
?' 3-13-

(NASA-CR-187953) APPLICATIONS OF ARTIFICIAL
INTELLIGENCE TO MISSION PLANNING Final
Technical Progress Report, period ending 31
Aug. 1990 (Alabama Univ.) — *3£-p- CSCL 098

N91-26806

G3/63
Uncl as
0332835

• J
I

The University of Alabama in Huntsville



Applications of Artificial Intelligence
to Mission Planning

FINAL REPORT

fo r
Mission Analysis Division

Systems Analysis and Integration Laboratory
George C. Marshall Space Flight Center

by
Donnie R. Ford

Stephen A. Floyd
and John S. Rogers

The University of Alabama in Huntsviile
Huntsville, AL 35899



Table of Contents

1.0 Introduction 1
2.0 Object-oriented Programming Task 3

2.1 Task Statement 3
2.2 Task Conditions 3
2.3 Task Approach 5
2.4 Task Results ....10

3.0 Rule-Based Programming Task 11
3.1 Task Statement 11
3.2 Task Conditions 11
3.3 Task Approach 11
3.4 Task Results 14

4.0 Algorithms for Resource Allocation 17
4.1 Task Statement 17
4.2 Task Conditions 17
4.3 Task Approach 17
4.4 Task Results 23

5.0 Connecting A Symbolics to A VAX 60
5.1 Task Statement 60
5.2 Task Conditions 60
5.3 Task Approach 60
5.4 Task Results 61

6.0 FORTRAN from Lisp 62
6.1 Task Statement 62
6.2 Task Conditions : 62
6.3 Task Approach 62
6.4 Task Results 63

7.0 Trees and Forest Task 64
7.1 Task Statement : 64
7.2 Task Conditions 64
7.3 Task Approach 64
7.4 Task Results 66

8.0 Software Data Structure Conversion 69
8.1 Task Statement 69
8.2 Task Conditions 69
8.3 Task Approach 71
8.4 Task Results 75

9.0 Software Functionality Modifications and Enhancements 76
9.1 Task Statement 76
9.2 Task Conditions 76
9.3 Task Approach 76
9.4 Task Results 78

10.0 Portability of Resource Allocation To A Tl MicroExplorer 81
10.1 Task Statement 81
10.2 Task Conditions 81
10.3 Task Approach 81
10.4 Task Results 82



11.0 Frontier of Feasibility Software System 83
11.1 Task Statement 83
11.2 Task Conditions..... 83
11.3 Task Approach 84

Activit ies 84
Resources 85
Graphical Representation of Search Space 86
State Space Search Methods 88
Modified Breadth Search 89

11.4 Task Results 91
12.0 Conclusions 92
Appendix A Code Listing, for Object-Oriented Programming Task
Appendix B Symbolics Code Listing for the Multiple Pass Multiple

Resource Allocation Program
Appendix C Vax Code Listing for the Multiple Pass Single Resource

Allocation Program
Appendix D Symbolics Code Listing for the Multiple Pass Single

Resource Allocation Program
Appendix E Symbolics Code Listings for Flavor Definitions of

Object Structures .
Appendix F Symbolics Lisp Code for Modified Single Allocation Step

Process
Appendix G Symbolics Lisp Code for Frontier of Feasibility System



1.0 introduction
The scheduling problem facing NASA MSFC Mission Planning is

extremely difficult for several reasons. The most critical factor is
the computational complexity involved in developing a schedule. The
problem space is combinatorially explosive. The size of the search
space is large along some dimensions and infinite along others.
There can be infinite number of choices to assign activities, and a
large number of choices of crew assignments to activities.
Additionally, the goal of the scheduling process is to produce a
"good" schedule. This is ill-specified and encounters a number of
often conflicting requirements. These requirements can include
efficient use of resources, no time or resource constraint
violations, and maximum production during a specified time period.
Interrelational requirements between activities, the performance
placement of each of the activities, and resource usages can make
constraint violations difficult to predict and avoid.

It is because of these and other difficulties that many of the
conventional operation research techniques are not feasible or
inadequate to solve the problems by themselves. Therefore, the
purpose of this research is to examine various artificial intelligence
techniques to assist these conventional techniques or replace them
entirely.

In June 1988, the Mission Analysis Division of the Systems
Analysis and Integration Laboratory of the Marshall Space Flight
Center (MSFC) of NASA tasked UAH to study the mission planning
activities and how artificial intelligence techniques may benefit
these activities. The specific tasks to be performed were (1)
identify mission planning applications for object-oriented
programming and rule-based programming; (2) investigate
interfacing Al dedicated hardware (Lisp machines) to VAX hardware;
(3) demonstrate how Lisp may be called from within FORTRAN
programs; (4) investigate and report on programming techniques
used in some commercial Al shells, such as KEE; and (5) investigate
and report on algorithmic methods to reduce complexity as related
to Al techniques. The results of this study, the prototype computer



software and their 'operational instructions were reported to NASA
MSFC in the first Interim Report (UAH Research Report JRC 90-07)
and presented in the form of an oral presentation in November 1989.

At the conclusion of this oral presentation and during
subsequent meetings with the MSFC staff new goals were set for
continuing research on the previously defined tasks. These new
goals focused on two areas: software and technique. Specific
modifications and enhancements to prototype resource allocation
software have been incorporated to increase its functionality and
performance capabilities. Coupled with the modified software, new
Frontier of Feasibility traversing techniques have been developed
and evaluated A description of each of the alterations and additions
to the prototype software and differing techniques were detailed in
the second Interim Report {UAH Research Report JRC 90-48) and
were presented to MSFC personnel in the Summer of 1990.

The following is the Final Report for research conducted under
NASA Grant NAG8-717. UAH would like to thank the NASA MSFC
Mission Planning personnel for thier support and cooperation during
the conduct of this research. The contents and conslucions is the
sole responsibility of the authors and implies no official position on
the part of tire National Aeronautics and Space Administration.



2.0 Object-oriented Programming Task

2.1 Task Statement

The purpose of this research was to investigate some of the advantages

and disadvantages of using an object-oriented paradigm to assist in solving the

scheduling/resource allocation problem that is peculiar to MSFC NASA Mission

Planning. This is further targeted to the Space Station effort. In order to assist

in this task, the decision was made by UAH personnel to develop a

demonstration prototype of the MSFC NASA experiment and payload scheduler

using the object-oriented paradigm. This work was conducted by Dave Brown

and Dr. Stephen Floyd.

2.2 Task Conditions

The conditions of this task are that the prototype was developed using a

Symbolics 3600 machine, that the object-oriented paradigm (Flavors) that is

presently supported by this platform was appropriate, and the experiment

scheduling experience and data gained from the Spacelab missions was an

appropriate starting point for this prototype. Also, this task excluded

consideration of between experiment constraints, and focused on within

experiment constraints (time and resources).

Because of the newness of the subject, it is appropriate to preface the

following sections with a brief introduction to object-oriented programming.

Object-oriented programming is becoming popular and important in many

areas. This term implies that behavior is associated with objects, usually in the

form of code. Thus, each object can possess particular knowledge needed to

function in its world. Consequently, programs become a collection of objects



rather than lines of code. Other terms relating to objects are inheritance,

message, methods, classes, and metaclasses. Definitions of these terms follow.

Class - a template from which objects are modeled or created.

Objects are usually clustered based on behavior, thus a taxonomic

relationship can be developed from this. Behavior can be

attributed to an individual object or to the class of objects. Classes

control the manner in which objects are structured.

Inheritance - the ability of an object to automatically share

behavior between classes.

Message - the means by which an object may be requested to

perform a certain behavior or action. This is the fundamental

control mechanism and is the hallmark for object-oriented

programmming.

Method - an actual implementation of a message

Metaclasses - the means for classifying objects and placing

them in a hierarchy for inheritance purposes. Metaclasses control

the manner in which objects in subclasses are represented.

All of these concepts are needed to have an object-oriented paradigm or

programming language.

An object is composed of slots that hold the code and/or information that

makes the object unique and a member of a particular class. What is in the slot

is called the value of the slot. Thus, the structure of the object is the collection of

slots that compose the object. Objects can inherit slots and/or values from the

classes that are above it in the hierarchy of inheritance. Consequently, the

terms parent and child are used when discussing inheritance. An object can

have more than one parent. Also, an object or object class can have behavior

that is not inherited.



When an object is created, it inherits its structure from its parents, and is

referred to as an instance of a particular class. There are various inheritance

mechanisms that control what exactly is passed to children. These can be

simple or very sophisticated. These mechanisms are located at various levels

of the inheritance hierarchy.

The advantages of using object-oriented programming are varied, but the

most cited are (1) information hiding, (2) reuseability of code, (3) restricted

visibility, and (4) ease of adding program functionality. Some of the

disadvantages are (1) size of the program, (2) no standard language, and (3)

training in object-oriented programming.

2.3 Task Approach

The approach taken in this task was to develop a demonstration

prototype to test the desirability of object-oriented programming for the

scheduling problem. This prototype was developed to handle a subset of the

Mission Planning scheduling problem and used experiment data from the

Spacelab project. Everything involved in the scheduling process that was

modeled in this prototype was represented as objects. The following are the

items treated as objects in the prototype:

Resources (durable, consumable, non-depletable)

Crew members

Targets - locations on earth

Attitudes - the orientation of the space vehicle with respect to the
earth

Experiments - this includes the general characteristics of an
experiment and not specific characteristics of individual
experiments



Performance - one complete iteration of an experiment

Step - one operation of a performance. These were divided into
startup, normal, and shutdown

timeline - divided into seconds

Other bookkeepping items and the interface for the program were also handled

as objects, thus, the program is completely object-oriented.

An interactive resource editor and display mechanism was designed and

partially implemented. Currently, the editor handles crew, target, attitude,

consumable, and durable resources. The editor allows new resources in these

categories to be defined, as well as existing resources to be modified. This

includes items, such as quantity available or time period available.

An interactive experiment/performance/step editor has been partially

designed. Major work still needs to be done in this area, as most of the

functions are stubs.

The heart of the scheduling mechanism has been designed and

implemented, but not thoroughly tested. A larger test set of data should be used

for a more rigorous test. The data used to test the prototype was some small

subsets of Spacelab experiment data. This included eighteen experiments with

their associated characteristics.

At present the prototype has the ability to schedule experiment data that

has been manually entered into a file structure on the Symbolics. Also, the

prototype uses the "front-end loading" scheduling strategy. This means that the

first available time that an experiment can be scheduled is used immediately

and no other locations are determined as suitable.

Scheduling with respect to this prototype consists of the following steps:

(1) selection of an experiment to be scheduled, (2) selection of a time period to

begin the first step of a performance of the experiment, (3) determination of start



time for each step, and (4) step scheduling. Determination of the start time for a

step consists of an examination of each step, and determination of the earliest

and latest start time of the next step. Each step must be examined in order to

determine whether the performance can be scheduled at the time period

specified. The determination of the start time for the next step is based on

duration and delay factors. The mechanism for doing this is essentially a depth

first search with backtracking. When a feasible set of times has been identified

that satisfies all resource constraints and time constraints for the step, then step

scheduling is entered. At this time, resources are decreased, and linkages to

objects representing the time periods are made. The portion dealing with the

depth-first search with backtracking has been partially implemented but not

sufficiently tested.

The prototype should have the ability to automatically schedule the

desired number of performances for each experiment, resources permitting,

according to several schemes. The user should control which scheme is

actually used. This concept was demonstrated in the earlier version; however,
r

these schemes have not been implemented in the latest version of the

prototype.

At present, the prototype does not allow for any interaction with the user

during the scheduling process. Ideally, interactive scheduling is a desired and

necessary feature for the scheduling process. However, the user does have the

ability to select an experiment and a time period and attempt to schedule a

performance of the experiment to start in the selected time period after a

schedule has been generated. Also, the user is allowed to specify a time

period, and nominate a list of performances which can be scheduled to start

during that time period. The prototype also allows the user to specify an

experiment, and nominate a list of time periods in which a performance of that

7



experiment can be started. In all cases, determination of startup and shutdown

steps is accomplished with consideration being given to all other constraints.

Other desirable.features for future prototypes that have begun being

developed are data entry, automatic scheduling, interactive scheduling, and

data output (hardcopy, file, and display). Data Entry will include mechanisms

for interactively entering all types of data required , as well as mechanisms to

read the data from files. To some extent, yet to be determined, the user will be

able to control which data elements are to be interactively entered and which

are to be read from files. Currently, input data is thought to consist of

experiments, together with their steps, to include startup and teardown steps;

resources, with available quantities and time periods (as appropriate); and

other mission control data, such as mission duration, desired level of time

resolution.

Resources include crew members, targets, attitudes (of the platform),

durable goods (those items are available in fixed quantities throughout the

mission and are not expended by use), consumable items (those items

available initially in some fixed quantity, and which are expended by use, such

as quantities of chemicals), and non-depletable items (those items which are

generated aboard the platform at some rate, and which may or may not be able

to be stockpiled for later use, such as electricity from fuel cells). Resource

objects capture how much of each resource is available during each time

period (defaulted to 1 per period for each crew member, target and attitude).

Non-depletable goods object has not been designed yet.

Experiments are to be represented as a series of steps. Steps are of

three varieties - normal, startup, and shutdown. A performance is an execution

of the ordered set of normal steps. The startup steps will be conducted before

the performance which occurs first, and the shutdown steps will be executed

8



after the performance which is conducted last. Note that these are not the same

as the first performance scheduled and the last performance scheduled. The

automatic scheduling and un-scheduling of startup and shutdown steps is

necessary to facilitate interactive scheduling. Currently, an experiment has the

following attributes; a name, minimum number of performances to be

performed, maximum number of performances to be performed, desired number

of performances to be performed (to be used in automatic scheduling), the

experiment window (time between start of first step, earliest performance and

end of last step of latest performance), and minimum and maximum delay times

between performances. Performances include a performance window (similar

to experiment window, but dealing with normal steps only). Steps include a

maximum and minimum duration, a maximum and minimum delay until next

step, and lists of resources required. Additionally, steps include a flag for crew

lock-in (that is, when a crew member(s) has been selected to perform a specific

step of one performance, that same crew member(s) must perform the same

step of all other performances of the experiment). The step also includes the

ability to specify subsets of the crew from which members must be selected

(independent of crew lock-in). It is recognized that the step must have the ability

to be scheduled with respect to some other step of another experiment, but the

capture mechanism for this data has not been determined.

Automatic scheduling involves the selection of different strategies and

being able to schedule from user specified files. Interacitve scheduling involves

adding the ability to interact with the prototype during the actual scheduling of

experiments. Finally, data output is the ability to generate various forms of the

schedule for the user. This includes hardcopy, file storage, and display. A

mechanism to save the input beyond the working session still must be

developed. This will not be accomplished until the mechanisms for reading in



data files are completed, as it is intended that the output will have the same

format as the input to simplify data loading.

2.4 Task Results

There have been two versions of the prototype scheduling system

developed. The latest version has more functioality than the first. The

development of these two versions have served to highlight one of the

disadvantages of object-oriented programming; that is, that the size of the

program becomes extremely large during execution. In treating everything as

an object, there is no way to know with any certainty how large the program will

become. The main problem in this area stems from the way that the timeline is

handled. The timeline was broken down into seconds with each second

becoming an object. One can readily see that it does not take a very long time

span to cause an enormous number of objects to be created. An associated

problem with this is that during the bookkeepping'process each time interval

must be checked for resources available and other updating functions. Another

method of handling the timeline must be developed.

On the other hand, treating the experiments as objects has much

potential as a solution to the scheduling problem. More work should be done to

determine the appropriate level of grandularity for these objects. That is, should

just the experiments be objects or should each step be an object? •



3.0 Rule-Based Programming Task

3.1 Task Statement

The purpose of this research project was to develop a research prototype

of a system to schedule an experiment payload using the Space Station as a

target. The problem used was a very small subset of the payloads for

Spacelab. Also, the prototype deals with only two resources. An indirect

objective of this research was to study the feasibility of using Knowledge

Engineering Environment (KEE) to develop and implement a small prototype

scheduler. This work was conducted by Dr. Fan Tseng and Dr. Rajeesh Tyagi.

3.2 Task Conditions

The prototype was built on Symbolics 3620 using Knowledge

Engineering Environment (KEE) version 2. Symbolics 3620 is a Lisp machine

marketed by Symbolics Incorporated, Cambridge, Massachusetts, and KEE is a

commercial knowledge-based system development tool marketed by Intellicorp

Incorporated.

3.3 Task Approach

KEE is a set of software tools designed to assist system developers in

building their own knowledge-based systems. The main features of KEE

include: frames for the representation of knowledge, a rule system for rule-

based reasoning, graphics for user interface, and object-oriented programming.

Frame-based representation is a means of representing objects and their

attributes. A frame includes all the knowledge about a particular object, stored

and organized in a pre-defined manner. The frame is composed of slots (or

11



fields) that contain specific information relevant to the frame (or object). For

example, the frame for a generic experiment may contain four slots as follows:
SLOT VALUE
Agency NASA
Duration 20 hours

Power 1200 kilowatts
Runs 1

The prototype scheduler is comprised of three components as shown in

Figure 1. The components are: a knowledge base, a model base, and a user

interface. The knowledge base possesses information on various experiments

and their attributes (like the time needed to run an experiment and peak power

consumption during the run). It also contains information on availability of

resources needed to run the experiments (like power supply). The model base

contains a set of scheduling rules that may be used to develop a schedule for

the experiments. And the user interface provides the dialog between the user

and the system.

Models
Base

Knowledge
Base

User
Interface

Figure 1. The basic structure of the prototype.

12



Given the time constraints to complete this study, there wasn't sufficient

time to develop a prototype with all the capabilities one would have desired.

Since the focus of this research was on the suitability of using KEE for

developing the scheduler, it was decided to include only a set of basic features

that would be sufficient to allow a comprehensive evaluation of KEE's ability to

integrate all the three components mentioned above. Therefore, the knowledge

base contains information on only ten experiment and two resources. And a set

of four scheduling rules constitute the model base.

The knowledge base is organized in the form of frames. Each

experiment is represented by a frame. Each frame consists of slots

corresponding to the attributes of the experiment. Figure 2 shows the frame

corresponding to an experiment called "Crystal Growth". The experiment is

Frame for Experiment: "Crystal Growth"
SLOT VALUE

Agency NASA

Duration 20 hours

Power 1200 kilowatts

Runs 1

Starting Time

Ending Time

FIGURE 2. An example data structure for the prototype.

sponsored by NASA and is to be run only once, the experiment run requires a

power supply of 1200 kilowatts over 20 hours, the duration of the experiment.

The starting and ending times for the experiment are to be determined by the

scheduling criterion selected by the user to generate the schedule, and are

automatically placed in their respective slots.' In addition to frames for the

experiments, there are two frames for the two resources considered in the

prototype, namely, mission length and power supply.

13



The Model Base contains a set of scheduling strategies that may be used

to generate a schedule, based on the objectives and/or requirements of the

user. These strategies are: (1) Decreasing Run Time, (2) Increasing Run

Time, (3) Decreasing Power Usage, and (4) Increasing Power Usage. These

rules have been implemented in the form of Lisp functions which are executed

from KEE.

The user interface provides the dialog between the user and the

scheduler in the form of windows, menus, and graphical displays. The user

controls the execution of the system by specifying the strategy to be used in

generating a schedule. The user may also perform what-if analyses. This

analysis may use any of the other scheduling rules to provide alternate

schedules. It may also be used to evaluate the effects of changing experiment

parameters; e.g., varying the duration of an experiment. Any schedule

generated will result in starting and ending times for the experiments being

placed in their respective slots. It also produces a chart displaying any unused

power.

3.4 Task Results

KEE allows for knowledge bases to be created fairly easily using the

frames representation. It also displays a pictorial representation of the

knowledge base.

Lisp functions can be executed from within the KEE environment. This

feature was used to implement the scheduling rules of the prototype. It was

observed, however, that KEE was relatively slow to execute any user-written

Lisp code.

14



The user's manuals were very hard to follow for someone using KEE for

the first time. No complete example is worked out in the manual, which makes it

difficult to get started for a beginner. Unfortunately, for the KEE installed at

UAH, none of the demos provided completely worked.

Toward the end, when the prototype was close to completion, a new

version of KEE was installed; however, it wasn't fully compatible with the old

version and the prototype would not work on it. The people who worked on

building this prototype had an extensive software-development background,

though not specifically with Lisp or KEE. Their experiences with KEE indicate

that for someone with such a background, it is not easy to develop a proficiency

in using KEE in a short period of time. The knowledge base can be constructed

rather easily using KEE. Building a scheduler, however, would necessitate

strong programming skills in Lisp since all the scheduling algorithms and the

Gantt charts would have to be implemented by the developer in Lisp. When

selecting a software tool, one must consider the portability of the software tool,

both in terms of transferability to a different hardware system, as well as in terms

of conversion to another software system. While it may not be possible to

transfer and re-compile Lisp code developed on KEE onto a different

hardware/software system, the same cannot be said of the knowledge base

developed on KEE. To restate a point mentioned in an earlier section, it was

found that execution of Lisp functions in KEE environment is appreciably slower

than in operating system environment. The knowledge base developed for the

scheduler prototype comprised only a small number of experiments. The

response time of the prototype of KEE was not impressive at all. We believe

that if the knowledge base were to be expanded to include a more realistic set

of experiments, the performance of the prototype would deteriorate even further.

In light of the above conclusions, it is recommended that a comprehensive

15



system like the scheduler not be developed using a commercial expert system

tool. Instead, given the current state of the art technology regarding Lisp-based

machines, it would be prudent to develop a mainly Lisp-based system. Such a

system would be significantly more portable.

16



4.0 Algorithms for Resource Allocation

4.1 Task Statement

The purpose of this research was to study the feasibility of using an

algorithmic approach to provide a solution to the resource allocation problem.

The solution to this problem would become the starting point for an experiment

scheduler. This primary purpose of the resource allocation problem is to speed

up the development of good schedules for the NASA MSFC mission planning

process. Also, another purpose is to provide the capability of rapidly evaluating

alternative schedules.
•v

4.2 Task Conditions

The conditions of this task were intentionally left open ended. The main

constraint was that data from the Spacelab missions be used for testing and

developing the algorithms. This data was not actual data but was

representative of the types that would need to be handled by the algorithms.

The problem size was kept small for development and testing purposes. The

other consideration was that performance of the algorithm on the computer

should be sufficient to handle an expanded data set. Finally, the Symbolics lisp

machine was used to develop the prototype programs and Common Lisp was

not strictly utilized.

4.3 Task Approach

There are many subtle differences between scheduling and resource

allocation; however, the main difference is basically granularity. Scheduling is

more detailed and strictly adheres to any resource or mission constraints than

does resource allocation. Resource allocation considers constraints in ani

17



aggregate manner, that is, the area under a curve. The objective of these

resource allocation algorithms is to maximize the usage of the area under the

curve only. Other relationships and constraints are ignored in this process but

are handled by the scheduler.

The algorithms were developed by MSFC Mission Planning personnel or

by UAH personnel after consultation with the Mission Planning personnel.

There are two that are discussed in this report. These are the Free Expansion

Algorithm and the Multiple Pass Algorithm.

The Free Expansion Algorithm was initiated by Mr. James Lindberg of

MSFC. It is basically a controlled expansion of a tree where each node

represents a combination of experiments. The objective is to find the "best"

combination without exceeding the amount of resource available.

This algorithm requires that a starting point be provided. The first step

was to determine the feasibility of the starting point. If the starting point is

feasible, then the algorithm is as follows:
(1) Add starting point to feasible solutions
(2) Expand the starting point
(3) Is the point feasible?

Yes, continue.
No, prune this branch and choose another point.

(4) Add point to feasible solutions
(5) Expand point
(6) Repeat steps 4 and 5 until all branches are pruned.

(7) Repeat steps 4, 5, and 6 until all branches are pruned.

(8) Stop when the tree is exhausted.

This is the general algorithm; however, some points need to be explained. One

is how a point is expanded.

Point expansion is best explained using a simplistic example with

illustrations. Assume that there are three experiments and each experiment can

18



have a maximum of four performances during the mission. Also, assume that

the starting point is one performance of each experiment. This can be

represented as (111). This makes the graphical illustration easier to use. Thus,

the root of the tree is (111) or graphically

O 111

To expand this point, certain rules apply. Each child can only have one

performance level changed. Also, subsequent children can only change the

performance level that was changed to generate them or any successive

performance level. Figure 1 illustrates the fist rule using the assumed root

node. Here each performance level is changed to create three new nodes or

children. This is also referred to as a generation or level when considered in

aggregate. This is fairly simple and straight forward; however, the second rule

is not as apparent.

111

112

Figure 1. Rule 1 of expansion of a point.

This is illustrated in Figure 2. Here a portion of the tree in Figure 1 is

used to illustrate the second rule. The first child (211) of the starting point is

used and expanded. The expansion produces three children. Because this

point was created by changing the first performance level, all the performance

levels can be changed to create children. If the second child is considered,

19



then only the second and third performance levels can be changed. Thus, the

further right a node is in the tree, the less children it can have. Or stated another

way, the majority of the children will occur in the left-most branch of the tree.

Figure 3 illustrates this point very well.

211

311 I J 221 V J (. ) 212

Figure 2. Rule 2 of expansion of a point.

Using rules one and two will generate a very neat and orderly tree. This

allows the tree to be searched in an orderly fashion for the points of infeasibility.

When all branches are searched and each point of infeasibility is established,

then the frontier of feasibility is established. This is important for the decision

maker when alternative solutions are a requirement.

The final rule for expansion is that the performance level can be changed

by only one performance at a time. This is not as important as the other two

rules and it has been found that it may be better to relax this rule at times. More

research needs to be done in this area.

Using this algorithm, a model was developed and functions were written

on paper; however, none of these were encoded nor tested on a computer. It is

believed that this algorithm has some potential, but it was determined that other

algorithms may be more appropriate. The reason for this is that this algorithm

will conduct an exhaustive search of the tree. This is an unacceptable process

due to the amount of time required to search a tree that represents a realistic

20



data set. Thus, work was stopped on this algorithm and a new algorithm was

developed.

The new algorithm was also initiated by Mr. James Lindberg of MSFC

and is called the Multiple Pass Algorithm. The first pass is made with the

objective being to allocate resources to the minimum number of performances

required for each experiment. The second pass is made to fill-in any empty

spaces with extra performances of the experiments.

This algorithm requires that the minimum number of performances for

each experiment be provided with the data set. Also, the time per performance,

the power required, and mission duration are given. From this information, a

prioritized list based on power required is generated. The list is in descending

order of power required. The algorithm is as follows:
' (1) remove the first experiment from the list.

(2) allocate the resource to this experiment beginning at time
zero.

If amount available is > amount needed, continue.
If amount available is < amount needed, go to (5).

(3) create a new time interval using the duration of the
experiment.

(4) update the amount of resource available.

If resource available at this point is zero, then go to (5),
If resource available is greater than zero, then go to (1).

(5) Move to next available time interval.
(6) Repeat steps 1 - 4 until list is exhausted.

The objective of this algorithm is to maximize the resource usage at all

the time intervals. Once the first pass is completed, all the experiments are

placed back on the experiment list and each time interval is searched for

unused resource. At each time interval that has resource available, the

experiment list is checked to find an experiment that can fit in this interval.

21



Multiple performances of an experiment can be allocated; however, single

performances of multiple experiments are preferred.

The best graphical representation for this algorithm is a Gantt charr... The

best representation of this algorithm on the computer is an association Fst..

There are two versions of this algorithm: (1) the Mulitple Pass-Single Rsscource,

and (2) the Multiple Pass-Multiple Resource. Both of these algorithms weore

implemented on the Symbolics machine using Common Lisp. Also, the NMultiple

Pass-Single Resource algorithm was transported to VAX Common Lisp. ISee

Appendix B the Symbolics code listing of the Mulitple Pass-Multiple Resouurce

Algorithm, Appendix C for a VAX code listing of the Multiple Pass-Single

Resource Algorithm, and Appendix D for a Symbolics code listing of the Multiple

Pass-Single Resource Algorithm.

4.4 Task Results

The results of testing the Multiple Pass-Single Resource program -"ccr the

Symbolics machine are presented in Table 1. The test began with a se: :r • 18

experiments and the set was increased each time by six until 42 was reacnned.

After this run, a set of 50 experiments was used. The execution times a'r

expressed in seconds. Also, five replications were made for the set of 15 sand

24 experiments only. The other sets had only two replications. This was cuue to

the amount of time required for the larger sets. Finally, a graph showing :nne

average execution time for each experiment set is included in Table 2.

The system developed on the Symbolics was tested extensively tc

ensure that the coded algorithm performed as intended. A sample sessicm with

the resource allocation program follows.

PRECEDING PAGE BLANK NOT FILMED



/-J.d»U^
mull-dwnrry-?.dlU. 4
rrul t-dimmy-1. d»U. 1
cnill-lwctvt-frimci.dtU. 4

Oyn««Uc U«p Ulltntr I

lo sec otlU'i cominanils. prcus Slilft. Control. Mrtj-Shlft. or Super.

The Resource Allocation Program is initiated by typing the

command (Allocate-Resources). At the start of the program, a

menu will appear displaying the available data files for the

program. The user may select the appropriate data file by simply

placing the mouse on the file name and clicking. The menu will

then disappear and the data will be displayed in the Experiment

Data Editor as shown on the following page.

24



Experiment Data Editor

Iscr
trrr
lew
Vtf
freer
Kir
|Ltf

ICfTf
low*
letrr

*It
II
12

1IM
1759*

34

34
55

M
IS
J

II

•I
r
1

59

*

nt Omt» tttltor Wlndom

.hu 8 Jun ll:]2:}11

This is the experiment data editor window. Everything displayed

on the screen except for the title, Experiment Data Editor, is

mouse-sensitive. The columns represent resources, and the rows

represent experiments. Some of the menu operations include:

Load New Datafiles, Save Current Data to File and Exit Data Editor.

Descriptions of the three mouse sensitive buttons are found on the

next page.

25 ORIGINAL PAGE IS
OF POOR QUALITY



MENU OPERATIONS

. LOAD N*EW DATAFILES

SAVE CUJRRENT DATA TO FILE

EXIT DA7TA EDITOR

The Load New Data File button eenables you to load a new data file

into the experiment data editor window, overwriting the datafile

currently on display. The Save. Current Data to File allows the

user to save the data currently displayed in the window to disk.

The Exit Data Editor leaves thne data editor, and initiates the

allocation process. The next page shows what happens when

Load New Data File is clicked.



Experiment Data Editor

K*
vcr
rpr
ew

KF
lif
err*
ntr
tiff

1
2
3
4
s
tt
•
*
It
11
12

1IM

21 M
«MQ
earn
tBM

IMM
ISM
SM

/Mn* D»tm £11 tar Wlndem

34
12

l«*
34
SJ

2S»
SF

2M
It

199

itt
11

-t5t

*mull-lwclvc-frvnci.
rrwlt-tw<lv(-fr»nc5.daU. 3

»••< t tl"-. chon
.mil*:. i>i r-.i Shi Control. rtrta-Khlf l . or Su

U UMIt Unr Incput

Clicking on the Load New Data File Button causes this screen to

appear. A menu of the data files in the datafile directory is

presented. A new data file to be edited can be selected by

clicking on the file name. If we were to click on the Save Current

Data to File button, the screen shown on the next page would

appear.

27 ORIGINAL PAGE IS
OF POOR QUALITY



Experiment Data Editor

l*p*rt>*>« fttftotr • »«Mr»« Han Pewr

Ivcrleer
V"_

V*i«r
Ittr
ICftr
\osar
I»W

it
U :
It

lt»»
ttM
nM

1MM

Mt

»
14*
X
U

It

15
II
»

1*
•t
r

M
1

S«»f rile Utility
«^ IX* -Fl !•»»<•: nv-d

0ont

Clicking on the Save Current Data to File button, presents a

window in which the filename the data to be saved on is entered.

In order to save the file, type the filename, press return, and the

click on Done. Clicking on abort will return program operation to

the experiment data editor window without saving the file.

28 ORIGINAL PAGE IS
OF POOR QUALITY



RESOURCE OPERATIONS

. SET VALUE GLOBALLY

. SET MAXIMUM VALUE

. MOVE THIS RESOURCE

. DELETE THIS RESOURCE

. ADD RESOURCE

. EDIT RESOURCE CONSTRUCTS

The coluumns of the experiment data editor window each represent

a resourrce. Clicking on a column title will present the resource

operationns menu. There are six operations that can be performed

on a rescource. The first operation is Set Value Globally. This sets

the selected resource to a global value in every experiment. The

second -operation is Set Maximum Value. This places an upper

bound ODJI the value a resource can take. Move This Resource

allows tine position of a column to be changed. Delete This

Resource removes a resource from the experiment data editor
window. Add a Resource can add a new resource to the data file,

either to the right or to the left of a selected resource. Edit

Resource Constraint edits the constraining function of a resource.

29



KT
VC»

'If
ftf
W

our
•irr

TT •VT%QT»i»jnQy>'> ll
•y it«oixt« Power Ktauired:

If
II
12

Set Vdue Globally
Scl Mtiiitun Vt\ut

D«Ut* th<«
Mdd fttovc* to th«
•dd •••owe* to th*
tdil Rcuuxe Conjlnint$

ta Editor

Duration

1UM
1599

It

IS
J

18
t
I
T

2M

Crfltor Wl

t tui i* .«>-L. -*». -ll: :.rl»:ct tin** tliQ'C
To sec ollirr commands, pi oSS jl»ift. Control. Hrla-Sltift. or

If the user were to click on the column title Power Required, a

menu of operations that can be performed on this resource would

appear. If the Edit Resource Constraint menu option had been

selected, tne screen on the following page would appear.

30 ORIGINAL PAGE IS
OF POOR QUALITY



Experiment Data Editor

Efcptrtntn*

tear
Ive*
I"
I"*
ICFP
tftf
IPCST

I"'liw
l<a*r
lostf
lairr

JIM

<9«9
ten*

*»
94
3]

l«»
S4
5S

It
1

IS
It
i

II
«
I

«w in) i«. « icti •'Ouc>-«oumo--KUu*ct-unii)»

Comtnlnt Editor Hindu* ffn*t <CNO> *«r «• txir

I.So f Jun 11:19:12)

The Edit Resource Constraint menu option has been selected,

presenting the Constraint Editor Window. The current resource

constraint is displayed, and can be modified as desired. The

constraint is expressed as a lambda expression, with X

respresenting the sum of the resources used during one time slice.

When the constraint is edited as much as desired, press the End

key to return to the experiment data editor window.

31
ORSGSNAl PAGE IS

POOR QUALITY



Experiment Data Editor

Pt^for (*

w .

*&
«
csr

SIN
UMt

1I«

fh.

Heaicge Window tfrtmm «»y »«r «• f«/f>

41
w
34

14
SS

3»4

13
IS
1
It
f
1

Ultf IfOU*

In this case the column title Experiment Number has been clicked

on, and the Delete This Resource menu option has been selected.

The Message Window confirms that the resource has been deleted.

32
ORIGINAL PAGE t§
OF POOR QUALITY



r Eiperimen t Data Editor

»«*•<(•«»

tftf
tv

ttM
tl»8

wd Rtiourct Utility

Cntf KSOURCt IOTC: *«iowe* I
ixltUI «•!«•! M

Don.

ossr
ISM

- * *

5«
s*
at
& •

tM
t*

s
5
it
•
i
/
t

s«

This screen depicts a situation in which the resource Performance

has been clicked and the Add a Resource to the Right Menu option

has been selected. The Add Resource Utility Window now

appears. To add a resource first type the resource name, then

click on the default Intitial value of 0, next type the new intitial

value, press return, and choose Done.

33
©R!G»NAL PAGE SS
OF POOR QUALITY



Experiment Data Editor

IKT
IUCF
Iso
l"%
V*I peer
|(if

los«r
leirr

Pomr fftoulr.4)

tn««

HOT fMf- Dur«tla

4*

X

l«1
.14

It

IS

s M
M
30
M
M

\munt £>«t» frfftor ITIndbw

.l.«.̂ J.HMU»f,II.ILM.ri

[I <u • Jun 2:ll:««) J«J«r (X UStti

An interesting feature about the Experiment Data Editor window

is that it is dynamic. This means that it allows resources and

experiments to extend beyond the borders of the screen. Data

beyond the borders can be seen by clicking on the scroll bars

which are the arrows located in the bottom right hand corner of

the screen. In this instance, the newly added resource, Resource 2

is partly visible on the right of the screen.

34 ORIGINAL PAGE IS
OF POOR QUALITY



ta Editor

4t
n

34
n

I*

it
t

is
IS

S

I
I
t
t

toovct I

39
M
3*
3t
39
39
3«
3*
3*
M
39
39

The Experiment Data Editor window has been scrolled to the right.

This is done by moving the mouse to the right scrolling arrow and

clicking. As a result, the Resource 2 column is fully revealed.

35
ORIGINAL PAGE IS
OF POOR QUALTTY



Experiment Data Editor

wr
W*89

1C*
Ulf

in*Km
tIM

w
14
It

141

M
a*
n
39
N
«t

NIL

Conitnlnt editor UlndoM <EHO> »«K «• f>ff

ftetrlmtnt

I hu V Jun 1:29:>»> J«r

In this case the column tide Resource 1 has been selected, and the

Edit Resource Constraint menu option has been chosen. The

Constraint Editor window now appears. Since Resource 1 was

added using the Add a Resource option, its resource constraint is

nil. A constraint for this resource can be added or it may be left

nil-. In order to exit this window, press the end key.

ORIGINAL PAGE 8S
OF POOR QUALITY

36



ttr
va
v*
IH
aw

nt
LIT

tin

Experiment Data

T troulrt*

I1M-

Jl M

1M*
•M*
MW

41
M
34
32

l«»
.14

M
2V
S»

JM
It

ttto^x-et
Set Val

Performances :"
Value "CTobally

S«t Hatinutt Vgluc
flov* thl« tt*OWCB

•dd toourci te the ICFI
fVM >>fO«rcc to lh€ "I CXI
Cdil P(5ou-cc ConjlrainU

I)
»

ia
t
i

t ru t Jw< 2:12:2/1 Jir MT Ineut

This is an instance in which the column title Performances haas

been selected. The Resource Options menu now appears. Amy-

option can be selected by moving the mouse and clicking on it.

37
PAGE 13

OF POOR QUALITY



I
V ',, - . - .

Experiment Data Editor
. . . .-.

rs r . . - - . • . -\ffw . .
W. '

anr
tit
rear
toitr. .;.. \ .
DSV ' .

• ' . • • • : • . . ' ,.- '-..•:• '••:-. *• ". '...- •• '- •'• • ' . «•« P«»<xn

rW W«« : . «-. P^ *-,., g'"6- V"

• • • • . • • • . »!*• : . ' . - • ' • Ooo«

- . ' - • . ' ' " • '. ."• J7M . • • • • " ' 34
'• . '• . ... .-tltt ..' ' ' M

-.•;' • ' (AM . . ' ' 34
'..-,-•. ' • « • * . ' • ' ' • • ' • 5 S

;: . '•' • ;- ISM4 •- . ' W
' - - " •'• ISM - • ' ' • " • ' ' ' S/

:•'-.-..-•: 1M ,/:'. • • • IN .
• - . • • . ' • ' « • • ' • . - ' - ' i t : '

»•• m

lancet t«u« (Ukdlr

"*: * ret t (>

Abort 3*

It «•
IS • M

S M
It N
t M
I • ' , - . . ) • • .
7 •' Mt . . • . . » • • -.. .

56 ' M ' ''
9 » .

After having selected Performances, the Set Value Globally option

has been chosen. The Set Value Globally window is presented. A

global value for the Performance resources can be entered by

typing the value, pressing return, and selecting Done, or the option

can be aborted.

38

OF POOR QUALITY



Experiment Data Editor

: 'KM

(ctoure* I

M

DMT Ux ~VM to SCVCCt U.lch «MX*Cl to

>ioc MlndOH (̂ r... ««r »•»• «

CL USlll U«cr Incut

Once again the column title Performances is selected but in this

case the Move This Resource option is chosen. Once this is done

the message window appears. The message window describes the

process for moving a resource. In order to close the message

window, press any key. A resource is moved by clicking of the

title of another resource. A menu will be presented with two

options. The user can chose to add to the left of the selected

resource or add to the right of the selected resource. Once the

direction has been chosen,.the Experiment Data Editor window

will be redrawn with the resource moved.

39
ORIGINAL PAGE SS
OF POOR QUALITY



Experiment! Data Editor

«*tXf
Iff
Cfff

ut Man Power

(lone

TTM
ttM

IStt
1M
1M IS

M

30
M

M
M
S»

fo 500 otitn commands.
I hu I Jun 3:JI:5J) J»r

-fl: liia I'";; f •<;>••: mi»fi«-
e5s Shifl. Control, llpla-tlnft, ̂ ii or Su|>»f--Shlf t .

In this instance the column title Man Power has been selected,

and the Set Maximum Value opdoon has been chosen. In order to

set a maximum value for the Man. Power resource, simply type a

new value, press return, and s^lecr Done. The user also has the

choice to abort the option.

40

ORIGINAL PAGE }S
OF POOR QUALITY



Experiment Data Editor

VCf
ser
iff
cm
rir
HXf
CCF

21M
40M

liM
Mt
59*

duration

4t

Z74
It

n
M
M
N
n
M
M
M

! O«f» Cdltar

i Control, Hcta-Shtfl. or Super.
CC U&Cff:

This screen shows what the revised Experiment Data window

looks like with the changes made to this point. Thus far we have

demonstrated what happens when we click on various columns

which represent resources. We have also shown how some of the

options operate. Now we will focus on the rows which represent

different experiments.

ORSG5WAL PAGE fS
OF POOR QUALITY

41



EXPERIMENT OPERATIONS

. MOVE THIS EXPERIMENT

. DELETE THIS EXPERIMENT

ADD AN EXPERIMENT

Each row in the Experiment Editor window represents an

experiment. Clicking on an experiment name will present a menu

of experiment operations. There are three operations that can be

performed that can be performed on an experiment. The Move

this Experiment option can change the position of a selected

experiment. The Delete This Experiment option will delete a

selected experiment. Finally, the Add an Experiment enables the

user to add a new experiment above or below a selected

experiment.

42



Experiment Data Editor

*M •» t~r~*M »«BOUCl
Odd *n C-~"-»^ t-Kt.(M|

P
f***

SIM

ISM

rs
M
12

M
N

M
3*

M
M

s. p*esv Shift. Control. Mcta-Stiift. or Super.
O. u&lt: U«cf Input

This is -what the screen would look like if the Move This

Experimennt options was selected.from the Experiment Options

menu. TThe message window gives instructions for moving an

experiment... This process is described in detail on the next page.

In order tco close the message window, simply press any key.

43
ORSGSNAL PAGE IS
OF POOR QUAUTY



Experiment Eat* Editor

!«*•' »M.SIM
era
'Iftsr
t»
IT
J*»
KIT

4«

Mn
M
M

UM "a»** >• WltCI
»i*c< II b*«id*.

Ht»ng« UlndOK

In this case the experiment name FPF has been selected. Once

again, in order to select an experiment simply place the mouse on

the desired experiment and click. After this is done, the

experiment options menu is presented.

44
09»Gi!N/IL PAGE IS
OF POOF? QUALITY



Experiment Data Editor

n«n Foxir

1IW

IMW
IJM

Duration

TJ
14

nt
V
in
i*

iw

M
M
II

Ott* fII tor WlnOom

Jvn 3:33:14) jtr
Ililft. Control. Ilvla-Shift. or Super.

»«««• Inowt

To move the FPF experiment, another experiment name must be

selected. The user can do this by using the mouse to click on the

desired experiment. In this instance, the EEF experiment has been

selected as the experiment to place FPF. This is done by clicking

either above EEF or below EEF.

45 ORIGiNAL PAGE IS
OF POOR QUALITY



Experiment Data Editor

1*n *e»ourt« 1 f«Tf»rf.««c§«

**
199
left*
Ir ir
tuxr
Iff*
lit*
li.tr

TIM

14*
34
M

Ulndco ..r t.r «. fx/f)

This is a situation in which the experiment name SCF has been

selected, and the Delete This Experiment option has been chosen

from the experiment operations menu. The message window

confirms the deletion of SCF. In order to exit the message

window, press any key.

46 ORIGINAL PAGE IS
OF POOR QUALITY



Experiment Data Editor

fit* >>

M»tt

IMd Cxperlncnt Utility

14*

*4M
M

rs*
1>.

zr«
I*

Rftowrcc I

N
M

M
M
N

M
M

Jtr

In this case, the experiment name EEF has been selected, and the

Add an Experiment Below option has been chosen from the

experiment operations menu. The Add Experiment Utility

Window is used to enter the new experiment name by typing the

experiment name, pressing return and then clicking'on Done. The

user also has the option to abort the command.

47

ORIGINAL PAGE IS
OF POOR QUALfTY



Experiment Data Editor

rtf
ucr
crcr
ttr
tar
rrr
ur

Ktt
Ufr

ti
JIM

ti«M

ISM

M*
IM

Dur<tla

«*

JM
It

t.

