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The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for J SC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. Rodney L. Bown, Associate Professor of
Computer Systems Design at the University of Houston-Clear Lake. Dr. Bown also
served as RICIS research coordinator.

Funding has been provided by the Engineering Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and the
University of Houston-Clear Lake. The NASA technical monitor for this activity was
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Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.
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Review of Estelle and LOTOS with Respect

to Critical Computer Applications

1. Introduction

Man rated NASA space vehicles seem to represent a set of ultimate
critical computer applications. These applications require a
high degree of security, integrity, and safety. A variety of
formal and/or precise modelling techniques are becoming available
for the designer of critical systems. The design phase of the
software engineering life cycle includes the modification of non-
developmental components. This report provides a review of the
Estelle and LOTOS formal description languages that were
developed under the European Community ESPRIT program. The
project was called SEDOS for "Software Environment for the Design
of Open distributed Systems".

The project resulted in ISO standards for Estelle and LOTOS.
Tutorial documents and example are starting to appear in the
technical literature. The appendices to this report contain
details of the languages and a set of references. The languages
have been used to formally describe some of the Open System
Interconnect (OSI) protocols.

2. Potential Space Applications

The Space Station Freedom and the space shuttle rely upon high
integrity communications for their safe operations. Estelle and
LOTOS are maturing to a level that will support the design or
modification of communication systems. The set of reference
material is now quite extensive. A first step would be several
proof of principle projects that would provide training for the
designer and demonstrate the potential of the languages.

3. Lanquage Comparison

Table 1 compares Estelle and LOTOS [DIAZb89]. The most obvious
difference between the languages is in their representation.
Estelle is based on an extended Pascal syntax. LOTOS uses a more
formal mathematical notation. This represents the concrete
versus abstract approach of the two languages.

It is suggested that NASA use Estelle first on a well defined
protocol due to its more concrete approach. This could be
followed by reverse engineering (recapturing) the design in the
more abstract LOTOS.



4. Tool Support and Activities

The seems to be more tool support for Estelle. This is primarily
due to leveraging its extended Pascal syntax. The SEDOS project
developed prototypes of a syntax-driven editor, a compiler, a

simulator, and a verifier on Bull SPS7 or Sun-3 workstations.
These tools are integrated into an Estelle workstation.

LOTOS is supported by an early collection of prototype tools
called the LOTOS Implementation Workbench. This writer believes
that LOTOS has more long term benefit due to its more abstract
nature. Both languages are mature and supported by their
respective ISO standards.

5. Structure of the Appendices

This report consists of this top level discussion which is
supported by the appendices. The appendices provide review of
the mathematical background, examples with syntax, and table of
contents for the ISO standards.

6. Conclusion and Recommendations

A short review of the literature and discussions with colleagues
indicates that there is more activity in the LOTOS community.
Recent reports from the Microelectronic Computer Corporation
(MCC) cite activity with LOTOS but do not mention Estelle
[GERH91]. MCC is conducting a review of Formal Methods. One of
the sponsors is NASA/JSC code FT41. The reports are available to
the sponsors of the study. There seems to be a growing European
community of protocol designers using Estelle and LOTOS.

It is recommended that a set of computer system components be
hand modeled using both Estelle and LOTOS. These models would
complement current interface control documents.

It is recommended that prototype Estelle and LOTOS workstations
be established at the Research Computer Development Facility
(RCDF) at UHCL RICIS. These workstations would support the
implementation and demonstration of the hand modeled components
using Estelle and LOTOS. The recommended activities would be
conducted is cooperation with other formal model activities at
UHCL.



Design

Semantics

Communications

Designer's view of
a module

Data

General approach

Table 1.

Estelle

Hierarchies of
communicating modules

Extended state
machines

Infinite FIFO queues

Internal: Waits for
inputs and sends
outputs

Based on Pascal

More concrete

Comparing Estelle and LOTOS.

