Review of Estelle and LOTOS
with Respect to Critical
- Computer Applications

o =t 7
f— . l’,! -';,{_; ',: ': ;"’:i;f :
- U Y ST UGTELES AN NPl-o0 21
\"“ Pe TR Rl) ! v e _ - .
Lot il 7078 T OT T w LTICAL CuMPUTIR]
_ CioaTh a0 Ulodnton nive) s o LHLL T unelas
-’?j/r_,e_} on2n N
V
- Rodney L. Bown
University of Houston-Clear Lake
May, 1991
- Cooperative Agreement NCC 9-16
Research Activity No. SE.26
- NASA Johnson Space Center
Enginsering Directorate
Flight Data Systems Division
) .ﬁﬁ

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

- T-E-C-H-N-1-C-A-L R-E-P-O-R-T

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for J SC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

Review of Estelle and LOTOS
with Respect to Critical
Computer Applications

Rodney L. Bown
University of Houston-Clear Lake

May, 1991

Cooperative Agreement NCC 9-16
Research Activity No. SE.26

NASA Jcohnson Space Center

Engineering Directorate
Flight Data Systems Division

© &

A= ————

Research Institute for Computing and Information Systerns
University of Houston - Clear Lake

T-E-C-H-N-I-C-A-L R-E-P-O-R-T

¢ i
; H .

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. Rodney L. Bown, Associate Professor of
Computer Systems Design at the University of Houston-Clear Lake. Dr. Bown also
served as RICIS research coordinator.

Funding has been provided by the Engineering Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and the
University of Houston-Clear Lake. The NASA technical monitor for this activity was
William C. Young, of the Project Integration Office, Flight Data Systems Division,
Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

RICIS TECHNICAL REPORT

Review of Estelle and LOTOS with Respect

to Critical Computer Applications

Principal Investigator

Rodney L. Bown

in partial fulfillment of
RICIS Task SE.26

May 1991

-

TABLE OF CONTENTS

1. Introduction
2. Potential Space Applications .
3. Language Comparison
4. Tool Support and Activities .
5. Structure of the Appendices .
6. Conclusion and Recommendations

Table 1. Comparing Estelle and LOTOS

References and Partial Bibliography

APPENDIX A. Review of Calculus of Communication

APPENDIX B. Estelle overview . . .

APPENDIX C. LOTOS Overview

.

APPENDIX D. International Standard ISO 9074 (Estelle) .

APPENDIX E. International Standard ISO 8807 (LOTOS) . .

12

16

24

30

Review of Estelle and LOTOS with Respect

to Critical Computer Applications

1. Introduction

Man rated NASA space vehicles seem to represent a set of ultimate
critical computer applications. These applications require a
high degree of security, integrity, and safety. A variety of
formal and/or precise modelling techniques are becoming available
for the designer of critical systems. The design phase of the
software engineering life cycle includes the modification of non-
developmental components. This report provides a review of the
Estelle and LOTOS formal description languages that were
developed under the European Community ESPRIT program. The
project was called SEDOS for "Software Environment for the Design
of Open distributed Systems".

The project resulted in ISO standards for Estelle and LOTOS.
Tutorial documents and example are starting to appear in the
technical literature. The appendices to this report contain
details of the languages and a set of references. The languages
have been used to formally describe some of the Open System
Interconnect (OSI) protocols.

2. Potential Space Applications

The Space Station Freedom and the space shuttle rely upon high
integrity communications for their safe operations. Estelle and
LOTOS are maturing to a level that will support the design or
modification of communication systems. The set of reference
material is now quite extensive. A first step would be several
proof of principle projects that would provide training for the
designer and demonstrate the potential of the languages.

3. Lanquage Comparison

Table 1 compares Estelle and LOTOS [DIAZb89]. The most obvious
difference between the languages is in their representation.
Estelle is based on an extended Pascal syntax. LOTOS uses a more
formal mathematical notation. This represents the concrete
versus abstract approach of the two languages.

It is suggested that NASA use Estelle first on a well defined
protocol due to its more concrete approach. This could be
followed by reverse engineering (recapturing) the design in the
more abstract LOTOS.

4. Tool Support and Activities

The seems to be more tool support for Estelle. This is primarily
due to leveraging its extended Pascal syntax. The SEDOS project
developed prototypes of a syntax-driven editor, a compiler, a

simulator, and a verifier on Bull SPS7 or Sun-3 workstations.
These tools are integrated into an Estelle workstation.

LOTOS is supported by an early collection of prototype tools
called the LOTOS Implementation Workbench. This writer believes
that LOTOS has more long term benefit due to its more abstract
nature. Both languages are mature and supported by their
respective ISO standards.

5. Structure of the Appendices

This report consists of this top level discussion which is
supported by the appendices. The appendices provide review of
the mathematical background, examples with syntax, and table of
contents for the ISO standards.

6. Conclusion and Recommendations

A short review of the literature and discussions with colleagues
indicates that there is more activity in the LOTOS community.
Recent reports from the Microelectronic Computer Corporation
(MCC) cite activity with LOTOS but do not mention Estelle
[GERH91]. MCC is conducting a review of Formal Methods. One of
the sponsors is NASA/JSC code FT41. The reports are available to
the sponsors of the study. There seems to be a growing European
community of protocol designers using Estelle and LOTOS.

It is recommended that a set of computer system components be
hand modeled using both Estelle and LOTOS. These models would
complement current interface control documents.

It is recommended that prototype Estelle and LOTOS workstations
be established at the Research Computer Development Facility
(RCDF) at UHCL RICIS. These workstations would support the
implementation and demonstration of the hand modeled components
using Estelle and LOTOS. The recommended activities would be
conducted is cooperation with other formal model activities at
UHCL.

Design

Semantics

Communications

Designer's view of
a module

Data

General approach

Table 1.

Estelle

Hierarchies of
communicating modules

Extended state
machines

Infinite FIFO queues

Internal: Waits for
inputs and sends
outputs

Based on Pascal

More concrete

Comparing Estelle and LOTOS.

LOTOS

Hierarchies of
communicating
processes

Calculus-of-
communicating systems
agents

Multiple rendezvous
events

External: Describes a
temporal ordering of
events

Based on abstract
data types

More abstract

References and Partial Bibliography

[BOLO90]

Bolognesi, Tommaso. "On the Soundness of Graphical
Representations of Interconnected Processes in LOTOS."
Proceedings of the ACM SIGSOFT International Workshop on Formal

Methods in Software Development. Napa, California 9-11 May 1990.
Published as Software Engineering Notes 15.4 Sept 1990. 1-7.