39
M

U««r Input

This is what the screen looks like after the experiment New-

Experiment has been added to the Experiment Data Editor

Window. Notice that it has resource values of 0. Each resource

value can be changed by clicking on the value, typing in a new

value, and pressing return. In this case the Duration for

experiment CFEF has been selected for editing.

48
ORIGINAL PAGE IS
OF POOR QUALITY



Experiment Data Editor

JO
u
if
eerw
(tr

tar
tin

1I

••at
MM

Ou-atlon

M
J«
55
»

T'tf
n
v

3M
It

M
M
M

r«p«rtaMnt (tata f rf/for

|>I-PS« Shift. Control.
Uttr Input

The user can easily change the resource values for the New-

Experiment. This can be done by selecting each value individually

and editing them. To select a value, simply place the mouse over the

value you wish to edit and click. To edit, just type in the desired

value.

ORIGINAL PAGE IS
OF POOR QUALITY

49



DISPLAY CHOICES

. SELECT DISPLAYED OUTPUT FROM RESOURCES

TYPE OF GRAPHIC DISPLAY

- NO GRAPH

. LINE GRAPH

SELECT GRAPHICS OUTPUT FROM THE DISPLAYED
OUTPUT

When the Exit Data Editor button is clicked, the data in the

Experiment Data Editor window is passed to the allocator. Three

menus will be presented. One menu is the Select Displayed Output

menu. This is a menu from which the resources to be displayed

during pass results are chosen. The second menu is the Type of

Graphic Display menu. This menu allows the selection of a graph

type on which to display resource data. The final menu is the Select

Graphics Output menu. This menu provides the resources to be

displayed on the graph.

50



S«l»*t DI«»I»T»« Outou
S«fecr<an Co~t»tti

Resource Allocation ResultsCipcrfarnt Nu«6cr
Poucr Reouftd

The Select Displayed Output menu is displayed. This menu allows

the user to select the resources which will be displayed during the

pass results. In order to choose a resource, simply place the mouse

on the resource you wish to select. When this is done the resource

will be highlighted. You may choose to pick one resource or all of

them. Once you have highlighted the appropriate resource or

resources, click on them. After you are done, click on Section

Complete. The screen will disappear and the Type of Graphical

Display menu will appear.

51



Resource Allocation Results

itM Milt ml HMI.il MM

line
«r Cr«phlc«l DTapTl
Graph

Ut*r Ixput

This is the Type of Graphical Display menu. The user can only

generate graphs of resources selected from the Select Displayed

Output menu. The user has the option to make a line graph of the

available resources or to make no display. After the graph or no

display option is chosen, the screen will disappear and the Select

Graphics Output menu will appear.

52



Power
R*n Power. Resource Allocation Results

•»• FIHI raw ttniif §«*:

The Select Graphics Output menu is now presented. The resources

that are to be included on the graphical display are selected from

those listed on the menu. The user may decide to make graphs from

all available resources or just a select few. Once this is done this

screen will disappear and the results from the First Pass will appear.

53
ORIGINAL PAGE IS
OF POOR QUALITY



Resource MJlocation Results

ft» rim rttt nmti ••••

t
»»

us
IMS

I«J
I««S

ai«»
JIM

(ver it? KI
(v& IMF a
<VC» CPff «IFF»
(UCT tIFF)
IIIFF FJF MF)
(IIFF MF KXtt
(«SF PCCF KFI
(rear vt ain
(6CF CFEfl
(CFEF FW)

mi-'
nil

(I <w • J>« «:I»:SJJ (tyt>o«r«

' |i>|i {-.1..f 1-lcM: to Itult
moit^c hut too to scroll i

i.
Ri(|ht: ttowtw-ir tls.

i(».t: fo|» li'

The screen is now divided into twc: different windows. Each window

can be scrolled independently. TThe top half of the screen is the

Resource Allocation Window. In this window the First Pass Results

are displayed. The bottom hiif of the screen is the Resource

Allocation Graphics Display Winndow. In this instance, Power

Required and ^lan Power were ±ee two resources selected from the

Select Displayed Output menu. LLine Graph was selected from the

Type of Graphical Display Window Power Required and Man Power

were also selected from the Select. Graphics Output Window. It is

important to remember that the First Pass Results only satisfy

minimum requirements. This accounnts for the gaps in the graphs.

ORIGINAL PAGE IS
OF POOR QUALITY



TTW

Ml
IMS
IJ4»
I4»
144*
in*

I44M
MM*

F2M
tl«*
JIN

IIM

vcr%t*i rt
trtf
ri»
rca
ttr
Ltr
en*

(ck. 4.1.4

It
t
II

t

The Resource Allocation Window is longer than one screen. Thus the

results from the First Pass exceed what is visible. In order to display

the rest of the pass results the screen can be scrolled down. To do

this just place the mouse on the scroll down arrow and click.

55 ORiG '̂AL PAGE !S
OF POOR QUALITY



Ul«f Input

After the First Pass Results are presented, the program will continue

and the Second Pass Results can be scrolled up. Notice that the

Second Pass attempts to fill in the gaps left by the previous pass.

The line graph is now much more complete than before. The Second

Pass is similar to the First Pass in that the Resource Allocation

Window is longer than one screen.

56 I PAGE !S
OF POOf? QUALITY



The rest of the Second Pass Results can be seen by scrolling down. In

order to do this_, follow the same process of moving the mouse to the

scroll down arnrow and clicking.

ORIG3NAL PAGE IS
OF POOR QUALITY

57



Table 1. Multiple Pass Algorithm Timing Test Results

Test Number
Run #1
Run #2
Run #3
Run #4
Run #5

Average

18

29.09
23.96
27.22
24.16

26.84

26.25

24

110.9

113.2
111.3
114.34
120.99

114.14

30

888.72
895.8

892.27

36

2005.57
1977.82

1991.69

42

1536.94

1542.82

1539.88

50

4804.59

4821.25

4812.92

0)
CO

Table 2. The Timing Tests Results for the Multiple Pass Algorithm

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

18 24 30 36 42
Number of Experiments

50

58



In conclusion, the Multiple Pass algorithm performed in a satisfactory

manner; however, more work needs to be done to refine the algorithm to reduce

the total execution time so that larger sets of data can be tested. More tests

need to be performed to ensure the algorithm is suitable for being considered

for future work. The Free Expansion algorithm needs to further refined so that

an exhaustive search is avoided, yet meaningful results are obtained.

59



5.0 Connecting A Symbolics to A VAX

5.1 Task Statement

The purpose of this task was to provide a cursory look at two ways of

connecting a Symbolics lisp machine to a VAX minicomputer.

5.2 Task Conditions

The conditions of this task was that the machines to be considered were

already in place at the NASA MSFC facilities. The Symbolics machine is a

3670 and the VAX is a 785 machine. They are currently located in separate

buildings at MSFC that are some distance apart. At present, there is an existing

network that could be used as a medium for connecting the machines, if

necessary and possible. The desired result is to have the two machines be

able to share memory during execution and not just to pass files between them.

5.3 Task Approach

There are two basic ways of connecting the Symbolics Lisp machine to a

VAX. These are software and hardware. The least expensive from an

implementation stand point is usually the software approach. This approach

consists of cables and protocol systems. The cost of this approach is situation

dependent; however, the EtherNet cable can be purchased for approximately

one dollar per linear foot.

The primary consideration in any situation is the location of the machines

to be connected. The distance between them determines the amount and cost

of the cable needed. The other expenses include the connector boxes for each

machine and the software to facilitate the communications.

60



Symbolics supports all the traditional communication protocols, such as

TCPIP, DECNET, etc. These are available from Symbolics, Inc. along with the

price list. However, the cabling should be purchased from another source

(Inmac) to reduce cost.

The other approach, hardware, is a more expensive proposition. A

company in Amherst, NH, provides a hardware product, Bus-link, for connecting

a Symbolics machine to a VAX. Basically, this device connects the machines at

the bus level and allows the Symbolics to map and address the memory of the

VAX, as if it resided in the Symbolics. This allows existing programs on the VAX

to operate and write their information so the Symbolics can directly address it.

Thus, a direct coupling of knowledge-base and conventional systems can

occur. The cost of this device with the associated peripherals is between

$30,000 and $40,000. A more detailed discussion of this product is provide in

the company information provided to the Mission Planning personnel.

5.4 Task Results

It is recommended that the software approach be used to connect the

Symbolics and the VAX machines. This is the lowest cost approach and will

come closer to accomplishing the objectives of MSFC Mission Planning

personnel. The main consideration here is that the Mission Planning personnel

would like to have the programs that already exist on the VAX to be able to

communicate with some programs on the Symbolics. Thus, the direction of

communication is important; thus, the Bus-link device is not the preferred

approach to solving this potential problem. If the choice of direction changes

then the Bus-link may be the most acceptable alternative.

61



6.0 FORTRAN from Lisp

6.1 Task Statement

This task involves finding ways to call Lisp functions from inside

FORTRAN other than just spawning a process. The intent here is for an

application in FORTRAN to be able to call Lisp functions during execution and

to be able to pass data and information back and forth.

6.2 Task Conditions

The conditions of this task are (1) Lisp must be called from inside a

FORTRAN application, (2) data and/or information must be passed, (3) the two

languages are resident on the same computer, and (4) the computer should be

a VAX.

The first two conditions are taken from the task statement, the third

condition is very important. This condition must be used or the complexity of

the problem is to great to make accomplishment possible. Trying to go across

any connection between machines makes this task virtually impossible because

of the variability of the different connection methods, hardware, etc. The fourth

condition was specified by the Mission Planning personnel; however, strict

adherence to this was not given.

6.3 Task Approach

The first thing done under this task was to check the most familiar

environment to UAH. This is the Symbolics Lisp machine. While this was not in

compliance with the fourth condition, it was deemed necessary to acquire an

understanding of the task. Also, a fundamental question as to being able to do

this at all still existed in our minds.

62



The ability to call FORTRAN from Lisp and vice versa on a Symbolics is

provided. This is easily accomplished, when compared to other processors,

because the operating system of the machine is Lisp. Thus, a call from Lisp to

FORTRAN is an operating system function and from FORTRAN to Lisp is an

operating system call. Therefore, the interaction between these two languages

are relatively easy. Certain restrictions do apply. These mainly have to do with

how arrays are handled and some cautions on value referencing. A detailed

explanation can be found in the Symbolics FORTRAN manual.

6.4 Task Results

At present, it is not possible to call Lisp from inside FORTRAN on a VAX

except when spawning a process. Also, it is not advisable to use FORTRAN on

a Symbolics because of the reduced execution speed and increased

compilation speed. The only remaining possibility is to have the FORTRAN

program and the process that is spawned to use some shared memory for

message passing. This is not an easy solution, thus, it is not a preferred

method. Before this problem can obtain an easy solution, some technological

advances need to be made and incorporated on the VAX. The main thing that

needs to occur is for the operating system needs to allow programs that run

simultaneously to communicate with each other.

63



7.0 Trees and Forest Task

7.1 Task Statement

The purpose of this task was to review the software product Trees and

Forest as to their suitability as a programming language for the Mission

Planning personnel to use in developing a scheduling system.

7.2 Task Conditions

The conditions of this task were that a review of the software would be

conducted using the documentation provided by MSFC Mission Planning

personnel. There would be no need for developing a prototype system in the

language. Just a review of the capabilities and limitations would be conducted.

7.3 Task Approach

In 1973, under funding from the National Aeronautics and Space

Administration, an advanced programming language was developed. This

language was called PLANS and its objective was to reduce the cost of

developing and maintaining software to support scheduling and resource

allocation tasks. PLANS was ideally, but not uniquely, suited to writing

scheduling programs. Another product was developed to support PLANS, it

was called PLUS. This product was a library of utility programs written in

PLANS and which represented logic that is common to a broad range of

operations planning and analysis software.

Avyx took PLANS and PLUS, revised them and re-implemented them to

make them PC compatible. The resulting products are called TREES and

FOREST. TREES corresponds to PLANS and FOREST to PLUS.

64



TREES resulted from the known deficiencies in existing languages useed

for scheduling and resource allocation. These deficiencies are:

(1) the language level did not correspond to the level of the functions

typically found in the algorithms, and

(2) the data structures of the languages (usually only arrays) did not

correspond to those typical of the application problems, thus

contributing greatly to software development time.

According to the developers of TREES, it was designed to achieve theese

goals:

(1) to allow designers of experimental or constantly changing scheduling

and resource management algorithms to translate algorithm destrign

to working code directly from their basic functional descriptions.

(2) to allow designers to do this without performing intermediate and

detailed program design steps, without possessing highly

specialized programming expertise, and with only a minimum of

span time and manpower costs.

These two goals are directly related to overcoming the deficiencies previously

stated.

Also, the developers believe that scheduling and resource managemeent

problems often involve information structures which are logically hierarch.caL

That is, a component-subcomponent relationship exist among the items

composing the information structures. Thus, the structures are made up of

different levels of nodes. This is best conceptualized as a tree. Not only are i the

results of the scheduling process hierarchical in nature, but so are the inputs.

TREES was designed around this type of structure and it allows for the-e-

manipulation of these structures, as well as content, at execution time. W-iie

this feature distinguishes TREES from conventional languages like FORTRAN,,

65



COBOL, PL/1, ALGOL, and ADA; it does not separate it from LISP. However,

TREES claims to be easier to use and understand by the user than LISP.

Because it is intended to be used by domain experts rather than

programmers, the language has been designed to minimize functionally

nonessential details, such as data type declarations, entry declarations, etc.

These features are more appropriate in languages which are intended to

handle quantitative problems. TREES does possess quantitative capabilities,

but emphasizes more the manipulation of the data structures.

TREES possesses the following capabilities:

- variables
- logical operators

- keywords
- trees data structure
- functions
- statements
- input/output
- iteration and recession.

In addition to the above data structures of variables and trees, arrays are

supported.

7.4 Task Results

• TREES is an interpretive language. It does have a pseudo-compiler,

but I'm not sure how much performance increase it gives.

• TREES requires the programmer to conceptualize the scheduling

and/or resource allocation differently than used, as far as programming

data structures in concerned.

• The tree data structure is very well suited for the scheduling and

resource allocation problems.

66



• The language is PC based which gives it a broader range of

applications and use.

• TREES possesses many FORTRAN similarities. For the scientific

community this will make it easier to develop the basic skills of the

language. However, it may eliminate the advantage of using the tree

structure, because the user will tend to use the programming techniques

that he/she already knows. In most cases, FORTRAN programmers use

arrays.

• You can accomplish the same results using LISP or other unstrucured

list languages, as far as programming is concerned.

• TREES syntax is not as friendly or transparent as the developers lead

you to believe. Sophisticated techniques would require a great deal of

programming ability.

• It is recommended that TREES not be used for the development of a

scheduling system. This is based on a demonstration of the software and

conversation with Avyx personnel. It is believed that the number of

nodes that can be generated with the current version of TREES is a

serious limitation. To give you an example, TREES would not be able to

solve the 18 experiment problem because of the node limitation.

• It is recommended that TREES be used for conceptualizing scheduling

and resource allocation problems. Ideas that individual Mission

Planning personnel may have about scheduing and/or resourced

allocation problems could be tested using TREES to better understand

the issues involved. This is based on the fact that the data structures in

TREES are very well suited to these types of problems and on the

similarities to FORTRAN. This similarity will allow most user to learn the

language a little easier. However, there is one caveat. All users should

67



be required to conceptualize and develop their applications utilizing the

tree structure of TREES and not arrays that are typically used in

FORTRAN.

68



8.0 Software Data Structure Conversion

8.1 Task Statement

The purpose of this research was to continue to examine the
advantages and disadvantages of using object oriented programming
techniques to assist in solving the scheduling/resource allocation
problem that is particular to MSFC NASA Mission Planning. This is
further targeted to the future problems associated with activity
planning for the Space Station.

In the first Interim Report (UAH Research Report JRC 90-07) a
detail description was given on a prototype software system called
the Two Pass - Multiple Resource Allocation Program. Although this
system was developed in Common Lisp on a Symbolics Lisp Machine,
the full power of object oriented programming techniques had not
been utilized. It was decided that this software should be modified
in such a manner that the data could be represented in object form.

8.2 Task Conditions

The conditions of this task are that the prototype was
developed on a Symbolics Lisp Machine and that the object-oriented
paradigm (Flavors) that is presently supported by this platform was
appropriate. As with the original prototype design, the system
focused on time and resource constraints and excluded consideration
of inter-experiment dependencies.

Although the object-oriented programming (OOP) paradigm has
been discussed as with all personnel involved in this current
research effort, a general review of these principals may be
beneficial. OOP has been steadily gaining acceptance as an
alternative software design methodology, especially for large,
distributed systems. OOP techniques have proven most useful in
applications that can be visualized as a collection of objects of
distinct classes, each with their own data and processing
requirements, that must collaborate for the system as a whole to



function properly. As an analogy, consider a team of engineers
working together to design a new car. Those responsible for the
interior may be interested in ergonomic data for their work,
whereas those designing the engine may be using fuel efficiency
data, EPA requirements, and so on. But both groups must work
together to decide, for instance, whether the engine will be in the
front or the back. For this type of problem, then, each individual can
operate with a large degree of autonomy, as long as they collaborate
when necessary. Now imagine trying to specify an "algorithm" for
designing a car -- step by step instructions explaining exactly what
needs to be done and when. That sounds pretty difficult, but suppose
we concentrate on the car first and think about its organization
rather than that of the design process. We can easily break the car
down into a hierarchy of subsystems (like maybe the fuel system,
and below that the fuel injection and fuel storage subsystems, and
so on), until the leaves of our hierarchical tree are individual parts,
whose design we can specify. Now we have a tree containing not
only structural information about the car, but also procedural
information about designing it. We will have been given some design
parameters describing, probably in general terms, what kind of car
we should design, so now we need only fill those values in and filter
them down through the tree, until a concrete design begins to take
shape. So, in this case, it would seem easier to concentrate on the
object first, rather than the process.

In contrast to this problem, however, consider the task of
building the car once it has been designed. The assembly line
approach has proven to be the best solution here, since each process
is so tightly bound to the output of the previous process and the
input of the next process. In this analogy to conventional
programming, the car being built is like a large data structure being
passed to one processing unit after another, in sequence, until it is
finished. It's not difficult to write down an "algorithm" for making
a car, so it would probably be better to concentrate on the process
rather than the object. Unfortunately, most real-world problems,
including the resource allocation problem, are not as well defined as
an automobile assembly line. For these more interesting problems,



it has become clear that we need a new, more natural, way to think
about writing programs.

These examples explain why OOP makes it easier to
conceptualize the automated resource allocation system, but there
are many other advantages as well. Consider the problem of
information presentation. We have said that it may be beneficial to
present procedural information differently, depending on the user's
cognitive presentation biases. Remember that in OOP we construct a
hierarchical tree containing not only structural information, but
procedural information (ie., code) as well. So when we want to
present a step in a procedure, for example, we simply activate the
little piece of code, attached to that step, that tells us how it
should be presented, given the current user's preferences. This
organization becomes particularly efficient when we consider that
we may ask for a presentation of that step in hundreds of locations
throughout the system.

8.3 Task Approach

The approach taken in this task was to create flavor objects
that would represent the resource allocation data and modify the
actual software system itself to access and utilize this new data
structure. The data representation of both the resources and the
activities (experiments) were converted from its original list
structure to this object format. The resource object structure is
shown in figure 1 and the activity object structure is shown in
figure 2. Appendix A contains the actual Lisp computer code (or
Flavor definitions) for each of the object structures.

As a consequence of the data structure change many of the
data accessing functions had to be changed. In Lisp a list is similar
to an ordered set in that each item (or atom) contained in that list
occupies a particular position with in the list. However, accessing
information from the list is very dependent on each piece of data
being precisely in a specific position in the list. To retrieve the
fifth data item, the software would be required to pass over the
first four items until it arrived at the desired location. This is

71



obviously not the desired mechanism for data retrieval. It limits
the ability of the system programmer to modify the data structure
or the procedures the access the specific pieces of information.

As stated earlier, using resource and activity objects allows
for data abstraction and encapsulation. This means that the system
designer can now freely modify procedures and specific data items.
In the original prototype, in an attempt to improve on a ordinary list
structure, a property list was utilized. This allowed the user to
more freely access the information by providing some degree of
abstraction. However, internally the system still was storing the
information in list form. The conversion in the second prototype
from this property list to flavor objects allowed complete
encapsulation and departure from from the internal list structure.

RESOURCE OBJECT STRUCTURE

Resource
- Name
- Limit
-Type
- Priority
- Weight-Factor
- Constraint-Function
- Hash-Table

Figure 4

7?



The resource objects are instances of the flavor resource
which is the generalized description of a generic resource. The
flavor structure provides slots called instance variables that can
contain information about the flavor instances. Each individual
resource is an individual flavor instance whose slots contain
information that uniquely describes its properties and behavior. The
instance variables for the resource objects are the resource name,
limit, type, priority, weight-factor, constraint-function, and hash-
table. A description of each of these instance variables is provide
below.

Name - The actual name of the resource (ie. Man-Power).

Limit - The maximum available quantity of this resource
at an instance of time.

Type - Is the resource non-depletable, depletable, or
replenishable.

Priority - Used in the current maximization algorithm to
order resources (ie. primary, secondary, etc...)

Weight-Factor - Will be used in future implementation to
arrive at better overall resource utilization.

Constrain-Function - mathematical expression that
describes the constraining factors for the resource.

Hash-Table - contains a historical hash table that shows
resource utilization as a function of time.

Currently, the software system allocates the resources Power
and Man-Power. However, there is no limitation on the number of
resources that can be allocated.



ACTIVITY OBJECT STRUCTURE

Activity
- Name
- Experiment-Number
- Duration
- Power-Required
- Man-Power
- Data-Rate
- Minimum-Performances
- Maximum-Performances
- Scheduled-Performances
-Highlighted

Figure 5

Activity objects, similar to the resource objects, are
individual flavor instances of the flavor activity. They have their
object definitions contained in instance variables. The activity
object's instance variables are the activity name, experiment-
number, duration, power-required, man-power, data-rate, minimum-
performances, maximum-performances, scheduled-performances,
and highlighted. A description of each of these instance variables is
provide below.

Name - the name of the activity.

Experiment-Number - An activity identification number
(if specified)

Duration - the time required to complete the activity.

Power-Required - the instantaneous power requirements
of the activity.

74



Man-Power - the instantaneous personnel requirements
of the activity.

Data-Rate - the instantaneous data production rate of
the activity.

Minimum-Performances - the requested minimum number
of activity performances.

Maximum-Performances - the requested upper limit of
number of performances.

Scheduled-Performances - - the actual number of
performances of the activity that have been
scheduled.

Highlighted - the current state of the the menu item,
showing if this activity is currently selected.

8.4 Task Results

The data structure changes described in the preceding sections
were performed on the prototype resource allocation software
system. Additional testing is needed to determine the extent of any
performance gains. Also, software procedural changes need to be
implemented in the form of flavor methods instead of traditional
function calls. This additional change will allow the flavor instance
variables to be directly accessed by the procedural code used in the
software system.

The use of hash-tables as a means of storing the time history
of the resource allocation process, as well as individual resource
utilization, has proven to be an effective and easily manipulative
means of storing this information. The graphics functions in the
software simply traverses the time line and remove specific values
from the tables. Therefore tabular and graphical representations of
the results are made easier to obtain.



9.0 Software Functionality Mod i f i ca t ions and
Enhancements

9.1 Task Statement

The purpose of this research project was to continue the
development of the resource allocation system prototype. After a
performance review at the end of the first interim term, it was
decided that it would be desirable to add additional capabilities to
the prototype software. First, the general algorithm that was in use
should be modified from a multiple performance allocation to a
single step performances approach. Secondly, since the allocation
results are distributed across a time line, it would be desirable to
construct a mechanism that would allow the operator to interject at
a specific point in time and make a change to the allocation. The
system should then perform a re-allocation of the resources
starting at that point on the time line.

9.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.
Any modifications to the software were designed solely for the use
on this platform and may not easily be ported to other platforms.
Also, the data structures of the software were pre-existing and
were not modified in the modification process.

9.3 Task Approach

Although a general description of the resource allocation
software system's allocation algorithm is described in detail in the
previous Interim Report (UAH Research Report JRC 90-07), it may be
beneficial to include a brief description of the original resource
allocation algorithm. The original algorithm employed by the
prototype system would scan the multitude of combinations of
activities selecting a single combination that best utilized a
primary resource. The system then immediately allocated the entire

7fi



number of minimum requested performances (if possible) for each
activity that was included in the selected combination of activity
performances for that time slice. This therefore treated the
minimum requested number of performances as one singular and
continuous performance. The allocated activities were then removed
from consideration in future allocation combinations during pass one
of the system. This approach, although simple, demonstrated many
short comings and was deemed too coarse.

The modified approach reduced the allocation step size by only
allocating a single performance of each of the activities in the
selected combination instead of the original entire minimum number.
Each of the activities minimum requested number of performances
was then reduced by one. Unlike the original prototype, the activity
remained in the pass one allocation process until it had exhausted
its requested minimum number of performances instead of
immediately being removed.

In a similar manner pass two operations were changed.
Although it may be less obvious, pass two attempted to allocate
multiple performances of different activities when ever possible.
Now single performances of each selected activity were performed.

The backtracking capability was created to allow the operator
to effect changes to the allocation process. As the system allocated
the resources to the activities a rough schedule is produced. Often
as the grouping of activities process is being performed, multiple
groups of activities are found that have near equal overall resource
utilization. Since the choice of a single group from a list of similar
groupings is completely arbitrary, the computer would simply take
the first member in the list. This selection was then placed on the
agenda for allocation. Although in the immediate time frame the
selection method seems just as valid as any other method for
choosing a candidate from the group of possible candidates, the
selection can cause major changes in future allocation groupings.
Therefore it was deemed desirable to construct a mechanism that
would allow some user control over the candidate selection process.

The backtracking functions required access and control of
three data histories. First, a running history of the actual groups of

77



possible alternative allocation selections had to be constructed in
order for the software system to be able to show possible back-
tracking choices. Secondly, the resource utilization history for each
of the resources needed resetting for future reallocation. And fi-
nally, the activity schedule had to cleared of future scheduled items.
All of these data histories were in the form of hash-tables.

The data structures were reset for downstream reallocation.
Although each of the data structures were hash-tables that use the
allocation time as their key words; the downstream resetting re-
quirements were not the same for each table. For instance, it be-
came necessary to swap the newly selected group for the previous
group first. Then, the correct resource utilization and new time
history could be calculated. All the downstream activities were
then removed and their corresponding number of scheduled events
reduced. The time history that was used as the key words to the
hash-tables was deleted from the point in time of the backtracking.
A new resource allocation process is then started from the point of
backtracking.

The backtracking process is initiated by selecting a mouse
sensitive item from the display. This display shows the allocation
time and the current items allocated at that time. It is the time
item that is mouse sensitive. Selecting a time for backtracking
causes a menu of group selections from which the user must select
an alternative. The reallocation process then begins and the display
is refreshed. The system is cyclic in that the user may backtrack as
many times as is desired. However, the system is a two pass sys-
tem. Once the results from pass one have been accepted, the user
can only backtrack through pass two allocations.

9.4 Task Results

The software system was modified from a multiple allocation
to a single allocation step process. The modified Lisp code is pro-
vided in Appendix F. The system, at least under limited evaluation,
performs a better overall resource allocation based on resource uti-
lization than the previous approach. However, this comes with a

7ft



5
•Vf-

01
«K
M>
*»
•3

B
i tat
i»CT"ssan

.lurr rir.iv)

<nn nr nri
-tuir wrin
•tow »i» KT>

(cw «e <«»
:tnrr-fp.9Sft
• tutrnffxn'.
itsr nr tiffi
:lttrtsrt:nr>-
:<Bf»;fIfK»>:
ttirr ur rm

- L : -
tttn«
<mr «(ttrre
(lIFTf!
tun*
<MF*R

ror lit )• uw

<r«r tj,«ar>-
wcw or«o)
«t«»,i
fa?tfcar

IHt««t« »|B<»«

:s'̂ fs]

Figure 6

nu rtMi nn MIKII i

(WO UV DOT O*f
(WO UV OW BSV
(wo uv cm Bsar
(WO Llf OW OOF
(wo iv ofr nv
(WO LH Cff DS»
(wo cm oar L»
two cm ur oar
(wo art ur oar
(wcr err? LRT I
(wo cm or i
(crw uv oar ucr
(crrr ur wo OOF
(cm uv vcr oar
low ucr oar LIT
(cm wo ur oar
(cm wo ur mr
(cm vo ur oar

Figure 7

ORIGINAL PAGE IS
OF POOR QUALITY



price. The system which was already under criticism for the time
requirements necessary for non-trival problems was slowed even
more. The exact amount of this reduced allocation speed has not yet
been quantified. This will magnify the necessity for evaluating new
group selection techniques.

The backtracking capabilities have been implemented in the
system with good success. The user can modify the activity
schedule and effect changes on the resulting overall resource
allocation. Remember the software system is currently designed as
a two pass system. As mentioned earlier each of the two passes are
considered as being independent of the other for backtracking. Thus
the effects of backtracking are confined to the current pass of the
system

Since the resetting process is relatively small when compared
to the overall problem of resource allocation, the incremental time
used in backtracking is not significant. However, in a dynamic
environment such as Lisp, the released data or garbage as it is
sometimes called can cause the system itself to slow. This effect
can be seen if repeated backtracking is performed. If excessive
amounts of backtracking and reallocation cycles have been
performed the system's performance is substantially affected.

ftO



10.0 Portability of Resource Allocation To A Tl
MicroExplorer

10.1 Task Statement

The purpose of this research was to investigate the
performance of the resource allocation software on the Tl
MicroExplorer platform. At the interim review of the software
prototype. It was determined that portability and varying platforms
for the system should be investigated. The system was easily
ported to a Maclvory system and performed comparable to the
Symbolics Lisp Machines. Since the Mission Planning Group at MSFC
had a Tl MicroExplorer, it was decided that the software system
would be ported to this platform and a performance evaluation
performed.

10.2 Task Conditions

The development language of the Tl MicroExplorer is Common
Lisp. The ported software system therefor was limited to the
domain of functionality of this platform.

10.3 Task Approach

Since the Symbolics Lisp machine was the original
development platform for the Resource Allocation Software System,
any functions that were utilized within the system that were
specific to this platform had to be modified or replaced by functions
that were compatible with the Tl MicroExplorer. Although the Tl
MicroExplorer uses a Flavors System similar to that of the
Symbolics, it is currently several generations behind in its
development. This in most cases did not pose a tremendous problem.
However, the windowing system employs a different type of flavor.
There is no predefined, so called "dynamic", window that allows
scrolling, graphics, etc... Therefore, a composite flavor that would

ftl



cause the Tl MicroExplorer windows to behave similarly to those on
the Symbolics Lisp machines had to be constructed.

Mouse sensitivity is another facility that the Tl MicroExplorer
does not easily provide. This causes problems in the Activity and
Resource Editing Module of the software system since it relies so
heavily on complicated procedures that are initiated via mouse
gestures and selections. Since this is a non-essential portion of the
software system this module was omitted from the initial
implementation of the software on the Tl platform. Also the
backtracking capabilities while included in the software were
inhibited from operation due to similar mouse sensitivity problems.
Both of these modules of the software system will be added for this
platform.

10.4 Task Results

The software has been ported to the Tl MicroExplorer.
Additions and modifications were produced that allow the system to
function on this platform. The analysis of the performance of the
overall Resource Allocation Software system remains incomplete at
this time. Mouse sensitive parts of the system that were omitted in
the initial implementation of the software system will be added. A
complete transfer of all data files is needed and an evaluation of the
systems performance on this platform conducted. These activities
are proposed as part of a continuing research effort.

ft?



11.0 Frontier of Feasibility Software System

11.1 Task Statement

Experimentation in space is rapidly becoming one of the most
exciting areas in science. Experiments from such widely diverse
areas as medicine and metallurgy are performed side-by-side
onboard space-based experimentation platforms. The Space Shuttle
is currently the workhorse of this effort, but NASA's Space Station
Freedom will assume much of this task when it is constructed.

Each experiment or activity to be performed onboard a platform
has certain resource and time requirements. Since the platform has
only a limited supply of resources available, these activities are in
competition with one another. Determining which activities can be
performed is a complex problem that due to its nature has multiple
solutions.

It is likely that multiple performances of a single experiment are
desirable, therefore, each such experiment must be performed
multiple times during the mission duration. One method for
simplifying the solution set of this problem is to generate a number
of possible solutions based solely on resource and time constraints
for use with a scheduling program. It is therefore the purpose of
this research to examine the techniques for arriving at theses
possible solutions.

11.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.
Any modifications to the software were designed solely for the use
on this platform and may not easily be ported to other platforms.
The prospective of the system is to view the possible starting
points of a scheduler without taking into consideration any intra-
activity or temporal constraints.



11.3 Task Approach

The Frontier of Feasibility System is designed to generate "good"
starting points for a scheduling program. This system is not a
scheduler, but is instead a resource allocation program which
operates at a very course level of granularity. A scheduling program
is concerned with placing activities on a time line, while ensuring
that no constraints are violated. The main thrust of a scheduling
package is the ordering of the activities on the time line. The
Frontier of Feasibility System does not attempt to establish a time
line schedule, but instead, only attempts to generate starting points
for a scheduling program by allocating the available resources. The
Symbolics Lisp code listing is provided in Appendix G.

Ac t i v i t i es

Experimentation is not the only consumer of resources onboard a
platform. Life support, instrumentation, and other onboard systems
are also in competition for the available resources. For this reason,
in this paper competitors for resources will be referred to as
activities. Each activity is defined by its consumption of various
resources, duration, and performance criteria.

Activities are given an abbreviated name and an experiment
number. Duration is perhaps one of the most important facts given
in the activity description. It is assumed that two or more
performances of a single activity cannot occur simultaneously.
However, it is possible for several different activities to be
operating at the same time, resources allowing. Therefore, by
taking the mission duration and dividing it by the duration of a
single performance of an activity, it is possible to arrive at a hard
constraint on the maximum number of performances possible for an
activity.

The activity description also includes resource usage
information. This lists the amount of each resource that will be
required to perform that activity one time. It is assumed in the



Frontier of Feasibility System that this resource usage is
continuous throughout the duration of the activity. This is not an
accurate representation of reality, but the purpose of this system is
to provide a good starting point for a scheduler, not a finished
answer.

The user also enters a minimum requested and maximum desired
number of performances for each activity into the description. This
provides the system with a minimum number of performances of
each activity that must be scheduled to meet the user's bottom line.
Any remaining resources are then allocated among the activities.
The maximum desired number of performances places an upper limit
on the number of performances of an activity that will be scheduled.
This prevents the system from allocating resources to useless
activity repetition. The upper limit established by the user is
verified by the system to ensure that it is feasible.

(VCF (experiment-number (2))
(power-required (10))
(duration (1))
(performances (1))
(max-performances (4))
(scheduled-performances (0)))

Figure 8. A representation of an activity as a Lisp list.

Resources

The resources available aboard the platform are each given an
abbreviated name and an amount available. Resources can be
classified into several different categories. Non-consumable
resources are not depleted by use, and are available in a constant
quantity for the duration of the mission. Consumable resources have
an initial level which is depleted as activities are performed.



Replenishable resources are those that can be temporarily depleted,
but which through processes onboard the platform, may be
replenished during the mission.

The current version of the Frontier of Feasibility System uses one
resource during its search process. Versions currently in
development examine the problem using multiple resources.

Graphical Representation of Search Space

The Frontier of Feasibility System is based around the idea of
representing the resource allocation problem's possible solutions as
a tree graph. The process of creating a feasible combination of
activity performances can be easily demonstrated using a tree graph.
A manager's decisions about which activity to perform more times
can be followed down a path on the tree.

For instance, if the manager decided to add one performance to
the right-most activity, the node created would be one further down
the right-hand-side branch. From this new node, the manager will
make another decision regarding which activity to increase next.
This process is repeated until the manager is satisfied with the
results. Therefore, we adopted this structure as a good reference
frame when seeking ways to calculate a solution set more quickly.

Tree Structure

Each node on the tree graph represents one possible combination
of activity performances. An example root node would be ( 1 1 1 ),
representing one performance of three different activities. The
children of this node would be ( 1 1 2 ), ( 1 2 1 ), and ( 2 1 1 ) .
Each child represents its parent with an additional performance of
one activity. Only certain activities can be modified on each branch.
The first, left-most, branch allows the modification of all
activities. On the other branches, only the activities to the right of
the activity corresponding to the branch number can be modified.
For instance, in a twelve activity problem, if you are looking at the
fifth branch, only the fifth through twelfth activities can be

ftfi



modified. The first four activities remain at their minimum
requested.

Figure 9. A three activity tree graph.

When dealing with a large number of activities, each of which can
be performed multiple times, the size of the tree becomes quite
large. It is therefore necessary to devise methods for reducing the
size of the search space. One of the simplest is to make the root
node values equal to the minimum number of requested performances
of each activity. This action can greatly reduce the size of the
space that must be searched. Since each activity also has a
maximum number of performances requested, it is possible to
restrict the depth of the tree.

A human manager makes decisions, in terms of the tree graph, by
starting at the root node and moving down the tree from parent to
child, until he can go no further due to constraints. A node to which
no more performances of any activity can be added without violating
a constraint is said to be a Frontier Node, commonly referred to as a

ft?



leaf node. The Frontier Nodes fall along a barrier which we call the
Frontier of Feasibility. It is the nodes that fall along the Frontier
that offer the best starting points for a scheduling program.

Sorting the Activities

It is important to realize that the ordering of the activities
within the nodes affects the shape of the tree. Each activity has a
range of possible performances from its minimum requested to its
maximum desired. Typically, the activities with a large range use a
small amount of resources, while those with a very narrow range
use large quantities of resources. If the activities are sorted so
that the largest range is on the left, and the smallest on the right,
then the tree will be very wide. This is because each new
performance of the first activity represents a new branch. If the
activities are sorted in reverse order, from smallest to largest
range, then the tree will be deeper and narrower. In this case, there
will only be a few branches to the left, thereby restricting the
width of the tree.

Which sorting method is best is still being decided. Each method
has its advantages and disadvantages. The second method narrows
the width of the tree, and thereby the number of Frontier Nodes. But
this method makes the calculations for trading between activities
more cumbersome. Method one, although it has a larger Frontier, has
an easily demonstrated process for handling trades. So, for the
purposes of this paper, we will be discussing the problem in terms
of the first method, largest to smallest range.

State Space Search Methods

There are many different search methods available which could be
used to find the possible solutions to this problem. These are
methods which have been developed over time to handle problems
similar to the Space Station resource allocation problem. However,
most of these methods were developed to seek an optimal solution,
or a single answer. Since the purpose of the Frontier of Feasibility

flft



System is to generate several "good" starting points for a
scheduler, many of these methods were ruled out.

Modified Breadth Search

It was decided that none of the other regular search methods
would complete the search in an acceptable length of time. The
structure of the tree suggested a new search method. The Frontier
Node of the right-most branch is easily calculated, since only the
number of performances of the right-most activity can be changed.
Simply, divide the resources remaining after all activities have been
performed their minimum requested number of times, by the amount
of resources necessary for the right-most activity. This calculation
yields the number of performances which can be added to the
minimum requested. By adding this number to the right-most
minimum and combining this new total with the rest of the root
node, we have calculated the right-most Frontier Node.

Using this Frontier Node as a starting point, it is possible to
cross the tree along the Frontier of Feasibility, thereby eliminating
the need to search the tree in depth. As discussed earlier, the order
in which the activities are sorted can greatly affect the search
process. We have chosen to discuss the largest to smallest range
sort method because it can be more clearly demonstrated in the
context of this paper. Using this method, the first frontier node that
we have just calculated has maximized the number of performances
of the largest resource using activity.

The Frontier search method is composed of six main steps:

1. Examine the number of performances of each activity in the node,
from left to right, for one which is performed more than the
minimum required number of performances. This step begins its
examination at the second node from the left, because of the way
Step 5 operates.



2. Reduce the current number of performances of that activity by
one.

3. Reset all activities to the left of the activity found in Step 1, to
their minimum required number of performances.

4. Recalculate the available resources.

5. Starting just left of the activity found in Step 1 and continuing to
the left, increase the number of performances of each activity as
much as possible with the available resources. Each new
performance reduces the amount of resources available.

6. When no more performances can be added, store the- new Frontier
Node and repeat the process.

Figure 10. Example of the six stage process.

The benefit of using the largest to smallest range sort method is
that removing one performance of an activity in Step 3, guarantees



at least one performance of another activity when executing Step 5.
This method sorts the activities from smallest to largest resource
users and thereby ensures that enough resources are freed up to add
one performance to the left.

11.4 Task Results

The six stage process describe above produces several hundred
thousand solutions in a small problem. Almost all of these Frontier
Nodes utilize from 95% to 100% of the available resources. There
are several possible mechanisms under consideration to select only
a small subset of these solutions. One of the most promising of
these, reduces the size of the solution set by selecting a starting
node further to the left in the tree. This eliminates all branches
right of the start node from consideration. Random sampling is
another method which could be used. The system would randomly, or
at set intervals, store the node currently under consideration. This
method would provide a smaller solution set, which still
represented most of the branches.

While the system can calculate new nodes fairly rapidly, storage
of the growing solution set slows the systems performance to an
unacceptable level. This problem can be bypassed in several ways,
for instance, by only storing those solutions that use 100% of the
available resources or only the first 10,000 solutions which are
generated.

From the generated solution set, the user must choose a node that
represents a "good" starting point. We are currently working on an
interface which will allow the user to review the solution set and
examine a node in detail. The user would be able to modify the
number of performances of any activity, in order to improve the
"goodness" of the node. The combination of these two systems will
provide the user with a powerful tool for generating rough solutions
to the resource allocation problem.



12.0 Conclusions

1. The object-oriented programming techniques would be too

cumbersome for handling complete mission data set. This is based on

the manner in which the problem was modeled in the prototype

developed. In this prototype, everything was treated as an object and

the mission timeline was divided into seconds. If the timeline is

handled in a different manner; that is not as an object, then the object-

oriented approach may be very feasible. The object-oriented approach

should not be eliminated without further study.

2 KEE is not suited for the scheduling nor resource allocation problem.

This is because of the extensive amount of code that needs to be

developed to handle efficienctly the bookkeepping procedures. While it

is possible to write these functions in KEE, a significant increase in

execution time will be experienced. This may not be satisfactory for the

decision makers.

3. Ethernet is the most feasible way of connecting Lisp machines and VAX

for MSFC Mission Planning personnel at present.

5 It is not possible to call Lisp from inside FORTRAN and vice versa on a

VAX.

6. Resource allocation algorithms show much potential. More heuristics

for increasing the efficiency of the search process need to be

developed and studied before ruling this approach out completely.



Appendix A
Code Listing, for Object-Oriented Programming Task

A-I



ANDY:>brown>nasa-2>afler-data-load-methods.lisp.28 7/11/89 15:36:19 Page 1

;;; -•- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

• * * * * » » » * » » * • * * * * * * • » * * » • * » » » » * • » * * » * » » * » * * » » * * * » * * * * » » # * * * * » » » * » » * » * *

/// top level function to call others
(defmethod (correct-representations-and-build-linkages-after-data-load mission) ()

;;;operations on experiment, performances, steps
(maphash t' (lambda (exp-name exp)

exp-name
(correct-time-representation exp) )

experiment-template-table)
(get-posslble-crew-combinations-for-all-steps self)
(write-crew-lockin-to-step-level self)
(replace-names-with-objects self)
(transfer-experiments-from-template-table self ni l )

;;;operations on resources
;(connect-resource-availability-start-and-end-times init-obj)
(transfer-shift-times-to-crew-members init-obj)
.•//operations on time slices
(initialize-time s e l f ) )

(defmethod (write-crew-lockin-to-step-level mission) ()
(maphash § '( lambda (exp instance)

exp
(write-crew-lockin-to-step-level ins tance))

experiment-template-table))

(defmethod (write-crew-lockin-to-step-level experiment) ( )
(loop for (lockin-start lockin-end) in crew-lockin

for crew-combo = (crew-combinations (find-step-numbered self lockin-start))
do

(loop for step-number from lockin-start to lockin-end
for step = (find-step-numbered self step-number)
do

(when (and (null (crew-monitor step))
(equal crew-combo (crew-combinations s tep) ) )

(setf (crew-lockin step) l o c k i n - s t a r t ) ) ) ) )

(defmethod (initialize-time mission) ()
(build-initial-time self)
(load-targets-into-time-steps init-obj)
(load-attitudes-into-time-steps init-obj)
)

(defmethod (restore-data-to-start mission) ()
(setf experiment-table (make-hash-table))
(transfer-experiments-from-template-table self ni l )
(initialize-time s e l f ) )

(defmethod (replace-names-with-objects mission) ()
(maphash * ' ( lambda (exp instance)

exp
(replace-names instance))

experiment-template-table))

(defmethod (replace-names experiment) ()
(loop for slot in ' (»tjLrtup-»t»p» shutdown-steps prototype-step-list )

do
(mapc ('replace-names (symbol-value-in-instance self slot) )))

(defmethod (replace-names step) ()
(loop for slot in

' (consumable-resource-list durable-resource-list)
for keyword in ' (:consumable .-durable)
do

(setf (symbol-value-in-instance self slot)
(loop for (resource-name quant) in (symbol-value-in-instance self slot)

collect (list (get-object-named ( ini t -obj "mission*) keyword resource-name)
q u a n t ) ) ) )

(setf non-depletable-resource-list
(loop for (resource-name quant tolerance) in non-depletable-resource-list

collect (list (get-object-named ( ini t -obj 'mission*)
:non-depletable resource-name)

quant to le rance) ) )

A 2 ORIGINAL PAGE !S
OF POOR QUALITY



ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/8915:36:19 Page!