LOTOS

Hierarchies of
communicating
processes

Calculus-of-
communicating systems
agents

Multiple rendezvous
events

External: Describes a
temporal ordering of
events

Based on abstract
data types

More abstract
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APPENDIX A
A Review of Calculus of Communication Systems

Reference:
Milner, Robin. A Calculus of Communicating Systems.
Berlin: Springer-Verlag 1980.

This appendix provides a review of Milner's book in support of a
UHCL RICIS Technical Report on LOTOS. This report was submitted
to NASA Johnson Space Center in April 1991. Milner presents a
calculus of concurrent systems within a 171 page 1980 book that
is part of Springer-Verlag's Lecture Notes in Computer Science.
The presentation is partly informal, and aimed at practice; which
is unfolded through the medium of examples. These examples
illustrate the expressive power of the calculus and the
techniques for verifying properties of a system.

This author introduces an algebraic method the supports the
formal semantics of LOTOS (Language for Temporal Ordering
Specifications). LOTOS is an International Standard (ISO 8807)
developed as part of the ESPRIT SEDOS (Software Environment for
the Design of Open Systems). A companion to LOTOS is Estelle.
Estelle and LOTOS have been developed to describe services and
protocols for distributed architectures. :

The author's goal is provide an underlying theory whose basis is
a small well-knit collection of ideas and which justifies the
manipulations of the calculus. The calculus is founded on two
central ideas. The first is observation. The aim is to describe
a concurrent system fully enough to determine exactly what
behavior will be seen or experienced by an external observer.

Two systems are indistinguishable if one cannot tell them apart
without pulling them apart. The author provides a formal
definition of observation equivalence in Chapter 7 and
investigates its properties.

Every interesting concurrent system is built from independent
agents which communicate. The second central idea of the
calculus is synchronized communication. Communication between
two component agents is regarded as an indivisible action of the
composite system, and the heart of the algebra of systems is
concurrent composition, a binary operation which composes two
independent agents, allowing them to communicate.

In 1980 related theories of concurrency include work by C. A.
Petri; Net Theory by Genrich, Lautenbach, and Thiagarajan; MODULA
by N. Wirth; Distributed Processing by P. Brinch Hansen; and
Communicating Sequential Processing by C. A. R. Hoare.

In Chapter 1 Milner provides a discussion of Experimenting on
non-deterministic machines. The term Experimenting upon
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acceptors is introduced. An acceptor is a black box, whose
behavior you want to investigate by asking it to accept symbols
one at a time. These are called atomic experiments. The
concepts of observable and unobservable (hidden) events is
introduced. The foundation equivalence based on observable
events is being developed at this point of the presentation
material.

The author unfolds the state transition graph to represent
Behavior as a tree. The following definitions are introduced at
this point with the author's notation.

Definition: A label is a member of a given (fixed) set A
Definition: A sort is a subset of A
Definition: A Rigid Synchronization Tree (RST) of sort L is a

rooted unordered, finitely branching tree of whose arcs is
labelled by a member of L.

The symbol 7 is used to represent unobservable actions.

Definition: A Synchronization Tree (ST) of sort L is a rooted,
unordered, finitely branching tree each of whose arcs is labelled
by a member of L u{7}.

Chapter 2 presents a discussion of Synchronization. The term
Mutual experimentation refers to the question of how should two
machines interact? Binary semaphores are used as a simple
example.

Chapter 3 presents a case study in synchronization, and proof
techniques. The example is a scheduling problem. The author
admits that these exercises are playing to some extent, but they
may have some significance for building asynchronous hardware
from components.

A section on Observation Equivalence provides a mathematical

definition for equivalent agents. Observation equivalence can be

described in general terms as follows. An s experiment means "p

can produce p' under s" The meaning of equivalent agents can be

stated in words as follows:

p and g are equivalent iff for every s

(i) For every result p' of an s-experiment on p, there is an
equivalent result q' of an s-experiment on q.

(ii) For every result ' of an s-experiment on g, there is an
equivalent result p' of a s-experiment on p.

