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Summary

The Van Leer flux splitting is known to produce excessive numerical dissipation for
Navier-Stokes calculations. One example is the incorrect prediction of boundary-layer
profiles. We attempt in this paper to remedy this deficiency by introducing a higher-
order polynomial expansion(HOPE for short) for the mass flux. In addition to Van
Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0.
Several splittings for pressure are proposed and examined. The effectiveness of the
HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic
shock-wave/boundary-layer interactions. Also, we give the weakness and suggest areas
for further investigation of the scheme.

Introduction

In the past decade, upwind differencing schemes have gained considerable attention
for their accuracy and robustness in Euler flows with discontinuities, shock waves in
particular. Naturally, significant research effort in the CFD community has been focused
on maximizing the accuracy and efficiency, among other objectives. Four popular but
conceptually different flux splitting ideas have been utilized for nearly 10 years: Steger
and Warming, Van Leer, Roe, and Osher. However, each scheme has an associated
weakness when numerical accuracy and efficiency are considered.

In this paper, we deal specifically with the improvement of Van Leer's flux vector split-
ting[1]. Besides its simplicity, Van Leer's splitting has the following properties: (1) it can
be interpreted as a special member of a family of second-order polynomial expansions[2],
and (2) the associated flux Jacobian and eigenvalues are continuous at the sonic points.
Van Leer's choice allows one vanishing eigenvalue in the case of an ideal gas, thereby
resulting in a crisp shock representation. Furthermore, the continuous differentiability
is helpful for convergence acceleration, e.g., in multigrid schemes.

However, failing to recognize the contact discontinuity, the Van Leer splitting[1] pro-
duces excessive numerical diffusion and thus requires a huge number of cells to correctly
resolve the boundary-layer flow. Some improvements have been demonstrated recently
by Hanel et al[2] and Van Leer[3] for 1-D conical, hypersonic viscous flow, but a pressure
glitch arises. A new scheme by the present authors[4] has been proposed that not only
corrects this pressure difficulty, but also is remarkably simple to implement. Neverthe-
less, the above schemes[2-4] have already departed from the ideas of flux vector splitting
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and in fact become more like the flux difference splitting. Since the differentiability and
simplicity are desirable properties, one would still wish to search for a better splitting
scheme that is strictly based on the flux vector splitting.

In this paper, we propose a family of higher-order polynomial expansions for the mass
flux that diminishes the diffusion error as M --- ► 0. We give a detailed study of the
accuracy of the scheme for 1-D conical flow and 2-D shock wave/boundary-layer inter-
actions. The weakness of the scheme is also pointed out and possible improvements
suggested.

Analysis

To exemplify the concept, let us consider the quasi two-dimensional system of equations
for conical flows:

au aF
at + ar,

where UT = (p, pu, pv, pE), FT _= pvu, pv 2 + p, pvH), E = e + 1/2(u 2 + v2 ), and
H = E + p/p. The flow considered consists of a very thin shear layer at the wall
and a shock wave away from the wall. An algorithm must be capable of minimizing
the numerical smearing(diffusion) at the locations where an eigenvalue changes sign or
approaches zero. For example, Van Leer's splitting[1] can represent the shock profile
well, while greatly diffusing the boundary layer. The Van Leer split mass fluxes are:

Fl = Fl + Fi ; F1 = fpa/4(M f 1)2.

The net difference from the curve it approximates is largest at M = 0; its value equals
pa/2. This error, viz numerical diffusion, significantly broadens the boundary layer,
leading to incorrect velocity and temperature profiles. A simple way to remove the
diffusion at M = 0 is by adding an extra higher-order term that allows the split mass
fluxes to pass through the origin(Fig. 1), i.e.,

Fl = fpa/4[(M + 1 )2 + m 1( M)(
M2 

— 1)2],

where the higher-order term has a coefficient m l , in general function of M. It should
have the following properties:
(1) m l —a —1 as M - 0;
(2) m 1 (M) = ml(—M);
(3) m 1 —*0 asM —* fl.

A formula satisfying those properties is chosen as:

M1 = (M2 - 1 )/(M2 
+ 1)S,

where the exponent S is a free parameter; also shown in Fig. 1 is m 1 vs M with S = 4.
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	Fig. 1. Mass Flux Splitting in HOPE. 	 Fig. 2. Pressure Splitting.

