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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program ofresea_h
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users fi'om
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.
Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Rodney L. Bown, Associate Professor of

Computer Systems Design at the University of Houston-Clear Lake. Dr. Bown also
served as RICIS research coordinator.

Funding has been provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA technical monitor for this activity was

William C. Young, of the Project Integration Office, Flight Data Systems Division,

Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.
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Review of Estelle and LOTOS with Respect

to Critical Computer Applications

i=. Introduction

Man rated NASA space vehicles seem to represent a set of ultimate

critical computer applications. These applications require a

high degree of security, integrity, and safety. A variety of

formal and/or precise modelling techniques are becoming available

for the designer of critical systems. The design phase of the

software engineering life cycle includes the modification of non-

developmental components. This report provides a review of the

Estelle and LOTOS formal description languages that were

developed under the European Community ESPRIT program. The

project was called SEDOS for "Software Environment for the Design

of Open distributed Systems".

The project resulted in ISO standards for Estelle and LOTOS.

Tutorial documents and example are starting to appear in the

technical literature. The appendices to this report contain

details of the languages and a set of references. The languages

have been used to formally describe some of the Open System

Interconnect (OSI) protocols.

2__. Potential Space Applications

The Space Station Freedom and the space shuttle rely upon high

integrity communications for their safe operations. Estelle and

LOTOS are maturing to a level that will support the design or

modification of communication systems. The set of reference

material is now quite extensive. A first step would be several

proof of principle projects that would provide training for the

designer and demonstrate the potential of the languages.

3. Language Comparison

Table 1 compares Estelle and LOTOS [DIAZb89]. The most obvious

difference between the languages is in their representation.

Estelle is based on an extended Pascal syntax. LOTOS uses a more

formal mathematical notation. This represents the concrete

versus abstract approach of the two languages.

It is suggested that NASA use Estelle first on a well defined

protocol due to its more concrete approach. This could be

followed by reverse engineering (recapturing) the design in the
more abstract LOTOS.
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. Tool Support and Activities

The seems to be more tool support for Estelle. This is primarily

due to leveraging its extended Pascal syntax. The SEDOS project

developed prototypes of a syntax-driven editor, a compiler, a

simulator, and a verifier on Bull SPS7 or Sun-3 workstations.

These tools are integrated into an Estelle workstation.

LOTOS is supported by an early collection of prototype tools

called the LOTOS Implementation Workbench. This writer believes

that LOTOS has more long term benefit due to its more abstract

nature. Both languages are mature and supported by their

respective ISO standards.

5. Structure of the Appendices

This report consists of this top level discussion which is

supported by the appendices. The appendices provide review of

the mathematical background, examples with syntax, and table of

contents for the ISO standards.

6. Conclusion and Recommendations

A short review of the literature and discussions with colleagues

indicates that there is more activity in the LOTOS community.

Recent reports from the Microelectronic Computer Corporation

(MCC) cite activity with LOTOS but do not mention Estelle

[GERH91]. MCC is conducting a review of Formal Methods. One of

the sponsors is NASA/JSC code FT41. The reports are available to

the sponsors of the study. There seems to be a growing European

community of protocol designers using Estelle and LOTOS.

It is recommended that a set of computer system components be

hand modeled using both Estelle and LOTOS. These models would

complement current interface control documents.

It is recommended that prototype Estelle and LOTOS workstations

be established at the Research Computer Development Facility

(RCDF) at UHCL RICIS. These workstations would support the

implementation and demonstration of the hand modeled components

using Estelle and LOTOS. The recommended activities would be

conducted is cooperation with other formal model activities at

UHCL.



Table i.

Comparing Estelle and LOTOS.

Design

Semantics

Communications

Designer's view of
a module

Data

General approach

Estelle

Hierarchies of

communicating modules

Extended state

machines

Infinite FIFO queues

Internal: Waits for

inputs and sends

outputs

Based on Pascal

More concrete

LOTOS

Hierarchies of

communicating

processes

Calculus-of-

communicating systems

agents

Multiple rendezvous

events

External: Describes a

temporal ordering of

events

Based on abstract

data types

More abstract
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APPENDIX A

A Review of Calculus of Communication Systems

Reference:

Milner, Robin. A Calculus of Communicating Systems.