The motivation for the definition is this: we imagine switching

p on, performing an experiment, and switching it off again. For

g to be equivalent, it must be possible to switch q on, do the



same experiment, and switch it off in a state in which p was
switched off (and the same, interchanging p and q).

An interesting Exercise is cited related to Deadlock.
Prove the if p is equivalent q then the following is true of

both or of neither, for a given set of experiments A, .. A,

)“n+l
"It is possible to do a A, ..A, experiment and reach a state

where a A,,, experiment is impossible."”

SPECIAL NOTE: This note is provided by Milner and elaborated by
this reviewer. One property of agents is not respected by
equivalence. It is possible for p and q to be equivalent even
though p possesses an infinite series of silent computations such
that p diverges while q does not. There is a note on page 99 in
section 7.1 This is also discussed in section 7.3. A software
engineer should observe that p could be the coded implementation
of the q specification. The proof of p's equivalence to q does
not prevent the divergence of p due to internal computations.
This is a property of unobservable malicious code (Trojan Horse,
viruses, etc) within the computer security domain.

Chapter 4 provides some Case studies in value-communication. The
behaviors (Synchronization Trees) may be built using six kinds of
operations, together with the all-important use of recursion.

The operations fall into two classes:
(1) Dynamic operations (Chapter 1)

Inaction NIL
Summation +
Action ueAu{r}

The dynamic operations build non-deterministic sequential
behaviors.
(2) Static operations (Chapter 2)

Composition

Restriction \a (@e A)

Relabelling [S]
The static operations establish a fixed linkage structure among
concurrently active behaviors.

The examples given were static combinations of sequential
behaviors, yielding systems with fixed linkage structure. But
dynamically -evolving structures can be gained by defining
recursive behaviors composition.

The previous calculus is pure synchronization. The calculus is
extended to pass values: accepting input pulses, and giving
output pulses.



Chapter 5 provides the syntax and semantics of CSS. CCS and
atomic actions are defined precisely. This chapter starts the
development of the central notion of observation equivalence.
Observation equivalence is developed in Chapter 7. From this a
stronger notion of observational congruence is developed.

Chapter 6 provides a presentation on Communication Trees (CTs) as
a model of CCS. This chapter is not essential to the technical
development. Its purpose is to assist understanding by giving
the natural generalization of STs to admit value passing.

Chapter 7 provides the development of Observation equivalence and
its properties. Equivalence is not congruence. On Page 99 the
following comment is made: Thus, whenever we have proved B is
equivalent to C (e.g. B may be a program and C its specification)
we cannot deduce the B has no infinite unseen action, even if C
has none. In one sense we can argue for our definition, since
infinite unseen action is - by our rules - unobservable! But the
problem is deeper; it is related to so-called fairness, which we
discuss briefly in section 11.3. In any case, there is a more
refined notion of equivalence which respects the presence of
infinite unseen action, with properties close to those we mention
for the present one.

This discussion relates to the common software engineering
problem of insuring consistency between specifications and
implementations.

Equivalence is not a congruence. A congruence relation is
stronger than equivalence. It is desired to know that if B and C
are equivalent, then in whatever context we replace B by C the
result of the replacement will be equivalent to the original -
which is only true for an equivalence relation which is a
congruence.

Milner then defines Observation congruence. Observation
congruence is the weakest congruence stronger than (smaller than)
equivalence. The author provides some theorems and a definition
of stability.

Definition: B is stable iff B cannot reach B' by an infinite set
of unobservable actions. '

Thus a stable behavior is one which cannot 'move' unless you
observe it. Stability is important in practice; one of the
reasons why the author's scheduler example worked, is that it
will always reach a stable state if it is deprived of external
communication for long enough.

The author introduced a guard g which is observable. Then one
can deduce from B is equivalent to C (for any B,C) that g.B is



equivalent to g.C and hence g.B is observation equivalent to g.C
since both are stable.

