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Methods of Applied Dynamics

Description:

This monograph is designed to give the practicing engineer a clear understanding

of the principles of dynamics with special emphasis on their applications. Begin-

ning with the basic concepts of kinematics and dynamics the course proceeds to the

discussion of the dynamics of a system of particles. The analytical (Lagrangian)

method of dynamic analysis is treated in full detail. Both classical and modern

formulations of the Lagrange equations including constraints are discussed and ap-

plied to the dynamic modeling of aerospace structures using the modal synthesis

technique. A list of references is given at the end of the monograph.





Chapter 1

Kinematics

Kinematics relates to the geometry of motion disregarding the forces causing the

motion.

1.1 Vectors

A vector has direction and magnitude (velocity, force, etc.)

Physical types of vectors:

1. free vector: velocity

2. sliding vector: force on rigid body

3. bound vector: position, force on elastic body

NOTE: All mathematical operations with vectors involve only their free vector

properties of magnitude and direction.

Addition" The sum of two vectors is represented by the diagonal of a parallelo-

gram formed by the two vector sides.

A

5
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NOTE: Vectors are denoted by bolding the symbol.

Vector addition is commutative and associative.

Unit Vector: A unit vector has unit magnitude (length).

Vectors are often conveniently expressed in terms of unit vectors:

A = Ale1 + A2e2 + .4ae3

where A1, A_, A3 are known as (scalar) components of the vector A.

Often unit vectors are used which are (mutually) ortho_onal: i,j,k

Z

A = A. i + Auj + A z k

Here the components .4,, Au, Az

are the orthogonal projections of A

onto the coordinate axes x, y,z.

NOTE: The unit vector in the direction of the vector A is identified as:

ea = A/A A = IAt

P.S. #1: The German word for unit is "EINHEIT." This is the origin of the common
use of the letter e for the unit vector.

P.S. #2: It is important to use suggestive symbols for physical quantities: m = small

mass; M = large mass.

Scalar ("Dot") Product

A. B = A B cos

6



where 0 is the (smaller) angle between A and B. Expressed in terms of ortho_onal

unit vectors el, e2, ea:

A- B = (A1 el + ,42 e2 + As ea). (B1 el + B_ e2 + Ba ea)

=A1 Bl+.42B_+AaBa

NOTE:

el • el : e2 • e2 ---- e3 • e3 ---- 1

el .e2 -: el "e3 ---- e2"e3 ---- 0

Vector ("Cross") Product

A x B=ABsin0N

(UNIT LENGTH)

(ORTHOGONALITY)

0<0<_

where 0 is the smaller angle between A and B. N is perpendicular to A and B

such that A, B, N form a right-handed system. (Right hand thumb rule)

Expressed in terms of orthosonal unit vectors el, e_, ea.

AxB = (A1 el + A: e_ + Aa ea) × (B1 el + B2 e2 3- B3 ea)

= el(Az B3-.43 B2) + e2(.43 B1 -.41 B3)

3- ea(A1B_ -,42 B1)

NOTE:

e I x el : e2 × e2 : e3 x ea

el x e2 = --e 2 x el ----- e3

e2 x ea ---- --e3 x e_ : e 1

e3 × el : -el × ea ---- e_

= 0



Mnemonic Code:

e t

Arrange the three unit vectors el,e2, ea

in clockwise order. The vector product of two unit

vectors is equal to the third if the two follow each

other clockwise and equal to the negative third if

the two follow each other counterclockwise. This rule

is especially useful if some components are zero; e.g.

axb=(alel+ave2+a3e3) ×blel

= --a2 bl ea -I- a3 bl e2

NOTE:

AxB=-BxA (anticommutative)

Scalar Triple Product:

A.(B x C)--B.(C x A)=C.(Ax B)

This product is geometrically equal to

A,B, C.

Vector Triple Product:

the volume of a parallelepiped of sides



A × (B x C)=(A.C)B-(A.B)C

Moment of a 'Vector:

If the first vector in the vector product A x B represents a position vector R then

the resultant vector product is called the moment of the vector B:

M=(RxB)

Velocity: It is the time derivative of the position vector R:

v = d_ = R IVl = Speed
tit

[R I = Distance

Acceleration: It is the time derivative of the velocity V:

dV d_R
A= _= -V=i_

dt dt 2

NOTE:

Sometimes we need the time derivatives of the scalar and vector products:

_(A B) A _B dA• = "-g7 + -_-.B

= A.B + ._-B

= + ×B

= AxB + .&xB



Z

yj
/ y

Z

Y

TRAJECTORY

a = R(t)
HODOGRAPH

v =v(t)

1.2 Angular Velocity

Finite angular rotations are not commutative and therefore cannot be treated as vec-

tors. (Rotate a book 90 ° about the x and y axes and repeat the procedure in

reverse order and observe the difference in final orientation). Angular velocity can

be shown to be a vector. Consider the rotation of a point P about an axis OO'

called instantaneous axis of rotation.

dR = R sinOd6

d__RR= R sin 0
dt dt

= R _ sin 0

where w =
dt

10



We now assign a vector w in the direction of OO' with the magnitude equal to w.

Then the linear velocity v of the point P due to this rotation is

v = w x R R = CONST (1.1)

The magnitude of v is clearly w R sin 0 and its direction is normal to the plane

spanned by w and R. (Right-hand thumb rule: fingers indicate rotational sense,

thumb is in direction of w). If now a second axis is given through O, then the linear

velocity to this rotational rate _ is given by V = f_ x R. The total velocity of point

P is then

Vp=v+V=(w xR)+(J2×R)=(w+12) xR

= .Qp × R where J?p = w + J? Q.E.D.

1.3 Vector Derivative in a Rotating Frame

A vector A is seen by an observer in a fixed frame X, _', Z and also by another observer

in a rotating frame x,y, z. Unit vectors in the fixed frame are denoted by i,j,k

and in the rotating frame by el,e_,e3. The rotating frame has angular velocity w
relative to the fixed frame.

Z

A = Ale1 + A_e_ + A3e3

= Ax i + Auj + Az k

A - generic vector

11



The rate of change of A as seen from the fixed frame:

But:

-- Jltel + A2e2 + .-i3e3 + Ale1 + A2e2 + A3e3

el -" 60 x el , e2 -'- t.o x e2 , e3 ---- t.O X e3

Therefore:

Jt = (h),_t +w x A where (A),o, = ..i,_, + X_ + h_

This relation holds for an3' two systems A and B:

(1.2)

(A)a = (Jt)B +WBa × A

NOTE: If A = WBA then (&AB)A = (&Ba)S where wB.a is the angular velocity of

B as seen in .4.

1.4 General Motion in a Moving Frame

The X, ); Z frame is fixed (inertial frame) and the z, y, z frame rotates relative to it.

12



Z z P

y

NOTATION

Ro = Position of Origin

R=R0+r Position of P

v = relative velocity of P in z, y, z

a = relative acceleration of P in z, V, z

a = Ro+ }= l_0+ (v + _ × r) (1.3)

R=Ro+_r+tbxr+wxi"

it= ito + (a +,,., × ,,) +,;, × 1.+,,., × (,, +,,., ×,.)

13



Alternate Form:

(1.4)

fi=V0+oa x Vo +d_ x r+ ao x (w × r) + 2 (_o x v) +a

.NOTE:

It is very important to have a thorough understanding of the physical meaning of

the five acceleration terms on the right-hand side of Eq. (1.4).

1. R0 = acceleration of O of moving frame (D'Alembert/Einstein acceleration)

2. da x r = "slingshot" acceleration (Euler acceleration)

3. ao x (,, x r) = centripetal acceleration

4. 2(,: x v) = Coriolis acceleration

5. a = relative acceleration as seen in moving frame

P. S.

The Coriolis (1792-1843) acceleration is somewhat difficult to visualize. It is com-

posed of two separate kinematical effects: one velocity change is due to a change

in the direction of v due to a_ ("slingshot" effect), the other velocity change is due

to a radial change of the point P position. Both changes of velocity are equal to

(a_ x v) resulting in the factor 2 in the Coriolis acceleration. Mathematically:

al = (oa x v) 2nd term of Equation 1.2

dF

14



Tangential and Normal Components

Consider the position of a point P as it moves along a curved path in space.

Z

Y

s = distance along curve

Velocity:

where

dr dr ds
v= --= _'-- = ve7

dt ds dt

dr

ez -- ds - tansent unit vector

Acceleration:

geT
a = _' = bet -4- veT = /_ez + v ....

ds
ds _ 7)ez + v _ deT
dt ds

Definel

get

ds = xelv (1.6)

15



where

1_

eN

= curvature [tad/meter]

= p = radius of curvature
= normal unit vector

The acceleration is then given by

U 2

a = a eT + v2_eN = a eT + -- eN

P

The first term is the tangential acceleration and the second term is the normal or

centripetal acceleration.

Define a third unit vector to complete the orthogonal triad of unit vectors (Trihe-

dron) at the point P:

eB _ eT X eN

eB = binormal unit vector

1,
0

t_

m

ell Normal plane

Rectifying p

e N Principal normal

Osculating plane

F
_ eT

16



(er,eN) = Osculating Plane

(eB,eN) = Normal Plane

(er,eB) = Rectifying Plane

The curvature i¢ measures the rotation rate of the normal plane as the point P

moves along the curve.

Now we differentiate the binormal unit vector eB with respect to the distance along
the curve:

de___._EB_ , , , ,
ds - eB = eT × eN + er x e'_,--(KeN) X eN + er x eN--e:r x eN

Therefore, e_ _Ler.

' _L eB. Therefore, e_ must be parallel toSince en is a unit vector, we also have e B

eN.

Define:

deB
z --7" eN

ds

where r = torsion [rad/meter], -_ = tr = radius of torsion

(1.7)

A positive torsion (r > 0) corresponds to a clockwise rotation for a motion of P

along the curve. The torsion r = 0 for a plane curve. The torsion measures the

rotation rate of the osculating plane as the point P moves along the curve.

Since eN = eB X eT we obtain the spatial derivative of eN as:

or

I I I
ely ----eB x eT + eB X eT ----(--TEN) X e:r+ eB x (_:eN)

deN

-- feB -- _eT DARBOUX Vector (1.8)
ds

The set of Equations 1.6, 1.7, and 1.8 is collectively called the Frenet-Serret

formulas.

The angular velocity of the trihedron can be easily obtained in terms of the curvature

t_, the torsion r and the velocity v of the point P as:

17



W -- t¢ veB --7"vet

The first term represents the angular velocity of the tangential unit vector and the

second term the angular velocity of the binormal unit vector.

Ballistics Equations

The motion of a projectile through the air is often analyzed using path variables,

which are measurements made along the tangential and normal direction of the

trajectory or path. Because of their convenience the (N-T) coordinates are referred
to as natural coordinates.

The resistance (drag) is taken proportional to a power of the tangential velocity v

R = k

Y

R

V

x
m....._

The equations of motion are then

m i) = -m9 sin O + k f(v) (1.9)

mu 2

-gin cos 0
P

(1.10)

18



The radius of curvature can be related to the path angle 0:

1 dO 1 dO
- = -- -- (1.11)

p ds v dt

The minus sign is taken to agree with our definition of the flight path angle 0 in

the figure.

Dividing by m and introducing Equation 1.11 in Equation 1.10 yields:

6=-g sin O-cf(v) (1.12)

vO =-g cos O (1.13)

where c = k_ = ballistic coefficient

To obtain the position of the projectile as a function of time in the (z, y) coordinate

system we have to use the inertial velocities:

= v cos 0 (1.14)

/) = v sin 0 (1.15)

Thus, Eqs. (1.12) - (1.15) represent the equations of motion of the mass center of

the projectile in the plane. Their general solutions have to be obtained by numerical

integration.

19





Chapter 2

Dynamics of a Particle

2.1 Newton's Laws

We introduce Newton's laws of motions as axioms. (Axiom = a self-evident or accepted

principle.) The truth of these axioms is established by experimental verification or

prediction.

Isaac Newton (1642-1797) published his laws in 1687 in Latin. Using modern

language they are

1. Every body continues in its state of rest or of uniform motion in a straight

line, unless compelled to change that state by forces acting on it.

2. The time rate of change of linear momentum of a body is proportional to the

force acting upon it and occurs in the direction in which the force acts.

3. To every action there is an equal and opposite reaction; that is, the mutual

forces of two bodies acting upon each other are equal in magnitude and op-

posite in direction.

In a rigorous sense these laws apply only to a mass point or single particle.

NOTE:

The first law is only a special case of the second law when there are no external

forces. The third law will later allow the transition from the dynamics of a single

particle to the dynamics of a system of particles.

21
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Dimensions and Unit_

The world of dynamics can be described in terms of four dimensions: Length (L),

Time (T), Force (F), and Mass (M). It is, however, customary to treat the dimension

of mass as a primary dimension and derive the dimension of force via Newton's law

F = ma or vice versa.

NOTE: This contrivance is also common in other areas:

carhours or lightyears. (Find other examples).

SI - System (Metric)

Basic Dimension

Length

Time

_1 ass

Derived Dimension

Force

Basic Dimension

Length

Time

Force

Derived Dimension

Mass

_)TE:

distance expressed in

Meter (m)

Second (s)

Kilogram (kg)

Newton (k9 m s -2)

Customary System (British)

Foot (It)

Second (s)

Pound (lb)

Slug (lbfls -_)

22



H'eight = Force

_: -- mgo

go = 9.81

Question:

a) Hot, much does 1 slug weigh?

H" = mgo -
1 Ib see _

ft
x 32.2

ft
- 32.2

8ec 2
lbs

1 slug " 32.21b

b) How much does 1 kg t, eigh?

14" = mgo = lk9 x 9.81
m k9 m
-- = 9.81
$2 82

1 kg "---9.81 Newton

P. S. The metric system sometimes allows for the auxiliary unit of force called

kilopond (kp).

1 kp = 9.81 Newton

The customary system is sometimes used with inches as the length unit. The unit

of mass is then variously called SLINCH, SNAIL or MUG (lb sect/in).

1 SLINCH-:-386.41bs.

23



2.2 D'Alembert's Principle (1747)

With a stroke of genius d'Alembert (1717-1783) wrote Newton's law in the form:

F+(-mfi)=0

It is exactly this apparent triviality which makes D'Atembert's principle such an

ingenious step. D'Alembert principle introduces a new force, the force of inertia and

makes possible the use of moving reference frame. The inertial forces act exactly like

all the other forces. The3 cannot be distin_;uished in their nature from any other
impressed (external)force. If an observer is not aware that he is in an acceler-

ated system, then purely mechanical observations cannot reveal to him that fact.

Einstein revised D'Alembert's principle to a general principle of nature in his grav-

itational theory (Equivalence principle).

Einstein's "box experiment" (Gedanken experiment)

A closed elevator is pulled upwards with constant acceleration g0 while at the same

time, the gravity field disappears. It is then impossible to distinguish between the

following two hypotheses:

1. The elevator moves upward with constant acceleration 90. No gravity field
exists.

2. The elevator is at rest but there is a gravity field of magnitude 90.

The name "apparent force" for the force of inertia is misleading, if it is interpreted

as a force which is not as "real" as any other external force. Sometimes inertia

forces are also called "fictitious" or "effective" forces.

Because of D'Alembert's principle it is possible to analyze all dynamic phenomena

in making reference frames with strict rigor and consistency.

Staying consistently in a moving reference frame, Newton's law can be reformulated

using Equation 1.4; notice that the interest lies now in the relative acceleration a
and not in the absolute acceleration R.

24



or

ma=F-mfio-m(& xr)-m[wx (wxr)]-2m(w xv) (2.1)

where

A = -m Ro

E = -m (_ x r)

c = -m [_ x (_ x ,)]

K=-2m(w xv)

P. S. #1

ma=F+A+E+C+K (2.2)

d'Alembert force

Euler force

Centrifugal force

Coriolis force or compound centrifugal force

Sometimes it is stated that D'Alembert's principle transforms a problem in dy-

namics to one in statics. The Coriolis force does no work and is therefore called a

workless ("wattless") force.

P. S. #2

D'Alembert's Principle may be called the Equal Rights Amendment (ERA) of dy-

namics because it declares the inertial forces to be equal to any other force.

2.3 Work; Kinetic and Potential Energy

The work done by a force F as it moves along a path from A to B is defined as the line

integral:

W= F.dr

With Newton's law:

F=mi _

25



we obtain"

Remember:

B" = F d r = rn_. dr

ld . 1 2
_. d r = -_-gi(r. r)dt = _d_,

Therefore:

E m£mf.dr=_

17l

a(,_2)= -_ (v_- v])

Introduce:

1

T = _ rn v2 Kinetic Ener_;y

Ig'= TB -- Ta (2.3)

The increase in the kinetic energy of a particle is equal to the work done by the
external force.

P.S.

It was assumed that the force field F = F(r) is only a function of the position r
and not of time also.

Potential Energy

Force Field F = F(r)

I. The line integral fa_ F. dr is independent of path.

26



A

B

Work done by force

I It'=fc, F-dr=fc_ F. drC1

The following alternate statements are all equivalent to I:

II. The contour integral vanishes.

/: /; fF- dr=- F. dr_ F. dr=0

III. F = -grad V

IV. CurlF=v x VI'=0

NOTE:

where V = Potential Energy

V = Nabla operator (Del-Operator)

In Electrodynamics: E = - grad V where V = electrical potential.

In Fluid Dynamics: v = grad 4) where 4) = velocity potential.

The work done by the external force is now:

1t'= F. dr=- gradl'.dr=- dI" = dl'=i)t-I)_

Inserting in Equation 2.3 yields

i'A -- i:S = TB -- TA

or

_'A+ TA = _'3 + TB

This is the principle of mechanical energy conservation.
force fields are called conservative.

Therefore such forces or

27



NOTE:

Sometimes forces in nature are derivable from a time-dependent potential V =

V(r, t). For these statements I to IV hold if the time is kept constant (t = CONST).

These forces or force fields are called irrotational. Energy is not conserved.

P.S.

In earlier practice, it was customary to use the negative of the potential energy
which was called the work function U = -1". In view of the above described

conservation law it was an advantage to change this sign. The operational "vector"

V was introduced by Sir William Hamilton (1805-1865). The name "nabla" was

coined by Oliver Heavyside (1850 - 1925) after an ancient Assyrian harp whose form

it resembles. It is also called "atled." (Delta spelled backwards)

Consider nov," the work done against the external force:

H" = - F. dr = grad l'. dr = dv = l'B - IA = /hi"

Therefore, the difference of the potential energy is the work I have to do against

the force going from A to B.

Example 1:

Gravitational Force

F

Work done against gravity:

H" = - _"
0

my no
R2 e, R0 = earth radius

f," --ttdR mgR2o(1 1_) = V(r)- V(r0)F . dr = rng R2o ,,-7 = ---
o r 0 I"

At the reference point r0 we set the potential energy to zero: l'(r0) = 0

a) Reference point: r0 = R0 (sea level)

1 1. 1 a
l'(r) =mg R2o( Ro r ) = rngR_( Ro tlo + h)

28



where h = height above ground.

If h << Ro V(h) = mg h

b) Reference Point: ro = oc

r_gRo_h
V(h) - no(Ro+ h)

my no_
_'(r) = ---

P. S.

The potential energy per unit mass is called the potential.

v-(r) _
V(r) gn_

m r

Example 2: Linear Spring Force

///////Z///////

F=kx

/A _ 1 _ 1_"= k _ d • = 5k_ If= _ k (_ - _)

If the spring is initially unstretched, the potential energy of the spring for the

elongation x is:

29



2.4 Applications of D'Alembert's Principle

Example 1

Dynamics of an accelerometer inside a rocket.

M = rocket mass

k = spring constant

m = mass of acceleration

r = displacement along sensitive axis

F, = thrust force

g = gravity

FA = aerodynamic force

Reference Frame is fixed in rocket with origin Ro.

3O



m a = -kr + rag- m[Ro + _ x (_ x R) + (d_ x R) + 2(_ x v)]

where R = distance of m from origin O.

Dynamics of Rocket:

M Ro = Mg + FA + F,

The gravity force mg cancels!

NOTE:

The (steady-state) surface of a liquid inside a rocket is perpendicular to the com-

bined thrust and aerodynamic forces.

Example 2:

Particle on turntable which rotates with uniform angular velocity w (no friction).

a=-2(wxv)-wx (wxr)

w =._k r = zi+ yj

(1) $ = 2wy + w2z

(2)/) = -2,o_ + .Py

Introduce:

z = z + i y complex variable

31



Multiply Eq. (2) by i and add to (1):

_+2iwi-w_z=O

Assume: z = zo e 't

Characteristic Equation: s 2 + 2 i a,' s - x2 = (s + i x)2 = 0

s_ = -i w 82 = -i w Repeated Root!

z = (zo + Za t)e -;'_

Remember: Variation of Parameters.

Initial Conditions: z(0) = 0 _?(0) = v0 (COMPLEX)

2 = UO_ e -iwt

The particle moves radially outward with uniform velocity which is superimposed

by clockwise angular velocity.

The path of the particle in (x, y) plane is:

Set Vo = :to -'-* z = Zo/(COS wt - i sin wt),

z = z0t cos wt,

y = -x0l sinai

Polar Coordinates:

32



z2+y2=ko _t2=r _ r =kot

Let ¢ = -wt

Kinetic Energy:

_or= -(_)¢

Archimedian Spiral

1 v_ 1 1 [T=_m =_m(:_ z+yz)= _m (_o coswt-_otw sinw/) 2

+(k0 sin wt + _.ot w cos wt) _]

1 . 1 mkgt _ w2

1.2

From Archimedian Spiral: t _ =

1 1
T=

u _

The second term is equal to the work done by the centrifugal force.

fo' fo" 1H'= F dr = m w2 rdr = -_ mw2 r 2

The centrifugal force for w = const is a conservative force. For w = w(/), it is an

irrotational force.

33



NOTE"

The Coriolis force does no work because it is perpendicular to the velocity. It is a

wattless force like the Lorentz force in electrodynamics. [P = F.v = -2m(w x v).v]

e.s,

If the centrifugal force had been neglected as a higher order term of w then the path

would be a circle (dashed line) in figure.

y

x
v

Historical Note:

During the British-German naval battle of the Falkland Islands (about 50 ° latitude),

the British gun shots landed almost one hundred yards to the left of the German

ships, because the firing tables had been calculated for Britain's northern latitude.

_OTE_

For a projectile on the surface of the earth, the effective angular velocity is w =
w0 sin ¢ where ¢ = latitude.

34



Example 3: Buys-Ballot Lane (1817-1890)

In a cyclone, the winds rotate about a center of

low atmospheric pressure clockwise in the southern

hemisphere and counterclockwise in the
northern.

Example 4: Foucault Pendulum (1851)

X

= 2wsinCy+ (w2sin 2¢)z - gl

= -2_sin ¢:_ + (2sin 2 ¢)y- 9/

Introduce: z = x + iy and repeating the steps of example 2 yields:

g - u2)z = 0_:+2iu _+(_

where u = wsin ¢

Assume: z = Ae jt

(¢ = latitude)

g
s:+2ius+-_=O

_ = (-,, _ _/'_7)-,
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General Solution:

z =Aie ''t + A2e °_t

z = (Ale'v5,*+

The complex vector z rotates with clockwise

rotation in the northern hemisphere while

performing a pendulous motion. The rotational

angular velocity is wsin ¢ and the pendulous

motion has frequency of _'p = _/_a
y J

Example 5: "Incense Swing"

Pilgrims to Santiago de Campostella, Spain, visit the shrine of St. James to burn

incense. The incense and charcoal are held in a large sih, er brazier hung from

the ceiling. The brazier is set swinging with a small amplitude, and then it is

pumped by about six men until it is swinging through 180 °. The swinging makes

the charcoal burn energetically for the pilgrims. The pumping is the interesting

part: they do it by shortening the rope by about a meter each time is passes through

the vertical; they release the same amount of rope when the container reaches its

maximum height. How does this shortening and lengthening of the rope increase
the amplitude?
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5

Each time the pendulum is suddenly shortened by 6 and then lengthened by the

same amount at the extreme position.

The motion of the pendulum is

and

2sine = 0¢+a;0 where _g = 9/t

_;_= 2._g(cos¢ - eo_e0)

Tension: T = m(__ t + gcos¢)

¢ = O" 14"1 = 26m[2Wo2(1 - cos¢o)l + g]

¢ = ¢o : 14"2 = 26rag cos ¢o
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Energy Increase: -_E = H'x - H_ = 6 mg 6 (1 - cos¢o).

Example 6: "Twirling Ice Skater".

A whirling particle of mass m is pulled

in by a string toward a fixed center at O.

ma = F- m(5 x r)- m_c × (_ x r)- 2m(_ x v)

a) Angular Motion: (¢-direction)

m&r+2mw÷=0

or

_ dw f" dr&r + 2_i" = 0 _ -- + 2
o Od o T

In( _ ) + ln( r )_ =0
_gO TO

-0

mwr 2 = m.,;or_o (Angular Momentum is conserved)

b)_
Work done asainst centrifugal force

/ /'H" = - Fdr = -m
0

1 _(1 1
." = _m(_oro) r2 ro_)

Difference of kinetic energy:

1

aT = T- To = -_m(a;_r 2- a,'_r_o)

1

2 \ r z

1 z2 1
aT = _m(,_oro) ( ; _

= -m(_or_oy["
dr

_2Tdt

o t3dr

where ro > r.

)2 _ 1 rof't o 2 2
OdOT 0 _ _Yt2 T 2 O.J0r 0

1

r°_) = H" Q.E.D.
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Chapter 3

Dynamics of a System of Particles

The laws of motion will now be extended to a group of N particles which act on each

other within a certain bounding envelope. The interaction forces between these

mass particles are assumed to obey Newton's third law:

R_k= -R_

3.1 Translation and Rotation

Summing up all the forces (external and internal) Newton's second law is:

A t

m{Ri=F,+_ R_k (3.1)
k=l

where the sum extends over all N particles. Then summing over all N particles

gives:

E m,R, =Z F,+ Z E R_k (3._)
Because of Newton's third law the total interaction between the particles becomes

zero. Therefore:

__, mi Ri = __, Fi- F (3.3)
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where F is the total external force.

Remember:

Ri is the position vector of the

i-th particle in the fixed (inertial) frame.
The associated acceleration Ri is

called the _ acceleration.

(Ri is the inertial velocity.)

Using Equation 1.4 of Section 1.4, Equation 3.3 can be written in the form:

Z mi [R0+(_b × ri)+w x (w x ri)+2(w x vi)+a;] =F (3.4)

This is the translation equation of motion referred to a moving frame.

