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1 Introduction

Radar is a general technique, which has a wide range of variability depending on the type

of targets to be measured. A radar can be designed to measure a bullet, while another

may observe a planet. The radio frequency spectrum employed also spreads out over

many decades.

The target of radars described here is the earth's atmosphere. More precisely, it

is so called clear air echoes from the earth's atmosphere produced by fluctuations of

atmospheric index of refraction. We will refer this kind of radar as the atmospheric radar

here. There is also a category of radar called weather radar, which observes precipitation

as its principal target. Although much is common, in principle, to the weather radar and

the atmospheric radar, we do not discuss the former here. Those who are interested in

weather radars are referred to standard text books such as Battan (1973) or Doviak and

Zrni_ (1984).

It is possible for powerful weather radars to observe the clear-air echoes. Actually,

the name clear-air echo is given in the history of development of the weather radar to

classify echoes from unknown targets. Above mentioned text books also discuss about

the clear-air echoes in some details, but the major difference between their approach and

ours is simply that we discuss radars specially designed to observe the clear-air echoes.

As we will see later, this difference affects the choice of frequency, requirement on the

sensitivity, and the way data are processed. As a consequence, these two types of radars

often look surprisingly different.

Weather radar usually use frequencies of SHF band (3-30 GHz), while atmospheric

radars make use of much lower HF (3-30 MHz), VHF (30-300 MHz), or UHF (300 MHz-

3 GHz) bands. Antenna size of weather radars is a few to about ten meters in diameter, but

an atmospheric radar may require a diameter of more than a hundred meters, depending



2O

on its target region. Operational atmospheric radars have antennas with diameter of 10-

300 m. Weather radars cover a wide horizontal area of up to several hundred kilometers in

radius by scanning their antenna with low elevation angle. Most of atmospheric radars,

in contrast,observenarrow angularrange around the zenith,but with largervertical

coveragethan the weather radars.The hardware of atmosphericradarsisexamined in

detailin a separatechapter.

Itshould be noted that the atmosphericradarscan, at leastinprinciple,and often

inreality,alsoobserveprecipitationechoes,which isone ofimportantapplicationsofthe

atmosphericradars.

Atmospheres ofotherplanetscan be,in principle,observedby a similarway as those

discussedhere.However, the extremelylargedistancebetween the radar and the target

willcausemany problems peculiartosuch an application.Itisalsopossibleto designa

radartoobserveclear-airechoon board thevehiclessuchasships,airplanes,and satellites.

AdditionalDoppler shiftsdue tomotion ofthe vehicleswillbe one ofmajor problems,as

wellasthe problem ofsizelimitations,insuch cases.

Inthe followingsections,basiccharacteristicsofechoesare examined,and important

conceptsconcerningtechniquesofthe atmosphericradarareintroduced.
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2 The Target

One of important features which make the atmospheric radar unique and different from

other kinds of radars is that it observes basically transparent earth's atmosphere. We

examine here the nature of the atmosphere as a target of radar.

2.1 Vertical Structure of the Atmosphere

The target of the atmospheric radars is the entire earth's atmosphere which extends from

the ground (or ocean surface) to the upper boundary of the atmosphere which is usually

defined as the highest region rotating together with the earth, whose height ranges from

20,000 km to 40,000 km. Of course, this upper boundary has not yet been observed

by means of radar, and only a few of existing radars can observe the atmospheric region

above 1,000 km height, most of others with much poorer sensitivity. The lowest observable

height, which is usually limited by the switching speed from transmission to reception,

ranges from a few hundred meters to several kilometers.

The atmosphere shows a significant variation in its nature even within this limited

height range of 0-1,000 km. The largest distinction is between neutral and ionized atmo-

spheres, which are roughly separated by a height of around 100 km. Below this height,

the atmosphere is treated as a neutral fluid, while ionized plasma plays an important

role above it. These two regions had long been studied independently, and it was widely

understood only recently that both can be studied with the same principle.

The other common way of dividing regions is the one based on the vertical structure of

atmospheric temperature. Figure 1 shows a typical temperature profile, which is a model

profile of mid-latitude equinox taken from the U. S. standard atmosphere (1976). The

right ordinate shows the atmospheric pressure in millibars. The atmosphere is classified

into 4 regions of troposphere, stratosphere, mesosphere, and thermosphere in ascending

order of height.

The troposphere is characterized by a constant decrease in temperature with height.

The lapse rate of the model is 6.5 K km -1. The main heat source for this region is the

solar radiation absorbed by the surface of the earth. Temperature ceases to decrease

at 10-15 km, at the tropopause. The height of the tropopause has a clear latitudinal

variation, being highest in the equatorial region and decreasing with increasing latitude.

The stratosphere is the region in which temperature increases with height. The stable

stratification of the air due to positive temperature gradient accounts for the origin of the

name of this region. Temperature reaches its maximum of about 270 K around 50 km

at the stratopause height. The heat source for this maximum is the absorption of solar
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ultraviolet radiation by ozone.

Temperature decreases again in the mesosphere until it reaches the minimum of 180-

190 K at the mesopause height of 80-90 kin. The heat balance in this region is determined

by the radiative heating of molecular oxygen and infrared radiative cooling of carbon

dioxide.

Above 80-90 kin, the temperature increases monotonically with height to the limit of

1,000-2,000 K due to radiative heating of atomic oxygen etc. This region is called the

thermosphere in this nomenclature, but it also corresponds to the ionosphere in the above

distinction.

2.2 l_dio Refractive Index

Characteristics of the atmosphere seen by radio waves in the absence of liquid water is

expressed in terms of the refractive index n. As is the case of optics, n is defined as

c
n = -, (1)

f)

where c is the speed of light in free space and v is the velocity of the radiowave in the air.

Macroscopic changes of n in space cause refraction or reflection, and microscopic changes

cause scattering, the latter being of major concern to the atmospheric radar.

Although we are interested in the fluctuations of n from its background, it is important

to examine what determines the background n. Major contributions to n at frequencies

of HF through UHF bands are expressed approximately as (Balsley and Gage, 1980)

3.75 x 10-1e 7.76 x 10-5P Nc

n - 1 = T2 + T 2No' (2)

where e (mb) is the partial pressure of water vapor, P (rob) is the total atmospheric

pressure, T (K) is the absolute temperature, Ne is the number density of electrons, and

N¢ is the critical plasma density.

The first term represents the contribution from water vapor. As is well known, the

water molecule has a dipole moment, which varies with frequency. At extremely high

frequency of visible light, only the polarized electric field of the water molecules counts

for the refractivity. At lower frequencies of radiowave, the water molecules are not only

polarized but they also reorient themselves rapidly enough to follow the changes of electric

field. As a result, the contribution of the water vapor to n is greater for radio than for

optical frequencies (Battan, 1973).