[CHUN90]

Chung, Anthony and Deepinder Sidhu. "Experience with an Estelle
Development System." Proceedings of the ACM SIGSOFT
International Workshop on Formal Methods in Software Development.

Napa, California 9-11 May 1990. Published as Software Engineering
Notes 15.4 Sept 1990. 8-17.

[DIAZa89]

Diaz, Michel, et.al. The Formal Description Technique Estelle,
Results of the ESPRIT/SEDOS Project. Amsterdam: Elsevier
Science Publishers. 1989.

[DIAZb89]

Diaz, Michel and Chris Vissers. "SEDOS: Designing Open
Distributed Systems." IEEE Software November 1989. 24-33.
[EHRI8S5)

Ehrig, H. and B. Mahr. Fundamentals of Algebraic Specification
1. Berlin: Springer-Verlag. 1985.

[ESTEL89]
International Standard ISO 9074. Information processing
systems - Open Systems Interconnection - Estelle: A formal

description technique based on an extended state transition
model. 1989.

[GERH91]
Gerhart, Susan. "Formal Methods at MCC: Transition Study, Spec
Tra & Future." NASA/JSC Formal Methods Briefing. April 3, 1991.
[LOGR90])

Logrippo, Luigi, Tim Melanchuk, and Robert J. Du Wors. "The
Algebraic Specification Language LOTOS: An Industrial
Experience." Proceedings of the ACM SIGSOFT International
Workshop on Formal Methods in Software Development. Napa,
California 9-11 May 1990. Published as Software Engineering Notes
15.4 Sept 1990. 59-66.

[LOTOS89]
International Standard ISO 8807. Information processing
systems - Open Systems Interconnection - LOTOS - A formal

description technigque based on the temporal ordering of
observational behaviour. 1989.

[MILN8O]
Milner, Robin. A Calculus of Communicating Systems. Berlin:

Springer-Verlag Lecture Notes in Computer Sciences 92. 1980.

[VANE89]
vVan Eijk, Peter H. J., Chris A. Vissers, and Michel Diaz. The

Formal Description Technique LOTOS, Results of the ESPRIT/SEDOS
Project. Amsterdam: Elsevier Science Publishers B. V. 1989.

[VUON88]
Voung, Son T., Allen C. Lau, and R. Issac Chan. "Semiautomatic
Implementation of Protocols Using an Estelle-C Compiler." IEEE

Transactions on Software Engineering 14.3 14.3 384-393, Mar
1988.

APPENDIX A
A Review of Calculus of Communication Systems

Reference:
Milner, Robin. A Calculus of Communicating Systems.
Berlin: Springer-Verlag 1980.

This appendix provides a review of Milner's book in support of a
UHCL RICIS Technical Report on LOTOS. This report was submitted
to NASA Johnson Space Center in April 1991. Milner presents a
calculus of concurrent systems within a 171 page 1980 book that
is part of Springer-Verlag's Lecture Notes in Computer Science.
The presentation is partly informal, and aimed at practice; which
is unfolded through the medium of examples. These examples
illustrate the expressive power of the calculus and the
techniques for verifying properties of a system.

This author introduces an algebraic method the supports the
formal semantics of LOTOS (Language for Temporal Ordering
Specifications). LOTOS is an International Standard (ISO 8807)
developed as part of the ESPRIT SEDOS (Software Environment for
the Design of Open Systems). A companion to LOTOS is Estelle.
Estelle and LOTOS have been developed to describe services and
protocols for distributed architectures. :

The author's goal is provide an underlying theory whose basis is
a small well-knit collection of ideas and which justifies the
manipulations of the calculus. The calculus is founded on two
central ideas. The first is observation. The aim is to describe
a concurrent system fully enough to determine exactly what
behavior will be seen or experienced by an external observer.

Two systems are indistinguishable if one cannot tell them apart
without pulling them apart. The author provides a formal
definition of observation equivalence in Chapter 7 and
investigates its properties.

Every interesting concurrent system is built from independent
agents which communicate. The second central idea of the
calculus is synchronized communication. Communication between
two component agents is regarded as an indivisible action of the
composite system, and the heart of the algebra of systems is
concurrent composition, a binary operation which composes two
independent agents, allowing them to communicate.

In 1980 related theories of concurrency include work by C. A.
Petri; Net Theory by Genrich, Lautenbach, and Thiagarajan; MODULA
by N. Wirth; Distributed Processing by P. Brinch Hansen; and
Communicating Sequential Processing by C. A. R. Hoare.

In Chapter 1 Milner provides a discussion of Experimenting on
non-deterministic machines. The term Experimenting upon

6

acceptors is introduced. An acceptor is a black box, whose
behavior you want to investigate by asking it to accept symbols
one at a time. These are called atomic experiments. The
concepts of observable and unobservable (hidden) events is
introduced. The foundation equivalence based on observable
events is being developed at this point of the presentation
material.

The author unfolds the state transition graph to represent
Behavior as a tree. The following definitions are introduced at
this point with the author's notation.

Definition: A label is a member of a given (fixed) set A
Definition: A sort is a subset of A
Definition: A Rigid Synchronization Tree (RST) of sort L is a

rooted unordered, finitely branching tree of whose arcs is
labelled by a member of L.

The symbol 7 is used to represent unobservable actions.

Definition: A Synchronization Tree (ST) of sort L is a rooted,
unordered, finitely branching tree each of whose arcs is labelled
by a member of L u{7}.

Chapter 2 presents a discussion of Synchronization. The term
Mutual experimentation refers to the question of how should two
machines interact? Binary semaphores are used as a simple
example.

Chapter 3 presents a case study in synchronization, and proof
techniques. The example is a scheduling problem. The author
admits that these exercises are playing to some extent, but they
may have some significance for building asynchronous hardware
from components.

A section on Observation Equivalence provides a mathematical

definition for equivalent agents. Observation equivalence can be

described in general terms as follows. An s experiment means "p

can produce p' under s" The meaning of equivalent agents can be

stated in words as follows:

p and g are equivalent iff for every s

(i) For every result p' of an s-experiment on p, there is an
equivalent result q' of an s-experiment on q.

(ii) For every result ' of an s-experiment on g, there is an
equivalent result p' of a s-experiment on p.

The motivation for the definition is this: we imagine switching

p on, performing an experiment, and switching it off again. For

g to be equivalent, it must be possible to switch q on, do the

same experiment, and switch it off in a state in which p was
switched off (and the same, interchanging p and q).

An interesting Exercise is cited related to Deadlock.
Prove the if p is equivalent q then the following is true of

both or of neither, for a given set of experiments A, .. A,

)“n+l
"It is possible to do a A, ..A, experiment and reach a state

where a A,,, experiment is impossible."”