(aetf crew-combinations
(loop for combination in crew-combinations

collect
(loop for crew in combination

collect (get-object-named (init-obj 'mission') :crew crew))))
(setf target-list

'loop for target in target-list
collect (get-object-named (init-obj 'mission') :target target)))

(setf attitude-list
(loop for attitude in attitude-list

collect (get-object-named (init-obj 'mission') :attitude attitude))))

;;ifunctions to build linkages
(defmethod (transfer-experiments-from-template-table mission) ((optional (query t|)
(let ((experiment-list nil) (instance-list nil))

(when query
(maphash »'(lambda (key instance)

(push key experiment-list)
(push instance instance-list))

experiment-template-table)
(setf query nil)
(loop until (setf query

(dw:menu-choose
'(("Use All Experiments" rail)

("Use None of These Experiments" :none)
("Use Some of These Experiments - Present Menu" :some)>

:prompt (format nil " -A " experiment-list)))))
(cond ((or (null query) (eql query :all))

(maphash I'(lambda (key instance)
(setf (gethash key experiment-table) (copy-self instance))
)

experiment-template-table) )
((eql query :none) nil)
((eql query :some)
(format t "this is a stub in transfer-experiments-from-template-table")))))

II I
(defmethod (connect-resource-availability-start-and-end-times nasa-init-obj) ()
(loop for slot in ' (consumable-resource-list non-depletable-resource-list)

do
(loop for resource in (symbol-value-in-instance self slot)

do
(connect-resource-availability resource)

(when (and (eql (length (quantity-availability-list resource)) 1)
(null (qty (first (quantity-availability-list resource))))
(maximum-available resource)) •

(setf (qty (first (quantity-availability-list resource)))
(maximum-available resource))))))

(defmethod (connect-resource-availability non-durable-resource) ()
(cond ((and (null maximum-available)(null quantity-availability-list)) nil)

((null quantity-availability-list)
(setf quantity-availability-list

(neons (make-instance
'quantity-availability
:name (name self)
:owner-obj self
:available-times-list
(neons (make-instance

• available-time
:begin 0
:end (max-time (init-obj 'mission')I)))))

(setf (owner-obj (first (available-times-list (first quantity-availability-list))))
(first quantity-availability-list) ) )

(t (let ((time-list nil) (time-length nil) (max-quant 0))
(loop for quantity-availability-obj in quantity-availability-list

do
(when (> (qty quantity-availability-obj) max-quant)

(setf max-quant (qty quantity-availability-obj)))
(loop for object in (available-times-list quantity-availability-obj)

do
(push (begin object) t ime- l i s t ) ) )

(setf time-list (sort time-list • ' < ) )

A'3
ORIGINAL PAGE IS



ANDY:>brown>nasa-2>after-data-Ioad-methods.Iisp.28 7/11/89 15:36:19 Page 3

(setf time-length (1- (length time-list)))
(aetf maximum-available max-quant)
(loop for quantity-availability-obj in quantity-availability-list

do
(loop for object in (available-times-list quantity-availability-obj)

for time-position - (position (begin object) time-list)
do

(if (eql time-position time-length)
(setf (end object) (max-time (init-obj "mission*)))
(setf (end object) (1- (nth (1+ time-position) time-list))))))))))

I I I

(defmethod (transfer-shift-times-to-crew-members nasa-init-obj) ()
(loop for crew in crew-list

do
(setf (available-times-list crew)

(copy-available-times-list self (work-shift crew)))
(loop for available-time-obj in (available-t'imes-list crew)

do
(setf (owner-obj available-time-obj) crew))))

(defmethod (copy-available-times-list nasa-init-obj) (ahift-number)
(loop for available-time-obj in (nth (1- shift-number) shift-availability-objs)

collect (make-instance 'available-time :begin (begin available-time-obj)
:end (end available-time-Obj))))

(defmethod (build-initial-time mission) ()
(setf time-slice-holder

(make-instance 'time-slice :start-time 0 :end-time (max-time init-obj))))

(defmethod (load-targets-into-time-steps nasa-init-obj) ()
(loop for target-obj in target-list

do
(loop for available-time-obj in (available-times-list target-obj)

do
(schedule-event
*mission» target-obj 'target-list (begin available-time-obj)
(end available-time-obj)))))

(defmethod (load-attitudes-into-time-steps nasa-init-obj) () .
(loop for attitude-object in attitude-list

do
(loop for available-time-obj in (available-times-list attitude-object)

do
(schedule-event
•mission* attitude-object 'attitude-list (begin available-time-obj)
(end available-time-obj)))))

• ft***************************************************************
:;; this section is used Co convert various time representations to one standard
(defmethod (correct-time-representation experiment) ()
(setf min-performance-delay-time

(translate-seconda-to-time-perioda
(tranalate-time-list-to-seconds min-performance-delay-time))

max-performance-delay-time
(translate-seconds-to-time-periods
(tranalate-time-list-to-seconds max-performance-delay-time))

performance-time-window
(translate-seconds-to-time-periods
(translate-time-list-to-seconds performance-time-window)))

(aetf performance-windows
(loop for (begin end performances) in performance-windows

collect (list (translate-seconds-to-time-periods
(translate-time-list-to-seconds begin))

(translate-seconds-to-time-periods
(translate-time-list-to-seconds end))

performances)))
(loop for slot in '(startup-steps shutdown-steps prototype-step-list)

do
(loop for step in (symbol-value-in-instance self slot)

do
(correct-time-representation step))))

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>afler-data-load-methods.lisp.28 7/11/89 15:36:19 Page 4

(defmethod (correct-time-representation step) ()
(setf max-duration (trar.slate-seconds-to-time-periods max-duration) )

• (aetf min-duration (trd..slate-seconds-to-time-periods min-duration) )
(setf step-delay-max (translate-seconds-to-time-periods step-delay-max))
(aetf step-delay-rain (translate-seconds-to-time-periods step-delay-min)))

/********************************************************************************
,-,•; theses methods and functions are used to setup the possible combinations of crew
;;; members that satisfy the crew requirements specifications of each step

(defmethod (get-possible-crew-combinations-for-all-steps mission) ()
(maphash »'(lambda (key instance)

key
(loop for slot in ' (»t«rtup-»t«p« shutdown-steps prototype-step-list )

do
(loop for step in (symbol-value-in-instance instance slot)

do ,
(setf (crew-combinations step)

(get-possible-combinations-of-crew self (crew-requirements step))))))
experiment-template-table))

(defmethod (get-possible-combinations-of-crew mission) (crew-requirements)
(if (gethash crew-requirements crew-combinations-table)

(gethash crew-requirements crew-combinations-table)
(setf (gethash crew-requirements crew-combinations-table)

(generate-possible-combinations-of-crew self crew-requirements))))

(defmethod (generate-possible-combinations-of-crew mission) (crew-requirements)
(when crew-requirements
(merge-candidate-sets
self (generate-candidate-sets self crew-requirements) crew-requirements)))

(defmethod (generate-candidate-sets mission) (crew-requirements)
(let ((candidate-sets nil))

(loop for (description-list quant) in crew-requirements
for description-set = nil
do

(loop for (type tag) in description-list
for possible-set = nil
do

(if (eql type 'duty-position)
(loop for crew-obj in (crew-list init-obj)

do
(when (eql (duty-position crew-obj) tag)
(push (name crew-obj) possible-set)))

(loop for crew-obj in (crew-list init-obj)
do

(when (eql (name crew-obj) tag)
(push (name crew-obj) possible-set))))

(setf description-set (concatenate 'list possible-set description-set)))
(push (list description-set quant) candidate-sets))

candidate-sets))

(defmethod (merge-candidate-sets mission) (candidate-sets crew-requirements)
(let ((final-combinations nil) (all-combinations nil))

(cond ((null candidate-sets)
(error "generate-possible-combinations-of-crew was unable to generate a candidate

set with requirements -S" crew-requirements))
((= (Length candidate-sets) 1)
(setf all-combinations (generate-combinatorics self (first candidate-sets))))

(t (setf all-combinations
(generate-possible-combinations-of-crew-aux
self (generate-combinatorics self (first candidate-sets))
(cdr candidate-sets)))))

(loop for combination in all-combinations
do

(unless (combination-contains-duplicates-p self combination)
(push combination final-combinations)))

final-combinations))

(defmethod (generate-possible-combinations-of-crew-aux mission)
(existing-combinatoric candidate-sets)

(if (null candidate-sets)

ORIGINAL PAGE IS
A-5 OF POOR QUALITY



ANDY:>brown>nasa-2>after-data-Ioad-methods.lisp.28 7/11/89 15:36:19 Page 5

extating-combinatoric
(generate-possible-combinations-of-crew-aux
self
(merge-combinatorics

self existing-combinatoric (generate-combinatorics self ( f i rs t candidate-sets)))
(cdr candidate-sets))))

(defmethod (merge-combinatorics mission) (first-set second-set)
(loop for grouping-one in first-set

with result = nil
do

(loop for grouping-two in second-set
do.

(push (concatenate 'list (copy-list grouping-one) (copy-list grouping-two)) result))
finally (return result)))

(defmethod (generate-combinatorics mission)(candidate-set-and-quant)
(let I (candidate-set (first candidate-set-and-quant))

(quant (second candidate-set-and-quant))
(solution-list nil))

(loop for i from 1 to quant
for next-solution = nil
do

(if (- i 1)
(loop for brew in candidate-set

do
(push (list crew) solution-list))

(loop for solution in solution-list
do

(loop for crew in candidate-set
for combo = (if (member crew solution)

nil
(concatenate 'list (list crew) (copy-list solution)))

do
(when (and combo (new-entry-p combo next-solution))
(push combo next-solution)))

finally (setf solution-list next-solution))))
solution-list))

(defun new-entry-p (combo next-solution)
(let ( (result t))
(cond ((null next-solution) t)

(t (loop for set in next-solution
until (null result)
do

(when (every »• (lambda (x) (member x combo)) set)
(setf result nil)))))

result))

(defmethod (combination-contains-duplicates-p mission) (combination)
(let ((combination-copy (copy-alist combination))

(flag nil))
(loop for crew-obj in combination

until flag
do

(setf combination-copy (cdr combination-copy))
(when (member crew-obj combination-copy)

(setf flag t) ) )
flag))

;;;end of crev combination generation

A-6

ORIGINAL PAGE IS
OF POOR QUALITY



A^Y:>brown>nasa-2>edit-presentation-types.Iisp.l5 7/11/89 15:36:12 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

;; presentation types associated with nasa-init-obj editing
(define-presentation-type •ingl«-valu«d-n«»«-init-obj-»dit-di»pl»y {{))

:history t
:printer ((obj stream)

(with-character-style |'(:fix :bold-itallc :normal) stream :bind-line-height t)
(format stream "EMISSION DURATION -S -%MISSION TIME INCREMENT -S"

(max-time obj)
(time-inc obj) ) ) )

:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))

(if (eql (typ«-of input) 'nasa-init-obj) input
(signal 'dw:input-not-of-required-type

:type •nasa-init-obj
:string input)))))

(define-preaentation-type mi»c-obj-«dit-di«pl«y (())
:history t
:printer ((obj stream)

(with-character-style C(:fix : roman :small) stream :bind-line-height t)
(format stream "-%-A~%-A-*"(first (display-string obj))

(second (display-string obj))))
)

:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))

(if (eql (type-of input) 'query-obj) input
(signal 'dw:input-not-of-required-type

:type 'query-obj
:string input)))))

(define-presentation-type conavunabl*-nu»-for-*dit-di«play (())
:history t
:printer ((obj stream)

(with-character-style ('(:fix :italic :normal) stream )
(format stream "-% NAME -S ~%"

(name obj) )))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'con»um*il«-rtt«ourc«)

input
(signal 'dw:input-not-of-required-type

:type ' con«um»bl«-r«»ourc«
:string input)))))

(define-presentation-type n«jn«-for-«dit-<li»pl«y ( () )
:history t
:printer ( (obj stream)

(with-character-style C(:fix : roman :normal) stream :bind-line-height t)
(format stream "-%NAME -S-%" (name obj))))

:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))

(if (eql (type-of input) 'availabilty)
input
(signal 'dw:input-not-of-required-type

:type 'availabilty
:string input)))))

(define-presentation-type qu*ntity-«vmil«bility-«dit-di«pl»y (())
:history t
:printer ((obj stream)

(with-character-style C(:fix :bold :small) stream :bind-line-height t)
(format stream " QUANTITY = -S-%" (qty obj))))

.-parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))

(if (eql (type-of input) 'quantity-availability ) input
(signal 'dw:input-not-of-required-type

:type 'quantity-availability
:string input)))))

(define-presentation-type dur«bl«-r»»ourc«-«dit-di»pl*y (())

ORIGINAL PAGE IS
A-? OF POOR QUALITY



ANDY:>brown>nasa-2>edit-presentation-types.lisp.l5 7/11/89 15:36:12 Page 2

:history t
:printer { (obj stream)

(if (send stream :operation-handled-p ':format-cell)
(progn

(formatting-cell (stream :align :center) (format stream (name obj)))
(formatting-cell (stream :aliqn :center)

(format stream "-S" (available-quantity obj))))
(format stream "KDURABLE RESOURCE EDIT DISPLAY -S -S>"

(name obj) (available-quantity obj))))
:parser ((stream)

(let ((input (read-fcorn-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'durable-resource) input

(signal 'dw:input-not-of-required-type
:type 'durable-resource
:string input)))))

(define-presentation-type •v*ilabl«-tlm*-«dlt-dlaplay ( () )
•.history t
:printer ((obj stream)

(if (send stream :operation-handled-p :format-cell)
(progn

(formatting-cell (stream :align :center) (format stream "-A" (begin obj)))
(formatting-cell (stream :align :center) (format stream "-A"-(end obj))))

(format stream "KAVAILABLE-TIME-EDIT-DISPLAY -A -A>" (begin obj) (end obj))))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'available-time) input

(signal 'dw:input-not-of-required-type
:type 'available-time
: string input)))))

/ * * * * * * *
//.• presentation types associated vith editing experiment templates
(define-presentation-type «xj>«riin«nt-t«n!plmt»-«dit-displ«y {())

:history t
:printer ((obj stream)

(format stream "-%MIN-PERFORMANCES -A MAX-PERFORMANCES -A DESIRED-PERFORMANCES -A MAX
-PERFORMANCE-DELAY-TIME -A MIN-PERFORMANCE-DELAY-TIME ~A" (name obj) (min-performances obj) (max-p
erformances obj) (desired-performances obj) (max-performance-delay-time obj) (min-performance-dela
y-time obj)) )

:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))

(if (eql (type-of input) 'experiment-template) input
(signal 'dw:input-not-of-required-type

:type 'experiment-template
:string input)))))

(define-presentation-type *xp«rim«nt-toi«pl»t«-name-»di.t-di»pl»y (())
:history t :printer ((obj stream)

(format stream "-%EXPERIMENT NAME: -A" (name obj)))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'experiment-template) input

(signal 'dw:input-not-of-required-type
:type 'experiment-template
:string input)))))

(define-presentation-type •t«p-tom>l»to-for-«ditlno; ( () )
:history t
:printer ((obj stream)

(present-step obj stream))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'step) input

(signal ' dw: ir.put-not-of-required-type
:type 'step
:string input)))))

(define-presentation-type ' •hutdown-«t»p-t«mpl«ta-for-«ditino; (()) •
:history t
:printer ((obj stream)

(present-step obj stream))

A"8 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>edit-presentation-types.lisp.l5 7/11/89 15:36:12 Page 3

:parser ((stream)
(let ((input (read-f rom-string (dw:read-standard-token stream))))

(if (eql (type-of input) 'step) input
(signal 'dw:input-not-of-required-type

:type 'step
:string input)))))

(define-presentation-type prototyp»-«t«p-t«mpl»t«-for-«ditino; (())
:history t
iprinter ((obj stream)

(present-step obj stream))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'step) input

(signal ' dw:input-not-of-required-type
:type 'step
.-string input)) ) ) )

lit presentation type associated with editing naaa-screen-manager

(define-presentation-type na»«-«cr»«n-man«g«r-«<lit-di»pl«y (())
:history t
:printer ((obj stream)

(format stream "-% SCREEN MANAGER")
(FORMAT STREAM "-% CURRENT RESOURCE NAME: -A"(current-resource obj))
(FORMAT STREAM "-% RESOURCE DISPLAY DIMENSIONS")
(FORMAT STREAM "-% LEFT COORDINATE: -A, RIGHT COORDINATE: -A, UPPER COORDINATE: -A, B

OTTOM COORDINATE: -A" (left-x obj) (right-x obj) (upper-y obj) (lower-y obj))
(FORMAT STREAM "-% MINIMUM WIDTH (pixels) EACH TIME PERIOD: -A; WIDTH EACH TIME PERIO

D: -A" (min-x-delta obj) (x-delta obj))
(FORMAT STREAM "-% TIME UNITS BETWEEN HORIZONTAL SCALE MARKERS: -A"

(h-scale-inc obj)) •
(FORMAT STREAM "-% UNITS BETWEEN VERTICAL SCALE MARKERS FOR CURRENT RESOURCE: -A"

(v-scale-inc obj))
(FORMAT STREAM "-% LENGTH OF TICK MARKS ON SCALES: ~A" (scale-length obj)))

:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) 'nasa-screen-manager) input

(signal 'dw:input-not-of-required-type
:type 'nasa-screen-manager
:string input)))))



ANDY:>brown>nasa-2>editor-framework-cornmands.Iisp.l 3/18/89 Page 1

;;; -•- Mode: LISP; Syntax: Common-Lisp: Package: USER; Base: 10 -*-

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (a3M-PERFORMANCE-SCHEDULER-CLEAR-XNIT-EDIT-HISTORY
:MENU-ACCELERATOR "Clear All Histories"
:HEHU-LEVEL :IN1T-EDIT-MENU)

()
(clear-all-histories (screen-manager "mission*) ' ini t-edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCH£DULER-FROM-rHIT-EDIT-TO-EDIT
:MENU-ACCELERATOR "Return To Ob] Edit"
:MENU-LEVEL :INIT-EDIT-MENU)

()
(select-configuration "mission* 'edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULZR-REDISPLAY-INIT-OBJ
:MENU-ACCELERATOR "Redisplay Init Obj"
:M£NU-LEVEL : INIT-EDIT-KENU)

()
(clear-all-histories (screen-manager "mission*) 'init-edit)

(edit-obj 'mission* 'init-obj))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-rNIT-EDIT-OBJ
:MENU-ACCELERATOR "Redisplay"
:MENU-LEVEL :INIT-OBJ-EDIT-MENU)

0
(clear-history (screen-manager 'mission*) •init-obj-edit )
(edit-init-sub-obj "mission* •init-obj-edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-ODRABLE-RESOURCE
:MENU-ACCELERATOR "Redisplay"
: MENU-LEVEL : DURABLE-RESOURCE-MENU)

()
(clear-history (screen-manager "mission*) 'durable-resource-edit)
(edit-init-sub-obj 'mission* 'durable))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-CONSUMABLE-RESOURCZ
:MENU-ACCELERATOR "Redisplay"
:MENU-LEVEL :CONSUMABLE-RESOURCE-MENU)

()
(clear-history (screen-manager "mission*) 'consumable-resource-edit)
(edit-init-sub-obj "mission* 'consumable))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDCTLER-REDISPLAY-CREW-RESOORCE
:MENU-ACCELERATOR "Redisplay"
: MENU-LEVEL : CREW -RESOURCE -MENU)

()
(clear-history (screen-manager 'mission*) 'crew-resource-edit)
(edit-init-sub-obj 'mission* 'crew))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-TARGET-RESOURCE
:MENU-ACCELERATOR "Redisplay"
: MENU-LEVEL :TARGET-RESOURCE-MCNU)

()
(clear-history (screen-manager 'mission') 'target-resource-edit)
(edit-init-sub-obj "mission* 'target))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-ATTITUDE-RESOURCE
:MENU-ACCELERATOR "Redisplay"
:MENU-LEVEL :ATTITUDE-RESOURCE-MENU)

()
(clear-history (screen-manager 'mission') •attitude-resource-edit)
(edit-init-sub-obj 'mission' 'attitude))

A'10 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>experiment-methods.lisp.8 7/10/89 15:19:08 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (cr«»t«-n»w-obj experiment-template) ()
(query-user-for-new-values self)
(add-exp-temp-to-table "mission* self name)
)

(defmethod (cr««t«-n«w-obj experiment) ()
(query-user-for-new-valuea self)
(add-exp-to-table 'mission* self name))

(defmethod (query-user-for-new-values experiment) ()
(let ((choice nil) (choice-list '(yea no))) choice choice-list
(dw:accepting-values

(•standard-output*
:own-window t :label
(format nil

"Input Values For New Experiment"))
(setf name/

(accept 'symbol idefault 'none :query-identifier 'name
:stream "standard-output*
:prompt (format nil "enter name of experiment"))

min~performances
(accept 'number :default 0 :query-identifier 'min-performances

:stream 'standard-output* :prompt
(format nil "enter minimum number of performances "))

max-performances
(accept•'number idefault 0 :query-identifier 'max-performances

:stream 'standard-output* :prompt
(format nil "enter maximum number of performances"))

desired-performances
(accept 'number :default 0 :query-identifier 'desired-performances

:stream 'standard-output*
:prompt (format nil "enter desired number of performances"))

min-performance-delay-time
(accept 'number :default 0 :query-identifier 'min-performance-delay-time

:stream 'standard-output*
:prompt (format nil "enter min performance delay time "))

max-performance-delay-time
(accept 'number :default 0 :query-identifier 'max-performance-delay-time

:stream 'standard-output*
:prompt (format nil "enter max performance delay time "))))

(query-user-for-new-values-aux self)))

(defmethod (query-user-for-new-values-aux experiment) ()
(let ((choice nil) (choice-list '(yes no)))
(loop until (setf choice (dw:menu-choose choice-list :prompt "do you want to create any startup

steps?")))
(when (eql choice 'yes)

(create-new-obj (make-instance 'startup-step-template) self))
(setf choice nil)
(loop until (eql choice 'no)

do
(loop until (setf choice (dw:menu-choose choice-list :prompt "create another startup step?")))
(when (eql choice 'yes) -

(create-new-obj (make-instance 'startup-step-template) self)
(setf choice nil)))

(setf choice nil)
(loop until (setf choice (dw:menu-choose choice-list :prompt "do you want to create any shutdown

steps?")))
(when (eql choice 'yes)

(create-new-obj (make-instance 'shutdown-step-template) self))
(setf choice nil)
(loop until (eql choice 'no)

do
(loop until (setf choice (dw:menu-choose choice-list :prompt "create another shutdown step?"))

)
(when (eql choice 'yes)

(create-new-obj (make-instance 'shutdown-step-template) self)
(setf choice n i l ) ) )

(loop until (setf choice (dw:menu-choose choice-list :prompt "do you want to create any regular
s teps?")) )

(when (eql choice 'yes)

OF POOR



ANDY:>brown>nasa-2>experiment-methods.lisp.8 7/10/89 15:19:08 Page 2

(create-new-obj (make-instance 'step-template) self))
(setf choice nil)
(loop until (eql choice 'no)

do
(loop until (setf choice (dw:menu-choose choice-list :prompt "create another s t ep?" ) ) )
(when (eql choice 'yes)

(create-new-obj (make-instance 'step-template) se l f )
(setf choice nil) ) ) ))

(defmethod (create-new-step experiment-template) ()
(let ((choice nil)

(choice-list ' ( ( N O N E none)
("Startup Step" startup-step-template )
("Shutdown Step" shutdown-step-template)
("Step" s tep- template))))

(loop until (setf choice (dw:menu-cnoose choice-list :prompt "Indicate type of step to be crea
ted, or none")))

(unless (eql choice 'none)
(create-new-obj (make-instance choice) s e l f ) ) ) )

(defmethod (copy-self experiment) (crest ignore)
(make-instance 'experiment

:name name
:non-depletable-tolerance-list non-depletable-tolerance-list
:min-performances min-performancea
:max-performances max-performancea
:desired-performances desired-performances
:latest-start-time latest-start-time
•'performance-time-window performance-time-window
:performance-windows performance-windows
:crew-lockin crew-lockin
:«tratagy ctratogy
ittxporimant-tima-window «xp«rim«nt-tin>a-window
:«OAX-p«rfonn*nc«-d«l«y-tin>« m*x-p«rfozmvic
:min-p«rformanca-dala.y-tintt min-parfonun
: •chadul«-*hutdown-vith-p«rformanc« •cb«dul*-*butdown-with-p«rfonnanc«
:«tartup-«t«p« »tartup-«t»p»
:shutdown-steps shutdown-steps
:prototype-step-list prototype-step-list
:desired-monitor-steps desired-monitor-steps

ORIGINAL PAGE IS
A~12 OF POOR QUALITY



ANDY:>brown>nasa-2>framework-commands.Iisp.6 4/11/89 21:41:51 Page 1

... _•_ Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDaLER-SELECT-EDITOR-CONFIO
:MENU-ACCELERATOR "Select Obj Editor"
:MENU-LEVEL :NASA-TOP-MENU)

()
(unless (program-framework (screen-manager "mission*))
(setup-streams (screen-manager *mission*) dw:"program-frame*)>

(select-configuration "mission* 'edit})

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMA»CE-SCH£DULER-EDIT-INIT-OBJ '
:MENU-ACCELERATOR "Edit Mission Resources"
: MENU-LEVEL :TABLES-MENU)

0
(edit-obj "mission* 'init-obj»

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (CX>M-PERFORMANCE-SCHEDUL£R-EDIT-experiment-templates
:MENU-ACCELERATOR "Edit Experiment Descriptions"
:MENU-LEVEL :TABLES-MENU)

O
(edit-experiment-templates "mission*))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-EDIT-SCREEN-MANAGER
:MENU-ACCELERATOR "Edit Screen Manager"
:MENU-LEVEL :TABLES-MENU)

()
(edit-obj "mission* 'screen-manager))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-CLZAR-TABLES-HISTORY
:MENU-ACCELERATOR "Clear History"
: MENU-LEVEL : TABLES-MENU)

()
(clear-history (screen-manager "mission") 'edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDUiER-FROM-EDIT-TO-MAIN
:MENU-ACCELERATOR "Return To Main Screen"
: MENU-LEVEL : TABLES-MENU)

()
(select-configuration "mission* 'experiment))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-rROM-EOIT-2-TO-MAZN
:MENU-ACCELERATOR "Return To Main Screen"
:MENU-LEVEL :TABLES-MENU-2)

()
(select-configuration "mission* 'experiment))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERTORMANCE-SCHEDULER-CLZAR-TABLES-2-HISTORY
:MENU-ACCELERATOR "Clear History"
: MENU-LEVEL : TABLES -MENU- 2)

0
(clear-history (screen-manager "mission") 'tables-2))

A_13 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>frainework.Iisp.3 3/18/89 02:30:01 Page 1

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10; Default-character-style: (-.FIX
ROMAN : NORMAL) -*-
(defvar * standard-margin-components* • ((DW:MARGIN-BORDERS)

(DW:MARGIN-WHITE-BORDERS :THICKNESS 2)
(DW:MARGIN-SCROLL-BAR :MARGIN :LEFT)
(DW:MARGIN-SCROLL-BAR :MARGIN :BOTTOM)
(DW:MARGIN-WHITESPACE :MARGIN :LEFT :THICKNESS 10)))

(DW: DEFINE-PROGRAM-FRAMEWORK PERFORMANCE-SCHEDULER
:COMMAND-DEFINER T
:SELECT-KEY »\a
:selected-pane NASA-LISP-LISTENER
:terminal-io-pane NASA-LISP-LISTENER
: COMMAND-TABLE
(:INHERIT-FROM '("colon full command" "standard arguments" "standard scrolling")
:KBD-ACCELERATOR-P t)
:STATE-VARIABLES ()
:PANES
((NASA-EXP-AND-PER-ASSISTANT-TITLE

:TITLE :REDISPLAY-STRING "NASA Experiment Performance Scheduler Assistant"
.•HEIGHT-IN-LINES 1 :REDISPLAY-AFTER-COMMANDS NIL)

(NASA-EXP-AND-PER-ASSISTANT-COMMAND :COMMAND-MENO :ROWS 1 :MENU-LEVEL :NASA-TOP-MENU)
(ERROR-TITLE
:TITLE :REDISPLAY-STRING "NASA Exp Perf Scheduler Asst Error Report"
: HEIGHT-IN-LINES 1 :REDISPLAY-AFTER-COMMANDS NIL)

(ERROR-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :ERROR-MENU)
(ERROR-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT-CHARACTER-STYLE ' (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

(GENERAL-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :GENERAL-MENU)
(GENERAL-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTQR 1

:DEFAULT-CHARACTER-STYLE ' (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS •
* standard-margin-components*)

(PERFORMANCES-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :PERFORMANCES-MENU)
(EXPERIMENT-DESCRIBER :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components")

(CURRENT-OP-MODE-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
: DEFAULT-CHARACTER-STYLE ' <:FIX : ROMAN : SMALL)
:more-p nil
:MARGIN-COMPONENTS
' «DW:MARGIN-BORDERS)

(DW:MARGIN-WHITE-BORDERS : THICKNESS 2)
(DW:MARGIN-WHITESPACE :MARGIN :LEFT :THICKNESS 10)))

:DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
: DEFAULT-CHARACTER-STYLE • CFIX : ROMAN : SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)
COMMAND-MENU :ROWS 1 :MENU-LEVEL :EXPERIMENTS-MENU)
DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
: MARGIN-COMPONENTS
•standard-margin-components*)

COMMAND-MENU :ROWS 1 :MENU-LEVEL :RESOURCES-MENU)
DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

:COMMAND-MENU :ROWS 1 :MENU-LEVEL :TABLES-MENU)
:DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
,•;„• :redisplay-function • display-experiments-table-summary-aux
,•„•,•: incremental-rediaplay t

(PERFORMANCES-DISP LAY

(EXPERIMENTS-COMMAND
(EXPERIMENTS-DISPLAY

(RESOURCES-COMMAND
(RESOURCES-DISPLAY

(TABLES-COMMAND
(TABLES-DISPLAY

A-14

ORIGINAL PAGE 8S
OF POOR QUALITY



ANDY:>brown>nasa-2>framework.lisp.3 3/18/89 02:30:01 Page 2

:MARGIN-COMPONENTS
•standard-margin-components*)

(i.-.it-edit-COMMAND : COMMAND-MENU : ROWS 1 :MENU-LEVEL : init-edit-MENU)
(i.-.it-obj-edit-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL : init-obj-edit-MENU)
(terget-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :target-resource-MENU)
(crew-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :crew-resource-MENU)
(attitude-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :attitude-resource-MENU)
(ccnsumable-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :consumable-resource-MENU)
(d-rable-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :durable-resource-MENU)
(target-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT-CHARACTER-STYLE •(:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
* standard-margin-component s*)

(i.-.it-obj-display :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
: DEFAULT-CHARACTER-STYLE 'OFIX : ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

(attitude-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

(crcw-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE • CFIX : ROMAN : SMALL)
:more-p nil
:MARGIN-COMPONENTS
'standard-margin-components*)

(ccr.sumable-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL : SCROLL-FACTOR 1
: DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN .-SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

(d-rable-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '(:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•standard-margin-components*)

(TABLES-COMMAND-2 :COMMAND-MENU :ROWS 1 :MENU-LEVEL :TABLES-MENU-2)
(TA3LES-DISPLAY-2 :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT-CHARACTER-STYLE '<:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
•atandard-margin-components*)

(NASA-LISP-LISTENER :LISTENER :HEIGHT-IN-LINES 3 :MORE-P NIL
:MARGIN-COMPONENTS
•standard-margin-components*))

:COSTIGURATIONS
' ( C»::NASA-PERFORMANCE-SCHEDULER

•:: LAYOUT
(DW::NASA-PERFORMANCE-SCHEDULER
:COLUMN NASA-EXP-AND-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-COMMAND
SUB-AREAS-1 NASA-LISP-LISTENER)

(SUB-AREAS-1 :ROH EXPERIMENT-WINDOW RESOURCES-WINDOW)
(EXPERIMENT-WINDOW
:COLUMN EXPERIMENTS-COMMAND EXPERIMENTS-DISPLAY)

(RESOURCES-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
:': SIZES
(DW: : NASA-PERFORMANCE-SCHEDULER
(NASA-EXP-AND-PER-ASSISTANT-TITLE 1 :LINES)
(NASA-EXP-AND-PER-ASSISTANT-COMMAND
lASK-WINDOW SELF :SIZE-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)

(NASA-LISP-LISTENER 3 :LINES) :THEN (SUB-AREAS-1 :EVEN))
(SUB-AREAS-1 (EXPERIMENT-WINDOW .35) (RESOURCES-WINDOW .65))
(RESOURCES-WINDOW
(RESOURCES-COMMAND :ASK-WINDOW SELF : SIZE-FOR-PANE RESOURCES-COMMAND )
:THEN (RESOURCES-DISPLAY :EVEN))

(EXPERIMENT-WINDOW
(EXPERIMENTS-COMMAND :ASK-WINDOW SELF : SIZE-FOR-PANE EXPERIMENTS-COMMAND )
:THEN (EXPERIMENTS-DISPLAY :EVEN)»)

(c»<: :edit-init-config
•.: layout

ORIGINAL PAGE !S
A-15 OF POOR QUALITY



ANDY:>brown>nasa-2>framework.lisp.3 3/18/8902:30:01 Page 3

(dw::edit-init-config :COLUMN init-edit-command init-edit-displays NASA-LISP-LISTENER)
(init-edit-displays :row other-init-edit-displaytcmd durable-resource-displaytcmd

consumable-resource-display4cmd)
(other-init-edit-displayScmd
rCOLUMN init-obj-edit-command init-obj-display crew-resource-command
crew-resource-display target-resource-command target-resource-display
attitude-resource-command attitude-resource-display)

(durable-resource-displaytcmd
:column durable-resource-command durable-resource-display)

(consumable-resource-displaytcmd
:column consumable-resource-command consumable-resource-display))

CSIZES
(dw::edit-init-config
(init-edit-command :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (init-edit-displays :EVEN»

(init-edit-displays (other-init-edit-dlsplaytcmd .33)
(durable-resource-displaytcmd .33)
(consumable-resource-displaytcmd .34))

(other-init-edit-displaytcmd
(init-obj-edit-command :ASK-WINC SELF :SIZE-FOR-PANE init-obj-edit-command)
(crew-resource-command :ASK-WINDO« SELF :SIZE-FOR-PANE crew-resource-command)
vtarget-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE target-resource-command)
(attitude-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE attitude-resource-command)
(crew-resource-display .25) (target-resource-display .25)
(attitude-resource-display .25) :then (init-obj-display :even))

(durable-resource-display4cmd
(durable-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE durable-resource-command)
:then (durable-resource-display :even))

(consumable-resource-displaytcmd
(consumable-resource-command :ASK-WINDOW SELF

:SIZE-FOR-PANE consumable-resource-command)
:then (consumable-resource-display :even))))

(DW::GENERAL-INFO-CONFIG
(: LAYOUT
(DW::GENERAL-INFO-CONFIG
:COLUMN NASA-EXP-AND-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-COMMAND
SUB-AREAS NASA-LISP-LISTENER)

(SUB-AREAS :ROW GENERAL-WINDOW RESOURCES-WINDOW)
(GENERAL-WINDOW
:COLUMN GENERAL-COMMAND GENERAL-DISPLAY)

(RESOURCES-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
(:SIZES
(DW::GENERAL-INFO-CONFIG
(NASA-EXP-AND-PER-ASSISTANT-TITLE 1 :LINES)
(NASA-EXP-AND-PER-ASSISTANT-COMMAND
:ASK-WINDOW SELF :SIZE-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)

(NASA-LISP-LISTENER 3 :LINES) :THEN (SUB-AREAS :EVEN))
(SUB-AREAS (GENERAL-WINDOW .35) (RESOURCES-WINDOW .65))
(RESOURCES-WINDOW
(RESOURCES-COMMAND :ASK-WINDOW SELF : SIZE-FOR-PANE RESOURCES-COMMAND )
:THEN (RESOURCES-DISPLAY :EVEN))

(GENERAL-WINDOW
(GENERAL-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE GENERAL-COMMAND)
:THEN (GENERAL-DISPLAY :EVEN)»>

(DW::NASA-CONFIG-2
(:LAYOUT
(DW::NASA-CONFIG-2
:COLUMN NASA-EXP-AND-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-COMMAND
SUB-AREAS NASA-LISP-LISTENER)

(SUB-AREAS :ROW PERFORMANCE-WINDOW RESOURCES-WINDOW)
(PERFORMANCE-WINDOW
:COLUMN EXPERIMENT-DESCRIBER CURRENT-OP-MODE-DISPLAY PERFORMANCES-COMMAND
PERFORMANCES-DISPLAY)

(RESOURCES-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
(:SIZES

(DW::NASA-CONFIG-2
(NASA-EXP-AND-PER-ASSISTANT-TITLE 1 :LINES)
(NASA-EXP-AND-PER-ASSISTANT-COMMAND
:ASK-WINDOW SELF .-SIZE-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)

(NASA-LISP-LISTENER 3 :LINES) :THEN (SUB-AREAS :EVEN))
(SUB-AREAS (PERFORMANCE-WINDOW .35) (RESOURCES-WINDOW .65))
(RESOURCES-WINDOW
(RESOURCES-COMMAND :ASK-WINDOW SELF : SIZE-FOR-PANE RESOURCES-COMMAND )

A-16 QKSG1NAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>framework.lisp.3 3/18/89 02:30:01 Page 4

:THEN (RESOURCES-DISPLAY :EVEN)(
(PERFORMANCE-WINDOW
(EXPERIMENT-DESCRIBER 6 :LINES) (CURRENT-OP-MODE-DISPLAY 3 :LINES)
(PERFORMANCES-COMMAND .-ASK-WINDOW SELF : SIZE-FOR-PANE PERFORMANCES-COMMAND )
:THEN (PERFORMANCES-DISPLAY :EVEN)»)

(DW: .-ERROR-REPORTING
(:LAYOUT
(DW::ERROR-REPORTING
:COLUMN ERROR-TITLE ERROR-COMMAND ERROR-DISPLAY NASA-LISP-LISTENER))

(:SIZES
(DW::ERROR-REPORTING
(ERROR-TITLE 1 :LINES)
(ERROR-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE ERROR-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (ERROR-DISPLAY :EVEN)))(

(DW::TABLES-REPORTING
(:LAYOUT
(DW::TABLES-REPORTING
:COLUMN TABLES-COMMAND TABLES-DISPLAY NASA-LISP-LISTENER))

(:SIZES
(DW::TABLES-REPORTING
(TABLES-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENERS :LINES) :THEN (TABLES-DISPLAY :EVEN))))

(DW::TABLES-REPORTING-2
(:LAYOUT
(DW::TABLES-REPORTING-2

:COLUMN TABLES-COMMAND-2 TABLES-DISPLAY-2 NASA-LISP-LISTENER))
(:SIZES
(DW::TABLES-REPORTING-2
(TABLES-COMMAND-2 :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENERS :LINES) :THEN (TABLES-DISPLAY-2 :EVEN))))

PAGE IS
A-17 OF POOR QUALITY



ANDY:>brown>nasa-2>globals.Iisp.59 7/12/8912:10:23 Page 1

... _•_ MOde; LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(setf *suppress-glyph* t)

(defvar *mission-table* (make-hash-table) )

;;;resource mlxins
(defflavor available-tin* ((begin nil)

(end nil)
(owner-obj nil))

0
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables;

(defflavor availability ((name nil)
(available-times-list nil)) .-list of instance of available-time

O
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variablesj

(defflavor quantity-availability ( (qty nil)
(owner-obj nil))

(availability)
(:cone-name nil)
writable-instance-variables
readable-instance-variables
initable-instance-variables^

resources come in six types
crew members are self-explanatory
targets are locations on the earth
attitudes refer to the orientation of the satalite with respect to ?
durable resources are things that are not consumed, but are available in some
fixed quantity, such as video recorders, or manned maneuver units
consumable resources are things which are consumed, such as food rations, most
chemicals, etc.
finally, non-depletable~resource [nasa term, not mine] is an item which is
consumed, but is also re-generated at some rate, such as wattage from fuel cells,
oxygen thru an activated charcoal filter, water thru waste re-cycling, etc.