Above the tropopause height of 10-15km, the partial pressure of water vapor becomes

negligibly small. The second term due to dry air becomes dominant at this region. Since
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themajorconstituentsoftheearth'satmosphere,N2andO2,donotchangetheirmixing
ratiolargelythroughoutthemiddleatmosphereofupto around100km,thecoefficient
staysunchanged.Unlikethefirst termdueto thewatervapor,thistermis frequency
independent,beingthesameforlightandradiowaves.

Whilethesetwotermsconcerntheneutralatmosphere,thethirdtermgivesthecon-
tributionfromfreeelectrons.Thistermisnegligiblebelowabout50km,butisdominant
ationosphericheightsofabovearound80km.It shouldbenotedherethatEq.2gives
anapproximationvalidonlywhenNc >> Ne, and the effect of the third term is expressed

more precisely as

n = No' (3)

The critical electron density N¢ thus determines the condition with which total (or perfect)

reflection occurs in the ionosphere. It is given in MKS units by

N¢ = 471"2¢------°me/2
e2

= 1.24 x 10-_f 2, (4)

where eo is the dielectric constant in free space, m, and e are the mass and the charge of an

electron, respectively, and f is the radar frequency (e.g., Stix, 1962). The electron density

N, in the ionosphere usually takes its maximum value of 1011-1012 m -3 at 200--400 km

height. If Nc is smaller than this maximum, the radiowave is reflected at some height

where the condition N, = Nc is met. Otherwise, the entire energy associated with the

radiowave is radiated out of the earth's atmosphere except for a tiny fraction absorbed or

scattered by the atmosphere. Under most of ionospheric conditions, N, is larger than N,

at all heights for frequencies of VHF or higher.

Figure 2 shows a typical variation of these three terms with height. The pressure

and temperature are taken from the U.S. standard atmosphere (1976). The saturation

pressure is used for the water vapor. The electron density is adopted from Mechtly et al.

(1972).

2.3 Fluctuations of the Refractive Index

In the absence of total reflection, scattering from fluctuations in the refractive index

ndominates the received echo of the atmospheric radar. Statistical fluctuations of the

electron density due to random thermal motion of electrons and ions can be strong enough

in the ionosphere to cause detectable scattering. This component is called incoherent

scattering because scattered wave from individual electrons are random in phase, so that
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they add up incoherently.Received echo power isthen proportionalto the number of

electronsilluminatedby the radar.

Fluctuationsdue to atmosphericturbulenceisknown to be the major sourceofscat-

teringin the lowerand the middle atmosphere.This component isoftencalledcoherent

scatteringincontrasttothe incoherentscatteringinthe ionosphere.The main difference

ofthe coherentscatteringfrom the incoherentscatteringisthat the fluctuationof n is

caused by macroscopicmotion ofairparcels,each of which containsa largenumber of

moleculesand/or electronswhich contributeto the scatteredelectricfieldcoherentlyin

phase.As a result,thescatteredecho power isroughlyproportionalto the squareofthe

number densityofscatterersinsteadofthelinearproportionalityoftheincoherentscatter-

ing.Thissubstantialenhancement intheechopower isthe basisfortheMST (Mesosphere

StratosphereTroposphere)radarsbeing ableto observethe neutralatmosphere with a

relativelysmallsystem compared topowerfulincoherent-scatterradars.

A largedifferenceof the atmosphere from othertargetsofradarsisitsdistributed

nature. While usual targetsas airplanes,ships,cars,or missiles,which are referred

to as hard targetsbased on theirphysicalnature,have clearboundary, which enables

identificationof the target,itisusuallyabsentin spatialdistributionof the echo from

the atmosphere. Itisthus necessarytodistinguishpartsofthe atmosphere by means of

spatialcoordinatesofdirectionand range.This type oftargetisoftencalledas the soft

target.

A direct consequence of this limitation, for example, is the fact that decreasing the

size of identified volume in order to improve spatial resolution results in a decrease in the

echo power, and thus a decrease in sensitivity. On the other hand, the rate of decrease

of the echo power with increasing range to the target is much slower with the soft target

than with the hard target, because the volume, and thus the size of the scatterer, usually

increases with increasing range in case of the soft target.

Mathematical relations which determine the strength of the echo are derived in the

following section.
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3 The Radar Equation

In designing a radar system, we first need to know how strong the echo of interest is. We

will derive a relation between transmitted and received power, called the radar equation,

for various situations which concern observations with the atmospheric radar.

3.1 The Radar Equation for a Hard Target

Before discussing the scattering from fluctuations in the radio refractive index, let us

first examine a simpler case of the scattering from an isolated hard target located in free

space. Suppose we transmit radiowave of power Pt out of an omni-directional antenna

which radiates the power into all directions with uniform strength. The density of the

power Pi passing through a unit area located at a point sufficiently far from the antenna

and perpendicular to the direction of propagation is given by

P_ (5)
Pi = 47rr-'--"_,

where r is the distance of the point from the transmitting antenna. The antenna used for

a radar usually has a strong directivity with which a narrow region can be illuminated

selectively. The above equation is thus modified as

P_Gt (6)
Pi- 4rrr 2 ,

where Gt is the directional gain, or simply, the gain, of the antenna, which is a function

of the azimuth and the zenith angles.

We now consider a target located at this point which intercepts the power and scatters

it into various directions. The density of the scattered power P, per unit area at a distance

r_ from the target is expressed in terms of the scattering cross section a of the target as

P, = 4r_a, (7)

where a is defined as an effective area of the scatterer, the power illuminating which area is

scattered isotropically. It should be noted that an alternate parameter of the differential

scattering cross section Crd -- a/4r which expresses the scattered power per unit area

and per unit solid angle is also used often, and occasionally the difference is not clearly

mentioned.

It is known, for example, that a perfectly conducting sphere with a radius much larger

than the wave length of the radar has a scattering cross section equal to its physical cross

section (e.g., Skolnik, 1980).
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If we receive the scattered power with an antenna which has a capability of collecting

all power passing through an effective area A_, the received power P, is expressed as

P_ = P,A,L, (8)

where L is the loss factor which represents various attenuation of the received signal due

to antenna, transmission line, connectors etc. By combining Eqs. 6-8, we obtain

Pt Gt A_L

P, = (4_rr2)(47rr_) a. (9)

This equation gives the received echo power from a given target by a radar, and hence

is called the radar equation. We have so far considered a general case in which the

transmitting and the receiving antennas are not the same. Although this type of radar,

which is called the bistatie radar, or the multi-static radar in case there are more than

one receiving antennas, is used in reality for some applications, it is much more common

to use the same antenna both for transmission and reception for simplicity. This type of

radar which uses a single antenna is called the monostatic radar, and we will limit our

discussion below to this type of radars.