SPECIAL NOTE: This note is provided by Milner and elaborated by
this reviewer. One property of agents is not respected by
equivalence. It is possible for p and q to be equivalent even
though p possesses an infinite series of silent computations such
that p diverges while q does not. There is a note on page 99 in
section 7.1 This is also discussed in section 7.3. A software
engineer should observe that p could be the coded implementation
of the q specification. The proof of p's equivalence to q does
not prevent the divergence of p due to internal computations.
This is a property of unobservable malicious code (Trojan Horse,
viruses, etc) within the computer security domain.

Chapter 4 provides some Case studies in value-communication. The
behaviors (Synchronization Trees) may be built using six kinds of
operations, together with the all-important use of recursion.

The operations fall into two classes:
(1) Dynamic operations (Chapter 1)

Inaction NIL
Summation +
Action ueAu{r}

The dynamic operations build non-deterministic sequential
behaviors.
(2) Static operations (Chapter 2)

Composition

Restriction \a (@e A)

Relabelling [S]
The static operations establish a fixed linkage structure among
concurrently active behaviors.

The examples given were static combinations of sequential
behaviors, yielding systems with fixed linkage structure. But
dynamically -evolving structures can be gained by defining
recursive behaviors composition.

The previous calculus is pure synchronization. The calculus is
extended to pass values: accepting input pulses, and giving
output pulses.

Chapter 5 provides the syntax and semantics of CSS. CCS and
atomic actions are defined precisely. This chapter starts the
development of the central notion of observation equivalence.
Observation equivalence is developed in Chapter 7. From this a
stronger notion of observational congruence is developed.

Chapter 6 provides a presentation on Communication Trees (CTs) as
a model of CCS. This chapter is not essential to the technical
development. Its purpose is to assist understanding by giving
the natural generalization of STs to admit value passing.

Chapter 7 provides the development of Observation equivalence and
its properties. Equivalence is not congruence. On Page 99 the
following comment is made: Thus, whenever we have proved B is
equivalent to C (e.g. B may be a program and C its specification)
we cannot deduce the B has no infinite unseen action, even if C
has none. In one sense we can argue for our definition, since
infinite unseen action is - by our rules - unobservable! But the
problem is deeper; it is related to so-called fairness, which we
discuss briefly in section 11.3. In any case, there is a more
refined notion of equivalence which respects the presence of
infinite unseen action, with properties close to those we mention
for the present one.

This discussion relates to the common software engineering
problem of insuring consistency between specifications and
implementations.

Equivalence is not a congruence. A congruence relation is
stronger than equivalence. It is desired to know that if B and C
are equivalent, then in whatever context we replace B by C the
result of the replacement will be equivalent to the original -
which is only true for an equivalence relation which is a
congruence.

Milner then defines Observation congruence. Observation
congruence is the weakest congruence stronger than (smaller than)
equivalence. The author provides some theorems and a definition
of stability.

Definition: B is stable iff B cannot reach B' by an infinite set
of unobservable actions. '

Thus a stable behavior is one which cannot 'move' unless you
observe it. Stability is important in practice; one of the
reasons why the author's scheduler example worked, is that it
will always reach a stable state if it is deprived of external
communication for long enough.

The author introduced a guard g which is observable. Then one
can deduce from B is equivalent to C (for any B,C) that g.B is

equivalent to g.C and hence g.B is observation equivalent to g.C
since both are stable.

The Laws of Observation Congruence are provided in the author's
notation. Law (1) may be explained by saying that, under the
guard g, internal action on B rejects no other capabilities and
therefore has no effect. Laws (2) and (3) absorb the effects of
internal actions.

Chapter 8 provides some proofs about familiar data structures as
well as algorithms, which find natural expression in CCS. 1In
addition the author illustrates how the properties of observation
equivalence and congruence allow us to prove that systems work
properly. The topics are Registers and memories, chaining
operations, pushdowns, and queues.

Chapter 9 provides a translation of CCS for a rather simple
language. The syntax of commands is:
assignment
sequential composition
conditional
iteration
declaration
parallel composition
input
output
no action.

The parallel composition is the major new construct. For example
can the 'concurrent' assignments overlap in time? The author
discusses the semaphore and Hoare's "Toward a theory of parallel
programming." Hoare's idea is to allow the programmer to declare
arbitrary abstract resources. For example, the programmer may
associate a particular resource R with the output device, and
adopt the discipline that every OUTPUT command occurs within a
"WITH R ..." context. He can thus protect a sequence of OUTPUT
commands from interference. There is a possibility of deadly
embrace or deadlock, but a compile time check can prevent this.
The program must be such that any nesting of "WITH R ..."
commands with distinct R's must agree with the declaration
nesting of the R's. For our translation: "WITH R DO C" must not
contain "WITH R ..." for the same R.

Chapter 10 provides a precise a notion of Determinacy, and a
related concept Confluence. Strong cfluency is defined as:

10

The behavior program A is strongly confluent iff

When A is transformed to B under b (1)

and
A is transformed to C under c (2)

implies either b = c and B is equivalent to C

or

when B is transformed to D under c
and C is transformed to E under b
then D is equivalent to E

The case "B equivalent to C' represents intuitively that (1) and
(2) are essentially the "same action". The definition of
determinacy demands this for observable actions.

A is strongly determinate iff
A is transformed to B by observable action b
and
A is transformed to C by observable action b
implies B is equivalent to C

Chapter 11 provides a set of conclusions. The author has shown
how the calculus is based on a few and simple ideas and that it
allows us to describe succinctly and to manipulate a wide variety
of computing agents, that it offers rich and various proof
techniques, that it offers some concurrent programming concepts,
and that it allows the precise formulation of questions which
remain to be answered.

The question of fairness is presented and defined as:
If an agent persistently offers an experiment, and if an
observer persistently attempts it, then it will eventually
succeed. A model which reflects this is sometimes called
fair.

Is CCS fair? The author leaves the question open.

In summary the author's work has been concerned with the notion
of expressing behavior. Behavior is regarded as a congruence by
considering which expressions can be distinguished by
observation. The author summarizes his approach as an attempt to
calculate with behaviors without knowing what they are
explicitly; the calculations are justified by operational
meaning, and may help towards a better understanding - even an
explicit formulation - of a domain of behaviors.

11

APPENDIX B
Estelle overview

An Estelle description is a hierarchy of communicating modules.

A module is defined by a couple: a header and a body. The header
defines a module's external visibility, including where
information will be received and sent. The body defines a
module's internal composition, which could include its behavior
(defined by a transition set), its structure (defined by a set of
parent and child modules), or both (defined by both transitions
and child modules).