(defflavor durabl«-r«»ourc« ((name nil)
(available-quantity nil))

<)
(:cone-name nil)
.•writ able-in stance-variables
:readable-instance-variables
:initable-instance-variables;

(defflavor non-durable-resource ((name nil)
(quantity-availability-list nil))

0
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor con>umabl*-r««oure« ()
(non-durable-resource)

(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor non-d«pl«tabl«-r»»ourc« ()
(non-durable-resource)

(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

A-18

ORIGINAL PAGE 13
OF POOR QUALITY



ANDY:>brown>nasa-2>globa!s.lisp.59 7/12/8912:10:23 Page 2

(defflavor cr*v-majob«r
((duty-position nil)
(work-shift nil))

(availability)
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables^

(defflavor target ()
(availability)

(:cone-name nil)
: writable-instance-variables
:readable-instance-variables
:initable-instance-variables;

(defflavor attitude ()
(availability)

(:cone-name nil)
writable-instance-variables
readable-instance-variables
initable-instance-variables;

the query obj ia used to provide generic capability to a context sensitive environment
(d fflavor quary-obj (type (display-string nil))

O
:cone-name nil)
writable-instance-variables
readable-instance-variables
initable-instance-variablesJ

flavors devoted to the depiction of time and capturing scheduled events
(defflavor time-»lic*-axi» ( (end-one-x 0)

(end-one-y 0)-
(end-two-x 0)
(end-two-y 0)
(spike-coord-list nil)
(orientation nil))

()
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

;// the screen manager attempts to orchestrate the user interface [at least, that vas
;;: the programmers initial concept]
(defflavor na«a-«cr**n-manag«x

((program-framework nil)
(stream-table (make-hash-table))
(left-x SO)
(right-x 10SO)
(lower-y 475)
(upper-y 25)
(x-delta nil)
(h-scale-inc 20) ,•;/ the number of time slices between scale markers
(v-scale-table (make-hash-table))
(current-resource nil)
(v-scale-inc 10)
(scale-length 5) ;length of spikes on scales
(min-x-delta 4)
(last-config nil)
(y-axis-table (make-hash-table))
/(make-instance •time-slice-axis :orientation 'vertical)
(x-axis (make-instance 'time-slice-axis :orientation ' ho r i zon ta l ) ;
(y-axis nil)
(owner-obj n i l ) )

( )
(:cone-name nil)
iwritable-inatance-variables
:readable-instance-variables

ORIGIN PM*»
OF POOR



ANDY:>brown>nasa-2>globals.lisp.59 7/12/8912:10:23 Page 3

:initable-instance-variablesj

(deff lavor n«««-init-obj
((mission-id ni l)

(mission-launch-date n i l ) ;list of day month year
(mission-launch-time ni l ) /list of hour minute second
(universal-start-time n i l )
(mission-duration ni l ) / list of days hours minutes seconds
(mission-end-date ni l )
(mission-end-time nil)
(universal-end-time nil)
(seconds-until-start-of-day nil) ;list of seconds and a flag indicating

;whether a new day
(seconds-per-week 604800)
(seconds-per-day 86400)
(seconds-per-hour 3600)
(seconds-per-shift nil)
(first-sunday-start-time nil)
(number-of-crew-shifts nil)
(shift-start-times ' ( ( 1 ( 0 8 0 0 ) ) ( 2 ( 0 - 4 0 0 ) ) ) )
(max-time nil)
(time-inc 60) /// seconds pee time period
(durable-resource-list nil)
(non-depletable7resource-list n i l )
(consumable-resource-list ni l)
(crew-list n i l ) / / ; a-list (name (list of lists of (begin-avail-time end-avail -t ime)))
(target-list nil) ;;;a-list (name (available times))
(attitude-list nil) ;;;a-list (name (available times))
(owner-obj nil)
(shift-availability-objs nil)
(misc-objs '((durable-resource , (make-instance 'query-obj :type 'durable-resource))

(crew-member ,(make-instance 'query-obj :type 'crew-member))
(consumable-resource

.(make-instance 'ouery-obj :type 'consumable-resource))
(non-depletable-resource

.(make-instance 'q-jery-obj :type ' non-depletable-resource) )
(target , (make-instance 'query-obj rtype ' t a rge t ) )
(att i tude , (make-instance 'query-obj :type ' a t t i tude))
(experiment ,(make-instance 'query-obj :type 'experiment))
(performance .(make-instance 'query-obj :type 'performance))
(step .(make-instance 'query-obj :type ' s tep))
) ) )

( )
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor mission ((experiment-template-table (make-hash-table))
(experiment-table (make-hash-table))
(time-slice-holder nil)
(screen-manager (make-instance ' nasa-screen-manager))
(init-obj (make-instance ' nasa-init-obj))
(selected-time-slice nil)
(selected-performance nil)
(operation ni l)
(crew-combinations-table (make-hash-table :test I ' equal ) )
(time-table (make-hash-table))
(power-table (make-hash-table))
(sorted-power-keys ni l)
(sorted-time-keys nil)
( t i t le ni l)
(sorted-instance-list nil)
(multiple-scheduling nil))

()
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(declare (special temp-list))

(defmethod (m*Jc«-in*t«nc« mimmion :«ft«r) (trest ignore)

POOR



ANDY:>brown>nasa-2>globals.lisp.59 7/12/89 12:10:23 Page 4

(setf (owner-obj screen-manager ) self
(owner-obj init-obj ) s e l f ) )

(defvar *mission* (make-instance 'miss ion))

(defflavor •acparisiant ((name nil)
(min-perforroances 0)
(max-performances 0)
(desired-performances n i l )
(performance-list ni l )
(latest-start-time nil)
(performance-time-window nil) ;;;aka max pert duration - code

;was developed before I realized that I was dealing with one
lvalue instead of two

performance-windows ni l )
crew-lockin ni l ) /// nil or a Hat of lists of first and last

steps requiring lockin ex ((1 5) (7 9)1
on-depletable-tolerance-list nil)
tr«t*gy nil) ;;;see esp users manual section on scenarios --
/when used, strategy will consist of keyword :cascade or
; :max-weigth, and list of scenarios and weights. example
; (-.cascade ((((-.consecutive 1 15)) 90)

(((:consecutive 2 14)) 45)
(((-.consecutive 2 14) (:sequential (14))) 70)
(((sequential (2 1 3 5 6 1))) 80)))

•xp*rimant-tiiiM-window nil) / / / m a x time between start first
.-step first performance, and end last step, last performance

nax-p«rfonn»nc«-d«l«y-tim« nil) ;;;max time between end of last
;step of one performance and start of first step, next
,• performance

min-p«rfonn«nc«-d«l«y-tim« 0) / / / m i n time between end of last
;step of one performance and start of first step, next
;performance
chadula-«hutdown-with-p«rformanc« t);if I need this one,
/why don't i need one for start-up? I need this for use
/during automatic scheduling, to prevent scheduling and
;unscheduling of shutdown steps after each performance.
;Note that automatic scheduling must insure shutdown
^scheduled with last auto performance, and this flag is "on"
; afterwards

(»t«rtup-«t»p« nil)
(shutdown-steps nil)
(prototype-step-list n i l )
(desired-monitor-steps n i l )
(min-performances-displayed-p n i l ) )

(:cone-name nil)
:writable-instance-variables
: readable-instance-variables
:initable-instance-variables)

(defflavor p*rform*nc* ((number 0)
(scheduled-start-time ni l )
(scheduled-end-time ni l)
(performance-time-window nil)
(scheduled-p nil)
(required-p n i l )
(step-list ni l)
(execute-start-up-steps-p ni l)
(execute-shutdown-steps-p nil)
(last-time-slice ni l )
(owning-experiment n i l ) )

( )
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor «t»p ((id nil)
(number nil)

A-21

PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>globals.lisp.59 7/12/8912:10:23 Page 5

o

(scheduled-start-time nil)
(scheduled-end-time nil) ;;;needed because of variable duration
(max-duration nil)
(min-duration nil)
(step-delay-min nil)
(step-delay-max nil)
(next-step nil)
(previous-step nil)
(last-time-slice nil)
(cumulative-consumable-list nil)
(resource-carry-thru nil)
(consumable-resource-list nil) ,-;a-list (resource-name qty)
(durable-resource-list nil) ;;a-list (resource-name qty))
(non-depletable-resource-list nil) ;;a-list (resource-name qty tolerance)
;no tolerance entry or nil entry is equivalent to zero

crew-requirements nil),-/;Jjst of lists: inner list is list of list
;of how identified, crew-members and qty to be used, expample
.•(((duty-position pilot nav asst-pilot) 2)
; ((duty-position senior-mission-scientist mission-scientist! 1)
; ((name smith Jones) 1)) .

crew-combinations nil) ;;;list of lists -- each inner list
.•represents a combination of crew members, by object, which
;satisfy the crew requirements
failed-crew-combinations nil)
crew-lockin nil) ;,-,• nil or the number of the step holding the

lockin crew list -- note that even if specified as a lockin
step, flag will be nil unless crew lockin requirements are the
same and monitoring is not required

(crew-monitor nil)
(crew-duration nil)
(crew-cycle nil)
(crew-early-shift nil)
(crew-late-shift nil)
(concurrent-with ni.1) ,•„•; (exp step)
(target-list nil) .•/,• A LIST OF LISTS; INNER LIST CONSIST OF
;„•,• ONE OF THE KEY HORDS : intersect : select : avoid AS THE FIRST
;;; ELEMENT, AND A LIST OF TARGETS AS THE SECOND ELEMENT,- KEY WORDS
;;; CANNOT BE REPEATED
(attitude-list) ;,v (avoid-or-required attitude-list)
(scheduled-crew-list nil) ;;,-list of list of (crew-id lockin)
(crew-monitoring-time 1.0) ;;;fraction of step length crew members
;;;required to monitor this step
(owning-object nil) )

(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
: initable-instance-variables)

(defmethod (:print-self step) (stream ignore ignored)
(cond ((null owning-object)

(format stream "KSTEP -A -A -A>" id number nil))
((typep owning-object 'experiment)
(format stream "KSTEP -A -A -A>" id number (name owning-object)))
((typep owning-object 'performance)
(format stream "KSTEP -A -A Pert * -A of -a>"

id number (number owning-object)(name (owning-experiment owning-object))))
(t (format stream "KSTEP -A -A -A>" id number owning-object))))

(defflavor »t«rtup-»t«p () (step) (:conc-name nil) :writable-instance-variables
:readable-instance-variables :initable-instance-variables)

(defflavor •hutdown-«t«p () (step) (: cone-name nil) :writable-instance-variables
:readable-instance-variables :initable-instance-variables)

(defflavor «xparim«nt-t*jnpl«t« () (experiment) (:cone-name nil)
able-instance-variables :initable-instance-variables)

:writable-instance-variables :read

(defflavor (tap-template () (step) (: cone-name nil) :wri table-instance-variables
:readable-instance-variables :initable-instance-variables)

(defflavor •hutdovn-«t*p-t*mplat* () (»hutdown-»t«p) (:conc-name nil)
:writable-instance-variables

A-22



ANDY:>brown>nasa-2>globaIs.lisp.59 7/12/8912:10:23 Page 6

:readable-instance-variables :initable-instance-variables)

(defflavor »t«rtup-»t«p-t«mpl«t« () (•t&rtup-»t«p) (:cone-name nil)
:writable-instance-variables
:readable-instance-variables :initable-instance-variables)

(defflavor tioa-*lica ((start-time nil)
(end-time nil)
(performance-step-table (make-hash-table :test »'equal))
;;;key is list (exp perf step)
(crew-list nil) /// until the mechanism for implementing
;;; monitoring is devised, simply a list of
/// (crev-member committed vho-info)
(consumable-resource-list nil) ,-list of (resource committed vho-info)
(cumulative-consumable-table (make-hash-table))
(non-depletable-resource-list nil)
;;;list of (resource committed tolerance uho-info)
(durable-resource-list nil) ;list of (resource committed ttho-info)
(target-list nil) ///targets available in this time-sliced
(attitude-list nil) ///attitude during this time-slice
(next-slice nil)
(prev-slice nil)
(start-x nil)
(top-y nil))

()
(:cone-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defun clear-listener ()
(send (gethash 'listener (stream-table (screen-manager *mission»))) iclear-history))

A-23



help.methods.IJsp >brown>nasa-2 ANDY: (5) 7/14/89 11:13:45 Page 1

;;; -•- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defvar 'help-window* nil)

(defmethod (help mission) ()
(cond ('help-window*

(send "help-window* zexpose)
)
(fc .
(setf "help-window* (tv:make-window 'tviwindow

:edges '(100 100 1000 600)
:exp03e-p t
:activate-p t
:blinker-p nil
:default-character-style
'(:fix :roman :normal)
:save-bits t
:label "Mission Help Window"))

(format 'help-window* "-%TURN THE DYNAMIC GARBAGE COLLECTOR ON !!!-%-%To load the data necessary
to run the model, execute the method (load-mission-data *mission*). -%-%To cause the model to run, execut
e the function (test-scheduler 'mission* [list of experiment names] -%[number of replications each]). The
last argument is a single number. -%To get a list of experiment names, execute the method (get-list-of-1

oaded-experiment-names 'mission') -%After the model has been run, if you wish to run it again, execute th
e function -%(restore-data-to-start 'mission*), and the test-scheduler again. -%-%To get printed output
of the results, execute the function (output-mission-data "mission* -%[OPTIONAL list-of-time-slice-instan
ces]). This will cause files in the directory NASA-EXP-SCH-2:OUTPUT-DATA; to be deleted and expunged, an
d new files created for the time line and each experiment that has been scheduled. When the optional lis
t-of-time-slice-instances is supplied, only those time slices will be written out. -%-%To get a list of
time slices covering a time period, execute the function (get-time-instance-list 'mission* ~%start-time e
nd-time [OPTIONAL time-slice-instance)). The start-time and end-time are in terms of mission time -%peri
ods; that is, the number of seconds since launch divided by the time increment (currently 60). See the f
ile NASA-EXP-SCH-2:NASA=-EXP-SCH-2;TIME-TRANSLATORS.LISP for functions that can assist in obtaining the c
orrect -%values. The optional time-slice-instance is used when you have a handle on an instance which is
closer to the -%desired instances than the first instance.~%-%Data can also be written out in a binary fo
rm by executing the method (dump-mission-to-file 'mission* -%[OPTIONAL (FILENAME NASA-EXP-SCH-2:BIN-FILES
;MISSION-FASD-FILE.BIN]). The method name comes from the use of the sys:dump-forms-to-file function, and
the file name from the use of FASD [FASt Dump) forms for every object. If you haven't used these before
, be advised that they cannot handle recursive structures; you must modify the -%saved instance to remove
backpoints to objects, and restore the backpointers upon reload. ~%~%To reload a saved mission, simple

execute (load [filename]). -%-%To view this message again, execute (help "mission*)"))))

(help 'mission*)

ORIGINAL PAGE IS
A-24 OF POOR QUALITY



ANDY:>brown>nasa-2>load-methods.lisp.l8 7/12/8912:10:28 Page 1

... _«_ Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -•-

(defmethod (load-mission-data mission) ()
(load-mission-data init-obj)
(load-resource-data self)
(load-all-experiment-data self)
(setup-crew-member-duty-shifts init-obj)
(correct-representations-and-build-linkages-after-data-load self))

(defmethod (load-lockin-test mission) ()
(load-miasion-data init-obj)
(load-resource-data self)
(let ((experiment (make-instance 'experiment :name 'lockin-test)))

(load-experiment-data experiment 'lockin-test)
(setf (gethash 'lockin-test experiment-template-table) experiment))

(setup-crew-member-duty-shifts init-obj)
{correct-representations-and-build-linkages-after-data-load self))

(defmethod (load-mission-data nasa-init-obj) ()
(load "nasa-exp'3Ch-2:data;mission-data" :verbose nil)
(loop for (slot value) in temp-list

do
(setf (symbol'value-in-instance self slot) value))

(determine-initial-universal-times self)
(determine-end-times self)
(setf max-time (floor (- universal-end-time universal-start-time) time-inc)))

(defmethod (load-resource-data mission) ()
(load-consumable-resource-data self)
(load-non-depletable-resource-data self)
(load-durable-resource-data self)
(load-crew-resource-data self)
(load-target-resource-data self)
(load-attitude-resource-data self))

(defmethod (load-consumable-resource-data mission) ()
(load "nasa-exp-sch-2:data;consumable-resources" :verbose nil)
(when temp-list
(setf (consumable-resource-list init-obj)

(loop for (symbol value) in temp-list
for resource «

(make-instance
'consumable-resource
: name symbol
: quantity-availability-list
(neons (make-instance

'quantity-availability
:name symbol
:qty value
.•available-times-list
(neons (make-instance 'available-time

:begin 0
:end (max-time (init-obj "mission*)))))))

collect resource))
(loop for resource in (consumable-resource-list init-obj)

do
(loop for qty-avail-obj in (quantity-availability-list resource)

do
(setf (owner-obj qty-avail-obj) resource)
(loop for avail-time-obj in (available-times-list qty-avail-obj)

do
(setf (owner-obj avail-time-obj) q ty -ava i l -ob j ) ) ) ) ) )

(defmethod (load-non-depletable-resource-data mission) ()
(load "nasa-exp-sch-2:data;non-depletable-resource3" :verbose nil)
(when temp-list
(setf (non-depletable-resource-list init-obj)

(loop for (symbol qty-av-list) in temp-list
collect

(make-instance
'non-depletable-resource
:name symbol
: quantity-availability-list

A-25



ANDY:>brown>nasa-2>load-methods.lisp.l8 7/12/8912:10:28 Page 2

(loop for (day hour minute second quant) in qty-av-list
collect

(ma Ice- instance
•quantity-availability
: available-times-list
(neons
(make- instance
' available-time
: begin
( t ran si ate -seconds-to- time-periods

(translate -t ime-list -to- seconds
(list day hour minute second)))))

:qty quant) ) )
))

(loop for resource in (non-depletable-resource-list init-obj)
do

(loop for qty-avail-obj in (quantity-availability-list resource)
do

(setf (owner-obj qty-avail-obj) resource)
(loop for avail-time-obj in (available-times-list qty-avail-obj)

do
(setf (owner-obj avail-time-obj) qty-avail-obj))))))

(defmethod (load-durable-resource-data mission) ()
(load "nasa-exp-sch-2: data; durable-resources" :verboae nil)
(when temp-list
(setf (durable-resource-list init-obj)

(loop for (nname aavailable-quantity) in temp-list
collect (make-instance 'durable-resource

: name nname
:available-quantity aavailable-quantity) ) ) ) )

(defmethod (load-crew-resource-data mission) ()
(load "nasa-exp-sch-2:data;crew-resources" :verbose nil)
(when temp-list

(setf (crew-list init-obj)
(loop for (crew-name crew-position crew-shift) in temp-list

collect (make-instance 'crew-member
:name crew-name
rduty-position crew-position
:work-shift crew-shift)))

))

(defmethod (load-target-resource-data mission) ()
(load "nasa-exp-sch-2: data; target-resources" iverbose nil)
(when temp-list

(defmethod (load-attitude-resource-data mission) ()
(load "nasa-exp-sch-2:data;attitude-resources" :verbose nil)
(when temp-list

(defmethod (load-all-experiment-data mission) ()
(load "nasa-exp-sch-2:data;experiment-list " : verbose nil) '
(loop for experiment-name in temp-list

for experiment - (make-instance 'experiment)
do

(load-experiment-data experiment experiment-name)
(setf 'gethash experiment-name experiment-template-table) experiment)))

(defmethoc. (load-experiment-data experiment) (experiment-name)
(load (format nil "nasa-exp-sch-2:exp-data;-S" experiment-name) : verbose nil)
(unless (eql (first temp-list) experiment-name)

(error "-% Experiment Name in Experiment List, -S, Does Not Match Name in File, -S"
experiment-name (first temp-list)))

(setf name (first temp-list))
(load-experiment-data-aux self (cdr temp-list))
(when strategy

(setf strategy
(list

A-26



ANDY:>brown>nasa-2>load-methods.Iisp.l8 7/12/8912:10:28 Page 3

(first strategy)
(sort (copy-alist (second strategy)) t'> :key »'second)))))

(defmethod (load-experiment-data-aux experiment) (data-list)
(cond ((null data-list) nil)

((member (first (first data-list))
•(prototypo-step-list startup-step-list shutdown-step-list))

(build-steps self (first data-list))
(load-experiment-data-aux self (cdr data-list)))

(t (setf (symbol-value-in-instance self (first (first data-list)))
(second (first data-list)))

(load-experiment-data-aux self (cdr data-list)))))

(defmethod (build-steps experiment) (data-list)
(setf (symbol-value-in-instance self (first data-list))

(loop for step-data in (second data-list)
for step " (make-instance 'step :owning-object self)
collect step
do

(build-step step step-data non-depletable-tolerance-list))))

(defmethod (build-step step) (step-data non-depletable-tolerance-list)
(let ((result nil))
(loop for (slot value) in step-data

do
(setf (symbol-value-in-instance self slot) va lue ) )

(loop for (resource quant) in non-depletable-resource-list
do

(if (member resource non-depletable-tolerance-list :key t'first)
(push (list resource quant

(second
(first (member resource non-depletable-tolerance-list :)cey f first))))

result)
(push (list resource quant 0) result)))

(setf non-depletable-resource-list result)
(setf min-duration (translate-time-list-to-seconds min-duration)

max-duration (translate-time-list-to-seconds max-duration)
step-delay-min (translate-time-list-to-seconds step-delay-min)
step-delay-max (translate-time-list-to-seconds step-delay-max))

(when crew-monitor
(setf crew-duration (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-duration))
crew-cycle (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-cycle))
crew-early-shift (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-early-shift))
crew-late-shift (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-late-shift))))))

A-27



ANDY:>brown>nasa-2>nasa-exp-sch-2.lisp.40 7/17/89 14:56:04 Page 1

... _«_ package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -•-

(defsystem naaa-exp-ach-2
(:default-pathname "nasa-exp-sch-2: nasa-exp-sch-2;"
:pretty-name "NASA Experiment and Performance Tool"
:default-package 'cl-user
:patchable nil
:initial-status :experimental
:bug-reports ("bug-nasa-exptperI-scheduler"

"Report problems with NASA Experiment and Performance Tool code")
:advertised-in (:herald :finger :disk-label)
:maintaining-sites (:mayberry)
:source-category (:basic)
:distribute-sources t
:distribute-binaries t)

(:module globals ("globals" "framework" ))
(•.module graphics-defs ("edit-presentation-types" )

(:uses-definitions-from globals))
(:module methods ("nasa-init-obj-methods" "new-mi33ion-methods""3creen-manager-methods"

"resource-methods" "step-methods" "experiment-methods" "time-translators"
"time-siice-methods" "performance-methods")

(:uses-definitions-from graphics-def3))
(:module loader ("load-methods" "after-data-load-methods")

(:uses-definitions-from globals))
(rmodule output ("output-to-file" "output-methods")

(:uses-definitions-from globals))
(rmodule scheduler ("scheduler-feasibility-methods-performance-level"

"scheduler-feasibility-method3-step-level" "scheduler-methods"
"scheduler-fea3ibility-method3-crew-3teps"
"scheduler-feasibility-methods-other-steps"
"scheduler-feasibility-pre-and-post-step"
"scheduler-feasibility-methods-resource"
"scheduler-feasibility-methods-target 3"
"scheduler-feasibility-methods-non-depletable"
"scheduler-feasibility-methods-durable-resource")

(:uses-definitions-from globals))
(:module unacheduler ("unschedule-methods")

(:use3-definitions-from globals))
(:module commands ("framework-commands" "presentation-commands" "editor-framework-commands")

(:use3-definitions-from graphics-defs))
(:module help ("help-methods")

;;;i lie - it doesn't use any definitions other that these in globals; but
;;;thia will insure it is loaded last!
(:uses-definitions-from commands unscheduler scheduler output loader methods)))

A-28

ORIGIN*-
OF POOR



AM)Y:>brown>nasa-2>nasa-iniNobj-methods.lisp.l6 6/12/89 13:44:14 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defroethod (dalate-roaourc* na«a-inlt-obj) (type)
(delete-resource-aux self (case type

(durable-resource 'durable-resource-list)
(consumable-resource 'consumable-resource-list)
(crew-member 'crew-list)
(attitude 'attitude-list)
(target 'target-list))))

(defmethod (d«l«to-ro*ourc«-«ux n«»«-init-obj) (type)
(let ((choice nil) (the-list (cons '(Quit quit)

(mapcar I'(lambda (obj) (list (name obj) obj))
(symbol-value-in-instance self type)))))

(loop until
(setf choice

(dw:menu-choose the-list
:prompt "Select Name of Resource to be Deleted or Quit")))

(unless (eql choice 'quit)
(setf (symbol-value-in-instance self type)

(delete choice (symbol-value-in-instance self type))))))

(defmethod (»dd-r»«ourc« na>a-init-obj) (obj slot)
(push obj (symbol-value-in-instance self slot))
,•/,• add code for any other actions to be done when adding a resource
)

(defmethod (•dit-vub-obj na««-init-obj) (tag)
(case tag

(init-obj-edit (present self 'single-valued-nasa-init-obj-edit-display
:stream (select-stream 'mission* 'init-obj-edit)))

(durable (display-durable-resource-for-editing
self (select-stream 'mission* 'durable-resource-edit )))

(consumable (display-consumables-for-editing
self (select-stream 'mission* 'consumable-resource-edit)))

(target (display-targets-for-editing self (select-stream 'mission* 'target-resource-edit)))
(attitude
(display-attitudes-for-editing self (seledt-stream 'mission* 'attitude-resource-edit)))

(crew (display-crew-for-editing self (select-stream 'mission* 'crew-resource-edit)))))

(defmethod (•dit-««lf n«»a-init-obj) ()
(select-configuration 'mission* 'init-obj-edit)
(setup-query-string self)
(present self 'single-valued-nasa-init-obj-edit-display

:stream (select-stream "mission* 'init-obj-edit))
(display-durable-resource-for-editing
self (select-stream 'mission' •durable-resource-edit ))

(display-consumables-for-editing self (select-stream 'mission* 'consumable-resource-edit))
(display-crew-for-editing self (select-stream 'mission* 'crew-resource-edit))
(display-targets-for-editing self (select-stream 'mission* 'target-resource-edit))
(display-attitudes-for-editing self (select-stream 'mission* 'attitude-resource-edit)))

(defmethod (••tup-qu«ry-«tring n«am-init-obj) ()
(unless (display-string (second (assoc 'durable-resource misc-objs)))
(setf
(display-string (second (assoc 'durable-resource misc-objs)))
'("MOUSE LEFT HERE TO CREATE A NEW DURABLE RESOURCE" "MOUSE CENTER TO DELETE A DURABLE RESOURC

E")
(display-string (second (assoc 'crew-member misc-objs)))
' ("MOUSE LEFT HERE TO CREATE A NEW CREW MEMBER" "MOUSE CENTER TO DELETE A CREW MEMBER")
(display-string (second (assoc '-consumable-resource misc-objs)))
' ("MOUSE LEFT HERE TO CREATE A NEW CONSUMABLE RESOURCE"
"MOUSE CENTER TO DELETE A CONSUMABLE RESOURCE')

(display-string (second (assoc 'target misc-objs)))
' ("MOUSE LEFT HERE TO CREATE A NEW TARGET" "MOUSE CENTER TO DELETE A TARGET")
(display-string (second (assoc 'attitude misc-objs)))
'("MOUSE LEFT HERE TO CREATE A NEW ATTITUDE" "MOUSE CENTER TO DELETE AN ATTITUDE")
)))

(defmethcd (dl«pl«y-«v«il»bl«-tiin««-for-«dlting availability) (stream)
(formatting-table (stream :equalize-multiple-column-widths t )

(forr.atting-column-headings (stream :underline-p ni l )

A-29



ANDY:>brown>nasa-2>nasa-init-obj-methods.lisp.l6 6/12/89 13:44:14 Page 2

(formatting-cell (stream :align :right) " BEGIN AVAILABLE TIME ")
(formatting-cell (stream :align :right) "END AVAILABLE TIME"))

(loop for available-time in available-times-list
do

(formatting-row (stream)
(present available-time ' avail.able-time-edit-displ.ay -.stream stream)))))

(defmethod (di«pl«y-durmbl«-r«»ourc«-for-«diting n«»«-lnit-obj) (stream)
(with-character-style (*(:fix :bold :normal) stream :bind-line-height t)

(format stream "-% DURABLE RESOURCES FOR MISSION-%"))
(when durable-resource-list

(formatting-table (stream lequalize-multiple-column-widths t)
(formattinq-column-headinqs (stream :un.derline-p nil)

(formatting-cell (stream :align ileft) " RESOURCE NAME ")
(formatting-cell (stream :align :left) "AVAILABLE QUANTITY"))

(loop for resource in durable-resource-list
do

(formatting-row (stream)
(present resource ' durable-resource-edit-display :stream stream)))))

(present (second (assoc 'durable-resource misc-objsl1 'misc-obj-edit-display :stream stream))

(defmethod (di»play-con»ujn«i>l««-for-«ditin7 n*»«-init-obj) (stream)
(with-character-style ( ' ( : f i x :bold rnormal) stream :bind-line-height t)

(format stream "-% CONSUMABLE RESOURCES FOR MISSION"))
(loop for resource in consumable-resource-list

do
(present resource 'con»ura*bl«-naroo-for-«dit-di»pl«y :stream stream )
(loop for quantity-availability in (quantity-availability-list resource)

do
(present quantity-availability 'quantity-availability-edit-display :stream stream )
(display-available-times-for-editing quantity-availability stream)))

(present (second (assoc 'consumable-resource misc-objs))
'misc-obj-edit-display :stream .stream) )

(defmethod (di«pl«y-crew-for-«diting n«»«-init-obj) (stream)
(with-character-style ('(:fix :bold :normal) stream :bind-line-height t)

(format stream "-% CREW MEMBERS FOR MISSION"))
(loop for crew-member in crew-list

do
(present crew-member 'name-for-edit-display :stream stream)
(display-available-times-for-editing crew-member s t ream))

(present (second (assoc 'crew-member misc-objs)) 'misc-obj-edit-display :stream s t ream))

(defmethod (di«pl«y-t«rg«t»-for-«ditin7 n«»a-lnit-obj) (stream)
(with-character-style ('(::ix :bold :normal) stream :bind-line-height t)

(format stream "-% TARGETS FOR MISSION"))
(loop for target in target-list

do
(present target 'name-for-edit-display :stream stream)
(display-available-times-for-editing target stream))

(present (second (assoc 'target misc-objs)) 'misc-obj-edit-display :stream stream))

(defmethod (di»play-«ttitud«»-for-»dlting na*a-lnit-obj) (stream)
(with-character-style ('(:fix :bold :normal) stream :bind-line-height t)
(format stream •-% ATTITUDES FOR MISSION"))

(loop for attitude in attitude-list
do

(present attitude 'name-for-edit-display :stream stream)
(display-available-times-for-editing attitude stream))

(present (second (assoc 'attitude misc-objs)) ' misc-obj-edic-display :stream stream))

(defmethod (get-r»«ourc«-ll«t n«»«-init-obj) ()
(mapcar t' (lambda (x) (list (name x) x))

(append consumable-resource-list durable-resource-list)))

A-30
ORIGINAL PMM»

OF POOR



ANDY:>brown>nasa-2>new-mission-methods.Iisp.l5 7/14/89 11:09:11 Page 1

... _»_ Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (get-list-of-loaded-experiment-names mission) ()
(let ((result nil))

(maphash I' (lambda (exp ignore)
(push exp result))

experiment-table)
(sort result f'alphalessp)))

(defmethod (g«t-r«sourc*-list mission) ()
(get-resource-list init-obj))

(defmethod («dd-r«sourc« mission) (obj slot)
(add-resource init-obj obj slot)
;;;add code for any other function that must be done when adding a new resource

(defmethod (d*l«t«-x«sourcs> mission) (type)
(case type

((target attitude crew-member consumable-resource durable-resource)
(delete-resource init-obj type))
(experiment-template (delete-exp-template self))
(experiment (delete-exp self)))

/,-,• add code to clear up any other pointer, including displays

(defmethod (delete-exp-template mission) ()
(format tv:initial-lisp-listener "this is a stub (delete-exp-template mission)"))

(defmethod (delete-exp mission) ()
(format tv:initial-lisp-listener "this is a stub (delete-exp mission) "))

(defmethod (*dit-init-sub-obj mission) (tag)
(edit-sub-obj init-obj tag))

(defmethod (*dit-obj mission) (obj-tag)
(edit-self (symbol-value-in-instance self obj-tag)))

(defmethod (r«port-«rror mission) (error-mag)
(format tv:initial-lisp-listener "-%-A*error-msg))

(defmethod (s«l«ct-configur«tion mission) (key)
(select-configuration screen-manager key))

(defmethod (select-stream mission) (key)
(select-stream screen-manager key))

(defmethod (clear-history mission) (key)
(clear-history screen-manager key))

(defmethod (select-configuration-and-clear-history mission) (key)
(select-configuration screen-manager key)
(clear-history screen-manager key))

(defmethod (edit-experiment-templates mission) ()
(let ((stream (select-stream self 'tables-2)))

(unless (display-string (second (assoc 'experiment (misc-objs init-obj))))
(setf
(display-string (second (assoc 'experiment (misc-objs init-obj))))
'("MOUSE LEFT HERE TO CREATE A NEW EXPERIMENT" "MOUSE CENTER TO DELETE AN EXPERIMENT")
(display-string (second (assoc 'performance (misc-objs init-obj))))
' ("MOUSE LEFT HERE TO CREATE A NEW PERFORMANCE" "MOUSE CENTER TO DELETE AN PERFORMANCE")
(display-string (second (assoc 'atep (misc-objs init-obj))))
' ("MOUSE LEFT HERE TO CREATE A NEW STEP" "MOUSE CENTER TO DELETE AN STEP")))

(select-configuration-and-clear-history self 'tables-2)
(maphash ('(lambda (key experiment-template)

key
(display-experiment-template-for-editing experiment-template stream))

experiment-tempiate-table)
(present (second (assoc 'experiment (misc-objs init-obj))) ' misc-obj-edit-display : at rear, stre

am) ) )

(defmethod (display-experlment-template-for-editlng experiment) (stream)

IS
A-31

POOR QÛ U'



ANDY:>brown>nasa-2>new-mission-methods.lisp.l5 7/14/8911:09:11 Page 2

(present self 'experiment-template-name-edit-display :stream stream)
(present self 'experiment-template-edit-display :stream stream)
(loop for slot in '(startup-steps shutdown-steps prototype-step-list)

do
(format stream ~-A"slot)
(mapc I'(lambda (step)

(present step 'step :stream stream))
(symbol-value-in-instance self slot))

(present (second (assoc 'step (misc-objs (init-obj 'mission*))))
'misc-obj-edit-display : stream stream)))

(defmethod (add-exp-temp-to-table mission) (experiment-template name)
(setf (qethash name experiment-template-table ) experiment-template))

(defmethod (add-exp-to-table mission) (experiment name)
(setf (gethash name experiment-table ) experiment))

A-32



ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (:fasd-form availabl«-tima) ()
'(make-instance 'available-time

:begin '/begin
:end '.end))

(defmethod (:fasd-form availability) ()
'(make-instance 'availability

:name '.name
:available-times-list '.available-times-list))

(defmethod (:fasd-form quantity-availability) ()
• (make-instance 'quantity-availability

:name ',name
:available-times-list ',available-times-list
:qty ',qty '
:owner-obj ',(name owner-obj)))

(defmethod (:fasd-form durable-raaource) ()
'(make-instance ' durabl«-r«»ourc«

:name '.name
:available-quantity ',available-quantity))

(defmethod (:fasd-form non-durable~r«aource) ()
•(make-instance 'non-durable-resource

:name ',name
:quantity-availability-list '.quantity-availability-list))

(defmethod (:fasd-form con*umabl«-r«aourc«) <)
'(Riake-instance ' con«umabl«-r«»ourc«

:name ',name
:quantity-availability-list '.quantity-availability-list) )

(defmethod (:fasd-form non-depletable-resource) ()
"(make-instance 'non-depletable-r*aourc«

:name ',name
:quantity-availability-list '.quantity-availability-list))

(defmethod (:fasd-form cr«w-aaab«r) ()
'(make-instance 'craw-mon>b«r

:duty-positlon '.duty-position
:work-shift ',work-shift
:name ', name
:available-times-list •,available-times-list))

(defmethod (:fasd-form target) ()
'(make-instance 'target

:name '.name ,
:available-times-list ' .available-times-list))

(defmethod (:fasd-form attitude) ()
'(make-instance 'attitude

:name ',name
:available-times-list ',available-times-list))

(defmethod (:fasd-form nasa-init-obj)()
'(make-instance 'nasa-init-obj

:mission-id ', mission-id
:mission-launch-date ',mission-launch-date
:mission-launch-time ',mission-launch-time
:universal-start-time '.universal-start-time
:mission-duration '.mission-duration
:mission-end-date ',mission-end-date
:mission-end-time ',mission-end-time
:universal-end-time ',universal-end-time
:seconds-until-start-of-day '.seconds-until-start-of-day
:seconds-per-week ',seconds-per-week
:seconds-per-day '.seconds-per-day
:seconds-per-shift ',seconds-per-shift

A'33 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>output-methods.!isp.2 7/13/89 15:36:48 Page 2

: first-sunday-start-time ' , f i rst-sundav-start- t ime
:number-of-crew-shifts • , number-of-cre.. - sh i f t s
: shift-start-t imes • , shift-start-times
:max-time ' .max-time
:time-inc ' , t ime-inc
:durable-resource-list • .durable-resource-list
: non-depletable-resource-list ' , non-depletable-resource-list
:consumable-resource-list ' , consumable-resource-list
:crew-list '.crew-list
:target-list ', target-list
:attitude-list '.attitude-list
: shift-availability-objs ' , shift-availability-ob js) )

(defmethod (:fasd-form n«»a-»cr««n-m*n«ô r) ()
* (make-instance ' n»»m-»cr««n-m*n«g;ar

: program-framework ' , program- framework
: stream-table '.stream-table
:left-x ' ,left-x
:right-x ' , right-x
:lower-y ' , lower-y
:upper-y ', upper -y
:x-delta ',x-delta
:h-scale-inc ' , h-scale-inc
:v-scale-table ' , v-scale-table
: current-resource ' , current-resource
:v-scale-inc ' , v-scale-inc
: scale-length '.scale-length
:min-x-delta ' ,min-x-delta
:last-config ' , last-conf ig
:y-axis-table ' , y-axis-table
:x-axis '.x-axis
:y-axis ' , y -ax i s )>

(defmethod ( :fasd-form mission) ()
• (make-instance 'mission

: experiment-template-table ' .experiment-template-table
: experiment-table ' , experiment-table
: time-slice-holder ' , time-slice-holder
: screen-manager ' , screen-manager
:init-obj ' . inlt-obj <-
: selected-time-slice ' . selected-time-slice
: selected-performance ' , selected-performance
:operation '.operation
:crew-combinations-table ' .crew-combinations-table
:time-table ' .time-table
:power-table '.power-table
: sorted-power-keys ' , sorted-power-keys
: sorted-time-keys ' , sorted-time-keys
:title ', title
: sorted-instance-list • , sorted-instance-list
:mult iple-scheduling ' . multiple-scheduling) )

(defmethod (:fasd-form •jrp«rim»nt) ()
'(make-instance 'experiment

: name ' . name
:mln-perf ormances ' ,min-performances
:max-perf ormances ' , max-perf ormances
:desired-performances ' .desired-performances
:performance-list ' .performance-list
: late at -start -time ' .latest -start -time
:performance-time-window ' .performance-time-window
: performance-windows • .performance-windows
:crew-lockin ' , crew-lockin
:non-deplet able-tolerance- list ' , non-deplet able- tolerance-list

:muc-p«rfonnanc«-d«l>y-tiBa ' , max-parf ormanc«-d«lmy-tiaa
:mln-p»rfortoanc«-d«l»y-tim« ' , min-p«rform»nc«-d«l«y-tlm«
: •eh«dula-*butdown-«itb-p«rfomanc« ' , •ch*dul«-«hutdown-with-p«rf ozmanc
: «t«r-tup- step* ' , •t>rtup-*t*p«
: shutdown-steps '.shutdown-steps
:prototype-step-list ' , prototype-step-list
:desired-monitor-stepa '.desired-monitor-steps
:min-perf ormances-displayed-p ' ,min-perf ormances-displayed-p) )

A-34 ORIGINAL PAGE IS
OF POOR



ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48 Page 3

(defmethod ( : fasd-form p«rform*nc«) ()
•(make-Instance 'performance

:number ' ,number
:scheduled-start-time ' , scheduled-atart-time
:scheduled-end-time ' ,acheduled-end-time
:performance-time-window ', performance-time-window
:scheduled-p ',acheduled-p
:required-p '.required-p
:step-liat ',step-list
:execute-start-up-steps-p • , execute-start-up-atepa-p
:execute-ahutdown-stepa-p ' , execute-shutdown-atepa-p
:last-time-alice '.(if last-time-alice (start-time last-time-slice) nil)
))

(defmethod (:faad-form »t«p) ()
•(make-instance 'step

: id •,id
: numbe r ',number
:acheduled-3tart-time ' , acheduled-start-time
:scheduled-end-time ', scheduled-end-time
:max-duration ',max-duration
:min-duration ', min-duration
:step-delay-min ', step-delay-min
:step-delay-max ', step-delay-max
:next-step '.next-step
:previous-step nil
:laat-time-slice * , ( i f last-time-slice (start-time last-time-alice) ni l)
:cumulative-consumable-list ',cumulative-consumable-list
:reaource-carry-thru ', resource-carry-thru
:consumable-resource-list ' ,consumable-resource-liat
:durable-resource-liat ' , durable-resource-list
:non-depletable-resource-liat ', non-depletable-resource-list
:crew-requirementa ', crew-requirements
:crew-combinations ', crew-combinations
:failed-crew-combinations •,failed-crew-combinations
:crew-lockin ' ,crew-lockin
:crew-monitor ' .crew-monitor
:crew-duration ' .crew-duration
:crew-cycle '.crew-cycle
:crew-early-shi ft ',crew-early-shi ft
:crew-late-shift ',crew-late-shift
:concurrent-with ', concurrent-with
:target-list ',target-list
:attitude-liat ',attitude-list
:acheduled-crew-list ', scheduled-crew-list
:crew-monitoring-time ' , crew-monitoring-time
:owning-object nil))

(defmethod (:faad-form tim«-«Hc«) ()
'(make-instance 'time-slice

:atart-time '.start-time
:end-time '.end-time
:performance-step-table ' ,performance-step-table
:crew-list '.crew-list
:consumable-reaource-list ', consumable-resource-list
:cumulative-consumable-table '.cumulative-consumable-table
:non-depletable-resource-list ',non-depletable-resource-list
.•durable-resource-list ', durable-reaource-list
:target-list ',target-list
:attitude-list '.attitude-list
:next-alice '.(if next-slice next-slice nil)
:prev-slice '.(if prev-slice (start-time prev-slice) nil)
:start-x '.start-x
:top-y ',top-y))

(defmethod ( :fasd-form tim«-»lic«-axi») ()
•(make-instance ' tira«-»lic«-ajci»

:end-one-x ',end-one-x
:end-one-y '.end-one-y
:end-two-x '.end-two-x
:end-two-y '.end-two-y
:spike-coord-liat ' , spike-coord-list
:orientation ' . o r i en t a t i on ) )

A-35 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48 Page 4

(defmethod (dump-mission-to-file mission)
({optional (filename "nasa-exp-sch-2:bin-files;mission-fasd-file.bin") )

(sys:dump-form3-to-file filename
•((setf "mission* '.self)

(restore-object-linkages 'mission*))
M:package ' u s e r ) ) )

(defmethod (restore-object-linkages mission) (Crest ignore)
(restore-object-linkages time-slice-holder)
(loop for table in '(experiment-template-table experiment-table)

do
(maphash I'(lambda (exp instance)

exp
(loop for slot in '(startup-steps prototype-step-liat shutdown-steps)

for prev-step = nil
do

(loop for step in (symbol-value-in-instance instance slot)
do

(restore-object-linkages step instance prev-stfcp)
(setf prev-step step))

(loop for performance in (performance-list instance)
do

(restore-object-linkages performance instance))))
(symbol-value-in-instance self table)))

(restore-object-linkages init-obj self))

(defmethod (restore-object-linkages step) (owner prev-step)
(setf owning-object owner)
(if (typep owner 'experiment)

(when prev-step (setf previous-step (id prev-step)
(next-step prev-step) id))

(when prev-step (setf previous-step prev-step
(next-step prev-step) self))))

(defmethod (restore-object-linkages performance) (owner (rest ignore)
(let ((last-slice nil))
(setf owning-experiment owner)
(loop for step in step-list

with prev-step - nil
do

(restore-object-linkages step self prev-step)
(when (scheduled-start-time step)
(setf last-slice (get-time-instance "mission* (scheduled-start-time step) list-slice))
(setf (last-time-slice step) last-slice))

(setf prev-step step))
(setf last-time-slice last-slice)))

(defmethod (restore-object-linkages time-slice) ({optional previous-slice (rest ignore)
(when previous-slice

(setf prev-slice previous-slice))
(when next-slice

(restore-object-linkages next-slice self)))

(defmethod (restore-object-linkages nasa-init-obj) ((rest ignore)
(loop for slot in ' (attitude-list target-list crew-list consumable-resource-list non-depletable-

resource-list)
do

(loop for resource in (symbol-value-in-instance f slot)
do

(restore-object-linkages resource resource))))

(defmethod (restore-object-linkages availability) (owner (rest ignore)
(loop for avail-obj in available-times-list

do
(setf (owner-obj avail-obj) owner)))

(defmethod (restore-object-linkages non-durable-resource) (owner (rest ignore)
(loop for quant-avail-obj in quantity-availability-list

do
(setf (owner-obj quant-avail-obj) owner)
(restore-object-linkages quant-avail-obj quant-avail-obj)))

A-36 ORIGINAL PAGE IS
OF POOR Q'oAs-iTY



ANDY:>brown>nasa-2>output-to-file.lisp.l3 7/14/89 10:41:59 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmeChod (output-shift-available-times mission) ()
(loop for shift in (shift-availability-objs INIT-OBJ)

for count from 1
do

(with-open-file (stream (format nil "nasa-exp-sch-2:output-data;shift-available—S"count)
:direction :output)

(format stream " SHIFT AVAILABILITY TIMES FOR SHIFT -S - count)
(FORMAT STREAM "-% START END")
(LOOP FOR OBJ IN SHIFT

DO
(FORMAT STREAM "-%")
(output-time-date-to-stream init-obj STREAM (BEGIN OBJ))
(format stream " ")
(output-time-date-to-stream init-obj STREAM (END OBJ))))))

(defmethod (output-mission-data mission) ((optional (time-line-list nil))
(fs:wildcard-map "nasa-exp-ach-2:output-data;*.*.*" I'delete-flie)
(fs:expunge-directory "nasa-exp-sch-2:output-data;")
(if time-line-list

(output-time-line-list self time-line-list)
(output-time-line self nil))

(output-scheduled-experiments sel: )

(defmethod (output-time-line-list mission) (time-line-list)
(loop for (time-slice exp-name) in time-line-list

do
(output-time-lineo '
self time-slice exp-name
(format nil "nasa-exp-sch-2:output-data;time-line-data-for—S" exp-name))))

(defmethod (output-time-line mission) ((optional time-slice title filename)
(with-open-file (stream (if filename filename "nasa-exp-sch-2:output-data;time-line-data")

•.direction : out put)
(cond (time-slice

(setf time-slice (find-first-slice time-slice)))
(t (setf time-slice time-slice-holder)))

(when time-slice
(output-time-slice time-slice stream title))))

(defun find-first-slice (time-slice)
(cond ((null (prev-slice time-slice)) time-slice)

(t (find-first-slice (prev-slice time-slice)))))

(defmethod (output-time-slice time-slice) (stream title)
(format stream "-%*»«•»«»**•*•«**«*•***•«»«««****«*«******"**««***»*")
(when title
(format stream "-% TIMELINE -S" title))

(FORMAT STREAM "-% START TIME - ")
(output-time-date-to-stream (init-obj "MISSION*) STREAM start-time)
(format stream " END TIME - ")
(output-time-date-to-stream (init-obj "MISSION") STREAM end-time)
(when crew-list
(format stream "-% CREW MEMBER SCHEDULED DURING THIS PERIOD-I")
(formatting-table (stream :equalize-multiple-column-widths t )
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "CREW MEMBER"))
(output-step-headings stream))

(loop for (crew step) in crew-list
do

(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "-s"(name crew)))
{output-step-values step stream)))))

(when consumable-resource-list
(format stream "-% CONSUMABLE RESOURCES SCHEDULED THIS PERIOD-%")
(formatting-table (stream :equalize-multiple-column-widths t )
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY"))
(output-step-headings stream))

(loop for (consumable quant step) in consumable-resource-list
do

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>output-to-file.lisp.l3 7/14/89 10:41:59 Page 2

(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "-s"(name consumable)))
(formatting-cell (stream :align :right) (format stream "-s" quant))
(output-step-values step stream)))))

(unless (zerop (send cumulative-consumable-table :filled-elements))
(format stream "-% CUMULATIVE CONSUMABLE RESOURCE USAGE-%")
(let ((cum-list nil))

(maphash t' (lambda (resource quant)
(push (list resource quant ) cum-list ))

cumulative-consumable-table)
(setf cum-list (sort cum-list t'alphalessp :key I'first))
(formatting-table (stream lequalize-multiple-column-widths t )
(formatting-column-headings (stream :underline-p nil)

(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY")))

(loop for (resource quant) in cum-list
do

(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "-s"(name resource)))
(formatting-cell (stream ralign :right) (format stream "-s" quant)))))))

(when non-depletable-resource-list
(format stream "-% NON-DEPLETABLE RESOURCES SCHEDULED THIS PERIOD-%")
(formatting-table (stream requalize-multiple-column-widths t )

(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY"))
(formatting-cell (stream :align :right) (format stream "TOLERANCE"))
(output-step-headings stream))

(loop for (non-depletable quant tolerance step) in non-depletable-resource-list
do

(formatting-row (stream)
(formatting-cell (stream :align rleft) (format stream "-s"(name non-depletable)))
(formatting-cell (stream :align :right) (format stream "-s" quant))
(formatting-cell (stream :align :right) (format stream "-3" tolerance))
(output-step-values step stream)))))

(when durable-resource-list
(format stream "-% DURABLE RESOURCES'SCHEDULED THIS PERIOD-%")
(formatting-table (stream :equalize-multiple-column-widths t )

(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY"))
(output-step-headings stream))

(loop for (durable quant step) in durable-resource-list
do

(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "~s"(name durable)))
(formatting-cell (stream ralign :right) (format stream *-s" quant)) >
(output-step-values step stream)))))

(when next-slice
(output-time-slice next-slice stream title)))

(defun output-step-headings (stream)
(formatting-cell (stream ralign :CENTER) (format stream "STEP ID"))
(formatting-cell (stream ralign :CENTER) (format stream "STEP NUMBER"))
(formatting-cell (stream :align rCENTER) (format stream "PERFORMANCE NUMBER"))
(formatting-cell (stream ralign :CENTER) (format stream "EXPERIMENT NAME")))

(defmethod (output-step-values step) (stream)
(formatting-cell (stream ralign rCENTER) (format stream "-s" id))
(formatting-cell (stream ralign rCENTER) (format stream "-s" number))
•(formatting-cell (stream ralign rCENTER) (format stream "-s" (number owning-object )))
(formatting-cell (stream .-align rCENTER)
(format stream "-3" (name (owning-experiment owning-object )))))

(defmethod (output-scheduled-experiments mission) ()
(maphash I'(lambda (exp instance)

exp
(when (performance-list instance)

(unless (every I' (lambda (perf)
(null (scheduled-p perf))) (performance-list instance))

(output-performances instance))))
experiment-table))

A-38
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>output-to-file.lisp.l3 7/14/8910:41:59 Page 3

(defmethod (output-performances experiment) ()
(let (days hours mins sees)
(with-open-file (stream (format nil "nasa-exp-sch-2:output-data;exp—S"name)

:direct ion :output)
(format stream "-% EXPERIMENT -S" NAME)
(FORMAT stream "-% MIN PERFORMANCES -S MAX PERFORMANCES -S"

min-performances max-performances)
(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj 'mission*)

min-performance-delay-time))
(format stream "-% MIN PERFORMANCE DELAY TIME -S -S -S -S" days hours mins sees)
(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj "mission*)

max-performance-delay-time))
(format stream "-» MAX PERFORMANCE DELAY TIME -S -S -S -S" days hours mins sees)
(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj "mission*)

performance-time-window))
(format stream "-% PERFORMANCE DURATION -S -S -S -S" days hours mins sees)
(FORMAT STREAM "-% PERFORMANCE WINDOWS-%")
(formatting-table (stream :equalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-column-headings (stream :underline-p nil)

:align :right) (format stream START"))
.•right)
:right)
:right)
:right)
:right)
:right)
:right)

(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream

(format stream
(format stream
(format stream
(format stream
(format stream
(format stream
(format stream

:right) (format stream

END

NUMBER OF PERFORMANCES")))

:align
:align
:align
:align
:align
:align
:align

(formatting-cell (stream :align
(LOOP FOR (START END PERFORMANCES) IN performance-windows

DO
(formatting-row (stream :dont-snapshot-variables t.)