The Laws of Observation Congruence are provided in the author's
notation. Law (1) may be explained by saying that, under the
guard g, internal action on B rejects no other capabilities and
therefore has no effect. Laws (2) and (3) absorb the effects of
internal actions.

Chapter 8 provides some proofs about familiar data structures as
well as algorithms, which find natural expression in CCS. 1In
addition the author illustrates how the properties of observation
equivalence and congruence allow us to prove that systems work
properly. The topics are Registers and memories, chaining
operations, pushdowns, and queues.

Chapter 9 provides a translation of CCS for a rather simple
language. The syntax of commands is:
assignment
sequential composition
conditional
iteration
declaration
parallel composition
input
output
no action.

The parallel composition is the major new construct. For example
can the 'concurrent' assignments overlap in time? The author
discusses the semaphore and Hoare's "Toward a theory of parallel
programming." Hoare's idea is to allow the programmer to declare
arbitrary abstract resources. For example, the programmer may
associate a particular resource R with the output device, and
adopt the discipline that every OUTPUT command occurs within a
"WITH R ..." context. He can thus protect a sequence of OUTPUT
commands from interference. There is a possibility of deadly
embrace or deadlock, but a compile time check can prevent this.
The program must be such that any nesting of "WITH R ..."
commands with distinct R's must agree with the declaration
nesting of the R's. For our translation: "WITH R DO C" must not
contain "WITH R ..." for the same R.

Chapter 10 provides a precise a notion of Determinacy, and a
related concept Confluence. Strong cfluency is defined as:

10



The behavior program A is strongly confluent iff

When A is transformed to B under b (1)

and
A is transformed to C under c (2)

implies either b = c and B is equivalent to C

or

when B is transformed to D under c
and C is transformed to E under b
then D is equivalent to E

The case "B equivalent to C' represents intuitively that (1) and
(2) are essentially the "same action". The definition of
determinacy demands this for observable actions.

A is strongly determinate iff
A is transformed to B by observable action b
and
A is transformed to C by observable action b
implies B is equivalent to C

Chapter 11 provides a set of conclusions. The author has shown
how the calculus is based on a few and simple ideas and that it
allows us to describe succinctly and to manipulate a wide variety
of computing agents, that it offers rich and various proof
techniques, that it offers some concurrent programming concepts,
and that it allows the precise formulation of questions which
remain to be answered.

The question of fairness is presented and defined as:
If an agent persistently offers an experiment, and if an
observer persistently attempts it, then it will eventually
succeed. A model which reflects this is sometimes called
fair.

Is CCS fair? The author leaves the question open.

In summary the author's work has been concerned with the notion
of expressing behavior. Behavior is regarded as a congruence by
considering which expressions can be distinguished by
observation. The author summarizes his approach as an attempt to
calculate with behaviors without knowing what they are
explicitly; the calculations are justified by operational
meaning, and may help towards a better understanding - even an
explicit formulation - of a domain of behaviors.
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APPENDIX B
Estelle overview

An Estelle description is a hierarchy of communicating modules.

A module is defined by a couple: a header and a body. The header
defines a module's external visibility, including where
information will be received and sent. The body defines a
module's internal composition, which could include its behavior
(defined by a transition set), its structure (defined by a set of
parent and child modules), or both (defined by both transitions
and child modules).

Behavior. The basic behavior of a module is defined as an
extended sate machine that has machine states (called major
states), variables, and transitions between major states. A
major state and the values of its related variables define an
extended state.

An extended state machine reacts to external events that
correspond to information sent to and received by the module it
represents. A module receives information through interactions
processed at interaction points. Each interaction point has an
infinite FIFO queue associated with it.

Transitions are of two types: receiving and spontaneous. A
receiving transition is of the form:

from state_1 to state_2
priority non_negative_expression
when IP-name.interaction_name
provided predicate
begin ... set of Pascal Estelle statements
including when needed the emission of
interactions by the statements
output IP name.interaction_name[parameters] ...
end

In this example, the transition is enabled when the machine is in
state_1, the predicate is true, and interaction_name is at the
head of the IP name's FIFO queue. If this transition is in the
set of those enabled and has the highest priority, then it is
selected to be in the set of the ready-to-fire transitions. One
of these transitions is non-deterministically chosen to be fired.
When it is fired, the begin-end block is first atomically
executed and the control state is passed to state_ 2.