Behavior. The basic behavior of a module is defined as an
extended sate machine that has machine states (called major
states), variables, and transitions between major states. A
major state and the values of its related variables define an
extended state.

An extended state machine reacts to external events that
correspond to information sent to and received by the module it
represents. A module receives information through interactions
processed at interaction points. Each interaction point has an
infinite FIFO queue associated with it.

Transitions are of two types: receiving and spontaneous. A
receiving transition is of the form:

from state_1 to state_2
priority non_negative_expression
when IP-name.interaction_name
provided predicate
begin ... set of Pascal Estelle statements
including when needed the emission of
interactions by the statements
output IP name.interaction_name[parameters] ...
end

In this example, the transition is enabled when the machine is in
state_1, the predicate is true, and interaction_name is at the
head of the IP name's FIFO queue. If this transition is in the
set of those enabled and has the highest priority, then it is
selected to be in the set of the ready-to-fire transitions. One
of these transitions is non-deterministically chosen to be fired.
When it is fired, the begin-end block is first atomically
executed and the control state is passed to state_ 2.

Interactions may be sent successively to different interaction
points during the execution of the begin-end block.

12

A spontaneous transition is of the form:

from state_1 to state_2

priority non negatlve expression
delay (min_value, max_value)
provided predicate

begin ...same block as before ...
end

Spontaneous transitions include a delay clause. To be enabled,
the machine must first be in the major state state_1l and the
predicate must be true. When this happens, a virtual clock is
started and the transition is enabled between the times min_value
and max value, if the predicate remains true and if the machine
remains in the same state. Selection and firing are done similar
to a receiving transition.

After describing a module, you must give it an initial extended
state. You do this with the initialize clause, which lets you
assign parameter values and the initial major state. You also
declare a type and instantiate the module. The actual
instantiation is written as:

init module var with header_name [list of actual parameters].

Of course a module can be instantiated and released dynamically,
by executing the appropriate instructions in a begin-end
transition block.

After instantiation, a module potentially can fire a transition.
The first transition will be the initialize transition. If more
than one transition can be fired, a transition is selected non-

deterministically.

Structure. A module definition can contain transitions and/or
can be divided into other modules. These parent and children
modules are interconnected with one of two primitives: connect
and attach. How this is done depends on whether the modules
belong to the same hierarchy level.

Case 1. In the first case, if two modules, child_module_ varl and
child module_var2, belong to the same hierarchy level, they are
bound together by the father module with the statement

connect child_module_varl.child_IPl
to child module_var2.child_IP2.

which relates two interaction points, child IP1 of the former
module and child_IP2 of the latter. This means that an
interaction sent to the child module_varl's child_IP1 interaction
point will be received in the FIFO queue associated with

child module var2's interaction point, child_IP2.

13

For example, suppose an array of user modules (User[i]) each has
an interaction point (U). You can interconnect these modules
with a set of entities (E[i]), each of which has a high
interaction point (H) and a low interaction point (L). These
interconnection entities can themselves be interconnected with a
service (Ser) that has an array of interaction points (N[i]), for
all values of i. You would accomplish all this with the
statement

connect User{i].U to E[{i].H;
connect E[i].L to Ser.N[1i]

case 2. 1In the second case, if two modules belong to adjacent
hierarchy levels, they are interconnected by the father module
with the statement

attach father IP1 to child_module_varl.child IP1.

This means that any interaction sent to the father's interaction
point (father_IPl1l) will be forwarded to the child's interaction
point (child_IPl). Once the modules are attached, the FIFO
corresponding to father IP1 will cease to exist and all
interactions with it are received in the FIFO corresponding to
child IP1.

An example nontrivial Estelle transition (which includes the use
of init and attach and uses some self-explanatory keywords:
trans, forone, suchthat, and otherwise) is

trans
from init_state to state_after CR
when User[k].connect_request
begin forone net:network suchthat net.NB_connection<=10
do begin
net.NB_connection:=NB_connection+1:
attach User(k] to net.H[NB_connection];
k:=k+1
end
otherwise begin
init new_net with network.body:
new_net.NB_connection:=1;
attach User{k] to new_net.H[1l]:;
k:=k+1
end
end

This transition fires when it receives a request for a new
network connection. The transition block says that if one
instantiated management module with less than the maximum
multiplexed connection (10) exists, the requested connection will

14

be attached to one of these modules, selected non-
deterministically. If no such modules exists, the requested
connection is handled by a new network-connection-handling module
that is instantiated and attached dynamically.

Of course, this simple example only illustrates Estelle's
description style.

15

APPENDIX C

LOTOS Overview

Background

LOTOS is a formal description technique (FDT) that has been
developed for the specification of distributed systems, and in
particular to Open Systems Interconnection (0OSI) standards.
LOTOS and the companion FDT Estelle were developed under the
European Community ESPRIT program. The project was called SEDOS
for "Software Environment for the Design of Open distributed
Systems",

In the SEDOS project the development of LOTOS was mainly focused
on OSI Standards. In this line LOTOS has been used to make
complete descriptions of :

HDLC

IEEE LAN service

ISO Connection-less Internetting Protocol

ISO Network Service

ISO Transport Protocol

ISO Transport Service

ISO Session Protocol

ISO Session Service

ISO Presentation Protocol and

ISO Transaction Processing Service.

LOTOS has also been applied to other field of technology, in
particular to the development of Computer Integrated
Manufacturing architectures.

Introduction

The basic idea that LOTOS developed from was that systems can be
specified by defining the temporal relation among the
interactions that constitute the externally observable behavior
of a system. The description technique is based on process
algebraic methods. Such methods were first introduced by
Milner's work on Calculus of Communicating Systems (CCS)
[MILN80O]. Milner's book is reviewed in Appendix A.

LOTOS also includes a second component, which deals with the
description of data structures and value expressions. This part
of LOTOS is based on the formal theory of abstract data types,
and in particular the approach of equational specification of
data types, with an initial algebra semantics. Most concepts in
this component were inspired by the abstract data type technique
ACT ONE although there are a number of differences [EHRI85].

16

Example

In LOTOS a distributed concurrent system is seen as a process,
possibly consisting of several sub-processes. A sub-process is a
process itself, so that in general a LOTOS specification
describes a system via a hierarchy of process definitions. A process is an
entity able to perform internal, unobservable actions, and to interact
with other processes, which form its environment. Complex
interactions between processes are built up out of elementary
units of synchronization which are called events, or (atomic)
interactions, or simply actions. The following representation is taken

from [VANES89]

in2 in3

mid
inl out

Max3

Spatial representation of process Max3

External observable actions are inl, in2, in3, and out. mid is
an example of an internal unobservable action. The next page
provides the LOTOS syntax for process Max3.