(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj "mission*) START))

(formatting-cell (stream :align :right) (format stream "-S" days))
(formatting-cell (stream :align :right) (format stream "-S" hours))
(formatting-cell (stream :align :right) (format stream "-S"
(formatting-cell (stream :align :right) (format stream "-S"
(multiple-value-setq (days hours mins sees)

(translate-mission-period-to-mission-time (init-obj *mission*) END))
(formatting-cell (stream :align :right) (format stream "-S" days))
(formatting-cell (stream :align :right) (format stream "-S" hours))
(formatting-cell (stream :align :right) (format stream "-S" mins))

mins))
sees))

(format stream "-S"
(format stream "-S"

sees))
PERFORMANCES)))))

(THIRD ELEMENT) ) )

(formatting-cell (stream :align :right)
(formatting-cell (stream :align :right)

(when strategy
(format stream "-%STRATEGY")
(LOOP FOR (strat-list weight) in strategy

do
(format stream "-% WEIGHT -S STEPS " WEIGHT )
(LOOP FOR ELEMENT IN STRAT-LIST

DO
(COND ((EQL (FIRST ELEMENT) rCONSECUTIVE)

(FORMAT STREAM ". -S THRU -S" (SECOND ELEMENT)
((EQL (FIRST ELEMENT) :SEQUENTIAL)
(LOOP FOR STEP-NUMBER IN (SECOND ELEMENT)

DO
(FORMAT STREAM ". -S "STEP-NUMBER)))))))

(loop for performance in
(setf performance-list (sort performance-list l'< :key t'number))

do
(when (scheduled-p performance)
(output-performance performance stream))))))

(defmethod (output-performance performance) (stream)
(LET (days hours mins sees)

(fo rmat s t re am "-%*••••••*****•**«*"•«««•««••*«••«»**"**"**«*««*•***")
(format stream "-%-% PERFORMANCE -S" NUMBER)
(multiple-value-setq (days hours mins sees)

(translate-mission-period-to-mission-time (init-obj "mission*) SCHEDULED-START-TIME))
(format stream "-% SCHEDULED START TIME -S -S -S -S" days hours mins sees)

A-39
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>bnrnn>nasa-2>output-to-fiIe.lisp.L3 7/14/89 10:41:59 Page 4

(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time ..-.it-obj 'mission') SCHEDULED-END-TIME) )

(format stream "-% SCHEDULED END TIME -S -S -5 -S" days hours mins sees))
(LOOP FOR STEP IN STEP-LIST

DO
(OUTPUT-STEP STEP STREAM)))

(defmethod (output-prototype-experiments mission) ()
(maphash »'(lambda (key value)

key
(output-prototype-experiment vel.e))

experiment-template-table ))

(DEFMETHOD (OUTPUT-BAD-EXPERIMENTS MISSION) ()
(LOOP FOR EXPERIMENT-NAME IN ' (ALLOY-S BRIDGWN CONTFLOW HW-MAINT VAP-CRYS WM-MAINT)

FOR EXPERIMENT • (GETHASH EXPERIMENT-NX1*!: EXPERIMENT-TEMPLATE-TABLE)
DO

(output-prototype-experiment EXPERIMENT)))

(defmethod (output-prototype-experiment experinent) ()
(with-open-file (stream (format nil "nasa-exr-sch-2:output-data;prototype-exp—S" name)

:direct ion :output
(let (days hours mins sees)
(format stream "-% EXPERIMENT -S" NAKT-
(FORMAT stream "-% MIN PERFORMANCES -S SAX PERFORMANCES -S"

man-performances mix-performances
(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-ti^e (init-obj 'mission*)

min-performance-delay-time))
(format stream "-% MIN PERFORMANCE DELAY TIME -S -S -S -S" days hours mins sees)
(multiple-value-setq (days hours mins sera)
(translate-mission-period-to-mission-rijie (init-obj 'mission*)

max-performance-delay-time))
(format stream "-% MAX PERFORMANCE DELAY tlME -S -S -S -S" days hours mins sees)
(multiple-value-setq (days hours mins se:s)
(translate-mission-period-to-mission-tu* (inii-obj 'mission')

performanee-time-window))
(format stream "-» PERFORMANCE DURATION -5 -S -S -S" days hours mins sees)
(FORMAT STREAM "-% PERFORMANCE WINDOWS-%*;
(formatting-table (stream :equalize-multiple-column-widths t :dont-snapshot-variables t)

(formatting-column-headings (stream :uzderline-p nil)
(formatting-cell (stream :align tricot) (format stream START"))
(formatting-cell (stream :align :ricit)
(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align

(format stream
:rig:t) (format stream

(format stream
(format stream
(format stream

:rient) (format stream

END

NUMBER OF PERFORMANCES")))
(formatting-cell (stream :align :rici:) (format stream
(formatting-cell (stream :align :rig^i) (format stream

(LOOP FOR (START END PERFORMANCES) IN performance-windows
DO

(formatting-row (stream :dont-snapsh:;-variables t)
(multiple-value-setq (days hours in-3 sees)
(translate-mission-period-to-mission-time (init-obj 'mission*) START))

(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align
(multiple-value-setq (days hours

r;5!-.t) (format stream "-S" days))
r.jr.t) (format stream "-S" hours))
right) (format stream "-S" mins))
rigr.t) (format stream "-S" sees))
n_-3 sees)

(translate-mission-period-to-m «s;=n-time (init-obj 'mission') END))
(formatting-cell (stream :align
(formatting-cell (stream :align
(formatting-cell (stream :align
{formatting-cell (stream .-align
(formatting-cell (stream :align

(when strategy
(format stream "-%STRATEGY")
(LOOP FOR (strat-list weight) in strate-rv

do
(format stream "-% WEIGHT -S STEPS ' WEIGHT )
(LOOP FOR ELEMENT IN STRAT-LIST

DO

(format stream "-S" days))
(format stream "-S" hours))
(format stream "-S" mins))
(format stream "-S" sees))
(format stream "-S" PERFORMANCES)))))



ANDY:>brown>nasa-2>output-to-file.lisp.l3 7/14/8910:41:59 Page 5

(COND ((EQL (FIRST ELEMENT) :CONSECUTIVE)
(FORMAT STREAM ", -S THRU -S" (SECOND ELEMENT) (THIRD ELEMENT)))

((EQL (FIRST ELEMENT) :SEQUENTIAL)
(LOOP FOR STEP-NUMBER IN (SECOND ELEMENT)

DO
(FORMAT STREAM ",-S "STEP-NUMBER)))))))

(when non-depletable-tolerance-list
(format stream "-% NON-DEPLETABLE RESOURCE TOLERANCES-%")
(FORMATTING-TABLE
(stream :equalize-multiple-column-widchs t :dont-snapshot-variables t)
(fortnatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))

(stream : align :right) (format stream "TOLERANCE")))
non-depletable-tolerance-listIN

(formatting-cell
(LOOP FOR (RESOURCE TOLERANCE)

DO
(formatting-cell (stream :align :left)
(formatting-cell (stream :align :right)

(WHEN crew-lockin
(FORMAT STREAM "-% CREW LOCKIN REQUIREMENTS-%")
(FORMATTING-TABLE
(stream :equalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :CENTER) (format stream "FROM STEP"))
(formatting-cell (stream :align

(format stream "-A" RESOURCE))
(format stream "-A" TOLERANCE)))))

:CENTER) (format stream "THRU STEP")))

(format stream "-A" START-STEP))
(format stream "-A" END-STEP)))))

(LOOP FOR (START-STEP END-STEP) IN crew-lockin
DO

(formatting-cell (stream : align :CENTER)
(formatting-cell (stream :align :CENTER)

(COND (STRATEGY
(FORMAT STREAM "-%-% STEPS")
(loop for step in prototype-step-1ist

do
(output-step step stream )))

(T
(format stream "-% START UP STEPS")
(loop for step in startup-steps

do
(output-step step stream ))

(format stream "-% CORE STEPS")
(loop for step in prototype-step-!ist

do
(output-step step stream ))

(format stream "-» SHUTDOWN STEPS")
(loop for step in shutdown-steps

do
(output-step step stream )))))))

(DEFMETHOD (OUTPUT-STEP STEP) (STREAM)
(format stream "-%«******»*•••**•«*«*«*••«*«**••«**«•«*•«*«•••****»*")
(LET (DAYS HOURS MINS SECS)
(FORMAT STREAM "-%-% STEP -S NUMBER -S-%" ID NUMBER)
(formatting-table (stream requalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream " "))

(formatting-cell (stream :align :right) (format stream "DAYS"))
(formatting-cell (stream :align :right) (format stream "HOURS "))
(formatting-cell (stream :align :right) (format stream "MINUTES "))
(formatting-cell (stream :align :right) (format stream "SECONDS ")))
(LOOP FOR SLOT IN •(SCHEDULED-START-TIME SCHEDULED-END-TIME max-duration man-duration

step-delay-min step-delay-max)
FOR LABEL IN ' ("SCHEDULED START TIME" "SCHEDULED END TIME" "MAX DURATION"

"MIN DURATION" "MIN DELAY" "MAX DELAY")

DO
(FORMATTING-ROW (STREAM :dont-snapshot-variables t)
(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj 'mission*)

(symbol-value-in-instance self SLOT )))
:align :left) (format stream "-A" label))
:align :right) (format stream "~S" days))
:align :right) (format stream "-S" hours))

(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell

(stream
(stream
(stream
(stream : align :right)

(formatting-cell (stream :align :right)
(format stream "-S1

(format stream "-S"
mins))
sees)))))

A-41 ORIGINAL PAGE 18
OF POOR QUALITY



ANDY:>brown>nasa-2>output-to-file.!isp.l3 7/14/8910:41:59 Page 6

(when durable-resource-list
(format stream "-%DURABLE RESOURCES-%")
(FORMATTING-TABLE (stream :equalize-multiple-column-widths t )

(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align rleft) (format stream "RESOURCE"))
(formatting-cell (stream :align rright) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN DURABLE-RESOURCE-LIST

DO
(FORMATTING-ROW (STREAM)

(FORMATTING-CELL (stream ralign rleft) (FORMAT STREAM "-S"(NAME RESOURCE)))
(FORMATTING-CELL (stream :align :right) (FORMAT STREAM "-S" QUANT))))))

(when NON-DEPLETABLE-resource-list
(format stream "-%NON-DEPLETABLE RESOURCES-%")
(FORMATTING-TABLE (stream :equalize-multiple-column-widths t )

(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align rright) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN NON-DEPLETABLE-RESOURCE-LIST

DO
(FORMATTING-ROW (STREAM)
(FORMATTING-CELL (stream :align :left) (FORMAT STREAM "-S"(NAME RESOURCE)))
(FORMATTING-CELL (stream :align :right) (FORMAT STREAM "-S" QUANT))))))

(when CONSUMABLE-resource-list
(format stream "~%CONSUMABLE RESOURCES-%")
(FORMATTING-TABLE (stream :equalize-multiple-column-widths t )

(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align rleft) (format stream "RESOURCE"))
(formatting-cell (stream :align rright) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN CONSUMABLE-RESOURCE-LIST

DO
(FORMATTING-ROW (STREAM)

(FORMATTING-CELL (stream ralign rleft) (FORMAT STREAM "-S"(NAME RESOURCE)),)
(FORMATTING-CELL (stream ralign .-right) (FORMAT STREAM "-S" QUANT)).))))

(WHEN cumulative-consumable-list
(FORMAT STREAM "-%CUMULATIVE CONSUMABLES-%")
(FORMATTING-TABLE (stream requalize-multiple-column-widths t )

(formatting-column-headings (stream runderline-p nil)
(formatting-cell (stream ralign rleft) (format stream "RESOURCE"))
(formatting-cell (stream ralign rright) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN cumulative-consumable-list

DO
(FORMATTING-ROW (STREAM)

(FORMATTING-CELL (stream :align rleft) (FORMAT STREAM "-S"(NAME RESOURCE)))
(FORMATTING-CELL (stream ralign rright) (FORMAT STREAM "-S" QUANT))))))

(when crew-requirements
(format stream "-%CREW REQUIREMENTS")
(loop for (crew-list quant) in crew-requirements

do
(format stream "-% NUMBER REQUIRED -S FROM THE FOLLOWINGr" quant)
(loop for (specification tag) in crew-list

do
(format stream "-%IDENTIFIER -S IDENTITY -S" specification tag)))

(FORMAT STREAM "-%POSSIBLE CREW COMBINATIONS")
(LOOP FOR CREW-LIST IN crew-combinations

DO
(FORMAT STREAM "-% COMBINATION ")
(LOOP FOR CREW IN CREW-LIST

DO
(FORMAT STREAM "-S "(NAME CREW))))

(cond (crew-monitor
(format stream "-% CREW MONITOR: -S -%" CREW-MONITOR)
(FORMATTING-TABLE

(stream requalize-multiple-column-widths t rDONT-SNAPSHOT-VARIABLES T)
(formatting-column-headings (stream runderline-p nil)

(formatting-cell (stream ralign rleft) (format stream " "))
(formatting-cell (stream ralign rRIGHT) (format stream "DAYS"))
(formatting-cell (stream ralign rRIGHT) (format stream "HOURS"))
(formatting-cell (stream ralign rRIGHT) (format stream "MINUTES"))
(formatting-cell (stream ralign rRIGHT) (format stream "SECONDS")))

(LOOP FOR SLOT IN ' (CREW-CYCLE CREW-DURATION CREW-EARLY-SHIFT CREW-LATE-SHIFT)
FOR LABEL IN '("MONITOR CYCLEr" "DURATION OF MONITORr"

"MAX MONITOR EARLY SHIFTr" "MAX MONITOR LATE SHIFTr")
DO

ORIGINAL PAGE IS
OF POOR QU&UTY



ANDY:>brown>nasa-2>output-to-fiIe.lisp.l3 7/14/89 10:41:59 Page 7

(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj "mission")

(SYMBOL-VALUE-IN-INSTANCE SELF SLOT)))
(FORMATTING-ROW (STREAM :DONT-SNAPSHOT-VARIABLES T)
(formatting-cell (stream :align :left) (format stream "-A"LABED)
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell

(format stream "-S"
(format stream "-S"

DAYS))
hours) )
mins) )
sees)))))

(stream ralign rRIGHT) (format stream "-S"
(stream ralign rRIGHT) (format stream "-S"
(stream ralign rRIGHT)
(stream ralign rRIGHT)

(WHEN scheduled-crew-list
(FORMAT STREAM "-%SCHEDULED CREW LIST: -%")
(formatting-table

(stream requalize-multiple-column-widths t :DONT-SNAPSHOT-VARIABLES T)
(formatting-column-headings (stream runderline-p nil)
(formatting-cell (stream ralign rleft) (format stream "FROM"))
(formatting-cell (stream :align
(formatting-cell (stream ralign
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(LOOP FOR i FROM

DO
(formatting-cell

(stream ralign
(stream :align
(stream :align
(stream
(stream

:align
:align
:align
:align
:align

:RIGHT) (format stream "DAYS"))
:RIGHT) (format stream "HOURS"))
:RIGHT) (format stream "MINUTES"))
.•RIGHT) (format stream "SECONDS"))
:left) (format stream "TO"))
:RIGHT) (format stream "DAYS"))
:RIGHT) (format stream "HOURS"))
:RIGHT) (format stream "MINUTES"))
:RIGHT) (format stream "SECONDS"))
:RIGHT) (format stream "USING"))

2 TO (LENGTH (FIRST (FIRST SCHEDULED-CREW-LIST)))

(stream ralign rRIGHT) (format stream " "))))
(LOOP FOR (CREW-LIST START END) IN SCHEDULED-CREW-LIST

DO
(FORMATTING-ROW (STREAM r DONT-SNAPSHOT-VARIABLES T)
(formatting-cell (stream ralign rleft) (format stream " "))

(multiple-value-setq (days hours mins sees)
(translate-mission-period-to-mission-time (init-obj "mission") START))

(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell (stream
(formatting-cell

ralign :RIGHT) (format stream "-S" DAYS))
:align rRIGHT) (format stream "-S" hours))
ralign rRIGHT) (format stream "-S" mins))
ralign :RIGHT) (format stream "~S" sees))

(stream :align :left) (format stream " "))
(multiple-value-setq (days hours mins sees)
.(translate-mission-period-to-mission-time (init-obj "mission") END))

(formatting-cell (stream ralign rRIGHT)
(formatting-cell (stream ralign rRIGHT)
(formatting-cell (stream ralign rRIGHT)
(formatting-cell (stream ralign rRIGHT)
(LOOP FOR CREW IN CREW-LIST

DO
(formatting-cell (stream ralign rRIGHT)

(format stream "-S" DAYS))
(format stream "-S" hours))
(format stream "-S" mins))
(format stream "-S" sees))

(format stream "-S" (NAME CREW))))

(T
(FORMAT STREAM "-%SCHEDULED CREW LIST: ")
(LOOP FOR CREW IN scheduled-crew-list

DO
(FORMAT STREAM "-S "(NAME CREW))))))

(WHEN TARGET-LIST
(FORMAT STREAM "-% TARGET INFORMATION")
(LOOP FOR (DESIGNATOR SUBLIST) IN TARGET-LIST

DO
(CASE DESIGNaTOR
(:AVOID (FORMAT STREAM "-% TARGETS TO BE AVOIDED-%"))
(:INTERSECT (FORMAT STREAM "-% TARGETS WHOSE PRESENCE MUST INTERSECT-%"))
(rSELECT (FORMAT STREAM "-%TARGETS OF WHICH AT LEAST ONE MUST BE PRESENT-%")))

(LOOP FOR TARGET IN SUBLIST
DO

(FORMAT STREAM "-S "(NAME TARGET)))))
(WHEN attitude-list
(FORMAT STREAM "-%ATTITUDE INFORMATION-%")
(LOOP FOR (DESIGNATOR SUBLIST) IN ATTITUDE-LIST

DO
(CASE DESIGNATOR

(rAVOID (FORMAT STREAM "-%ATTITUDES TO BE AVOIDED"))
(rINTERSECT (FORMAT STREAM "-%ATTITUDES WHOSE PRESENCE MUST INTERSECT-%"))

A-43/ ORIGINAL PAGE IS
OF POOR QUAulTY



ANDY:>brown>nasa-2>output-to-file.lisp.l3 7/14/89 10:41:59 Page 8

<:SELECT (FORMAT STREAM "-%ATTITUDES OF WHICH AT LEAST ONE MUST BE PRESENT-%")))
(LOOP FOR ATTITUDE IN SUBLIST

DO
(FORMAT STREAM "-S "(NAME ATTITUDE)))))

(WHEN PREVIOUS-STEP
(FORMAT STREAM "-% PREVIOUS STEP: -S" (IF (SYMBOLP previous-step ) previous-step

(id previous-step) ) ) )
(WHEN NEXT-STEP
(FORMAT STREAM "-% NEXT STEP: -S" (IF (SYMBOLP NEXT-step ) NEXT-step

(id NEXT-step))))))

(defmethod {output-durable-resource durable-resource) (stream)
(format stream "-%-% DURABLE RESOURCE -S -S" name available-quantity ))

(defmethod (output-non-depletable-resource non-depletable-resource) (stream)
(format stream "-%-% NON DEPLETABLE RESOURCE -S" name)
(output-non-durable-resource self stream))

(defmethod (output-consumable-resource consumable-resource) (stream)
(format stream "-%-% CONSUMABLE RESOURCE -S" name)
(output-non-durable-resource self stream)) ^

(defmethod (output-non-durable-resource non-durable-resource) (stream)
(loop for qty-avail in quantity-availability-list

do
(format stream "~% Quantity -S Available in Time Periods: -% BEGIN

END"
(qty qty-avail))

(loop for avail-obj in (available-times-list qty-avail)
do

(FORMAT STREAM "-%")
(output-time-date-to-stream (init-obj 'mission*) STREAM (begin avail-obj))
(format stream " ")
(output-time-date-to-stream (init-obj 'mission*) STREAM (end avail-obj)))))

(defmethod (output-durable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;durable-resources" :direction :output)
(loop for durable-resource in durable-resource-list

do
(output-durable-resource durable-resource stream))))

(defmethod (output-non-depletable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;non-depletable-resources"

:direction :output)
(loop for non-depletable-reaource in non-depletable-reaource-list

do
(output-non-depletable-resource non-depletable-resource stream))))

(defmethod (output-consumable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;consumable-resources" :direction :output)

(loop for consumable-resource in consumable-resource-list
do

(output-consumable-resource consumable-resource stream))))

(defmethod (output-resources nasa-init-obj) ()
(output-durable-resources self)
(output-non-depletable-reaources self)
(output-consumable-resources self))

A-44
ORIGINAL PAGE IS
OF POOR Q'-^-iTY



ANDY:>brown>nasa-2>p€rformance-methods.lisp.2 6/21/8916:28:12 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defmethod (compute-and-store-cumulative-consumption performance) ((rest ignore)
(aetf (cumulative-consumable-list (first step-list))

(consumable-resource-list (first step-list)))
(when (second step-list)
(compute-and-store-cumulative-consumption
(second step-list) (cumulative-consumable-list (first step-list)))))

(defmethod (compute-and-store-cumulative-consumption step) (prev-consum-list)
(loop for (resource quant) in prev-consum-list

for same-resource = (member resource consumable-resource-list :key I'first)
do

(if same-resource
(push (list resource (+ quant (second (first same-resource))))

cumulative-consumable-list)
(push (list resource quant) cumulative-consumable-list)))

(loop for (resource quant) in consumable-resource-list
for already-included-p = (member resource cumulative-consumable-list :key I'first)
do

(unless already-included-p
(push (list resource quant) cumulative-consumable-list)))

(when next-step
(compute-and-store-cumulative-consumption next-step cumulative-consumable-list)))

A-45



ANDY:>brown>nasa-2>presentation-commands.lisp.9 4/11/89 21:53:43 Page 1

; ; ; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

i;;object presented for init-obj edit
(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERTORMANCE-SCHEDULER-CREATE-NEW-resource
(KTSC-OBJ-EDIT-DISPLAY
:GESTURE :LETT
: DOCUMENTATION -Create A New Resource Object"
)

(owner-object)
(cp: build-command ' corn-performance- scheduler-create -new- resource

owner-object) )

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMANCE-SCHEDCTLER-CREATE-NEW-RESOURCE)
( (owner-object 'misc-ob j-edit-display) )

(create-new-obj 'owner-object)
)

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCB-SCHEDULER-DELETE-RESOURCE
(MISC-OBJ-EDIT-0ISPLAY
: GESTURE : MIDDLE
: DOCUMENTATION "Delete A Resource Object"
)

(owner-object)
(cp: build-command ' com-perf ormance-scheduler-delete-resource

owner-object) )

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMANCE-SCHEDOLER-DELE IE-RESOURCE )
( (owner-object 'misc-ob j-edit-display) )

(delete-resource owner-object)

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE-SCHEDULER-ADD-AVAILABLE-TIME

(NAKE-FOR-EDIT-DISPLAY
: GESTURE :LEFT
: DOCUMENTATION "Add Additional Times This Resource Available"
)

(owner-object)
(cp: build-command ' com-performance-scheduler-add-available-time

owner-object) )

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMANCE-SCHEDULER-ADD-AVAILABLE-TIME)

( (owner-object 'name-for-edit-display) J
(add-available-time owner-object) )

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE-SCHEDOLER-delete-AVAILABLE-TIME
(KAME-rOR-EDIT-DISPLAY
: GESTURE : middle
: DOCUMENTATION 'Delete Time Period This Resource Available*
)

(owner-object)
(cp: build-command ' corn-performance- scheduler-delete- available -time

owner-object) )

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMANCE-SCHEDOLER-DELE TE-AVAILABLE-TIME)
( (owner-object ' name-f or-edit -display) )

(delete-available-time owner-object) )

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE-SCHEDCTLER-ADD-AVAILABLE-TIKE-FOR-QDANTITT
(QUAHTITT-AVAILABILITT-EDIT-DISPLAT
:GESTUBJC -.LEFT
: DOCUMENTATION "Add Additional Times This Quantity Available"

A-A 6
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>presentation-comtnands.lisp.9 4/11/89 21:53:43 Page 2

(owner-object)
(cp:build-command 'com-performance-scheduler-add-available-time-for-quantity

owner-object))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PEWORMANCE-SCHEDtrLER-ADD-AVJULABLE-TIME-rOR-QDAKTITY)

((owner-object 'quantity-availability-edit-display))
(add-available-time owner-object) )

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMMJCZ-SCHEDCLER-ADD-QUANTITY-AND-AVAILABILirY

(COHSOMUBLE-HAME-FOR-EDIT-DISPLAT
:GESTURE :LEFT
:DOCUMENTATION "Add Additional Quantity And Times This Resource Available"
)

(owner-object)
(cp:build-command ' com-performance-scheduler-add-quantity-and-availability

owner-object))

(DEFINE.-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMAHCE-SCHEDULER-ADD-QUANTITY-AND-AVAILABILITY)

((owner-object *consumable-name-for-edit-display) )
(add-quantity-availability owner-object))

• ******** * * * * * * ************************************
;;; objects presented for experiment template edit
(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR

PEWORMANCE-SCHEDULER-CREATE-NEW-step
(«jcp«rtinant-t«nrpl»t«-name-»dit-displ«y

:GESTURE :LEFT
:DOCUMENTATION "Create A New Step"
)

(owner-object)
(cp:build-command ' com-performance-scheduler-create-step

owner-object))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(corn-performance-scheduler-create-step)

((owner-object ' «xp«riin»nt-t»inpl«t«-name-«dit-dJL»pl«y) )
(create-new-step owner-object)

A-47

OR1GJNAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>resource-methods.lisp.l9 7/11/89 15:36:17 Page 1

... _«_ Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (d*l*t«-r*aourc* qu«ry-obj) ()
(delete-resource *mission* type))

(defmethod (er«at*-naw-bbj quory-obj) ()
(create-new-obj (make-instance type)))

(defmethod (cr«at«-n«w-obj durable-resource) ()
(let ((new-name 'unnamed) (new-available-quantity 0))
(dw:accept ing-values
(•standard-output* :own-window t

:label
(with-character-atyle ('(-.fix :bold :very-large )

nil :bind-line-height t)
•Describe New Resource "))

(setf new-name
(accept 'symbol :default new-name :query-identifier 'new-name

:stream 'standard-output*
:prompt (format nil "Enter Name of Durable Resource"))

new-available-quantity
(accept 'number :default new-available-quantity

:query-identifier ' new-available-quantity
:stream * standard-output* :prompt
(format nil "Enter Quantity of Durable Resource Available"))))

(setf name new-name available-quantity new-available-quantity))
(add-resource 'mission* self 'durable-resource-list))

(defmethod (cr«at»-n«w-obj con«uaabl«-re«ourca) ()
(let ((new-name 'unnamed))
(dw:accepting-values
('standard-output* :own-window t :label

(with-character-style ('(:fix :bold :very-large )
nil :bind-line-height t)

"Describe New Resource "))
(setf new-name

(accept 'symbol :default newrname :query-identifier 'new-name
:stream 'standard-output*
:prompt (format nil "Enter Name of Consumable Resource"))))

(setf name new-name))
(add-quantity-availability self)
(add-resource 'mission* self 'consumable-resource-list))

(defmethod (quantity-alr*ady-«xi*t«-p convumable-raaourc*) (new-quantity)
(loop for quantity-availability in quantity-availability-list

do
(when (>• new-quantity (qty quantity-availability) )
(report-error "mission* (format nil "-%An object already exists for consumable resource -S o

f quantity ~S. New availability times must be added to the existing object" name new-quantity))
(return t))))

(defmethod (add-<ju«ntity-«v«ilability convumabl«-re«ourc«) ()
(let ((qty-avail-obj nil) (choice nil) (new-quantity 0) )
(loop until (and choice (eql choice 'no))

do
(loop until

(setf choice
(dw:menu-choose
' ((yes yes) (no no))
:prompt (format nil "Describe Another Quantity For -S?"name))))

(unless (eql choice 'no)
(setf qty-avail-obj (make-instance 'quantity-availability :owner-obj self :name name))
(dw:accepting-values
(•standard-output* :own-window t :label

(with-character-style C(:fix :bold :very-large )
nil :bind-line-height t)

"Describe New Resource "))
(setf new-quantity

(accept 'number :default new-quantity :query-identifier 'new-quantity
:stream "standard-output*
:prompt (format nil "Enter Quantity Available . "))))

(unless (quantity-already-exists-p self new-quantity)

A_48 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>resource-methods.lisp.l9 7/11/8915:36:17 Page 2

(setf (qty qty-avail-obj) new-quantity)
(get-available-times
qty-avail-obj
(format nil "Specify An Available Time Period for Quantity -S of -S?"

new-quantity name))
(push qty-avail-obj quantity-availability-list))))

))

(defmethod (add-availabl«-tim« availability) ()
(get-available-times self (format nil "Specify An Available Time Period for -S?" name)))

(defmethod (d»l«t«-availabl«-tim« availability) ()
(let ((choice-list (loop for av«il-obj in available-times-list

collect (list (format nil "-A thru -A" (begin avail-obj)
(end avail-obj)) avail-obj)))

(choice nil))
(loop until (setf choice (dw:menu-choose (push ' (NONE NONE) choice-list)

:prompt "Choose time period to delete or NONE")))
(unless (eql choice 'none)
(setf available-times-list (delete choice available-times-list)))))

(defmethod (o.«t-availabla-tin»» availability) (query-string)
; ,• ;get-available-time3 elicites the times that a resource is to be available and
;;;checks whether the new times are logical (begin before end) and ensures they
///don't overlap other times. Additionally, if the object is a
;;squantlty-availablllty (implicitly, belonging to a consumable resource, checks
///not only the current quantity but other quantities as veil.
(let ((avail-obj nil) (choice nil) (new-begin 0) (new-end 0))
(loop until (and choice (eql choice 'no))

do
(loop until

(setf choice
(dw:menu-choose

• ( (yes yes) (no no) )
•.prompt query-string
) ))

(unless (eql choice 'no)
(setf avail-obj (make-instance '«v«ilabl«-tim« :owner-obj self))
(dw:accepting-values
(•standard-output* :own-window t :label

(with-character-style (*(:fix :bold :very-large )
nil :bind-line-height t)

"Describe Available Times "))
(setf
new-begin
(accept 'number :default new-begin

:query-identifier 'new-begin
:stream 'standard-output* :prompt
(format nil "Enter Time Resource Becomes Available "))

new-end
(accept 'number :default new-end

:query-identifier 'new-end
:stream "standard-output* :prompt
(format nil "Enter Last Time Resource is Available "))))

(setf (begin avail-obj) new-begin)
(setf (end avail-obj) new-end)
(unless (improper-times-p self new-begin new-end)

(push avail-obj available-times-list))))))

(defmethod (improp«r-tim**-p availability) (new-begin new-end)
(cond ((< new-end new-begin)

(report-error
•mission*
(format
nil
"attempt to specify an end time earlier that the start time for -S of type -S"
(name self) (type-of self)))

t)
((= new-begin new-end)
(report-error
•mission*
(format nil

"attempt to specify an end time equal to the start time for -S of type -S"

A"49 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>resource-methods.lisp.l9 7/11/8915:36:17 Page 3

(name se l f ) (type-of s e l f ) ) )
t)

((overlapping-times-p self new-begin new-end) t)
( t n i l ) ) )

(defmethod (ov*rlapplng-tim««-p availability) (new-begin new-end)
(overlapping-times-p-aux self new-begin new-end))

(defmethod (overlapping-tim»s-p quantity-availability) (new-begin new-end)
(overlapping-times-p (owner-obj self) new-begin new-end (qty s e l f ) ) )

(defmethod (ov«rl»pping-tima»-p concumabla-rasourca) (new-begin new-end quant)
(loop for quantity-availability in quantity-availability-list

do
(when (overlapping-times-p-aux quantity-availability new-begin new-end quant)
(return t))))

(defmethod (ov*rlapping-timaa-p-aux availability) (new-begin new-end {optional quant)
(loop for available-time in available-times-list

do
(unless

(or (and (< new-begin (begin available-time))
(< new-end (begin available-time)))

(and (> new-begin (end available-time))
(> new-end (end available-time))))

(report-error
•mission*
(if (typep self 'quantity-availability)

(format nil
"the new beginning -S and ending time -S for quantity -S overlap an existing a

vailable time frame. You must modify the exiting one first, whose beginning time is -S and encii.-.g
time is -S for -S , quantity = -S, of type -S" new-begin new-end quant (begin available-time) ;en

d available-time) (name self) (qty self) (type-of self))
(format nil

"the new beginning -S and ending time -S overlap an existing available time fra-T.e.
You must modify the exiting one first, whose beginning time is -S and ending time is -S for -S o

f type -S"
new-begin new-end (begin available-time) (end available-time) (name self)
(type-of self)) ) )

(return t))))

(defmethod (cr«at«-n*w-obj cr«w-mamb«r) ()
(get-name-and-available-times self)
(add-resource "mission* self 'crew-list))

(defmethod (g«t-nam»-and-availabi«-timas availability) ()
(let ((new-name 'unknown))

(dw:accept ing-values ('standard-output* town-window t :label "Enter Name of New Resource")
(setf new-name (accept 'symbol :default new-name :query-identifier 'new-name

:stream 'standard-output* rprompt
"Enter Name ")))

(setf name new-name)
(get-available-times
self (format nil "Specify An Available Time Period for -S?" new-name))))

(defmethod (cr«at«-n«w-obj attitude) ()
(get-name-and-available-times self)
(add-resource 'mission* self 'attitude-list))

(defmethod (cr«at«-Mv-obj target) ()
(get-name-and-available-times self)
(add-resource 'mission* self 'target-list))

,-,-,• methods to program crew member shifts

(defmethod (setup-crew-member-duty-shifts nasa-init-obj) ()
(setf seconds-per-shift (/ seconds-per-day 2))
(correct-shift-start-time-representation self)
(setf shift-availability-objs

(list (setup-crew-member-duty-shifts-aux
self
1 )

ORIGINAL PAGE IS
OF POOR QUALITY

A-50



ANDYr:>brown>nasa-2>resource-methods.lisp.l9 7/11/8915:36:17 Page 4

(setup-crew-member-duty-shifts-aux
self 2 ) ) )

(oefaec-=oc {create-first-available-time-period nasa-init-obj)
•shift-number)

lee ' (3-ari-time (second (aaaoc shift-number sh i f t - s t a r t - t imes ) ) ) )
va-i—i'-ea

.-.-==r.3 (make-instance
•av&ilablc-tim*
:begin (if (< start-time universal-start-time)

0
(translate-universal-time-to-time-period start- t ime))

:end (1- (translate-universal-time-to-time-period
(+ start-time seconds-per-shif t ) ) ) ) )

— 3-art-time seconds-per-day))))

!-«ine^.--c= ' correct-shift-start-time-representation nasa-init-obj) ()
.self sii 5r-3tart-time3

!l=cp for (shif t -num start-time-list) in shift-start-times
collect

(list shift-num
(+ universal-start-time

(translate-time-list-to-seconds s tar t - t ime-l is t ) ) ) ) ))

•: -ef.Tte-.~r.oc, setup-crew-member-duty-shifts-aux nasa-init-obj)
. sr.i ft-number)

~.ez ' .shift-availat ' e-objs ni l )
;s«:;r.d-3hift-icart-time n i l ) )

—.1.̂ .1 lit: le-value-setq (shift-aval1able-ob js second-shift-start-time)
:creize-first-available-time-period self shif t -number))

.--== wiir. done = nil
-r.-.--l done
'-: count from 1
fcr shift-start-t ime from second-shift-start-time

by seconds-per-day
fcr shift-end-time = (+ seconds-per-shift shift-start-time)

•.ccr.i ' ( shift-time-f alls-on-a-sunday-p "mission* shift-start-t ime)
!setf second-shift-start-time shift-start-time done t))

•- (push (make-instance

:begin (translate-universal-time-to-time-period
shift-start-time)

rend (1- (translate-universal-time-to-time-period sh i f t - end- t ime) ) )
sh i f t -ava i lab le -ob js ) ) ) )

5;r shift-start-t ime from (+ second-shift-start-time seconds-per-day)
by seconds-per-day
below (- universal-end-time seconds-per-shift)

f.r counter from 0 by 1

(zerop (mod counter 7))
'= (make-instance

:begin (tranalate-universal-time-to-time-period shift-start-time)
:end (1- (translate-universal-time-to-time-period

(+ shift-start-time seconds-per-shift))))
shift-available-objs)))

rav.versc shift-available-objs)))

;.-=cc ' s'r.ift-t ime-f alls-on-a-sunday-p mission) (shift-start-time)
i ̂ .i - a-. -3-jnday- start -time init-obj)
.-ii-if ;-3-art-time

!fir3i-3unday-start-time ini t-obj) (seconds-per-day i n i t - ob j ) ) ) )

ORIGINAL PAGE JS
OF POOR QUALITY

A-51



ANDY:>brown>nasa-2>scheduIer-feasibility-methods-crew-steps.lisp.l7 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

II I
' (find-tlm«-cr»w-»v«il«±>l«-«ft»r cr«w-«v«ll«Jbl»-in-tima-p«riod»-«ux-2 cr«w-«vailabl«-in-tim«-p«rio
d«-*ux cr«w-«vai.labl«-in-tim«-p«riod«-p cr«w-not-pr*«*nt-in-tima-p«rioda-p cr»w-not-pr«««nt-in-tim
•-p»riod»-«ux £ind-««rli«»t-tiiD»-cr«w-coinbln»tion-«v«ll«Jbl« cr»w-combin«tion-*v»il«±>l«-in-p«riod»-
•ux cr«w-combin*tion-«v«ilabl«-ln-p«riods-p •t«p-»ch«dulabl»-cr«w-vi«wpoint-«ux »t«p-«ch«dul«bla-c
r«w-vi«wpoint-p )
I I*

(defmethod (:print-self consumable-resource) (stream Crest ignore)
(format stream "KCONSUMABLE-RESOURCE -A>" NAME))

(defmethod (:print-self non-depletable-resource) (stream treat ignore)
(format stream "»<NON-DEPLETABLE-RESOURCE -A>" NAME))

(defmethod (:print-sel£ crew-member) (stream (rest ignore)
(format stream "KCREW-MEMBER -A>" NAME))

(defmeihod (:print-self available-time) (stream Crest ignore)
(format stream "»<AVAILABLE-TIM£ -A -A>" BEGIN END))

(defmethod (:print-self time-slice) (stream crest ignore)
(format stream "I<TIME-SLICE -A -A>" start-time END-time))

(defmethod (:print-self durable-resource) (stream Crest ignore)
(format stream "KDURABLE-RESOURCE ~A>" name))

(defmethod (:print-self experiment) (stream Crest ignore)
(format stream "KEXPERIMENT ~A>" name))

(defmethod (:print-self performance) (stream Crest ignore)
(format stream "KPERFORMANCE -S EXP -S>"number

(if owning-experiment (name owning-experiment) nil)))

(defmethod (»t»p-«ch«dul«bl«-cr«w-vi«wpoint-p step)
(acheduled-period-list start-time tkey (dont-use-current-crew nil))

(let ((result :all-combinations-failed) (combination-result nil)
(new-start-time nil) (new-time-list nil)(combination-list nil))

(cond ((or (null crew-requirements) crew-monitor) (setf result :successl)
((and crew-lockin (not (= crew-lockin number)))
(multiple-value-setq (result new-start-time)

(crew-combination-available-in-periods-p self scheduled-period-list
(scheduled-crew-list (find-step-numbered owning-object crew-lockin))
start-time))

(if (eql result :success)
(setf start-time new-start-time

scheduled-crew-list
(scheduled-crew-list (find-step-numbered owning-object crew-lockin)))

(setf result :lock-crew-failure)))
((null crew-combinations)
(error "crew-combinations have not been set for step -S" self))

(t
(when dont-use-current-crew

(push scheduled-crew-list failed-crew-combinations)(setf scheduled-crew-list nil))
(loop for crew-combination in crew-combinations until (eql result :success)

do
(multiple-value-setq (combination-result new-start-time)

;;;crev-combination-available-in-periods-p returns .'success and start-time if
;;;suceasful, and returns nil and the timo (if any) the combination is
;:;available

(crew-combination-available-in-periods-p
self scheduled-period-list crew-combination star t- t ime))

(cond ((eql combination-result :success)
(setf scheduled-crew-list crew-combination)
(setf result :success))

(t
(when new-start-time

(push crew-combination combination-list)
(push new-start-time new-t ime- l is t ) ) ) ) )

(setf new-start-time ni l )
(cond ((eql result :success) n i l )

( (nul l new-time-list)

