
participation present a significant challenge in the cost estimating
of SEI with respect to divisions of responsibility, management
organization, integration activities, and variations in currencies.

B.P.

N87-17800*#  National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, AL.
MANNED MARS MISSION COST ESTIMATE
JOSEPH HAMAKER and KEITH SMITH  /n its Manned Mars
Mission. Working Group Papers, V. 2, Sect. 5, App. p 936-950
May 1986
Avail: NTIS HC A24/MF A04 CSCL 05C

The potential costs of several options of a manned Mars mission
are examined. A cost estimating methodology based primarily on
existing Marshall Space Flight Center (MSFC) parametric cost
models is summarized. These models include the MSFC Space
Station Cost Model and the MSFC Launch Vehicle Cost Model as
well as other modes and techniques. The ground rules and
assumptions of the cost estimating methodology are discussed
and cost estimates presented for six potential mission options
which were studied. The estimated manned Mars mission costs
are compared to the cost of the somewhat analogous Apollo
Program cost after normalizing the Apolio cost to the environment
and ground rules of the manned Mars missions. It is concluded
that a manned Mars mission, as currently defined, could be
accomplished for under $30 billion in 1985 dollars excluding launch
vehicle development and mission operations. Author

84
LAW, POLITICAL SCIENCE AND SPACE POLICY

Includes NASA appropriation hearings; aviation law; space law
and policy; international law; international cooperation; and patent
policy.

AB4-39241
ILAEA%ASL AND POLITICAL IMPLICATIONS OF COLONIZING
N. C. GOLDMAN (Texas, University, Austin, TX) IN: The case
for Mars; Proceedings of the Conterence, Boulder, CO, April 29-May
2, 1981. San Diego, CA, Univelt, Inc., 1984, p. 257-262. refs
(AAS PAPER 81-248) Copvright

The effects of international space law, including four treaties
and the proposed 'Moon’ treaty, on the future of Mars are
discussed. The decision to go will be made by a government or
consortium of governments, since treaty law inhibits private
enterprise in space and a mission t0 Mars would be extremely
expensive. Since the surface of Mars cannot be claimed by any
nation, any colony created there would have to be open to
inspection by representatives of other nations after giving
reasonable advance notice. Nations would, however, own the
structures that they erect on Mars. The treaty law governing the
mining of ore on celestial bodies is ambiguous. Natural resources
existing on Mars would not be the property of any state until
mined under licence from some supranational authority. C.D.
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AB9-12542
LET'S GO TO MARS TOGETHER
JOHN L. MCLUCAS and BURTON 1. EDELSON Issues in Science
and Technology (ISSN 0748-5492), vol. 5, Fall 1988, p. 52.55.
refs
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Arguments for cooperative U.S.-Soviet missions to Mars are
presented. The history of space competition since the 1950s is
briefly recalled; the current status is surveyed; and Soviet plans
for Martian missions (including the Phobos probe launched in July
1988, a heavy automated Mars lander with robotic rover for 1994,
a sample-return mission for 1996-1998, and eventuai manned
missions) are described and contrasted with NASA planning, where
the Mars Observer (1992) is the only firm program, although Mars
exploration has been established as a policy goal. Concrete steps
toward joint or international Mars missions are proposed, building
on the 1986 U.S.-Soviet cooperative agreement (which includes
four Mars-related projects): (1) defining a general concept of
cooperation, (2) setting robotic exploration in the 1990s and
manned exploration in the next century as primary goals, and (3)
convening a joint planning team to assign tasks and set schedules
in detail. T.K.
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A91-25834
WIND, SAND, AND MARS - THE 1990 TESTS OF THE MARS
BALLOON AND SNAKE
CHARLENE M. ANDERSON (Planetary Society, Pasadena, CA)
Planetary Report {ISSN 0736-3680), vol. 11, Jan.-Feb. 1991, p.
12-15.
Copyright

The observations of one member of the international team of
Planetary Society members responsible for testing the Mars balloon
and SNAKE are presented. The tests were held in the fall of
1990 in Indio, California, and concluded successfully. The test
team was made up of scientists and technicians from CNES;
observers from the Babakin Center; scientists from the Space
Research Institute of the Soviet Academy of Sciences; engineers
from the Jet Propulsion Laboratory; students from the University
of Arizona, Utah State University, UCLA, and Caltech; and Planetary
Society volunteers. The chosen sites of study in this desert area
were selected to simulate as neary as possible Mars-like conditions
and included smooth ancient lake beds, ;agged frozen lava flows
and gently rolling sand dunes. L.K.S.
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Includes planetology; and manned and unmanned flights.

A84-39226
THE CASE FOR MARS; PROCEEDINGS OF THE
CONFERENCE, UNIVERSITY OF COLORADO, BOULDER, CO,
APRIL 29-MAY 2, 1981
P. J. BOSTON, ED. (National Center for Atmospheric Research,
Boulder, CO) Conference sponsored by the University of Colorado,
Boulder Center for Science and Policy, American Institute of
Aeronautics and Astronautics, et al. San Diego, CA, Univelt, Inc.,
1984, 347 p.
Copyright

The subjects investigated are related to mission strategy,
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spacecraft design, life support, surface activities and materials
processing, and social and political aspects. The humanation of
Mars is discussed along with reasons for considering Mars as an
object for human exploration, the Viking fund, ballistic opportunities
to Mars, a short guide to Mars, and the future of Mars. Attention
is given to new approaches to space exploration, a manned mission
to Phobos and Deimos, manned Mars mission landing and
departure systems, the solar electric propuision stage as a Mars
exploration tool, modifications of conventional medical-surgical
techniques for use in null gravity, surface sampling systems, a
retrospective look at the Soviet Union's efforts to explore Mars,
the cost of landing man on Mars, the atmosphere of Mars, and
the utilization of the Shuttle external tank for earth to Mars
transit. G.R.