The two parameters Gt and A_ used in the above equations seem to indicate, at a

first look, distinct properties of an antenna. There is, however, a useful universal relation

known between the two (Silver, 1951), which is

4_rAe
Gt= _ , (10)

where )_ = c//is the radar wavelength. Although A_ is a function of direction since Gt is

so, it is implicitly assumed that the antenna beam of the radar is pointed to the direction

of the target, so that both Gt and Ae take their maximum value.

For a monostatic radar, the radar equation thereby reduces to

PtA_L
P,= _a. (11)

This equation gives the basis for radar system design of choosing appropriate transmitter

power Pt and effective antenna area A, for a given target with a scattering cross section

a at a range r.

The minimum detectable power P, is limited by the noise power P, which contaminates

the received signal from the target. In most cases, the dominant component of the noise is

the white noise which is defined as a random time series of signal with a uniform frequency

power spectrum within the receiver bandwidth B. The power of white noise produced by

a resistor at a temperature T and for a given bandwidth B is given by (Dicke et al., 1946)

P. = k.TB (12)
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where k is the Boltzmann constant (= 1.38 x 10 -2s W s K -]).

Since this formula can be applied to any type of white noise, it is common to express

the noise power of the radar in terms of this equation where T is called the equivalent

noise temperature. This noise temperature represents all kind of noise sources, and is

decomposed as

T = T,L + T_ (13)

where T, isthe sky noise temperature due to cosmic, solar, and atmospheric radiation, L

is the loss factor, and T_ is the noise power generated by the receiver itself. The sky noise

temperature varies largely depending on the radar frequency and also on the direction of

the antenna beam. Figure 3 illustrates it versus frequency (after Skolnik, 1970). Solid

curves are for various elevation angle 0 of the antenna beam direction for geometric-mean

galactic temperature, sun noise ten times quiet level, sun in unity-gain side lobe, cool

temperate-zone troposphere, and 2.7 K cosmic black body radiation. The upper dashed

curve is for maximum galactic noise at the center of galaxy, sun noise 100 times quiet

level, zero elevation angle, and other factors the same as for the solid curves. The lower

dashed curve is for minimum galactic noise, zero sun noise, and elevation angle of 90 °.

The maxima at 22 and 60 GHz are due to water-vapor and oxygen absorption resonances.
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3.2 The Radar Equation for Distributed Targets

The radar equation derived above applies to a single target. If there are more than one

target in the same volume V of the air observed by a radar, the received electric field is

expressed as the sum of the electric field components caused by individual scatterers. For

a situation where they are random and have no correlation between each other, the total

received echo power becomes the sum of the echo power from individual scatterers. In

this case, the scattering cross section a in Eqs. 7, 9, and 11 are simply replaced by Ea. If

the number of scatterers is very large and if scatterers are distributed uniformly in space,

a increases linearly as V increases. It is thereby suitable to define the volume reflectivity

r/, or the scattering cross section per unit volume as

da
,7-- -_. (14)

It should be noted that _?has a dimension of [m -1] unlike the ordinary reflectivity, which

is dimensionless.

This situation applies, for example, to the incoherent scattering due to free electrons

in the ionosphere observed with a sufficiently high frequency of above about 1 GHz, for

which the volume reflectivity is given by

0 = Y_ac, (15)

where ae is the scattering cross section of an electron, which is given by

e 4

ae = 4_m_c4 (16)

= 9.98 x 10-_ (m2).

The condition 'sufficiently high frequency' is necessary because otherwise interactions

: between electrons and-ions through the Coulomb forces modify significantly the motion

of the electrons reacting to the radar wave field. For a Sufficiently low frequency of VHF

and lower UHF bands, an extra coefficient of 1/2 should be multiplied to the right-hand

side of Eq. 15 (Fejer, 1961).

This type of approach based on a microscopic viewpoint is practical only for idealized

situations as discussed above. We need to treat the problem from a more macroscopic

viewpoint of regarding scattering as due to fluctuations in the refractive index n in order

to discuss the cross section of the neutral atmosphere. Here n is a continuous function of

space, and represents all of the effects caused by scatterers.

The scattered power P, produced by small fluctuations of the refractive index An is

expressed formally as (e.g., Doviak and Zmid, 1984)

k4Pi Ifv Anexp(i2k" r)dvrP. = 47r2r---_ , (17)
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wherek (= 2_/A) is the radar wavenumber, k is the propagation vector, and r is the

radius vector to a point in the scattering volume. By comparing Eq. 17 with Eq. 7, and

applying Eq. 14, we obtain

(18)
7r

1 2
C = _(fvAnexp(i2k.r)dV])

where 0 denotes an ensemble average. Although this equation gives a universal expression

for the scattering cross section and the volume reflectivity, it is not easy, in general, to

perform the integration to determine C. Specific results will be presented in a separate

chapter.

For a uniformly distributed target, V is determined by the spatial resolution of the

radar. Namely, for a radar with a circular antenna, it is expressed in terms of the half-

power beam width of the antenna 8h in radians, and the size of the range cell At, which

is examined in the next section, as

V = r(-_)2Ar. (19)

The beam width of the antenna has a direct relation with the gain of the antenna Gt

because both of these parameters express the degree of concentration of the transmitted

power of the radar in space. Probert-Jones (1962) expressed the relation as

.Tra.2 (20)G,= (V) ,

where a is a non-dimensional factor which concerns the non-uniformity of illumination of

the antenna. Combining this equation with Eq. 10 we obtain

aA

Oh = _ (rad), (21)

where De is the effective diameter of the antenna given by _/r_-/Tr. For a circular array

antenna with uniform excitation for which De is roughly equal to the physical diameter

of the antenna, a = 1 gives a good approximation.

With the aid of Eqs. 10, 19, and 20, the radar equation Eq. 11 can be rewritten for

distributed targets as
PtA_ra2 Ar L

P, = 64r2 r/. (22)

Comparison of this equation with Eq. 11 for a hard target immediately reveals a

few of interesting features of the scattering from distributed targets. First of all, the

proportionality of the received echo power on the range r is to the square, not to the
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forth power as is the case for a hard target. This means that the echo power decreases

relatively slowly with increasing r, as mentioned in the preceding section.

Secondly, P, depends only linearly on the effective antenna aperture ,4,. While the A_

factor in Eq. 11 counts for the antenna gain both for transmission and reception, the linear

dependence in Eq. 22 can be interpreted that all of the radiated power is intercepted by the

distributed scatterers, and thus the antenna gain does not count during transmission. It

should also be noted that Eq. 22 does not contain any factor which contains a dependency

on the radar frequency. These properties makes the power aperture product PtA_ a good

indication of the sensitivity of an atmospheric radar.