Berlin: Springer-Verlag 1980.

This appendix provides a review of Milner's book in support of a

UHCL RICIS Technical Report on LOTOS. This report was submitted

to NASA Johnson Space Center in April 1991. Milner presents a

calculus of concurrent systems within a 171 page 1980 book that

is part of Springer-Verlag's Lecture Notes in Computer Science.

The presentation is partly informal, and aimed at practice; which

is unfolded through the medium of examples. These examples

illustrate the expressive power of the calculus and the

techniques for verifying properties of a system.

This author introduces an algebraic method the supports the

formal semantics of LOTOS (Language for Temporal Ordering

Specifications). LOTOS is an International Standard (ISO 8807)

developed as part of the ESPRIT SEDOS (Software Environment for

the Design of Open Systems). A companion to LOTOS is Estelle.
Estelle and LOTOS have been developed to describe services and

protocols for distributed architectures.

The author's goal is provide an underlying theory whose basis is
a small well-knit collection of ideas and which justifies the

manipulations of the calculus. The calculus is founded on two
central ideas. The first is observation. The aim is to describe

a concurrent system fully enough to determine exactly what

behavior will be seen or experienced by an external observer.

Two systems are indistinguishable if one cannot tell them apart

without pulling them apart. The author provides a formal

definition of observation equivalence in Chapter 7 and

investigates its properties.

Every interesting concurrent system is built from independent

agents which communicate. The second central idea of the

calculus is synchronized communication. Communication between

two component agents is regarded as an indivisible action of the

composite system, and the heart of the algebra of systems is

concurrent composition, a binary operation which composes two

independent agents, allowing them to communicate.

In 1980 related theories of concurrency include work by C. A.

Petri; Net Theory by Genrich, Lautenbach, and Thiagarajan; MODULA

by N. Wirth; Distributed Processing by P. Brinch Hansen; and

Communicating Sequential Processing by C. A. R. Hoare.

In Chapter 1Milner provides a discussion of Experimentinq on
non-deterministic machines. The term Experimenting upon

6



acceptors is introduced. An acceptor is a black 5ox, whose

behavior you want to investigate by asking it to accept symbols

one at a time. These are called atomic experiments. The

concepts of observable and unobservable (hidden) events is

introduced. The foundation equivalence based on observable

events is being developed at this point of the presentation

material.

The author unfolds the state transition graph to represent

Behavior as a tree. The following definitions are introduced at

this point with the author's notation.

Definition: A label is a member of a given (fixed) set A

Definition: A sort is a subset of A

Definition: A _ Synchronization Tree (RST) of sort L is a

rooted unordered, finitely branching tree of whose arcs is

labelled by a member of L.

The symbol • is used to represent unobservable actions.

Definition: A Synchronization Tree (ST) of sort L is a rooted,

unordered, finitely branching tree each of whose arcs is labelled

by a member of L u {_}.

Chapter 2 presents a discussion of Synchronization. The term

Mutual experimentation refers to the question of how should two

machines interact? Binary semaphores are used as a simple

example.

Chapter 3 presents a case study in synchronization, and proof

techniques. The example is a scheduling problem. The author

admits that these exercises are playing to some extent, but they

may have some significance for building asynchronous hardware

from components.

A section on Observation Equivalence provides a mathematical

definition for equivalent agents. Observation equivalence can be

described in general terms as follows. An s experiment means "p

can produce p' under s" The meaning of equivalent agents can be

stated in words as follows:

p and q are equivalent iff for every s

(i) For every result p' of an s-experiment on p, there is an

equivalent result q' of an s-experiment on q.

(ii) For every result q' of an s-experiment on q, there is an

equivalent result p' of a s-experiment on p.