Very often (but not always) it is of advantage to select the origin of the moving
frame such that:

m; r; = 0 at all times (3.5)

This means also that:

Z mivi=O and _ m, a_ = 0 (3.6)

In other words, the origin of the moving frame is made to coincide with the center

of mass (C.M.) location of the particle system. By definition the C.M. is:

1
Re=-- Z m;Ri where m=Z mi (3.7)

rn

In this case the translation equation (3.4) simplifies to:

m rio= m tic = r (3.8)
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This is the center of mass law which states that the C.M. moves as if the sum of all

external forces were acting on the total system mass concentrated at the C.M.

NOTE:

The total force F has to be determined for the actual system of particles and not

for the total mass at the C.M.

Examples:

Exploding bomb shell; chair being thrown out of window.

Next consider taking moments of Equation 3.1 about the origin O of a moving

frame:

rl x (mifil) = r; x (F; + _ R_.k) (3.9)

Again summing over all N particles yields:

ri× (m,Ri)=_[r;× (F;+_ R_.k) ] =_ ri×r,+_ _ ri×R;k (3.10)

Because of Newton's third law, it can be shown that the interaction effect again

vanishes.

Therefore:

_,x (m, it,)= _ _, x F, = Lo (3.11)

where L0 is the total external moment of the forces (torque) taken about the original

O of the moving frame.
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NO_E_

The moment of a vector depends on the reference point of the position vector, i.e.,

changing the reference point changes the moment.

equation 3.11 can also be expressed in terms of a moving reference frame via Equa-
tion 1.4 of Section 1.4. The result is:

Y_ rni rl × [R0 + w × ri + to × (to × r;) + 2(to × v,) + ai] = L0 (3.12)

This is the rotation equation of motion.

If the origin of the moving frame is again made to coincide with the C.M. Equa-

tion 3.12 becomes:

Y_ m,r,×[(o×r_+wx(toxr,)+2(w×v,)+a,]=Lo (3.13)

Comparing Equation 3.8 and Equation 3.13 it is seen that choosing the C.M. as

reference point O leads to a dynamic decouplin_; of the translational and rotational
motion.

The equations are however, in general, coupled through external forces like aerody-

namic forces etc. The latter depends on the translational velocity and orientation

(e.g., angle of attack) of the system. The forces (and therefore, the associated

torques) are, in general, given as

F = F(R,v,a,w) (3.14)

where symbolically, R = position, v = velocity, a = orientation, and to = angular

velocity of the system.

The following special cases can be encountered:

CASE A: F = F(R, v)

42



Solve: first translation 3.8

CASE B: F = F (ct, w)

Solve: first rotation 3.13

then rotation 3.13

then rotation 3.8 or 3.4

3.2 Linear and Angular Momentum

Revisiting the translational Equation 3.3 it is possible to reformulate it by introducing

the concept of the linear momentum of a system. It is defined as:

P = _ mi Ri = _ mi vi (3.15)

With it, Equation 3.3 becomes:

= F m; = CONSTANT (3.16)

The time rate of change of the linear momentum of a system is equal to the total

external force acting on it. In particular, if the external face is zero, the linear

momentum of a system remains constant, i.e.

P=P0 for F=0 (3.17)

This is the conservation law of the linear momentum.

A similar relationship can be established for the rotational equation by introducing

the concept of the angular momentum (moment of linear momentum) of a system.

It is defined as:

H0=E ,, ×(_, a,)= Z ,, ×(m,v,) (3.18)
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Taking the time derivative weobtain

no = Z r, × (m, v,) + Z r,(m,ft,) (3.19)

Because vi = Vo + i',, it follows then that

l°S. From Eq. (3.11) _ Lo = _ r_ x (ml R,).

Ho = __, toil'ix (vo+i'i)+Lo (3._o)

and finally:

Ho= _ (m; i_) × Vo+ Lo (3.21)

The rate of change of the angular momentum about the origin 0 of the moving

frame is equal to the total torque about this origin plus a term depending on the

velocity of the origin and the center of mass of the system. This is slightly different

from our previous find for the translational equation. However, the rate of change

of the angular momentum is equal to the torque for the following cases:

Origin is fixed Vo = 0

CASE B: Origin is C.M. _ m, i'i = 0

CASE C: Voile mi rl = m re

where i'c is the velocity of the mass center relative to the moving frame as seen by
an inertial observer. NOTE:

Some authors define the angular momentum of a system about the origin of a

moving frame as:

ri0 = E r, × (m; r,) (3.22)

where i'i is the relative velocity of a particle as viewed by an inertial observer.

Taking similar steps as above leads to the final result:
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no -- Lo- Z m, r, × Ro= Lo- r; × (m/io) (3.23)

Regardless of how the angular momentum is defined, the time rate of change of the

angular momentum of the system is equal to the external torque when referred to

the C.M. or a fixed point O. In particular, if the external torque about these two

points is zero, the angular momentum of a system remains constant:

H = H0 if L0 = 0 (3.24)

This is the conservation of angular momentum.

_OYh:

Linear and Angular Momentum are very useful concepts when properly understood

and applied. However, force arguments based upon Equation 3.4and Equation 3.12

provide a more direct insight into the dynamic behavior of a system.

Example 1:

A person stands in a boat and walks in the boat a certain distance and then stops.

How far will the boat move?

\ I/
mB t.b+ m,(1,b + v,)= o

_"B _ YnpUp

Yn B "31-Ynp

dXB

Set _,_ - and
dt

dl
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XB

N_QTE:

The final result does not depend on the time history of vp.

Explain motion using force arguments via Equation 3.4: _ m,(R0 + a:) = 0.

P.S.:

The common way to solve this problem is to use the principle of motion of the mass

center (see Equation 3.8) which states, that in the absence of external face, the

mass center will remain at rest or in uniform motion:

mp zl +mB S =mp z_ + rnB(S + z,)

Set : x2 = xl +XB+I

_ + m_s = m_(_ + _B+ t) + _(s + _)

Solve for zB

Example 2:

A horizontal circular disk can rotate freely about its vertical axis. Along a circular

track of radius 1, a particle Q starts travelling with a constant speed v. What

angular velocity will the disk acquire if it was initially at rest? What happens if

the particle stops?
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H0-- _ mi ri x vl =0

The velocity of the mass elements of

the disk is vi = w x r;

The angular momentum of the disk is then:



whereI = moment of inertia without small mass m.

The angular momentum of Q is:

h = m l(v +_l)

H1 + h = I_ + m l(v + _zl) = 0

rely
tM=

I+ rnP

When the particle stops, the disk stops too, but it has rotated through a finite

angle ¢.

3.3 Kinetic Energy and Work

The concept of kinetic energy and work will now be extended to systems of particles.

The kinetic energy is defined as:

1 1

T=_ _: m, rt_ =5 _ m_(a0+ _,)_

1 • 1

= "_ __, mi R_o + 5 _-" mi i_ + __, miii" R0 (3.25)

or
1 • 1

T= 5mRg+5 _ rn, i_+mRo-ic (3.26)

Theorem of KSnig

For the case where R0 = Rc, Equation 3.26 reduces to

1 • 1

T= _mR_+_ _ rn_i'_ (3.27)
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To derive the expressionfor the total work done by all the forcesacting on all the
particles rn, of the system it is assumed that R0 = Re:

or

(3.28)

(3.29)

Because of Newton's Law this simplifies to:

11" = F . dRc + Y] (F; + y_. R;). dr, (3.30)
c

Now for each particle, the principle of work and kinetic energy applies. Therefore,

using Newton's third law, we get

1 ' Pc 1
If'= _ rn R_ [ac + _ _ rn,i'_ (3.31)

Comparing Equations 3.28 and

tion 3.8) that

and

3.30 it follows from the center of mass law (Equa-

1 • i,,,: (3.32)F.dRc= _ mRS, Ac

L 1 ._. B, (F, + RT_). dr; = _ _ rn r_ I#: (3.33)
t

Therefore the work done by the external and internal forces is equal to the increase

in the kinetic energy of relative motion. The velocities i'i relative to the C.M. can

arise from rigid body rotations in which the distances between the particles do not

change, as well as the more obvious case of changing particle separations.

In cases where the external and also the internal fl)rces can be derived from a

potential energy, the total energy of the system is again conserved.

E= TA+ IA = TB+ V_ (3.34)
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3.4 Variable Mass

Occasionally dynamic systems have to be dealt with whose mass varies v`'ith time. This

is caused by mass particles either leaving or entering a certain boundary envelope

(control volume). Consider for the following preliminary example.

v

Two bullets are fired from a vehicle which is rolling on rails without friction. Cal-

culate the velocity of the vehicle after the bullets have been fired (a) simultaneously

or (b) in sequence. The muzzle velocity is C relative to the barrel and M is the

vehicle mass without the bullets. Applying the principle of linear momentum we

obtain

2mC

(a) M V_+ 2 m(_'_- C) = 0 _'_- M + 2m

After first bullet is fired

mC

(b) I,'_'- M + 2m

After second bullet is fired

1 ]

t_ = mc(_ ++m M+2m )

Note that 1_ > 1"1.

sequentially:

Consider nov,' the case where N bullets of mass m are fired

N
m

V=C Y_ M+km
k=l
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If the bullet size becomes infinitesimal small and N _ oc the summation can be

replaced by integration to yield:

Mo dmV=C
JM ?71

where M0 is the total initial mass including the bullets.

and finally:

M0
V=CIn --

M

This is the well-known velocity equation for a rocket in free space (no gravitational

and aerodynamic forces). The velocity is seen to be proportional to the muzzle

velocity (exhaust velocity). An interesting step can be taken by differentiating the

velocity equation with respect to time:

or

I?=-C--
M

M f" = -c At - Fr

FT = thrust force.

This is the basic force equation for a rocket and thrust force

FT = -C _'I

Notice that the fuel flow 11I is negative because the system is losing mass.

A more general approach to the dynamics of a variable mass system can be taken

by examining the translational Equation 3.4 and the rotational Equation 3.12

A) Translation (Thrust force)

To gain an understanding of the thrust producing mechanism we set w = & = 0

and assume also that there are no external forces acting on the system. (F = 0).

Equation 3.4 reduces then to:

m_t0+ Z r_;., = 0 m = m0+ F_r_, (3.35)
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where m is the total mass of the system at any point in time and m0 represents

the mass of the main body which remains constant. The origin O of the moving

reference frame is assumed to be fixed in the main body. It is obvious that the

thrust producing mechanism must originate from the second term of Equation 3.35.

To show this, we introduce a modification in the notation to rewrite this term as:

__, mi a_ = lim E Am;Avi (3.36)
at-.0 At

Consider now the case in which an abrupt change in velocity Av is imparted to a

large number of very small particles. Then Equation 3.35 becomes

dmi
Z m;ai=Z _ Av;=ZrhiAvl (3.37)

Notice that rhi is the mass per unit time which undergoes the velocity change Avi

relative to the moving frame. For steady state conditions this becomes the rate at

which mass leaves the system. The acceleration which the main body attains is

occurring during the short acceleration phase of the moving mass particles. It is

important to realize that this acceleration is not caused by the fact that mass is

leaving or entering the system. From Equation 3.35 we can now write:

m R0 = - _ rh; /Xv_- Far (thrust force) (3.38)

It is seen that the term (-rh/Xv) acts as an effective force on the main body. By

the nature of the above derivation the term rh is always to be taken as positive

regardless of whether mass is leaving or entering the system. The difference be-

tween the two is that particles leaving the system are experiencing a rapid relative

acceleration, whereas particles entering the system are rapidly decelerated. Both of

these processes result in a finite change Av of the relative velocity.

In a rocket the thrust is produced by accelerating gas particles from zero relative

velocity rearward until they reach a relative exhaust velocity C. The magnitude of

the thrust is therefore,

Far = rhC (3.39)

It is common rocket engine practice in the US to characterize the performance of

an engine by the specific impulse (specific thrust) which is defined as:

I,- Fr _ Far _ ___C seconds (3.40)
_b thgo go
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The specific impulse is the thrust per propellant flow rate. It is really a measure

of the effective exhaust velocity C and its only merit is that it has the same unit

in the metric as in the customary system of units. Typical values of the specific

impulse are in the range of 200-450 seconds.

Space Shuttle SSME • Is = 410 seconds (average)

Space Shuttle SRB • Is = 265 seconds

The effective exhaust velocity is simply C = Isgo. In the metric system go = 9.81

m/s _ ,_ 10 m/s _ and the effective exhaust velocity is just ten times the specific

impulse.

P.S.

The speed of sound in air is approximately 300 m/s. It is often useful to express

velocities in terms of the Mach number. As an example, the specific impulse Is

= 410 seconds corresponds to an exhaust velocity of approximately 14 Mach. The

speed of light is C = 300,000 km/s = 3 x lOSrn/s. It is equal to 106 Mach (1

Megamach!)

A very important case of mass flow is that of steady fluid flow in pipes. The

continuity condition requires that the flow rate rh be constant, i.e.

-_" p A 1 v 1 = pA2v 2 (kg/s) (3.41)

where A1 is the entrance cross section and A_ the exit cross section, and vl and v_

the corresponding velocities.

J

VI
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According to Equation 3.38 the force exerted by the liquid flow on the pipe is:

FR = -rh(v2 - vl) Euler's equation (3.42)

B) Rotation

If the dynamic system has an angular velocity internal mass flow generation pro-

duces an additional effect coming from the Coriolis term of Equation 3.4. Concen-

trating only on this effect, the acceleration of the main body is:

m ib,.0 + 2 _ rni(_o x vi) = 0 (3.43)

The Coriolis term can be modified again as previously to:

2_ m;(-, x vi)= 2_ A mi(w x Ari) (3.44)
At

Taking the limits At _ dt and Ami ---, dmi, Equation 3.43 can formally be written

as:

Z mi(.. ×v,) = 2Z era,--_-(w x Ar,)= 2 y_ rhi(w x Ar,) (3.45)

The physical interpretation is that it represents the effect of an internal flow rate

which extends over a distance Ar. The resultant acceleration of the main body is

therefore:

m rio = -2 y:_ rhi(w x Ar,) (3.46)

In general, the flow rate will extend over a finite length, such that the total effective

force of the flow rate will be obtained by integration. Therefore, we obtain finally:

zLm Ro = -2w x rhidri (3.47)

where the integration extends over the stream lines. The effective Coriolis force

stemming from internal flow rates is seen to be dependent on the geometry of the

flow. It is therefore, quite difficult to make a statement as to its overall effect on

the system acceleration.
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These two effective forces caused by mass flow rates affecL of course, also the

rotational motion as governed by Equation 3.12 by producing concomitant effective

torques. Of particular interest is the effect of the Coriolis torque caused by a flow

rate rh because it gives rise to the so called jet damping effect. A simplified example

is given to illustrate the situation. A rocket rotates about a transverse axis through

the center of mass at O.

X

A uniform mass flow rate is assumed to exist along the x-axis only extending from

z = 11 to z = i_ which is the nozzle exit.

The Coriolis torque is:
,Q

Lc = -2 J rh r × (w × dr) (3.48)

and with w=wkand r=zi:

Lc = -2rhw (g_- - g_) = -rhw(l_ - 121) (3.49)
2

A few special cases are "a'orthy of note:

a) I1 =12 Lc=0

b) l1 -- 0 Lc = -rhwl_

c) 11 =-12 Lc=0
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Case (b) is often given in textbooks as the general term for the jet damping using

erroneous angular momentum arguments. To understand the jet damping effect,

recall the example of the twirling ice skater.

NOTE:

The rotational equation of motion is

It is seen that the Coriolis torque is causing an angular deceleration proportional

to the angular velocity w of the rocket. This can be physically interpreted as an

effective damping. Since the Coriolis force is wattless, the energy dissipation has to

be caused by the centrifugal force.

3.5 Impact Dynamics

During the impact of _ bodies, very large forces act for a very short time. Such

forces are called impulsive. Because the)' are so large, all other forces (e.g. gravity)

can be neglected in their presence. When impulsive forces act on a body, the

velocities undergo an instantaneous finite change (_v-7¢:0) whereas its position and

orientation remain unchanged (Ar = 0). The impulsive forces are specified by their

short duration time integral:

F = fo e Fdt , e = short time (3.50)

They are treated similarly to the Dirac delta function. The linear and angular

velocity changes of a body during impact are obtained by integrating the equations

of motion 3.4 and 3.12 with respect to time. Since only rigid bodies will be

considered here, the relative velocity v and the relative acceleration a are zero.

The resultant impulse equations are a lsebraic equations with the velocity changes
as unknowns.

m:XV0 + _w x (mrc) = fFdt = _' (3.51)
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(mrc) × AVo + _ rair_ × (Aw × r_)= / Lodt = Lo (3.52)

These are _ algebraic equations which have to be solved for the velocity changes

AV0 and _w. However, another equation is required because the impulsive force

is also unknown. (The impulsive torque L0 can be determined from the impulsive F

by taking its moment about the origin O). There will, of course, be a set of impact

equations for each of the two colliding bodies.

The additional equation sets up a relationship between the normal components of

the relative velocities of approach and separation of the two bodies.

V2N -- UlN

e - (0 <e <1) (3.53)
UlN -- U2N

where e is called the coefficient of restitution. It is notationally convenient to use

the letter u for the velocity before impact and v for the velocity after impact. The

coefficient of restitution depends on the material of the colliding bodies, on their

geometries and also upon the impact velocity. All impact conditions lie between
the two extremes e = 0 and e = 1.

Case A: e = 1 (elastic)

According to Equation 3.53 the velocity of approach is equal to the velocity of

separation. No energy loss.

Case ]_: e = 0 (plastic)

The two bodies stick together after impact. Maximum energy loss.

Impact phenomena are almost always accompanied by energy losses. The higher the

impact velocity the more energy loss occurs. The coefficient of restitution actually

approaches UNITY (no energy loss) as the impact velocity goes to zero. Energy

is lost through heat generation, generation and dissipation of internal vibrations

(elastic stress waves) and sound energy.

NOTE:

The impact dynamics equations are a set of linear algebraic equations.
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Example 1:

U 1 U2

Consider first the central collision of two spheres.

P = -mr(v1 - ul) = m2(v2 - u2)

1) Plastic Collision:

mlltl + m2tt2 -- mlu1 + m2v2

mlztl + m2tt2
u--

ml + m2

2) ElasticCollision:

mlul + m_u_ = mlvl + m_v_ MOMENTUM

2 m2u_ = v 1 +ml u I + ml 2 m2v_ ENERGY

ml(vt - ut) = -m2(v2 - u2)
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ml(Vx_- 72_)=--m2(v_- _)

/)1 -q- Ul -- v_ + u_

or

(V2 -- TJI) -- (721 -- U2)

SEPARATION VELOCITY = APPROACH VELOCITY: ] =
'u.l --!12

Solve for the velocities after impact:

_Jl : UÂ

2m2

ml + rn_

2ml
U2 _ U2 _'- (Ul -- _2)

ml +m_

3) Inelastic Collision:

U2 -- V 1 SEPARATION VELOCITY

ul - ?27 APPROACH VELOCITY

mt vl + 1TI2V2 : ml ?2t q- rn2722

Vl -- v 2 _--- --e(t/,l -- t/2)

V 1 =721
m_(1 + e)

ml + m2
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V 2 -- u2 -Jr- m_(1 + e)(u_ - u2)
ml + m2

Loss of kinetic energy:

1

_ =_[_(u_- _)+ m_(u_-_)]

After some algebraic manipulation the final result is:

AT-
1 mITT/2

2ml +m2
(1 - e2)(ul - u2) 2

for e = 0 : -_T = -_/('U 1 -- U2) 2

!__+A_where _, - -_ , . p = reduced mass. p = Greek "mu"

Example 2: Ballistic Pendulum

/ \

\ /

For m_ : F = rnl(vl - v'l) (3.54)

For m2" F = m2(v_ - v2) (3.55)

Combining Equations 3.54 and 3.55 yields the conservation law of linear momen-

tum.

' ' (3.56)r/21Vl -Jr-77/2"/)2 -- mlv I _- TT/,2V2
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The coefficient of restitution relation is:

e --

! i

'/)2 -- U1 SEPARATION VELOCITY
n

vl - v_ APPROACH VELOCITY
(3.57)

Initial condition for rn_ "v2 = 0

' and "We obtain for the unknowns v 1 v2.

, ml - m_e
U 1 _ U1

ml + rrt2

, (1 + e)ml
732 =

rnl +m_

The angular velocity after impact is

u1

Example 3

_'= ,_'_ll= (1 +e)mlvl
(ml + m2)l

Mass m, moving along the x-axis with velocity v, hits rn_ and sticks to it. If all

three particles are of equal mass m, and if m_ and ms are connected by a rigid

massless rod, find the motion after impact.

V o

m
U

1:¢
m

m

x

,, , _, • _,.There are 5 Unknowns: v, , v r , , y',
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Linear momentum in normal direction:

! !
rn v0 = mv. + 2 m (3.58)

Linear momentum in tangential direction:

' +2m7)'0--- 7r/ 731/ (3.59)

Angular momentum about C.M. of dumbbell:

i vo me _, t v'_ _ _5_ (3.60)

Coefficient of restitution:

(_' + _')- v'_
e--

VO

Case A: Sliding Rebound (_ = coefficient of friction)

(3.61)

b

P = m(vo - v'.) FOR PARTICLE

Combining these two equations yields:

_(_o- v'_)=-_ (3.62)

Rearranging the last five equations yields

(1') vx+2 =v0

'+2y=0(29 v_

I ! _V 0(3') v. + d'_ v_ - v,
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! "al ,_I(4') -_+_+ =_o
I I

(5') /1 vx - v_ = _ vo

Solving these equations for the unknowns results in:

, (3-p-4e)
U x :- U 0

(7-_)

,, -4U(1 + e)

% - (7 - U) vo

_),_ 2g(1 + e) Vo
(7-_)

8, = 2v/2(1-/1)(1 + e)vo
(r-U)*

Case B: Normal Rebound

Equation 3.62 is replaced by normal rebound condition:

I _--- yl 'rl(5") v_ -

All other equations remain the same. Soh'ing for the unknowns:

, 5 - 7e

vx - 12 Vo

, l+e

vu - 12 Vo
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7
.!

= (1 + ¢) vo

1

y'= _ (1+¢)Vo

The coefficient of friction above which normal rebound occurs is obtained from

calculating the two impulsive forces:

(1 + e)
R=l_F=-mv;- 1"2 m t) o

16"= m (v0 - v'_) = 7(1 + e) m v0

= 2/7

Example 4:

A sphere ml is projected horizontally against a carriage m_ which is backed up by

a spring k. If the coefficient of restitution is e and the surface is perfectly smooth

(/1 = 0). Calculate the rebound velocity v'x, the rebound angle 0 and the maximum

travel 6 of the carriage after impact.

V o

--tlb,-

®
ml

///////////////

/

/

/

I

/

/.

/

The prime indicates the condition after impact.
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Impulse Equations:

r_ (_'_- _) = -F _;,,

m_ (_)i-/)_) = _/" cos (_

rn_ (_; - x_)= F sin a

_)_= 0 carriage is on rail

(3.63)

(3.64)

(3.65)

(3.66)

Normal Velocities:

V_x=_a sin a

I "I "I

YlN : Xl sin a - Yl cos a

V_N : 0

,' " sin a_2N = X2

(3.67)

(3.68)

(3.69)

(3.70)

Restitution Equation:

,t _ UtL2N 1N
C --

VlN -- U2N

_ &[,sin a-(&'l sin a-/)'1 sin a)

& sin o-0 (3.71)

Unknowns:

"1 'l "1 /i_ "l
Xl, Yl, X2, , Y2"

The following steps are taken:

A) Eliminate k:

1) Combine Equations 3.63 and 3.65:

• ! "1

rnl z 1 + rn2 z_ = rnl 41 linear momentum for ml in x-direction (3.72)
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2) Multiply Equation 3.63 by cos a and Equation 3.64 by sin a"

"1 "!

ml x 1 cos _ + ml Yl sin c_ = m15:1 cos a (3.73)

The linear momentum along the smooth surface is conserved for rnl.

B) Solve Equations 3.71, 3.727 3.73 for xl," Yl," and z2''

c) I_.e.rmin__:

D) _t.cmia_:

E)

tan 0 = 77,
x 1

f_--.,_--_ X 2

(3.74)

(3.75)

Example 5:

A uniform bar of length t and mass m falls on a horizontal floor with velocity

v0 = u0 i - v0j. The bar falls without rotation. If a coefficient of restitution e

and a coefficient of friction p exists between the floor and the bar, determine the

minimum friction coefficient for a normal rebound and the velocities after a sliding

rebound.

Y

/// ///////

fi

Impulse Equations:

P = m (y+ vo) (3.76)
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R = -m (_ - u0)

.g

F_ cos 0=lwl

g

R_ sin 0=Iw_

(3.77)

(3.78)

(3.79)

The total angular velocity of the bar after impact is

03 _ 031 -- 032

Restitution Equation:

+ _ cos 0 (031- 03_)
I) 0

(3.80)

A) NORMAL REBOUND' (R < pfi)

g

+(_ sin 0)(wl-w2)=0

Substituting Equation 3.76 in 3.78 and 3.77 in 3.79:

Y-t_ 2

m(_)+v0) _ cos 0- 12

or

6 (y + v0) cos 0
031 "_--

. _ rn_ _

m(uo- z)-_ sin 0- 12

or

--03l

032

(3.8a)

(3.82)

(3.83)

(3.84)

6(uo - _?) sin 0

032 --

Inserting 3.83 and 3.84 into Equation 3.80 and 3.81'

v0=y+3 cos 0[(y+v0) cos 0-(u0-x) sin 0] (3.8_)
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= 3sin e [(uo- i) sin 0 - (y + "o) cos O] (3.86)

(3sin O cos 8)z + (1 + 3cos 2 8) y = e Vo

-3Vo cos 2 0 + 3Uo sin O cos 0 (3.87)

(1 + 3sin2 0) _ + (3sin 0 cos 0) y = 3 sin_ Ouo- 3vo sin 0 cos 0

Let 0 = 45°:

(3.88)

1
cos 0=sin 0=--_

q2

5 3 3
3_+ y=(e- )Vo+ Uo

3 _ 35_+ _,=uo( )- vo

(3.89)

(3.90)

(3.91)

Final results for velocities after impact are:

= (Se - 3) Vo -+-3 Uo & = 3 (Uo - (1 -4- e)vo}
8 8

_ ¢331 -- g,d2 --

The impulsive forces are:

3

2w/_g {2(1 -Jr-e) v0 - Uo}

5Uo + (1 + e) Vo }h=m 8

3Uo + 5(1 + e) vo }F=m 8

(3.92)

(3.93)

(3.94)

(3.95)

Normal Rebound Condition: /_ < #F
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3 _0 + 5(1 + e) v0
> (3.96)

5/1o + (1 + e) vo

SLIDING REBOUND: /_ = g P

/_ = _ m(_} + vo) from Equation 3.76 (3.97)

From Equations 3.77, 3.78, and 3.79:

From Eq. (5):

(3.98)

rn_ _

pm(9+vo) _ sin 0- 12 _zu (3.99)

m£ _

r_(y + vo)_ _os0 - 1_ _ (3.1oo)

6(_) + Vo)cos 0 6 p(y + vo) sin 0
_2 = (3.101)

_1 = g g

e vo = _1+ 3 cosO [(_) + vo) cos 0 - p (y + vo) sin O] (3.1o2)

e vo =/)[1 + 3 cos O(cos 0 - p sin 0)] + 3v0 cos 0 (cos 0 - _u sin O) (3.103)

Let 0 = 45°:

_, = vo [e - 3 cos 0 (cos 0- _ sin 0)] (3.104)
1 +3cos O(cos O-p sin O)

2 u(1 + e)vo
_}= vo {2e - 3(1 -/_)} _ = uo - (3.105)

2 + 3(1 - p) 2 + 3(1 - _)

12(1+ e) (1 - p)Vo
_=wt-w:= v/._[2+ 3 (1_ p)lg

(3.106)
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Chapter 4

Dynamics of a Rigid Body

This section is almost entirely treating the rotational dynamics of a rigid body. Later

we will also include internal moving parts whose movements are often prescribed

time functions. First the general equations of motion of Equation 3.12 are brought

in a more suitable form.