17

#1->| process Max3[inl,in2,in3,out] :=

42->|hide mid in
(Max2[inl,in2,mid}|[mid]||Max2[mid, in3,0ut])

<-#3

where

#1->| process Max2[a,b,c] :=

a;b;c; stop |<-#2

#2->| [

b;a;c; stop |[<-#2

endproc

endproc

#1 <process definition>
#2 <behavior expression>
#3 <process instantiation>

Definition of process Max3

18

An Additional Example

The following example is taken from [DIAZ89] which uses a more
textual presentation to represent interaction with the system's
environment. Some of the previous discussion is repeated to keep
the example in perspective. LOTOS considers both the system and
the environment to be processes. An interaction, which is called
an event in LOTOS, is defined as an activity common to two or
more processes in which the values of types (called sorts in Act
One) are established.

A LOTOS process is defined in terms of possible event-offer
sequences. An event offer is represented by an indication of the
place at which the event may occur, the event gate (G), and the
value or values the process is willing to establish in the event
(<Es> and <Ee>). Given this, the system and environment
processes are described as follows:

process system [G]:= process environment [G]:=

G<Es>: G<Es>:
endproc endproc

After an event, all the processes involved in it refer to the
same value or values that were established. Because LOTOS is for
the design and specification of open distributed systems, it must
express these data values at a high abstraction level so they are
implementation-independent. Hence LOTOS uses abstract data
types.

Abstract Data Types

In LOTOS, abstract data types include the syntax that describe
its values or its signature (which includes sorts and operations
definitions) and a list of equations that describe its semantics:

type Extended_Natural Numbers is

sorts nat

opns O:->nat
succ:nat->nat
+:nat,nat->nat

egns
forall x,y:nat
ofsort nat
X+0=X;
x+succ(y)=succ(x+y):

endtype ("Extended Natural Numbers')

19

Abstract data types are a powerful specification tool themselves,
put they lack facilities to define interaction properly. Where
interaction is not involved, LOTOS offers a choice in the
specification style: you can either represent some property with
a data structure, storing control information in the process's
parameters, or represent this information directly in the process
definition.

Events and Value Passing

In LOTOS, events are atomic instances of interaction: All
processes involved in an event have the same view of it. This
means either that an event has taken place for all processes
defined to be involved (which also means that they all refer to
the same data value or values established), or the event has not
taken place at all. Events must be implemented reliably.

LOTOS abandons the traditional I/0 concepts. Instead, it uses a
much more powerful interaction concept. 1In an interaction, the
processes involved can negotiate -- based on constraints -- about
which data value or values to establish.

This not only provides a uniform way to express events, but, more
importantly, it gives it provides an extremely powerful
specification capability. By imposing different constraints,

three kinds of interactions can be defined: value checking, value
passing, and value generation.

In value checking, the example processes (system and environment)
are synchronized. An example of value checking, using the
notation from the examples above and the usual shorthand for
natural numbers (0=0, succ(0)=1, succ(l)=2, and so on) is

process system[G]:= process environment([G]:=

G!3 G!3

endproc endproc

System and environment synchronize on the value 3 (of the type
extended natural numbers).

In value passing, once the event has occurred the value is passed
from one process to another, as in

process system[G}:= process environment([G]:=
G!3 G?y:nat;

endproc endproc
The value 3 has been passed. This models conventional I/O.

20

In value generation, the event has occurred and the x and y
variables have the same value, which is chosen non-
deterministically from the data domain in which the system and
environment constraints overlap, as in

process system[G]:= process environment{G]:=

G?x:nat(even(x)]: G?y:nat[y5];

endproc endproc

Where x and y will have the same value (non-deterministically
chosen between one of the values 0,2, and 4).

Architecture Support

After a description is provided for the event offers, they can be
sequenced with temporal ordering operators to compose a process
description. In LOTOS, an event ordering is defined with a
behavior expression. How these behavior expressions are formed
reveals LOTOS's algebraic nature: the many behavior expressions
are combined into a new one with language operators that
correspond to important architectural concepts. For example, if
Bl and B2 are behavior expressions then B1[]B2 defines the choice
between Bl and B2. Table A lists other important operators.

Rules are another important algebraic element in LOTOS. Rules
let the designer to transform one behavior expression into
another that expresses the same observable behavior according to
an equivalence relationship. For example, B{]B can be replaced
by B for any behavior expression B.

In LOTOS, process abstraction is comparable to facilities in
imperative languages for defining functions and procedures. For
example, if an adder process abstraction is defined with formal
event gates inputl, input2, and output, this expression

process Adder([inputl, input2, output]:noexit:=
(input 1 ?x:nat}||input2?y:nat)
;output! (x+y)
;Adder([inputl, input2,output]

endproc

defines the generic behavior of an adder that accepts two values
of sort nat in any order and outputs their sum.

Finally, a LOTOS specification begins with

specifigation System{G1, G2,...](PlasortPl,PZ:sortPZ,...):noexit
type(global data types definition) endtype
behavior ("definition of behavior expression®)
endproc

21

Summary

Table A provides the definition of some of the LOTOS operators.

As in structured programming, LOTOS's abstraction facilities and
algebraic nature let you produce well-structured specifications.
Its operators provide a modular structure, and its hierarchy of

process abstractions lets you distribute complexity over several
abstraction layers.

References

[DIAZ89]
Diaz, Michel and Chris Vissers. "SEDOS: Designing Open
Distributed Systems." IEEE Software November 1989. 24-33.

[EHRI85]
Ehrig, H. and Mahr, B. Fundamentals of Algebraic Specification
1. Berlin: Springer-Verlag. 1985.

[LOTOS89]
International Standard ISO 8807 (LOTOS)

[MILN8O)
R. Milner, "cCS, a Calculus of Communicating Systems," Lecture
Notes in Computer Sciences 92, Springer-Verlag, Berlin, 1980.

[VANES9]
Van Eijk, Peter H. J.; Vissers, Chris A.; and Diag, Michel. The

Formal Description Technique LOTOS, Results of the ESPRIT/SEDOS
Project. Amsterdam: Elsevier Science Publishers B. V. 1989.

22

Table A
Some LOTOS8 operators.