The motivation for the definition is this: we imagine switching

p on, performing an experiment, and switching it off again. For

q to be equivalent, it must be possible to switch q on, do the

7



same experiment, and switch it off in a state in Which p was
switched off (and the same, interchanging p and q).

An interesting Exercise is cited related to Deadlock.
Prove the if p is equivalent q then the following is true of
both or of neither, for a given set of experiments It,...In,

_n+L

"It is possible to do a I t ..In experiment and reach a state

where a An+ t experiment is impossible."

SPECIAL NOTE: This note is provided by Milner and elaborated by

this reviewer. One property of agents is not respected by

equivalence. It is possible for p and q to be equivalent even

though p possesses an infinite series of silent computations such

that p diverges while q does not. There is a note on page 99 in

section 7.1 This is also discussed in section 7.3. A software

engineer should observe that p could be the coded implementation

of the q specification. The proof of p's equivalence to q does

not prevent the divergence of p due to internal computations.

This is a property of unobservable malicious code (Trojan Horse,

viruses, etc) within the computer security domain.

Chapter 4 provides some Case studies in value-communication. The

behaviors (Synchronization Trees) may be built using six kinds of

operations, together with the all-important use of recursion.

The operations fall into two classes:

(i) Dynamic operations (Chapter I)

Inaction NIL

Summation +

Action _ • A u {_}

The dynamic operations build non-deterministic sequential

behaviors.

(2) Static operations (Chapter 2)

Composition I

Restriction _(a c A )

Relabellinq [S]

The static operations establish a fixed linkage structure among

concurrently active behaviors.

The examples given were static combinations of sequential

behaviors, yielding systems with fixed linkage structure.

dynamically -evolvinq structures can be gained by defining

recursive behaviors composition.

But

The previous calculus is pure synchronization. The calculus is

extended to pass values: accepting input pulses, and giving

output pulses.

8



Chapter 5 provides the syntax and semantics of CSS. CCS and

atomic actions are defined precisely. This chapter starts the

development of the central notion of observation equivalence.

Observation equivalence is developed in Chapter 7. From this a

stronger notion of observational conqruence is developed.

Chapter 6 provides a presentation on Communication Trees (CTs) as

a model of CCS. This chapter is not essential to the technical

development. Its purpose is to assist understanding by giving

the natural generalization of STs to admit value passing.

Chapter 7 provides the development of Observation equivalence and

its properties. Equivalence is not congruence. On Page 99 the

following comment is made: Thus, whenever we have proved B is

equivalent to C (e.g. B may be a program and C its specification)
we cannot deduce the B has no infinite unseen action, even if C

has none. In one sense we can argue for our definition, since

infinite unseen action is - by our rules - unobservable! But the

problem is deeper; it is related to so-called fairness, which we

discuss briefly in section 11.3. In any case, there is a more

refined notion of equivalence which respects the presence of

infinite unseen action, with properties close to those we mention

for the present one.

This discussion relates to the common software engineering

problem of insuring consistency between specifications and

implementations.

Equivalence is not a congruence. A congruence relation is

stronger than equivalence. It is desired to know that if B and C

are equivalent, then in whatever context we replace B by C the

result of the replacement will be equivalent to the original -

which is only true for an equivalence relation which is a

congruence.

Milner then defines Observation conqruence. Observation

congruence is the weakest congruence stronger than (smaller than)

equivalence. The author provides some theorems and a definition

of stability.

Definition: B is stable iff B cannot reach B' by an infinite set

of unobservable actions.

Thus a stable behavior is one which cannot 'move' unless you

observe it. Stability is important in practice; one of the

reasons why the author's scheduler example worked, is that it

will always reach a stable state if it is deprived of external

communication for long enough.

The author introduced a guard g which is observable. Then one

can deduce from B is equivalent to C (for any B,C) that g.B is



equivalent to g.C and hence g.B is observation equivalent to g.C
since both are stable.