Finally, the Ar term in Eq. 22, which does not appear in Eq. 11 means that any

attempt to improve the range resolution of an atmospheric radar should be made at an

expense of reduced sensitivity.

3.3 The Radar Equation for Specular Echoes

We have so far considered two extreme cases of a single target and uniformly distributed

target. Although it is not the purpose of this chapter to get into details of various

scattering mechanisms, let us examine a few more cases for which the radar equation

takes alternate forms.

The first example is the _resnel (or partial) reflection induced by a horizontal layer

which has a slightly different refractive index from that of surrounding air and extends

over a sufficiently wide area. This layer can be treated like a planar mirror, but with

a small reflectivity p for incident electric field (Friend, 1949). Note that p here is the

reflectivity in an ordinary sense which has no dimension, and has a complex value of

Ipl--<1.
The derivationof the radar equationforthiscase israthersimple,because we can

consider the case to be a one-way transmission from an antenna to its mirror image

located at a distance 2r, with an extra power loss factor of Ipl 2. Figure 4 shows the

situation schematically. The received power is thus given by

PtGt

P, - 47r(2r)2A, Llple
2

PtAeL 2
- p (23)

Although the echo power depends on the range by r 2 like the case of distributed targets, it

is proportional to A_/_ 2 like that of a hard target. One of important aspects of the Fresnel

reflection is its aspect sensitivity. The above equation assumes that the antenna beam is

directed perpendicular to the layer, for which the received echo takes its maximum value.
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Fig. 4. Equivalent ray path for the Fresnel reflection. The dashed lines denotes

the mirror image of the radar due to the layer.

The echo power falls off rapidly as the angle of the antenna beam is changed from this

position. The rate of decrease is a function of the beam width of the antenna, and can be

readily computed by considering the relation between the transmitting antenna and its

mirror image due to the layer. It is not so easy, however, to calculate this function when

the layer has some roughness of the order comparable to or larger than the wavelength.

Such situation needs a more rigorous treatment based on Eq. 17.

We next examine a case where the scatterer has a linear shape in space. The most

important application of such case is the reflection from meteor trails which appear at

around 100 km height. Meteor trail is a strong localized ionization produced along a path

of a meteor caused by the frictional heating when it penetrates into the earth's atmosphere.

Since the echo is strong enough to be detected with relatively low sensitivity radars, it

has been extensively studied (e.g., McKinley, 1961). There is a category of atmospheric

radar called the meteor radar which makes use of the meteor echoes to investigate the

dynamics of the lower part of the ionosphere.

The scattering element in this case is an electron as is the case for the incoherent

scattering for which element the radar equation is given in the form of Eq. 11 by

ptA2L
P,o- 4_r,_2r4ae • (24)
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Fig. 5. Coordinates for deriving the effective length le for scattering from a meteor trail.

Unlike the case of incoherent scattering where contributions from individual electrons

add up randomly, scattered electric fields from electrons aligned in space have a strong

coherence. Since the effective diameter of the meteor trail which affects the scattering is

shorter than the wavelength of meteor radars, we can safely assume that all electrons axe

aligned on one line with a line density of q, (m -1 ). We also assume a straight line without

any curvature for simplicity, and that the line is located sufficiently far from the radar.

Electric-field contributions from electrons at distinct points on the line have similar

amplitude, but have various phase. We introduce an idea of the effective length defined

by

exp{-i2k( '- I, (25)
where r is the distance of the line from the radar, and r' is the range of a line element

ds on the line. Figure 5 shows the coordinates. The idea is to represent contributions

from all parts of the line which have distinct phases by an effective length in which

contributions are assumed to have the same phase at the receiving antenna. By making

an approximation d- r _- s2/(2r) where distance s is measured along the meteor trail

from the perpendicular point, we obtain

lo = _/_-. (26)

Since the number of electrons within I, is l,q,, and since the electric fields of scattered

waves from these electrons have the same phase, the total echo power is given by

P, = (l,q,)_P_o
P,A_L

= S-7_ _,_. (27)
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This equation has a range dependence of r -s which lies between the cases of a hard target

and distributed targets.

3.4 Near Field Correction

In deriving these radar equations, we have assumed that the target is located at a point

'sufficiently far' from the radar without giving any explicit reason or quantitative limit

for it. Here we examine how large should be the range r in order that equations we have

derived are valid, and what happens within this limit.

The antenna of an atmospheric radar is, whether it is an dish antenna as a paraboloid

or an array of Yagi's or half-wave dipoles, designed to form a beam of the transmitted

wave as sharp as possible, because it is the condition to maximize the gain Gt and effective

area A_ as shown in Eqs. 20 and 21. In order to make the beam sharp, it is essential to

produce a planar wavefront over the antenna aperture to the extent as wide as possible.

The transmitted wave thereby propagates as a plane wave at a distance near the antenna

without changing its outer boundary which keeps the shape of the antenna aperture. As

it propagates further, it gradually spreads out into a conical region and finally forms a

spherical wave with its center located at the center of the antenna aperture.

The region where the wave can be regarded as a planar wave is called the near field

of the antenna, while the region where it is a spherical wave is called the far field. In

another word, the far field is a region from which the antenna can be seen as a point.

This condition is stated mathematically that the distance of a target point measured from

any point on the antenna aperture falls within a difference sufficiently smaller than the

wavelength.

Conventionally, the boundary between the near feld and the far field is defined as a

range where the cylinder with a diameter equal to the diameter D of the antenna intercepts

the cone with an angle 0h and with its apex located at the center of the antenna as shown

in Figure 6. This range ro is given by

D 2

ro: "T' (28)

at which the difference of the distance measured from the center and from an outer edge

of the antenna aperture becomes ),/8. As is shown in Eq. 28, ro is a function of the

diameter of the antenna and the radar frequency. The largest value of ro associated with

the existing atmospheric radars is 129 km for the Arecibo UHF radar, which operates at

430 MHz and has an antenna with a diameter of 300 m. All regions of the atmosphere

except the upper ionosphere falls within the near field for such case. On the other hand,

ro is much smaller for VHF radars. The MU radar of Japan, for example, operates at
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field

D

Fig. 6. A conventional definition of the boundary between the near field and the far field.

46.5 MHz and has a 103 m antenna, for which ro is only 1.6 km. Since the minimum

height (or range) that the MU radar can observe is about 1.5 km, the far field condition

almost always holds.