Name Form Meaning
inaction stop deadlock
action a;B event a precedes the
process B
choice B1[]B2 choice between process Bl
and B2
parallel B1]||B2 interleaving full
synchronization
B1| | B2
B1|[A]|B2 synchronization on events
in A()
sequence B1>>B2 process Bl precedes
process B2
disrupt B1[>B2 process B2 disrupts
process Bl
hiding hide A in B hide the events in A(")

from the environment of B

() A is a set of gate identifiers.

23

APPENDIX D

International sStandard IS0 9074
(Bstelle)

Title Sheet

Table of Contents

24

INTERNATIONAL ISO
STANDARD 9074

First edition
1389-07-15

Information processing systems — Open
Systems Interconnection —
Estelle: A formal description technique based on

an extendad state transition model

Systémes de trarternent de l'information — Interconnexion de systémes ouverts —
Estelle: Techrque de description formeile basée sur un modéle de transition d’édtat
drendu

Reference number
1ISO 9074 - 1989 (E)

25

1SO 9074: 1989 (E)

Foreword

ISQ (the international Organization tor Stangardization! s a worldwide federation of
national standards bodies (1ISO member bodies). The work of preparing International
Stancards is normaily carned out througn ISO technical committees. Each member
body interested in a subject for which a techrical committee has been established has
the rnight to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with 1SO, aiso take part in the work. 1SO
collaborates closely with the International Electrotechnical Commission (IEC) on ail
matters of electrotechnical standardization.

Oraft International Standards adopted by the techmical committees are circulated to
the member bodies for approvai before their acceptance as international Standards by
the ISO Council. They are approved in accordance with ISO procedures requiring at
least 75 % approval by the member bodies voung.

International Standard 1SO 9074 was prepared by Technical Committee 1SO/TC 97,
Information processing systems.

Users should nots that all International Standards undergo revision from time to time
and that any reference made herein to any other International Standard implies its
latest edition, unless otherwise stated.

2 1SO 1989
All ights reserved. No pant of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying and microfim, without permission in
wrniting from the publisher.

International Organization for Standardizstion

Case postale 56 ¢ CH-1211 Gendve 20 ¢ Switzeriana
Printed in Switzertand

: ORIG:NAL PAGE IS
ol OF POOR QUALITY

CONTENTS

0 Inroduction
0.1 General

0.2 Formal Description Techniques .
0.3 Requirement for standard FDTs .
0.4 Objectives 10 be satisfied by an FDT

! Scope and field of application .

References .

Conformance

5.1 Module instance
5.2 Nesting of modules and paralielism

2
3 Definitions .
4
5

5.2.1
5.22

Nesting of modules .
Parallelism and nondeterminism

5.3 Specification behavior .

53
532
533
534
535

Local situations

Global instantaneous description of a module instance

Transitions selected for execution .
Gilobal behavior ..
Concept of ume in the model

6 Definidonal Conventions
6.1 Syntax definitions
6.2 Semantic notations .

7 Language elements
7.1 Introduction . .

7.L1
712

Character set .
Estelle scope rules

1.2 Structure of a specification

721
722
723
1.24

Synax .
Constraints . .
[nterpretation rules
Informal semantics

73 Declaration pan

731
732
733
734
135
136
137
738
739
73.10
73.11

Synax . .

Constraints .

Informal semantics

Channel definition

Interaction points .

Module header . .

Module body definition

Internal interaction poinis . .
Module vanabile declaration pan
State definition part
State set definition part

74 References o Estelle objects .

14.1
742

OR'GINAL PAGE 18
OF FCOR QUALITY

Module vanabie reference
Interaction point reference

27

1SO 9074: 1989 (E)

Page

L N A

EO\O\huwwww

foZZ=z

SRV

o0 ov oo

U
— O

t

-

4

t

=]

t

~
L)

V]
~

2t 0t
(S S I |

'~

o Ly bl L2t (W F D B
= OO VO W

[
("]

Mt

[SO 9074: 1989 (E)

7.4.3 Expored vanable reference .
7.5 Transition declarauons .
7.5.1 General inroduction .
7.5.2 Transiuon
753 To clause
7.54 From clause
7.5.5 Provided clause
756 When clause
7.5.7 Delay clause
7.5.8 Priority clause .
759 Anyclause . .
7.5.10 Initalization part .
7.6 Estelle statements
7.6.1 Module msunce creanon

7.6.2 Reiease and termination of module instances

7.6.3 Connect operation
764 Anach operation
7.6.5 Disconnect operation .
7.6.6 Detach operation .
76.7 Summary of binding opem:ons
768 Output statement .
769 Al statement
7.6.10 Forone statement .
7.6.11 Exist expression
7.7 Reserved words . .
771 Syntax e e e e e
772 Constaimts
Extensions and restrictions to SO Pascal
8.1 Sunplcchangesto?ascal syntax
8.1.1 Synax .
8.2 Extensions . .
821 megemandrulnumben .o
822 Funcdons and procedures . . .
823 Implementation defined elements .
8.24 Directiveso
8.2.5 Pmepmcedumsandfuncuons .
826 Expression
8.2.7 Assignment operation . .
831 Emos
832 File manipulation . .
833 uhe!dedrammdgowsmmu .
834 Program statement .o

8.35 Expressions and functions . . .
Semantics of Estelle constructs . . ., . .
9.1 Genenal scheme of definitions

9.2 Pmnmmmdammuouoimeclum .

9.3 External context environment and channel definiion

9.3.1 Interactions .
932 Channel definition mtctpteuuon
94 Module instances . .
94.1 ldennﬁacaegonesotamodulemme

9.4.2 Internal extensions of context environment and recursive munpuom

28

-

.

38&8%

15O 9074 1989 (F)

943 Interaction points of a module instance and related notons 70
944 Locaoons, vanable allocations and vanable visibility within a moduie
instance . . . e e e e e e e e e e 72
945 Suawsof a modulc Instance e e 75
9.5 Transivons of amodule nstance L. L . . L. L L. 77
951 Transiyon s@atement 77
9.52 Transition wnterpretation 79
9.5.3 Linked interaction porus . . . e e e e e e 80
9.54 Extension of the Tansition mwrprctauon over guLs e e e e e 81
9.6 lnierpretation of specific Estelle constructs L, 82
9.6.1 Exiernal references . . . e e e e e e e e e e e e e 82
9.6.2 Semanucs of transiton clauses e e e e e e e e s e 84
9.6.3 Enabled transitions and initial states . . e e e e e e e 86
964 Delay values and time interpretation in Emlle e e e e e e e 86
9.6.5 Fireable gansivons and offered transigons 89
9.6.6 Semanucs of primiuve Estelle statements %0

LN 1 L 0

A Collected synax . . O (0 1
A.1 Collected syntax fmm clausc 7 O 14 4
A2 Collected syntax fromclause 8 106
A3 Collected syntax fromannexC 107