4.1 Euler's Equations

For a rigid body the relative velocity v and the relative acceleration a in Equa-

tion 3.4 and Equation 3.12 of the preceding sections are zero. For the case of the

general motion of a rigid body, it is customary to choose the center of man as the

origin of the reference frame and have the reference frame fixed in the body (Body-

fixed reference frame). If there is no external coupling between the translation and

rotation: the stationa] motion can be analyzed separately.

With these assumptions Equation 3.12 is:

Zm;ri x (& x r;)+Zrnir;x [w x (w x r,)] =L0 (4.1)

The first term is seen to be the (negative) Euler torque, whereas the second term

is the (negative) centrifugal torque. This equation can be rewritten by using the

following vector identity:

rx [wx (wxr)]=wx[rx (w xr)]

The rotational Equation 4.1 becomes then:

(4.2)

_,m, rix (&xrl)+wx Zmiri x (w xrl) =L0 (4.3)

69



At this point it would be possible to introduce an orthogonal reference frame and

convert Equation 4.3 to three scalar first order differential equations for dynamics

analysis and computer programming. However, it is possible and very useful to em-

ploy a notation known as vector-dyadic notation which, unlike the matrix notation,

is independent of a reference frame in the same way as vectors are.

4.2 Vector-Dyadic/Matrix Notation

A new vector operation is introduced which is formed by the juxtaposition (side

by side storage) of two vectors for the purpose of later taking scalar and vector

products with an ordinary vector. This vector operator is called the dyadic product

and is given by:

7)=AB (4.4)

where A is called the antecedent and B is the consequent. The dyadic product is

not commutative because AB # BA. However, the distributive [_w holds:

A(B1 + B_) = AB1 + AB_

(A1 + A_)B = A_B + A2B (4.5)

The juxtaposition of two vectors AB is also called a dva__d.

NOTE:

Dyads will be designated by capital script letters.

The sum of dyadic products is called a dyadic:

7) = A1BI + A_B_ + ... AnB, (4.6)

The dyadic obtained by interchanging the order of the A, and the B_ is called the

conjugate of 7):

7)c -----BaA1 + B_A2 + ... BnA, (4.7)

The dyadic which is equal to its conjugate is called self-conjugate or symmetric.

Because the distributive law holds for a dyadic product an) dyad AB can be written

in form of a dyadic as follows.
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Expressing the vectors A and B in terms of orthogonal unit vectors ez,e2, ea, we

get:

Z) = AB = (Alel + A_e2 + A)e))(B_el + B2ez + B)e))

= AtBle_el + AtB2elez + A1B)el%

+ A2Bteze_ + A2B2eze2 + A2B)e2%

+ AaBteael + A)B2ese2 + AaBaeae3 (4.8)

This is called the nonion form of the dyad because it contains nine components.

The following rules apply for the scalar and vector product of a vector with a

dyad:

Z). R = (AB). R = A(B. R)

R. _ = R. (AB) = (R. A)B

_)x R=(AB) xR=A(BxR)

Rxl)=Rx(AB)=(RxA)B

The unit (identity)dyadic isdefined as

£ = e_ez + e2e2 + %%

Indeed: A,E=E.A=A

Vector

Vector

Dyadic

Dyadic (4.9)

(4.10)

We are now read) to go back to Equation 4.3 and cast it in vector-dyadic notation.

Observing the above rule of forming the scalar product of a vector with a dyadic

we obtain:

where

T, rniri x (w x ri) = ]C mi [(ri" ri)w - (r;. _)ri]

= _ rnl [r_E --(rirl)] • t_ = E.w

z= ,,,,[ez-(,,,,)]

E = inertia dyadic

The vector-dyadic form of Equation 4.1 is therefore

2-.d_+w x g.w= L0

(4.11)

(4.12)
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It should be reiterated that this form of Euler's dynamical equations is independent
of a reference frame.

To convert Equation 4.12 into scalar form we introduce an orthogonal body-fixed

reference frame (body axes) whose origin is fixed in inertial space or coincides with

the mass center of the rigid body. The position of a mass particle m_ is then given
by:

ri = ziel + yle2 + z_e3

and the angular velocity of the rigid body:

(4.1_)

w = w.el + wye_ + wze3 (4.14)

The ensuing scalar equations can be concisely expressed by using matrix notation.

To this end, define the moments of inertia as:

1.x= r m,(y,_+ z?)

I. = r_m,(_ + y_)

Also define the products of inertia as:

(4.15)

Iz_ = Iy_: = -E mixlY i

Izz -'- ]zx = --_" mixizi (4.16)

l_z = Iz_ = --_ miYiZl

For continuous bodies the summation is replaced by appropriate integration e.g.:

Ix_= f (y_+ z2)dm etc.
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Some authors define the products of inertia of Equation 4.16 using the opposite sign

such that:

lzy -- Y. miziYi etc.

The moments and products of inertia can be arranged in matrix form:

I= It. Iuu I,,

I = inertia matrix

Any vector product between two vectors can be cast in matrix form:

c=a×b

Introduce the skew-symmetric matrix

0 _a z

h = a, 0

--ay a z
%]-a_ fi = singular

0

Then the matrix notation for the vector product is

(4.17)

c=_b

where b and c are now column matrices.

(4.1s)

No confusion is likely to occur by designating a column matrix by boldfacing the

letter, which is the same convention used for vectors, because it should be obvious

from the context whether an equation is written in matrix form or in vector-dyadic

form.

The matrix form of Euler's dynamical equations is then

ldo + ?olw = Lo (4.19)

It should be mentioned that in the dynamics area where only orthogonal (rotational)

transformations are used a dyadic is essential identical to a matrix. For every vector-

dyadic equation there exists an equivalent matrix equation. The advantage of the

vector-dyadic equation is, of course, that it is independent of the reference frame.
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Examples:

A) Angular Momentum of a Rigid Body

n = Y_r_ × ._,v_ = _ r_ × m_(v0 + _0× r_) (4.20)

If the origin O is fixed in inertial space or coincides with the mass center we have:

n = _ re;r, × (,o × r;) (4.21)

or

H = Z. w 27= inertia dyadic

The corresponding matrix equation is:

(4.22)

H = I _o (4.23)

B) Kinetic Energy of a Rigid Body:

! r_ _(v_v,)T -- 2

- _Em;(Vo+wxr;) 2
• (w x E m,. r_) + _ _ m;(_o x- 2 my0 2+vo _ r;) 2

If the origin is fixed or at mass center, the middle term becomes zero.

The total kinetic energy is then composed of translational and rotational kinetic

energy.

T=Tt+Tr

The expression (w x r/) _ can be transformed as:

(4.24)

(wxr;) _=(w xr)(w xr;)
= ,o. [r_× (,o × r,)]

Therefore, the rotational kinetic energy of a rigid body is:

1

T, = _ w. 2-. w (4.25)
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The corresponding matrix equation is:

1 to T
T,=-_ Ito

where the superscript T denotes the transpose of a matrix.

(4.26)

4.3 Orientation Kinematics

An important aspect of rotational motion in space is the specification of the relative

orientation between two reference frames (coordinate systems). In man)))" applica-

tions the orientation to be defined is that between a moving reference frame (or rigid

body) and a space-fixed (inertial) frame. There exist practically three schemes for

doing this:

a) Direction Cosines

b) Euler Angles

c) Quaternoins (Euler parameters)

Other methods are sometimes used, but the', are of little or no advantage over these

three.

As a general rule the unit vectors of an inertial frame will be designated b)" i,j, k,

and those of a moving frame b) eL, e_, e3.

a) Direction Cosines

Z

e3 I k

_X ' Cl

In this method each unit vector of the

moving frame ei is defined

in terms of the three angles each makes with

the three axes of the inertial frame. The))) are

obtained by the corresponding scalar products

el • i = cos aH= AI_

el .j = cosal_ = AI_

e_ • k = cosala = A_3 etc.

The coefficients A;k are called the direction cosines. The first index relates to the

unit vector of the moving frame and the second to that of the inertial frame.
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There are nine direction cosines and they completely define the relative orientation

of two reference frames. We can write in vector form:

el = At1 i + At2j + A13 k

e2 = A21 i + A22j + A23 k

e3 = Ant i + Aa_j + A33 k

It can be easily seen that the nine direction cosines are not independent. The

relationship between them can be obtained by observing the fact that the unit

vectors ei are of unit length and mutually orthogonal. Therefore the following six

equations hold:

el • el = ] e2 • e2 -- I ea • e3 = 1

el.e2 =0 ez.e3 =0 e_.e3 =0

These yield six relationships between the Aik which can be compactly written as:

3

__, Aik A.ik = 6ij
k=l

where 6ij is the Kronecker Delta. This equation is known as the orthonormalit,v
condition of the direction cosines.

A more convenient form is obtained by using matrix notation. Introducing the
direction cosine matrix:

All A12 .4t3 ]
A = A21 A22 A23

A._x A3_ A33

the above orthonormality condition is then

where E = unit matrix.

AAr= E (4.27)

Premultiplying Equation 4.27 by A -1 yields also:

A -t = A r (4.28)
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Matrices having the property that the inversematrix is equal to the transposed
matrix are called orthogonal (rotational) matrices. There are nine more (not inde-

pendent) relationships among the elements of A given by:

el × e2 = ez, ea × el : e2, e_ × e 3 : el

They can be summarized using the adjoint matrix adj A as

NOTE:

A T = adj A

In many dynamics problems the moving reference frame originally coincides with

'the inertial frame. It is, therefore, often customary to refer to the moving frame as

the "new': frame and the inertial frame as the "old" frame. Using this terminology

one would say that the direction cosines express the new unit vectors in terms of

the old unit vectors.

It is also necessary to know how the components of a vector change from one

reference frame to the other.

Consider the arbitrary vector

R=xel+ye2+zea =Xi+Yj+Zk

Introducing the unit vectors el,e_ and e3 yields:

R = (Allx + A21y+ Aalz)i

+ (Alex + A22y+ Aa2z)j

+ (AI3z + A23y+ A33z)k = Xi + Yj + Zk

Equating components of both sides and using matrix notation we obtain

(4.29)

= A r y or X = Arx

Z

This equation expresses the old components of a vector in terms of the new com-

ponents. To reverse the situation we solve for the new components by using the

orthonormality condition of the rotational matrix A and obtain
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ix]y =A Y

z Z

or x = AX

We see that the components of a vector transform exactly like their unit vectors.

Since the orientation of the moving reference frame is constantly changing with

time the direction cosine matrix is a function of time. It is possible to derive a first

order matrix differential equation by determining the time rate of change of the

unit vectors el, e2 and e3 relative to inertial space.

Employing results from Section 1.3 we can write:

el -- _ X e 1 : "411 i +-412 j + .413k

/_3 = w x e3 = A31 i +,632j + A33k

Expressing the angular velocity of the reference frame in terms of the moving ref-
erence frame we obtain

/,M: _1 e_ + w2 e2 + w3 e3

The above vector products can then be written as follows:

(4.30)

w x el = (wzez + w2 e2 + _3 e3) x e I = --_2 e3 + w3 e_ (4.31)

= -_z(A3_ i + A32 j + a33k) + w3(A_ i + A_2 j + A2a k) (4.32)

The other cross products can be transformed in like manner. Equating coefficients

and solving for the time derivatives of the direction cosines we arrive at the following

compact matrix differential equation:

._ =-&A kinematical (Poisson) differential equations (4.33)

where & is the skew symmetric matrix:

_,)

0 -w3 w_ ]
,_lJ3 0 --Wl

_2 _31 0
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NOTE:

The angular velocity has to be expressed in the moving reference frame coordinates.

The kinematical matrix differential Equation 4.33 actually consists of nine first

order linear differential equations for the nine direction cosines.

Visualization of Direction Cosines

To provide a visual aid for the rotational motion of a rigid body relative to an

inertial reference frame, it is convenient to plot the projection of any suitable unit

vector of the moving body frame on the three orthogonal planes which make up the

inertial reference frame.

Z

Y

Z-X plane: Plot Ai3 vs. Ai_

Z-Y plane: Plot Ai3 vs. Ai2

Y-X plane: Plot Ai2 vs..4iL
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a) Orientation An_les

It was seen in the preceding paragraph that only three independent parameters

are required for specifying the orientation of a reference frame relative to another

frame. The scheme to use three independent parameters to define the orientation

of a reference frame is due to Leonard Euler (1707-1783). It consists of a specified

sequence of three rotations about three noncoplanar (and nonorthogonal) axes.

There are two basic t.vpes of rotation sequences.

I) Classical Euler An_les (Type 3-1-3)

Z y

_.f -J

/

1) Precession v about 3-axis

e_ = - sin _,' cos _, 0 e_

e 3 0 0 1 e 3

= A3(e,) [ex]e2

e3

NOTE:

There are actually 12 possible Euler rotation sequences considering only positive
rotations.

2) Nutation _ about ]'-axis

[]el[10 0][el][]exe 2'' = 0 cos0 sin 0 e2' = ,41(0) %'

e 3'' 0 - sin 0 cos 0 e 3' e 3'
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3) Spin ¢ about 3"-axis

-'" = - n¢ cos¢ 0 " "_2 e2 =A3(¢) e2
-'" 0 1 " "e 3 e3 e3

The matrices A3(¢), A l (8) and A3(ff) are also known as canonical rotation matrices.

The rotation matrix for the combined sequence of rotations is given by:

A = A3(¢)Al(_) A3(V)

Multiplication of the three canonical matrices yields then:

A c¢c¢- 8¢_o8¢) (c¢8¢+s¢_0c_) (8¢80)1](s_ s¢) (-_ c_) (c_)

wherec¢=cos¢ s¢=sin¢etc.

NOTE:

The notation angle _ is usually restricted to the range 0 < _ < or.

As in the preceding paragraph it is again possible to establish a kinematical differ-

ential equation for the rate of change of the Euler angles. To this end we add the

Euler angle rates vectorically.

_=,_+0+6
or in terms of the appropriate unit vectors:

(4.34)

= " (4.35),,, ,,, _,,, ¢ ea + _e/1 +¢%_ e_ -I-w2ee 2 +w3e 3

The unit vectors on the right hand side can be easily converted by using the above

canonical rotation matrices. We obtain then the desired relationship in matrix form

AS:

w = A3(¢) A_(0) A3(¢) [o] [o]0 + A_(¢_) A_(O) 0 + A3(¢) 0

o
(4.36)
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or in component form:

wl = _ sin 8 sin _b+ 8 cos

,_ -- _ sin 0 cos q_ - _ sin 4_

=  cose +

These equations are known as Euler's kinematical equations.

To obtain the desired differential equations for the Euler angle rates the above

equations are inverted and arranged in matrix form which yields:

s n0cos°0]i 1]_ 1 (sin 0 cos ¢_) (- sin t_sin 4_) 0 w_

sinO (_ cos S sin _b) (- cos Ocos 4,) sin8 wa

(4.37)

It is seen that for 0 = 0 the above equations become singular. This singular!ty has

its physical origin from the fact that for 0 = 0 the angular velocities _ and lp (spin

and precession rates) can no longer be distinguished. This situation corresponds to

a condition of double gimbal gyroscopic suspensions known as gimbal lock. It turns

out that the gimbal lock singularity is an intrinsic property of all three-parameter
orientation schemes.

NOTE:

For double-gimbal gyroscopic suspension systems (Cardanic suspension) the nuta-

tion angle 0 corresponds to the inner gimbal angle whereas the precession angle

corresponds to the outer gimbal angle.

P.S. A variety of Euler angle systems are in common use. Although there is no

essential difference between them their end formulas (rotation matrix and kinemat-

ical equation) are difficult to compare. Therefore, it is better to derive each system

from scratch if needed.
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II. Modern Euler Angles (type 3-2-1)

X X"

X'

X

Z

Y

Z z'

1) Yaw_ about 3-axis

e 2' = -sint0 cos 0 e2 =Aa(_) e2

' 0 0 1 ea eae 3

1) Pitch 0 about 2'-axis

lie1Icos00sin0][lel I]ele 2'' = 0 1 0 e 2' = .42(0) e2
" sin0 0 cosO 'e 3 e3 e3

1) Roll ¢_ about l"-axis

_111

I_.2 -_.
--III [ ]["l ["]1 0 0 e 1 el

II

" = Al(cb) e20 cos ¢_ sin q_ e 2
II It

0 -sin_b cos¢ e a e a

The rotation matrix for the combined sequence of rotations is given by:
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A = A1(¢) A_(0) A3(_b)

Multiplication of the three canonical matrices yields then:

a

(c0 cv) (c08_) (-80) ]
(8¢ _ec¢- c¢ s¢) (so_esv + _¢_¢) (_¢_e)
(¢¢ 80 ¢_ +,¢_) (¢¢ 80_ - 8¢c_) (c¢c0)

(4.38)

The pitch angle 0 is usually restricted to the range -_ <__0 <_ _.

The yaw angle g, is also known as leading or azimuth angle.

The pitch angle 0 is also known as attitude or elevation angle.

The roll angle ¢ is also known as bank or clock angle.

To obtain the kinematic differential equations for the Euler angle rates we again

add the angular velocities vectorially:

w = _ + 0 + _b = ,_ e3 + 0 e; + _b e_ (4.39)

By taking the appropriate scalar products as above in Equation 4.35 we obtain the

desired kinematical equations:

_01 =¢-_ sin0

_o2=0cos¢+@ cosO sine

,_ = _ cos 0 cos ¢ - 0 sin ¢

The Euler angle rates are again obtained by inverting the above equation and ar-

ranging in matrix form with the result:

sin°cos°1[ 1]- 0 (cos ¢ cos O)(- sin ¢cosO) w2

¢_ cosO cos8 (sinCsinO) (cosCsinO) ".'3

(4.40)

It is seen that the intrinsic singularity now occurs for 0 = 90 °.
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NOTE:

The names given to these orientation angles indicate their preferred applications.

The classical Euler angles are generally chosen for gyroscopic (spinning) systems

whereas the modern Euler angles find application in the flight dynamics of airplanes

and missiles. There the interest lies often in small angle deviations (perturbations)

about a nominal flight condition. It is easily seen that the classical Euler angles

cannot be used for such situations because of the singularity at 0 = 0. In airplanes

the body axes are selected such, that the x-axis points "forward", the )-axis is "to

the right" and the z-axis "downwards."

C) Quaternions (1843)

It is possible to avoid the singularity of the three-parameter schemes by spec-

ifying the orientation of a reference frame using four parameters. This was first

discovered by Euler in 1776. These four parameters are therefore also known as

Euler parameters. When William R. Hamilton (1805-1865) formulated his quater-

nion algebra it turned out that when applied to rotational kinematics, the quater-

nions are essential]) equivalent to the Euler parameters. In fact, the quaternion

method proves to be a very convenient tool in the stud) of rotational dynamics.

The four-parameter scheme centers about E1)ler's theorem: Every rotation of a

rigid body is equivalent to a single rotation about some axis e (eigen axis) through

some angle 6.

It is obvious that an) vector lying along this axis of rotation is unaffected by the

rotation, i.e., it must have the same components in the new and old system. Using

matrix notation for this vector Euler's theorem can be formulated as:

R'=AR=R or (.4-E) R=0

where E = unit matrix and A = rotation matrix.

(4.41)

Recognizing Equation 4.41 as an eigenvalue problem, Euler's theorem can be re-
stated as follows:

The rotational matrix A defining the orientation of a reference frame has the eigen-

value +1.
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To prove Euler's theorem it is therefore necessary and sufficient to show that the

coefficient determinant

IA-E[-0 (4.42)

This can be done by using the orthogonality condition of matrix A and the fact that

the rotational matrix has the determinant +1. The latter fact can be deduced by

observing that any rotation matrix must evoh'e continuously from the unit matrix

assuming that the two reference frame are coincident prior to rotation. The unit

matrix E has, of course, the determinant +1. A sudden change in sign from +1 to

-1 would be incompatible with a continuous motion and represent a transition from

a right-handed to a left-handed system.

To arrive at the four-parameter representation we take a geometric approach. Con-

sider the rotation of a vector T about an axis e through the angle 6 according to

Euler's theorem.

The vector R2 can be expressed

in terms of Rt and the unit vector

e along the eigenaxis as:

R_ = (Rl .e)e

+ JR1- (al. e)e]cos6
+(e × R1)sin 6

R_ = CI + C_ + C3

The first term is obviously the projection of R1 along the axis of rotation e.

The second and third terms have the same magnitude, i.e., R1 sin (R1, e) which is
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in fact, the radius of the circle which is traversed by the tip of the vector 1_1 during

its rotation.

The second vector lies in the plane of R1 and e, and is perpendicular to e. The

third vector is perpendicular to the plane spanned by R1 and e.

It is now possible to convert the above equations to vector-dyadic form by intro-

ducing the rotation dyadic:

79 = Ecos6 + (ee)(1 -cos6)+ (e x _')sin6 (4.43)

which results in

R2 - 79" R_ (4.44)

Notice that the rotation dyadic 79 is defined by four parameters, namely the three

direction cosines of the rotation axis unit vector e = cos ael + cos _e_ + cos 7e3 and

the rotation angle 6.

To obtain the desired rotation matrix A from the rotation dyadic 79, we have to

remember that the rotation matrix refers to the orientation of one reference frame

relative to another. That means, the vector R is assumed to remain fixed and the

changes in the components of R are due to this rotation of the reference frame. In

the preceding discussion, it was assumed that the reference frame was fixed and that

the vector R was rotated in the opposite direction. The rotation matrix, is therefore,

obtained by simply changing the sign of the rotation angle 6 in Equation 4.43. It is

important to notice that the direction cosines of the rotation axis refer, of course,

to the rotating reference frame when they appear in the rotation matrix A. Their

instantaneous relation to the angular velocity is:

0dl _J2 0"3
COSO_ ----- -- , COS/_ = _ , COS'_ = --

Od ¢d ¢d

The result is:

A = L" cos6 + eer(1 - cos6) - _ sin 6 (4.45)

where

[cos ][ 0 cos cos ]e= cos/_ and _= cos7 0 -cos

cos7 -cos3 cosa 0
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From Equation 4.45weobtain the elementsof the rotation matrix asfollows:

All = cos6 + cos _ a(1 - cos6)

.41_ = cosc_ cos/3(1 - cos6) + cos7 sin 6

A13 = cos _ cos/3(1 - cos 6) - cos 8 sin/5

(4.46)

(4.47)

(4.48)

A_a = cosa cos_3(1 - cos6) - cos 7sin 6

A2_ = cos6 + cos 2 8(1 - cos6)

.4_3 = cost3 cos'_(1 - cos6) + cos a sin 6

(4.49)

(4.50)

A_I = cos a cos 7(1 - cos 6)

.432 = cos 3 cos "t(1 - cos 6)

.4a3 = cos 6 + cos 2 7(1

These elements can be written in simpler form by

6
qt = cos c_ sin -

2

6

q2 = cos i3 sin

6

q3 = cos 7 sin

6

q4 = cos 2

-?r<6<rr

Recalling the trigonometric half-angle formulas

+ cos _3sin 6 (4.52)

-cosc, sin 6 (4.53)

- cos 6) (4.54)

introducing the Euler parameters:

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

1 - cos6 = 2sin 2 6
2

6 6

sin 6 = 2 sin _ cos

(4.61)

(4.62)
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the first elementAll can be written in terms of Euler parameters as:

6 6

cos 6 + cos 2 a(1 - cos 6) = 1 - 2 sin 2 _ + 2 cos 2 o_sin

= 1-2(1-q_)+2q_=l-2(q_+q_+q_)+2q_

=l-2q_-2q_=q_-q_-q_+q_

The other elements can be written in similar form.

The notation matrix in terms of Euler parameters is then:

[(q_ - q_ - q_ + q42) 2(qlq2 + q3q4) 2(qlq3 - q2q_) ]A = 2(qlq2 - q3q4) (-q_ + q_ - q_ + q_) 2(q2q3 + qlq4) 1 (4.63)2(qiq3 + q2q4) 2(q2q3 -- qlq4) (--q_ - q_ + q_ + q24)

NOTE'.

The angle of rotation 6 can be found easily by taking the trace of the rotation

matrix .4 in the form given in Equations 4.46 thru 4.54:

tr A = All + A2_ + Aaa = 1 + 2cos6 (4.64)

It should be noted, that as expected, the four Euler parameters are not independent,

because one needs only three parameters to define the orientation. They are related

by the one constraint equation q_ + q_ + q_ + q_ = 1.

It remains to derive the kinematical differential equations for the rate of change of

the Euler parameters. Going back to Equation 4.33 we had

A = -&A (4.65)

This matrix equation consists of nine differential equations of which only three are

independent. For the kinematical differential equations we need four relationships.