In the near field of an antenna, Eq. 6 should be thereby rewritten as

P' (29)

Also, Eq. 8 should be modified because the phase differences of the received waves on

different parts of the antenna aperture, which differences cause interference and thus

reduction of the echo power, is important for the case of the near field. The effective

area A_ should then be replaced by an area which represents the effect of adding waves

with different phases. This area is obtained by a consideration similar to that of Eq. 26

for the effective length of the reflection from a meteor trail, and is given by Ir),r/4. This

area also agrees with that of the first _esnel zone which is defined as a zone on a plane

in which a wave radiated from a point source arrives with a phase difference of less than

_'/2. Figure 7 shows the situation schematically. Thus Eq. 8 becomes

P, Tc)_r L
P' = T" (30)

With Eqs. 29 and 30, the radar equation for a hard target Eq. 11 is rewritten as

Pt_L
P, = _a. (31)

The most striking feature of this equation is that the received power is inversely propor-

tional to the effective area of the antenna, meaning that a smaller antenna gives a stronger
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first ._'esnel zone

Fig. 7. Scattering due to a hard target within the antenna near field.

echo than a larger one. This is due to the fact that the power density of the transmitted

wave is higher for smaller antenna as far as the target is within the near field. It should be

noted, of course, that the upper boundary ro of the near field also decreases as the size of

the antenna is reduced. The other important difference is that the echo power decreases

only by r -_ with increasing range r in contrast to the very steep r -4 decay shown by

EQ. 11.

Similarly, the radar equation for distributed targets Eq. 22 can be modified for the case

of the near field. Besides the corrections we have made, the scattering volume expressed

by Eq. 19 should also be changed as

V = A_Ar. (32)

Applying Eqs. 14 and 32 to Eq. 31, we obtain the radar equation for distributed targets

within the antenna near field:
PtAr_L

P, = 16------_7. (33)

Note that this equation contains no dependence on the antenna size parameter. What

Eqs. 31 and 33 tells us is that increasing the size of the antenna in order to improve the

sensitivity of the radar works only for targets outside the near field of the antenna.

In section 3.3, we also made an implicit assumption that the effective size of the target

for specular reflections, which is determined by phase coherence of the scattered electric

field, is smaller than the lateral dimension of the beam at that range. It can be shown

that the range at which le for the meteor trail becomes the same as the beam size is

coincidentally given by ro. The v_ dependence of le thereby verifies the use of Eq. 27 for



38

r > to. A similar condition r > to/2 can be derived for the validity of Eq. 23 for Fresnel

reflection by considering the condition that the size of the first Fresnel zone of the mirror

image becomes larger than the size of the antenna.



39

4 Basic Techniques

The radar equationderivedin the previoussectiontellsus the intensityof echo,which

isessentialto estimatethe necessarytransmitterpower and the antenna aperture,but

nothingmore. Inthissection,we brieflysurveybasictechniquesused inthe atmospheric

radarin determiningthe range ofdesiredtargetand alsoinderivingother information

concerningthe target.Detailsofindividualtechniquewillbe discussedinfollowingchap-

ters.

4.1 Pulsed Waveforms

Ranging, or measurement of the range to a target, is one of important functions of radar.

We, again, start with the case of observing a hard target. The ranging is made by mea-

suring the time delay of the received echo from the target with respect to the transmitted

signal.

As far as the refractive index n satisfies In-l[ <<: 1, speed of the radio wave can be well

approximated by that in free space as shown by Eq. 1, the error of which approximation

is given by Eq. 2. In the lower and the middle atmosphere of below about 100 kin,

In-l[ < 10 -3 as shown in Fig. 2, thence the error is negligible for all practical applications.

The error becomes larger, however, in the ionosphere of above 100 km depending on the

frequency .f and the electron density Ave as shown by Eqs. 3 and 4. At a relatively low

frequency of 50 MHz, for example, the maximum value of n - 1 during daytime reaches

,-¢ -0.02 at around the peak height of F2 region of 200-300 km. A care must be taken

of this error for an accurate ranging of a hard target above the ionospheric height using

lower VHF band. For oblique beam waves, refraction of the ray path is not negligible

either under such condition.

Assuming n = 1, the range r of a stationary point target is given by

CT

r = -- (34)2'

where r is the time delay of an echo. In order to measure this time delay, we need to add

some 'feature' to the transmitted wave so that a part of the wave can be identified from

others. Although there are a variety of ways to do this, many of which are of practical

use, the simplest and most widely used way is to transmit a short pulse of a waveform

[ Eosin(27rft) (0 <_t < At)
E(t) I 0 (t < 0, t > _t) ' (35)

where Eo is the amplitude of the electric field of the wave. It should be noted that it is not

common to use such an idealized waveform in a real radar because of various restrictions,
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SOthattheamplitudeEo is usually a smoother function of time than this one. When

we transmit a pulse of length At sec, we receive the echo from this pulse for a duration

of At sec right after a r sec of delay. Since we measure the delay in terms of the range

according to Eq. 34, this duration is interpreted as if the target has a finite length

cat

Ar ------_ (36)

in the radial direction, which length is called the range resolu$ion.

It is thereby necessary to reduce At in order to improve the range resolution. Un-

fortunately, however, there is a conflicting relation between the length of the pulse and

its frequency bandwidth. For a rectangular pulse waveform of Eq. 35, the half-power

frequency bandwidth B is given by

0.886
B= A---F" (37)

Since the receiver should cover this bandwidth, the noise power contaminating the echo

increases linearly as increasing B as shown by Eq. 12, thus resulting in a linear decrease

of the signal-to-noise ratio, which is, as a consequence, proportional to At.

This dilemma can be solved by means of pulse compression which allows a radar to

utilize a long pulse without sacrificing the range resolution. The basic idea of the pulse

compression is to put extra features within the long pulse so that each part of the pulse

can be identified, which idea is just the same as the one used above in introducing the

pulsed waveform. This is realized, in this ease, by applying further modulation to the

already pulse-modulated waveform. Among various ways of modulation, binary phase

modulation (or coding) is most widely used for the atmospheric radar application. This

form of pulse compression is performed by sending N consecutive pulses with the phase of

carrier wave 0 or x different from that of the first pulse. The advantage of utilizing only 0

and r of the phase is that they can be interpreted as plus and minus signs of the envelope

Eo, so that no special hardware for phase modulation and demodulation is required. Each

component pulse of length At is referred to as a sub-pulse of an N-element coded pulse of

length NAt. The choice of the time series of phases (0 or _r) is a subject of mathematical

considerations, and will be discussed in details in a separate chapter (see, for example,

Nathanson, 1969, or Skolnik, 1980 for reference).

Here we choose a random phase coding as an example, with which sub-pulses have

random and independent phases with each other. The received signal time series from

a stationary point target is a weakened and delayed copy of the transmitted time series,

which is a series of pulses with a random sequence of signs. We can 'compress' the received

signal by displacing sub-pulses to the position of the first sub-pulse with corrected phase,
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Fig. 8. Time-height section showing the relation of the size of a range cell and the

length of a pulse for distributed targets.

and by adding them together. Mathematically, this procedure is expressed as taking the

cross-correlation of the transmitted and received time series. This procedure enhances the

signal power, which has equal phase for all sub-pulses, by N _ times, while the statistically

independent noise power only by N times, thence the signal-to-noise ratio by N times.