The Laws of Observation Congruence are provided in the author's
notation. Law (I) may be explained by saying that, under the
guard g, internal action on B rejects n_ooother capabilities and
therefore has n__oeffect. Laws (2) and (3) absorb the effects of
internal actions.

Chapter 8 provides some proofs about familiar data structures as

well as algorithms, which find natural expression in CCS. In

addition the author illustrates how the properties of observation

equivalence and congruence allow us to prove that systems work

properly. The topics are Registers and memories, chaining

operations, pushdowns, and queues.

Chapter 9 provides a translation of CCS for a rather simple

language. The syntax of commands is:

assignment

sequential composition
conditional

iteration

declaration

parallel composition

input

output
no action.

The parallel composition is the major new construct. For example

can the 'concurrent' assignments overlap in time? The author

discusses the semaphore and Hoare's "Toward a theory of parallel

programming." Hoare's idea is to allow the programmer to declare

arbitrary abstract resources. For example, the programmer may

associate a particular resource R with the output device, and

adopt the discipline that every OUTPUT command occurs within a
"WITH R ..." context. He can thus protect a sequence of OUTPUT

commands from interference. There is a possibility of deadly

embrace or deadlock, but a compile time check can prevent this.

The program must be such that any nesting of "WITH R ..."

commands with distinct R's must agree with the declaration

nesting of the R's. For our translation: "WITH R DO C" must not

contain "WITH R ..." for the same R.

Chapter i0 provides a precise a notion of Determinacy, and a

related concept Confluence. Strong cfluency is defined as:

i0



The behavior program A is strongly confluent iff

When A is transformed to B under b
and

A is transformed to C under c
implies either b = c and B is equivalent to C

(i)

(2)

or

when

and

then

B is transformed to D under c

C is transformed to E under b

D is equivalent to E

The case "B equivalent to C' represents intuitively that (i) and

(2) are essentially the "same action". The definition of

determinacy demands this for observable actions.

A is strongly determinate iff

A is transformed to B by observable action b

and

A is transformed to C by observable action b

implies B is equivalent to C

Chapter ii provides a set of conclusions. The author has shown

how the calculus is based on a few and simple ideas and that it

allows us to describe succinctly and to manipulate a wide variety

of computing agents, that it offers rich and various proof

techniques, that it offers some concurrent programming concepts,

and that it allows the precise formulation of questions which

remain to be answered.

The question of fairness is presented and defined as:

If an agent persistently offers an experiment, and if an

observer persistently attempts it, then it will eventually
succeed. A model which reflects this is sometimes called

fair.

Is ccs fair? The author leaves the question open.

In summary the author's work has been concerned with the notion

of expressing behavior. Behavior is regarded as a congruence by

considering which expressions can be distinguished by

observation. The author summarizes his approach as an attempt to

calculate with behaviors without knowing what they are

explicitly; the calculations are justified by operational

meaning, and may help towards a better understanding - even an

explicit formulation - of a domain of behaviors.
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APPENDIX B

Estelle overview

An Estelle description is a hierarchy of communicating modules.

A module is defined by a couple: a header and a body. The header

defines a module's external visibility, including where

information will be received and sent. The body defines a

module's internal composition, which could include its behavior

(defined by a transition set), its structure (defined by a set of

parent and child modules), or both (defined by both transitions

and child modules).

Behavior. The basic behavior of a module is defined as an

extended sate machine that has machine states (called major

states), variables, and transitions between major states. A

major state and the values of its related variables define an

extended state.

An extended state machine reacts to external events that

correspond to information sent to and received by the module it

represents. A module receives information through interactions

processed at interaction points. Each interaction point has an

infinite FIFO queue associated with it.

Transitions are of two types: receiving and spontaneous.

receiving transition is of the form:

A

from state 1 to state 2

priority non_negative_expression

when IP-name.interaction_name

provided predicate

begin ... set of Pascal Estelle statements

including when needed the emission of

interactions by the statements

output IP_name.interaction_name[parameters]

end

In this example, the transition is enabled when the machine is in

state_l, the predicate is true, and interaction_name is at the
head of the IP name's FIFO queue. If this transition is in the

set of those enabled and has the highest priority, then it is

selected to be in the set of the ready-to-fire transitions. One

of these transitions is non-deterministically chosen to be fired.