A"52 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.l7 Page 2

(setf start-time nil failed-crew-combinations nil))
(t (loop for time in new-time-list

for crew-combo in combination-list
do

(unless (member crew-combo failed-crew-combinations :test t'equal)
(cond ((null new-start-time)

(setf new-start-time time scheduled-crew-list crew-combo))
((< time new-start-time)
(setf new-start-time time scheduled-crew-list crew-combo))

(t nil))))
(setf start-time new-start-time)
(when (null new-start-time)
(setf result :all-combinations-failed start-time (1+ start-time)))))))

(values result start-time)))

(defmethod (find-step-numbered performance) (step-number)
(let ((result nil))
(loop for step in step-list

until result
do

(when (= (number step) step-number)
(setf result step)))

result))

(defmethod (cr«w-combin«tion-«v«il«bl«-in-p«rlod»-p stap)
(period-list crew-combination start-time)

(let ((result :success))
(loop for crew in crew-combination

until (not (eql result :success))
do

(multiple-value-setq (result start-time)
(crew-available-in-time-periods-p crew start-time max-duration))

(cond ( l and (not (eql result :success)) (null start-t ime))
;;;thia crew member never available for a sufficiently long time

nil)
( (not (eql result :success))
nil)

(t (multiple-value-aetq (result start-time)
(crew-not-present-in-time-periods-p self period-list crew star t - t ime))

n i l ) ) ) / ; ; we passed both checks

(values result start- t ime)))

(defmethod (cr*w-combin*tion-av*il*bl*-in-p«rioda-aux step) (crew-combination start-time)
(let ((result :crew-conbination-not-available))

(loop until (or (eql result : success)
(null start-time)
(> (1- (+ start-time max-duration)) (max-time (init-obj 'miss ion*)) ) )

do
(multiple-value-setq (result start-time)

(crew-combination-available-in-periods-p
self
(get-time-instance-list

•mission* start-time (1- (+ max-duration s tar t - t ime))
(if last-time-slice

last-time-slice
(if previous-step

(last-time-slice previous-step)
n i l ) ) )

crew-combination s tar t- t ime)))
(if (eql result :success) start-time n i l ) ) )

(defmethod (find-first-time-crew-scheduable-after step) (time)
(let ( ( t imes n i l ) )

(loop for combination in crew-combinations
for new-time = (find-«arli*it-tin»-cr«w-combination-«valltbl«

self combination (1+ time))
do

ORIGINAL PAGE IS
A_53 OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.l7 Page 3

(when new-time
(push new-time times)))

(if times (apply I'roin times) nil)))

(defmethod (find-«*rli««t-tim«-cr«w-con>bln»tion-«v»ilabl« at«p)
(crew-combination start-time)

(let I(result nil))
(loop until (or (eql result : success)

(null start-time)
(> U- (+ start-time max-duration)) (max-time (init-obj "mission*))))

do
(multiple-value-setq (result start-time)

(crew-combination-available-in-periods-p
self (get-time-instance-list

•mission* start-time (1- (+• max-duration start-time))
(if last-time-slice

last-time-slice
(if previous-step

(last-time-slice previous-step)
nil)))

crew-combination start-time)))
(if (eql result -.success) start-time nil)))

(def met hod (cr«w-not-pr*sant-in-tima-p«riod*-p step) (periods-list crew start-time)
(let ((result :success))
(loop for period in periods-list

///until (not (eql result :success))
do

(when (resource-present-in-period period :crew crew)
(setf result :crew-already-scheduled)
(setf start-time (1+ (end-time period)))))

///(crew-not-present-in-time-periods-aux self crew (1+ (end-time period))))))
(values result start-time)))

(defmethod (cr«w-not-pr»««nt-in-timo-p«riod»-«ux «tap) (crew start-time)
(let ((result nil))
(loop until (or (eql result :success)

(> («• start-time max-duration) (max-time (init-obj 'mission*))))
do

(multiple-value-setq (result start-time)
(cx«w-not-pr»««nt-ln-tin>o-p«rioda-p
self
(get-time-instance-list
'mission* start-time (1- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(if previous-step

(last-time-slice previous-step)
nil) ) )

crew start-time)))
(if (eql result .-success) start-time nil)))

(defmethod (cx«w-av*il*bl«-in-tim*-p«riod8-p cr«w-mamb«r) (start-time duration)
(cond ((null start-time) (values nil nil))

(t
(let ((end-time (1- (+ duration start-time)))(result nil))
(multiple-value-setq (result start-time)
(crew-available-in-time-periods-aux self start-time end-time))

(unless (eql result :success)
(setf start-time (er«w-«v»ilabl«-in-tim«-p«riod*-aux-2 self start-time duration)))

(values result start-time)))))

(defmethod (cr«w-»v»ilabl«-in-tim«-p«riod»-aux availability) (time step-end-time)
(let ((available-obj (available-at-time self time)))

(cond ((null available-obj)
nil)

/;/ indicates some time period for which the crew member vaa unavailable
((> time step-end-time)
/// for this to be true, we must have found an available object for each
its time period
(setf available-obj :success))

ORIGINAL PAGE IS
A-54 . OF poOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.l7 Page 4

I IS step-end-time (end available-obj))
;,•/ the time period of interest is completely covered by this
;;; available-time obj
(setf available-obj :success))

(t /„• / the crew-member is available in the current time period, but ue
;:; have not covered all times yet
(setf available-obj

(cr«w-»vail«bl«-in-tim«-p«riods-«ux
self (1+ (end available-obj)) s tep-end-t ime))))

(values available-obj t i m e ) ) )

(defmethod (cr«w-«vail»bl«-ln-tlia«-j>«riod«-»ux-2 craw-munb«r) (start-time duration)
(cond ( (nu l l start-time) (values :crew-not-available n i l ) )

(t
(let ((result n i l ) )

(loop until (or (eql result :success)
(null start-time)
<> <1- (+ start-time durat ion))

(max-time (init-obj "mis s ion*) ) ) )
do

(setf start-time (find-time-crew-available-after self s tar t- t ime))
(multiple-value-setq (result start-time)

(crew-available-in-time-periods-p self start-time du ra t i on ) ) )
(if (eql result :success) start-time n i l ) ) ) ) )

(defmethod (find-tim«-cr«w-«v«ll«l5l«-«ft«r crow-m*mb«r) (start- t ime)
(let ( ( resul t n i l ) )

(loop for available-obj in available-times-list
until result
do

(when (> (begin available-obj) start-time)
(setf result (begin ava i lab le -ob j ) ) ) )

r e su l t ) )

A-55 ORIGINAL PAGE IS
OF POOR QViA



ANDY:>brown>nasa-2>scheduler-feasibility-methods-durable-resource.lisp.9 Page 1

xf;;; -•- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (•t*p->cb«dul*bl*-dur*bl*-vl.«wpolnt-p «t»p)
(period-list delay-list start-t ime)

(let ((result :success) (new-time s tar t - t ime))
(loop for (resource quant) in durable-resource-list

until (not (eql result :success))
do

(multiple-value-setq (result new-time)
(sufficient-durable-resource-in-periods-p

self period-list resource quant s ta r t - t ime))
(cond ( (not (eql result :success))

(setf result :durable-resource-not-available)
(when new-time

(setf new-time (step-schedulable-durable-viewpoint-aux self n e w - t i m e ) ) ) )
((and resource-carry-thru

(not (zerop step-delay-min)))
(multiple-value-setq (result new-time)

(sufficient-durable-resource-in-periods-p
self delay-list resource quant
(+ max-duration s ta r t - t ime) ) )

(cond ( (no t (eql result :success))
(setf result :durable-resource-not-available)
(when new-time

(setf new-time (step-schedulable-durable-viewpoint-aux self n e w - t i m e ) ) ) )
( t n i l ) ) ) ) )

(values result .new-time)))

(defmethod («t«p-»chadulabl«-dur»bl«-vi»wpoint-«ux >t>p) (start-time)
(let ( (resul t :success)(new-time s tar t - t ime))

(cond ((> (+ start-time min-duration) (max-time (init-obj 'mission*)))
(setf result :max-time-exceeded new-time n i l ) )

(t
(multiple-value-setq (result new-time)

(«t«p-«ch«dulabl«-durable-vi«wpoint-p
self
(get-time-instance-list

•mission* new-time (1- (+ max-duration new-t ime))
(if last-time-slice

last-time-slice
(if previous-step

(last-time-slice previous-step)
n i l ) ) )

(if (or (null resource-carry-thru) (zerop step-delay-min))
nil
(get-time-instance-list

•mission* (» max-duration new-time)
(1- (+ step-delay-min max-duration new- t ime) ) )

(if last-time-slice
last-time-siice
(if previous-step

(last-time-slice previous-step)
n i l ) ) )

n e w - t i m e ) ) ) ) .
(if (eql result :success) start-time n e w - t i m e ) ) )

(defmethod («uffici*nt-durable-r«sourc»-in-p«riod«-p st«p)
(period-list resource quant start-time)

(let ((result :success) (new-time s tar t - t ime))
(loop for period in period-list

until (not (eql result :success))
do

(multiple-value-setq (result new-time)
(sufficient-durable-resource-in-period

self period resource quant s t a r t - t ime) ) )
(values result (if (eql result :success)

(+ max-duration start-time)
new-time)) ) )

(defmethod (•uffiei*nt-durable-r*aourc«-in-p«riod «t«p)
(period resource quant step-start-time)

;;;the start time of the period may tie less that the start time of the step for the

ORIGINAL PAGE IS
A-56 QF pooR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-durabIe-resource.lisp.9 Page 2

;;;first period, and the end time may be greater than the end time of the step for
;;;the last period
(let* ((result :success) (return-time step-atart-time)

(max-quant (available-quantity resource))
(step-list ni l) (commited-quant n i l ) )

(multiple-value-setq (commited-quant step-list)
(find-quant-durable-resource-already-committed

period resource))
(unless

(and max-quant Ci max-quant
(+ quant

commited-quant)))
(setf result :insufficient-durable-resource return-time

(find-time-durable-resource-no-lonqer-held-by-steps self step-list resource)))
(values result return-t ime)))

(defmethod (find-qu«nt-durable-r»»ourc«-«lr»«dy-committod tio»-mlie») (resource)
(let ( ( resul t 0)(step-list n i l ) )

(loop for (corn-resource com-quarit step) in durable-resource-list
do

(when (eql resource corn-resource)
(incf result com-quant)
(push step step-list)))

(values result (min step-list))))

(defmethod (find-time-durable-resource-no-longer-held-by-steps step) (step-list resource)
(let ((result 0))

(loop for step in step-list
for last-time =

(find-time-durable-resource-no-longer-heId-by-steps-aux step resource)
do

(when (> last-time result)
(setf result last-time)))

result))

(defmethod (find-time-durable-resource-no-longer-held-by-steps-aux step) (resource)
(cond ((and next-step (member resource durable-resource-list :key *'first ))

(find-time-durable-resource-no-longer-held-by-steps-aux next-step resource))
((member resource durable-resource-list :key *'first )
(1+ scheduled-end-time))

(t scheduled-start-time)))

A-57 ORIGINAL PAGE IS
OF POOR



ANDY:>brown>nasa-2>scheduler-feasibility-methods-non-depletab!e.Iisp.4 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defmethod («t«p-»cli«dul»bl«-non-d*pl«tabl«-vi«wpoint-p *t«p)
(period-list delay-list start-time)

(let ((result :success)(new-time start-time))
(loop for (resource quant tolerance) in non-depletable-resource-list

until (not (eql result :success))
do

(multiple-value-setq (result new-time)
(sufficient-non-depletable-in-periods-p
self period-list resource quant tolerance start-time))

(cond ((not (eql result :success))
(setf result :non-depletable-not-available)
(when new-time
(setf new-time (atep-schedulable-non-depletable-viewpoint-aux self new-time))))

((and resource-carry-thru (not (zerop step-delay-rnin)) )
(multiple-value-setq (result new-time)

(sufficient-non-depletable-in-periods-p
self delay-list resource quant tolerance ( + start-time max-duration)))

(cond ((not (eql result :success))
(setf result :non-depletable-not-available)
(when new-time

(setf new-time (step-schedulable-non-depletable-viewpoint-aux
self new-time))))))))

(values result (if (eql result :success) start-time new-time))))

(defmethod («t*p-«ch«dulabl*-non-d«platabl*-viawpoint-aux »t«p) (start-time)
(let ((result :success) (new-time nil)) ~

(cond ((> (1- (+ start-time max-duration)) (max-time (init-obj "mission*)))
nil)
(t
(multiple-value-setq (result new-time)
(•t«p->chadul«bl«-non-daplat«bla-"i«Mpoint-p
self (get-time-instance-list

•mission* start-time (1- (+• max-duration start-time) )
(if last-time-slice

last-time-slice
(if previous-step

(last-time-slice previous-step)
nil)))

(if (or (null resource-carry-thru) (zerop step-delay-min))
nil
(get-time-instance-list
•mission* (+ max-duration new-time)
(1- ( + step-delay-min max-duration new-tiir.e)) )

(if last-time-slice
last-time-slice
(if previous-step

(last-time-slice previous-step)
nil)))

start-time))
(cond ((eql result :success) start-time)

(t new-time))))))

(defmethod (ruf fiei«nt-non-d«pl«t»bl«-in-p«riods-p at«p)
(period-list resource quant tolerance start-time)

(let ((result :success) (new-time start-time) (return-time start-time)
(return-result :success))

(loop for period in period-list
do

(multiple-value-setq (result new-time)
(sufficient-non-depletable-in-period
self period resource quant tolerance start-time))

(unless (eql result :success)
(setf return-result result)
(setf return-time new-time)))

(values return-result (if (eql return-result :success)
(+ max-duration start-time)
return-time) )) )

(defmethod (•uf£iei«nt-non-d*pl«tabl*-in-p«riod «t*p)
(period resource quant tolerance start-time)

OR1G5NAL PACE SB

A_58 . OF poor; ^ ;.-4t



ANDY:>brown>nasa-2>scheduIer-feasibiIity-methods-non-depIetabIe.lisp.4 Page 2

;;;the start time of the period may be .leas that the start time of the step for the
;;;first period, and the end time may be greater than the end time of the step for
;;;the last period
(let ((result :success) (return-time start-time)

(already-committed nil) (max-pos-tol n i l ) (max-neg-tol nil)
(available-time-obj

(r**ourc*-BV«ilabl«-in-p«riod resource (max start-time (start-time p e r i o d ) ) ) ) )
(multiple-value-setq (already-committed max-pos-tol max-neg-tol)

(find-quant-non-depletable-already-committed period resource))
(cond ( (nu l l available-time-obj) /// there is no availability object --

/// implies 0 availability
(setf result :non-depletable-not-available

return-time (start-time
(find-earliest-available-time-after

resource (1+ (start-time p e r i o d ) ) ) ) ) )
( (and (check-quantities

self already-committed max-pos-tol max-neg-tol quant tolerance
*• (qty (ovmer-obj available-time-obj)))

/// we have enough
(2 (end available-time-obj) (end-time per iod) ) ) / / /we 've looked at

;;;all times
(setf return-time (1+ (end-time period))))

((check-quantities
self already-committed max-poa-tol max-neg-tol quant tolerance
(qty (owner-obj available-time-obj))) /// ve have enough but

;;; haven't looked at all times
(multiple-value-setq (result return-time)
(suffici«nt-non-d»pl«t«bl«-in-p«riod
self period resource quant tolerance (1+ (end available-time-obj)))))

(t /// there is some available, but not enough
(setf result :non-depletable-not-available return-time

(min (1+ (end-time period)) (1+ (end available-time-obj))))))
(values result return-time)))

(defmethod (check-quantities step)
(already-committed max-pos-tol max-neg-tol quant tolerance avail-quant)

(cond ((zerop tolerance) /// if there is no tolerance, consider the max amount of
:;: negative tolerance (reserve resource) which must be maintained
(S (+ quant already-committed) (+ avail-quant max-neg-tol)))

( (minusp tolerance) //,• if the tolerance is negative, consider the largest
/// required reserve
(if (< tolerance max-neg-tol)

(S (+ quant already-committed) ( + avail-quant tolerance))
(S ( + quant already-committed) (•*• avail-quant max-neg-tol))))

(t
(cond ((zerop max-neg-tol) /// we still must maintain sufficient reserve

(S (+ quant already-committed) (+ avail-quant max-neg-tol)))
(t
(if (> tolerance max-pos-tol)

<S (+ quant already-committed ) ( + avail-quant tolerance))
(S (+ quant already-committed) ( + avail-quant max-pos-tol))))))))

(defmethod (find-<tu«nt-non-depletable-«lr««dy-committ«d tima-«lie«) (resource)
(let ((committed 0) (max-pos-tol 0) (neg-tol 0) )
(loop for (corn-resource corn-quant tol-quant dummy) in non-depletable-resource-list

do
dummy

(when (eql resource corn-resource)
(incf committed corn-quant)
(cond ((null tol-quant) nil)

((zerop tol-quant) nil)
((and (minusp tol-quant) (< tol-quant neg-tol))
(setf neg-tol tol-quant))

((and (plusp tol-quant) (> tol-quant max-pos-tol))
(setf max-pos-tol tol-quant)))))

(values committed max-pos-tol neg-tol)))

ORIGINAL PAGE IS
A-59 OF POOR QUALITY



ANDY:>brown>nasa-2>scheduIer-feasibility-methods-other-steps.lisp.l2 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -«-

»l I
' (BACKTRACK SCHEDULE-OTHER-STEPS )
I I *

(defmethod (SCHEOULE-OTHER-STEPS perfo nuance)
(current-step start-time Skey (dont-use-current-crew nil))

(cond ((null current-step) (values :success start-time))
(t
(let
((last-step (previous-step current-step)) (new-time start-time) (result nil))
(if last-step

(multiple-value-setq (result new-time)
(step-schedulable-starting-between-inclusive-times-p
current-step
(if (numberp new-time) new-time

(calc-next-step-earliest-start-time last-step))
(calc-next-step-latest-start-time last-step)
:dont-use-current-crew dont-use-current-crew))

(multiple-value-setq (result new-time)
(step-schedulable-starting-at-time-p
current-step start-time nil
:dont-use-current-crew dont-use-current-crew)))

(cond ((eql result :success)
,-,•; i have a start time within the window
(if last-step

(setf (scheduled-start-time current-step) new-time
(scheduled-end-time current-step)
(1- (+ new-time (max-duration current-step))))

(setf (scheduled-start-time current-step) start-time
(scheduled-end-time current-step)
(1- (+ start-time (max-duration current-step)))))

(multiple-value-setq (result new-time)
;;; all others have a start time
(SCHEDULE-OTHER-STEPS self (next-step current-step)

(calc-next-step-earliest-start-time current-step))))
((and (listp result) (eql (first result) :lock-crew-failure))
(if (= (second result) (number current-step))

(schedule-other-steps-aux self current-step start-time)
nil))

((null (previous-step current-step))
,•„•/ i am trying to schedule the first step, and it has failed -
;;; return the values of result and new-time, and quit
nil)
(new-time //,• i have a start time outside of the window
(when (and (crew-lockin current-step)

(" (crew-lockin current-step) (number current-step)))
(setf (failed-crew-combinations current-step) nil))

(multiple-value-setq (result new-time)
(BACKTRACK self (previous-step current-step) new-time)))

(t ,•/; this step can never be scheduled
nil))

(values result new-time)))))

(defmethod (schedule-other-steps-aux performance) (current-step start-time)
(multiple-value-bind (result new-time)

(schedule-other-steps self current-step start-time :dont-use-current-crew t)
(values result new-time)))

(defmethod (BACKTRACK performance) (current-step earliest-start-time-of-next-step)
(let ((prev (previous-step current-step)) result)
(cond ((S (calc-next-step-earliest-start-time current-step)

earliest-start-time-of-next-step
(calc-next-step-latest-start-time current-step))

;;;the proposed new start time of the next step is within the delay limits
;;;of this step as currently scheduled.
(multiple-value-setq (result earliest-start-time-of-next-step)
(schedule-other-steps self current-step

earliest-start-time-of-next-step))
(values result earliest-start-time-of-next-step))

((null prev)
;;;if you get here, you are working on the first step, and the time it is

«„«,- ORIGINAL PACr
PAGE IS OF

A-60 OF POOR Q-JA-ty °F



ANDY:>brown>nasa-2>scheduler-feasibiIity-methods-other-steps.Iisp.l2 Page 2

is;currently scheduled in is not ok
(setf (scheduled-start-time current-step) nil)
(values :total-failure

(- earliest-start-time-of-next-step (max-duration current-step))))
(t ///the proposed new start time of the next step is not within the delay
///.limits of this step. The earliest and .latest start times for
///the this step are computed which would allow next step to be
/;;scheduled at the desired time learliest-start-time-of-next-stepl
(let ((earliest (calc-this-step-earliest-start-time

current-step earliest-start-time-of-next-step))
(latest (calc-this-step-latest-start-time

current-step earliest-start-time-of-next-step))
(start-time nil))

(multiple-value-setq (result start-time)
(step-schedulable-starting-between-inclusive-times-p current-step earliest

latest))
(cond (start-time / (eql result -.success)

///a start time for the current step has been found within the delay
;;.-limits of this step which allows the next step to be scheduled at
///the desired time - now, we must check whether the new start time
////or the current step is computable with the start time of its
///parent,

(multiple-value-setq (result earliest-start-time-of-next-step)
(backtrack self prev start-time))

(values result earliest-start-time-of-next-step))
(t
///a start time cannot be found which will permit this step
///to be scheduled within the delay limits imposed by scheduling
///the next step at earliest-start-time-of-next-step. Calculate
///the closing time of that window, and search forward from that
/ / / t i me.
(setf (scheduled-start-time (next-step current-step)) nil)
(values result start-time))))))))

ORIGINAL PAGE IS
OF POOR QUALITY

A-61



ANDY:>brown>nasa-2>scheduIer-feasibility-methods-performance-level.Iisp.33 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

• I I
' (find-«nd-tim»-without-»hutdoim-»t«p» find-«t«irt-tim«-without-»t«r-tup-«t«p» find-**rli*«
abl«-tim*-«£t«r »t«rtup-or-«butdown-»t«p«-r«qulr»d-p b«tw«an-*xp«rim*nt-con«taint« g«t-tim»-ln«tan
c*-li«t g*t-tia»-in«tanc« g«t-link*d-ob]«ct upd«t«-oth«r-obj»ct link-«t*p» copy-«t»p find-«t«p-num
b«r*d r«mov«-»t«p« gan«rat*-raquir«d-«t«pi copy-»top-li«t c*lc-thi*-«t*p-lat««t-*tajrt-tin» c«lc-th
i»-»t»p-«axli«*t-«tart-tim« c«lc-n«jct-«t«p-l«t«»t-«t»rt-tin>» c«lc-n«xt-»t«p-«arli«»t-«t»rt-tim« bu
ild-li»t-from-linJc«d-«tructur« g«t-fir«t-«hutdown-«t»p g«t-l**t-«t*rtup->t*p join-ohutdown-»t«p» j
oin-»t»rtup-»t»p» p«rfonnanc»-«ch«dulat>l«-«t-«t«rtin7-tim«-p-«ux-2 parform»nc«-«chadulabl«-«t-«t«r
ting-tijn«-p-«uj[ find-first-time-no-overlap find-new-performance-window p*rformanc«-«cbadulaJbl«-at-
•tarting-tima-p )
I I*

;,•; high leval performance and step scheduling feasibility methods

(defmethod (p*rfomanc«-«cb«dul«bl«-at~«tarting-tiina-p performance)
(starting-time (optional scenario-number last-performance)

;;;the purpose of this method is to check whether there is an up-front, above
;;istep level reason that the performance cannot be scheduled at the time
///designated
(let (new-time ok)

;;;check within experiment begin time constraints
(multiple-value-setq (ok new-time)

(ok-to-«ch«dul«-p«rform«nc»-«t«i-tin<3-at-»t«rting-tiin«-p
owning-experiment starting-time las t -performance))

;ok will be t if ok, some other value otherwise
new-time will be time to end, or nil if scheduling after last already
scheduled performance; otherwise, will indicate earliest time to try

/check between experiment constraints
have to check for directional and mutual dependencies, and for exclusions
dependencies can be concur ant start, during, and sequential

;check if startup or shutdown steps required
(cond {(and (eql ok t) (null (strategy owning-experiment)))

(multiple-value-setq (ok new-time)
(p«rformanc«-«ch«dul«bl«-*t-«t«rting-tim«-p-aux

self starting-time scenario-number last-performance)))
((and (eql ok t) (strategy owning-experiment))

(let ( ( table (make-hash-table)))
(loop for i from 0 to

(if (eql (first (strategy owning-experiment))
:max-weight)

0
(1- (length (second (strategy owning-experiment)))))

do
(setf (gethash i table ) starting-time))

(multiple-value-setq (ok new-time scenario-number)
(multiple-strategy-performance-scheduable-at-starting-time-p
self table (if scenario-number scenario-number 0) starting-time
last-performance))

(values ok new-time scenario-number)))
((eql ok :start-time-not-within-performance-window)
(setf new-time (find-new-performance-window owning-experiment starting-time)))
((eql ok :maxlmum-performances-violation)
(setf new-time nil))
((eql ok :overlap)
(setf new-time (find-first-time-no-overlap owning-experiment starting-time)))
((eql ok :performances-per-window-violation)
(setf new-time (find-new-performance-window owning-experiment starting-time))))

(values ok new-time)))

(defmethod (multiple-strategy-performance-scheduable-at-starting-time-p performance)
(table scen-number time last-performance)

(let ((result :multiple-scenario-failuare) (new-time nil)(new-scenario nil))
(multiplo-value-setq (result new-time)
(p*rform«nc«->ch*dulAbl«-at-«tarting-tia*-p-aux self time scen-number last-performance))

(cond ((eql result :success)
(values result new-time scen-number))

(t (setf (gethash scen-number table) new-time)
(setf new-time nil)
(loop for new-scenario-number from 0 below (send table :filled-elements)

ORIGINAL PAGE IS
A-62 OF pooR QUALITY



A^fDY:>b^own>nasa-2>scheduIe^-feasibility-methods-pe^formance-level.lisp.33 Page 2

for new-scenario-start-tiir« = (gethash new-scenario-number table)
do

(cond ((null new-scenario-start-time)
nil)
((null new-time)
(setf new-time new-scenario-start-time

new-scenario new-scenario-number))
((< new-scenario-start-tine new-time)
(setf new-time new-scenario-start-time

new-scenario new-scenario-number))
(t nil)))

(when new-time
(multiple-value-setq (result new-time new-scenario)

(multiple-strategy-performance-scheduable-at-starting-time-p
self table new-scenario new-time last-performance))))

(values result new-time new-scenario))))

(defmethod (find-new-performance-window experiment) (start-time)
(loop for (start end performances) in performance-windows

do
(when (> start start-time)
(return start))))

(defmethod (find-first-time-no-overlap experiment) (start-time)
(let ((acheduled-times-list nil) (new-time nil))

(loop for performance in performance-list
do

(when (scheduled-p performance)
(push (list (if (execute-start-up-steps-p performance)

(find-start-time-without-startup-steps performance)
(scheduled-start-time performance))

(if (execute-shutdown-steps-p performance)
(+ (find-end-time-without-shutdown-steps performance)

oin-performanea-dalay-tinM)
(+ (scheduled-end-time performance) min-p«rformane«-d*lay-tima)))

scheduled-times-list)))
(loop for (start end) in

(setf scheduled-times-list (sort scheduled-times-list l'< :key #'first))
with done = nil until done
do

(cond ((S end start-time )
„•,•; this pair ends earlier than the time we are interested in
nil)
((and new-time (< new-time start))
;,-,- we previously found a new time, and It is less than the start of the
:;; next performance — we are done
(setf done t))
(new-time

,-,-,• HB previously found a new time, but it fails to be strictly less
;;; than the start time of the next already scheduled performance
(setf new-time nil))

( (> end start-time)
/;/ this is the first end greater than the start time when new-time is
;;; still nil
(setf new-time (1+ end)))))

new-time))

(do f method (performance-schedulablc-at-atarting-tinM-p-aux performance)
(starting-time (optional (scenario-number nil) last-performance)

:;;the purpose of this method is to determine the scenario we are working on, setup
i;;the steps, and call aux-2 to do the real work
(let (ok new-time shutdown-steps-p start-up-steps-p)

(cond (scenario-number
///tJiera ia * atratagy, mad w» arc to examine a particular acenajrio
(generate-required-steps owning-experiment self scenario-number)
(compute-and-atore-cumuVative-consumption self)
(multiple-value-setq (ok new-time)

(performance-achedulable-at-3tarting-time-p-aux-2
self starting-time scenario-number last-performance))

(values ok new-time))

ORIGINAL PAGE !S
OF POOR QUALITY

A-63



ANDY:>brown>nasa-2>scheduler-feasibiIity-methods-performance-level.lisp.33Page3

(t ;;;d*fmult CM*» of ttmrtvp, core *nd thutdown mt»p*
(generate-required-steps owning-experiment self scenario-number)
(multiple-value-setq (start-up-steps-p shutdown-steps-p)

(startup-or-shutdown-steps-required-p owning-experiment starting-time))
(when start-up-steps-p

(join-startup-steps self (first step-list))
(setf execute-start-up-steps-p t))

(when shutdown-steps-p (join-shutdown-steps self)
(setf execute-shutdown-steps-p t))

(compute-and-store-cumulative-consumption self)
(multiple-value-setq (ok new-time)

(performance-schedulable-at-3tarting-time-p-aux-2
self starting-time nil last-performance))

(values ok new-time)))))

(defmethod (performance-*chedulable-at-*jtartino;-time-p-«ux-2 performance)
(starting-time.(optional scenario-number last-performance)

(let (result new-time (first-step (first step-list)))
(multiple-value-setq (result new-time)
(schedule-other-steps self first-step starting-time))

(cond
((eql result :success)
(setf scheduled-start-time (scheduled-start-cime first-step)

scheduled-end-time (scheduled-end-time (first (last step-list))))
(multiple-value-setq (result new-time)
(chedc-for-completion-within-perfonnance-duration self result new-time))

(when (eql result :success)
(multiple-value-setq (result new-time)
(check-for-min-delay-betwaen-performance-violation self result new-time))

(when (eql result : success)
(multiple-value-setq (result new-time)
(check-for-completion-within-performance-window self result new-time))))

(setf new-time scheduled-start-time))
((and (not (eql result :success))

new-time scenario-number
(S new-time (max-time (init-obj 'mission'))))

(multiple-value-setq (result new-time)
(performance-*chedulable-at-«tarting-tiina-p-*ux-2
self new-time scenario-number))

) )
(values result new-time)))

; ; ;lou level functions

(defmethod (join-itartup-«tap* performance) (first-step)
(let* ((startup-step-list (copy-step-list ( startup-steps owning-experiment )))

(last-startup-step (first (last startup-step-list))))
(setf (next-step last-startup-step) first-step

(previous-step first-step) last-startup-step)
(setf step-list (concatenate 'list startup-step-list step-list))))

(defmethod (join-*butdown-*>tep* performance) ()
(let* ((last-step (first (last step-list)))

(shutdown-step-list (copy-step-list (shutdown-steps owning-experiment))))
(setf (next-step last-step) (first shutdown-step-list)

(previous-step (first shutdown-step-list)) last-step)
(setf step-list (concatenate 'list step-list shutdown-step-list))))

(defmethod (o;et-l»«t-etartup-»tep experiment) ()
(first (last startup-steps)))

(defmethod {get-fir»t-»hutdown-«tep experiment) ()
(first shutdown-steps))

(defun build-li«t-from-linked-«tructure (top-of-structure accessor)
(if (null top-of-structure)

nil

A-64
ORIGINAL PAGE 13
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 4

(cons top-of-structure (build-list-from-linked-structure
(funcall accessor top-of-structure) accessor))))

(defmethod (calc-next-«tep-earlie«t-»tart-time stop) ()
(+ scheduled-start-time

step-delay-min max-duration))

(defmethod (calc-next-«tep-late«t-«tart-tlme »tep) ()
(+ scheduled-start-time step-delay-max max-duration))

(defmethod (calc-thl»-»t«p-earli«»t-»t«rt-timo step) (start-time)
(- start-time (+ step-delay-max max-duration)))

(defmethod (calc-thi»-«tep-lat«»t-«t«rt-time *tep) (start-time)
(- start-time (•»• step-delay-min max-duration) ) )

(defmethod (copy-»tep-li«t performance) (new-step-list)
(loop for the-step in new-step-list

for this-step » (copy-step the-step self)
with prev-step • nil
collect this-step
do

(setf (owning-object this-step) self)
(when prev-step
(link-steps prev-step this-step))

(setf prev-step this-step)))

(defmethod (generate-requlred-«tepa experiment) (perf scenario-number)
(remove-steps perf)
(cond ((null scenario-number)

,-,-,• default case of startup, prototype and shutdown steps
(first (setf (step-list perf) (copy-step-list perf prototype-step-list))))
((and (eql (first strategy) :max-weight) (null (zerop scenario-number)))
(error "-%generate-required-steps called with max-weight strategy,

and scenario-number not equal to zero for performance -S of experiment -S"
perf self) )

(t (loop for substrategy in (first (nth scenario-number (second strategy)))
with steps « nil
do

(if (eql (first substrategy) :consecutive)
(setf steps

(concatenate
'list steps
(loop for i from (second substrategy) to (third substrategy)

collect (find-step-numbered self i))))
(setf steps

(concatenate
'list steps
(loop for i in (second substrategy)

collect (find-step-numbered self i)))))
finally (setf (step-list perf) steps))

(first (setf (step-list perf)
(copy-step-list perf (step-list perf)))))))

(defmethod (remove-ateps performance) ()
(setf step-list nil))

(defmethod (find-ctep-numbered experiment) (desired-number)
(let ((result nil))
(cond ((and shutdown-steps (2 desired-number (number (first shutdown-steps))))

(loop for step in shutdown-steps
until (= desired-number (number step))
finally (setf result step)))

((and prototype-step-list (2 desired-number (number (first prototype-step-list))))
(loop for step in prototype-step-list

until (<* desired-number (number step) )
finally (setf result step)))

(startup-steps
(loop for step in startup-steps

until (" desired-number (number step))
finally (setf result step)))

(t nil))
result))

PAGE »Svjniw" —
A-65 QF



ANDY:>brown>nasa-2>scheduIer-feasibiIity-methods-performance-IeveI.lisp.33 Page 5

(defmethod (find-step-named performance) (desired-name)
(loop for step in step-list

until (= desired-name (name step))
finally (return step)))

(defmethod (copy-stop *t*p) ((optional (owner nil) )
(make-instance 'step

:id id
:number number
:max-duration max-duration
:min-duration min-duration
:step-delay-min step-delay-min
:step-delay-max step-delay-max
:cumulative-consumable-list nil
:consumable-resource-list consumable-resource-list
:durable-resource-list durable-resource-list
:non-depletable-resource-list non-depletable-resource-list
:crew-requirements crew-requirements
:crew-combinations crew-combinations
:crew-lockin crew-lockin
:crew-monitor crew-monitor
:crew-cycle crew-cycle
:crew-duration crew-duration
:crew-late-shift crew-late-shift
:crew-early-shift crew-early-shi ft
:concurrent-with concurrent-with
:target-list target-list
:attitude-list attitude-list
:scheduled-crew-list nil
:crew-monitoring-time crew-monitoring-time
:owning-object (if owner owner owning-object)))

(defun link-»t«p» (prev-step n-step)
(setf (next-step prev-step) n-step (previous-step n-step) prev-step))

;********************************************************************************
,•;;stubs

(defun upd*t«-oth«r-obj«ct (arg) arg
;;;this st-jb is to be used to do actual scheduling of an object which is to be
;;;concur:-jntly scheduled with the object currently being scheduled
;(format t "this is a stub [ defun updmt»-oth«r-obj«ct ] with 1 «rg -A " «rg)
nil)

(defmethod (o;«t-linXad-obj«ct mission) (arg) arg
;;: this stub is to be used to retrieve the actual object to be scheduled
;;: concurrently with the currently being scheduled object. the return is passed
;;; to update-other-object
;(format t "this is a stub: [get-linked-object mission) with 1 arg - -A" arg)
nil)

(defmethod (g«t-tin«-in«tanc* mission) (time-period (optional time-slice)
(cond ((null time-slice)

(get-time-instance time-slice-holder time-period))
( (£ (start-time time-slice) time-period (end-time time-slice) )
time-slice)
(t (get-time-instance time-j.ice time-period))))

(defmethod (get-time-instance time-slice) (time-period)
(cond ((S start-time time-period end-time)

self)
((and (< end-time time-period) next-slice)
(get-time-instance next-slice time-period))
((and (> start-time time-period ) prev-slice)
(get-time-instance prev-slice time-period))))

(defmethod (g«t-tim«-lnat«nc«-li»t mission) (start-time end-time (optional starting-instance)
(when (< end-time start-time)
(error "-%g»t-tia»«-in«t«nc«-li«t called with start-time -S greater than end-time -S"

start-time end-time))
(loop with done - nil until done

with result - nil
with next-instance « nil
do

ORIGINAL PAGE IS
A"6b OF POOR QUALITY



ANDY:>brown>nasa-2>scheduIer-feasibility-methods-performance-leveI.lisp.33 Page 6

(setf next-instance (g«t-tim«-in«t«nce
self start-time
(if next-instance next-instance starting-instance)))

(cond ((> end-time (end-time next-instance))
(push next-instance result)
(setf start-time (1+ (end-time next-instance))))
( (S (start-time next-instance) end-time (end-time next-instance))
1st this ia the last instance
(push next-instance result)
(setf done t)))

finally (if result (return (reverse result)) result)))

(defmethod (between-experinwnt-con«t*inti (tap) ()
/(format t "this is a stub [ between-experiment-constaints step] with no args")
nil)

(defmethod (•tartup-or-shutdovn-atapi-roquirod-p experiment) (time)
(let ((startup-p t) (shutdown-p •chedule-ahutdown-with-perfonnance))
;;;startup-p and ahutdown-p initialized to t and
//,-«cfaedule-«b,utdown-with-p«rformanc« so that the proper values fill be returned
;;;in the case where the first performance is being scheduled
(unless startup-steps (setf startup-p nil) )
(unless shutdown-steps (setf shutdown-p nil))

(when performance-list
(loop for performance in performance-list

with startup-flag = startup-p
with shutdown-flag = shutdown-p
/// if this flag ia set, we should be scheduling a sequence of
!:: performances, each after the other, meaning that each will have to
::; have shutdown steps scheduled and then un-scheduled unless we
;;; intervne
until (and (null startup-flag) (null shutdown-flag))
do

(when (scheduled-p performance)
(cond ((and startup-flag

(< (find-start-time-without-startup-steps performance) time))
;;;this performance starts earlier than the new time, hence, startup
;;;steps not needed
(setf startup-flag nil))
((< time (find-start-time-without-startup-steps performance))
;,•/ this performance starts later than the new time, hence,
;;; shutdown steps are not needed
(setf shutdown-flag nil))

((and shutdown-flag
(» (find-start-time-without-startup-steps performance) time))

,-,-/ this performance starts at the same time - save work by
;;; returning immediately will nil nil, knowning another check will
;;; reject this time
(setf startup-flag nil shutdown-flag nil))))

finally (progn (setf startup-p startup-flag)
(setf shutdown-p shutdown-flag))))

(values startup-p shutdown-p)))

(defmethod (f ind-»t«jrt-tlme-wlthout-«t»rtup-»tep» performance) ()
(if execute-start-up-steps-p

(loop for step in step-list
with first-core-step « (first (prototype-step-list owning-experiment))
do

(when (and (eql (name first-core-'atep) (name step))
(- (id first-core-step) (id step)))

(return (scheduled-start-time step))))
(scheduled-start-time (first step-list))))

(defmethod (find-end-time-without-ahutdown-ctep* performance) ()
(if execute-ahutdown-steps-p

(loop for step in step-list
with last-core-step » (first (last (prototype-step-list owning-experiment)))

OF POOR



ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-leveUisp.33Page7

do
(when (and (eql (name lasC-core-step) (name step))

(= (id last-core-step) (id step)))
(return (scheduled-end-time step))))

(scheduled-end-time (first (last step-list)11 I I

ORIGINAL PAGE iS
OF POOR QUALITY

A-68



ANDY:>brown>nasa-2>scheduler-feasibi!ity-methods-resource.Iisp.l5 " Page 1

; ; ; -«- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

II I
• (r*«ourc«-availabl«-in-pariod r«»ourc»-«v«ilabl«-in-p«rlod» gat -object -nomad find-maximum-ra*ourc
•-available find-quant-ra«ouro*-alr*ady-comialttad suf fici«nt-r««ourc»-in-p«riod-»ux ruf f lcl«nt-r*«
ourc«-in-p«riod •uffici*nt-r««oure«-in-p«rioda-p •t*p-*cb.*dul«bl*-durabl«-viawpoint-p find-«arll*«
t-«t*p-*cb«dulabl«-aft«r-tlM •tap-*chadul«bl«-durabla-vi«wpoint-aux •t*p-«chadulabl«-non-doplatab
l»-vi«vpoint-«ux •t«p-»chodul«bl«-non-d«pl«t»bl«-vi»wpoint-p •t«p-ccb.«dulabl«-consumabl*-viawpoint
-«ux •t*p-«cbadulabl*-conaumabla-viawpoint-p )
I I*

(defmethod (•t«p-»ch«dulabl«-con»umabl«-viowpoint-p atop)
(period-list start-time)

(let ((result : success) (new-time start-time))
(loop for (resource quant) in cumulative-consumable-list

until (not (eql result : success))
do

(multiple-value-setq (result new-time)
(suf ficient-consumable-in-periods-p self period-list

resource quant start-time) )
(when (eql result : success)

(multiple-value-setq (result new-time)
(suf ficient-consumables-at -quant -avail ability-change-points
self resource quant start-time)))

(unless (eql result : success)
(when new-time

(setf new-time (step-schedulable-consumable-viewpoint-aux self new-time)))))
(values result (if (eql result : success} start-time new-time))))

(defmethod (•t«p-»ch»dulabl«-con»umabl«-vi«wpoint-«vix >t*p) (start-time)
(let ((result : success))

(multiple-value-setq (result start-time)
(•t«p-*cb*dulabl*-consumable-viawpoint-p
self (get-time-instance-list

•mission* start-time (1- (+ max-duration start-time))
(if last-time-slice

last -time-si ice
(if previous-step

(last-time-slice previous-step)
nil)))

start-time) )
(if (eql result : success) start-time nil)))

(defmethod ( suf f ici en t -consumables -at -quant -avail ability -change-points at*p)
(resource quant start-time)

(let ((result : success) (new-time start-time))
(loop for period in (f ind-resource-availability-change-points resource start-time)

while (eql result : success)
do

(multiple-value-setq (result new-time)
(•uffici*nt-consumable-in-p*riod self period resource quant (end-time period))))

(values result new-time)))

(defmethod (f ind-resource-availability-change-points consumable-resource) (time)
(let ( (result nil)) -

(loop for quant-avail in quantity-availability-list
with last-slice • nil
do

(loop for avail-obj in (available-times-list quant-avail)
do

(when (S time (end avail-obj))
(setf last-slice (get-time-instance 'mission* time last-slice))
(push last-slice r e s u l t ) ) ) )

(when result
(setf result (sort result »'< : key I' end-time) ))

result) )

,-/,- these methods check Che availability of a resource vith respect to a time-slice -
:;; namely the presence or absence of some resource in a time period, or the quantity
::; in which the resource has already been committed.
(defmethod (•uffici«nt-consumable-tn-p»riod«-p *>t*p)

(period-list resource quant start-time)

ORIGINAL
A~69 OF Poof?