Since the phases of sub-pulses are random, the entire pulse has the same bandwidth

as that of each sub-pulse. The range resolution also stays unchanged because the cross-

correlation disappears outside an interval of At due to random phases between adjacent

sub-puises. As a summary, N-element binary phase compression improves the signal-to-

noise ratio by N times compared to a single pulse of length l/N, without changing the

range resolution.

We now consider the ease of distributed targets. If the distribution is uniform with

range, the received echo power decreases with the time t after transmission of a pulse

as t -2, which simply reflects the r -2 dependence of the radar equation through Eq. 34.

The object then becomes to determine the nature of the target at a given range, instead

of determining the range of the target. The meaning of the range resolution also should

be changed from the ambiguity in determination of the range of a target to the radial

size of scattering volume which contributes to the echo at a given time. Actually, the

range resolution Ar given by Eq. 36 corresponds to the difference of the range of echoes

returned from the leading and trailing edges of a pulse of length At at the same time of

receiving as shown in the time-height section of Figure 8. It is thereby appropriate to call

Ar as the size of a range cell as already quoted in Eq. 19. Echoes from distinct ranges

can be obtained by sampling the received signal at an interval of _ At. A sampling



42

intervaloflessthanAt produces overlapping regions between the samples, while a spars

sampling results in missing regions. It is therefore common to sample at an interval just

equal to At. The sampled time series provides a range (or usually, height) profile of the

atmosphere. We should note that the impulsive sampling intended by Fig. 8 does not

represent a realistic situation where the receiver has a bandwidth equal to that of the

transmitted pulse. In this case, an instantaneous sample of receiver output contains the

echo spreads over a duration of At. Although this effect broadens the range cell from a

rectangular shape of width Ar into a triangular one of width 2At, the 'half-power' size

of the cell is still given by Ar.

As we have seen, the signaI-to-noise ratio is proportional to the length of pulse At

for the case of a hard target. For the case of distributed targets, we need to take into

the account the linear proportionality of echo power on Ar as shown in Eq. 22, which

represents the number of scatterers in a range cell. The signal-to-noise ratio thus becomes

proportional to At 2, setting a severe restriction in improving the range resolution. For

example, dividing a single pulse into N sub-pulses with binary phase coding improves the

range resolution by N times without sacrificing the signal-to-noise ratio of a hard target,

while the same alteration offers the same improvement only at an expense of a reduction

of the signal-to-noise ratio to 1/N for the case of distributed targets.

4.2 The Doppler Principle

We have so far concentrated our attention only to the echo power. Physical meaning

of the echo power is, however, clear only for the case of incoherent scattering from the

ionosphere, for which case it can be interpreted in terms of the electron density. It is

difficult to make use of the echo power from the lower and the middle atmosphere in a

quantitative manner in terms of physical parameters of geophysical interests.

The Doppler shift of the echoes, on the other hand, has a great importance for these

regions _ well as for the ionosphere, because it is directly related to the motion of the

target, which is wind. The Doppler frequency shift of echoes from a moving target relative

to the radar is given by

fd ---- "_Jd, (38)

where Vd is the line-of-sight component of velocity vector v of the target relative to the

radar.

Since the maximum velocity encountered in the atmosphere is on the order of 100 m s-l,

Ira[ < 1 kHz for any frequency f of less than 1 GHz. A typical value of fa for 50 MHz band

is, for example, around 3 Hz, which corresponds to a line-of-sight velocity of 10 ms -l.
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Bandwidth oftransmittedpulsesis,on the otherhand, I00 kHz-I MHz correspondingto

the minimum lengthofsub-pulsesof1-10 #s. Itistherebyverydiflicult,ifnot impossible,

todetectsuch smallDoppler shiftofa pulserelativetoitsbandwidth from each received

pulse.

Instead,the method oftime-seriesanalysisisappliedtothe seriesofreceivedsignal

from consecutivepulsesatthe same range.Ifa stationarytargetisobserved,allreceived

pulsesshouldhave thesame phaserelativetothe transmittedpulse.Itisthen interpreted

thatthe receivedtime serieshas the DC component only,which means thatthe Doppler

shiftiszero.Next we suppose that the targetismoving at a sui_cientlyslow speed of

vd in the radialdirectionso that itdoes not move out ofa range cellintothe next one

withinthe periodofinterest.We examine samplesofechoesobtainedat the same range

cellfrom adjacentpulsesseparatedby an inter-pulse-period(IPP) ofT. Then the phase

differenceA_ between the two samples isgivenby

A_ = 2rrfdT = 4_rfTvd. (39)
c

This equation can be applied not only to a hard target but also to distributed targets as

fax as they move with a mean speed of Yd. The phase difference can be determined from

a pair of pulses, while the Doppler frequency shift fd can be directly derived by a spectral

analysis of the time series of samples taken from many pulses.

A limitation of this method arises from the requirement IA_bl < _r so that fd can be

determined without ambiguity, together with the one T > 2rm,,_/c which comes from the

restriction that we cannot transmit a new pulse before receiving the echo of the previous

pulse from the longest range rmax of interest. By combining these two requirements, we

obtain c2

Ivdlrm._< O' (40)

which gives the condition that both the range and the velocity of a target can be de-

termined unambiguously. Since the quantities on the left-hand side of this equation are

limited roughly by 100 ms -_ x 100 km= 10z m2s -1, this condition is usually satisfied for

a frequency of below about 1 GHz, which is the frequency used for atmospheric radars.

Considerations made above assumes that the echo is perfectly correlated in time, which

assumption is not valid for the case of the atmospheric radar, where echoes have finite

correlation time % due principally to random motion of scatterers within a scattering

volume. This correlation time is inversely proportional to the spectral broadening due to

the random motion and other observational effects, and given by

b be
ro .... (41)

at 2fay'
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where afand av denote thestandarddeviationofthe random motion interms ofDoppler

frequencyand radialvelocity,respectively,and b isa numericalcoefficientoforderunity

which isdetermined by the velocitydistributionof the random motion. For a Gaussian

distribution,b = 1.18.

The valueof av differslargelydepending on the height,sinceitisthe orderofmean

thermal motion of ionsof more than 1 kms -_ in the ionosphere,while itisthe mean

velocityofturbulenteddiesofthe orderofI m s-Iinthelowerand themiddleatmosphere.