When it is fired, the begin-end block is first atomically

executed and the control state is passed to state_2.

Interactions may be sent successively to different interaction

points during the execution of the begin-end block.

12



A spontaneous transition is of the form:

from state 1 to state 2

priority non_negative_expression

delay (min_value, max_value)

provided predicate

begin ...same block as before ...

end

Spontaneous transitions include a delay clause. To be enabled,

the machine must first be in the major state state_l and the

predicate must be true. When this happens, a virtual clock is

started and the transition is enabled between the times min value

and max value, if the predicate remains true and if the machine

remains--in the same state. Selection and firing are done similar

to a receiving transition.

After describing a module, you must give it an initial extended

state. You do this with the initialize clause, which lets you

assign parameter values and the initial major state. You also

declare a type and instantiate the module. The actual

instantiation is written as:

init module var with header name [list of actual parameters].

Of course a module can be instantiated and released dynamically,

by executing the appropriate instructions in a begin-end

transition block.

After instantiation, a module potentially can fire a transition.

The first transition will be the initialize transition. If more

than one transition can be fired, a transition is selected non-

deterministically.

Structure. A module definition can contain transitions and/or

can be divided into other modules. These parent and children

modules are interconnected with one of two primitives: connect

and attach. How this is done depends on whether the modules

belong to the same hierarchy level.

Case I. In the first case, if two modules, child_module_varl and

child_module_var2, belong to the same hierarchy level, they are

bound together by the father module with the statement

connect child module varl.child IPI

to child module var2.child IP2.

which relates two interaction points, child_IPl of the former

module and child IP2 of the latter. This means that an

interaction sent--to the child module varl's child IPI interaction

point will be received in the FIFO queue associated with

child module var2's interaction point, child_IP2.

13



For example, suppose an array of user modules (User[i]) each has
an interaction point (U). You can interconnect these modules
with a set of entities (E[i]), each of which has a high
interaction point (H) and a low interaction point (L). These
interconnection entities can themselves be interconnected with a
service (Ser) that has an array of interaction points (N[i]), for
all values of i. You would accomplish all this with the
statement

connect User[i].U to E[i].H;

connect E[i].L to Ser.N[i]

Case 2. In the second case, if two modules belong to adjacent

hierarchy levels, they are interconnected by the father module
with the statement

attach father IPI to child module varl.child IPI.

This means that any interaction sent to the father's interaction

point (father IPI) will be forwarded to the child's interaction

point (child_IPl). Once the modules are attached, the FIFO

corresponding to father_IPl will cease to exist and all

interactions with it are received in the FIFO corresponding to
child IPI.

An example nontrivial Estelle transition (which includes the use

of init and attach and uses some self-explanatory keywords:

trans, forone, suchthat, and otherwise) is

trans

from init state to state after CR

when User[k].connect_request

begin forone net:network suchthat net.NB_connection<=lO

do begin

net.NB connection:=NB connection+l:

attach User[k] to net.H[NB_connection];

k:=k+l

end

otherwise begin

Init new net with network.body;

new net.NB connection:=l;

attach User[k] to new_net.H[l];
k:=k+l

end

end

This transition fires when it receives a request for a new

network connection. The transition block says that if one

instantiated management module with less than the maximum

multiplexed connection (I0) exists, the requested connection will

14



be attached to one of these modules, selected non u

deterministically. If no such modules exists, the requested

connection is handled by a new network-connection-handling module

that is instantiated and attached dynamically.

Of course, this simple example only illustrates Estelle's

description style.
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APPENDIX C

LOTOS Overview

Background

LOTOS is a formal description technique (FDT) that has been

developed for the specification of distributed systems, and in

particular to Open Systems Interconnection (OSI) standards.