Taking the time derivatives of the diagonal elements of Equation 4.65 and the

constraint equation associated with the Euler parameters we obtain:

q_cj_- q_i12- qsq3+ q46 = w3(qlq2- qaq_)-w2(q,q3+ q2q4) (4.66)

- qLq_+ q2[12- q3q3+ q4q4= -w_(q_q2+ qaq4)+ w,(q2q3-- q,q4) (4.67)

--q*4*--q_q_+q_4_+q_4_='_(q,q_--q_q_)--_,(q_q*+q*q_) (4.6S)
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Introducing the matrices

ql

q = q_
q3

q4

qlql + q2q_ + q3q'3 + q4q4 = 0

0 --&3 _2 --_1

_3 0 --_1 --_2

--_2 _1 0 --_3

_1 _2 _3 0

] -w]
w I 0

(4.69)

the above equations can be written in matrix form as:

1

/_=-_q (4.70)

Integration of Quaternions

The kinematical Equations 4.70 are not numerically integrated as such. A better

integration procedure can be developed by assuming for a moment that the angular

velocity w is constant. For this case the quaternions of Equations 4.55 thru 4.58

can be integrated in closed form, because the direction cosines remain constant,
such that at all times:

cos a - cos _ - cos 7 = -- (4.71)

Setting the initial rotation angle 60 = _ to and the final rotation angle 6 = w t we
have then:

5+50
ql = -- sin

2

6+5o
q2 = -- sin

w 2

6+50_O3
qa = -- sin

2

6+6o

2q4 -- cos

9O



To arrive at the relationship betweenthe initial and final quaternions, let us also
introduce:

w-2-1sin 60
ql0 --

w 2

w___2sin 6o
q2o =

2

__aasin 6o
q3o = 2

60

q40 = COS 2

The next step will be illustrated using ql as an example.

metric function, we obtain:

Expanding the trigono-

wl 6 60 6ql = -- (sin cos +cos sin )

wl 6 60 6 60
ql = -- sin (cos +cos (_1 sin

_i 6 6o
qt = -- sin q40 + cos ql0

The other components are manipulated in like manner. We obtain them:

6 wl 6

ql = cos _ ql0 + -- sin q40

6 w2 6

q2 = cos _ q2o + -- sin q4o

6 w3 6

q3 = cos _ q3o + -- sin q4o

6 (_ _2 _a 6q4=-sin _ q_o+_q2o+_q3o)+Cos_q4o

where 6 = wt,

or in matrix form:

- wl

wf w sin -_)qoq = (E cos 2 w
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where E = (4 x 4) unit matrix and _ defined as in Equation 4.70. While only an

approximation for a time-varying angular velocity the error is extremely small for

short time integration intervals. This scheme automatically satisfies the constraint

equation and its computer efficiency is excellent.

NOTE:

Computer coding is more efficient when using the above components because the

matrix equation involves some cancellation for the off-diagonal terms.

d) Interrelatedne_s

Quite often it is necessary to convert from one orientation scheme to another.

The conversion from Euler angles or quaternions to direction cosines is, of course,

directly given by the rotation matrix A expressed either in Euler parameters or

Euler angles. The inverse problem of converting from the direction cosine (rotation)

matrix to Euler angles or quaternions is more involved due to the inherent ambiguity

resulting from having more equations than unknowns.

A) Classical Euler Angles from Rotation Matrix

0=cos -t Aaa 0 < 0 < rr

¢=tan -1 Ala/.4_a -rr < 0 < rr

= tan -1 Aal/.4a_ -_r < _ < 7r

B) Modern Euler Angles from Rotation Matrix

0 = sin -1 (-A33)

O = tan-1 A23/Aaa

= tan -I Al_/AlI

-_r/2 < 0 < 7r/2
-_- < ¢ < 7r

The above relationships can be easily verified by inspection of the rotation matrices

expressed in terms of Euler angles. The ambiguities stemming from the inverse

tangent functions can be resolved by observing the signs of the direction cosines in

their arguments as numerators and denominators.

The following quadrants can then be determined:

I. Quadrant: +/+
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II. Quadrant: +/-

III. Quadrant: -/-

IV. Quadrant: -/+

C) Quaternions from Classical Euler Angles

ql = sin _ cos (_

q2=sin_ sin( )

0 .¢+¢,
q3=cos5 sin(_)

0 ,V+¢,
q4 = cos _ cos _,_)

D) Quaternions from Modern Euler Angles

¢ ¢ t_ sin ¢ 0 ¢
qL = sin _ cos _- cos _ - _- sin _ cos

0 ¢ cos ¢ + sin _ ¢ Oq_= sin_ cos_ 5 sin_ cos
¢ 0 ¢ 0 ¢

q3 = sin _- cos _ cos y - sin _ sin _ cos _-

¢ 0 ¢ ¢ 0 ¢
q4 = sin _- sin _ sin _ + cos y cos_ cos
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For small angles the quaternions are approximately:

¢

2
0

q2 -- -
2

¢
q3 = _"

q4=l

Notice also the ubiquitous presence of half angles which is typical for all four-

parameter schemes.

The derivation of these formulas can be done taking the following steps: (Quaternion

algebra would provide a more elegant way).

Take the diagonal terms of the rotation matrix A and the constraint equation of

the quaternions:

2 2ql - q_ - q_ + qa .411

-q_+q_-q_+q_=.4_

-q_-q_+q_+q_=Aza

q_+q_+q_+q_= 1

As an example we solve for q_ by adding the second and fourth equation to obtain:

2q_+2q_= 1+.4_

Also adding the first and third equation:

(4.72)

- 2 q_ + 2 q_ = All + A33

Eliminating q_ yields then:

(4.73)

4q_ = 1 - .411 +-42_ --433

Next we introduce the half-angle relations:

(4.74)

O_ 1 Ot 1

sin a 1 = 2 sin-_- cos-_-
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cos al = 1- 2 sin 2 a-L
2

To make the notation more concise we let sin al = *'-1-,cosal = c--]-,sin _ = sl and2

COS Mj. = el "
2

Introducing in addition, the notation for the modern Euler angles: _b = 01, 0 = 02

and $ = 0a, we rewrite the direction cosines as:

All = Cl c2

A22 = Sl s2 83+ct c3

A33 --- c2 c3

The second quaternion

4q_ =

q_

can then be manipulated as follows:

l+81s2sa +clca -ca c2 -c2c3

= l+8sas_sacl c2ca +(1-2s_)(1-2s_)

- (1-2s_)(1-2s_)-(1-2s_)(1-2sa 2)

= 2 sl 8_8acl c_ca+ 4 + 8_4 - 8_8_- 8_8_
= 2818_8acl c_ca+ _ (8,_+ 4) (sg+ c_)

8_sa(sa+ c_)8182(8a+ cg) - _ _+ _ 8g(8_+ c_)- _ _
: 2818_8a_1_ c_+ _ _ _g+ 8__ _

Finally:

q_ = (s2 ca ca + sl sa c_) _ (4.75)

Taking the square root we take the positive sign and that for small angles q_ = _.

q2 ---- 82 Cl C3 _ '31 83 C2

or reverting back to the original notation:

¢ cos ¢ ¢ ¢ 0
q2 = sin _ cos _ _ + sin _ sin _ cos_

The other quaternions can be obtained in a similar fashion.

(4.76)

(4.77)

E) Quaternions from Rotation Matrix

Different algorithms have been suggested to solve this inverse problem. The most

elegant an efficient one makes use of the inherent symmetry

of the quaternion relationships. To reveal this symmetry we introduce the fol-

lowing definitions:

p=2q, A44=TR and TR=All+A_2+Aaa (4.78)
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Weak ness:

The kinematical equations are transcendental and singular (gimbal look). As a

consequence, computer coding is ineffective and awkward.

Quaternions:

Strength:

The small set of four parameters having linear nonsingular kinematical equa-

tions admits of highly efficient computer coding. Quaternion algebra affords concise

derivation of multiple reference frame inter-relationships.

Weakness:

Poor visualization.

E) Direction (Aerodynamic) Angles

It was observed that the definition of an orientation (attitude) requires three

independent parameters. By contrast a direction can be specified using only _two

independent parameters. This can be understood by realizing that a direction is

defined by a unit vector whose three direction cosines have to satisfy the constraint

equation cos2a + cos_3 + cos_ = 1. This leaves two independent parameters

for the direction specification. Direction angles find their foremost application in

determining the aerodynamic forces acting on a body. This explains the terminology

commonly used for the direction angles. There are two types of direction angles in

common practice. It is assumed that prior to the rotation sequence the x-axis of

the body is aligned with the desired direction. In aerodynamic terms, the x-axis is

aligned with the nominal flight velocity v.

Type I:

Here the direction angles are defined by the following rotation sequence:

1) Counterclockwise rotation _3 about z-axis

icos sin 01[i]e_ = sin_3 cos/3 0

e_ 0 0 1

2) Clockwise rotation c_ about /,,'-axis
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[] ][]ea coso_ 0 -sin_ e_

e_ = o 1 0 e_
Ie_' sin,_ 0 cos _ e3

The total rotation matrix is obtained by multiplying the two canonical rotation
matrices:

COSsin -cosos,n  os-sin ][il0
" sin t_ cos/3 - sin c_sin/3 cos ae 3

As assumed the flight velocity before the rotation was along the x-axis: (v = vi).

Therefore:

Iv1v--- 0

0

The velocity components in the rotated reference frame are therefore:

U z _---U COS O_ COS /3

vv = v sin /3

vz=v sin a cos /3

The two orientation angles a and/3 can now be expressed in terms of these velocity

components as:

Angle-of-attack tant_ = _ -180 ° < c_ < 180 °
Vat _

Sideslip angle sin/3 = ra _90 ° </3 < 90 °

The restrictions on the ranges of the orientation angles are introduced to avoid

ambiguities when taking the inverse trigonometric functions to obtain the direction

angles. The quadrant of the angle of attack

is determined by the appropriate signs in the numerator and denominator of the

argument.

Comparing the direction angles with the modern Euler angles, it is readily seen

that the angle-of-attack corresponds to the pitch angle 0 and the sideslip angle fl to

the negative (t) yaw ang]e _b. A positive sideslip angle/3 obtains for a "nose left"



situation. This unusual sign convention stems from the desire to have a positive

sideslip angle when the wind comes from the ri_.

Type II:

Here the direction angles are defined by a slight]) different rotation sequence which

essentially corresponds to the modern Euler angle rotation sequence with _ = 0.

1) Clockwise rotation Crz about y-axis

[][e_ COSaz 0 --sinaz i
' = 0 1 0e2

' sinaz 0 cosaTe 3

2) Clockwise rotation Cn about Y-axis

["]
e l

i!
e 2

tt
e3

1

= 0

0
]I10 0 e 1

cosCn sin CR e_
t

- sin Cn cos Cn ea

The total rotation matrix is then:

[][ex cos _T 0 -- sin _7 i

e 2'' = sin oz sin CR cos ¢'R cos _T sin ¢n

" sin arch - sin Cn cos c_r cos Cnea

Assuming again that the nominal flight velocity is along the original x-axis, the

velocity components in the rotated frame are:

U_ _-_ V COS O_T

v_ = v sin c_zsinCn

vz = v sin aT cos Cn

The two orientation angles can then be defined as:

Total angle-of-attack cosaz = _

Roll Angle tan _PR = _
t,'_.

0 _< az < 180 °

0 < Cn < 360 °

Notice again the range restriction for the total angle of attack az which allows a

unique inversion of the cosine function.
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cos 0_1 = 1-2 sin 2 _1
2

To make the notation more concise we let sin _1 = s--i-, cos _1 = _, sin _ = sl and
2

COS a-'t" = C 1 .2

Introducing in addition, the notation for the modern Euler angles: ¢ = 01,0 = 02

and 8 = 03, we rewrite the direction cosines as:

All -- cl C2

A22 = sls2s3+cl c3

A33 = C2 Ca

The second quaternion

4q_ =

q_

Finally:

can then be manipulated as follows:

1 + sl 82 83 -_ C1 C3 -- Cl C2 -- C2 C3

= 1+8sls283ClC2e3 +(1-2s_)(1-2s_)

- (1-2s_)(1-2s_)-(1-2s_)(a-2s])

= 2 _ _2_3_1c2_3+ _ + _f_I- _I_ - _ _I
= 2 _ _2_3¢1c2¢3+ _ (_ + ¢I)(_I+ ¢])
+ _I_ (_+¢_) _ _ 2-81_2(83+_) _ 2- _8_(8_ + c_)
= 2_,_ 83_ _2_3+ _ _ _ + _ 8_c_

q_= (8_c__ + 818__2)2 (4.78)
0.

Taking the square root we take the positive sign and that for small angles q2 = 5"

q2 = s2 cl e3 +81 s3 c2

or reverting back to the original notation:

(4.76)

¢ ¢ ¢ ¢ e
q2=sin 5 cos _ cos _+sin y sin _ cos 5

The other quaternions can be obtained in a similar fashion.

(4.77)

E) Quaternions from Rotation Matrix

Different algorithms have been suggested to solve this inverse problem. The most

elegant an efficient one makes use of the inherent symmetry

of the quaternion relationships. To reveal this symmetry we introduce the fol-

lowing definitions:

p = 2 q, A44 = TR and Tn = Al1 + A22 + ,433 (4.78)
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where Tn is the trace of the rotation matrix. The diagonal terms of the rotation

matrix Equation 4.63 can be cast into a set of symmetrical equations:

2
p_=1+2.42_-7_

P3= l+2A33-TR

p_ = 1 -t- 2 -444 --7)_

(4.79)

The off-diagonal terms of Equation 4.63 furnish all combinations of cross product

terms:

Pl P2 = .41_ + .421 P3 P4 = A12 - A21

P: P3 = A31 + .413 P2 P_ = .431 - .413 (4.80)

P2 Pa = .423 + .43_ Pl Pl = .423- .432

The first step in solving the above equations for the unknown quaternions is to

select the largest p,. of the diagonal Equations 4.80.

This assures the highest possible numerical accuracy for the solutions. The next

step is to choose the appropriate three off-diagonal equations from Equation 4.80

to calculate the remaining three unknown quaternions.

To avoid ambiguities the positive square root is taken when the first quaternion is

calculated in step one. It is customary to restrict the range of the rotation angle

to -Tr _< E _< +Tr. From the definition of the Euler parameters in Equation 4.58 it

follows that q4 is always positive. This requires that all the signs of the quaternions

have to be changed if the above algorithm yields a negative P4. A useful computer

code for the solution of the above problem can be set up by taking the following

steps:

Step 1" Define matrix

.41: A12 A13 A23

A2t .4_ -42a A3:

Aa: .4a2 .4_3 A:z

-.432 -A13 -.4_ Tn
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Step 2: Define matrix

+ (1 - TR)E

where E is a 4 x 4 unit matrix.

Step 3: Select k = MAX pll

where k is the row of the largest diagonal element of p.

Step 4: q_ = pkj/2v/'p_

Step 5: qj = q_ sgn q'4

wheresgn = -1 for q_ <0

+1 for q4 > 0

Summary:

Direction Cosines:

Strength:

Linear nonsingular kinematical equations. Easy visualization makes them well

suited for attitude display plots.

Weakness:

The unduly redundant set of nine parameters requires excessive computational

effort.

Euler Angles:

Strength:

The set of three independent parameters makes them a natural tool for analytical

studies. The classical system is particularly useful for analyzing

gyroscopic (spinning) systems whereas the modern system is applied to the sta-

bility and response analyses of systems which deviate only moderately from nominal

operating conditions. For these cases the classical system would become singular.
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Weakness:

The kinematical equations are transcendental and singular (gimbal look). As a

consequence, computer coding is ineffective and awkward.

Quaternions:

Strength:

The small set of four parameters having linear nonsingular kinematical equa-

tions admits of highly efficient computer coding. Quaternion algebra affords concise

derivation of multiple reference frame inter-relationships.

Weakness:

Poor visualization.

E) Direction (Aerodynamic) Angles

It was observed that the definition of an orientation (attitude) requires three

independent parameters. By contrast a direction can be specified using only two

independent parameters. This can be understood by realizing that a direction is

defined by a unit vector whose three direction cosines have to satisfy the constraint

equation cos _a+ cos23 + cos_7 = 1. This leaves two independent parameters

for the direction specification. Direction angles find their foremost application in

determining the aerodynamic forces acting on a body. This explains the terminology

commonly used for the direction angles. There are two types of direction angles in

common practice. It is assumed that prior to the rotation sequence the x-axis of

the body is aligned with the desired direction. In aerodynamic terms, the x-axis is

aligned with the nominal flight velocity v.

Type I:

Here the direction angles are defined by the following rotation sequence:

1 Counterclockwise rotation/3 about z-axis

[cos sin 0][i]e_ = sin/3 cos3 0

e_ 0 0 1

2) Clockwise rotation a about //'-axis
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It is easily observed that the type II orientation angles correspond to the last two

rotations of the modern Euler angle system. Therefore the total angle of attack az

can be identified with the pitch angle _. Whereas the roll angle _bn is really nothing

else but the role angle ¢b.

Both systems of orientation angles appear to be equally in use. However, the type

II angles are not suitable for dynamic studies of small perturbations from a nominal

flight condition because the roll angle approaches an indeterminate form (vy = v_

0). It can be seen that the type I angles are actually well behaved for this condition.

Notice also that in this case the x-component of the velocity v_ is nearly equal to

the nominal flight velocity v (v_ _ v).

The types of orientation angles are mathematically related as follows:

A) Conversion from type I to type II:

COSO_ T _ COSO_COS)_

igOR = (sin o)-llff_

B) Conversion from type II to type I:

tga = cos6nigaT

sin 8 = sin Cn sin o_T

Extreme caution has to be exercised when converting from one type to the other to

make sure that the orientation angles lie in their correct quadrant.

For large orientation angles the type II system is easier to visualize than the type 1

system.

NOTE:

If the orientation angles have to be determined by starting from a given direction,

the rotation sequence has to be reversed and the rotations be performed in the

opposite clock sense. Thus the type I system would require first a counterclockwise
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rotation about the y-axis and then a clockwise rotation about the z-axis to align

the given direction with the positive x-axis. Using the type II system, the reverse

rotation sequence starts with a counter clockwise rotation (roll) about the x-axis

followed by a counter clockwise rotation (pitch) about the y'-axis.
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4.4 Moment of Inertia Properties:

The following properties of the moment of inertia matrix and its elements (moments

and products of inertia) play a central role in dynamics studies.

A) Triangle inequality of the moments of inertia

The three moments of inertia about three rectangular axes are such that the

sum of any two is greater than the third.

Let:

Then:

l_t = E(zg+ z_)rn
I_ = E(z_+ z_)m

111 + 122 - I33

_- xbm = 2_x_m> o= r_(_ + _ + _, + _- xl

Therefore: 111 + I_2 > 133 Q.E.D,

Similar relationships are obtained by cyclic permutations of the indices.

B) Theorem of Parallel Axes (Steiner Theorem)

Let O be the origin of the reference frame about which the moment of inertia dyadic

is defined and C.M. be the mass center of the rigid body.
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In the figure:

d = distanceof C.M. from 0

ri = location of masselementml.

Usingvector-dyadic notation the inertia dyadic about 0 can be written as:

Zo= [R E-(R, R,)]m,

Zo = Z [(d + r,)_E -(d + r,) (d + r,_)]rn,

70 = E [(d_ + 2d.r; + r_)E -(d d + dr; + r;d + r,r;] m;

For the mass center Er; m; = 0 and _d m; = Md where M = E rn,.

Therefore:

or

2-0 = Z(r_ c - r; r_.) m, + M(d2f - d d)

2-0 = 2-C.M. + M (d2 E - d d

Converting to matrix form. we introduce:

d = die1 + d2e2 + daea

It can be easily verified that the dyadic £ = a_2- - aa corresponds to the matrix
L = -t) _

where

0 -a3 a2 1
a3 0 --_/1

--a2 al 0

Therefore the matrix form of the above inertia dyadic 2-0 is:

Io = Ic.M.- M _2
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In component form:

111 = l_l + M(d_ + d_)

I_ = l_2 + M(d_ + d_)

Ia3 = l_3 + M(d_ + d_)

and also:

I1_ = I_- Mdld_

Ila = I_a -- hldldz

l_z = l_a - Md2dz

It can be seen that a translation of the axes away from the mass center always

results in an increase of the moments of inertia. On the other hand, the products

of inertia may increase or decrease depending on the particular situation.

C) Theorem of Rotated Axes

Here we establish the relation between the moment of inertia matrices expressed

in two different reference frames. To do this we calculated the rotational kinetic

energy for the two different systems whose common origin is

chosen at the mass center. For convenience sake we call one system the primed

system and the other the unprimed system. It is apparent that the rotational kinetic

energy, being a scalar, has to be the same for both coordinate systems.

1 t_tTi_t_ tT=-_ = wTIw

The rotational transformation is:

to' = Aw

The kinetic energy is therefore:

T= _wl T(AZ FA)w = _wT(I) _
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The two bracketed terms must be identical, i.e.,

AT I'A = I

By proper pre-and post-multiplication with the rotation matrix A, we can solve for

the primed moment of inertia matrix:

I' = AIA T

This is the desired transformation law of the inertia matrix when going from an old

(unprimed) to a new (primed) system by a rotation.

D) Principal Axes

The moment of inertia matrix is a real symmetric matrix. It is a theorem of

matrix analysis that an)" real symmetric matrix can be reduced to diagonal form

by means of an orthogonal transformation. This means that we can always find

a reference frame in which all products of inertia are zero. This reference frame

is known as principal axes system and the three mutually orthogonal coordinate

axes as principal axes. The diagonal terms of this diagonal inertia matrix are called

principal moments of inertia.

The problem of finding such a principal axes frame is equivalent to solving the

eigenvalue problem

(I - AE)z = 0

The eigenvalues of this problem are the principal moments of inertia

and their associated eigenvectors represent geometrically (unit) vectors along

the principal axes of the reference frame. The eigenvectors can be grouped

together to form a matrix _ whose columns are the eigenvectors z,,z,, and z a.

Designating the components of the eigenvectors as

Xll 1
X 1 _ X21 X2

X31
[x12][ 13]Z22 X3 ---_ _23

X32 Z33

the matrix of the column vectors called modal matrix is
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Xll *T12 X13 1

@

X31 _32 _33

Let also A1 = 11, A2 = I_, Aa = la.

The diagonalization of the inertia matrix I using the modal matrix # can then be

performed as follows:

I# = [lzl I Ix2 I lz_]

= [I_z_ I I2z_ I I3z3]

0

0 0

/2 0
0 13

The second step in the above equation is a consequence of the eigenvalue solution

I_1 = A1 zt = It _1. Premultiplying by _r yields:

or finally:

Io=_r l#

Comparing this transformation law with the law governing the change of the inertia
matrix under rotation we see that the moda] matrix _ is related to the rotation

matrix A simply as:

A=_ T

The rotation matrix is the transposed modal matrix. This rotation is also known

as principal axes transformation.

Example:

For the Gemini spacecraft the inertia matrix referred to the control axis system

with origin at the mass center was:

107



4560.7 31.2 -43.4
I= 31.2 4545.0 -270.7

-43.4 -270.7 1567.4

We want to make a principal axis transformation:

l) Solve the eigenvector problem

(I - AE)_ = 0

Eisenvalues:

slg ft 2

11 = 4530.11944

I_ = 4600.531811

la = 1542.448749

Modal Matrix:

NOTE:

0.74693 0.66477 0.01339 ]

J-0.66305 0.74319 0.08965

0.04964 -0.07584 0.99588

The eigenvectors are normalized to unit length.

2) Check the sign of the determinant of 4i.

I_li 1= 0.9999997403

If[ _ti I turns out to be negative we change the sign on one row or column.

3) Find minimum rotation angle 6:

trY= 1+2cos6

To do this we have to change the sign on an)' _ rows.
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tr _x = +0.74693+0.74319+0.99588 _ 6=42.01 °

tr _2 = -0.74693- 0.74319+ 0.99588 _ 6 = 138.34 °

tr _a = -0.74693+ 0.74319- 0.99588 ---, 6 = 178.88 °

tr '1_4 = +0.74693- 0.74319- 0.99588 _ 6 = 174.19 °

4) The rotation matrix A is obtained by taking the transpose of the modal matrix

having the minimum rotation angle 6 :

0.74693 -0.66305 0.04964
A = _ = 0.66477 0.74319 -0.07584

0.01339 0.08965 0.99588

The orientation of the principal axis system relative to the control axis system can

be expressed in terms of the classical Euler angles or in terms of the modern Euler

angles.

Example:

Determine the direction of the minimum principal moment of inertia axis e3 relative

to the corresponding control axis. We obtain:

0 = cos -1 Az3 = cos -1 0.99588

0 = 5.2 °

Al____aa_ 0.04964
¢ = tan-_ A2a - tan-1 -0.07584

This angle lies in the second quadrant.

¢ = (180 - 33.206) ° ---* ¢ = 146.8 °

E) Ellipsoid of Inertia

The inertial properties of a rigid body can be conveniently depicted by an ellipsoidal

surface which is in essence a plot of the moment of inertia of the body as a function

of the rotation axis direction. Going back to the matrix form for the rotational

kinetic energy of a rigid body we have
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1 T 1 2
T= _w lw = _IA_ (4.81)

where the scalar IA is the moment of inertia about the instantaneous rotation axis.

The single scalar expression for the kinetic energy on the right side can be verified

by letting the angular velocity w coincide momentarily with one of the coordinate

axes. Now let us define a vector p having the same direction as w such that:

Inserting this in Equation 4.81 above, we obtain

Ix1pZlp= 1 wherep= y

Z

Consider now p to be a positive vector drawn from the origin 0 to a point (x, y, z)
then we can write the scalar equation:

Illx _ + I_2y _ + I33z _ + 2112x_ + 2113xz + 2I_3yz = 1

This ellipsoidal surface centered about 0 is called the ellipsoid of inertia.

The coordinate transformation which brings the inertia ellipsoid in its standard

form is, of course, exactly the principal axis transformation previously discussed.

The moment of inertia about an',' rotation axis can be found directly from the

magnitude of the vector p.

where p is the length of the straight line drawn from the origin 0 to a point on the

surface of the inertia ellipsoid.

A quantity closely related to the moment of inertia is the radius of gyration ka
defined by
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Ia = Mk2a

In terms of the radius of gyration p can be written as:

The inertia ellipsoid is fixed with the body and rotates with it. Two rigid bodies

having equal mass can have quite different shapes and still have identical ellipsoids

of inertia. They are called dynamically equivalent or equimomental. Although the

inertia ellipsoid is a figure of revolution, the corresponding rigid body need not be.

Roughly speaking the shape of the inertia ellipsoid is similar to the shape of the

corresponding rigid body. For instance, a prolate (oblate) rigid body has a prolate

(oblate) inertia ellipsoid. The standard form of the inertia ellipsoid is

+ + ]3 I = 1

where I1, I_ and I3 are the principal moments of inertia.

111



4.5 Free Motion of a Rigid Body

The free motion is characterized by the absence of external moments. The origin

of the reference frame is either fixed in space or at the mass center. Both cases are

dynamically identical. There are two ways of treating this problem - the geometric

(Poinsot method 1834) and the analytic (Euler case 1758) way.