For ionosphericobservation,forwhich cry;_ Vd,the Vdterm inEq. 40 shouldbe replaced

by _r,,which determinesspectralwidth and thus the minimum sampling interval.Itis

easilyunderstood thatthe conditionforunambiguous samplingisthen no more satisfied,

meaning that spectralinformationofthescatterersmust be derivedwithinan intervalof

order of re. A special technique called multi-pulse method was developed for ionospheric

observations, and has been widely used (e.g., Farley, 1969).

4.3 Velocity Field Measurements

As shown in Eq. 38, velocity of targets measured by a radar with the Doppler technique

is a line-of-sight velocity, which is the projection of velocity vector to the radial direction.

We will briefly examine here two distinct techniques of determining the three components

of the velocity vector: the Doppler-Beam-Swin9 (DBS) method and the Spaced-Ant_nna-

Dr/fts (SAD) method.

The DBS method makes use of multiple antenna beams each of which is oriented to

observes the radial velocity at a different direction. The velocity vector is computed from

the line-of-sight velocities from these directions. Here we need to make an assumption

that the velocity field is uniform in space over the volume which contains the range cells

used to compute a velocity vector. In the atmospheric radar application, it is common

to determine a velocity vector from line-of-sight velocities of range cells with the same

height assuming the uniformity only in the horizontal plane, so that a height profile

of the velocity vector can be obtained. This is because the horizontal velocity is usually

much larger than the vertical velocity in the stratified earth's atmosphere, thus making the

horizontal uniformity of the velocity field much better than in the vertical direction. Also,

the fact that the zenith angle of antenna beams is usually kept within about 30°supports

this assumption, in contrast to the case of weather radars, which use almost horizontal

beam directions,

The line-of-sight component of the wind velocity vector v = (v_, v_, vz) at a given
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heightisexpressedas

_]d = V • |

= v.cosO.+ vvcosO_+ v.cosO. (42)

where iisa unitvectoralongthe antennabeam direction,and 8.,#_,and Oz arethe angle

between iand the x,y,and z axis,respectively.Ifwe measure vd atthreebeam directions

il,i2,and 13which do not constitutea plane,we can obtainan estimateofv as

-' )
COSOzl , C060yl, COSOzl Udl

v= cosOz2, cosOy2, cosO_2 vd2 • (43)

COSOz3, C06_3, C06_z3 _d3

Ifwe observemore than threedirections,then theestimateofv can be determined in

a least-squaresmanner, with which the residualgivenby the followingisminimized:

rn

2
e_ = _(V_ COSOz;+ vvCOS0vi + vz COSO_i- Vdi) 2, (44)

i=l

where m is the number of beam directions. The necessary condition for v to give the

2 with respect to all three components of v areminimum is that partial derivatives of E_

zero: aE--_2_= 0 (j = x, y, z). (45)
av i

This set of equations can be solved in terms of v as

_2cos 20_i, _ cos 0=icos 0vi, _ cos 0._ cos 0. E Vd_COS0=_
V= E COS 0yi COS 0ti , E COS2 0yi, ECOSOyicOSOzi EYdiCOSOyi , (46)

E cos0. cos0_. E cos0. cos0_. E cos2 0. E vd_cos0.

where the summations are taken for i = 1 to m.

A special case of this type of multi-beam measurements called the Velocity-Azimuth

Display (VAD) method, which uses beam directions with a fixed zenith angle 0 and

uniformly distributed azimuth angles Oi. The line-of-sight velocity Vd of Eq. 42 is then

rewritten as

Vdi = Vh sin 0 sin(el +/3) + v. cos0, (47)

where vh and/3 are the amplitude and the direction of the horizontal component of r,

respectively, and given by
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Fig. 9. Coordinates of the Velocity-Azimuth Display method (left panel), and an

expected variation of the line-of-sight velocity vd as a function of azimuth ¢ (right

panel).

Figure 9 illustrates coordinates of the VAD method and an expected variation of vd as

a continuous function of azimuth ¢. The thin curve on the right panel represents a case

where the horizontal component of the velocity is toward the x axis, and the thick line

shows a general case.

As understood from this illustration, the vertical component of the velocity is indi-

cated by the DC component, and the horizontal component by the amplitude and the

phase of the sinusoid. The fitting procedure given by Eq. 46 thereby reduces to fitting

a sinusoid with a DC offset to line-of-sight velocities plotted versus azimuth angle. Any

inhomogenuityof the velocity field is indicated by deviations of the curve from a sinusoid.

Although there is nothing superior, in a mathematical sense, of the VAD method

compared to other choices of beam directions, there are practical advantages which made

the method popular: First, this method is suited for radars with a mechanically steered

aperture antenna, of which azimuth and zenith angles are often driven separately. This

is the case for most of weather radars, although it is not for phased-array antennas with

electrical or electronical steering often used for atmospheric radars.

Secondly, quality of data is readily visualized on a display without numerical compu-

tations. Systematic error due to an undesired hard target at some direction, for example,

can be picked up easily by human intelligence, but it may require an elaborated software

for a computer to find it out.
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Thirdly, a systematic error due to specular echoes from the vertical direction can be

avoided with the VAD method by choosing the zenith angle 0 properly. The specular

echoes from horizontally stratified layers often dominate over isotropic scattering from

turbulence (Gage and Green, 1978, R6ttger and Liu, 1978), which make the apparent

zenith angle of the antenna beam direction smaller than the physical one for beam di-

rections near the vertical direction. This effect is most prominent for lower stratospheric

region, where data from beam directions with small zenith angles must be treated with

care (Tsuda et al., 1986).

This caution applies, of course, to all DBS observations. On the other hand, use of

too large zenith angle makes the assumption of a uniform velocity field unreliable.

The alternate technique of the Spaced-Antenna-Drifts method makes efficient use of

this specular echoes in determining horizontal velocities. It was originally developed to

study characteristics of irregularities in the lower ionosphere (e.g., Ratcliffe, 1956), and

applied to observations of velocities in the middle atmosphere (e.g., Vincent el aL, 1977)

and lower atmosphere (e.g., RSttger and Vincent, 1978). Its principle is to measure a

spatial correlation of received signal patterns from a reflecting layer with spaced antennas

on the ground.

For a given angular pattern of the echo power from the reflecting layer, the spatial

correlation function on the ground is given by a two-dimensional Fourier transform of the

angular pattern as (Ratcliife, 1956)

Sl = sin 01

S_ = sin02 -

where W(St, $2) isthe power patternofthe echo with respectto the zenithangle01and

02 measured in z-z and y-z plane, respectively. Note that the integrand takes a real value

within a range (-1,1) for $1 and $2. If W is symmetrical with the azimuth angle, which

is valid for most of practical cases, Eq. 48 can be rewritten in a polar coordinates (8, ¢)

as

p(a) = fo ® ff, W(S)exp(2_iaScos¢)SdCdS, (49)

where S = sin 0, and a = _/(x _ + y_)/)_ is a distance measured in units of the wavelength.