AB4-39227
THE HUMANATION OF MARS
L. W. DAVID (National Space Institute, Washington, DC) IN: The
case for Mars; Proceedings of the Conference, Boulder, CO, April
29-May 2, 1981. San Diego, CA, Univelt, inc., 1984, p. 3-17.
refs
(AAS PAPER 81-227) Copyright

Early developments related to human excursions to Mars are
examined, taking into account plans considered by von Braun,
and the 'ambitious goal of a manned flight to Mars by the end of
the century’, proposed at the launch of Apolio 11. In response to
public reaction, plans for manned flights to Mars in the immediate
future were given up, and unmanned reconnaissance of Mars was
continued. An investigation is conducted concerning the
advantages of manned exploration of Mars in comparison to a
study by unmanned space probes, and arguments regarding a
justification for interplanetary flight to Mars are discussed. Attention
is given to the possibility to consider Mars as a 'back-up’ planet
for preserving earth life, an international Mars expedition as a
world peace project, the role of Mars in connection with resource
utilization considerations, and questions of exploration ethics.

AB4-39228"
THE PH-D PROPOSAL - A MANNED MISSION TO PHOBOS
AND DEIMOS
S. F. SINGER IN: The case for Mars; Proceedings of the
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 39-65.
(Contract NASA ORDER H-27272-B; NASA ORDER H-343115-B)
(AAS PAPER 81-231) Copyright

The rationale for a manned mission to the satellites of Mars is
discussed. The view has been expressed that NASA must define
-a major program to follow the Shuttle and to utilize it. However,
such a program could not be initiated and proceed without public
support, and to obtain this support, public interest would have to
be excited. It is shown that, of a number of possible targets for
manned exploration in the solar system, Mars appears to be the
only possible candidate. Attention is given to a comparison of
three Mars missions, a Mars 1984 mission, a manned landing on
Mars surface, a manned landing on Phobos and Deimos (Ph-D
project), putting men in Mars orbit, the capabilities of the Ph-D
mission, a description of the spacecraft, a Ph-D project operations
plan, and aspects of timing, technology, and costs. G.R.

AB4-39236
MANNED EXPLORATION OF MARS - THE ROLE OF SCIENCE
J. A. CUTTS IN: The case for Mars; Proceedings of the
Conference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 191-196.
(AAS PAPER 81-242) Copyright

It is pointed out that the unmanned exploration of Mars
motivated purely by science is essentially over. However, the rebirth
of a Mars program in a new form is expected to occur within a
few years. This paper is concerned with the history of the Mars
program, the benefits to be derived by science from the new
program, and the role of unmanned precursor vehicles in manned
exploration and settlement. The role of man in scientific exploration
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of Mars is examined, taking into account scientific objectives at
Mars, the methods of investigation, requirements of surface
mobility, the role of in situ science vs sample return, the need for
precursor orbiter, and research needs. The case for a manned
presence on Mars is briefly considered. G.R.

AB4-39237
CHEMISTRY OF THE MARTIAN SURFACE - RESOURCES FOR
THE MANNED EXPLORATION OF MARS
B. C. CLARK (Martin Marietta Planetary Sciences Laboratory,
Denver, CO) IN: The case for Mars; Proceedings of the
Contference, Boulder, CO, April 29-May 2, 1981. San Diego, CA,
Univelt, Inc., 1984, p. 197-208. refs
(AAS PAPER 81-243) Copyright

It is pointed out that Mars is a bonanza in useable natural
resources, while the moon is impoverished. For this reason, on
Mars, many materials and equipment will be more economically
manufactured on site than transported from earth. A survey of
natural resources is conducted, taking into account water, carbon
atoms, oxygen atoms, nitrogen atoms, phosphorus atoms, suffur
and chiorine atoms, mineral concentrates, and heavy elements.
Questions regarding the processing of raw materials are discussed.
Problems of purification are examined along with suitable
approaches to manufacturing, and the employment of solar
irradiance, geothermal heat, nuclear fission reactors, and wind
power as energy sources. The utilization of the obtained products
is also considered, giving attention to construction, construction
materials, the need for blasting explosives, approaches for
producing rocket fuel and rover fuel, and the growing of food on
Mars. G.R.

AB4-39242
A RETROSPECTIVE LOOK AT THE SOVIET UNION’S
EFFORTS TO EXPLORE MARS
S. B. KRAMER (U.S. Department of Energy, Washington, DC) IN:
The case for Mars; Proceedings of the Conference, Boulder, CO,
April 29-May 2, 1981. San Diego, CA, Univelt, inc., 1984, p.
269-279. refs
(AAS PAPER 81-250) Copyright

The history of USSR missions to Mars is reviewed on the
basis of published reports and analysis of Soviet press accounts.
The fourteen launches of the period 1960-1973 which were
intended to reach Mars orbit, impact, or flyby are examined
individually, and the basic parameters are listed in a table. Despite
some partial successes, the overall program is considered to have
given very meager results for its costs, which are estimated at
over $4 billion. T.K.