To simplify the problem, the reference frame is chosen to be a principal axes

system. There is, of course, no loss of generality involved in this particular choice

of the reference frame.

The equations of motion are obtained from Equation 4.12 and read in scalar
form:

I1_ + (Ia - I_)._2_a = 0

12_ + (I, - la)_ a:a = 0 (4.82)

la&a + (I: - I1)_vl.v2 = 0

A) Poinsot Method (1834)

This method represents a geometric solution of the torque-free motion of an

unsymmetrical rigid body. With no external torque acting on the body, the kinetic

energy and the angular momentum are conserved.

Therefore:

2 Iu,,'_ Ia._'_ (4.83)2T = 11% + +

This equation represents geometrically an ellipsoid known as Poinsot Ellipsoid or

kinetic energy ellipsoid. It differs from the standard inertia ellipsoid only by the
scale factor x/_.

Also:

H 2 2 2 2 2 2 211% + I_ + Ia_ 3 - 2TD

This ellipsoid is the angular momentum ellipsoid.

(4.84)
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The quantity D is defined as:

H 2

D - 2T - CONSTANT (4.85)

It has the dimension of a moment of inertia and is used in the subsequent discussion

as a matter of convenience.

The Poinsot method does not yield the angular velocity w as a function of time but

only the path traced by the instantaneous rotation (spin) axis on the rigid body.

This trace is called the polhode and is the curve obtained by the intersection of the

Poinsot ellipsoid and the angular momentum ellipsoid. Mathematically speaking,

it is given by the simultaneous solution of Equation 4.83 and Equation 4.84.

For the ensuing discussion, we assume without loss of generality that

11 < 12 < la (4.86)

It can then be shown that for this case, the constant D must lie in the range

Ii _< D _< la (4.87)

As a consequence, a polhode angular momentum ellipsoid is always more elongated

than the corresponding polhode Poinsot ellipsoid. The following two figures illus-

trate the geometrical aspects of the Poinsot method.

It is observed that the polhodes form closed curves about the smallest and largest

moment of inertia reflecting a stable motion. On the other hand, the polhodes in

the vicinity of the intermediate moment of inertia I_ have hyperbolic character

indicating an unstable motion.

In the case of axial symmetry, the Poinsot ellipsoid and the angular momentum

ellipsoid become ellipsoids of revolution (spheroids). The polhodes become circles

perpendicular to the spin axis. The rotation about the axis of symmetry becomes

more stable, whereas the rotational motion about a transverse principal axes is

neutrally stable.

The polhodes furnish an argument for the stability behavior of the rotational

motion about a principal axis in the presence of internal energy dissipation.

Since

H 2

I, < (D = _-_) < la (4.88)

from Equation 4.87 it is observed that in this case the kinetic energy T must decrease

while the angular momentum H remains constant. As a consequence, the quantity
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Figure 4.1" Intersection of Poinsot and Momentum Ellipsoid

6.9 2

Figure 4.2: Pollodes on Inertia Ellipsoid
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D is increasing which means that a motion in the vicinity of the principal axis of

minimum moment of inertia (D _ I1), will gradually go over to a rotation about

the principal axis of maximum moment of inertia (D _ Ia).

Thus, the principal axis of minimum moment of inertia is one of unstable equi-

librium in the presence of internal energy dissipation. This behavior was actually

observed for some satellites notably the Explorer I satellite which was spin-stabilized

about the longitudinal axis of minimum moment of inertia. The source for the en-

ergy dissipation can be provided by internal fluid motion or feasible antennas. The

important question is how long a spinning satellite without large changes in orien-

tation.

The Poinsot method can also be used to calculate the limits of the mutational

or wobble motion of an unsymmetrical torque-free rigid body. To this end, we

write the Poinsot ellipsoid (Equation 4.83) and the angular momentum ellipsoid

(Equation 4.84) in terms of the angular momentum components. Thus,

H_ H_ H_ 2T (4.89)
I--7+ + I-7=

H_ + H i + H_ = H 2 Momentum Sphere (4.90)

Multiplying Equation 4.89 by D and observing that by definition H 2 = 2TD we

can combine both equations to obtain the path of the angular momentum vector

on the momentum sphere:

H_(1 - D) D) D) = 0 (4.91)
Ix +H_(1- 12 +H_(1- 13

The trace of the momentum vector H on the momentum sphere is illustrated in the

figure.

Case A: Spin about ll-axis (D < 12)

For OMI N : H2 = O(w_ = O)

H_ a- D/I_ la (D - I_)

For OMA X : H 3 : 0(0,.)3 : O)

1- D/I3 I_ (13- D)

i la D - I1
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Figure 4.3: Trace of H on Momentum Sphere

I12 1- D/I1 12 D- ll
__ = -(T(__tj)

_go_,_._= _T_(I-77-5-_)

Spin about 13-axis (D > I_)

For 0_11r," " H_ -- O(w2 --- 0)

H____ I- D/I3 1_ I_- D,
H_- -T- D/_, - L (-5-_-_)

11 I_- D

t9 OMeN = '_]_ _,i-_- l_ j

For O_lax " H_ = 0(_ = O)

13 - D,

I_ I3 -17,tg o_,_x = (-b--__l_)
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B) Analytical Method

The analytical solution of the Equation 4.82 for the torque-free unsymmetrical

body was first obtained by Euler in 1758. He showed that the angular velocity

components become elliptic functions of time.

There are, of course, also three very simple particular solutions of Equation 4.82

namely:

wL = CONSTANT w2 = wa = 0

w2 = CONSTANT w_ = _a = 0

wa = CONSTANT wI = _ = 0

These solutions represent steady rotations about the principal axes of inertia. These

are the only axes about which the body will spin steadily.

The derivation of the Euler case will not be given only the solution.

The elliptic functions appearing in the solution are defined as follows:

The elliptical integral of the first kind is:

foy dy
u = V/(1 _ y2)( 1 _ k2y 2)

that means u is a function of y and k:

u = F(y, k)

The elliptic function is then the inverse function

y=F-l(u,k)=Sn(u,k)

where k is called the modulus (0 < k < 1)

The solution for the angular velocity components can then be written as:

I (D- 13)w_= H I1D(I_- la) l)n (At,k)
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I (I1- D)

i (I_- D)"_3 = H 13D(Iz --13)

s,_ (At,k)

cn (_., k)

where the Cn and 7)n functions are related to the Sn function by:

Cn_z = 1 -Sn2z

Dn_z = 1 - k_Sn_z

The constants A and k are given by:

A = H (11 - I2)(D - la)
(I_I213D) (4.92)

I(I2 - I3)(I_ - D)k = (11- I2)(D- 12) 0 < k < 1 (4.93)

The above solution corresponds to a rotation about the II-axis with the initial

condition w2(0) = 0.

For small values of k(12 _-, /3) the elliptic functions approach the trigonometric
functions:

Sn(AI,O) = sin At

Cn(M, O) = cos At

vn(,v, 0) = 1

The determination of the angular velocity components as functions of time does, of

course, not complete the solution of the problem, because we still have to find the

orientation of the body relative to an inertial observer at any time. This can be

done, in principle, by substituting the solutions into Euler's kinematical equations,

which yields three differential equations for the three Euler angles. The solution of

these equations in this general form presents a formidable problem and will not be

pursued any further. However, it is important to notice, that although the angular
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velocities are periodic functions of time, the motion of the rigid body as viewed
from an inertial observeris no longer periodic.

C) Perturbation Method

In many practical applications the rigid body motion must not deviate greatly

from a nominal direction. In such situations valuable insight into the dynamic

behavior of a system can be obtained by linearizing the equations of motion about
a nominal condition.

To illustrate the method we consider an unsymmetrical rigid body which spins

about the/i-axis. If the asymmetry is rather small (i.e. /2 _/3) we observe from

the Poinsot construction that the motion is confined to the vicinity of the spin axis.

Therefore the first equation of Equation 4.82 is approximately

I1_1=0 or _I=_0=CONSTANT

The second and third of these equations can then be written as:

_2 + A1_3 = 0 (4.94)

where

&3 - A_ = 0 (4.95)

11 - 13 11 - I_
Al - _o A2 - _o

Because of the triangle inequality rule of the moment of inertia both [ At [ and ] A2 [

are smaller than the nominal spin w0.

We assume in the ensuing discussing that I_ is the intermediate moment of inertia.

In order to be able to compare the approximate solution with the exact solution

obtained in the preceding section, we assume the same initial condition:

_2(0) =0fort =0

The equations will be solved by the Laplace transformation method.
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Denoting the Laplace transforms of the angular velocities by capital letters:

we obtain:

c {_(t)} = _(_)

_(_) + _1_3(_) = 0 (4.96)

s_3(._)- ,,.,3(0)- _,(._) = o

where _3(0) is the initial angular velocity along the/a-axis.

(4.97)

Solving for the Laplace transforms of the angular velocities we obtain

A_w3(0) f)a(s) - (4.98)
_2(S) = --s 2 -t- AIA2 s _' + A1A2

The corresponding inverse transforms yield the angular velocities as a function of
time:

A1_3(0)
w2(t) -- sin _/A1A2t (4.99)

_3(t) = _3(o)cos v_ A_t (4.100)

For a spin close to the/1-axis the quantity D _ 11. Inserting this approximation in

Equation 4.93 it is seen that A = _v/_l_, that means the angular frequencies of the

angular velocities are in agreement with the exact solution. It can also be easily

verified that the same agreement holds true for the amplitude ratio of w3 and w2.

It is also of interest to plot the path of the angular velocity in the equatorial

z_ - z3 plane of the body. This is actually the projection of the polhode onto the

equatorial plane. We obtain an elliptical path which is traversing the zl-axis in a

clockwise sense if A_ > 0(I_ > 13) and in a counterclockwise sense if A_ < 0(11 < 13).

This is also in agreement with the Poinsot construction.

The real interest lies, of course, in the motion of the body, especially the axis of

symmetry or spin axis, as seen by an inertial observer. To this end we introduce the

modern Euler angle system which is particularly suited for perturbation studies.
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Repeating the corresponding kinematical equations we have:

wl = _-0sin0

co_ = 0cosq_+0cos0sin4_

w3 = _cos0cosg_-0sin4_

We now use the approximation wl _ w0 = ¢_ and restrict the motion to small angles

0 and _. Thus:

co_ = 0 cos wot + _.sin wot

cos = -t_ sin Wot + _ cos coot

CASE A: Spin about Minimum Moment of Inertia (Rod: ,/1 < 0; ll < I_ < 13)

Set:

= = cos(0)

The equations of motion are then:

cs =  s(O)

co_ = c2sinAt =t}cosw0t+_sinco0t

cos = cs cos At = -t_ sin coot + _ cos coot

We now introduce a complex cone an_;le:

a=_+iO

Adding the two equations of motion in quadrature we obtain:

ws + ico2 = cscosM + ic, sin,lt = (_ + iO)ei'_°t = &e _'_°t (4.103)

Solving for the complex cone angle yields:

c_ = (c3 cosM + ic2sinM)e -i'°°t (4.104)

To bring this equation into a more convenient form for integration we introduce:

cs = B1 + B2 and c2 = B1 - B_ (4.105)

(4.101)

(4. 02)
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Thus:

& = [(B1 + B2)cosM + i(Bl- B2) sin),tle -i'°*

= [(Bl(COSAt + isin M)+ B2(cosM- isinM)le -i''o'

= Bte-i(,oo-_) t + B_e-;("o+'_) t

Integrating with respect to time furnishes the complex cone angle:

.P_ -;(,,0-_)t B2 -i(,_0+_)t

c_=i ("00-A) e + (`00+A)e

Converting back to the original constants by observing from 4.105 that:

(4.106)

(4.107)

we finally arrive at:

where

Bt - ca+c2 and B2- ca-c:_
2 2

a= i[Ale -'(_°-_)' + .42e -'('`°+_)t] (4.1o8)

.41- ca+c2 and A_- ca-c2
2(.00 - A) 2(,00 + A)

It is seen that the complex cone angle is represented by two rotating vectors having

different amplitudes and frequencies.

In order to make a more definite statement aboul the motion we have first to

prove the following two inequalities:

Proof # 1:

,_ _ < "00a,nd "_= > 1 (4.109)

A_A_ = (11- I3)(I1 - I2)
I_I3 wo < "00

(11 -- I3)(I1 -- I2) < I213
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121- IlI_ - ILI3 + Ida < I213

11(11- I_-13) < 0 Q. E. D.

The final inequality holds because of the triangle inequality for the moments of iner-

tia. As a consequence both vectors in Equation 4.108 represent clockwise rotations.

Proof #2:

This inequality ensures us that 2-2 is indeed the intermediate moment of inertia.

_1 (I1 - 13)13

_2 (11 - I2)I_
>1

Because It < /3 and 11 < 12 the inequality can be rewritten as:

(h - I1)I3 > (I_ - 11)12

Adding the term I_I3 to both sides of the inequality gives:

(12 + h - 11)13 > (12 + 13 - 11)12

According to the triangle inequality rule I_ + 13 - Ii > 0 and therefore,

4>4 Q.E.D.

The motion can be made visible by projecting the tip of the unit vector along the

body-fixed zl-axis (spin axis) onto the inertial Y - Z plane which is normal to the

nominal spin direction.
Y
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The coning motion is a superposition of a large amplitude small frequency rotation

and a small amplitude _ frequency rotation both having a clockwise rotation

about the spin axis. The spin itself is, of course, also clockwise. The motion is

confined within an annular ring. The minimum cone angle is the initial one:

,4_ + ,42 = aMlx --
la_3(O)

I1 wo

The maximum value is obtained for (A2 < 0!)

II2(13 - I1),41 - ,42 = aMAX = 13(I_ -- 11) o,_tl:,_"

This is in agreement with the exact solution on page 115 and 116. The motion is,

in general, not periodic.

Case B:

Spin about the Maximum Moment of Inertia (Disk: A1 > 0;11 > I2 > la)

This case is obtained by changing the sign in the 9'2 equation of Equation 4.101

because (72 < 0 for A1 > 0. All other steps remain the same.

The final complex cone angle is:

o: + (4.1101
where now

ca + c2 ca -- c2

.4__ 2(_0+ _) and .% - 2(_0- A)

The coning motion consists now of a superposition of large amplitude _ frequency

rotation and a small amplitude small frequency rotation both having again the same

clockwise sense of rotation. This is graphically illustrated in the following figure
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The motion is again confined to the annular region. Maximum and minimum cone

angles are identical to the previous ones.

NOTE:

For a symmetric satellite I_ = la the coning motion becomes steady with a frequency
of

ll

wp = w0 + A = I_ w0 Precession

This precessional motion is always clockwise ("forward") about the spin axis

regardless of whether the spin is about the maximum or minimum moment of in-

ertia. One can obtain this result from the preceding steps by observing that for

a symmetric body 12 = I3 which leads to c2 = es. It is important to pay careful

attention to the sign of A which changes when going from a long slender rod to the

case of a flat disk. It is negative for the former case and positive for the latter.

Sometimes the geometric axes or control axis system deviate slightly from the

principal axis system. Let us assume that the control axis has a small angle 13 with

the spin axis. This misalignment is strictly a geometric effect and does not enter the

dynamics equations. It can be simply taken care of, by adding to the complex cone

angle of Equation 4.108 or Equation 4.110 a vector of magnitude /7 which rotates

clockwise with the spin frequency _0, is an example . Equation 4.108 would read

for this case

a = i[Aie-'('o°-_')t+ A:_e -i(''°+)')t + Be -'_°t] (4.111)
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4.6 Forced Motion of a Rigid Body

Unlike the case of the torque-free rigid body the equations of motion of a rigid body

which is acted upon by external torques can only be solved analytically for very

special cases. It was first shown by Lagrange (1788) that the rotational equations

of motion can be integrated for a symmetric body in a uniform gravity field with a

fixed point on its axis of symmetry ("heavy top"). We will not discuss this rather

lengthy treatment but instead again will present perturbation methods which can

be used to describe small deviations of a rigid body from a nominal condition. The

mathematical models will be applicable for a variety of spinning ("gyroscopic")

systems. The methods will differ depending on whether or not the external torques

depend on the orientation of the body.

Method I (Body-fixed torques)

In this case the Euler equations of motion can be directly integrated to find the

angular velocities as functions of time. The motion relative to inertial space is then

obtained by subsequently integrating the kinematical equations. The method is

essentially the same as the one used in the preceding paragraph for the torque-free

case.

As an example we consider an axially symmetric spinning missile with a thrust

misalignment. The principal axes system is aligned such that the thrust misa[ign-

ment produces a constant torque about the w-axis.

The equations of motion are then

I1 &l = 0

12 d:_ + (I1 - h) _t _3 =/;: I: = h

13 _a+(l_-- 11)_1 _ : 0

From the first of these equations we see that the angular velocity component _

about the spin axis is constant. We will denote it by _0. Introducing the quantity:

11 - 12
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we can write the other two equations as:

L2

d_3- $ w_ = 0

This set of equations can be solved again by the method of Laplace transformation

and yields the solution for the initial condition w2(0) = 0:

L2
Awa(O) sin I lt +  sin lAIr

 2(t) - I AII2
L2A AL2

w3(t) = wz(0)cos I ,kit- i2_---S cos [_l t + A2I------_

where w3(0) is the initial angular velocity about the I3-axis.

For the symmetric case, there is no need to distinguish mathematically between

a spin about the minimum and a spin about the maximum moment of inertia

because the change in sign of )_ can be automatically performed by the sine function.

Therefore, we obtain for both cases:

[ L2]w2(t)--- w3(0)-_-_ sinM

= - cos M +

Using the approximate kinematical equations on page 114 and the complex cone

angle introduced in Equation 4.102 we get:

& = [wa(O) - _] e-;('_°+_)t + _e -i''°t (4.112)

Upon integration the cone angle is obtained as

o_ = i[w3(O)- rz/(Al2)]e_i(,,o+X) ' + iL2 e_,_ot (4.113)
(w0 + A) AI2 w0

For a spin about the minimum moment of inertia (A < 0) the resultant coning

motion consists of the regular low frequency precession with frequency wp = (w0 +

A) which is superimposed by a small amplitude high frequency oscillation. Both

rotational vectors revolve about the spin axis in a clockwise sense.
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Figure 4.4: Floating Coordinate System

2gOTE:

This method can also be used for an unsymmetric rigid body as long as the

asymmetry is relatively small (12 _ la). Otherwise, the deviation from the nominal

spin condition do not remain small and the ]inearization process used in this method

is no longer valid.

METHOD II (Modified Euler Equations)

For axially symmetric bodies a modification of Euler's equation is possible by

introducing a reference frame which is aligned with the symmetry axis but does not

rotate with the body ("floating" reference frame). Because of the symmetry this

does not cause a time changing moment of inertia matrix. The floating coordinate

system is defined by the first two rotation sequences of the classical Euler angle

system. The corresponding rotation matrix and kinematical equations are therefore

obtained by setting 0 = 0.

The floating coordinate system is also known as node-axis system. The nominal

spin is about the 13-axis.

We can perform the desired modification by going back to the vector-dyadic

form of the Euler equations:

2-. D + w x 2-- w = Lo (4.114)

It is important to realize that the angular velocity appearing in this equation is that
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of the rigid body relative to inertial space. This is now expressed as the sum:

02 _ /.adO 4- 02 F (4.1 l 5)

where ":0 is the spin rate of the rigid body and _r is the angular velocity of the

floating frame. In vector form, we have:

_o=Oea Do = (_ ea (4.116)

aor =0el4-_ sin 0e2+_ cos 0ea

Also for the moment of inertia dyadic we have:

2"=I_e_el+12e_e2+heseawithll =Is

Introducing these terms in the Euler equation yields:

g. (D0 + WoE) + (o.'0 + a_r) x I. (aJ0 + mr) = L0

It is easily observed that the term:

(4.117)

(4.118)

a_o X g'wo=O

Therefole the Equation 4.118 can also be written as:

Z. (_o 4- DF) + _r x 2-. (_0 4- _OF) = L0 (4.119)

This is the desired modification of the Euler equations. The,," can be expressed in

terms of the Euler angles by substituting Equation 4.116 and Equation 4.117 into

Equation 4.119 and carrying out the vector-dyadic operations.

Many cases of practical interest can be investigated using the modified Euler

equations. Linearization is often possible about a stead), state condition. When

analyzing gyroscopic systems, it is usually assumed that the spin rate _ is large in

comparison to _b and 0. It is then approximately equal to _00 which is the constant

nominal spin rate.

Example:

Consider the case of the heavy top where the externaJ moment is given by

Lt = mgl sin 0 (see figure).
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Assuming a steady state condition of 0 = _ we obtain the set of differential equa-
tions:

I1  -I3 0 0 = 0

11 O +13 _Oo_ = mgl = L1

The solution of this set is most conveniently obtained by the Laplace transform
method.

Introducing the notation

I3 _O0

p-
I1

the angles V and 0 are then for _(0) = 0 and 0(0) = O:

1 L1=
P I3_0

/,1 t
---) sin pt+ 1_

O= 1 (_o L1 rr_ l(d,o LI
p -I3_-----oo)c°spt+ 2 p - I3a----o)

The gyroscope rotates about the z-axis with average angular precession

METHOD III: (Direction-dependent torque)

In man', practical cases the external torques acting on a spinning body depend

only on its direction relative to a nominal spin direction. The equations of motion

are derived in terms of the deviation of the rigid body from the nominal steady

state spin condition. The body-fixed reference frame is aligned with the principal

axes and the nominal spin rate w0 is aligned with the inertially fixed x-axis having

unit vector i. The total angular velocity ,, of the rigid body is again considered to

be the sum of two components:
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where w0 is the nominal spin rate and toB the angular velocity of the rigid body

associated with the deviation from the nominal reference frame which itself rotates

with constant angular velocity too relative to inertial space.

The nominal spin vector is expressed in terms of the deviation angles of the

rigid body from the nominal reference frame. Using modern Euler angles we obtain,
therefore:

to0=w0i=w0[(cos _ cos O)e_+(-sin _b cos ¢+cos _ sin 0 sin ¢)e2

+(sin _b sin ¢ +cos _ sin 8 cos ¢)ea]

The angular velocity of the body frame relative to the nominal frame is given by

the kinematical equations:

ton = (¢ - _ sin 6)e, + (0 cos_ + _cos_sin ¢)e_

+(_ cos Ocos ¢ - 0 sin ¢)e3

As mentioned before, the reference frame is aligned with the principal axis sys-

tem which means the moment of inertia dyadic is given by

2- = 11 el el + I_ e_ e2 + I_ e3 e3

Euler's equations are then:

(4.120)

2-" (d_0 -+-_B) -4- (w0 -4-toB) x 2-. (too + toB) = L (4.121)

Carrying out the various vector-dyadic operations and retaining only linear terms

results in the following set of perturbation equations:

11 _=L1

+ (I, - o - + - ¢ =

13 _ + (I, -/2) w_ _b+ (/2 + 13 - 11)Wo 0 = L3

It was assumed that the deviations of the rigid body from the nominal spin state

remain small. We can see from the first equation, that the roll angle _ will increase

with time if there is a torque about the ll-axis. For the equations to be valid we
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have to assume,therefore, that L1 = 0. Furthermore, for an unsymmetrical body,

the deviations of the spin axis from the nominal direction are only small if the

asymmetry is small i.e., I_ _ Ia.

The following examples will be restricted to the symmetrical condition I2 = 13.

N (.)T E:

This method can also be used in the absence of external torque (torque-free

rigid body). In this case, Method I is superior because it works with two pairs of

first order differential equations rather than with a pair of second-order differential

equations. The results are, of course, identical.

Example 1: Heavy Top. (1_ = 13)

i el

W

The external torque is:

Lo=lxW

= l el × (-rn.qi)

i = e_ - _, e2 + 0 e3

L0 = mgl 0 e._ + mgl t_ e3

Introducing the notation:

K = (11 - 12) Wo'_ - rngl

G=21.2-I_ >0

we can write the perturbation equations as:

I: 0"+ K 0- G _0 _;' = 0

I2tb+ K _ +G_0 t_ = 0

Introducing also the complex deviation angle

6=_+iO

we can add the Equation 4.122 in quadrature to obtain:

12 _- i G _o _ + K _ = 0

(4.122)

(4.123)

(4.124)
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Solving by Laplace transformation we have the characteristic equation

I2 s2- i G wo s + k = O

The characteristic roots (eigenvalues) are:

(4.125)

[G 0 /,G',,'o,2 h'] 1,2 = / [ ± Vt-27 +

or in terms of the original system parameters:

m9 I
st,_ = i (2Z_ - I_)_o ± /,I_wo)_ __.]

(4.126)

(4.127)

The complex deviation angle can perform a uniform rotation with frequency A1 or

A2 (or both) as seen by an observer moving with the rigid body. Rotational motion

exists, however, only as long as the radicand is positive. This means that for a

stable motion, the spin rate has to be higher than

2
V/-_l 12 (4.128)

In this case, we have the so called "sleeping" top. Of greater interest is the rotational

speed of the deviation vector as seen by an inertial observer. To do this we just

have to add the clockwise rotation of the nominal reference frame. The complex

deviation angle in the inertial frame is therefore:

61 = 60 e ;(_-"_°)t (4.129)

where 6o is the initial condition. We obtain then two "precessional" frequencies, a

low one and a high one.

[Ilwo _ Ilwo)_ rail I LOW (4.130)wl = - [ 212 ( 212 12

[/tWo /,IlWo,_ mgl] HIGH (4.131)

According to the definition of the complex deviation angle given in Equation 4.122 it

can be observed that both precessional frequencies indicate a clockwise ("forward")

precession.
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The precession of the heavy top is usually the slow precession. It is interesting

to notice, that the high precession rate emanates from the precession rate of the

torque-free symmetric body as given on page 119.

If the spin rate is high we can approximate the low root by expanding the square

root in a Taylor series and obtain

myl (4.132)
wt -- Ix Wo

or in another form:

myl = wl I Wo (4.133)

Example 2: Spin-Stabilization

Artillery shells (bullets) and missiles which are exposed to destabilizing aero-

dynamic forces are often stabilized by giving them a high spin rate about the long
axis.

• o

V

In this case the destabilizing moment is due to the resultant aerodynamic force R

acting at the center of pressure (C.P.) which is in front of the mass center (C.M.).

The torques exerted by this force about the transverse axes can be derived in a
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similar manner as in example 1 and yield:

s 6CN)t OCN
L=(q _ Oe_+(qs---_-)g¢e3

where q = _ p v_ is the dynamic pressure and s a reference area, and o__q.s_a_the
normal force coefficient.

It is seen that this example is identical with the heavy top. All we have to do is to

replace

mgl -_ (q_-_-)

Example 3: Rotor Dynamics.