The integral with respect to _b is the Bessel function of zero order Jo(27raS) so that

p(a-) =:2_ fZ W(,.,q)Jo(27raS)SdS. (50)

For randomly distributed irregularities in a thin horizontal layer at a height z = h,

the power flux in the angular range 0 to 0 + d0 depends only on the antenna pattern of
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Fig. I0. normalizedcorrelationfunctionp(a)betweenfluctuationsrecordedby

two receiversseparatedby a distancea. Itisassumed thatthe irregularitiesaxe

isotropicand randomly distributed,and thatboth thetransmittingand receiving

antennashave a patternofexp(-sin20/sin20o)(afterBriggsand Vincent,1973).

the transmittingand receivingantennas,and givenby (Briggsand Vincent,1073)

IV(O)dO oc h-2T(O)R(O) sin 0 cos OdO, (51)

where T(O) and R(O) are the transmitting and receiving antenna patterns, respectively.

Figure 10 draws examples of the correlation function for Gaussian antenna patte_-ns with

different width, but assuming the same pattern both for transmission and reception (after

Briggs and Vincent, 1973).

We have so fax considered the spatial correlation only. As implied by Eq. 41, the

received signal is also characterized by its temporal correlation function, which is a Fourier

transform of the frequency power spectrum. The spatial and temporal correlations can

be treated separately for the case of a stationary pattern, while they are mutually related

when the layer, and hence the pattern, has a mean motion. A generalized method called

the full-correlation analysis was developed by Briggs (1984) in order to retrieve the velocity

and other information from such correlation functions. We now introduce the space-time

correlation function of the received signal pattern f(x, y, t) on the ground plane:

p(_, rh r) = (f(x, y, t)f(x + _, y + rh t + r))
i/(x,y,t)l 2 , (52)
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where 0 means to take an ensemble average, which is often replaced by a temporal average

in practical applications. This correlation function represents the statistical relations of

the signal pattern at two points with a separation (_, r/) on the ground and with a time

difference of r. We assume that for a stationary pattern, the correlation function has a

form

p(_, rl, r) = p(A_ 2 + By 2 + Kr 2 + 2H_o). (53)

This assumption implies that the spatial and temporal correlations have the same func-

tional shape, but the shape is arbitrary. Although this is not real in a rigorous sense,

it is an acceptable approximation for most of correlation functions at least around their

origin.

We next suppose that the pattern is moving at a velocity V = (Vz, Vv). If we move the

coordinates also at this velocity, then Eq. 53 remain unchanged for the moving coordinates.

the expression for the stationary coordinates is therefore obtained after a linear transform

of coordinates that

p(_,77,r) = p{A(_ - V.r)2+ B(O - V,r)2+ Kr 2+ 2H(_ - V_r)(r/-V_r)}, (54)

which is rewritten as

p(_, r/, r) = p(A_ 2 + Brt 2 + Kr 2 + 2F_r + 2GrF + 2n_r/). (55)

If we have two spaced receivers, we can determine the shape of the cross-correlation

as a function of v for a given set of ((, ,7). Since Eq. 55 is a function of a second-order

polynomial of r, it is possible to determine three unknowns by fitting it to the measured

cross-correlation function. It is thus clear that three spaced receivers, which provides us

two sets of independent cross-correlation functions, is sufficient to determine all coefficients

in Eq. 55. If we have more than three receivers, we can determine the coefficients in a

least-squares manner as is the case of the DBS method.

Once the coefficients are determined, we can retrieve the velocity vector V from these

coefficients. By comparing Eqs. 54 and 55, we obtain

AV_+HV_ = -F (56)
BV, + HV, = -G

These equation can be readily solved to give (V,,Vv). The vertical component of the

velocity vector needs to be determined separately from the Doppler shift of the echo.

An important point which needs to be mentioned is that an apparent velocity V'

calculated from the distance between the receivers and the time delay which gives the

maximum value of the cross-correlation function does not agree with the true velocity
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Fig. 11. Contours of equal correlation versus distance _ and time delay r. The

left panel shows a ease with no mean wind, and the right panel is with a uniform

wind. The true velocity V estimated with the full-correlation analysis is denoted

by the solid line. The dashed line indicates the apparent velocity V' determined

from the time delay of maximum correlation.

V ofthe pattern,which iscorrectlyestimatedwith the full-correlationanalysis.These

two time delayscoincidewhen the temporal correlationofthe patternisperfect,which

means thatthe patternisdriftingwithoutevolvingwith time,whilea finitecorrelation

time significantlyaffectstheshape ofthe cross-correlationfunction.

Figure11illustratesthisdifferenceschematically.The leftpanelshows concentriccir-

cleswhich representcontourlinesofequalcorrelationversusdistance_ alongthebaseline

and the time delay r for a case of no mean motion. The abscissa and the ordinate are

normalized by the correlation distance and the correlation time of the pattern, so that the

contours become circles instead of ellipses. If a mean motion of V is added, the contours

deform into ellipses as shown in the right panel. Note that the solid line which indicates

the true velocity V is drawn by connecting tangential points of the ellipses with horizontal

lines as implied by Eq. 54.

Since the cross-correlation function with respect to v at a distance _ is given by the

values of contours along a line of constant _ (i.e., a vertical line), V' obtained from

its maximum has a slope indicated by the dashed line in the figure, which is drawn by

connecting tangential points of ellipses with vertical lines. The difference between the true

velocity V and the apparent velocity V' therefore becomes larger as V becomes smaller.

One of reasons that the full-correlation analysis is widely used is that it is free from this
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Fig. 12. Motion of a reflecting layer and its echo pattern on the ground.

:ind of error.

We should also note that the velocity V we have discussed is the velocity of the pattern

_n the ground, which is exactly twice that of the layer as schematically shown in Figure 12.

:rhis is intuitively understood by considering the motion of a shadow of a screen projected

on a wall where the light source, the screen and the wall are arranged with equal intervals.

It is, of course, possible to derive this relation mathematically by examining the motion

of an interference pattern on the ground due to echoes from two or more targets moving

horizontally at the same velocity.

From a practical point of view, the DBS and SAD methods have their own advantages

and disadvantages which are difficult to compare on the same ground. The advantages of

the SAD method are that the complete velocity vector can be determined from a single

volume of the target, and that the enhanced specular echoes from the vertical direction

can be used efficiently. However, it requires at least three sets of receiving antennas and

receivers with equal capability. The DBS method requires, on the other hand, a steerable

antenna, which is not necessary with the SAD method. The accuracy of the velocity

estimates is known fairly well for the DBS method, while it has not yet been studied in

details for the SAD method, which is anticipated to have a variable accuracy depending

on the velocity itself.
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