A85-37171
MARS - PATHWAY TO THE STARS
J. A. ANGELO, JR. (Florida Institute of Technology, Melbourne,
FL) and D. BUDEN (Los Alamos National Laboratory, Los Alamos,
NM) IN: New opportunities in space; Proceedings of the
Twenty-first Space Congress, Cocoa Beach, FL, April 24-26, 1984.
Cape Canaveral, FL, Canaveral Council of Technical Societies,
1984, p. 7-89 to 7-106. refs
Copyright

Mars has and will continue to play a key role in our exploration
and conquest of the Solar System. Within the context of the creation
of humanity’s extraterrestrial civilization, the major technical
features of the following Mars programs are reviewed: the Mars
Geoscience/Climatology Orbiter; the Mars Aeronomy Orbiter; the
Mars airplane; the Mars Penetrator Network; Mars surface rovers
and mobility systems; human exploration of Mars; and permanent
Martian bases and settlements. Mars properly explored and utilized
opens the way to the resources of the asteroid belt and the outer
planets; supports the creation of smart machines for space
exploration and exploitation; and encourages the creation of
autonomous niches of intelligent life within heliocentric space. All
of these developments, in turn, establish the technological pathway
for the first interstellar missions. Author



A89-20748
THE WAY TO MARS
V. GLUSHKO (AN SSSR, Moscow, USSR), L. GORSHKOV (AN
SSSR, Sovet Interkosmos, Moscow, USSR), and Y. SEMENOV
Pianetary Report (ISSN 0736-3680), vol. 8, Nov.-Dec. 1988, p.
4-8.
Copyright

An article from the Soviet newspaper, Pravda, is presented,
which discusses issues related to missions to Mars. The type of
vehicle needed for a Martian mission is examined, including the
propulsion system, construction of the vehicle in earth orbit, living
quarters, safety considerations, and the landing vehicle. Options
for the mission route and ways of returning to earth are considered.
Also, a proposal for a three phase program leading up to a manned
mission to Mars is outlined. R.B.

A90-12667
ENERGETIC IONS IN THE CLOSE ENVIRONMENT OF MARS
AND PARTICLE SHADOWING BY THE PLANET
V. AFONIN, K. GRINGAUZ (AN SSSR, Institut Kosmicheskikh
Issledovanii, Moscow, USSR), S. MCKENNA-LAWLOR (Saint
Patrick's College, Maynooth, Republic of Ireland), K. KECSKEMETY
(Magyar Tudomanyos Akademia, Kozponti Fizikai Kutato Intezet,
Budapest, Hungary), E. KEPPLER (Max-Planck-Institut fuer
Aeronomie, Katlenburg-Lindau, Federal Republic of Germany) et
al. Nature (ISSN 0028-0836), vol. 341, Oct. 19, 1989, p. 616-618.
Research supported by the Irish National Board for Science and
Technology and BMFT. refs
Copyright

The twin-telescope particle-detector system, SLED, aboard
Phobos 2 recorded flux enhancements in the range 30-350 keV
in the same general location in the close environment of Mars,
over eight days at about 900 km altitude in three successive
elliptical orbits. Here, possible interpretations of these observations
are presented. Energy-related particle shadowing by the body of
Mars was also detected, and the data indicate that this effect
occurred in less than 20 percent of the 114 circular orbits around
Mars because of the nutation of the spacecraft. The infiuence of
magnetic fields in allowing particles to reach the detector under
potentially screened conditions is discussed. Author

A90-16662" Jet Propulsion Lab., California inst. of Tech.,
Pasadena.

MARS ROVER SAMPLE RETURN MISSION STUDY

ROGER D. BOURKE (JPL, Pasadena, CA) IN: The case for
Mars Ili: Strategies for expioration - General interest and overview.
San Diego, CA, Univelt, inc., 1989, p. 231-244.

(AAS PAPER 87-195) Copyright

The Mars Rover/Sample Return mission is examined as a
precursor to a manned mission to Mars. The value of precursor
missions is noted, using the Apollo lunar program as an example.
The scientific objectives of the Mars Rover/Sample Return mission
are listed and the basic mission plans are described. Consideration
is given to the options for mission design, faunch configurations,
rover construction, and entry and lander design. Also, the potential
for international cooperation on the Mars Rover/Sampie Return
mission is discussed. R.B.

A90-16663" National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.
AN AERONOMY MISSION TO INVESTIGATE THE ENTRY AND
ORBITER ENVIRONMENT OF MARS
LARRY H. BRACE (NASA, Goddard Space Flight Center,
Greenbelt, MD) IN: The case for Mars |li: Strategies for exploration
- General interest and overview. San Diego, CA, Univelt, Inc,
1989, p. 245-257. refs
(AAS PAPER 87-196) Copyright

The need for an aeronomy mission to Mars as a precursor to
a manned Mars mission is discussed. The upper atmosphere and
radiation environment of Mars are reviewed, focusing on the
implications of the Martian atmosphere for a manned mission.
Plans for an aeronomy mission to Mars are described, including
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the Mars Aeronomy Observer and the Earth/Mars Aeronomy
Orbiter. R.B.