LOTOS and the companion FDT Estelle were developed under the

European Community ESPRIT program. The project was called SEDOS

for "Software Environment for the Design of Open distributed

Systems".

In the SEDOS project the development of LOTOS was mainly focused
on OSI Standards. In this line LOTOS has been used to make

complete descriptions of :

HDLC

IEEE LAN service

ISO Connection-less Internetting Protocol

ISO Network Service

ISO Transport Protocol

ISO Transport Service

ISO Session Protocol

ISO Session Service

ISO Presentation Protocol and

ISO Transaction Processing Service.

LOTOS has also been applied to other field of technology, in

particular to the development of Computer Integrated

Manufacturing architectures.

Introduction

The basic idea that LOTOS developed from was that systems can be

specified by defining the temporal relation among the

interactions that constitute the externally observable behavior

of a system. The description technique is based on process

algebraic methods. Such methods were first introduced by

Milner's work on Calculus of Communicating Systems (CCS)

[MILNS0]. Milner's book is reviewed in Appendix A.

LOTOS also includes a second component, which deals with the

description of data structures and value expressions. This part

of LOTOS is based on the formal theory of abstract data types,

and in particular the approach of equational specification of

data types, with an initial algebra semantics. Most concepts in

this component were inspired by the abstract data type technique

ACT ONE although there are a number of differences [EHRI85].
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Example

In LOTOS a distributed concurrent system is seen as a process,
possibly consisting of several sub-processes. A sub-process is a
process itself, so that in general a LOTOS specification
describes a system via a hierarchy ofprocess definitions. A process is an

entity able to perform m_rnM, unobse_ab_actions, and to interact

with other processes, which form its environment. Complex

interactions between processes are built up out of elementary

units of synchronization which are called evenS, or _mm_)

in_radmns, or simply actions. The following representation is taken

from [VANE89]

in2 in3

inl

mid

out

Max3

Spatial representation of process Max3

External observable actions are in1, in2, in3, and out. mid is

an example of an internal unobservable action. The next page

provides the LOTOS syntax for process Max3.

17



#I-> process Max3[inl,in2,in3,out] :=

#2-> Ihide mid in

CMax2Einl,in2,mid31EmidlIIMax2Emid,in3,out  I<,#3

where

process Max2[a,b,c] :=#1->

#2->

a;b;c; stop I<-#2

[]

Ib;a;c; stop I<-#2

endproc

endproc

#i <process definition>

#2 <behavior expression>

#3 <process instantiation>

Definition of process Max3

18



An Additional Example

The following example is taken from [DIAZ89] which uses a more

textual presentation to represent interaction with the system's

environment. Some of the previous discussion is repeated to keep

the example in perspective. LOTOS considers both the system and

the environment to be processes. An interaction, which is called

an event in LOT.S, is defined as an activity common to two or

more processes in which the values of types (called sorts in Act

One) are established.

A LOTOS process is defined in terms of possible event-offer

sequences. An event offer is represented by an indication of the

place at which the event may occur, the event gate (G), and the

value or values the process is willing to establish in the event

(<Es> and <Ee>). Given this, the system and environment

processes are described as follows:

process system [G]:= process environment [G]:=

0.. oeo

G<Es>: G<Es>:

.e. ..0

eo. 00o

endproc endproc

After an event, all the processes involved in it refer to the
same value or values that were established. Because LOTOS is for

the design and specification of open distributed systems, it must

express these data values at a high abstraction level so they are

implementation-independent. Hence LOTOS uses abstract data

types.

Abstract Data Types

In LOT.S, abstract data types include the syntax that describe

its values or its signature (which includes sorts and operations

definitions) and a list of equations that describe its semantics:

type Extended_Natural_Numbers is
sorts nat

opns O:->nat

succ:nat->nat

+ :nat,nat->nat

eqns

forall x,y:nat
ofsort nat

X+0=X;

x_succ(y)=succ(x+y);
endtype (Extended_Natural_Numbers*)

19



Abstract data types are a powerful specification tool themselves,

but they lack facilities to define interaction properly. Where

interaction is not involved, LOTOS offers a choice in the

specification style: you can either represent some property with

a data structure, storing control information in the process's

parameters, or represent this information directly in the process

definition.