B User guidelines . . e R 1)
B.1 User daa managemem Lo e 8 (¢
B.1.1 Purpose of user data managcmcm R A 1)

B2 Principles ... 16

B.1.3 Encode procedure T 1)

B.1.4 Decode procedure T e

B.AS Gudelines ... 17

B.2 Alternating bit example 122

CPascalsubsatmedbyEstelle 129

Indices L L L L s, 171

2}

APPENDIX E

International Standard ISO 8807
(LOTO8)

Title Sheet

Table of Contents

30

INTERNATIONAL IS
STANDARD 88(

First agi
1989-0;

Information processing systems — Open
Systems Interconnection — LOTOS — A formal
description technique based on the temporal
ordering of observational behaviour

Systémes de traiternent de I'information — Interconnexion de systémes ouverts -
LOTOS — Technigue de description formelle basée sur I'orgamsation temparelle
comportement observationnel

Reference num’
1ISO 8807 : 1989

1SO 8807 : 1988 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of
national standards bodies (ISO member bodies). The work of preparing International
Standards is normally carried out through ISO technical commurtees. Each member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with 1SO, aiso take part in the work. 1ISO
colaborates closely with the International Electrotechnical Commussion {IEC) on all
martters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to
the member Sodies for approval before their acceptance as International Standards by
the 1SO Council. They are approved in accordance with ISO procedures requiring at
least 75 % approval by the member bodies voting.

International Standard 1ISO 8807 was prepared by Technical Committee 1SO/TC 97,
Information processing systems.

Users should note that all International Standards undergo revision from time to time
and that any reference made herein to any other International Standard implies its
latest edition, uniess otherwise stated.

Annex A forms an integral part of this International Standard. Annexes 8, C, Dand E
are for information only.

T Internationsi Organization for Standardization, 1989

Printed in Swizerdand

3R

1SO 8807 : 1989 (E)

CONTENTS
Page
Introduction 1
01 General. 1
02 FDTs. 1
0.3 Therequirementforstandard FDTs 1
0.4 The objectivesto be satistiedbyan FOT 1
05 Theoriginot LOTOS 2
0.6 The structure of this International Standard 2
Scopeandfieidofapplication 3
References 3
3 Conformance 3
4 Basic mathematical conceptsand notation 5
41 General. 5
42 Sels. 5
43 Lisls. . ..o 6
44 Stings. 6
45 Relationsandfunctions 6
46 Backus-NaurForm. 7
4.7 Syntaxdirecteddefintions 8
4.8 ODerivationsystems 10
5 Model e 13
5. nfroduction 13
5.2 Many-sontedalgebras 13
5.3 Labelledtransiionsystems 13
5.4 Structured labelled transtionsystems 14
6 FomalSymtax 15
6.1 Lexicaltokens 15
601 General. 15
6.1.2 Basiccharacters. 15
633 Reservedsymbols. 15
6.139 Wordsymbols. 15
6.1.3.2 Specialsymbols. 17
614 Identifiers. 17
635 Requirement. 18
616 Comments. 18
6.1.7 Tokemseparators. 18
6.1.8 Requirement. 18
6.2 Specificationtext 18
6.21 specification. 18
6.2.2 definion-block 18
6.23 datatypedefinitions. 19
6.24 pexpressions. 19
6.2.5 sons,operationsandequations. 19
6.26 process-definitions 20
6.2.7 behaviour-expressions 20
6.27.1 generaistructure, 21
6.2.7.2 local-definition-expressions 21
6.2.7.3 SUM-eXPIESSIONS 21

33

=%

1SO 8807 : 1989 (E)

6.2.7.4 par-expressions 21
6.2.7.5 hiding-expressions 21
6.2.7.6 enable-expressions 21
6.2.7.7 disable-expressions 22
6.2.7.8 parallel-expressions L 22
6.2.79 choica-exprassions 22
6.2.7.10 guarded-expressions 22
6.2.7.11 action-prefix-expressions 22
6.2.7.12 AOMIC-@XPreSSIONS o vttt e e e 22
6.2.8 value-expressions L. e e e 23
6.29 declarations L. e e e e 23
6.2.10 special-identifiers e . 23
T SemaNntiCS e e e e e e e e e e e e e e 25
7.1 INrodUCHIoON e e e e e e e e e e e e e e 25
7.1.1 Structure of the static semantics definition 25
7.1.2 Structure of the dynamic semantics defintion 25
7.1.3 Structureofclause 7 e e e e 26
7.2 General structures anddefinitions L L. 26
7.2.1 Namesandrelatedfunctions 26
7.2.2 Algebraic specifications, terms, andequations 27
7221 SigNAUIG e e e e e e e e e e e e e e 27
7.222 TOMS . . . e e e e e e e e e e e e e e e e e 27
7.223 EqQuations e e e e 27
7.2.24 Conditionalequations e 28
7.2.2.5 Algebraicspecifications 28
7.2.3 Canonicaltspecifications oL 28
7.23.1 Introduction e e e e e e e e e e 28
7.2.3.2 Behaviour-expression-structureo 28
7.2.3.3 Behaviourspecilication 29
7.2.3.4 Canonical LOTOS specification 29
7.3 Staticsemantics e e e e e e 29
7.3.1 0ntroduction e e e e e e e 29
7.3.2 General structures anddefinitions L. 30
7321 SCOPO. . . . e e e e e e e e e e e 30
7.3.22 Extendedidentifiers. 30
7.3.23 Theinterpretation of extended identdiers N
7.3.24 Functionality i i i e e e e e e e e e 32
7.3.2.85 Data-presentation.o e e 32
7.3.2.6 Parameterized data-presentation. 32
7.3.2.7 Non-overiapping data-presentation 33
7.328 Signaturemorphism i e 33
7.3.29 Datapresemationmorphism 33
73210 EnVironmems e e e e e e e e e e e e 34
7.3.211 Standardlibrary L. L e e 34
7.3.2.12 Completedata-presentation 35
7.3.2.13 Validdependenceorder. 35
7.3.3 Reconstructionofterms ittt 35
7331 Value-aloms ot e e e e e e e e e e e 36
7.3.3.2 Value-atom, position, and argument-list
ofavalue-exprassSiono e e 36
7333 Operation-assignment o onn... 37
7.3.3.4 Consistentoperation-assignment 37
7335 Explictsortindication. 0. 37
7.3.3.6 Soundoperation-assignment. 37
7.3.3.7 Generatedoperation-assignments 37

3¢

1SO 8807 : 1989 (E)