A90-16665 ‘
SCIENTIFIC OBJECTIVES OF HUMAN EXPLORATION OF
MARS
MICHAEL H. CARR (USGS, Menio Park, CA) IN: The case for
Mars lil: Strategies for exploration - General interest and overview.
San Diego, CA, Univelt, Inc., 1989, p. 267-275. refs
(AAS PAPER 87-198) Copyright

The scientific problems that could be addressed by human
exploration of Mars are examined. Consideration is given to the
origin and evolution of solid planets, the evolution of the
atmosphere, and biological objectives such as searching for
evidence of indigenous life. The methods that could be used to
study these problems are discussed. R.B.

A90-16666" Jet Propulsion Lab., California Inst. of Tech.,
Pasadena.
THE ROLE OF CLIMATE STUDIES IN THE FUTURE
EXPLORATION OF MARS
RICHARD W. ZUREK and DANIEL J. MCCLEASE (JPL, Pasadena,
CA) IN: The case for Mars lII: Strategies for exploration - General
interest and overview. San Diego, CA, Univelt, Inc., 1989, p.
277-285.
(AAS PAPER 87-199) Copyright

Three major reasons for the continued study of the weather
and climate of Mars are: (1) the engineering support of future
unmanned and manned missions, including operations on the
Martian surface, (2) the comparative study of the climates of earth
and Mars, and (3) the perspective provided by understanding what
Mars is really like now and how it got that way. Together, the
suite of national and international missions to Mars currently in
progress and in the advanced planning stages could provide a
credible data base for addressing many outstanding climatic
questions, as well as greatly improving current engineering models
of the Mars atmosphere and surface. Author

A90-16680" National Aeronautics and Space Administration.
Ames Research Center, Moffett Fieid, CA.
MARS SOIL - A STERILE REGOLITH OR A MEDIUM FOR
PLANT GROWTH?
AMOS BANIN (NASA, Ames Research Center, Moffett Field; San
Francisco State University, CA; Jerusalem, Hebrew University,
Rehovot, Israel) IN: The case for Mars |lI: Strategies for exploration
- General interest and overview. San Diego, CA, Univelt, inc.,
1989, p. 559-571. Research supported by the Hebrew University
of Jerusalem. refs
(AAS PAPER 87-215) Copyright

The mineralogical composition and the physical, chemical and
mechanical properties of the Mars soil have been the subject of
a number of studies. Though definitive mineralogical measurements
are lacking, elemental-chemical analyses and simulation
experiments have indicated that clays are major components of
the soil and that iron is present as adsorbed ion and as amorphous
mineral coating the clay particles (Banin, 1986). Whether this soil
can support plant growth or food production, utilizing conventional
or advanced cultivational technologies, is a question that has not
been thoroughly analyzed, but may be of importance and usefulness
for the future exploration of Mars, Assuming that the proposed
model of Mars soil components is valid, and drawing additional
information from the analyses of the SNC meteorites believed to
be ejected Mars rocks - the present contribution analyzes and
evaluates the suitability of the soil as a medium for plant growth,
attempting to identify the most critical limiting factors for such an
undertaking and the possible remedies. Author

A90-47527* Jet Propulsion Lab., California Inst. of Tech.,
Pasadena.

A GOAL AND STRATEGY FOR HUMAN EXPLORATION OF
THE MOON AND MARS

DONNA SHIRLEY PIVIROTTO (JPL, Pasadena, CA) Space Policy
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(ISSN 0265-9646), vol. 6, Aug. 1990, p. 195-208. refs
Copyright

Eventua! settlement of the solar system, beginning with the
moon and Mars, is proposed, and a strategy for the exploration
of and initial settlement of the moon and Mars, based on the
model of European settiement of the Americas, is discussed.
Strategies suggest an allocation of functions between humans and
telerobots to conduct the exploration and initial settiement.

L.K.S.

A90-48738
OF MARTIAN ATMOSPHERES, OCEANS, AND FOSSILS
H. L. HELFER (C.E. Kenneth Mees Observatory, Rochester, NY)
Icarus (ISSN 0019-1035), vol. 87, Sept. 1990, p. 228-235. refs
Copyright

A scenario is presently developed in which a substantial
resemblance between Martian conditions up to 1.5 Gyr ago and
those of the ancient earth led to the development of rudimentary
life in Mars, in stages and on timescales that may be broadly
comparable to terrestrial ones. The warm Martian oceans would
give rise to both aerobic and anaerobic photosynthesizing
prokaryotes, as well as such structures as stromatolites, which
could in due course have transformed the Martian atmosphere as
profoundly as those on earth. It is anticipated that the fossil remains
of these rudimentary organisms can be found along the fringes of
the ancient Martian oceans, which currently take the form of
northern lowland plains. O.C.

A90-48751
INTERNATIONAL CONFERENCE ON MARS, 4TH, TUCSON,
AZ, JAN. 10-13, 1989, PROCEEDINGS
BRUCE M. JAKOSKY, ED. (Colorado, University, Boulder)
Conference sponsored by the American Geophysical Union and
Geological Society of America. Journal of Geophysical Research
(ISSN 0148-0227), vol. 95, Aug. 30, 1990, 766 p. For individual
items see A90-48752 to A90-48804.
Copyright

Topics discussed included early history and solid-body
geophysics;  bedrock geology; surficial geology and
surface-atmosphere interactions; climate, atmosphere, and volatile
system; and the upper atmosphere, magnetosphere, and solar-wind
interactions. Papers were presented on thermal history of Mars
and the sulfur content of its core; the rigid body obliquity history
of Mars; constraints on early events in Martian history as derived
from the cratering record; the nature of the mantling deposit in
the heavily cratered terrain of northeastern Arabia, Mars; and the
flank tectonics of Martian volcanoes. Attention is also given to
the origins of Marslike spectral and magnetic properties of a
Hawaiian palagonitic soil, an assessment of the meteoritic
contribution to the Martian soil, observations of Martian surface
winds at the Viking Lander 1 site, variations of Mars gravitational
field and rotation due to seasonal CO2 exchange, and plasma
observations of the solar wind interaction with Mars. 1.S.