ANDY:>brown>nasa-2>scheduler-feasibility-methods-resource.lisp.l5 Page 2

(let ( (resul t :success) (new-time s ta r t - t ime))
(loop for period in period-list

do
(multiple-value-setq (result new-time)

(sufficient-consumable-in-period
self period resource quant s t a r t - t ime) ) )

(values result (if (eql result :success)
(+ max-duration start-t ime)
n e w - t i m e ) ) ) )

(defmethod («ufflci«nt-consumable-in-p«riod «t«p)
(period resource quant start-time)

/ / / t h e start time of the period may be leas that the start time of the step for the
:;; first period, and the end time may be greater than the end time of the step for
/ / / t h e last period

(let ((result :success) (return-time start-time)
(already-committed

(find-quant-consumable-already-committed period resource))
(available-time-obj

(r««ourc«-»v«il«t>la-in-p«riod resource (max start-time (start-time p e r i o d ) ) ) ) )
(cond ( (nul l available-time-obj) /// there is no availability object —

/// implies 0 availability
(setf result :consumable-not-available '

return-time (start-time
(find-earliest-avail able-time-after

resource (1+ (start-time p e r i o d ) ) ) ) ) )
( (and (2 (qty (owner-obj avai lable- t ime-obj))

. (+ quant already-committed)) /// we have enough
(2 (end available-time-obj) (end-time per iod) ) ) / / /we 've looked at

;;;all times
(setf return-time (1+ (end-time p e r i o d ) ) ) )

((2 (qty (owner-obj available-t ime-obj))
(+ quant already-committed)) /;/ we have enough but

/// haven't looked at all times
(multiple-value-setq (result return-time)

(•ufflciant-consumable-in-p«riod
self period resource quant (1* (end ava i lab le - t ime-obj ) ) ) ) )

(t /// there is some available, but not enough
(setf result :consumable-not-available return-time

(rain (1+ (end-time period)) (1+ (end a v a i l a b l e - t i m e - o b j ) ) ) ) ) )
(values result re turn- t ime)) )

(defmethod (£ind-q^i«nt-consumable-«J.r««dy-con«aitt»d tim»-»lic«) (resource)
(let ( (result 0) )

(setf result (gethash resource cumulative-consumable-table))
(unless result (setf result 0))
result))

(defmethod (o;«t-obj*ct-namad n*»«-lnit-obj) (resource-type resource)
(unless (member resource-type ' ( :durable :consumable :non-depletable

:crew : target :at t i tude))
(error "get-object-named invoked on resource-type -S" resource-type))

(loop for obj in (case resource-type
(:durable durable-resource-list )
(:consumable consumable-resource-list)
(:non-depletable non-depletable-resource-list)
(:crew crew-list)
(:target target-list)
(:attitude attitude-list))

do (when (eql (name obj) resource)
(return obj))))

/// methods for determining whether a resource is available from the resource
;;: availability data -- whether these are really need will be determined when 1
;:; finally decide what information will be recorded in each time period.

(defmethod (r«»oure«-«v«ilabl«-in-p«riod» non-dur«bl«-r*«ourc«) (period-list)
(let ((result t))
(loop for period in period-list

do

ORIGINAL PAGE IS
A-70 OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-resource.lisp.l5 Page 3

(unless (resource-available-in-period self (start-time period))
(setf result nil)))

result))

(defmethod (r«»ourc«-»v«il»bl»-in-p»rlod non-dur*bl*-r«aourc«) (time-period)
„•;,• returns an instance of available-time if sucessful
(let ((result nil))
(loop for quantity-availability-object in quantity-availability-list

until result
do

(setf result (available-at-time quantity-availability-object time-period)))
result) )

(defmethod (find-earliest-available-time-after non-dur«bl«-r»«ourc«) (time)
(let ((after-list nil))

(loop for quantity-availability-object in quantity-availability-list
do

(loop for available-time-obj in (available-times-list quantity-availability-object)
do

(when (> (begin available-time-obj) time)
(push available-time-obj after-list))))

(first (setf after-list (sort after-list l'< :key •'begin)))))

ORIGINAL PAGE IS
A-71 OF POOR QUALITY



ANDY:>brown>nasa-2>scheduIer-feasibility-methods-step-leveUisp.34 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

*l I
' (•t«p-*ch*dulabl«-«tarting-bat«ra«n-inclu*iv«-tiB**-p «v«il«bl«-«t-tla>« r«»ourc«-pr«»ont-in-p«riod
r««ourc«-pr*«*nt-in-p«riod*-p-«ux r««ourc«-pr«»«nt-in-p«riod»-p r««ourc«-not-pr«««nt-in-p«riod*-p
•t»p-«ch*dul«fcl«-«ttitud«-vi«wpoint-«ux •tap-«ch*dulobl«->ttitud«-viawpoint-p »t«p-«ch«dul«Jbl«-t«
r9*t-vi*wpoint-«ux «t«p-«ch«dul«l>l«-t«r<j«t-vi«wpoint-p «n«lyx«-tim»«-for-typ«-f»ilur« •tcp-schodul
abl«-»t«rting-«t-tima-aux •t«p-«cb*dul«bl«-«tarting-at-tim«-p )
I II
;;things that still need to be done

;;time~slice storage should be changed from a list to linked objects, or the insert
//new mechanism must be redone

thia section deals with determining whether a step can be scheduled to begin at a
specific time
;the proximity of this step to other steps in the same performance has already
/jbeen checked by schedule-other-steps
; for now,
.-ignore between-step and between experiment constraints
;ignore crew lockin
;ignore crew monitoring
;do check
.•durable resource constraints
;non-depletable resource constraints
.•consumable resource constraints
.•target constraints
.•attitude constraints
/crew availabllty constraints (simplified)

(defmethod («tttp-*ch«dulabl«-«tax-ting-at-tim«-p «t*p)
(start Soptional last-slice tkey (dont-use-current-crew nil))

///when successful, returns the ending plus one on the step : otherwise, returns the
;;;first time after the starting time that the step can be scheduled at
(let ( (result nil))

(cond
((> (+ start (1- min-duration)) (max-time (init-obj 'mission*)))
(setf result :exceeds-mission-duration start nil))

(t
(let* ((sch-pers

(get-time-instance-list
•mission* start (1- (+ max-duration start))
(if last-slice last-slice

(if previous-step (last-time-slice previous-step) nil))))
(delay-pers

(if (or (null resource-carry-thru Mzerop step-delay-nun))
nil
(get-time-instance-list
•mission* (» max-duration start)
(1- (+ max-duration start step-delay-min)))

(if sch-pers (first (last sch-pers)) nil)))
consum-p non-dep-p dur-p tgt-p att-p crew-p tgt-time consum-time non-dep-time
dur-time att-time crew-time (poss-lst nil))

(multiple-value-setq (consum-p consum-time)
(step-schedulable-con»um»bl«-viewpoint-p self sch-pers start))

(multiple-value-setq (non-dep-p non-dep-time)
(3tep-3chedulable-non-d«pl«t«bl«-viewpoint-p self sch-pers delay-pers start))

(multiple-value-setq (dur-p dur-time)
(step-schedulable-dur«bl«-viewpoint-p self sch-pers delay-pers start))

(multiple-value-setq (tgt-p tgt-time)
(step-schedulable-t«r7«t-viewpoint-p self sch-pers start))

(multiple-value-setq (att-p att-time)
(step-schedulable-«ttitud«-viewpoint-p self sch-pers start))

(multiple-value-setq (crew-p crew-time)
(step-schedulable-cr«w-viewpoint-p
self sch-pers start :dont-use-current-crew dont-use-current-crew))

(cond ((and (eql :success consum-p) (eql :success non-dep-p) (eql :success dur-p)
(eql :success tgt-p) (eql : success att-p) (eql :success crew-p))

(setf scheduled-start-time start result :success
scheduled-end-time (1- (+ start max-duration)))

"•'-*'_ PAGE IS
A-72 fy .̂ ;< QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-step-level.lisp.34 Page 2

(setf start (+ max-duration start step-delay-min)
last-slice
(if delay-pers (first (last delay-pers) ) (first (last sch-pers) ) ) ) )

((and (eql .-success consum-p) (eql : success non-dep-p) (eql : success dur-p)
(eql : success tgt-p) (eql : success att-p) (eql : lock-crew-failure crew-p) )

(setf result (list : lock-crew-failure crew-locfcin) ) )
((and (eql .'success consum-p) (eql : success non-dep-p) (eql .'success dur-p)

(eql : success tgt-p) (eql : success att-p)
(eql :all-combinations-failed crew-p))

(setf result :all-combinations-f ailed start
(f ind-firat-time-crew-scheduable-after self start)))

((and consum-time non-dep-time dur-time tgt-time att-time crew-time)
(unless (eql : success consum-p) (push consum-time poss-lst))
(unless (eql : success non-dep-p) (push non-dep-time poss-lst) )
(unless {eql : success dur-p) (push dur-time poss-lst))
(unless (eql : success tgt-p) (push tgt-time poss-lst))
(unless (eql : success att-p) (push att-time poss-lst))
(unless (eql : success crew-p) (push crew-time poss-lst))
(multiple-value-setq (result start)
(•t«p-*ch«dulabl«-atartlno;-at-tijne-aux self (apply I 'max poss-lst))))

(t (setf start nil result
( anal y ze- times- for-type- failure
self consum-time non-dep-time dur-time tgt-time att-time
crew-time) ))))))

(values result start)))

(defmethod (•t«p-»ch»dul«bl«-«t*rtino;-«t-tim«-«ux atap) (start-time)
(let ( (result nil))

(loop until (or (eql result : success)
(null start-time)
(> (1- (+ start-time max-duration)) (max-time (init-obj 'mission*))))

do
(multiple-value-setq (result start-time)

(step-schedulable-starting-at-time-p self start-time)))
(values nil (if (eql result : success) scheduled-start-time nil))))

(defmethod («««lyx«-tln»«-£or-typ«-f«ilur« «t«p)
(consumable-time non-depletable-time durable-time target-time attitude-time

crew-time)
(let ((result n i l ) )
(cond-every ((null consumable-time) (push :consumable-not-available result))

((null non-depletable-time) (push : non-depletable-not-available result))
((null durable-time) (push :durable~not-available result))
((null target-time) (push : target-not-available result))
((null attitude-time) (push :attitude-not-available result))
((null crew-time) (push :crew-not -available result)))

result))

(defmethod (•t*p-«cbodulabl«-attituda-vi«wpoint-p *t«p) (period-list start-time)
(let ((result : success))
(loop for attitude in attitude-list

until (not (eql result : success))
do

(multiple-value-setq (result start-time)
(resource-present-in-periods-p self period-list :attitude attitude start-time))

(unless (eql result : success)
(when start-time

(setf start-time
(»t»p-sch«dul«bl«-»ttitud»-vl«wpoint-aux
self :attitude attitude start-time))))) '

(values result start-time) ) )

(defmethod (»t«p-»ch«dul«bl«-«ttitud«-vi«wpoint-«ux *t«p) (resource-type resource start-time)
(let ( (result nil))

(loop until (or (eql result isuccess)
(> (1- (* start-time max-duration)) (max-time (init-obj "mission*))))

do
(multiple-value-setq (result start-time)
(•t«p-»cb«dul»bl«-«ttitud«-vi«wpoint-p
self
(get -time-instance-list

PAGE !S
OF POOR QUALITY

A-73



ANDY:>brown>nasa-2>scheduler-feasibiIity-methods-step-Ievel.lisp.34 Page 4

:dont-use-current-crew dont-uso-current-crew) )
(cond ((and (eql result : success)

(S first-start-time scheduled-start-time last-start-time))
;;; Che step can be scheduled at the start time
(setf new-time scheduled-start-time) )

((eql result : success)
;;: this shouldn't happen
(error "-% •t*p->cb*dul«bl«-*t*rting-b«tw*«n-inclu*iv*-tiiDS>-p got a value of :s

uccess back, but the time was not within limits"))
((and (listp result) (eql (first result) : lock-crew-failure )) nil)
((null new-time)
,-;/ we can't find a time to schedule the step
nil)
( (S first-start-time new-time last-start-time)
,•/,• ve can't schedule at the start time, but some other acceptable time
;;; was found
(setf result : success)
(setf new-time scheduled-start-time))

(t ;;; we found a time, but it is not acceptable — return nil result and
;;; new-time
nil) )))

(values result new-time) ) )

PRECEDING PAGE BLANK NOT FILMED



ANDY:>brown>nasa-2>scheduler-feasibility-methods-targets.lisp.3 7/11789 Page 1

;.. _«_ Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -*-

(defmethod (step-schedulable-target-viewpoint-p step) (period-list start-time)
(let I(result :success) (new-time start-time))
(cond ((null target-list) nil)

(t (multiple-value-setq (result new-time)
(step-schedulable-target-intersect-p self period-list start-time))

(unless (eql result : success)
(multiple-value-setq (result new-time)

(step-schedulable-target-avoid-p self period-list start-time))
(unless (eql result :success)
(multiple-value-setq (result new-time)

(step-schedulable-target-select-p self period-list start-time)))
(when new-time

(setf new-time
(atep-schedulable-target-viewpoint-aux self period-list new-time))))))

(values result new-time)))

(defmethod (»t«p-»ch«dul«bl«-t«rg,»t-vi«vpoint-«ux »tap) (resource-type resource start-time)
(let ((result nil))
(loop until (or (eql result : success)

(> (1- <» start-time max-duration)) (max-time (init-obj 'mission"))))
do

(multiple-value-setq (result start-time)
(«t«p-«chadul«bl«-t argot-vi«vpoint-p
self
(get-time-instance-list
•mission* start-time (1- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(if previous-step

(last-time-slice previous-step)
nil)))

resource-type resource start-time
)))

(if (eql result :success) start-time nil)))

(defmethod («t«p-«ch«dul«bla-t«rg«t-intersect-p »t»p) (period-list start-time)
(let ((result :success) (new-time start-time))
(loop for.(designator target-sublist) in target-list

until (not (eql result :success))
do

(cond ((eql designator :intersect)
(loop for target in target-sublist

until (not (eql result :success))
do

(multiple-value-setq (result new-time)
(resource-present-in-periods-p self period-list :target target start-time))

(unless (eql result :success)
(setf result :intercept-target-failure))))

.(t nil) ))
(values result new-time)))

(defmethod (»t«p-»ch»dul«bl«-t»rg«t-avoid-p »t«p) (period-list start-time)
(let ((result :success) (new-time start-time))
(loop for (designator target-sublist) in target-list

until (not (eql result :success))
do

(cond ((eql designator :avoid)
(loop for target in target-sublist

until (not (eql result :success))
do

(multiple-value-setq (result new-time)
(target-not-present-in-periods-p self period-list target start-time))

(unless (eql result :success)
(setf result :intercept-target-failure))))

(t nil)))
(values result new-time)))

(defmethod (target-not-pr«»«nt-in-p»riod«-p «t«p) (period-list target start-time)
(let ((result -.success))

(loop for period in period-list

A-76 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-methods-targetsJispJ 7/11/89 Page 2

do
(cond ((r«*ourc«-pr««ant-in-p«riod period period :target target)

(setf start-time (1 + (end-time period)) result :aviod-target-failure))
(t nil)))

(values result start-time)))

(defmethod (step-schedulable-target-select-p step) (period-list start-time)
(let ((result :init-value) (new-time start-time))
(loop for (designator target-sublist) in target-list

until (member result '(:success :select-target-failure))
do

(cond ((eql designator :select)
(setf result :select-target-failure)
(loop for target in target-sublist

until (eql result :success)
do

(multiple-value-setq (result new-time)
(r«»ourc«-pr«««nt-in-p«riod«-p
self period-list :target target start-time))))

(t nil)))
(unless (eql result :success)
(setf result iselect-target-failure start-time new-time))

(values result start-time)))

ORIGINAL PAGE IS
A~77 OF POOR QUALITY



ANDY:>brown>nasa-2>scheduIer-feasibility-pre-and-post-step.lisp.5 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -«-

*l I
' (ch«ck-for-coiqpl«tion-within-p«rformAnc»-wlndow ch«ck-for-mln-d«l«y-b«tw««n-p«rformanc«-viol«tion
chock-for-compl«tion-within-p«rform»nca-dur«tion •tart-tima-not-within-p«rformanc«-window »t«rt-t
lma-violat««-parformanca«-p«r-«indow-r*«trictlon max-parformancac-violatlon-p «t«rt-tim«-i«-within
-th«->ch*dul*d-tlBW-of-«om«-oth«r-parfonuuic«-p ok-to-«ch«dul*-p«rforo*nc«-»tmrting-«t-«t»rting-ti
toa-p )
I I *

,-,-,• pie step scheduling constraint checkers
(defmethod (ok-to-»cb»dul«-p«rfonn«nc«-»t»rting-«t-«t«rting-tiio«-p •xparimant) (start-time (rest i
gnore)

(cond ((max-performances-violation-p self)
(values maximum-performances-violation nil))

((start-time-is-witbin-the-scheduled-time-of-some-other-performance-p
self start-time)

(values :overlap nil))
((start-time-not-within-performance-window self start-time)
(values :start-time-not-within-performance-window nil))

((start-time-violates-performances-per-window-restriction self start-time)
(values :performances-per-window-violation nil))

(t (values t nil))))

(defmethod («t«xt-tlin«-i«-withJ.n-th«-sch«dul»d-tim«-of-oom«-oth«r-porformanc«-p •xparimant)
(starting-time)

(when performance-list :
(loop for performance in performance-list

for adjusted-end-time « (find-start-time-without-startup-ateps performance)
for adjusted-start-time - (find-end-time-without-shutdown-steps performance)
do

(cond ((null (scheduled-p performance))
;;; if the performance has not been scheduled, don't worry about it
nil)
((< starting-time (- adjusted-start-time min-p«rformAnc«-d»l«y-tim») )
;;;clearly, not a violation
nil)
((S starting-time adjusted-start-time)
,•// the starting-time is before the core of the other steps, but not at
/,-,• least the minimum delay time before

(return t))
((< ( + adjusted-end-time min-p«rformanca-dal. -tin*) starting-time)
/.•„• clearly, not a violation
nil)
((< adjusted-end-time starting-time)
;,•/ the starting-time is after the core of the other steps, but not at
;;; least the minimum delay time after
(return t))
( (£ adjusted-start-time starting-time adjusted-end-time)
//,• the new performance is to start during the core steps of the other
;;; performance
(return t)) )))

/// any violation causes an immediate return; hence, if we get here, there is not
;;; violation
nil)

(defmethod (toax-p«rform«nc«»-viol«tion-p •xporimont) ()
(>
(loop for performance in performance-list

with count - 1
do

(when (scheduled-p performance)
(incf count))
finally (return count))

max-performances))

(defmethod (•tart-tia*-violat**-p*rformAnc«(-por-windov-r««triction *xp«rimnt) (starting-time)
(loop for (start end allowed-performances) in performance-windows

with count ° 1 ;;;the performance we are tying to schedule
for start-period = start
for end-period = end
do

A. 78 ORIGINAL PAGE !S
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-feasibility-pre-and-post-step.lisp.5 Page 2

(when (S start-period starting-time end-period)
(loop for performance in performance-list

do
(when (and (scheduled-p performance)

(S start-period (scheduled-start-time performance) end-period))
(incf count)))

(return (> count allowed-performances)))))

(defmethod (»tax-t-tlma-not-within-p«rform»nc«-window experiment) (starting-time)
(let ((result nil))
(loop for (start end performances) in performance-windows

//,• this loop finds if the performance is in a window - result must be
;;; "not-ed" before being returned
until result
do

(when (£ start starting-time end)
(setf result t)))

(not result)))

,•/,• post step feasibility constraint checks

(defmethod (ch«ck-for-compl«tion-within-parformanca-duration performance) (ok new-time)
(if (null new-time)

(values "check-for-complation-within-parformanca-duration called with null new-time"
new-time)

(if (£ (- scheduled-end-time scheduled-start-time)
(performance-time-window owning-experiment))

(values ok new-time)
(values :not-completed-within-performance-duration nil))))

(defmethod (chack-for-min-d«l»y-b«twaan-p«rform«nce-viol«tion performance) (ok new-time)
(if (null new-time)

(values "check-for-min-dalay-between-performance-viol»tlon called with null new-time"
new-time)

(loop for performance in (performance-list owning-experiment)
with adjusted-start-time = nil
do

(when (and (scheduled-p performance)
(< (scheduled-start-time performance)

(+ scheduled-end-time
(mic-performance-delay-time owning-experiment) )) )

(if (execute-start-up-steps-p performance)
(progn
;;;if the performance has start-up steps, then these steps will have to
;;;be re-scheduled, and that must be taken into consideration when
;;;checking for the delay between performances
(setf adjusted-start-time (find-start-time-without-startup-steps performance))
(when (< adjusted-start-time

( + scheduled-end-time
(rain-performance-delay-time owning-experiment)))

(return (values :min-between-performance-delay-violation performance))))
(return (values :min-between-performance-delay-violation performance)))))

(values ok new-time)))

(defmethod (eheck-for-completion-within-perCormance-wiodow performance) (ok new-time)
(when (null scheduled-end-time)

(error "d»eck-for-completion-within-pe.rformance-window called with null scheduled end time"
))

(loop with done = nil until (eql done :done)
for (start end performances) in (performance-windows owning-experiment)
do

(cond ((and (S start scheduled-start-time end)
(< end scheduled-end-time))

(setf done :almost-done new-time nil
ok (list :not-completed-within-perfornvance-window (list start end))))

((eql done :almost-done)
(setf new-time start done :done))

(t nil)))
(values ok new-time))

ORIGINAL PAGE IS
OF POOR QUALITY

A-79



ANDY:>brown>nasa-2>schedu!er-methods.lisp.76 7/13/89 15:36:56 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

I I I
' (update-cunulative-conauinablea add-tima-alice-to-liat add-new-inatance-to-timoj-alice-liat achedul
e-event achedule-atep-crev-meobera achedule-atep-cumulative-conaunablea achedule-atep-conaumable-r
eaourcea achedule-atep-non-deplet«ble-reaourcea achedule-»tep-durable-reeourcea achedule-»tep ache
dule-pextoxmanc* record-perfonaance-and-atep-tiaea find-unacheduled-performancej achedule-n-perform
ance«-of ~experlment-beginnino; te«t-acheduler

re«ource-available-in-period re»ource-avail«ble-in-perioda get-object-named find-marl miim-re»ource-
availabl* f ind-<iuant-re»ource-alr«»dy-coinmitted «ufficient-re«ource-in-period-aux aufficlent-reiou
re«-in-p*riod »ufficl«nt-r«»ouro»-in-p«riod»-p •t«p-«ch«dul«bl«-durabl«-vi«vpoint-p ftnd-«arli««t-
•t«p-»ch«dul*bl»-«£t«r-tlm« •t«p-*ch«dulabl«-durmbl*-vi«wpoint-«ux «tap-«cb«dul«bl«-non-d«pl«tabla
-vi«wpoint-«ux •t«p-«cb«dul«bl«-non-d«pl«t»bl«-vi«wpoint-p »t«p-»cii»dul«i>l«-con«um«t>l«-viewpoint-«
ux »t«p-»ch«dul«i)l«-con«umaJble-vi«wpoint-p

check-for-compl«tlon-within-p«rformanc«-window check-for-mln-del«y-b«twe«n-p«rformanc«-viol«tion e
heck-for-cotnpletion-within-performance-duration »taart-tia>e-not-within-performanc«-window •taxt-tim
e-violat«»-p«rformance»-per-window-reatriction max-performancea-violation-p »tart-tin>e-i»-within-t
he-»cheduled-time-o£-«oina-other-performance-p ok-to-»chedule-performance-starting-at-starting-time
-P

BACKTRACK SCHEDULE-OTBER-STEPS

find-tima-crew-available-after cr«w-av«ilable-in-time-perioda-aux-2 er*w-avallabl*-in-tio*-period>
-aux crew-availaJble-in-ti«e-period»-p crew-not-preaent-in-time-p«riod«-p crew-not-pre«ant-in-tljne-
p«rioda-aux find-earlie«t-time-crew-conibination-available cr»w-combination-«vailable-in-perioda-au
x crew-coobination-available-in-perioda-p •tep-«chedulable-crew-viewpoint-aux •tep->cbedulable-cre
w-viewpoint-p

•tep-*chedulable-«tax-ting-between-ineluaiv«-tinwi-p available-at-tiae reaource-pre»ent-in-p«riod r
e«ource-pr*«ent-in-perioda-p-aux resourc«-preaent-in-perioda-p reaouroe-not-pr«»ent-in-period«-p •
tep-«ch«dul able-attitude-viewpoint-aux atep-»chedulai>le-«ttitude-viewpoint-p •tap-achedulable-targ
et-viewpoint-aux atep-achedulable-target-viewpoint-p analyie-timaa-for-type-failure step-achedulab
le-atarting-at-time-aux atep-achedulable-atarting-at-time-p

find-end~timaj-without-ahutdown-atepa find-ataft-tino-without-atartup-atepa find-earlieat-achedulab
le-tiae-after »tairtup-or-»hutdown-atepa-reqruired-p between-experiment-conatainta get-time-inatance
-liat get-tinej-inatanc* get-linked-object update-other-obJect link-atepa copy-atep find-atep-numbe
red remove-atepa generate-required-atepa copy-atep-11at calc-thia-atep-lateat-atart-time calc-thia
-•tep-earlleat-atart-time calc-next-atep-lateat-atart-tiae calc-nejtt-atep-«arlieat-atmirt-tin>e bull
d-liat-fro«n-linked-atructure get-firat-ahutdown-atep get-laat-'atartup-atep join-ahutdown-atepa joi
n-atartup-atepa p«rfonnajice-achedulablej-aa-atarting-time-p-aux-2 performanoei-achadulable-at-atafti
ng-time-p-aux find-first-time-no-overlap find-new-perforr.ance-window performance-achedulable-»t-«t
arting-time-p )
I I *

(defmethod (teat-acheduler-al1 mitalon) ()
(let ((the-list •(ACOUSTIC EPITAXY ALLOY-S BRIDGMAN HIGHTEMP MEMBRANE SOL-CRYS VAP-CRYS TRAIN-1)

)
///ACOUSTIC EPITAXY ALLOY-S BRIDGMAN HIGHTEMP MEMBRANE

///SOL-CRYS VAP-CRYS TRAIN-1
(result nil)) /CONTFLOW HW-MAINT WM-MAINT

(build-initial-time self)
(push (loop for key in the-list

for value - (gethaah key experiment-table)
collect

(list value (list time-slice-holder key)
(schedule-.-.-per formances-of-experirr*nt-beginning
value (round (max-performances value) 4) 0)))

result)
(format t "-% result « -S'res-jlt)
(push (loop for key in the-list

for value = (gethash key experiment-table)
collect

(list value (list time-slice-holder key)
(schedule-.", -performances-of -experiment -beginning
value (- (max-performances value)

(round (max-performances value) 4)) 0)1)
result)

(schedule-desired-crew-monitering self)
result))

ORIGSNAL PAGE IS
OF POOR

A-80



ANDY:>brown>nasa-2>scheduIer-methods.lisp.76 7/13/89 15:36:56 Page 2

(defmethod (test-scheduler mission) (experiment-list num-of-perf-each)
(let ((result nil))
(loop for exp in experiment-list

for instance = (gethash exp experiment-table)
do

(push (list instance (list time-slice-holder exp)
(schedule-n-performances-of-experiment-beginning
instance num-of-perf-each 0))

result))
result))

(defmethod (schedule-desired-crew-monitoring mission) ()
(maphash ^' (lambda (exp instance)

exp
(schedule-desired-crew-monitoring instance))

experiment-table))

(defmethod (schedule-desired-crew-monitoring experiment) ()
(when desired-monitor-steps
(loop for performance in performance-list

do
(when (scheduled-p performance)
(schedule-desired-crew-monitoring performance)))))

(defmethod (schedule-desired-crew-monitoring performance) ()
(loop for step in (desired-monitor-steps owning-experiment)

for performance-step « (find-step-named self (name step))
do

(•cfa«dul*-faa*ibl«-craw-monitor performance-step)))

(defmethod (t«»t-»ch«duler-2 mi»»ion) (the-list)
(build-initial-time self)

(loop for name in the-list
for value - (gethash name experiment-table)
for dummy = (setf (performance-list value) nil)
for count from 1
/until (> count 3)

collect
(list value (list time-slice-holder name)

(schedule-n-performances-of-experiment-beginning value 1 0))
do

dummy
(build-initial-time self)))

(defmethod («ch«dul«-n-p«rfonn»nc«»-of-«xp«rlin«nt-beginning %xp«rim*nt)
(number-of-perf beginning-time)

(setf •ch«dul«-*hutdown-with-p«rformane« nil)
(let ((new-time nil) (result (list :success number-of-perf))

(test nil) (scenario-number nil) (last-performance nil))
(unless (eql name 'dummy-value)
(loop for i from 1 to number-of-perf

until (not (eql (first result) :success))
for next-performance = {find-unscheduled-performance self)
do

(unless next-performance
(setf next-performance (make-instance 'performance :owning-experiment self

:number (1+ (length performance-list)))))
(when (• i number-of-perf)
(setf •ch«dul*-«hutdovn-with-perfonn«nc« t»

(loop with done *• nil until done
do

(multiple-value-setq (test new-time scenario-number)
(p«rfonBanc*-*chadul«bl«—•t-*tarting-tiM-p
next-performance beginning-time scenario-number
(if last-performance last-performance

(find-performance-preceeding self beginning-time))))
(cond ((eql test :success)

(schedule-performance next-performance 'priority)
(setf (scheduled-p next-performance) t)
(setf beginning-time

(+ min-p«rformanc«-d«lay-tiJD* (scheduled-end-time next-performance)))
(setf done t)
(push next-performance performance-list)

A-81 ORIGINAL PAGE 58
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 3

(setf last-performance next-performance))
(new-time (setf beginning-time new-time))
( (nu l l new-time)
(setf done t result (l ist test i ) ) ) ) ) »

resul t ) )

(defmethod (find-performance-preceedLino; experiment) (t ime)
(let ((result n i l ) )

(cond ((nul l performance-list) nil)
(t (loop for performance in performance-list

do
(when (scheduled-p performance)

(cond ((> (scheduled-start-time performance) time) nil)
((nul l result)
(setf result performance))

( (> (scheduled-start-time performance) (scheduled-start-time resul t ) )
(setf result performance))

( t n i l ) ) ) ) ) )
result))

(defmethod (find-«tajrt-tima-for-earliest-start-scenario experiment) (new-times-list)
(let ((selected-time nil) (scenario-number n i l ) )

(if (every »' (lambda (x)
(null (second x)))

new-times-list)
(setf scenario-number new-times-list)
(loop for (result new-time scenario-num) in new-times-list

do
(cond ((or (and new-time (null selected-time))

(and selected-time new-time (< new-time selected-time)))
(setf selected-time new-time)
(setf scenario-number scenario-num))
((and selected-time new-time ( = new-time selected-time)

(< scenario-num scenario-number))
(setf scenario-number scenario-num))

(t nil))))
(values selected-time scenario-number)))

(defmethod (find-unscheduled-performance experiment) ()
(loop for instance in performance-list

do
(unless (scheduled-p instance)
(return instance))))

(defmethod (record-perform*nce-and-«tep-tlme« performance) ()
(setf scheduled-p t

scheduled-start-time (scheduled-start-time (first step-list)))
•(setf scheduled-end-time

(scheduled-end-time (first (last step-list)))))

(defmethod (schedule-performance performance) (monitor-level)
(let ((last-step

(loop for step in step-list
do

(schedule-step step monitor-level)
finally (return s t e p ) ) ) )

(setf last-time-slice (last-time-slice last-step))
(when (cumulative-consumable-list last-step)

(update-cumulative-consumables
(get-time-instance •mission* (1+ (scheduled-end-time last-step))

(last-time-slice last-step))
(cumulative-consumable-list last-step)

/.•„• high level step scheduling
(defmethod (schedule-step step) (monitor-level)

(let ((time-slice n i l ) )
(setf last-time-slice

(setf time-slice
(schedule-step-durable-resources s e l f ) ) )

(setf time-slice
(schedule-step-non-depletable-resources s e l f ) )

(when (and time-slice (not (eql last-time-slice t ime-sl ice))) rtOir'S'M&L PAGE IS

OF POOR QUALITY

A-82



ANDY:>brown>nasa-2>scheduIer-methods.lisp.76 7/13/89 15:36:56 Page 4

(setf last-time-slice time-slice))
(setf time-slice

(schedule-step-crew-mer-Jbers self monitor-level))
(when (and time-slice (not (eql last-time-slice time-slice)))
(setf last-time-slice time-slice))

(setf time-slice
(schedule-step-eon*umabl«-resources self) )

(when (and time-slice (not (eql last-time-slice time-slice)))
(setf last-time-alice time-slice))

(schedule-step-cuinul«tlv«-consumables self)
(when (between-experiment-constaints self)
(update-other-object (get-linked-object 'mission* self)))))

(defmethod (»ch«dul«-»t«p-dur«bl«-r«»ourc«» «t*p) ()
(loop for (resource quant) in durable-resource-list

with time-slice •
(get-time-instance 'mission* scheduled-start-time

(if previous-step (last-time-slice previous-step) nil))
do

(setf time-slice
(schedule-event
•mission*
(list resource quant self)
'durable-resource-list scheduled-start-time
(if (and (not (zerop step-delay-min)) resource-carry-thru)

(+ scheduled-end-time step-delay-min)
scheduled-end-time)

time-slice))
finally (return time-slice)))

(defmethod (»ch«dul«-»t«p-non-depl«t«bl«-ro«ourc«a «t«p) ()
(loop for (resource quant tolerance) in non-depletable-resource-list

with time-slice « (get-time-instance 'mission* scheduled-start-time last-time-slice)
do

(setf time-slice (schedule-event
•mission*
(list resource quant tolerance self)
'non-depletable-reaource-list scheduled-start-time
(if (and (not (zerop step-delay-min)) resource-carry-thru)

(+ scheduled-end-time step-delay-min)
scheduled-end-time) time-slice))

finally (return time-slice)))

(defmethod (»ch«dul«-«t«p-conruiiuLbl«-r««ourc«« step) ()
(loop for (resource quant) in consumable-resource-list

with time-slice = (get-time-instance 'mission* scheduled-start-time last-time-slice)
do

(setf time-slice
(schedule-event

•mission*
(list resource quant self)
•consumable-resource-list scheduled-start-time scheduled-end-time time-slice))

finally (return time-slice)))

(defmethod (•cb*dul*-*tap-cuniulativ*-conauin&bl** *t*p) ()
(let ((time-slice-list

(get-time-instance-list
'mission* scheduled-start-time scheduled-end-time

last-time-si i c e ) ) )
(loop for (resource quant) in cumulative-consumable-list

do
(loop for time-slice in time-slice-list

for exisiting-quant = (gethash resource
(cumulative-consumable-table time-slice))

do

(setf (gethash resource (cumulative-consumable-table time-slice))
(if exisiting-quant

(+ exisiting-quant quant)
q u a n t ) ) ) ) ) )

(defmethod (>cb«diil*-«t«p-cr«v-o*ab«r* »t«p) (monitor-level)
(let ((result last-time-slice))

ORIGINAL PAGE IS
A-83 OF poOR QUALITY



ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 5

(cond ( (null crew-monitor)
(loop for crew-member in scheduled-c.ew-list

with time-slice =
(get-time-instance 'mission* scheduled-start-time last-time-slice)

do
(setf time-slice (schedule-event

•mission*
(list crew-member self)
'crew-list scheduled-start-time scheduled-end-time
time-slice))

finally (setf result time-slice))
)
((eql crew-monitor monitor-level)
(setf result (schedule-feasible-crew-monitor self)))

(t nil))
result)>

(defmethod (print-time-slices time-slice) ()
(format t --% -S"self)
(when next-slice

(print-time-slices next-slice)))

(defmethod («ch«dula-«v«nt miiaion) (event slot begin end (optional desired-time-slice)
cases which must be handled:
the time slice starts and ends at the same time as the event
the time slice starts at the same time as the event but ends after the event
the time slice starts at the same time as the event but ends before the event
the time slice starts before the event but ends at the same time as the event
the time slice starts before the event starts and ends before the event ends
the time slice starts before the event and ends after the event
how»v»r; the time slice cannot start after the event, or get-time-instance has
a bug

(unless (and desired-time-slice
(S (start-time desired-time-slice) begin (end-time desired-time-slice)))

(setf desired-time-slice (get-time-instance self begin)))
(let ((new-instance nil))

(cond ((and (- begin (start-time desired-time-slice))
(= end (end-time desired-time-slice)))

(push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
((and (= begin (start lime desired-time-slice))

(< end (end-time desired-time-slice)))
tit time slice too long - create a new one after to old one
(add-time-3lice-«ft«r-thi3-one desired-time-slice end)
(push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
((and (= begin (start-time desired-time-slice))

(> end (end-time desired-time-slice)))
;;;time slice too short - add events to this one and the next one
(push event (symbol-value-in-instance desired-time-slice slot))
(schedule-event self event slot (1+ (end-time desired-time-slice)) end

(next-slice desired-time-slice))
desired-time-slice)

((and (> begin (start-time desired-time-slice)I
(- end (end-time desired-time-slice)))

;;;tlme slice begins too soon - add a new one as the previous
(setf new-instance

(add-time-slice-b«£or«-this-one desired-time-slice begin))
(push event

(symbol-value-in-instance desired-time-slice slot))
new-instance)
((and (> begin (start-time desired-time-slice))

« end (end-time desired-time-slice)))
;;;too long in both directions
(add-time-slice-b«for«-this-one desired-time-slice begin)
(add-time-slice-«ft«r-this-one desired-time-slice end)
(push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
((and (> begin (start-time desired-time-slice))

(> end (end-time desired-time-slice)))
(add-time-slice-b«for«-this-one desired-time-slice begin)
(push event (symbol-value-in-instance desired-time-slice s lo t ) )

A"84 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>scheduler-methods.Hsp.76 7/13/89 15:36:56 Page 6

(schedule-event self event slot (1+ (end-time desired-time-slice)) end
(next-slice desired-time-slice) ) )

(defmethod («dd-tiraa-«lic«-b«for«-thi«-on« timo-«lico) (begin)
(let ({new-slice (copy-self self)))
(satf (end-time new-slice) (1- begin)

start-time begin)
(if prav-slice

(setf (next-slice prev-slice) new-slice)
(setf (time-slice-holder 'mission*) new-slice))

(setf (prev-slice new-slice) prev-slice)
(setf (next-slice new-slice) self)
(setf prev-slice new-slice)
(setf (consumable-resource-list new-slice) consumable-resource-list)
(maphash t ' ( 1 ambda . ( key value)

(setf (gethash key (cumulative-consumable-table new-slice)) value))
cumulative-consumable-table)

(setf consumable-resource-list nil)
self))

(defmethod («dd-tima-»lic«-«ft»r-thi»-on« tima-alica) (end)
(let ((new-slice (copy-self self)))

(setf (start-time new-slice) (1+ end)
end-time end)

(when next-slice
(setf (prev-slice next-slice) new-slice) )

(setf (next-slice new-slice) next-slice)
(setf (prev-slice new-slice) self)
(setf next-slice new-slice)
(setf (consumable-resource-list new-slice) nil)
(maphash *• (lambda (key value)

(setf (gethash key (cumulative-consumable-table new-slice)) value))
cumulative-consumable-table)

self))

III
,•/; no longer used ?
(defmethod («dd-n«w-in«t«nc«-to-tiina-»lic«-li»t mi«»ion) (new-instance)
(setf time-slice-list (add-time-slice-to-list self new-instance time-slice-list)))

(defmethod («dd-tiroo-«lic«-to-li»t mi««ion) (new-instance slice-list)
(cond ((null slice-list)

;;;last element
(neons new-instance) )
( (< (start-time new-instance) (start-time (first slice-list)))
(cons new-instance slice-list))

(t
(cons (first slice-list)

(add-time-slice-to-list self new-instance (cdr slice-list ))))))
l i t

(defmethod (upd*t«-cvunul«tlv»-con«um»bl«« titn»-»lic«) (cum-consum-list)
(loop for (resource quant) in cum-consum-list

do
(setf (gethash resource cumulative-consumable-table)

(if (gethash resource cumulative-consumable-table)
(•*• (gethash resource cumulative-consumable-table) quant)
quant) ) )

(unless (null next-slice)
(update-cumulative-consumables next-slice cum-consum-list)))

,-.•/ schedule crew monitor time
(defmethod (•cb«dul«-f»««ibl«-cr«w-monitor «t*p) ()

(let ((time-list (generate-list-of-monitor-times self )) (result last-time-slice))
(loop for (start end) in time-list

for selected-combination « nil
do

(loop until selected-combination
for combination in crew-combinations
do

ORIGINAL PAGE IS
A-85 op POOR QUALITY



ANDY:>brown>nasa-2>scheduIer-methods.Iisp.76 7/13/89 15:36:56 Page 7

(when (crew-combination-available-for-monitor self combination start end)
(aett selected-combination combination)
(setf result (schedule-crew-monitor self combination start end))))

(unless selected-combination
(loop until selected-combination

for early-shift from 1 to crew-early-shift
for shift-start « (- start early-shift)
for shift-end - (- end early-shift)
do

(loop until selected-combination
for combination in crew-combinations
do

(when (crew-combination-available-for-monitor
self combination shift-start shift-end)

(setf selected-combination combination)
(setf result (schedule-crew-monitor self combination shift-start shift-end))))))

(unless selected-combination
(loop until selected-combination

for late-shift from 1 to crew-late-shift
for shift-start = (+ start late-shift)
for shift-end «= (+ end late-shift)
do

(loop until selected-combination
for combination in crew-combinations
do

(when (crew-combination-available-for-monitor
self combination shift-start shift-end)

(setf selected-combination combination)
(setf result (schedule-crew-monitor self combination shift-start shift-end)))!)))

result))

(defmethod («cb«dul«-cr«w-monitor st«p) (combination shift-start shift-end)
(let ( (result nil))

(push (list combination shift-start shift-end) scheduled-crew-list)
(loop for crew-member in combination

with time-slice =
(get-time-instance "mission* scheduled-start-time last-time-slice)

do
(setf time-slice (schedule-event

'mission*
(list crew-member self)
•crew-list shift-start shift-end
time-slice))

finally (setf result time-slice))
result))

(defmethod (cr«w-combination-«v«il«bl«-for-monitor atap) (combination start end)
(let ((result :success) (other-time nil))

(loop while (eql result :success )
with period-list - (get-time-instance-list

•mission* start end
(if last-time-slice last-time-slice

(if previous-step (last-time-slice previous-step) nil)))
for crew in combination
do

(multiple-value-setq (result other-time)
(er*tw-«vailaJbl«-in-tioa-p«rlod*-p crew start (1+ (- end start))))

(when (eql result :success)
(multiple-value-setq (result other-time)
(er«v-not-pr«s*nt-in-tima-p«riod*-p
self period-list crew start))))

(if (eql result :success ) result nil)))

(defmethod (gan«rat«-li»t-of-inonitor-tijn»» «top) ()
(reverse
(loop for time from (+ scheduled-start-time crew-cycle)

to scheduled-end-time by crew-cycle
for monitor-start • (- time crew-duration)
for monitor-end = (1- time)
collect (list monitor-start monitor-end))))

A-86
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>screen-manager-methods.lisp.ll 4/11/89 19:39:36 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(def method (*«tup-«tr«amj na*ft-«cr««n-manag*r) (dw:'program-frame* )
(setf program-framework dw: 'program- frame*)
(setf (gethash 'error stream-table) (dw::get-program-pane 'error-DISPLAY)

(gethash 'general stream-table) (dw::get-program-pane 'general-DISrlAY)
(gethaah ' exp-describer stream-table) (dw: :get-program-pane ' experi.TKnt-describer)
(gethash 'op-mode stream-table) (dw: :get-program-pane 'CURRENT-OP-^DE-DISPLAY)
(gethash 'performances stream-table) (dw: : get-program-pane ' perf orrvsnces-DISPLAY)
(gethash 'experiments stream-table) (dw: : get-program-pane ' experiments-DISPLAY)
(gethash 'resources stream-table) (dw::get-program-pane 'RESOURCES-DISPLAY)
(gethash 'edit stream-table) (dw::get-program-pane 'TABLES-DISPLAY)
(gethash ' init-obj-edit stream-table) (dw::get-program-pane 'init-cbj-display)
(gethash 'durable-resource-edit stream-table)
(dw::get-program-pane 'durable-resource-DISPLAY)
(gethash 'consumable-resource-edit stream-table)
(dw::get-program-pane 'consumable-resource-DISPLAY)
(gethash •crew-resource-edit stream-table)
(dw::get-program-pane 'crew-resource-DISPLAY)
(gethash 'target-resource-edit stream-table)
(dw::get-program-pane 'target-resource-DISPLAY)
(gethash .'attitude-resource-edit stream-table)
(dw::get-program-pane 'attitude-resource-DISPLAY)
(gethash 'listener stream-table )(dw::get-program-pane 'NASA-LISP-LZSTENER )
(gethash 'tables-2 stream-table) (dw::get-program-pane ' TABLES-DISPLAY-2)
»

(def met hod (cl«»r-»ll-hi»tori«» na»»-«cr««n-m«nag«r) (master-key)
(mapc I ' ( lambda (key) (clear-history self key) )

(case master-key
(init-edit '(init-obj-edit durable-resource-edit consumable-resource-edit crew-resource-

edit target-resource-edit a t t i tude-resource-edi t )))))

(defmethod (cl«»r-hi»tory nisa-scrtten-mantgar) (key)
(let ((dw:*program-frame* program-framework))

(send (gethash key stream-table) :clear-history)))

(def met hod (••l*ct-configuratlon n*»«-»cr»«n-mar»»g«r) (key)
(let ((dw:"program-frame* program-framework ))

(case key
(init-obj-edit (dw:: set-program-frame-configuration ' dw: :edit-init-cc.-.f ig) )
(edit (dw:: set-program-frame-configuration 'DW::TABLES-REPORTING))
(error (dw::set-program-frame-configuration ' DW::ERROR-REPORTING))
(performance (dw::set-program-frame-configuration ' DW::NASA-CONFIG-2)!
(general (dw::set-program-frame-configuration 'DW: :GENERAL-INFO-CONFI3>)
(experiment (dw::set-program-frame-configuration ' DW::NASA-PERFOSMAKC1-SCHEDULER))
(tables-2 -(dw: : set-program-frame-configuration ' DW: : TABLES-REPORTING-2) ) )