An important aspect of rotor dynamics is the gyroscopic motion in which the rotor

system is precessing in its bearings. Assuming a symmetric rotor and bearing

support, the elastic and dynamic characteristics depend only on the direction of

the spin axis relative to its nominal state. The effect of the bearing stiffness is

considered to be equivalent to a linear spring, with spring constant k. Unlike the

previous two examples the spring forces are restoring forces.

z

x
(.

® y

Figure 4.5: Rotor Dynamics
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The equations of motion are again identical with Equation 4.122 if we set

k = (11 - 12) we2 + 2 k g2

In rotor dynamics jargon the precessional motion of the rotor is referred to as

"subsynchronous whirl." The two whirl frequencies are then:

( i-7-3

'  =-L212 j + j

LOW (4.134)

HIGH (4.135)

The low frequency precession is always counterclockwise ("backward whirl") whereas

the high frequency precession is clockwise or forward. Since the inevitable unbal-

ances in a rotor have the tendency to excite a forward precession, the backward

whirl is usually not observed. For the heavy top both precessions are forward and

only the low frequency is usually observed because it requires less energy for it being
excited.

NOTE:

The present model allows a quick and rigorous assessment of the stability behav-

ior of a gyroscopic system in the presence of damping by invoking the Kelvin-Tait

Theorem (1921). According to it internal damping destroys gyroscopic stability if

the stiffness matrix of the linearized differential equations written in matrix form

is negative definite. Therefore, a torque-free satellite spinning about the minimum

moment of inertia is unstable when damping is present. For the rotor dynamics

example inspection of the stiffness matrix shows that the system becomes unstable

if the rotor speed is

2kg _
2

wo >
I_ - 11

This phenomenon of instability due to internal friction (damping) is well attested.

Method IV: Approximate Theory

If the spin rate _o0 of a symmetric rigid body is very high it is possible to derive a

simplified model of its gyroscopic behavior which is sufficiently accurate to explain
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many practical applications. Assuming that the spin w0 is practically constant the

Euler torque 2-. ¢b in Euler's equation can be neglected. We obtain then:

L0=w x H whereH=2-.w (4.136)

We also assume that the angular momentum is essentially along the spin axis, i.e.

H = I1 w0 (4.137)

Since the magnitude of the angular momentum is constant, it can only change its

direction which, of course, is now also identically with the directional change of the

spin axes. This directional change is called the "precession" of the gyroscope and

is governed by Equation 4.136, where the angular velocity becomes the precession

rate wp. We also still observe that the angular momentum change is equal to the

applied torque if the reference point is fixed or at the mass center of the gyroscope.

Equation 4.136 is then written in the form:

dH

L0- dt -c°P×H=I1 (wp×¢o0) (4.138)

Another formulation which aids the understanding of the gyroscopic behavior is:

dH = L0 dt (4.139)

This means that the change of angular momentum vector is in the direction of the

moment applied.

A few examples are presented to illustrate the applications of these considera-

tions.

Example 1 Bicycle wheeh

Consider the front wheel of a bicycle.

left.

The angular moment of the wheel is to the

H Ldt=dH

P

137



If the rider tilts to the right, the external moment L is positive along the forward

speed direction and causes a precession of the wheel to the right. The ensuing

centrifugal force restores the bicycle to its upright position allowing a free-hand
ride.

Example 2 Heavy T,_.

H

i

] , H = LFdt

// O,)p
%,,

The friction on the surface produces a positive torque about the C.M. in the upward

direction. It has a tendency to bring the heavy top in the upright position.

Example 3 Tipp.v Top (Class Ring)

/¢¢H

The friction force being directed out of the paper plane produces a downward torque

which precesses the top such as to invert its orientation.
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4.7 Rheonomic Systems

Dynamic systems containing internal mass elements whose motions relative to the

main body are explicit time functions are known as rheonomic systems. It is appar-

ent when inspecting the translational Equation 3.4 and the rotational Equation 3.12

of section III that such internal moving parts affect the overall dynamics of the main

body. If these effects are undesirable the), induce disturbance forces and torques

(e.g. crew motion, running machinery, etc.). If these motions are used to produce

desirable effects the)' result in control forces and torques. In this case, the mo-

tion is usually restricted to rotational motion. We will therefore refer to those as

gyroscopic systems.

For simplicity, the following discussion will deal only with a single internal gy-

roscopic system. Generalization to a situation involving multiple internal moving

elements should be straightforward.

Figure 4.6: Internal Gyroscopic System

Let i'2 be the angular velocity of the main body M0 relative to inertial space and

be the angular velocity of the rotating mass m relative to the main body. If the

origin of the main body reference frame coincides with the total mass center then

the rotational equations are:

"£.n+n×z.n+/ R × [2(/2 × v) +a]dm = L (4.140)
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where2-is the moment of inertia of the total system including the moving mass. In

most applications it can be assumed that the change in orientation of the rotating

mass caused by its relative motion has a negligible effect on the overall moment of

inertia, which is therefore, usually treated as a constant. This must, of course, not

necessarily be true of all systems.

For the rotational motion of the internal mass, we have the relative velocity and
acceleration:

v=wxr

a=& x r +w x (_o x r) (4.141)

where r is the position of the moving mass with respect to its own center of mass.
Therefore:

f rdm=O

The position vector R of a moving mass element can be written as:

(4.142)

R = g + r (4.143)

where g is the position of the mass center of the moving mass relative to the mass

center of the total system.

We can write then the Coriolis term in Equation 4.140 in the form:

2
f Rx (J2 xv) dm=2 f(g+r) x [J2 x (w xr)] drn

Introducing the Coriolis dyadic

1C,,, = (r r) d m = (2 tr 2-=)£ - 2-,, (4.144)

where Zm is the moment of inertia dyadic of the moving mass. The Coriolis term is
then:

2 /Rx (_xv) drn=2_.C_ ×w (4.145)

The relative acceleration term in Equation 4.140 can also be written in a more

convenient form by using Equations 4.141 and 4.142:
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/R x a dm=/r x [oa x (w x r)+ (& x r)] dm

=I_. w+wxI_.w

The final form of the rotational equation for the rheonomic systems is:

(4.146)

I. _2 + n x I. _ + 2,O.gm x w

+Ira. d_+oa x Ire'W= L (4.147)

a) Gyroscopic Attitude Control

There exist in practice essentially two different techniques of controlling the

orientation of a spacecraft in space using internal gyroscopic devices. These devices

are generically called (angular) momentum exchange controllers. They are both

using the two relative acceleration terms of Equation 4.147 to affect the desired

attitude control. For the purpose of attitude control analysis and simulation, these

terms are brought over to the right hand side of Equation 4.147 and then looked

upon as effective control torques about the mass center of the main body.

1) Momentum Wheel

This device is also known as reaction wheel, inertia wheel or flywheel. In this

technique, the spin axis of the controller is kept in a fixed direction relative to the

main body and only the magnitude of the rotational speed of the spinning wheel is

changed. Since the wheel is spinning about a principal axis the term w x 2m • w is

zero. The so called control torque of the device is then:

L_ = -Ira-&c (4.148)

where d_c is the controlled change of the spin rate which is determined by the desired

control torque L_.

2) Control Moment Gyro (C. M. G.)

In this technique the rotational speed of the device is kept constant at a very high

level. The desired control torque is generated by a proper change of the direction

of the spin axis. This change can be affected by a single and two degree of freedom

(single and double gimbal) C. M. G. system.

Since the spin rate of the C, M. G. is very high and practically constant, the

term Ira-& in Equation 4.147 can be safely neglected. Furthermore, the angular
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momentum vector can be assumedto coincide with the spin axis of the C. M. G.
rotor. Therefore:

Hm = Z,_. w -- 2,,, "w0 (4.149)

where w0 = spin rate vector.

The control torque of the C. M. G. can then be approximated with a very high

degree of precision by:

L_ = -we x Hm (4.150)

This particular form of the C. M. G. control torque allows a highly useful treatment

of the C. M, G. behavior in terms of angular momentum considerations especially

when, as in most practical applications, multiple C. M. G. systems are employed

for attitude control.

A major task in the proper use of C. M. G.'s is to find optimum "steering" laws

for the directional changes of the C. M. G. spin axes and to avoid "saturation" of

the C. M. G.'s, a condition in which the controllers loose their control effectiveness

along certain directions. Some of the difficulties associated with this task stem

from the fact that the solution of Equation 4.150 in terms of the unknown angular

velocities we is not unique, because it involves, in general, more unknowns than

equations.

The literature in this area known as angular momentum management is quite

extensive. Any further discussion would go beyond the scope of the present expo-
sition.

NOTE:

No viable implementation is known which combines both techniques in one con-
troller.

b) Gyroscopic Reaction Torques

In many practical applications it is required to determine the reaction torques

which a gyroscopic system exerts on its surroundings (e. g. bearings) when its

motion is known. The solution of this problem is relatively simple. Knowing the

motion of the gyroscope one can calculate the left-hand side of Euler's equation to

obtain the external torque which must be applied to generate the assumed motion.

The reaction torque is then represented by an equal torque of opposite sign.
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If there exists, however, a considerable interaction effect between the gyroscopic

system and the main body it would be necessary to work with the rotational equa-

tion (4.146). Application of this equation requires the evaluation of the Coriolis

term. Transferring this term to the right-hand side yields the reaction torque aris-

ing from it as:

Ln = -2.f/. Cmx _ (4.151)

If the main body angular velocity is resolved along the principal body axis system

of the gyroscope corresponding to:

f_ = f_lel + f_2e2 + f_3e3

the Coriolis reaction torque becomes in component form:

LI = _3 w2 (11 +/2 - 13)-

L2 = f)l wa (I2 + I3 - I1)-

L3 = _2 _1 (11 - I_ + la)-

_2 _3 (11 -- /2 + /3)

_3 _1 (I1 + I= -/3)
_1 _2 (I2 + 13 - 11)

Reaction torques can, of course, also arise from the other relative motion terms.

Example 1: Airplane propeller.

Determine the gyroscopic reaction torque of a two-blade a!rplane propeller when

an airplane makes a horizontal turn with constant yaw rate _. Rotational speed of

the propeller is w0.

i

Figure 4.7: Airplane propeller
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The moment of inertia of the propeller is approximated by a uniform slender rod of

length g:

m g_
l=12=lt-- 13=0

12

The pertinent angular velocities are:

= =  ,cos 
031 = 030 032 -- 033 _-" 0

The Coriolis reaction torque becomes then:

[_1=0

L1 =0 L2=-21_px0 cos 4_ L3=0

This torque can be referred to the airplane coordinate system (X, Y, Z) as:

L_, =-2I_,_0 cos _ 0

Lz =-2 I (_ wo sin 4_ cos 4_

where ¢5 = "_0!

Notice that the frequency of this torque is twice the frequency of the propeller

angular speed. B.v the way a three-blade propeller (2-2 = Zs) eliminates this cyclic

propeller torque. Since the propeller is spinning about a principal moment of inertia

at a constant speed no reaction torques arise from the last two relative motion terms

of Equation 4.147 However, there is an interesting torque coming from the second

(centrifugal) torque term. Remember that the moment of inertia in this term refers

to the total moment of inertia of the main body and the moving mass. Looking

onl.v at the torque coming from the propeller we have (2-p = propeller moment of

inertia).

LR = -,f'/ xZp..O

= +_ f'/a I_ el = I_ _ sin ¢ cos _bel

This torque is along the zl-axis which coincides with the inertial x-axis. The cor-

responding component is:

L_ = I2 _2 sin 4_ cos ¢_
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It is not a gyroscopic reaction torque because it really depends only on the orien-

tation of the propeller relative to the airplane and exists also when the propeller

is not spinning. In fact, it is related to the internal shear stresses which are even

present in a rotating system. The torque disappears for ¢ = 0 and ¢ = 90 ° when the

airplane rotates the propeller about a principal axis and therefore does not induce

a centrifugal torque.

NOTE:

Euler's equations could be used directly to determine the reaction torques. The

present method shows more clearly how an internal gyroscope affects the total

systems dynamics. It is seen that the gyroscopic reaction torque of a symmetric gy-

roscopic system is exactly given by the Coriolis torque of Equation 4.151. Assuming

a steady spin about the/i-axis such that:

w = oa0 = w0el _o = CONSTANT

and axial symmetry, which means I_ = Ia, we obtain the gyroscopic reaction torque

of a symmetric gyroscope from the components of Equation 4.151 which reads then

in vector form:

LR = -Da _o lie2 + f)_ _o 11 e3

or in another form:

LR = -fl x (I1 w0) = -n x H (4.152)

where H = I1 w0 is the angular momentum of the gyroscope relative to the rotat-

ing total system. The negative sign indicates that the gyroscopic reaction torque

always tends to bring the two vectors 1_ and oa0 into coincidence. This is the

principle of homologous parallelism as enunciated by Leon Foucault (1819-1868).

It is very important to notice that the relationship established in Equation 4.152

is an exact one and holds true regardless of whether w0 is small or large relative to $2.

This is in distinct contrast to the approximate relationship given in Equation 4.138

for the precessional motion of a symmetric gyroscope under the influence of an

externally applied torque. Here we have the situation of an externally applied

(forced) precession.
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Example 2: Bicycle Wheel

Consider the top view of the front wheel of a bicycle

If the rider forces a precession on the front wheel by turning the handlebar to the

left, the corresponding reaction torque will tilt the bicycle to the right according to

the principle of homologous parallelism. (Foucauh's Principle). This maneuver can

be used to initiate a right-hand turn.

Example 3: Ore Crusher

-- f?

///,///////

m

T

/ // // //

The angular velocity f_ about the vertical axis causes each roller to have a relative

angular velocity:

_'_O--
r
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The gyroscopictorque is obtained from Equation 4.152as

I LR I--11
r

By Foucault's principle it will increase the normal force between the rollers and the

surface.
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Chapter 5

Lagrangian Dynamics

Newtonian or vectorial mechanics bases everything on two fundamental vectors:

force and acceleration. Each component of a dynamical system is isolated and

treated individually. Free body diagrams are introduced by which all forces are

represented which contribute to the acceleration of the individual components.

These forces include both the externally applied forces (known) and the internal

reaction forces (unknown) acting on the isolated component. The latter are also

called constraint forces because they act as to maintain the kinematical constraint

conditions existing between the individual components of a dynamical system. To

distinguish between the two forces one can call the applied forces also "forces of

physical origin" and the reaction forces also "forces of geometric origin" because

they emerge from the geometric configuration of the system. Applied forces reveal

their origin by the fact that their mathematical expression contain quantities which

can only be determined by an experiment.

Example:

Static friction is a constraint (reaction) force whereas sliding (kinetic) friction is an

applied force involving the experimentally determined coefficient of friction/z.

Lagrangian or analytical mechanics bases everything on two fundamental scalars:

kinetic energy and work. From a philosophical standpoint it is indeed surprising

that two scalar quantities contain all the information regarding the motion of the

most complicated system because motion is by its very nature a vectorial quantity.

A component is no longer considered an isolated unit but a part of an overall

system of interacting components. The great superiority of the Lagrangian dynam-
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ics over the vectorial dynamics stems mainly from the fact that knowledge of the

unknown constraint forces is not required, but only knowledge of the kinematical

conditions. Working with scalars rather than with vectors is another contributing

factor to the simplicity of the analytical treatment.

Before deriving the Lagrangian equations of motion it is necessary to introduce

and define some distinctive concepts of analytical mechanics.

5.1 Constraint Equations

The kinematical constraints existing between systems components can be mathe-

matically expressed as equations connecting conditions between their positions or

between their velocities.

Example:

1 X

(x,y)
m

Y

Figure 5.1: Simple Pendulum

Consider the simple pendulum constrained to move in a vertical plane.

The position of the mass m can be defined as:

r=zi+yj

and its velocity as:

v =xi+yj

(5.1)

(5.2)
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One wayof expressingthe kinematical constraint is to state that the velocity of the
massparticle must alwaysbe perpendicular to its position vector i.e.

v.r=0

In component form Equation 5.3 reads:

(5.3)

z + y ij = o

This is a kinematical condition on the velocity of the mass particle.

integrated and yields:

(5.4)

It can be

z + y: = t (5.5)

This is a condition on the position of the mass particle and could have been obtained

directly by observing that the pendulum mass is constrained to move on a circle.

NOTE:

It is often easier to determine the kinematical condition on the velocity of system

components than on their position.

If the conditions on the velocities can be integrated to yield conditions on the posi-

tions of the system components the system (or the constraint) is called holonomic

("holonomic" is the Greek word for the Latin word "integrable"). If this integration

cannot be performed the system (or the constraint) is called nonholonomic.

Example:

A characteristic and often quoted example is that of a ball which rolls without

slipping on a horizontal plane. The kinematical constraint of "rolling" (and piv-

oting) requires that the instantaneous axis of rotation goes through the point of
contact O.

o3 = wlel + w2e2 + wlel

v = vlel + v2e2 + v3ea

R0 = R0e_
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e2

Figure 5.2: Rolling Ball

The velocity of the center C of the ball is then given by

v = oa × R0 R0 -- R0 e_ (5.6)

where R0 defines the position of C relative to the contact point 0. Using a body-

fixed reference frame with unit vectors el,e_ and ca, Equation 5.6 can be written

in component form ("ROLL" CONDITION):

vl=--w3R0 v2=0 v3=wlR0 (5.7)

These are three constraint conditions on the velocity of the center of the ball, but

only one, namely v_ = 0, can be expressed as a condition on the position. In

fact it states simply that the ball has to move in a horizontal plane such that its

center has a constant distance from the surface. The other two conditions cannot be

integrated without solving the entire dynamical problem. This is due to the fact that

the angular velocity w of the ball is expressed in a moving reference frame whose

orientation is given b,v Euler's kinematical differential equations of the preceding

section IV and this instantaneous orientation changes with time. It is, however,

possible to establish differential equations of constraint from Equation 5.7 either

in terms of Euler angles or by considering the angular velocity components wl, w_

and w3 to be time derivatives of angular displacements c_1, o_, and _3 (so-called
quasicoordinates) about the instantaneous body axes such that:

152



d_t d_2 d_3
03 1 _ _ _ __

dt ' _2 dt ' w3 dt

With these defined, the roll condition 5.7 can be written as:

(5.8)

dxt+R0da3 =0;

d z3 + Rod oq =0

But these differential relations are not integrable.

A system for which the kinematical conditions change with time is called rheonomic

otherwise it is called scleronomic.

Examples of a rheonomic system is a mass particle which moves on a surface

which itself is moving according to a prescribed time function. Another example is

a pendulum whose length is a given time-function.

The essential difference between rheonomic and scleronomic constraints is that

rheonomic constraints do work. As a consequence rheonomic systems are not con-

servative. This is the reason why rheonomic systems can become unstable in a very

unsuspecting way.

Illustration:

Consider a tennis racket. If it is held fixed, the ball is reflected without change

in energy. If the racket yields energy is taken out of the ball, if it moves against the

ball, it transfers energy to the ball.

Generalized Coordinates

Lagrangian dynamics extensively uses coordinates other than Cartesian coordi-

nates, which are then called generalized coordinates. They are any set of parameters

which can be used to define the configuration of a dynamical system. Some of the

generalized coordinates may not have geometrical significance and are therefore also

called hybrid coordinates. For example, the amplitudes in a Fourier expansion of

the position vector R may be used as generalized coordinates.

Using generalized coordinates ql, q2, ..., q,, the holonomic kinematical constraints

can be mathematically expressed as:

_i(ql,q2,...,q,,t)=O (j=l,2,...,m) (5.11)
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Nonholonomic constraints are conventionally written in the form:

cjk (ql,q2,...,qn,¢) d qk + cj(t) = 0
kml

Degrees of Freedom (D. O. F.)

(j- 1, 2,...,m) (5.12)

The number ofdegrees of freedom of a system is equal to the number of independent

generalized coordinates necessary to define the configuration of a dynamical system.

This number is characteristic of a given dynamical system. If N parameters are nec-

essary and sufficient to define the system configuration we say it has "N degrees of

freedom." Each independent kinematical constraint condition reduces the number

of degrees of freedom by one.

Examples:

One D. O. F.:

Two D. O. F.:

Three D. O. F.:

Five D. O. F.:

Six D. O. F.:

NOTE 1:

A mass particle moving along a given curve.

A mass particle moving on a given surface.

A mass particle moving freely in space.

Two mass particles connected by a massless rod (Dumbbell).

A rigid body moving freely in space.

A ball (coin) rolling on a horizontal plane is sometimes said to have five finite
D. O. F. 's and three infinitesimal D. O. F. 's.

,NOTE 2;

Linear and angular velocity components of a rotating reference frame cannot be in-

tegrated to furnish position and orientation. They are called nonholonomic velocity

components.

NOTE 3:

Some authors only refer to independent coordinates as generalized coordinates. In

this case, the number of generalized coordinates is equal to the number of D. O. F.'s.
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Virtual Displacement/Virtual Work

A virtual displacement is an infinitesimal change of a generalized coordinate

which is compatible with the kinematical constraints existing at that instant of

time. Any moving constraints are temporarily stopped. This process is a kind of

mathematical thought experiment. To emphasize its virtual character Lagrange

introduced the special symbol 6. It has the usual properties of the ordinary differ-

ential d; for example 6(sin0) = cos 0 6 0. A virtual displacement can, of course,

be applied to several coordinates simultaneously, but the.,,' are, in general, not in-

dependent because of the kinematical constraints.

The work done by a force F during a virtual displacement 6r is called virtual work

defined by the scalar product:

61t" = F-6r (5.13)

To illustrate the difference between actual work and virtual work consider the work

done by the Coriolis force acting on a mass particle.

dll'= -2m(w x v)-dr (5.14)

where dr is an actual displacement and is therefore related to the velocity as dr =

vdt. Equation 5.14 becomes then:

dW - -2m(_a × v) • vdt -- 0 (5.15)

The actual work of the Coriolis force during an actual infinitesimal displacement is

zero. The virtual work, however, is:

6IV = -2m(w x v). 6r _ 0 (5.16)
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5.2 Principle of Virtual Work (Bernoulli 1717)

Consider a mechanical system in motion. According to d'Alembert's Principle, the

vector sum of all forces acting on each particle is zero. These forces include the ex-

ternal forces Fi, the inertial forces Ii due to the acceleration of each particle and the

constraint (reaction) forces Ri which maintains the given kinematical constraints.

Thus, the equilibrium of the force system on each particle is:

F; + I_ + Ri = 0 where Ii = -miR; (5.17)

The virtual work of all these forces during the virtual displacements must likewise
be zero:

6H" = )-_(ri + I, + R,). 5r, = 0 (5.18)

The principle of virtual work establishes now the following postulate:

"For any mechanical system, the virtual work of the constraint forces is zero."

Mathematically expressed it is:

6W= y_ R_. 6r_ = 0 (5.19)

This postulate is the corner stone of analytical mechanics. Many scientists Ref.

(2,3) consider it to be an additional axiom of mechanics which cannot be derived

from Newton's laws. Adopting this viewpoint, analytical mechanics is more than

just a different mathematical formulation of Newtonian mechanics.

5.3 Generalized Forces

Another fundamental concept of analytical dynamics is that of the 8eneralized force.

The generalized forces acting on a dynamical system are determined by calculating

the virtual work done by the external forces during the virtual displacements 6qi of

the coordinates qi. Each virtual displacement 6qi will produce the virtual work

6H;. = Qi _qi (5.20)

where Qi is a quantity containing the external forces acting on the system. This

quantity is called the generalized force Q, associated with the generalized coordinate

qi.
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Figure 5.3: Double Pendulum

To illustrate the situation, we consider a double pendulum which can be defined

by the two independent generalized coordinates 01 and 02.

To calculate the virtual work done by the external gravity force, we first define

the position of the two mass particles mt and m2 in Cartesian coordinates as follows:

mass ml :

mass m2 •

zl=gl sin 01

Yl=gl cos 81

z2 = £1 sin 01 + g2 sin 02

Y2 = gl cos 0_ +g2 cos 02

Next we perform the virtual displacements of the two masses:

6x_=gl cos 01601

6 Yl = -gl sin 01 6 01

6z2=gl cos 01601+g2 cos 02602

6y2=-tl sin 01601-g2 sin 82602

The virtual work associated with these virtual displacements is:

¢_H" : fxl _;r 1 -_- fz26x 2 -_ fy16y 1 + Fy26y2
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Because the external forces are only due to gravity we have

F_I=Fx_=0 and Ful =m19 , Fu_=rn_g

The virtual work is then:

6FI" = rn_g(-g_ sin O_ 6 8_) + m2g(-g_ sin eL 68_ - g2 sin O_ 6 0_)

Collecting terms with 6 01 and (50_ yields:

5H" = -(ml + rn2)g tl sin 8_ 601

-m_ gg2 sin 8_ 6 0_

According to Equation 5.20 the generalized forces associated with the generalized

coordinates are then:

QI = -(m_ + rna)9 gl sin 81

Q: = -m2g g2 sin 8_

One could, of course, derive these two generalized forces more directly by finding

the work done by the gravity force on the masses during an independent virtual

displacement of their corresponding generalized coordinates 81 and 0_.

For the general definition of the generalized forces, we consider a system of N

particles whose positions are defined by the vector r, and acted upon by the forces

Fi.

The virtual work is then:

5H" -- Z Fi • 6rl i = 1,2... N

The positions of the particles are related to the generalized coordinates by:

(5.21)

ri = ri(ql,q2...qm, t) (5.22)

The virtual displacements of the generalized coordinates are obtained by differen-

tiating Equation 5.22 keeping in mind that a virtual displacement requires that

6t = O:
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N Ori

_r_=_ _6q_ k--1,2...,n
1

Substituting Equation 5.')3 into Equation 5.21 yields:

(5.23)

N _ Ori
6B'= E F; . ( _qk 5 qk)

i=1 k=l

Changing the order of summation yields:

(5.24)

5H'= ( Fi" -_qk) 5qk = Qk 5qk
k=l i=I 1

The generalized forces are therefore:

(5.25)

N 0r____S_

Qk=,_lFi'= Oqk k= 1,2,...,n

The forces Fi can be separated into external forces and constraint forces:

(5.2_)

Fi = FI E) + R, (5.97)

Consequently, the generalized forces can be separated into generalized external

forces and generalized constraint (reaction) forces:

N FI E) 0 riQ?)=E •
_=1 Oqk (5.28)

N 0 rl
Q_R)=E R,

i=1 Oqk (5.29)

5.4 Classical Lagrange Equations

Consider a mechanical system of N particles of constant mass mi with position

vectors ri in an inertial reference frame.