A90-48783" Hawaii Univ., Honolulu.
POSSIBLE MARTIAN BRINES - RADAR OBSERVATIONS AND
MODELS
AARON P. ZENT, FRASER P. FANALE (Hawaii, University,
Honolulu), and LADISLAV E. ROTH (JPL, Pasadena, CA) Journal
of Geophysical Research (ISSN 0148-0227), vol. 95, Aug. 30, 1990,
p. 14531-14542. refs
(Contract NGT-50104; NAGW-538)
Copyright

The 1971 and 1973 Goldstone 12.6-cm radar observations of
Mars are separate data sets which include reflectivity as a function
of latitude, longitude, and season. It has been argued that secular
reflectivity variations of Mars’ surface are indicated by the data
and that shallow subsurface melting is the causal mechanism most
compatible with the observations; however, the melting hypothesis
conflicts with accepted notions of the state and distribution of
water on Mars. The data are examined to identify temporal and
spatial domains within which statistically significant changes in
measured reflectivity are clustered. Brines which might satisfy the
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best supported reflectivity variations are out of equilibrium with
the chemical megaenvironment. It is unclear whether such a brine,
if empiaced in the Martian regolith at a depth shallow enough to
affect the radar reflectivity, could survive even a single freeze-thaw
cycle. Some combination of unique scattering properties or some
as yet unidentified process other than melting is responsible for
any genuine reflectivity variations. Author

A80-48785* Washington Univ., Seattle.
OBSERVATIONS OF MARTIAN SURFACE WINDS AT THE
VIKING LANDER 1 SITE
JAMES R. MURPHY, CONWAY B. LEOVY, and JAMES E.
TILLMAN (Washington, University, Seattle) Journal of Geophysical
Research (ISSN 0148-0227), vol. 95, Aug. 30, 1980, p.
14555-14576. refs
(Contract NSG-7085; NAGW-1341; NAGS-243)
Copyright

Martian surface winds at the Viking Lander 1 have been
reconstructed using signals from partially failed wind
instrumentation. Winds during early summer were controlled by
regional topography, and then underwent a transition to a regime
controlled by the Hadley circulation. Diurnal wind oscillations were
controlled primarily by regional topography and boundary layer
forcing, although a global mode may have been influencing them
during two brief episodes. Semidiurnal wind oscillations were
controlled by the westward-propagating semidiurnal tide from sot
210 onward. Comparison of the synoptic variations at the two
sites suggests that the same eastward propagating wave trains
were present at both sites. C.D.

A90-48789" Washington Univ., Seattle.
NUMERICAL SIMULATIONS OF THE DECAY OF MARTIAN
GLOBAL DUST STORMS
JAMES R. MURPHY (Washington, University, Seattle), OWEN B.
TOON, ROBERT M. HABERLE, and JAMES B. POLLACK (NASA,
Ames Research Center, Moffett Fieid, CA) Journal of Geophysical
Research (ISSN 0148-0227), wvol. 95, Aug. 30, 1990, p.
14629-14648. refs
(Contract NGT-50231)
Copyright

The decay of Martian global (great) dust storms is investigated.
One-dimensional (vertical, static atmosphere) and two-dimensional
(latitude-height, steady state circulation) simulations carried out
with an aeroso! transport-microphysical mode! indicate that
atmospheric motions play a significant role in the observed decay
of globa!l dust storms. Spacecraft observations (Mariner 8, Viking)
of the 1971 and the two 1977 planet-encircling dust storms have
provided suggestions about some characteristics of storm decay.
Specifically, the dust particle size distribution is inferred to have
remained essentially unchanged for particles with radii between 1
and 10 microns during decay of the 1971 storm, and surface
visible opacity declined quasi-exponentially with time in northern
midlatitudes during the decay of the two 1977 storms. The resuits
from this investigation indicate that two- and three-dimensional
dynamical processes play a significant role the observed decay
teatures of Martian global dust storms. The most important
processes are the lofting of dust by vertical motions in the dust
source region of the Southern Hemisphere subtropics and a
continuing advective resupply of atmospheric dust into the dust
sink regions of the Northern Hemisphere. This work has implications
for Viking data analyses and future Mars observer observations
and requires that the particle size distribution be treated as a
time and latitude dependent guantity. Author

A90-48791

METEOROLOGICAL SURVEY OF MARS, 1969 - 1964
JEFFREY D. BEISH (U.S. Naval Observatory, Miami, FL) and
DONALD C. PARKER (Association of Lunar and Planetary
Observers; Institute for Planetary Research Observatories, Miami,
FL) Journa! of Geophysical Research (ISSN 0148-0227), vol.
95, Aug. 30, 1990, p. 14657-14675. Research supported by the
Institute for Planetary Research Observatories. refs