Events and Value Passing

In LOT.S, events are atomic instances of interaction: All

processes involved in an event have the same view of it. This

means either that an event has taken place for all processes

defined to be involved (which also means that they all refer to

the same data value or values established), or the event has not

taken place at all. Events must be implemented reliably.

LOTOS abandons the traditional I/0 concepts. Instead, it uses a

much more powerful interaction concept. In an interaction, the

processes involved can negotiate -- based on constraints -- about
which data value or values to establish.

This not only provides a uniform way to express events, but, more

importantly, it gives it provides an extremely powerful

specification capability. By imposing different constraints,

three kinds of interactions can be defined: value checking, value

passing, and value generation.

In value checking, the example processes (system and environment)

are synchronized. An example of value checking, using the

notation from the examples above and the usual shorthand for

natural numbers (0=O, succ(O)=l, succ(1)=2, and so on) is

process system[G]:= process environment[G]:=

• .o ...

G!3 G!3

oo. ...

endproo endproc

System and environment synchronize on the value 3 (of the type

extended natural numbers).

In value passing, once the event has occurred the value is passed

from one process to another, as in

process system[G]:= process environment[G]:=

... ...

G!3 G?y:nat;

endproc endproc

The value 3 has been passed. This models conventional I/O.

2O



In value generation, the event has occurred and the x and y
variables have the same value, which is chosen non-
deterministically from the data domain in which the system and
environment constraints overlap, as in

process system[G]:=

G?x:nat[even(x)];

endproc

process environment[G]:=

G?y:nat[y5];

endproc

Where x and y will have the same value (non-deterministically

chosen between one of the values 0,2, and 4).

Architecture Support

After a description is provided for the event offers, they can be

sequenced with temporal ordering operators to compose a process

description. In LOTOS, an event ordering is defined with a

behavior expression. How these behavior expressions are formed

reveals LOTOS's algebraic nature: the many behavior expressions

are combined into a new one with language operators that

correspond to important architectural concepts. For example, if

B1 and B2 are behavior expressions then BI[]B2 defines the choice

between B1 and B2. Table A lists other important operators.

Rules are another important algebraic element in LOTOS. Rules

let the designer to transform one behavior expression into

another that expresses the same observable behavior according to

an equivalence relationship. For example, B[]B can be replaced

by B for any behavior expression B.

In LOTOS, process abstraction is comparable to facilities in

imperative languages for defining functions and procedures. For

example, if an adder process abstraction is defined with formal

event gates inputl, input2, and output, this expression

process Adder[inputl, input2, output]:noexit:=

(input 1 ?x:natlllinput2?y:nat )

;output!(x+y)

;Adder[inputl,input2,output]

endproc

defines the generic behavior of an adder that accepts two values

of sort nat in any order and outputs their sum.

Finally, a LOTOS specification begins with

specification System[Gl, G2,...](Pl:sortPi,P2:sortP2,...):noexit

type(*global data types definition*)endtype

behavior(*definition of behavior expression')

endproc
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Summary

Table A provides the definition of some of the LOTOS operators.

As in structured programming, LOTOS's abstraction facilities and

algebraic nature let you produce well-structured specifications.

Its operators provide a modular structure, and its hierarchy of

process abstractions lets you distribute complexity over several

abstraction layers.
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Table A

Some LOTOS operators.

Name Form Meaning

inaction

action

stop

a;B

choice B1 [ ]B2

parallel BIIIIB2

BllIB2

B11[A]IB2

sequence BI>>B2

disrupt BI[>B2

hiding hide A in B

(*) A is a set of gate identifiers.

deadlock

event a precedes the

process B

choice between process B1

and B2

interleaving full

synchronization

synchronization on events

in A(')

process B1 precedes

process B2

process B2 disrupts

process B1

hide the events in A(')

from the environment of B
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