Interactions may be sent successively to different interaction
points during the execution of the begin-end block.

12



A spontaneous transition is of the form:

from state_1 to state_2

priority non negatlve expression
delay (min_value, max_value)
provided predicate

begin ...same block as before ...
end

Spontaneous transitions include a delay clause. To be enabled,
the machine must first be in the major state state_1l and the
predicate must be true. When this happens, a virtual clock is
started and the transition is enabled between the times min_value
and max value, if the predicate remains true and if the machine
remains in the same state. Selection and firing are done similar
to a receiving transition.

After describing a module, you must give it an initial extended
state. You do this with the initialize clause, which lets you
assign parameter values and the initial major state. You also
declare a type and instantiate the module. The actual
instantiation is written as:

init module var with header_name [list of actual parameters].

Of course a module can be instantiated and released dynamically,
by executing the appropriate instructions in a begin-end
transition block.

After instantiation, a module potentially can fire a transition.
The first transition will be the initialize transition. If more
than one transition can be fired, a transition is selected non-

deterministically.

Structure. A module definition can contain transitions and/or
can be divided into other modules. These parent and children
modules are interconnected with one of two primitives: connect
and attach. How this is done depends on whether the modules
belong to the same hierarchy level.

Case 1. In the first case, if two modules, child_module_ varl and
child module_var2, belong to the same hierarchy level, they are
bound together by the father module with the statement

connect child_module_varl.child_IPl
to child module_var2.child_IP2.

which relates two interaction points, child IP1 of the former
module and child_IP2 of the latter. This means that an
interaction sent to the child module_varl's child_IP1 interaction
point will be received in the FIFO queue associated with

child module var2's interaction point, child_IP2.

13



For example, suppose an array of user modules (User[i]) each has
an interaction point (U). You can interconnect these modules
with a set of entities (E[i]), each of which has a high
interaction point (H) and a low interaction point (L). These
interconnection entities can themselves be interconnected with a
service (Ser) that has an array of interaction points (N[i]), for
all values of i. You would accomplish all this with the
statement

connect User{i].U to E[{i].H;
connect E[i].L to Ser.N[1i]

case 2. 1In the second case, if two modules belong to adjacent
hierarchy levels, they are interconnected by the father module
with the statement

attach father IP1 to child_module_varl.child IP1.

This means that any interaction sent to the father's interaction
point (father_IPl1l) will be forwarded to the child's interaction
point (child_IPl). Once the modules are attached, the FIFO
corresponding to father IP1 will cease to exist and all
interactions with it are received in the FIFO corresponding to
child IP1.

An example nontrivial Estelle transition (which includes the use
of init and attach and uses some self-explanatory keywords:
trans, forone, suchthat, and otherwise) is

trans
from init_state to state_after CR
when User[k].connect_request
begin forone net:network suchthat net.NB_connection<=10
do begin
net.NB_connection:=NB_connection+1:
attach User(k] to net.H[NB_connection];
k:=k+1
end
otherwise begin
init new_net with network.body:
new_net.NB_connection:=1;
attach User{k] to new_net.H[1l]:;
k:=k+1
end
end

This transition fires when it receives a request for a new
network connection. The transition block says that if one
instantiated management module with less than the maximum
multiplexed connection (10) exists, the requested connection will

14



be attached to one of these modules, selected non-
deterministically. If no such modules exists, the requested
connection is handled by a new network-connection-handling module
that is instantiated and attached dynamically.