7.3.3.8 Scopes of an operation-assignment 38
7.3.3.9 Minimal operation-assignment e . .38
7.3.3.10 Reconstructionotaterm. 38
7.3.4 Flatteningof a LOTOS specitication 39
7.34.1 Introduction. L 39
7.3.4.2 Flattening of specification. . ., 39
7.3.43 Fiattening of data-type-definitions 40
7.3.4.4 Flattening of process-definitions 48
7.3.4.5 Flattening of behaviour-expressions 49
7.34.6 Flatteningofidentifiers 55
7.3.5 Functional structure of the flattening function 56
7.4 Semanticsofdata-presentations. 60
741 General. 60
7.4.2 The derivation system of a data-presentation 60
7421 Axiomsgeneratedbyequations. 60
7.4.2.2 Inference rules generatedbyequations 60
7.42.3 Generatedderivationsystem 60
7.43 Congruence relation induced by a data-presentation 61
744 Quotienttermalgebra. 61
7.5 Semantics of a canonical LOTOS specification. 61
T5.3 General. 61
7.5.2 Auxiiarydefinitions, 61
7524 Notation. 61
7.5.2.2 Extended behaviour-expressions 62
7.5.23 The simplification of sum- and par-expressions 62
7.524 Substitution. L. 63
7.5.3 Transitionderivationsystem 63
7530 Generalframework 63
7.53.2 Axiomsoftransition. 63
7.533 Interencerulesoftransition. 64
7.5.4 Structured labelled transition system
of abehaviour-expression 69
7.5.4.1 Derivatives of a behaviour-expression . _ 69
7.5.4.2 Structured labelled transitionsystem 69
7.5.5 Formal interpretation of a canonical LOTOS specification. 70
ANNEXES
A Standardlibraryofdatatypes. 7
A INroduction . . . L. L L L 71
A2 Symaxofthedatatypelibrary 71
A3 Semanticsofthedatatypelibeary 71
A4 TheBooleandatatype. 72
A.5 Parameterizeddatatypedefinitions. 73
A5 Elememt. 73
AS5.2 Set. 74
AS3 SUINgS. e 76
AS31 Nomemptystring. _ 76
AS32 SUiNg. 78
A.6 Unparameterized datatypedelinitions 79
AB.1 Naturalnumber. 79
A.6.1.1 Abstract definition of naturalnumbers 79
A.6.1.2 Representationsof naturalnumbers 80
A.6.1.2.1 Hexadecimalrepresentation 80
A6.1.2.2 Decimalrepresentation 82
3S

1SO 8807 : 1389 (E)

vl

A6.1.23 Octalrepresentation 83
A.6.1.2.4 Binaryrepresentation B 84
AB.2 Octet. e 85
AB.3 Octetstring. e 85
8 Equivalencerelations L 87
B.1 Introduclion 87
B.2 Weakbisimulation L 88
B.21 Definitions e, 88
B.2.2 Laws for weak bisimulationcongruence 89
B.2.3 Laws for weak bisimulationequivalence 92
B.23.1 Notation. 92
B.23.2 Generallaw. 92
B.23.3 Rulestor=. 92
B.3 Testingequivalence e 92
B.3.1 Definitions e e e 92
B.3.2 Lawsfortestingcongruence 383
B.3.3 Lawsfortestingequivalence 33
B.4 ReferenCeS. oo it e e 94
C AtutonialonLOTOS e 95
C.1 Thespecificationof processes 95
C.2 Behaviour expressions inbasicLOTOS 96
C.2.1 Abasicprocess:inaction. 96
C.2.2 TwobasiCoperators v it it e 36
C.221 Actionprefix. 96
C222 Choica. e e 96
C.2.2.3 Processesastrees i e 97
C23 ReCcursion. it e 38
C24 Parallelism. 99
C.2.4.1 Parallelismof independentprocesses 99
C.2.4.2 Parallelismof dependentprocesses 39
C.243 Thegeneralparalieloperator. 100
C.244 Thehidingoperator. 101
C.24.5 Reasonsforthe hidingoperator 102
C.2.5 Nondeterminismin LOTOS 103
C.2.6 Sequential compositionofprocesses, ... 104
C.27 Disruption of ProcessSes i i e e e e 105
C.2.8 AnexampleinbasiclLOTOS. 106
C3 LOTOSdatatlypeso i ittt e e e 107
C3.1 Introduction. e e 107
Ca11. BasiCConCeptS. ittt e e 107
C.3.1.2. Abstract Data Types versus Concrete DataTypes 107
C3.2 Conceptsof LOTOSdatatypes. 108
C.321 Thesignature. i 108
C322 Termsandequations. 108
C3.23 Thecombination. 110
C.3.24 Theparameterization.uuueion.. 111
C3.258 Renaming. v v ittt e e e e 113
C.3.268 Libraryinvocation. 114
C.4 LOTOSwithstructuredinteractions 114
C4.1 Structuredeventoffers. 114
C.4.11 Valuedeclarations 114
C.4.1.2 Variabledeclarations 115
C4.13 Typesofinteraction.uuu... 115
C4.2 Conditionalconstructs. o i it e e 116
C.4.2.1 SelectionpredicaleS e e 116

3¢

SO 8807 : 1989 (E)

C.4.2.2 Guardedexpressions. 117
C.4.3 Process abstraction with parameterization D 117
C.4.4 Generalized choice and paraliel expressions 118
C.4.5 Generalized sequential composition 119

C.4.5.1 Successful termination and functionality 120

C.4.5.2 Functionality of LOTOS behaviour expressions, . 120

C.453 Process abstraction and unctionality 121

C.4.5.4 Sequential composition with value passsing. 122

C.4.5.5 Localvariable definition~ 7 122
C.4.6 AnotherexampleinLOTOS 7777 122

C5 LOTOSsymaxtable.~~~ 123
DO Symaxdiagrams. 127
E Informal basis for abstract datatypes 135

E Introduction. 136

E1V Represemations. 136
E2 Signatures. 138
E3 Termsandexpressions. 139
E3.1 Generationotterms. 139
E4 Valuesandalgebras. 140
E4.1 Equationsandquatification. 141

E.5 Algebraic specification and semantics 141

E.6 Representationofvalves. 142
TABLES
1 Metalanguagesymbols 8
2 Actualizationfunction 43
3 Functional structure of flattening function 56
4 Interactiontypes 116
S LOTOSsymaxtable 123
FIGURES
v Stuctureotclause7 26
2 Twointeractingprocesses_ 95
3 Fuliduplexbutfer 96
4 Compositionoftwobutferprocesses | 100
S Hding .. 101

vii

37