The kinetic energy is:

1

T= _ E m,_ i=1,2,...,N (5.30)

The kinetic energy can be expressed in terms of generalized coordinates using the

transformation equations:
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ri = ri(ql,q_,...,qn,t)

Differentiating Equation 5.31 with respect to time gives:

(5.31)

i'i =- _ 0r, 0r,
k_-i_ _ + _ (5.32)

The kinetic energy is by substituting Equation 5.32 in Equation 5.30:

1 N _' Or_ Or,. 2

r = _=_ m, (F_k__l7q__ + -07) (5.33)

Define the generalized momentum Pk associated with the generalized coordinate qk:

OT N Or_

Pk- Oc)k - _ rn,/', • -- (5.34)i=, Oqk

The time rate of change of Pk is:

dpk d (OT) Or, 0/i) (5.35)
dl - _ _ = __.(rni _i. -_qk + rn,i', . Oqk

1

Next using Equation 5.30 we calculate

OT _ _. rni rl Or,
Oqk " _q_

This equation is seen to be identical with the last term of Equation 5.35.

(5.36)

Therefore we obtain:

d OT OT x Ori

(-g_q_) Oq_- ,:_Z_, _, •_ (5.37)

Applying Newton's law to the right hand side and introducing the generalized forces

of 5.28 and 5.29

Z r,, _,. 0,__:,= Z:(rl_) + a,). _'
Oqk 6qk

We arrive at Lagrange's equations:

__ = Q_E) + Q(kR) (5.38)

d OT OT r,(_) Q(R) (5.39)
d-_(_qk ) Oqk -'_k + k= 1,2,...,n
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The generalized reaction forces Q(n) can be eliminated if the given mechanical sys-

tem configuration can be defined in terms of independent generalized coordinates

q_. This is only possible if the kinematical constraint equations can be expressed in

holonomic form as in Equation 5.11. Using the principle of virtual work of Equa-
tion 5.19 we have:

N n-yn

614" -- Y_ R,. 6r, -- y_ Q_n) 6 q_ = 0 (5.40)
i=i j:l

where m is the number of holonomic constraint equations. Now the 6q_ can be

chosen independently and the generalized reaction force associated with each gen-

eralized coordinate must be zero. This is so because we can now let all 6 q_ be zero

except for any one 6 q_ which will be chosen not to be zero.

For holonomic systems, the Lagrange equations assume the form:

d (aT) _gT
- _--_qk-- Qk k- 1,2,...,n (5.41)a7

In this case, the number of generalized coordinates is equal to the number of degrees

of freedom of the system. The superscript E has been dropped for simplicity of
notation,

Usually some or all external forces can be derived from a potential energy 1"

such that

F = -gradV (5.42)

where V= V(rl,r2,...,rN,0 = V(q,,q2,...,q,,,t).

We calculate the generalized forces arising from such an irrotational force field
from the associated virtual work:

N N

= _ Fi" 6ri = - _ grad _._. 6ri
i=l i:1

N k Or;
-- -- _ grad $_. ( _qk 6 qk)

i:1 k=l

= _ _N (_-'_Ngradoqhl'}. Ori) 6q_ = -
k:l i=i k=l

161



The generalized force is then:

01""

Qk - (5.43)
0qk

NOTE:

If the potential energy 1 is independent of time, the force field is called con-

servative. This does not imply that the mechanical system is conservative. In this

case, the Lagrange equations are written in the form:

d OT OT OV

d--t (-_o_)- Oq--'_+..... Oqk --Qk k= 1,2 ...,n (5.44)

In theoretical mechanics, it is often convenient to introduce the Lagrangian function
L as follows:

L = T- 1" (5.45)

If furthermore all forces are derivable from a potential energy, Lagrange equations

become

d (or) oL
_ - _ = o k = l, z...,, (_46)

This is the standard form of Lagrange's equations for holonomie systems.

For practical applications of the form of Equation 5.44 is more useful.

In some electromechanical systems, the potential function I" can also be de-

pendent on the velocities of the generalized coordinates, i.e., 1" --- l'(qi, qj, t). The

generalized forces are then obtained by the prescription:

01 d. Ol)
O_= Oq_+ -_(-d-_q_ (5.47)

It is apparent that in such a case, Equation 5.46 is still applicable.

Examples

a) Scleronomic System

Consider the double pendulum swinging in the vertical plane where the two

masses ml and rn 2 are connected by massless bars of length gl and t2 as shown in

the figure.
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Figure 5.4: Double Pendulum

The configuration of this system can be defined by the Cartesian coordinates

(xl, Yl) of mass ml and (z2, y2) of mass m2. These four coordinates must satisfy
the kinematical constraint conditions.

(a)
(,2 - ,1)2+ (y_- yl)_= e_

The system has therefore two degrees of freedom. As a consequence, it can be

defined by two independent generalized coordinates for which we choose the two

angles 01 and 02 which the two bars make with the local vertical. These two angles

are related to the four rectangular coordinates as follows:

(b) zl=gl sin 01

z_=g2 sin 01

y2=t_ cos 01

yl=gl cos 01

+g_ sin O_

+t2 cos 0_

The kinetic energy of the system is:

(c) T = _ ._,(,_ + _) +_ -,2 (_ + _)

This can be expressed in terms of the generalized coordinates by differentiating Eqs.

(b) with respect to time which yields after some algebraic manipulation:

(d) T = _ ml(_le'l)_+ _ -_ [(lie,)_+ (l_e'_)_
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The potential energyof the system is:

(e) V = -rnl gYl - rn_gy2

Expressed in terms of generalized coordinates it is given by:

(/) V = -m_agl cos 01 - m_a(gl cos 01 + g2cos 02)

NOTE:

The potential energy was referenced to the level 9 = 0 at which 1" = 0.

The equations of motion are now obtained by performing the differentiations

called for in Equation 5.44. The right hand side of Equation 5.44 is zero in this case

because the externa] force was expressed by its potential energy.

01-equation:

d OT 07 0_

0_-equation:

(1T/1"]-m2)e_O]+ m_ t, _2(_ cos (02- O,)

--'IT/2 _1 _2 0"22sin (02-- 0_)+ (ma + rn2)£1g sin 01

= 0

d OT OT OV

_-i(_1- oo_+ 0o2 r_ e_0"_+ ,-_el_0"1cos(0_- 01)

+mz tl t2 0"12 sin (0_ - 01) + m2 g2 9 sin 02

= 0

b) Rheonomic System

As an example of the rheonomic constraint, i.e., a constraint which contains

time explicitly, consider a simple pendulum of mass m attached to a string whose

free length g can be varied by pulling the end A.

The position of the mass is defined by the length g and the angle O. But since t

is a function of time depending on the motion of A, the system has only one degree

of freedom with 0 being the only generalized coordinate.
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Figure 5.5: Rheonomic ,Pendulum

The constraint equation is

_s + yS = is(t)

The kinetic energy of the system is:

(5.48)

1 1 isT = _ r_ (P + ys)= _ r_ (b + _)

The potential energy of the system is:

(5.49)

V = -rng y = -rng g(t) cos 0

Substituting these terms in the Lagrange Equation 5.44 we obtain

(5.50)

dOT _0£ 0V=
d't(-_) O0 + O0 m gsO + 2rag iO + mg gsin 0 = 0 (5.51)

It is interesting to introduce a small angle approximation such that sin 0 _ 0 and

write the equation of motion as

?_=o (5.52)
Comparing this result with the well-known equation of a damped linear system,

it is seen that the second term containing the rate of change of the pendulum length

acts as an effective damping. In fact, the damping will be positive for g > 0 and

negative for g < 0. It is obvious that the mechanical energy of this system is no

165



longerconserved.The agentproducing this changein energyis the centrifugal force
in the string.

Another example of a rheonomic system is a launch vehicle whose attitude is

controlled by proper thrust vectoring. We consider the motion of the vehicle in an

inertial reference plane X-Y, called the yaw plane. The vehicle is assumed to be

rigid and only subject to the thrust force of a single gimballed engine.

\

1

Y f/

f

X

Figure 5.6: Attitude Control

The system is defined by the position of its mass center relative to the inertial

X-Y plane, its yaw angle t_ and the engine deflection be. However, the engine

deflection is not a generalized coordinate because it is controlled by the autopilot

which operates from signals generated by position and rate gyros located on the

vehicle. It is therefore a rheonomic constraint and referred to as "control variable."

Consequently, the system has three degrees of freedom. Its kinetic energy is given

by:

1 1 •

T= ,. (x2 + I
where I is the moment of inertia of the vehicle about its mass center.

(5.53)

The generalized forces associated with the three generalized coordinates are:

Q_ = F cos (w-5c), Q_ = F sin(t_,- 5c), Q_ = F _ sin 5_

where t is the distance of the mass center from the engine survival point.

(5.54)
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From the LagrangeEquations 5.44we obtain the equations of motion as (con-
sider m to be constant):

m_=F cos(_b-6_)

m_=F sin(!b-6_)

l_=Fg sin6_

For preliminary control dynamics analysis, it is useful to assume small angle

deflections. A very simple and effective altitude control can be obtained by a so-

called attitude/attitude rate control law expressed as:

where

k_ = position gyro gain

k_ = rate gyro gain

Assuming small engine deflection angle 6_ the rotational (attitude) equation
becomes by introducing the above control laws:

I _+ (F g k_)_ +(F g k,_)!b =0

This is seen to be the differential equation for a damped oscillation. It should, of

course, be realized that this is the simplest mathematical model and its sole purpose

was to expose the rheonomic nature of a feedback control system.

5.5 Lagrange Equations With Reaction Forces

If the system is nonholonomic, a reduction of the generalized coordinates to inde-

pendent generalized coordinates is not possible and one has to use the Lagrange

equations in the form given by Equation 5.39. This form of the Lagrange equations

allows furthermore to calculate internal dynamic stresses of critical system elements.

Sometimes it is also possible to introduce surplus coordinates in order to simplify

the equations of motion. This procedure provides a means to trade off simplicity

versus number of equations to be solved.
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The Lagrangemultiplier method providesanelegantand efficientway to soh'efor
theseunknown reaction forcescausedby the kinematical constraints. The method
is equally applicable to holonomicand nonholonomicsystems. However,if applied
to holonomic constraints as given in Equation 5.11 they have to be written in
differential form as virtual constraints:

oCj (5.55)
6¢j= _6qk=0 j=l,2,...,m

k=l

Recall that virtual displacements are taken irrespective of time such that 6t = O.

According to the principle of virtual work the mathematical problem is that

of determining the stationary value of a function namely the virtual work, of the

reaction forces subject to the kinematical constraints of Equation 5.55

n

6HR = Y_ Q_)6qk : 0 (5.56)
k=l

In the subsequent analysis, we can treat holonomic and nonholonomic systems

alike. The only difference between the two systems is that for holonomic constraints,

the constraint coefficients cik take the form of partial derivatives such that:

Applying the Lagrange multiplier rule, the stationary value of the virtual work can

be determined by multiplying the m virtual constraint equations

_-_ cjh(ql,q_,...,q,,,t)6qk =O j= 1,2,...,m
k=t

by the m Lagrange multipliers Ai and add them to Equation 5.56 to obtain:

(5.57)

+ + + ... = 0 (5.58)
k=l

In this sum of n terms, we can now select the m Lagrange multipliers in such

a way that the last m terms vanish. The remaining (n-m) terms contain then only

(n-m) variations 6qk which are independent. Therefi)re, each associated coefficient

has to be zero.

Thus, we obtain the set of equations for the reaction forces:
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m

j=l

k= 1,2,...,n (5.59)

NOTE."

Some authors multiply the constraint equations (5.57) by the Langrange multi-

pliers and subtract them from the virtual work equation (5.56). This only changes

the sign of the right-hand side of Equation 5.59.

Despite the fact that these n equations all have the same form, it is well to

remember, that they have different origins. The last m equations hold because we

selected the m Lagrange multipliers to make them true. The first (n-m) equations

are true because the Lagrange multipliers are selected to make the associated virtual

displacements independent. (See Appendix for details on Lagrange Multiplier Rule.)

We have now (n+m) unknowns, namely the n generalized coordinates and the

m Lagrange multipliers. But we have also the same number of equations, namely

the n equations of motion from Equation 5.39 and m equations of constraint from

Equation 5.57.

For holonomic systems, it is useful to express the constraint equations in terms
of velocities as:

#. •04b
2.., (_-qk)qk + -- = 0 j = 1,2, m (5.60)k=i Ot "" "'

In special cases the set of equations can be solved by ad hoc elimination and substi-

tution methods. However, a systematic algorithm can be setup taking the following

steps:

1) The Lagrange equations are a set of n second order ordinary differential equations
which can be written in matrix form as:

M_ = QA + ql + QR (5.61)

where M is the (n x n) generalized mass matrix which is nonsingular for a proper

mechanical system. The vector x is the (n × 1) column matrix of the generalized

coordinates. The three terms Qa, QI and QR represent the generalized applied

force, the generalized inertia force and the generalized reaction force, respectively.
All these forces depend only on x, x and time.
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2) Introduce the constraint equations (holonomic or nonholonomic) in matrix form

as:

Cx+b(t) =0 (5.62)

where C is the (m x n) constraint matrix. The generalized reaction force of Equa-

tion 5.59 is likewise expressed in matrix rotation as:

QR = -C _r,_ (5.63)

where _ is the (m x 1) column matrix consisting of the Lagrange multipliers.

3) Differentiate the constraint Equation 5.62 to obtain:

C £ + 6'_: + I_(t) = 0 (5.64)

4) Premuhiply the equations of motion (5.61) by the inverse generalized mass

matrix M -1 and substitute in Equation 5.64. This yields:

CM-_(Q,4 + Q, + QR) = -(_5¢- l_(f) (_.65)

5) Using Equation 5.63 we solve the preceding equation for the Lagrange multipliers:

,_t-_- (CJ_1-1CT) -I {Cx-_- b(_) -_-C]_[-I(QA -_- Q,)) (5.66)

The reaction can now be readily obtained by going back again to Equation 5.63:

Examples

QR= -CT(CM-1) -' {CM-_(Qa + Q,)+Cx + _,(t)} (5.67)

a) Nonholonomic System

A uniform sphere of mass m and radius a rolls without slipping on a plane
horizontal surface.

Y

O

V¢

r

X
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The kinetic energy of the Sphere is given by:

1 2 y2 1
T=_m(_ + +i 2)+_I_ _ (5.68)

The motion of the center C of the sphere is constrained by the roll condition

vc = to x R0 where R0 = aj (5.69)

The rotational velocity w of the sphere has to be expressed in components of the

inertial reference frame x, y, z.

We can relate the unit vectors el, ez,ea of a body-fixed system to the unit vectors

i,j, k of an inertial frame and obtain the following result:

o_ -- wlel • _¢2 e2 -Jr _3e3

--- ((,dl.411 -_- 0/2.421 -'_ 0J3.431)i -_- (031.-_12 + 6U2_422 + (.d3.432)j

q-(WlA13 + w2A23 + w3A33)k

Likewise, the velocity vc of the sphere's center is expressed in inertial components

as:

vc = zi+yj+_k

Substituting the above two equations, Equation 5.69 yields:

(5.70)

_----a(a_lA13 -Jr"a_2A23 q- w3A33)

3=0 (5.71t

_" = a(wl A11 + w2A_t + w3A31)

The middle equation represents a holonomic constraint which states geometri-

cally that the center of the sphere maintains a constant distance above the horizoa-

tal surface. It can be easily taken into account by just setting y = 0 in the kinetic

energy expression of Equation 5.68.

The other two constraint conditions can be expressed in terms of generalized

velocities by introducing the classical or modern Euler angle system. Using t_ke

modern Euler angles we obtain:

171



+ a AIa ¢ + (sinOAla - cos8 sinCA2a - cos0 cosCAaa)

+(sin CAaa - cos CAza)_ = 0

+ (-All)¢ + (sine AI_ - cosCA2_ - cose cosCAa_)¢

+(sin CAa_ -cos¢ A_I)_ = 0

This set of constraint equations can be expressed in matrix form as:

C/1 = 0 C = (2 x 5)matrix (5.72)

where qT = [z z ¢ Ib e].

The equations of motion are then obtained by expressing the kinetic energy in

terms of the generalized coordinates

1 •T : _ m (_ + 2) + l(O _ + _2 + ¢2 _ 2¢4 sin e) (5.73)

and performing the differentiations required by the Lagrange equations.

m _ = -(cll & + c21 A_)

m. i) = -(<2 A_+ c_ A_)
I(._ + ¢_b cos.8.) = -(c,a A_ + c2a A2)

I(¢..- ¢..sin O) - _b.Ocose) = -(c_4 "_1 _t- C2 4 "_2)

I(,) - ¢sine - ¢0 cose) = -(c15 A_ + c25 A2)

The solution of this set of equations could formally proceed along the steps

outlined above. The initial conditions would have to be chosen to be compatible

with the requirement of pure rolling without slipping.

b) Holonomic System (Scleronomic)

Two particles m_ and m2 are connected by a massless rod. They move in a

vertical plane under a frictionless constraint which keeps ml on the horizontal x-

axis and m_ on the vertical y-axis. Calculate the stress in the rod.
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1

Y

Figure 5.7: Constrained Dumbbell

The kinetic energy is:

1

T = 5 m(_20 _ + g_) (5.74)

and the potential energy:

V = - mgg cos 0

The kinematical constraint condition expressed in terms of the velocity:

t=O

The Lagrangian equations yield the following two equations of motion:

gO+g sin 0=0

m g'- m gO_ - mgcos8 + A = 0

The first of these equations can be solved by itself and furnishes the time histories

of the angle 0 and the angular velocity O. With these known, one can solve for the
reaction force associated with the constraint g = g"= 0 :
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Rt = -_ = -mg _-rng cos 0

The reaction force is negative, indicating that the rod is in tension. Physically

interpreted it is observed that the reaction force is caused by the gravity component

along the rod and the centrifugal face arising from its rotation.

c) Holonomic System (Rheonomic)

m

r

O
V

Figure 5.8: Sliding Mass

A rigid wire is pivoted at one end so that it can be rotated in a horizontal plane

with prescribed angular velocity w = f(t). A particle of mass m can slide without

friction along the wire. Calculate the reaction force of the wire on the mass.

The kinetic energy is:

1

T = _ m (_ + r ¢_) (5.77)

The rheonomic constraint condition:

w=¢=f(t) or ¢-f(t)--0

The Lagrange equations are:

(5.78)

rn _ - rn r ¢ _ = O

mr _ ¢ + 2mr ÷ ¢_+ A = O

The generalized reaction force associated with the generalized coordinate ¢ is the

reaction torque about the pivot point 0 and given by:
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Q(,')= -_ = mr2_;+ 2m_÷_ (_.79)
The second term is the Coriolis torque exerted by the wire on the sliding mass.
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Chapter 6

Modal Synthesis Technique

6.1 Boltzmann-Hamel Equations

When applied to complex dynamic configurations, the classical Lagrange equations

become formidably lengthy and their computer coding leads to low computational

efficiency. This is due to the fact that they contain complete information concerning

the dynamics and kinematics of the system. It is possible to separate these two

aspects of a dynamical system and obtain a substantial reduction in complexity

of the equations of motion by transforming the classical Lagrange equations from

an inertial reference frame to a moving reference frame. The accompanying loss of

information concerning position and orientation can be supplied by the appropriate

kinematical differential equations governing the relation, between inertial and non-

inertial (nonholonomic) velocities. To achieve the desired transformation we write

the classical Lagrange equations in matrix form as:

d OT OT

(0-'_)- 0q = q -cT_ = Q + QR (6.1)

where the partial derivatives represent the (n x 1) column matrices containing as

elements the partial derivatives with respect to the n generalized coordinates q{(i =

1,2,...,n).

The transformation from inertial velocity components to non-inertial velocity

components is effected by the kinematical differential equations.

a = A(q)q (6.2)

The nonholonomic velocity vector D is, in general, composed of both linear and
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angular velocity components. The kinematical conditions for the angular velocities

are given by Euler's kinematical differential equations of section IV. The transforma-

tion from translational inertial velocities to non-inertial velocities is accomplished

by the direction cosine matrix A such that:

v = A x (6.3)

where XT = (5:,y,_) and v T = (vl v_ v3). The kinetic energy of the system when

expressed in nonholonomic velocity components is denoted by

q)= T(q, q) (6.4)

The superscript star should indicate that the mathematical form of the transformed

kinetic energy differs from the original one although its scalar value is, of course,

the same.

The differentiations required by the Lagrange equations are first given in scalar
form as:

where A_k are the components of the kinematical transformation matrix A(q) of

Equation 6.2. Also:

OT _ cOT" cOQ_ cOT" (6.6)cOq_- cO_! Oqk + cOqk

Equation 6.5 can be directly written in matrix form as:

OT AT cOT" (6.7)__ .,.-

TO be able to express Equation 6.6 in matrix form we introduce the Jacobian matrix

J

Oqi Oq2 " " " OqL

on_E_ on_p_t
Oq_ Oq_ • • • Oq_

0q

Equation 6.6 can then be written in matrix form:

Substituting Equation 6.7 and

cOT T cOT" OT"

: J +
6.9 into Equation 6.] yields:

(6.8)
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d. OT" .4" OT" jT OT" OT"
AT _(O--_-) + 00 00 0q -- Q -cTA = Q + Qa (6.9)

Next we premultiply this equation by (A-l) T and obtain:

d OT" OT" OT" )T-(A -1 Q-(C.a- )TX (6.10)

This is the desired transformation of the classical Lagrange equations from an in-

ertial frame to a moving frame. These equations are known as Boltzmann-Hamel

equations or Lagrange equations for quasi-coordinates.

It remains to transform the generalized forces from the inertial reference frame to

the moving reference frame. This is accomplished by the so called quasi-coordinates.

These serve only as a means to an end and play only a brief cameo role after which

they disappear from the scene.

The quasi-coordinates are defined such that their time derivatives are equal to

the nonholonomic velocities, i.e.,

df
d-l- = _ _ = quasi-coordinate vector (6.11)

The virtual displacements of the generalized coordinates qi can then be related to

the virtual displacements of the quasi-coordinates _ by Equation 6.2 as:

5_-- A(q) 6q (6.12)

Physically interpreted the virtual displacements of the quasi-coordinates are in-

finitesimal translations along or rotations about the instantaneous axes of the mov-

ing reference frame. Calculating now the virtual work of the external forces Q

through a virtual displacement we obtain:

5W= (6q) T q = (A-_6_) T q = (5_)T(A-_)I"Q = (5_T)k (6.13)

where k is the generalized force associated with the quasi-coordinate _. Mathemat-

ically expressed:

k= (A-_)TQ = (AT)-_Q (6.14)

The generalized reaction force in the moving reference frame can be obtained by
transformation of the constraint condition.
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cq + b(t) =0

Using the kinematical differential equation (6.2) we obtain:

C(A -la) _- b(t) = Ba + b(t) = 0 (6.16)

where B = CA -1 is simply the constraint matrix relating the nonholonomic veloci-

ties of the system elements as required by the kinematical constraints.

The Boltzmann-Hamel equations are therefore finally:

d OT" OT"

d--t (-0---_) + [(:i - J)A-'] T 012

c3T"
- (A-l) r W-- - k- BTA = k + KR (6.17)

oq

Judged by their outward appearance the transformed equations (6.17) seem to

be much more complicated than their classical counterpart given in Equation 6.1.

However, their hidden simplicity will be brought to light when the detailed steps of

introducing the above-mentioned moving reference frame are carried out. To this

end we introduce the linear and angular velocity of the moving reference frame as:

V-- U2 _tJ--

U3

_J2

O33

The column matrix Q can be written in partitioned form as:

V

It can be shown by some rather length.,, but straight-forward process that the fol-

lowing relationship holds:

[(A- =
0

where

0 --033 _2
IM3 0 _(M 1

--_2 ;dl 0
I 0

U3

-- y 2

0

U1

I) 2

_U 1

0
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Next we assumewithout any practical loss of generality that the kinetic energy of

the system can be expressed as:

T= T(D, 0, rl) (6.18)

where _ are generalized coordinates defining the system configuration relative to

the moving frame. The superscript star has been dropped for simplicity. With this

assumption the term OT'/Oq in Equation 6.17 is equal to zero. The equations of

motion can now be written as two vector equations:

A) Translational Equations:

B) Rotational Equations:

d OT OT

_-(_vv ) + _o × 0-_ = F + rn (6.19)

d c3T c3T OT

d--t ( _ww) + oa x _ + v x 0--_ = L + Ln (6.20)

The right-hand side of Equation 6.19 are the forces acting on the system in the

direction of the instantaneous moving frame axes, that of Equation 6.20 are the

moments of these forces about these instantaneous axes. The latter can be derived

easily by calculating the virtual work done by the forces through the virtual rota-

tions of the moving frame. Using the quasi-coordinate definition of Equation 6.11

the virtual displacement of a point located at R in the moving frame is given by:

_xn = 6_R x R

The virtual work is therefore:

Remember: v = _ x R (6.21)

6W = F. _xn = r. (d_n x R) = (R x F). d_n = L-d_a (6.22)

NOTE."

The moving reference frame does not have to be a body-fixed frame but can be

any conveniently chosen frame relative to which the system motion is to be defined

("Floating" frame).

The Lagrange equations for the relative motion retain their classical form. Since

the relative motion is often associated with flexible system components we call them

flexibility equations:
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C) Flexibility Equations:

d .OT) OT Qn
_(O"_ - 0"-_ = Q + (6.23)

The real physical meaning of the equations of motion given by Equation 6.19,

6.20, and 6.23 can be revealed by introducing the explicit expression of the kinetic

energy of the system in terms of the linear velocity v of the origin of the reference

frame, its angular velocity w against inertial space and the relative motion R of the

system masses as viewed from the moving frame. With these terms we obtain:

if [v+(w x R) + R]_T = _ d m (6.24)
In the subsequent mathematical manipulations the following relations and identities

are used:

(a) Ify=(axb) 2 then _=2bx (axb).

(_)Ify=(a.b) then _=b

(7)'x (Rxv)+vx (,,x R)=Rx(_ xv)

(0) _x[ax (_xR)]=Rx [_ x (wxR)]

(_)._ x (RxR)+Rx (_ xR)=Rx (_x R)

It is also important to realize that all time derivatives are taken relative to the

moving reference frame.