Copyright




Results of a survey of Martian blue, blue-white, white, and
dust clouds contained in the observational archives of the
Association of Lunar and Planetary Observers and in the personal
files of the late C.F. Capen, Jr. are presented. A statistical analysis
of data extracted from the records of 9650 visual and photographic
observations of Mars made from 1969 through 1984 has been
performed. Seasonal frequencies and trend analyses for each type
of observed Martian meteorology are presented. Author

AS0-48792"
Pasadena.
ICE HAZE, SNOW, AND THE MARS WATER CYCLE
RALPH KAHN (JPL, Pasadena, CA) Journal of Geophysical
Research (ISSN 0148-0227), vol. 95, Aug. 30, 1990, p.
14677-14693. refs
(Contract NAGW-660)
Copyright

Light curves and extinction profiles derived from Martian limb
observations are used to constrain the atmospheric temperature
structure in regions of the atmosphere with thin haze and to analyze
the haze particle properties and atmospheric eddy mixing.
Temperature between 170 and 190 K are obtained for three cases
at levels in the atmosphere ranging from 20 to 50 km. Eddy
diffusion coefficients around 100,000 sq cm/s, typical of a
nonconvecting atmosphere, are derived in the haze regions at
times when the atmosphere is relatively clear of dust. This
parameter apparently changes by more than three orders of
magnitude with season and local conditions. The derived particle
size parameter varies systematically by more than an order of
magnitude with condensation level, in such a way that the
characteristic fall time is always about one Martian day. Ice hazes
provide a mechanism for scavenging water vapor in the thin Mars
atmosphere and may play a key role in the seasonal cycle of
water on Mars. C.D.

Jet Propulsion Lab., California Inst. of Tech.,,

A90-48797“#  National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.
VARIATIONS OF MARS GRAVITATIONAL FIELD AND
ROTATION DUE TO SEASONAL C0O2 EXCHANGE
B. FONG CHAO and DAVID PARRY RUBINCAM (NASA, Goddard
Space Flight Center, Greenbelt, MD) Journal of Geophysical
Research (ISSN 0148-0227), vol. 95, Aug. 30, 1980, p.
14755-14760. refs

About a quarter of the Martian atmospheric mass is exchanged
between the atmosphere and the poiar caps in the course of a
Martian year: CO2 condenses to form (or add t0) the polar caps
in winter and sublimes into the atmosphere in summer. This paper
studies the effect of this CO2 mass redistribution on Martian rotation
and gravitational field. Two mechanisms are examined: (1) the
waxing and waning of solid CO2 in the polar caps and (2) the
geographical distribution of gaseous CO2 in the atmosphere. In
particular, the net peak-to-peak changes in J2 and J3 over a
Martian year are both found to be as much as about 6 x 10 to
the -Sth. A simulation suggests that these changes may be detected
by the upcoming Mars Observer under favorable but realistic
conditions. Author

A90-48798* Michigan Univ., Ann Arbor.
A NUMERICAL SIMULATION OF CLIMATE CHANGES DURING
THE OBLIQUITY CYCLE ON MARS
L. M. FRANCOIS, J. C. G. WALKER, and W. R. KUHN (Michigan,
University, Ann Arbor)  Journal of Geophysical Research (ISSN
0148-0227), vol. 95, Aug. 30, 1990, p. 14761-14778. refs
(Contract NAGW-176)
Copyright

A one-dimensional seasonal energy balance climate model of
the Martian surface is developed. The model shows the importance
of using short-period diurnal and seasonal variations of solar
imadiance instead of yearly-averaged quantities. The roles of
meridional heat transport and greenhouse warming are shown to
be important. The possible existence of hysteresis cycles in the
formation and sublimation of permanent deposits during the course
of the obliquity cycle is demonstrated. C.D.

¢

81 LUNAR AND PLANETARY EXPLORATION

A91-10160" #
Pasadena.
GEOLOGIC EXPLORATION OF MARS
J. B. PLESCIA (JPL, Pasadena, CA) AIAA, Space Programs and
Technologies Conference, Huntsvilie, AL, Sept. 25-27, 1990.
10 p.
(AIAA PAPER 90-3802) Copyright

The scientific objectives and methods involved in a geologic
exploration of Mars from a manned outpost are discussed. The
constraints on outpost activities imposed by the limited crew size,
limited amount of time available for science, the limited diversity
of scientific expertise, and the competition between scientific
disciplines are addressed. Three examples of possible outpost
locations are examined: the Olympus Mons aureole, Mangala
Valles/Daedalia Planum, and Candor Chasma. The geologic work
that could be done at each site is pointed out. C.D.

Jet Propulsion Lab., California Inst. of Tech.,

A91-10161*# Colorado Univ., Boulder.
WATER ON MARS - VOLATILE HISTORY AND RESOURCE
AVAILABILITY
BRUCE M. JAKOSKY (Colorado, University, Boulder) AIAA, Space
Programs and Technologies Conference, Huntsville, AL, Sept.
25-27, 1990. 9 p. refs
(Contract NAGW-552)
(AIAA PAPER 90-3803) Copyright

An attempt is made to define the available deposits of water
in the near-surface region of Mars which will be available to human
exploration missions. The Martian seasonal water cycle is reviewed,
and geochemical and geological constraints on the availability of
water are examined. It is concluded that the only sure source of
water in amounts significant as a resource are in the polar ice
deposits. C.D.