Of course, this simple example only illustrates Estelle's
description style.
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APPENDIX C

LOTOS Overview

Background

LOTOS is a formal description technique (FDT) that has been
developed for the specification of distributed systems, and in
particular to Open Systems Interconnection (0OSI) standards.
LOTOS and the companion FDT Estelle were developed under the
European Community ESPRIT program. The project was called SEDOS
for "Software Environment for the Design of Open distributed
Systems",

In the SEDOS project the development of LOTOS was mainly focused
on OSI Standards. In this line LOTOS has been used to make
complete descriptions of :

HDLC

IEEE LAN service

ISO Connection-less Internetting Protocol

ISO Network Service

ISO Transport Protocol

ISO Transport Service

ISO Session Protocol

ISO Session Service

ISO Presentation Protocol and

ISO Transaction Processing Service.

LOTOS has also been applied to other field of technology, in
particular to the development of Computer Integrated
Manufacturing architectures.

Introduction

The basic idea that LOTOS developed from was that systems can be
specified by defining the temporal relation among the
interactions that constitute the externally observable behavior
of a system. The description technique is based on process
algebraic methods. Such methods were first introduced by
Milner's work on Calculus of Communicating Systems (CCS)
[MILN80O]. Milner's book is reviewed in Appendix A.

LOTOS also includes a second component, which deals with the
description of data structures and value expressions. This part
of LOTOS is based on the formal theory of abstract data types,
and in particular the approach of equational specification of
data types, with an initial algebra semantics. Most concepts in
this component were inspired by the abstract data type technique
ACT ONE although there are a number of differences [EHRI85].

16



Example

In LOTOS a distributed concurrent system is seen as a process,
possibly consisting of several sub-processes. A sub-process is a
process itself, so that in general a LOTOS specification
describes a system via a hierarchy of process definitions. A process is an
entity able to perform internal, unobservable actions, and to interact
with other processes, which form its environment. Complex
interactions between processes are built up out of elementary
units of synchronization which are called events, or (atomic)
interactions, or simply actions. The following representation is taken

from [VANES89]

in2 in3

mid
inl out

Max3

Spatial representation of process Max3

External observable actions are inl, in2, in3, and out. mid is
an example of an internal unobservable action. The next page
provides the LOTOS syntax for process Max3.
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#1->| process Max3[inl,in2,in3,out] :=

42->|hide mid in
(Max2[inl,in2,mid}|[mid]||Max2[mid, in3,0ut])

<-#3

where

#1->| process Max2[a,b,c] :=

a;b;c; stop |<-#2

#2->| [

b;a;c; stop |[<-#2

endproc

endproc

#1 <process definition>
#2 <behavior expression>
#3 <process instantiation>

Definition of process Max3

18




An Additional Example

The following example is taken from [DIAZ89] which uses a more
textual presentation to represent interaction with the system's
environment. Some of the previous discussion is repeated to keep
the example in perspective. LOTOS considers both the system and
the environment to be processes. An interaction, which is called
an event in LOTOS, is defined as an activity common to two or
more processes in which the values of types (called sorts in Act
One) are established.

A LOTOS process is defined in terms of possible event-offer
sequences. An event offer is represented by an indication of the
place at which the event may occur, the event gate (G), and the
value or values the process is willing to establish in the event
(<Es> and <Ee>). Given this, the system and environment
processes are described as follows:

process system [G]:= process environment [G]:=

G<Es>: G<Es>:
endproc endproc

After an event, all the processes involved in it refer to the
same value or values that were established. Because LOTOS is for
the design and specification of open distributed systems, it must
express these data values at a high abstraction level so they are
implementation-independent. Hence LOTOS uses abstract data
types.

Abstract Data Types

In LOTOS, abstract data types include the syntax that describe
its values or its signature (which includes sorts and operations
definitions) and a list of equations that describe its semantics:

type Extended_Natural Numbers is

sorts nat

opns O:->nat
succ:nat->nat
_+_:nat,nat->nat

egns
forall x,y:nat
ofsort nat
X+0=X;
x+succ(y)=succ(x+y):

endtype ("Extended Natural Numbers')
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Abstract data types are a powerful specification tool themselves,
put they lack facilities to define interaction properly. Where
interaction is not involved, LOTOS offers a choice in the
specification style: you can either represent some property with
a data structure, storing control information in the process's
parameters, or represent this information directly in the process
definition.