We obtain:

0-, R

or /_4J X -- --- _JX

OT
VX --:

Ov

x [v + (w x R) + Rldm (6.25)

{R × Iv+ (_ × R) + R]} dm (6.26)

/ v x [v + (w x R) + It.]dm (6.27)

/ R x [v + (_ x R) + R]drn (6.28)

+ / R × [_+ (,_ × R) + (_ x R) + Rid,,,
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d OT

_.(._..v ) = J[/r + (& X R) + (_ x R) + l_]dm (6.29)

j× U_ - _ × Iv+ (,, × R) + Rle,_ (6.30)

Collecting all terms associated with the translational equation we obtain:

t

][/,+(wxv)+w×(w×R)+&xR+2(w xR)+R]dm=F+F_

For the rotational equation:

(6.31)

JRx[/,+(wxv)+wx (wxR)+&xR+2(oaxR)+R]dm=L+Ln (6.32)

It is observed that the terms within the square bracket taken together determine

the absolute acceleration of a mass point relative to inertial space. The first two

terms represent the acceleration of the origin of the moving frame expressed in

components of the moving frame. The bracketed term is thus seen to be identical

with Equation 1.5 of section I. The translational and rotational Equations 6.19

and 6.20 could have been obtained also by a Newton-Euler approach. The main

difference occurs in the physical interpretation of the right-hand side. Here they

are seen to be generalized forces associated with the virtual displacements of the

instantaneous reference frame. Furthermore the elimination of constraint forces can

be very efficient by accomplished by the Lagrange multiplier method. Constraint

forces will arise when several moving coordinate frames are introduced for various

system elements and then conjoined for dynamic simulation.

6.2 Component Modes

In many situations the motion of flexible components can be described by the super-

position of appropriately chosen mode (shape) functions. The success of this method

often referred to as component mode synthesis depends largely on the proper choice

of these assumed mode functions. These are often selected from the natural modes

(eigen functions) of the isolated structural component (substructure) using bound-

ary conditions which are geometrically and dynamically resembling the actual ones:.

Other mode functions can be obtained by the static deflections of the substrne-

ture due to unit displacements or unit forces imposed upon suitable coordinates.
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Many other types of component modes have been advocated to describe the flexura]

motion of the substructure (Ref: Roy R. Craig Jr. "Structural Dynamics" 1981).

In all these cases the position of a mass element in the moving reference frame

can be defined as:

R = r + _ _bi(r) rli(t) (6.33)
i

where !b;(r) is the vector mode function and qi(t) its associated generalized coordi-

nate. The vector mode function is often specified in terms of a translational mode

of the center of mass of a mass element and a rotational mode about its mass center

such that

= + × p (6.34)

where p is the position of a mass particle relative to the center of mass of the

mass element. The position vector r denotes the location of the undeformed mass
element.

The flexibility Equations 6.23 can then be further manipulated using the follow-

ing partial differentiations:

× [v + (to × R) + R]} dm (6.35)

oT 0T OR f0//--_= 0-R" 0//{ t/'i [v + (to × R) + R]dm

._z,r___(v_,) = f_b,. [£' + (& × R) + (to × R) + R.]drn
dt Oili

Collecting a]] terms we obtain Equation 6.23 in the form

(6.36)

(6.37)

f _p,.[++(to×v)+w×(wxR)+(goxr)+2(to×R)+fildm=Q,+Ql n) (6.38)

The bracketed term is again seen to be the total acceleration of the mass particle

relative to inertial space. Therefore the generalized inertial forces are given by the

scalar product of the vector mode function with the total acceleration and summing

over all mass elements. The generalized forces are obtained via the virtual work

through a virtual displacement of the generalized flexural coordinate r/i. Therefore:

Qi = F. q,i(r) and Qlnl= FR. q,_(r) (6.39)
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Another contribution to the right-hand side arises from the strain energy of the
flexible component. For a beam, for instance, undergoing a transverse deflection
¢i(r)rli(0 the strain energy is given by

1

Its generalized force is obtained by partial differentiation

ov Q!.)

(6.40)

(6.41)

Similar expressions can be obtained for the strain energy of other system elements

which undergo a deflection as dictated by the assumed mode function.

It is often advantageous to select mode functions which are orthogonal with

respect to the mass distribution of the component. This eliminates or reduces the

number of dynamic and static coupling terms.

As an example, consider the following integral which is encountered when Equa-

tion 6.38 is expanded into its various components:

I = f(4"i + ¢', × P)" _(¢j + 4'_ × p)dm (6.42)
J

Orthogonality of the mode functions implies that

J(_i -_- Cti × P) " (¢j "t- d[)_ × p)dm -- 61j (6.43)

where 60 is the Kronecker symbol.

Therefore, the integral of Equation 6.42 reduces to

I = f(dpi + q_} x p)2dm (6.44)

= /(OF + 0_" Z. d/i)dm = 1 (6.45)

where Z = p2cq - (pp).

The integral I is the generalized mass of the mode function normalized to unity.

If the systems contains continuous and discrete elements simultaneously, the

above mathematical formulations remain unaltered when all integrals are defined

as Stieltjes integrals.
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6.3 Applications to Aerospace Systems

Example t"

Spherical Pendulum

Y

Ib,,._v X

The direction of the pendulum

is defined by the two Euler angles

0 and _p

I_ =rag _ + I =12

13=1

The rotating reference frame is defined such that the e3 axis is along the tether.

The rotational motion is governed by the rotational Equation 6.20 which becomes

2r . do + to x Z. w = L+LR = L- B T,,x

The position of the pendulum in inertial coordinates is given by:

z = g sin 0 cos _;'

V = g sin 0 sin

z = tcosO

Its angular velocity is given by:
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_d 1 m --1_ sin 0

c_ 3 _ _ COS 0

Because _ = 0 then exists a kinematical constraint between the angular velocities.

It is:

wl cosO + w3sinO = 0

which leads to the constraint matrix:

B=[cos0 0 sin0]

The torque acting on the pendulum comes from the gravity force and is:

L = r x F =/ca x mgk = -mggsinOe2

The equations of motion can now be obtained in scalar form:

lldgl -_- 0)20'13(/3 -- /2) = ._ COS 0

I2_2 -t- 501_03(I1 -- /3) = -mgg sin 0

I3wa + w_ w_(I_ - It) = A sin 0

To eliminate the Lagrange multiplier we multiply the first equation by sin 8 and

the third equation by -cos0 and add. We obtain the following two differential

equations:

(I +mg 2sin 20)_ + 2me_(b 0 sin0cos0 = 0

hO - mg_(b 2 sin O cos 0 + mgg sin 0 = 0

Those equations could have been obtained by using the classical Lagrange equations.

It can be seen that for I << mg 2 these equations become almost singular for small

0 and present serious computational problems.

To avoid this singularity it is necessary to express the direction of the pendulum

in terms of the modern Euler angles 0 and _b (_b = 0).
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The angular velocity of the pendulum is then

_J1 = _ _ = g sin 0 COS@

W_ = 0 COS_ and !/= -t sin _b

w3 = -tq sin 0 z = g cos 0 cos _b

The constraint imposed upon the angular velocity because of _ = 0 is:

w2 sin 0 + w3 cos 0 = 0

which leads to the constraint equation:

B=[0 sin_ cos4_]

The torque acting on the pendulum is given by

L = ge3 x mgk = -mgg sin 0e2 - mgg sin _bcos 0el

The rotational motions are therefore:

I1_1 + w_w3(Ia - I_) = -mgt sin cbcos 0

I_d_ + wtw3(ll - 13) = -rnggsinO + )_ sin q_

I3d_3+ _1_(I2 - 11) = ,_cos 0

To eliminate the Lagrange multiplier we multiply the second equation by cos _b and

the third equation by sin _ and obtain again two differential equations:

(rag 2 + I)0 + rag202 sin _bcos0 = -m#g sin 4_cosO

(rng 2 cos¢_ + I)0"- 2mg_00_ sin _bcos $ = -mggcos4_sinO

It is seen that these equations are well-behaved for small angles 8 and q_and in fact,

reduce to the simple pendulum equations:

(I + mg_)_ + mggcb = 0

(I + mg2)O " + rnggO = 0

Example 2:
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A dumbbell is elastically coupled to a flat disk at its mass center and can rotate

in a plane through an angle a as shown in the figure.

ml

x3

m2

zl, z2, za body-fixed
reference frame.

$,]21 -- rn 2 ._- _/

The origin is at the center of mass

I0 = 2m/2

Moment of Inertia of Disk:

2" = Ae_e_ + Be_e_ + Ce3e3

Moment of Inertia of dumbbell:

:2-0= Io cos 2 c_elel + I0e2e2 + Io sin 2 ae3e3 - Io sin a cos aele3

Location of dumbbell masses ml and m2:
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Angular Velocity of Disk:

R1 = g cos ae3 + g sin ael

R_ = -(g cos olea + t sin _el)

-- _lel + _2e2 + _3e3

Kinetic and Potential Energy of Dumbbell:

To : _10(d_ + _2) 2 -k- 110(_3 sin°_z -- _1 c°s°0 2

1
lo = _ka k = spring constant

Rotational Equation"

z.n+ n×z.n+_o.n+n×fo.n+2R, × (n x v_)m_

+2n_× (n ×._)_+ (m × _,)_,+ (n_×_)_ = o

where v and a are the time derivatives of the position vector R of the dumbbell

masses relative to the body-fixed frame.

Flexibility Equation:

£(OTo) OTo 01o
dt O& - 0-----_+ Oe_ -0

OTo
O& - Io(& + _2)

d(OTo)

Oc_ - I0(93 sin c_ - f_ cosa)(f)_ cosa + _'_1 sin_)

010
0a

190



Information about the attitude of the main body can be supplied by the Euler

kinematical equations. For setting up perturbation (linearized) equations about a

nominal spin condition it is, of course, necessary to use the modern Euler angle

system to avoid the gimbal look singularity.

Example 3: (Slosh Model)

A satellite contains an internal linear oscillator system located at r0, having a

spring constant k and a damping constant c. The motion of the oscillator is given

by its displacement vector r,.

2
v

m, = mass of oscillator

M = total mass of satellite including m,

l-, "= ros + rs

The body-fixed reference frame origin coincides with the center of mass of the

satellite for r, = 0. The location of the center of mass of the satellite for a displaced

oscillator mass is:

?
M tc = J Rdrn = re,r,

The translational Equation 6.31 contains the following terms:
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/[+o + (tox vo)]d_ = M(_,o+ to × ",o)

f w x (w x R)dm = to x (tox f Rdm) = M to x (to× t_)

f (& × R)dm = & x f Rdm = M(& × l_)

2/(tox _,)d_= 2_,(tox r,)

Combining these terms yields:

_,dm = m,i _,

M(+o+ to x Vo)+ Mto x (to x t_) + M(_, x to)
+2 m. (w x i',) + m. i:, =F

Rotation:

The rotational Equation 6.32 contains the following terms:

f a x (+o+ to x vo)dm= M[l_x (+o+ to x Vo)]

/ 1_x [tox (tox R)]dm= to × J:.to

f Rx (wxR)dm=.T.&

2 f It x (tox r.)dr, = 2l. x (tox r.)_.
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R

Combining these terms yields:

x _.dm = (Z, x iL)m,

z. _ + ,,.,x z. _ + M[to x (%+ ,,.,x Vo)]
+2m.t, x (,,.,x i',) + m,(t. x i_.)= rt x r

The effect of the acceleration of the origin of the body fixed reference frame can

be eliminated from the above equation by substituting the equation before it into

it:

za + ,,.,x :z.o,+ to x IF - AI,,.,x (,,.,x t,) - .af(a,x to) - 2,.,,,
(w x _.) - m,_.]+ 2m,t. x (w x _,)+ m,(l. x i:.) = R x F

If we define the dyadic:

z2 = _t[l_7 - (to l,)]

the moment of inertia about the center of mass of the satellite can be written as:

I,= I-I2

The rotational motion equation is then

2"_. da + w x 2"_.w + 2m0(10 - lc) x (w x i',)

+m,(l, - l,) x i:, = (R - £_) x F

Flexibility:

The motion of the linear oscillator can be written in the form as:

l° = r0°+ e° r, e, = unit vector

It isseen that the unit vector e° can be looked upon as the vector mode func-

tion of the linearoscillatorand itsdisplacement r° as the associated generalized

coordinate.
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The flexibility equation (6.39) contains, therefore, the following terms:

e,. [*0+ (`o× ,,0)]m,

e,. [`o× (`o× t,)]m0

e,. (_ x l,)m0

2e,. (`o × i,)m,

ej • i;sm a

Collecting these terms yields:

es" {[*0 + (`o × v0)] +`o × (`o × ts) + (,_ × is)

+2(`o x is) + i_,}rns = -k rs - c ÷,

Substituting the translational equation eliminates the effect of the acceleration

of the origin:

{ FA_I 2ms.e,. [ `o× (`o× it) - (,o × to) - -37-(,o× e.)

ms_s]+`o × (`o× is) + (,:,× l,)+ 2(,o× rs)+ _slm,
_ k _ _ C_

M )

Observing furthermore that e,. (,o x i',) = 0 we can rewrite this equation in the
final form:

e,. {(1 - -_-)rsms.. +,, × (ts -lo) +`o × [,o× (t. - l,)]}
m s k c

= --_es' F - --rs -- _÷,
_ls _s
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The above equations of motion representing three differential equations of first

order and one second-order differential equation together with the appropriate kine-

matical equations determine the dynamics of the system.

Example 4: Rolling Coin

A classical example of a nonholonomic system is the coin rolling on a rough

horizontal plane.

Z
2

3

Y

1

z

3

2

0

We choose a coordinate system 1, 2, 3 with the origin at the mass center of the

coin. The 3-axis is the axis of symmetry; the 1-axis is in the plane of the coin and

remains horizontal. It is important to notice that this coordinate system is not a

body-fixed system but is "floating" relative to the body. Therefore, the angular

velocity of the coin is different from that of the floating coordinate system.

Angular Velocity of Coin:

/7 =w+/70

where /70 = _,e3

and w the angular velocity of the coordinate system.

(6.46}
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Roll Condition:

v=n xR0 where R0=Re_ (6.47)

R0 is the position vector drawn from contact point O to the mass center of the coin,

and v is the velocity of the mass center.

The velocity components for the roll condition are therefore:

vl = -OAR, v_ = 0, v3 = f/1R (6.48)

For calculating the constraint forces we need the instantaneous constraints of the

system. The', are obtained by performing virtual displacements of the coordinate

system in conformity with the kinematical constraints which apply at that instant

of time.

Constraint Condition:

or in component form:

v = w × R0 (6.49)

vl = -waR, v2 = 0, vz - wlR (6.50)

Notice that the constraint condition (6.50) is different from the roll condition (6.48)

for the coin.

In matrix form:

Constraint Forces:

V 1 ]
I

0 1 0 0 0 v3 =0

0 0 1 - 0 0 "_1

.a_3J

(6.51)

F R = BT_ =

1 0 0

0 1 0

0 0 1

0 0 -R

0 0 0

R 0 0

A2

A3

-RAa

0

RAa
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Kinetic Energy:

1/(v

Equations of Motion:

+OxR)2dm where fRdm=O

d OT OT OT

_(_ww) +wx _--_w+vx O----_=L+Ln

d OT OT

-_ (--_v ) + w × Ov - F + FR

Because of f Rdm = 0
OT

v×_=0

The generalized forces L and F in the above equations are obtained by the virtual

work done by the external gravity force when virtual translations and rotations

about the mass center of the coin are performed.

We find that L = 0 and F r -----[0,-mgsin0,-mgcos0].

The equations of motion in component form are then:

Translation:

m _31+ m(w2v3 - _3v2) = 0 + A_

m _ + m(w3vl - a_lv3) = -rag sin 0 + A_

m 03 + m(wxv2 - w2vl) = -mgcosO + A3

Rotation: (11 =/2 = A, h = C)

A Qt + C_v2f'lz - AwzO: = -RA3
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A 1")2+ Aw3D1 - Cwll}3 = 0 (6.52)

C _3 + Awll"t2 - Aw_Ftl = -RA3

Combining Equations 6.51 and 6.52 we obtain:

(A + TtT,/_2)fil + (C -_- n2R2)(,02_'_3 - A_,)3_"_ 2 : -mg/_cos0

A_ + Aw3Ftl - Cw103 = 0 (6.53)

(c + mR2)(_3 + Aw_gt2 - (.4 + rnR2)w2_l = 0

This equation is the moment equation about the contact point O.

To complete the formulation of the problem we write the angular velocity w of

the floating coordinate system in terms of Euler angles as

wl=0, w2=¢sin0, w3=4) cos0

Likewise the angular velocity F/of the body as:

_,=0, _ = CsinS, l)a = ¢_eosO + ¢

A closed-form solution is only possible for certain special cases.
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Example 5:

Consider two rigid bodies connected by a frictionless hinge in free space.

We select 2 principal axes systems each located at the mass centers of each body.

The angular velocities of each reference frame against inertial space are I'll and J?_

respectively, their linear velocities are vl and v2. The distance from C1 to hinge

point O is It and that from O to C_ is t2.

The equations of translation and rotation for each body are then

Mx (_'1 +/21 x Vl) = Fl + F_ n)

• = L(n)
Z1 "nl "_- _'_1 X Z 1 _i LI + "i

M_(_'2 + J?2 × v2)= F_ + F_ R)

1"2" _2 + 1-/2 x I_ •/2_ = L2 + L_n)

The constraint equation imposed upon the two bodies by the hinge is:

(6.54)

(6.55)

(6.56)

(6.57)

V2 "-- Vl "_ _"_1 X '_1 + 'f'_2 X t 2 (6.58)

The constraint equation has to be written in matrix form to find the constraint

matrix B. It is:

v2 - Avl - A_l/21 - _2 - ,I22 = 0
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whereA is the direction cosine matrix of body 2 relative to body 1 and g_the familiar

skew-symmetric matrix. Introducing the vector:

n _ = [vlln,lv21n2]

we can write the constraint equation in the desired matrix form as:

Bn = [-AI- A_,lE_l_2]n = 0

The equations of motion are in matrix form:

M/_ = Q(_)+ Q(A)+ QIR)

where M is the diagonal matrix:

M_ 0

11
M=

M2

o /2

and Q(t)Q(A), Q(n) are the associated generalized inertial, applied and reaction

forces. The latter can be calculated by the same method outlined before. We

obtain:

Q(R) = _S T (Sj_]--1 sT)-1 (B]ll-Z(Q(l) + q(a)) + ]}J'2}

The time derivative of the constraint matrix B can be obtained by noting that:

= -&A

where & = _2 - AOlA T. It is therefore given by:

h--[&AI,2,AglO[O]

N.B.

It is important to notice that the translational Equation 6.56 is only needed to

calculate the constraint forces Q(R) and does not have to be integrated, because the

translational velocity v2 can be directly obtained from the constraint Equation 6.58.

Therefore it is only necessary to integrate as many equations of motion as there are

degrees of freedom, namely nine.
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Example 6:

A spinning satellite considered to be a rigid body has flexible antennas attached
to it.

The antennas are treated as uniform cantilever (clamped-free) beams. The dif-
ferential equation of a uniform beam is:

_4_ _2 w
El-:----:. + m -

Or----YOx _
-0

where E1 is the flexural stiffness and m the mass per unit length of the beam. At

the clamped end z = 0 we have the geometric boundary conditions:

w(0)= w'(0)= 0

At the free end _, we have the dynamical (natural) boundary conditions of

vanishing moment and shear force. This means that:

w"(t) = w"'(t) = o

The differential equation and its associated boundary conditions furnish the

normal modes ¢,,,(z) to be used in describing the total deflection of the antennas as a

superposition of these mode shapes each multiplied by a generalized coordinate. The

transverse deflections of each antenna are expressed relative to a body fixed frame
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(el, e_, ea) whose origin coincides with the attachment point A of the antenna.

The position of a mass element of the antenna is defined as:

rr = zel + ye_ + ze3

According to the model synthesis method, the "in-plane" deflection y and the "out-

of-plane" deflection z are given in the series form:

z = Z Zk(*)¢k(t)

To define the location of the antenna mass element relative to the rigid body

satellite we select a satellite-fixed reference frame (i, j, k) with origin at the mass

center of the undeformed body. For the subsequent discussion it is assumed that

the shift of mass center location caused by the antenna deflections is neglible. As

a consequence the translational and rotational motion become dynamically uncou-

pled. To evaluate the integrals of the equations of motion we need the following

quantities:

RF = lA + rF location of antenna mass element

vF = ye_+ _e_= Z _:(_)V,(*)e_+ Z Zk(,)_(_)e_

ar = /)e2 + _e3 = _ :t_(x)/_;(l)e_ + _ Zk(x)_'h(t)e3

where RA = acceleration of attachment point A. R0 = acceleration of satellite frame

origin.

The following equations of motion can then be established:

Rotation:

or

R × [h× R+/2x (/2 x R)+2($2xvr)+ar]dm=L
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g g

Z. L

where dmr is a mass element of the flexible antenna.

Flexibility:

e3. f Zk(z)[Ra + (,_ x RF) + I2 x (12 x Rr) + 2(/2 x vr) + ar]dmF = Qk

The evaluation of the last two integrals is greatly simplified by observing that:

orthogonality

f Z (x)Zj(,)dmr =

The acceleration i5,.0 of the satellite origin is usually caused by thruster firings

performed for attitude control or spin-up/spin down maneuvers.
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Appendix A

The Lagrange Multiplier Method

The Lagrange Multiplier Rule finds application in determining extremes of a func-

tion of several variables subject to constraints.

a) Special Case:

f = f(z,y,z)

Constraint: ¢(x, y, z) = 0

Necessary Condition for Extremum:

df = fzdz + fvdy + f_dz = 0

From the constraint equation, we obtain:

de = Cxdz + ¢udy + (a, dz = 0

Elimination of dz yields:

dz = -(_)dz - (_)dy

Inserting Equation A.4 into Equation A.2 leads to:

(A.1)

(A.2)

(A.3)

(A.4)
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df = fzdx + f_dy- _(¢xdx + ¢_,dy) = (f_ - _)dx + (f_- _)dy

Since dz and dy are independent:

= 0 (A.5)

L L)¢j = 0It-( )¢_=0 h-(,-_

Define the Lagrange Multiplier )_ as:

(A.6)

= -LI¢_. (¢, # 0)

Then we obtain as necessary conditions for extrema:

(A.7)

fz+_¢x=0 f_+_¢_=0 L+_¢z=0 (A.8)

Despite their identical outward appearance, it is important to realize that their

origin is quite different. The last equation holds because we have selected A to

make it true, whereas the first two equations hold because of the independence of

the associated variables z and y.

The Lagrange Multiplier Rule arrives at the same result by introducing an

ausmented function f" such that

f'(x,y,z) = f(x,y,z) + ,X¢(x,y,z)

The necessary conditions for the extrema of a function subject to constraints can

then be formulated as:

f;=0, f/=0, f;=0

b) General Case:

The foregoing technique can be readily extended to the general case of n vari-

ables.
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Define the augmented function

rain

Necessary Conditions:

m

i=l

Of" Of

Ozk Ox_ i=1

Using Matrix Notation:

Define: ,_T = [AL,A_,..., Am]

,]acobian:

._--0 k= 1,2,...,n

g--
O¢210x_

O¢,/Oz2 . . .

c9¢,,10z_ . . .

O_2/Ox_

04_lOx,,,

of" of
Ox Ox

There are n + m unknowns:

- _ + JT,_ = 0 Rank J--m

There are n + m equations:

n necessary conditions

m constraint conditions
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The advantageof the Lagrange Multiplier Rule is the symmetry of the formula-

tion and avoiding the awkward elimination process of the variables.

Example 1:

Find the dimensions of a cylindrical can of maximum volume for a given surface
area:

a) Elimination Method:

V = ,-r r _ h S = 2zr(r _ + rh) = CONSTANT

dl" = _r(2rhdr + r_dh) = 0 (A.9)

dS = 2_'(2rdr + hdr + rdh) = 0 : 2_r[(2r + h)dr + rdh] = 0

Eliminate dh dh = -_dr
r

Inserting in Equation A.10: (2r + h)dr - 2hdr = 0 h = 2r

b) Lagrange Multiplier Rule:

(A.IO)

1"" = r2h+A(r _+rh)

Or
-2rh+A(2r+h)=O

Oh
- r 2 + Ar = O --. A = -r

Inserting A in Equation A.11:

(A.11)

(A.12)

2rh-r(2r+h)=0--,rh=2r 2

2O8



Example 2:

Find the dimensions of a rectangular box without a top, of maximum capacity,
whose surface is s -- 108 rn _.

f(x, y, z) = xyz

¢(x,y,z) =xy+2xz+2yz-108=0

f" = xyz + A(xy + 2xz + 2yz - 108)

Of"
Ox - yz + A(y + 2z) = 0 (A.13)

Of"
Oy

- xz + A(x +2z) = 0 (A.14)

of"
_Z

-- - xy+ _(2x + 2y) = 0 (A.15)

Multiply Equation A.13 by x, Equation A.14 by y and Equation A.15 by z and add:

3

x(zy + 2xz + 2yz) + -_xyz = 0

Using the constraint equation we find"

3 xyz

108A + -_xyz = 0 _ A - 72

Inserting the Lagrange Multiplier A in (A.13), (A.14), and (A.15)

X

1-_--_(y+2z)=0 _ x=y

1- 7-_(x+2z)=0

z 18

1-_(2_+2y)=0 --+ z- y
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z=6 y=6 z=3

Example 3:

Find the minimum distance of a point in a plane from the origin.

F(x,y, z) = x 2 + y_ + z 2 Distance (A.16)

G(z,y,z) = Az + By + Cz + D = 0

Augmented Function: F" = F + 2A0

Plane (A.17)

OF"
= 2x + 2._A = 0

Oz
(A.18)

OF"

Oy - 2y + 2"_B = O
(A.19)

Multiply Equations A.18:

OF*

OZ
- 2z + 2AC = 0 (A.20)

A.19 and A.20 by A, B, C respectively, and add:

Insert in Equations A.18,

)_ = -D/(A 2 + B _ + C _)

A.19and A.20:

(A.21)

X M : -AD/(A 2 + B 2 + C _)

YM = -BD/(A _ + B _ + C) (A.23)

zM = -CD/(.42 + B _ + C _)

For minimum distance insert Equations A.22, A.23and

(A.24)

A.24 in Equation A.16:

210



dM = D/k/(A_ + B _ + C 2)

Example 4:

Find the minimum and maximum distance from the origin to the ellipse.

¢(x, y) = 5z 2 + 6zy + 5y _ - 8 = 0

f(x,y) = x _ + y2

Lagrange Multiplier Rule:

2x + 2A(5x + 3y) = 0

2y + 2A(3x + 5y) = 0

For convenience replace A by -_ and divide by 2:

(5 - A)x + 3y = 0

3x + (5 - A)y = 0 Eigenvalue problem

Solve for A: Al = 2 )l_ = 8

Inserting in Equation A.29 or A.30 yields:

Yl = Xl and y_ = -x_ ,-- Insert in Equation A.25

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.a0)

From Equation A.26 one obtains then the minimum and maximum distances:

d,= vg_=+ s,,= v/l/2+ 1/2= 1
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