A91-10162*#
Pasadena.
MARTIAN WEATHER AND CLIMATE IN THE 21ST CENTURY
RICHARD W. ZUREK (JPL, Pasadena, CA) AIAA, Space Programs
and Technologies Conference, Huntsville, AL, Sept. 25-27, 1990.
9p. refs
(AIAA PAPER 90-3804) Copyright

The historical interest in the weather and climate of Mars and
current understanding of aspects of the present climate are
addressed. Scientific research into the weather and climate of
Mars in the next century is examined. The impact of the Martian
weather of the 21st century on humans that may then be inhabiting
the planet is considered. C.D.

Jet Propulsion Lab., California Inst. of Tech.,
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DONATELLO - A PROPOSED MARS EXPLORATION
INITIATIVE FOR THE YEAR 2050
JOHN G. VANDEGRIFT and BRIAN H. KENDALL (Texas A & M
University, College Station) AIAA, Aerospace Sciences Meeting,
29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs
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This paper presents a conceptual design for a futuristic
superfreighter which will transport large numbers of people and
supplies to Mars for the construction of a large-scale scientific
and manutacturing complex. Code named Project Donatello, the
freighter will be assembiled at the first libration point (L1) of the
sarth-moon system from materials supplied by heavy-lift launch
vehicles from earth and from OTVs from the large-scale lunar
base. Donatello will utilize an antimatter propulsion system to
reduce Mars trip time and fuel mass requirements. On arrival at
Mars, two smaller transfer ships will carry boxcar-sized payload
canisters into the Martian atmosphere and to the vicinity of the
existing Mars outpost. The vehicles will also have VTOL capabilities
when transporting fuselage canisters containing the Mars base
personnel. Author

A91-23308
SOME UNCONVENTIONAL APPROACHES TO THE
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J. R. FRENCH Spaceflight (ISSN 0038-6340), vol. 33, Feb. 1991,
p. 62-66. refs
Copyright

The topics of space transport to Mars, and surface transport
and surface operations on Mars are discussed in detail and new
options for accompiishing these activities are presented. The
question of maximizing the return on the investment in a Mars
mission is addressed. One way to accomplish this is through
reduction of propellant requirements by increasing the performance
of the rocket engine, while another option is to make use of
nuclear fuel. A technique discussed in detail would provide a means
to manufacture fuel from Martian resources for both the return
trip and for Mars surface exploration. Options for Mars surface
transport include battery and nuclear powered rovers, solar
powered automobiles, and either battery, nuclear or
Mars-generated-propellant-powered aircraft specially designed to
explore the Martian surface. The advantages and disadvantages
of each of these options are considered, and the usefulness of a
manned aircraft for both exploration and surface operational
functions is discussed. L.K.S.

A91-27649" National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
IONIZING PROGRAM ENVIRONMENT AT THE MARS
SURFACE
LISA C. SIMONSEN, JOHN E. NEALY, LAWRENCE W.
TOWNSEND, and JOHN W. WILSON (NASA, Langley Research
Center, Hampton, VA) IN: Engineering, construction, and
operations in space |l; Proceedings of Space 90, the Second
International Conference, Albuguerque, NM, Apr. 22-26, 1990. Vol.
1. New York, American Society of Civil Engineers, 1990, p.
748-758. refs
Copyright

The Langley cosmic ray transport code and the Langley nucleon
transport code are used to quantify the transport and attenuation
of galactic cosmic rays and solar proton flares through the Martian
atmosphere. Surface doses are estimated using both a low-density
and a high-density carbon dioxide model of the atmosphere which,
in the vertical direction, provide a total of 16 g/sq cm and 22
g/sq cm of protection, respectively. At the Mars surface during
the solar minimum cycle, a blood-forming organ (BFO)
dose-equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray
transport and attenuation is calculated. Estimates of the BFO
dose-equivalents which would have been incurred at the surface
from three large solar flare events are aiso caiculated. Doses are
also estimated at altitudes up to 12 km above the Martian surface
where the atmosphere will provide less total protection. Author
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PRELIMINARY ASSESSMENT OF TERMOSKAN
OBSERVATIONS OF MARS
B. MURRAY, B. H. BETTS, T. SVITEK (California Institute of
Technology, Pasadena), M. K. NARAEVA, A. S. SELIVANOV
(Institute for Space Devices, Moscow, USSR), D. CRISP, T. Z
MARTIN (JPL, Pasadena, CA) et al. (Colloquium on Phobos-Mars
Mission, Paris, France, Oct. 23-27, 1989, Proceedings. A91-29558
11-91) Planetary and Space Science (ISSN 0032-0633), vol. 39,
Jan.-Feb. 1991, p. 237-265. refs
(Contract NAGW-1426)
Copyright

The limited set of high-resolution observations of the B8-12
micron thermal emission from Mars' equatorial regions by the
Termoskan instrument onboard the Phobos '88 spacecraft in
February and March of 1889 is considered. Observations were
also simultaneously acquired in the 0.5 to 1.0 micron region. A
combined U.S. and Soviet scientific team made a preliminary
quantitative evaluation of about 25 percent of the entire data set.
It is found that there is a close agreement with the Viking Infrared
Thermal Mapper brightness temperatures, confirming the accuracy
of the Termoskan system and calibration. A novel pattern of
emission from particles was observed in the morning and assumed
to be water or ice. Thermal emission from surface features is
varied and distinct down to the limit of resolution. The presence
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of unusually insulating material has been detected in the uppermost
fraction of a millimeter of the Martian surface in places where the
shadow of Phobos briefly eclipsed by the surface. L.K.S.