Events and Value Passing

In LOTOS, events are atomic instances of interaction: All
processes involved in an event have the same view of it. This
means either that an event has taken place for all processes
defined to be involved (which also means that they all refer to
the same data value or values established), or the event has not
taken place at all. Events must be implemented reliably.

LOTOS abandons the traditional I/0 concepts. Instead, it uses a
much more powerful interaction concept. 1In an interaction, the
processes involved can negotiate -- based on constraints -- about
which data value or values to establish.

This not only provides a uniform way to express events, but, more
importantly, it gives it provides an extremely powerful
specification capability. By imposing different constraints,

three kinds of interactions can be defined: value checking, value
passing, and value generation.

In value checking, the example processes (system and environment)
are synchronized. An example of value checking, using the
notation from the examples above and the usual shorthand for
natural numbers (0=0, succ(0)=1, succ(l)=2, and so on) is

process system[G]:= process environment([G]:=

G!3 G!3

endproc endproc

System and environment synchronize on the value 3 (of the type
extended natural numbers).

In value passing, once the event has occurred the value is passed
from one process to another, as in

process system[G}:= process environment([G]:=
G!3 G?y:nat;

endproc endproc
The value 3 has been passed. This models conventional I/O.
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In value generation, the event has occurred and the x and y
variables have the same value, which is chosen non-
deterministically from the data domain in which the system and
environment constraints overlap, as in

process system[G]:= process environment{G]:=

G?x:nat(even(x)]: G?y:nat[y5];

endproc endproc

Where x and y will have the same value (non-deterministically
chosen between one of the values 0,2, and 4).

Architecture Support

After a description is provided for the event offers, they can be
sequenced with temporal ordering operators to compose a process
description. In LOTOS, an event ordering is defined with a
behavior expression. How these behavior expressions are formed
reveals LOTOS's algebraic nature: the many behavior expressions
are combined into a new one with language operators that
correspond to important architectural concepts. For example, if
Bl and B2 are behavior expressions then B1[]B2 defines the choice
between Bl and B2. Table A lists other important operators.

Rules are another important algebraic element in LOTOS. Rules
let the designer to transform one behavior expression into
another that expresses the same observable behavior according to
an equivalence relationship. For example, B{]B can be replaced
by B for any behavior expression B.

In LOTOS, process abstraction is comparable to facilities in
imperative languages for defining functions and procedures. For
example, if an adder process abstraction is defined with formal
event gates inputl, input2, and output, this expression

process Adder([inputl, input2, output]:noexit:=
(input 1 ?x:nat}||input2?y:nat)
;output! (x+y)
;Adder([inputl, input2,output]

endproc

defines the generic behavior of an adder that accepts two values
of sort nat in any order and outputs their sum.

Finally, a LOTOS specification begins with

specifigation System{G1, G2,...](PlasortPl,PZ:sortPZ,...):noexit
type( global data types definition ) endtype
behavior ("definition of behavior expression®)
endproc
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Summary

Table A provides the definition of some of the LOTOS operators.

As in structured programming, LOTOS's abstraction facilities and
algebraic nature let you produce well-structured specifications.
Its operators provide a modular structure, and its hierarchy of

process abstractions lets you distribute complexity over several
abstraction layers.
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Table A
Some LOTOS8 operators.

Name Form Meaning
inaction stop deadlock
action a;B event a precedes the
process B
choice B1[]B2 choice between process Bl
and B2
parallel B1]||B2 interleaving full
synchronization
B1| | B2
B1|[A]|B2 synchronization on events
in A()
sequence B1>>B2 process Bl precedes
process B2
disrupt B1[>B2 process B2 disrupts
process Bl
hiding hide A in B hide the events in A(")

from the environment of B

() A is a set of gate identifiers.
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