In the conical flow calculations, the accuracy and convergence appear to be insensitive
to the specified values of S = 2, 4, 6. Now, regarding the flux as a sum of convective and
pressure terms, we can write the splitting formula for the flux vector:

F1	 pv	 1	 0

F2	 _	 pvu	 _ F
	 }
± v	 0

F3	
pvv + p	

— l	
v	 p±

F4	 pvH	 (H)	 0

With the realization in [5] that the pressure splitting could be considered separately in
the Van Leer formula [ l], a whole host of freedoms for the pressure splitting becomes
possible. Following is the list of formulas tested:

(pl) :	 p::^ = 114(M f 1) 2 (2 ::F M)p,

(p2) :	 p± = (pl) ::F 3/4M(M2 — 1)2p,

(p3) :	 p± = (pl) f 3/4m 1 M(M2 — 1)2p,

and

(p4):	 p± = 1 / 2 ( 1 ±'1'M)p•

Figure 2 displays the distribution of the split pressure vs M. The first formula is that
used by Van Leer [ l]. The second and third splits, (p2) and (p3), yield vanishing
slope at M = 0, thus corresponding to central differencing. However, no instability
was encountered in the conical flow problem with the (p2) or (p3) split used in an
implicit code. The fourth split (p4) is obtained from an approximate integration along
characterics. As will be seen later, the four formulas give essentially the same results
for the conical flow calculated.

Results And Discussion

In this paper, two cases were tested to check the accuracy and convergence of the
HOPE scheme. The first case is the 1 -D self-similar conical flow over a 10-degree half
cone at hypersonic speed, for winch a detailed comparison study was conducted. The
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flow conditions are: M,,,, = 7.95, and Re m = 4.2 x 105 . Since P,- = 1.0, the exact
solution gives adiabatic wall temperature, 13.64T,,. The second case is 2-D shock
wave laminar boundary-layer interactions, for which experimental measurements were
available[6]. The conditions are: M,,. = 2.0, Rem = 2.96 x 10 5 , and oblique shock
angle Q = 32.585 degrees. In both cases, the results from the Roe splitting  are also
included for comparison. An implicit Newton iteration procedure was used to achieve
steady-state solution with L,,. residual dropped by five orders of magnitude.

Figures 3 and 4 show the pressure and temperature distributions from the first- and
second-order solution on a 65-grid; little difference is seen. A monotone solution across
the shock is obtained with the first-order scheme while oscillation appears in the second-
order scheme, which can be eliminated by a TVD procedure. It is noted that the first-
order pressure is smooth at the edge of the boundary layer, unlike the Roe solution which
shows a slight discontinuity(not shown here). Although the boundary layer exhibits a
steep temperature gradient, the HOPE scheme predicts the wall temperature correctly,
indicating removal of the numerical diffusion associated with the original Van Leer
splitting.

Fig. 3. Pressure Profile of Conic Flow. Fig. 4. Temperature Profile of Conic Flow.

Figure 5 displays the results using  various pressure splittings; they are practically iden-
tical except the Van Leer pressure split (pl) shows some minor oscillation near the wall.
However, the pressure splittings show significant effect on the convergence rate. The
(p3) and (p4) splits are the best, comparable to the Roe splitting, while the other two
are roughly two to three times slower. These may indicate possible instability in a more
complex case.
Finally, for the 2-D case, the surface pressure and friction coefficient are plotted in
Figs. 7 and 8. The first-order HOPE results compare fairly with Roe's splitting and
experimental data. However, the second-order calculation experienced difficulty in con-
vergence in which the residual was reduced by only two orders of magnitude and the
result is not presented here.
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Fig. 5. Comparison of Pressure Splits. 	 Fig. 6. Convergence History.

We suspect that a further investigation on other pressure splittings may lead to success
in stability and convergence. Nevertheless, a systematic study of the eigenvalues of
the split fluxes and the complete discretized system will prove to be a useful endeavor.
Above all, the present research suggests that there are still possibilities in flux-vector
splitting after Van Leer's appeared nearly 10 years ago. The possibilities may very well
still he in the mass-flux splitting.
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