N90-15028"# Texas Univ., Austin. Dept. of Aerospace
Engineering and Engineering Mechanics.
M.L.N.G., MARS INVESTMENT FOR A NEW GENERATION:
ROBOTIC CONSTRUCTION OF A PERMANENTLY MANNED
MARS BASE Final Report
JEFF AMOS, RANDY BEEMAN, SUSAN BROWN, JOHN
CALHOUN, JOHN HILL, LARK HOWORTH, CLAY MCFADEN,
PAUL NGUYEN, PHILIP REID, STUART REXRODE et al. 1 May
1989 124 p
(Contract NASW-4435)
(NASA-CR-186224; NAS 1.26:186224) Avail: NTIS HC A06/MF
AO1 CSCL 03B

A basic procedure for robotically constructing a manned Mars
base is outlined. The research procedure was divided into three
areas: environment, robotics, and habitat. The base as designed
will consist of these components: two power plants, communication
facilities, a habitat complex, and a hanger, a garage, recreation
and manufacturing tacilities. The power plants will be self-contained
nuclear fission reactors placed approx. 1 km from the base for
safety considerations. The base communication system wili use a
combination of orbiting satellites and surface relay stations. This
system is necessary for robotic contact with Phobos and any future
communication requirements. The habitat complex will consist of
six self-contained modules: core, biosphere, science, living quarters,
galley/storage, and a sick bay which will be brought from Phobos.
The complex will be set into an excavated hole and covered with
approximately 0.5 m ot sandbags to provide radiation protection
for the astronauts. The recreation, hangar, garage, and
manufacturing facilities will each be transformed from the four
one-way landers. The complete complex will be built by
autonomous, artificially intelligent robots. Robots incorporated into
the design are as follows: Large Modular Construction Robots
with detachable arms capable of large scale construction activities;
Small Maneuverable Robotic Servicers capable of performing
delicate tasks normally requiring a suited astronaut; and a trailer
vehicle with modular type attachments to complete specific tasks;
and finally, Mobile Autonomous Rechargeable Transporters capable
of transferring air and water from the manufacturing facility to the
habitat complex. Author

N90-21709# Lawrence Livermore National Lab., CA. Special
Studies Program.
MARS IN THIS CENTURY: THE OLYMPIA PROJECT
RODERICK A. HYDE, MURIEL Y. ISHIKAWA, and LOWELL L.
WOOD 1988 17 p Presented at the 4th National Space
Symposium, Colorado Springs, CO, 12-15 Apr. 1988
(Contract W-7405-ENG-48)
(DE90-008356; UCRL-98567; CONF-8804105-2) Avail: NTIS HC
AO3/MF AO1

Manned exploration of the inner solar system, typified by a
manned expedition of Mars, this side of the indefinite future involves
fitting a technical peg into the political hole. If Apolio-level resources
are assumed unavailable for such exploratory programs, then
non-Apollo means and methods must be employed, involving
greater technical and human risks, or else such exploration must
be deferred indefinitely. Sketched here is an example of such a
relatively high risk alternative, one which could land men on Mars
in the next decade, and return them to earth. Two of its key
features are a teleoperated rocket fuel generating facility on the
lunar surface and an interplanetary mission staging space station
at L(sub 4), which would serve to enable a continuing solar system
exploratory program, with annual mission commencements to
points as distant as the Jovian moons. The estimated cost to
execute this infrastructure building manned Mars mission is $3
billion, with follow on missions estimated to cost no more than $1
billion each. DOE




N91-20015*#  National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
CHEMICAL APPROACHES TO CARBON DIOXIDE
UTILIZATION FOR MANNED MARS MISSIONS
ALOYSIUS F. HEPP, GEOFFREY A. LANDIS, and CLIFFORD P.
KUBIAK (Purdue Univ., West Lafayette, IN.) 1991 22 p
Presented at the 2nd Annual Symposium of the UA/NASA Space
Engineering Research Center, Tucson, AZ, 7-10 Jan. 1991
{Contract NAS3-25266)
(NASA-TM-103728; E-5962; NAS 1.15:103728) Avail: NTIS
HC/MF A03 CSCL 03B

Use of resources available in situ is a critical enabling technology
for a permanent human presence in space. A permanent presence
on Mars, e.g., requires a large infrastructure to sustain life under
hostile conditions. As a resource on Mars, atmospheric CO2 is as
follows: abundant; avaiiable at all points on the surface; of known
presence; chemically simple; and can be obtained by simple
compression. Many studies focus on obtaining O2 and the various
uses for O2 including life support and fuel; discussion of CO, the
coproduct from CO2 fixation revolves around its uses as a fuel,
being oxidized back to CO2. Several new proposals are studied
for CO2 fixation through chemical, photochemical, and
photoelectrochemical means. For example, the reduction of CO2
to hydrocarbons such as acetylene (C2H2) can be accomplished
with H2. C2H2 has a theoretical vacuum specific impulse of approx.
375 secs. Potential uses were also studied of CO2, as obtained
or further reduced to carbon, as a reducing agent in metal oxide
processing to form metals or metal carbides for use as structural
or power materials; the CO2 can be recycled to generate O2 and
CO. Author
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color illustrations, or otherwise may not have the quality of illustrations preserved in the
microfiche or facsimile reproduction, may be examined by the public at the libraries of
the USGS field offices whose addresses are listed in this introduction. The libraries may
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