(gethash key stream-table)))

(def met hod (••l*ct-*troua n»»«-»cr»«n-m*n»g«r) (key)
(gethash key stream-table))

(def met hod (cdit-salf na>a-*cx»*n-m*nag«r) ()
(apply f'update-aelf (cons self (get-new-values s e l f ) ) )
(display-self self (select-configuration self ' ed i t ) ) )

(defmethod (eoqput«-r«sourc«-dl*plBy-intoto na»«-»cre«n-man«g«r) () n i l )

(defmethod (upd*t*-Mlf n*»«-«cr»«n-manag«r) (new-left-x new-right-x new-lcwer-y new-upper-y
new-x-delta r.ew-h-scale-inc
new-v-scale-inc new-scale-length
new-min-x-delta new-resource-p)

(unless (and - left-x new-left-x)
» right-x new-right-x)
= lower-y new-lower-y)
= upper-y new-upper-y)
= x-delta new-x-delta)
= h-scale-inc new-h-scale-inc)
- v-scale-inc new-v-scale-inc)
- scale-length new-scale-length)
= min-x-delta new-min-x-delta)
(null new-resource-p))

A"87 ORIGSNAL PAGE IS
OF POOR QUALITY



ANDY:>browm»>nasa-2>screen-nianager-methods.!isp.ll 4/11/89 19:39:36 Page 2

(set; l*-rt -.-x new-left-x
-^=.--:-x r.ew- right -x
In-er-r-y r.ew-lower-y
i-7=er-r-y r.ew-'jpper-y
v— ie_:-:ta r.ew-x-delta
r — jci-^ie-ir.c r.ew-h-scale-inc
» — icd-iie-ir.c r.ew-v-scale-inc
sn_t^-ie.-.gth r.ew-scale-length
r^_t-: — r.-delta r.ew-min-x-delta)

(compL—t-rzesource-diaplay-intoto se l f ) ) )

(defmethod (jwr
(let (chcia

(loop •^-" '
,«eti

-i— n«w-r»»crurc« na««-«er»«n-m«n«g«r) ()

— .-_ist
' (quit quit)
(delete (list (name current-resource) current-resource )

(get-resource-list owner-obj) :test I ' e q u a l ) ) ) )

(if (ec: =:

(def method '.jure.
(let (r.e-o-ls :

ne-» -i •-• s
(setf -e.— .--
(when -e»— r-

(seti =L^
(setf

>— t
(dw : ac^eTr.^.-

(fr— i-

(setf :w*

f choice
(dwtmervj-choose
choice-list
:prorpt
(forJMt nil

"The Current Resource is -S; Select A Different Resource or Quit"
(name current-resource) ) ) ) )

ice 'quit) nil choice)))

— n*w-valu«« na«a-«cr««n-man«g«r) ()
• -x r.ew-right-x new-lower-y new-upper-y new-x-delta new-h-scale-inc
_aie-ir.c r.ew-scale-length new-.T\in-x-delta new-resource)
=3O-jr=e (get-new-resource s e l f ) )
isource
rsr.t-reso-rce new-resource)
iiie-inc (gethash (name currer.t-resource) v-scale-table)
^.s (gethash (name current-resource) y-axis-table) ) )
c--values
output*

))

"Indicate Modif icat ions To Values For Display Control") )
-^ef t -x
^s=t ' r.u.TJer :default left-x :query-identif ier 'new-left-x

: stream "standard-output*
:prc— t ( fo rma t nil "enter new left coordinate for resource display

right -x
Tspt 'nurjser ide fau l t right-x : query-identifier 'new-right-x

:strea.m "standard-output* : prompt
(forr^t nil "enter new right coordinate for resource display "))

_ower-y
:spt ' r.urJaer :default lower-y :query-identif ier 'new-lower-y

: stream 'standard-output* : prompt
(format nil "enter new bottom coordinate for resource display ") )

u?per-y
t ' nuirber :default upper-y : query-identifier 'new-upper-y

istreajn 'standard-output*
:pronr>t (format nil "enter new top coordinate for resource display
x-delta

t 'number .-default min-x-delt« :query-identif ier ' new-min-x-delta
:streaj» "standard-output*
:pror=pt ( format nil "enter new time increment minimum width "))

.-delta
spt ' r.u.rjer :default x-delta .-query-identifier 'new-x-delta

: stream "standard-output"
:prorpt (format nil "enter new time increment width ") )

-.-scale-inc
pt ' r.ur-ier :default h-scale-inc rquery-identif ier ' new-h-scale-inc

:3treaj« "standard-output"
:pro.rpt (format nil "enter new horizontal scale labeling increment

scale-i.-.c
spt ' r.u.TJer tdefau l t v-scale-inc tquery-identifier ' new-v-scale-inc

: stream "standard-output"
:prc:rrt ( format nil "enter new vertical scale labeling increment

= cale-ler.glh

") )

" ) )

) )

A-88
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>screen-manager-rnethods.lisp.ll 4/11/89 19:39:36 Page 3

(accept 'number :default scale-length :query-identifier 'new-scale-length
:stream 'standard-output*
:prompt (format nil "enter new scale tick mark length ">)))

(list new-left-x new-right-x new-lower-y new-upper-y new-x-delta new-h-scale-inc
new-v-scale-inc new-scale-length new-min-x-delta new-resource)))

(defmethod (di»pl»y-»«lf n*»«-»cra«n-m*n»9«r) (stream)
(present self 'nasa-acreen-manager-edit-display .-stream stream))

A-89

ORIGINAL PAGEJS

OF



ANDY:>brown>nasa-2>step-methods.lisp.7 7/04/89 12:27:55 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defmethod (present-step step) (stream)
;;this is a first cut-- obviously, this needs to be broken up into several display
;;functions to handle the cases where the input is not a single value, to relieve
/.•the user of the burden of knowing the syntax of each of the lists.
(format stream "-%ID -A MAX-DURATION -A MIN-DURATION -A STEP-DELAY-MIN -A STEP-DELAY-MAX -A CREW

-MONITORING-TIME -A CONCURRENT-WITH -A" id max-duration min-duration
step-delay-min step-delay-max crew-monitoring-time concurrent-with )

(format stream "-% CONSUMABLE-RESOURCE-LIST :")
(if consumable-resource-list

(mapc t ' ( lambda (resource-qty)
(format stream "-% -A -A" (first resource-qty)(second resource-qty)))

consumable-resource-list )
(format stream " NONE"))

(format stream "-% DURABLE-RESOURCE-LIST:")
(if durable-resource-list

(mapc I'(lambda (resource-qty-releasable)
(format stream "-% -A -A" (first resource-qty-releasable)

(second resource-qty-releasable)))
durable-resource-list)

(format stream " NONE"))
(format stream "-% CREW-REQUIREMENTS :")
(if crew-requirements

(mapc I*(lambda (crew-list-qty)
(format stream "-* -A -A" (first crew-list-qty)(second crew-list-qty)))

crew-requirements)
(format stream " NONE"))

(format stream "-% TARGET-LIST:")
(if target-list

(mapc I'(lambda (target)(format stream "-% -A" target ))target-list )
(format stream " NONE"))

(format stream "-% ATTITUDE-LIST:'1)
(if attitude-list

(mapc *'(lambda (attitude)
(format stream "-% -A" attitude )) attitude-list )

(format stream " NONE")))

(defmethod (create-new-obj step-template) (owner)
(setf owning-object owner)
(push self (prototype-step-list owner)))

(defmethod (create-new-obj startup-step) (owner)
(setf owning-object owner)
(push self (startup-steps owner)))

(defmethod (create-new-obj shutdown-step) (owner)
(setf owning-object owner)
(push self (shutdown-steps owner)))

(defmethod (create-new-obj step) (owner)
(setf owning-object owner)
(push self (step-list owner)))

(defmethod (create-new-obj step :after) (Srest ignore)
(format tv:initial-lisp-listener "this is a stub (create-new-obj step :after)"))

A-90

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>time-slice-methods.lisp.7 7/11/8911:14:34 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defmethod (copy-self time-slice) ()
(let ((new-instance

(make-instance 'tloM-clic* :start-time start-time
:end-time end-time
:crew-list (copy-list crew-list)
:non-depletable-resource-list
(copy-alist non-depletable-resource-list)
.•durable-resource-list (copy-aliat durable-resource-list)
:target-list (copy-list target-list)
:attitude-list (copy-list attitude-list)
:start-x start-x
:top-y top-y)))

(maphash •'(lambda (key value)
(setf (gethash key (performance-step-table new-instance)) value))

performance-step-table)
new-instance))

A-91
ORIGINAL PAQS IS
OF POOR.QVJAUTY



ANDY:>brown>nasa-2>time-translators.Iisp.8 7/12/8912:10:32 Page 1

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -•-

(defun translate-universal-time-to-time-period (univ-time)
(floor (- univ-time (universal-start-time (init-obj "mission*)))

(time-inc (init-obj 'mission*))))

(defun translate-seconds-to-time-periods (seconds)
(/ seconds (time-inc (init-obj 'mission*))))

(defun translate-time-list-to-seconds (time-list)
(+ (fourth time-list)

(* 60 (+ (third time-list)
(* 60 ( + (second time-list)

(* 24 (first time-list))))))))

(defmethod (translate-mission-period-to-universal-time nasa-init-obj) (mission-periods)
(multiple-value-bind (sees mins hours day month year day-of-week)

(decode-universal-time (+ universal-start-time (* time-inc mission-periods)))
(values sees mins hours day (CASE month

(1 'JAN)
(2 'FEB)
(3 'MAR)
(4 'APR)
(5 'MAY)
(6 'JUN)
(1 'JULI
(8 'AUG)
(9 'SEP)
(10 -OCT)
(11 'NOV)
(12 'DEO)

year (case day-of-week
(0
(1
(2
(3
(4
(5
(6

mon)
tue)
wed)
thu)
fri)
sat)
sun)))))

(DEFMETHOD (translate-mission-period-to-mission-time nasa-init-obj) (mission-period)
(let ((days 0) (hours 0) (mins 0) (sees 0) (remainder 0))

(multiple-value-setq (days remainder)
(floor (» time-inc mission-period) seconds-per-day))

(multiple-value-setq (hours remainder)
(floor remainder seconds-per-hour))

(multiple-value-setq (mins sees)
(floor remainder 60))

(values days hours mins sees)))

(defmethod (output-time-date-to-stream nasa-init-obj) (stream mission-periods)
(multiple-value-bind (sees mins hours day month year day-of-week)

(translate-mission-period-to-universal-time self mission-periods)
(IF (< day 10)

(format stream ~~S, ~S ~S -S, -S:-S:-S" day-of-week day month year hours mins sees)
(format stream "-S, -S -S -S, -S:-S:-S" day-of-week day month year hours mins sees))))

.•„•/ CALCULATIONS FOR INITIAL TIMES

(defmethod (determine-universal-start-time nasa-init-obj) ()
(setf universal-start-time

(encode-universal-time (third mission-launch-time)
(second mission-launch-time)
(first mission-launch-time)
(first mission-launch-date)
(second mission-launch-date)
(third mission-launch-date))))

(defmethod (determine-initial-universal-times nasa-init-obj) ()
(determine-universal-start-time self)
(multiple-value-bind

A-92
ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>time-transIators.lisp.8 7/12/8912:10:32 Page 2

(second minute hour day month year day-of-week)
(decode-universal-time universal-atart-time)

year month day
(determine-seconds-until-start-of-first-full-day self second minute hour)
(determine-start-of-first-sunday self day-of-week)
»

(defmethod (determine-end-times nasa-init-obj) ()
(setf universal-end-time

(+ universal-start-time (translate-time-list-to-seconds mission-duration)))
(multiple-value-bind

(sees mins hrs day month year)
(decode-universal-time universal-end-time)

(setf mission-end-date (list day month year)
mission-end-time (list hrs mins sees))))

(defmethod (determine-seconds-until-start-of-first-full-day nasa-init-obj)
(second minute hour)

(setf seconds-until-start-of-day
(add-seconds-for-each-hour
hour (add-seconds-for-each-minute minute (add-seconds-as-needed second)))))

(defmethod (determine-start-of-first-sunday nasa-init-obj) (day-of-week)
(setf first-sunday-start-time

(+ universal-start-time
(add-seconds-for-each-day day-of-week seconds-until-start-of-day))))

(defun add-seconds-as-needed (second)
///return the number of seconds until the start of the next minute, and a flag to
;;.-indicate whether we started on a partial minute
(if (zerop second)

(list 0 nil)
(list (- 60 second) t ) ) )

(defun add-seconds-for-each-minute (minute seconds-and-add-minute-flag)
/ / / re turn the number of seconds until the start of the next hour, and a flag to
//.-indicate whether we started on a partial hour
(when (second seconds-and-add-minute-flag)

(incf minute))
(cond ((zerop minute)

/ / / w e can have 0 minutes only if ve had zero seconds -- hence we .launched on
/ / / t h e hour,
(list 0 nil) )

(t (list (+ ( f i r s t seconds-and-add-minute-flag)
(* (- 60 minute) 6 0 ) )

t ) ) ) )

(defun add-seconds-for-each-hour (hour seconds-and-add-hour-flag)
(when (second seconds-and-add-hour-flag)

(incf hour) )
(cond ( (zerop hour)

///ve can have 0 hours only if ve has zero seconds and zero minutes -- hence
///ve launched at midnight
(list 0 nil))

(t (list (+ (first seconds-and-add-hour-flag)
(* (- 24 hour) 60 60) )

.t))))

(defun add-seconds-for-each-day (day-of-the-week seconds-and-add-day-flag)
(when (second seconds-and-add-day-flag)

(incf day-of-the-week))
(cond ((= day-of-the-week 7)

///to get here, we must have launched on Sunday -- since the crew gets the
///rest of the .launch day off, we need time on next Sunday
(+ (* 6 (seconds-per-day (init-obj 'mission')))

(first seconds-and-add-day-flag)))
((and (zerop (first seconds-and-add-day-flag))

(= day-of-the-week 6))
///once again, Sunday, this time at midnight
(• (* 7 (seconds-per-day (init-obj 'mission')))))

(t / / / if the day is 6 (Sunday), then the mission launched after midnight

A'93 ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>brown>nasa-2>unschedu!e-methods.lisp.3 7/11/89 10:57:27 Page 1

;;; -*- Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -*-

(defmethod (unschedule-self performance) ()
(mapc I'unschedule-self step-list)
(setf scheduled-start-time nil scheduled-end-time nil scheduled-p nil step-list n i l ) )

(defmethod (unschedule-steps-from performance) (first-step-nuraber)
(let ((unschedule-list (member f irst-step-nutnber step-list :key I 'number) ) )

(setf scheduled-end-time (scheduled-end-time (previous-step ( f i r s t unschedule - l i s t ) ) ) )
(mapc funschedule-self unschedule-l ist)))

(defmethod (unschedule-shutdown-steps performance) ()
(unschedule-steps-from

self (find-step-numbered self (number ( f i rs t (shutdown-steps o w n i n g - e x p e r i m e n t ) ) ) ) ) )

(defmethod (unschedule-self step) 0
(let ((period-list

(get-time-instance-list
•mission* scheduled-start-time scheduled-end-time last-t ime-slice)))

(loop for period in period-list
do

(unschedule-crew self period)
(unschedule-durables self period)
(unschedule-non-depletables self period)
(unschedule-consumables self period))

(when (and resource-carry-thru (not (zerop s tep-delay-min)))
(setf period-list (get-time-instance-list

•mission* (+ scheduled-start-time max-duration)
(1- (scheduled-start-time next-s tep))

.(next-slice ( f i r s t ( last p e r i o d - l i s t ) ) ) ) )
(loop for period in period-list

do
(unschedule-durables self period)
(unschedule-non-depletables self period)))

(setf period-list
(get-time-instance-list
•mission*
(if next-step

(1- (scheduled-start-time next-step))
(+ scheduled-start-time max-duration))

(max-time (init-obj •mission*))
(next-slice (first (last period-list)))))

(unless next-step
(loop for period in period-list

do
(unschedule-cumulate-resources self period)))))

(defmethod (unschedule-crew step) (period)
(loop for crew in scheduled-crew-list

do
(aetf (crew-list period) (delete (list crew self) (crew-list period) :test I'equal))))

(defmethod (unschedule-durables step) (period)
(loop for (resource quant) in durable-resource-list

do
(aetf (durable-resource-list period)

(delete (list resource quant self) (durable-resource-list period) :test I'equal))))

(defmethod (unschedule-non-depletables step) (period) ;
(loop for (resource quant tolerance) in non-depletable-resource-list

do
(setf (non-depletable-resource-list period)

(delete (list resource quant tolerance self) (non-depletable-resource-list period)
:test fequal))))

(defmethod (unschedule-consumables step) (period)
(loop for (resource quant) in consumable-resource-list

do
(setf (consumable-resource-list period)

(delete (list resource quant self)
(consumable-resource-list period) :test » ' e q u a l ) ) )

(loop for (resource quant) in cumulative-consumable-list
do

A-95 ORlGiiW. PAGE IS
OF POOR QUALITY

PRECEDING PAGE BLANK NOT FILMED



ANDY:>brown>nasa-2>unschedule-methods.lisp.3 7/11/89 10:57:27 Page 2

(setf (gethash resource (cumulative-consumable-table period))
(decf (gethash resource (cumulative-consumable-table period)) quant))))

(defmethod (unschedule-cumulate-resources step) (period)
(loop for (resource quant) in cumulative-consumable-list

do
(setf (gethash resource (cumulative-consumable-table period))

(decf (gethash resource (cumulative-consumable-table period)) quant))))

A-96

- PAGE !S
OF POOR QUALITY



Appendix B
Symbolics Code Listing for the Multiple Pass

Multiple Resource Allocation Program

B-l



ANDY:>jsr>resource-aIIocation>muItiple-horizontaI-fiII>muItipIe-resource-varifidg£.llsp.6

;;; -«- Syntax: Connon-Lisp; Package: USER; Base: 10; Mode: LISP -*-

;;;;;;;;;;;;;;Global Variables;;;;;;;;;;;;

(defflauor selection-nenu ()
(tu:drop-shadou-borders-nixin
tu:nultiple-nenu))

(defflauor shadoued-tu-uindou ()
(tu:drop-shadou-borders-nixin

du:dynanic-ui ndou))

(defuar *franes<) ;;Loaded fron data file.

(defuar <nax-tine«)

(defuar *tlne-Hsts)

(defuar *lanbda-1ists»)

(defuar spaths*)

(defuar toriginal-screen-size* nil)

(defuar Ssecond-tine* nil)

(defuar *current-flle* "")

(defwar «Resource-FiIe-Oi rectory* "andy:>jsr>resource-al1ocation>nultiple-data-files>")

(defuar ^resources*)

(defvar *resource-varfables>)

(defuar 'resources-output* nil)

(defuarscheduled-ltens)

(defuar *naxlnlzing-resource-11st»)

(defuar *naxiniEfng-resource-position>)

(defuar Sgraphical-output* nil)

(defuar tgraphical-display* nil)

(defuar *resource-output-uindoy* (tu:nake-ui ndow 'du:dynanic-uindou
: label "Resource Allocation Window"

:blinker-p ni1))

(defuar *display-nenu* (tv make-uindou
' selection-nenu
:label "Select Displayed Output"
:default-character-style ' ( : f ix :ronan :large)
:special-choices ' ( ("Select ion Conplete" :funcal1-uith-self conplete))) )

(defuar *resource-menu-Mlndou* (tu:nake-uindou 'du:dynanic-uindou
: label "Experiment Data Editor Window"
:b1inker-p t»

;(defuar sOata-choices-nenu* (tu:nake-uindou *tu:nonentary-nenu
; : borders 4
; : label 'Al ternate Data File List ' ) )

(defuar tnessage-uindou* (tu:nake-uindou 'du:dynanic-uindou
; :blinker-p nil.

:ed9es-fron '(383 389 853 438)
:nargin-conponents
'((du:nargin-scroll-bar :uisibility :if-needed)
(du:nargin-ragged-borders :thickness 4)

ORIGINAL PAGE IS

OF POOR QUALITY



ANDY:>jsr>resource-alIocation>muUiple-horizontal-rill>multiple-resource-varifidga.Qsp.6

(du:nargi n-1 abe!
:margin :botton
tatrlng "Message Ufndow (.Pnaa any >«y to £XIT)*))))

(defvar Sgraphfcs-ulndou* (tv:nake-u1ndou 'du:dynan1c-u1ndou
: bl inker—p ni 1
: label 'Resource Allocation Graphics Display"))

(defuar «Font» (si:backtrans 1ate-font
(fed:read-font-fron-bfd-fi1e "sya:fonts;tw;48wr.bfd.newest" )))

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/9111:20:49 Page 1

;;; -*- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -"-

;;Presentat ion types and actions for mouse sensitivity.;;

;;This defines the label presentation types,
(define-presentation-type label-type ()

:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)

(format stream "the selection -a" (car object))))

;;This is what is done when a column or row label is selected,
(define-presentation-action label-type

(label-type t
:gesture :left
:context-independent t
documentation "Resource Operations")
(exit)

(throw 'resource exit))

;;This defines the label presentation types,
(define-presentation-type exp-label-type ()

:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)

(format stream "the selection ~a" (car object))))

;;This is what is done when a column or row label is selected,
(define-presentation-act ion exp-label-type

(exp-label-type t
:gesture :left
:context-independent t
documentation "Experiment Operations")
(exit)

(throw 'resource exit))

;;This defines the item presentation type and documentation line display
(define-presentation-type resource-type ()

:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)

(format stream "the resource ~A" (car object))))

;;This is what is done when the item is selected
(define-presentation-act ion choose-type

(resource-type t
:gesture :left
:context-independent t
documentation "Change this value")
(resource)

(throw 'resource
(list resource (get (caar resource)
(read-from-string (format nil "-a-presentation" (cadar resource)))))))

;;This defines the item presentation type and documentation line display
(define-presentation-type control-type ()

:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)

(format stream "the selection -a" (car object))))

;;This is what is done when a command is selected
(define-presentation-act ion control-type

(control-type t
:gesture :left
:context-independent t
documentation "Execute this Command")
(exit)

(throw 'resource (read-from-string exit)))

PAGE IS
OF POOR QUALITY



ANDY:>jsr>multipIe-resource-interface.lisp.29 1/31/9111:20:49 Page 2

Program funccions

;;Thi3 is the Driving Function for the Data Editor,
(ciefun examine-data ()

(send * resource-menu-window* :select)
(loop with again = t

while again
do
(dw::with-output-truncation (*resource-menu-window* :horizontal t)
(make-window-layout)
(send "resource-menu-window* :set-cursor-visibility nil)
(setq again

(loop with finished = nil
until finished
as choice = (change-data-point)
while choice
do

(cond ((atom choice)
(case choice

(load
(open-input-file)
(initialize-markers-and-variables)
(return t))

(save (save-new-file))
(exit (return nil))))

(t (case (car choice)
(exp

(take-experiment-action
(cadr choice)
(get-option-list (format nil "For Experiment ~'bea~z>"
(cadr choice))
'("Move this Experiment"

"Delete this Experiment"
"Add an Experiment ABOVE"
"Add an Experiment BELOW")))

(return t))
(resource

(take-resource-act ion
(cadr choice)(caddr choice)
(get-option-list (format nil "For Resource ~'bea~3"
(cadr choice))
(cond ((member (cadr choice)

'("Duration" "Performances")
:test #'string-equal)
'("Set Value Globally"

"Set Maximum Value"
"Move this Resource"
"Add Resource to the LEFT"
"Add Resource to the RIGHT"
"Edit Resource Constraints"))

(t
'("Set Value Globally"

"Set Maximum Value"
"Move this Resource"
"Delete this Resource"
"Add Resource to the LEFT"
"Add Resource to the RIGHT"
"Edit Resource Constraints")))))

(return t)))))))))
(send *terminal-io* :select))

(defun get-option-list (prompt options)
(dw:menu-choose options

:prompt prompt
:center-p t
:row-wise nil))

(defun take-resource-action (resource pos action)
(cond ((string-equal action "Set Value Globally")

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>muitiple-resource-interface.lisp.29 1/31/9111:20:49 Page 3

(let ((value (get-stream '((number :prompt "Global Value"
:default 0
:query-identifier jsr) )

(format nil "Set -'beA~3Value Globally " resource))))
(if value

(initialize-experiment-resource-value
(make-variable-from-string resource ) value))))

((string-equal action "Set Maximum Value")
(let ((resource-var (make-variable-from-string resource)))

(zl:putprop resource-var
(get-stream "((number :prompt "Maximum Value"

:default ,(get resource-var 'resource-limit)
:query-identifier jsr))

(format nil "Set ~' beA-oMaximum Value "
resource))

'resource-limit)))
((string-equal action "Edit Resource Constraints")
(modify-resource-constraint-equations (make-variable-from-string resource)))
((string-equal action "Move this Resource")
(send-message-to-user (format nil "-2% Use mouse to SELECT which RESOURCE to-

-% place -' beA-^ibeside. " resource))
(remove-resource resource nil)
(let ((position (find-position 'label-type resource)))

(setq "resources" (insert-item-in-list "resources* resource position)
"resource-variables* (insert-item-in-list "resource-variables"
(make-variable-from-string resource) position))))
((string-equal action "Delete this Resource")
(remove-resource resource))

((string-equal action "Add Resource to the LEFT")
(add-resource pos) >

((string-equal action "Add Resource to the RIGHT")
(add-resource (+ 1 pos)))))

(defun modify-resource-constraint-equations (resource)
(send "message-window* :set-margin-components

' ((dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin ibottom
:string "Constraint Editor Window (Press <END> key to EXIT)")))

(send "message-window" :clear-history)
(send "message-window* :select)
(format *message-window* "-2%")
(send "message-window* :set-cursor-visibility :blink)
(edit-constraint-equation resource)
(send 'message-window* :deselect)
(send "message-window* :set-cursor-visibility nil)
(send "message-window* :set-margin-components

'((dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw: ma r gi n -1 abe 1
:margin :bottom
:string "Message Window (Press any key to EXIT)"))))

(defun edit-constraint-equation (resource)
(let ((buffer (tv:kbd-get-io-buffer))

(equation (format nil "-a" (get resource 'resource-constraint-function))))
(send "message-window* :clear-input)
(loop for i from 0 to (- (length equation) 1)

do
(tv:io-buffer-put buffer (char equation i)))

(zl:putprop resource (read-from-string (accept 'string :stream "message-window*
: activation-chars ' (it\end)
:prompt nil)) 'resource-constraint-function)))

(defun find-position (type resource)
(let ((position)

(data (catch 'resource (accept type
:prompt nil
:stream "resource-menu-window*))))

(case (car data)
(exp

C-3



ANDY:>jsr>multiple-resource-interface.Iisp.29 1/31/9111:20:49 Page 4

(setq position (position (cadr data)(get 'list-of 'names)))
(case (read-from-string
(get-option-list (format nil "Place -'beft-i) resource)
(list (format nil "Above -'beA-S (cadr data))

(format nil "Below ~'beA-:±> (cadr data)))))
(ABOVE (+ 1 position))
(t (+ 2 position))))
(resource

(setq position (position (cadr data) "resources" :test 1' string-equal))
(case

(read-from-string
(get-option-list (format nil "Place ~'beA-i) resource)
(list (format nil "Left of ~'bGA~Z> (cadr data))

(format nil "Right of ~'beA-O (cadr data)))))
(LEFT (+ 1 position))
(t ( + 2 position)))))))

(defun take-experiment-action (exp action)
(cond ((string-equal action "Move this Experiment")

(send-message-to-user (format nil "~2% Use mouse to SELECT which EXPERIMENT to~
-% place -'beA~nbeside." exp))

(remove-experiment exp nil)
(let ((position (find-position 'exp-label-type exp)))

(zl:putprop 'list-of (insert-item-in-list (get 'list-of 'names)
exp position) 'names)))

((string-equal action "Delete this Experiment" )
(remove-experiment exp t))

((string-equal action "Add an Experiment ABOVE")
(add-experiment (+ 1 (position exp (get 'list-of 'names)))))
((string-equal action "Add an Experiment BELOW")
(add-experiment (+ 2 (position exp (get ' list-of 'names)))))))

(defun remove-experiment (exp message)
(zl:putprop 'list-of (remove exp (get 'list-of 'names)) 'names)
(if message

(send-message-to-user
(format nil "~2%-5tThe EXPERIMENT named -'bea-=3has been deleted." exp))))

(defun add-experiment (position)
(let ((variable (make-variable-from-string

(get-stream '((string :prompt "Enter EXPERIMENT NAME"
:query-identifier jsr))

"Add Experiment Utility "))))
(zl:putprop 'list-of (insert-item-in-list (get 'list-of 'names) variable position) 'names)
(loop for item in "resource-variables*

do
(zlrputprop variable 0 item))))

;;This function is the top level controller for the input window,
(defun make-window-layout ()

(send "resource-menu-window" :clear-history)
(format "resource-menu-window" "-2%~40t~vCxperiment Data Editor-34%" "Font")
(let- ((space 10))

(setq "resource-variables* (loop for resource in "resources*
initially (space-over *resource-menu-window«

(+ 6 space))
collect (make-variable-from-string resource) into var
counting t into place
finally (return var)
do

(space-over 'resource-menu-window" space)
(make-mouse-sensitive-labels ""

(list 'resource resource place))))
(format "resource-menu-window* "-%")
(loop for exp in (get 'list-of 'names)

counting t into place
do

(make-mouse-sensitive-labels "-%"
(list 'exp exp place))

(loop for variable in "resource-variables*
for header in "resources"
as width = (string-length header)

ORIGINAL PAG! If
OF POOR QUALITY



ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/9111:20:49 Page 5

for column first (+ space (/ width 2.0) space)
then (+ space (/ width 2.0) column)

do '
(place-variable column variable exp)
(setq column ( + (/ width 2.0) column))))
(place-commands) ) )

;;This command puts the column and row labels as presentations
(defun make-mouse-sensitive-labels (return object Skey (stream

(type 'label-type))
(dw:with-output-as-presentation (:single-box t

: stream stream
:type type
:object object)

(format stream (format nil "-a-A" return (cadr object)))))

;;This command creats the commands at bottom of menu,
(defun place-commands ()

(format * resource-menu-window* "~6%")
(loop for command in '("Exit Data Editor" "Save Current Data to File"

"Load New Data File")
do
(space-over * resource-menu-window* 17)
(dw:with-output-as-presentation (.-single-box t

:stream * resource-menu-window*
:type 'control-type
:object command)

(surrounding-output-with-border (*resource-raenu-window* :shape :oval
:filled t
:move-cursor nil)

(format 'resource-menu-window* command)))))

;;This function assists in proper relative heading column spacing
(defun space-over (stream space)

(format stream (format nil " Aa" space) ""))

;;This function takes a string and returns an atom,
(defun make-variable-from-string (str)

(loop with flag = 1
for item being the array-elements in str
if (not (string-equal item " "))

collect item into var
and do

(setq flag 0)
else if (= flag 0)

collect "-" into var
and do
(setq flag 1)

finally (return (read-from-string
(apply S'string-append

(cond ((= flag 1)
(reverse (cdr (reverse var))))

(t var)))))))

;;This function assists in correct column spacing
(defun place-variable (column variable exp)

(format * resource-menu-window* (format nil "~~~at" (zl:fix column)))
(format-item-mouse-sensitive 'resource-menu-window* (get exp variable)

(list (list exp variable)
(multiple-value-bind (a b)

(send 'resource-menu-window* :read-cursorpos)
(list a b) ) ) ) )

;;This function prints the item to the screen with mouse sensitivity
(defun format-item-mouse-sensitive (stream item descriptors)

(zl:putprop (caar descriptors) item (cadar descriptors))
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(clearspace stream)
(zl:putprop (caar descriptors)
(dw:with-output-as-presentation (:single-box t
:stream stream
:type 'resource-type

'resource-menu-window*)

IPOOK QUALITY



ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/9111:20:49 Page 6

:object descriptors)
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(format stream "~8@a" item))

(read-from-string (format nil "-a-presentation" (cadar descriptors)))))

;;This function removes the typed in values to allow for presentations,
(defun clearspace (stream)

(loop repeat 8
do
(send stream :clear-char)
(send stream :forward-char)))

;;This function reads in a value, but does not issue a line-feed,
(defun read-without-return (^optional (stream 'standard-output")

Skey (activation-characters ' (S\Return !f\End )))
(loop with cursor-position = (list (multiple-value-bind (a b)

(send stream :read-cursorpos) (list a b)))
with var2 = nil
with position = 0
as varl = (send stream :tyi)
as total-length = (length var2)
until (member varl activation-characters)
if varl
do

(cond ((and (equal varl #\rubout) var2)
(send stream :tyo ft \backspace)
(send stream :clear-char)
(setq var2 (cdr var2)

position (1- position)
cursor-position (cdr cursor-position)))
( (and (or (equal varl ft\c-B) (equal varl SXbackspace) ) var2)
(setq position (1- position))
(send stream :tyo varl))

((equal varl (t\c-F)
(cond ((< position total-length)

(setq position (1+ position))
(send stream :tyo varl))))
((= position total-length)
(setq var2 (cons varl var2)

position (1+ position)
cursor-position (cons (multiple-value-bind (a b)

(send stream :read-cursorpos)
(list a b)) cursor-position))

(format stream "~a" varl))
( (or (equal varl ft\c-B) (equal varl #\rubout ) ) )
(t (send stream :insert-char)

(format stream "~A" varl)
(setq var2 (reverse (loop for temp = nil

then (append temp (list (car end)))
for end = (reverse var2) then (cdr end)
repeat position
finally (return

(append temp (cons varl end))))))))
finally (return (cond (var2 (setq var2 (read-from-string
(apply It'string-append (reverse var2) ))))))))

;;This function allows the data values to be changed,
(defun change-data-point ()

(let ((data (catch 'resource (accept '((or resource-type control-type
label-type exp-label-type))

:prompt nil
:stream 'resource-menu-window')))
(original-position (multiple-value-bind (a b)
(send 'resource-menu-window* :read-cursorpos)

(list a b)))
(position))
(cond ((or (atom data) (atom (car data))) data)

(t
(setq position (cadar data))
(send 'resource-menu-window* :erase-displayed-presentation (cadr data))
(send 'resource-menu-window* :set-cursorpos (car position)(cadr position))
(send 'resource-menu-window* :set-cursor-visibility :blink)
(format-item-mouse-sensitive 'resource-menu-window*

OF



ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/9111:20:49 Page 7

(read-without-return "resource-menu-window*)
(car data))

(send "resource-menu-window* :set-cursor-visibility nil)
(send 'resource-menu-window* :set-cursorpos (car original-position)

(cadr original-position))
•data))))

;;This function returns the list of data files that can be selected.
(defun get-data-file-list ()

(loop for directory in (cdr (fs:directory-list "Resource-File-Directory" ))
as pathname = (cond ((not (string= (send (car directory) :name) "err"))

(format nil "~A" (send (car directory) :string-for-dired))))
collect pathname ))

;;This function allows the modified data to be saved to a data file,
(defun save-new-file ()

(with-open-file (stream (string-append "Resource-File-Directory*
(get-stream '((string :prompt "Enter the Filename"

:query-identifier jsr))
"Save File Utility ")

" .data")
:direction :output
:if-exists :new-version)

(format stream "~2%(setq "resources" '(")
(loop for resource in "resources"

do
(format stream " ~a-A-a " ft\" resource ft\"))

(format stream "))~2%(setq "frames* '(")
(loop for exp in (get 'list-of 'names)

do
(format stream "~%~a" (cons .exp (loop for prop in "resource-variables*
collect (list prop (list (get exp prop)))))))

(format stream "))")))

;;This function creates a window and prompts the user for a file name,
(defun get-stream (arguments header)

(dw:accept-values arguments
: OWN-WIN DOW t
:temporary-p nil
:prompt header
:initially-select-query-identifier 'jsr))

;;This function controls the adding of a resource,
(defun add-resource (position)

(let* ((new-resource (multiple-value-bind (a b)
(get-stream '((string :prompt "Enter RESOURCE NAME"

:query-identifier jsr)
(number :prompt "Initial Value"
:default 0) )

"Add Resource Utility ")
(list a b) ) )
(variable (make-variable-from-string (car new-resource))))

(cond ((member variable "resource-variables")
(send-message-to-user

(format nil "-2%-5tThe RESOURCE named -•bea~zalready exists."
(car new-resource))))

(t
(initialize-experiment-resource-value variable (cadr new-resource))
(setq 'resources* (insert-item-in-list 'resources* (car new-resource) position)

•resource-variables* (insert-item-in-list 'resource-variables*
variable position))))))

;;This function puts an initial value in the resource variables,
(defun initialize-experiment-resource-value (new-resource value)

(loop for item in (get 'list-of 'names)
do
(zl:putprop item value new-resource)))

;;This function inserts an item in a list at position,
(defun insert-item-in-list (1st item position)

(loop for i from 1
for each on 1st
until (= i position)

ORlGiNAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/9111:20:49 Page 8

collecting (car each) into var
finally (return (append var (list item) each))))

;;This function allows communication between the user and the program,
(defun send-message-to-user (message)

(send "message-window- :clear-history)
(send "message-window" :set-cursor-visibility nil)
(send "message-window" :select)
(format "message-window* message)
(send "message-window" :any-tyi)
(send "message-window* :deselect))

;;This function removes a resource from consideration by program,
(defun remove-resource (resource Soptional (message t))

(setq "resources* (remove resource "resources* :test fstring-equal)
"resource-variables* (remove (make-variable-from-string resource)

•resource-variables*))
(if message

(send-message-to-user
(format nil "-2%-5tThe RESOURCE named ~'bea~Dhas been deleted." resource))))

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lispP6ge

;;; -*- node: LISP; Syntax: Connon-1i sp; Package: USER; Base: 18 -*-

; Input and Variable Initializing Functions;

(defun open-input-file ()
(let (( infi le (dumenu-choose (get-data-fi1e-l1st)

:PronPt 'Data File L is t " ) ) )
(cond (infile (load (string-append *Resource-Ft1e-Directory» infile)

: verbose nil)
(initialize-franes)
(setq *currcnt-file* infile)))))

(defun initialize-franes ()
(z1:putprop ' 1 i st-of nil 'nanes)
(loop for frane in *franes*

as nane = (car frane)
do

(zl:putprop 'list-of (append (get 'list-of 'nanes) (1i st nane)) 'nanes) ))

(defun deternine-naxiniz ing-resource ()
(setq tnaxinizfng-resource-llsts (prioriti ze-resource-1i st)

SnaxiniEing-resource-position*
(1oop for resource in «naxinizin9-resource-11st*

collecting (position resource *resource-variablest))))

(defun reset-lanbda-functions ()
(loop for (resource priority nax-val lanbda) in slaribda-lists*

do
(zl:putprop resource nax-val 'resource-linit)
(zl:putprop resource priority 'resource-priority)
(zl:putorop resource 1anbda 'resource-constraint-functi on)))

(defun initialize-hash-tables ()
(let ((paraneters

(loop for resource-iten-string in «resources»
as resource = (nake-variable-fron-string resource-iten-string)
col 1ecting resource into var
collecting 9 into value
finally (setq *resource-var1ables* war)

(return (list (append ' (*paths* scheduled-i tens) war)
(append '(nil nil) value))))))

(loop for resource in (car paraneters)
for val in (cadr paraneters)
do

(cond ((boundp resource)
(clrhash (eval resource)))

(t (set resource (nake-hash-table))))
(suaphash 0 val (eval -resource))
(suaphash *na«-ti ne* val (eval resource)))))

(defun initialize-narkers-and-varlables ()
(loop for eac in tfranes* •

as nane = (car eac)
do

(loop for each in (cdr eac)
do

(zl:putprop nane (caadr each) (car each))))
(setq *tifie-H3t* (11st 8 *nax-tine*))
(initialize-hash-tables)
(reset-lanbda-functions)
(deternine-naxinizing-resource))

; ; Returns a sorted list based on highest priority resource
;jin forn of '(expl exp2 exp3 ...)
(defun build-list ()

(let ((1st (get '1ist-of 'nanes)))
(loop for resource in (reverse *naxinizing-resource-Iist«)

as Ist2 = (zl:sortcar (loop for exp in 1st
collect (list (get exp resource) exp)) 0'>)

•do
(setq 1st (loop for each in Ist2

collecting (cadr each))))

OF POOR



ANDY:>jsr>resource-allocation>multiple-horizontaI-fill>multiple-resources.lispP6ge 2

(defun priorlt ize-resource-l lst ()
(sort (renove 8 (copy-l ist *resource-variab1es*) : test 8' =

:key '(lanbda (x) (get x 'resource-priori t y ) ) )
tt' > :key It' (1 anbda (x) (get x 'resource-priori t y ) ) ) )

;Top Level Functions;

;;;;HAIN PROGRAM;; ; ; ;

(defun HIlocate-Resources ()
(tine (flllocate-Resources-aux)

(fornat t "~3Z*»»« Prograii lining **««~2Z")))

(defun Rllocate-Resources-aux ()
(cond ('second-tine* t)

(t (open-input-file)
(setq *second-tine* t)))

(initialize-narkers-and-variables)
(exanine-data)
(send Sresource-output-uindou* :c1ear-history)
(send *resource-output-uindou* :select)
(let ((1st (build-list)))

(schedule-pass-one 1st)
(di splay-pass t)
(shou-used)
(fornat *resource-output-uindou* * ~3Z~a"

(catch 'resource (accept 'label-type :strean *resource-output-nindou*
:pronpt nil)))

(schedule-pass-two 1st)
(display-pass)
(shou-used))

(fornat Sresource-output-uindoy* ""SZ'a*
(catch 'resource (accept 'label-type : strean tresource-output-ufndoM*

:pronpt nil)))
(zl:readline >resource-output~uindou*))

TOP LEVEL FUNCTIONS

(Defun schedule-pass-one (nlst)
(loop uith 1st = (copy-list nlst)

for (start interval-tine)=(1ist 8 «nax-tine«)
then (find-new-paraneters start)

until (or (= start tnax-tine*)(null 1st))
as group = (fi nd-nax-path start (current-status start)

(find-resource-candidates 1st interval-tine start))
do

; (fornat t m~?.~R "a " group start)
(cond ((aton (car group)))

(t
(update-hash-tables start

(loop for iten in (car group)
as perfornances = (get iten 'perfornances)
as duration = (get iten 'duration)
as tine = (* perfornances duration)
if (> tine interval-tine)
do (setq tine

(* (setq perfornances
(zl:fix (/ interval-tine duration)))

duration))
if (> perfornances 8)

collect (list iten tine) into var
final 1y (return var)
do

(zl:putprop iten (* perfornances
(get i ten 'scheduled-perfornances))

'scheduled-perfornances)
(zliputprop iten (- (get iten 'perfornances) perfornances)

'perfornances)
(cond ((<= (- (get iten 'perfornances) perfornances) G.)

(setq 1st (renove-experinent-fron-schedule-list

ORIGINAL PAGE IS
OF POOS? QUALITY



ANDY:>jsr>resource-allocation>multiple-horizontal-fiII>multipIe-resources.lispP6ge 3

iten 1st)}))))))))

(defun schedule-pass-tuo (nl$t)
(loop uith 1st = (copy-list nlst)

for (start interval-tine) = (find-neu-paraneters)
then (find-neu-paraneters start)

for current-status = (current-status start)
until (= start snax-ttne*)
as possi bile-choices = (non-scheduled 1st (gethash start scheduled-i tens))

do
; (fornat t ""3?. start = "fl ~20t~a" start current-status)

(1oop ui th parans = ni1
uhile interv/al-tine
uhi le (Paraneters-ui thin-range current-status) ;;Meed exit condition here
as group = (fi nd-nax-path start current-status

(find-resource-candidates
possible-choices interval-tine start))

do
; (fornat t ""^Interval tine = ~a ~20t~a""40t~*a" interval-t ine current-status group)

(cond ((aton (car group))
(cond ((= (* start interval-tine) «nax-ti«e«)

(setq interval-tine nil))
(t

(setq parans (find-next-paraneter current-status
(* start interval-tine))

possible-choices (renove-next-ti ne-events
(* start interval-tine) possible-choices))

(setq current-status (car parans)
interval-tine (- (cadr parans) start )))))

<t
(update-hash-tables start

(loop for iten in (car group)
as duration = (get iten 'duration)
as perfornances = (zl:fix ( ' interval-tine duration))
as tine = (* perfornances duration)
collect (list iten tine) into varl
ni ni nize tine into var2
finally (setq interval-tine var2)

(return varl)
do

(zl:putprop iten (* perfornances
(get i ten 'scheduled-perfornances))

' scheduled-perfornances)
(zl:putprop iten (- (get Iten 'perfornances)

perfornances)
' perfornances)

(setq possible-choices (renove-experinent-fron-schedule-1i st
iten possible-choices))))

(setq interval-tine nil))))))

(defun complete (self)
(send self :deactivate))

(defun display-pass (^optional (titl* nil))
(du::ui th-output-truncat ion («resource-output-uindou* :horizontal t)

(cond (title
(fornat *resource-oiitput-uIndou* "~2Z~38t~vcResource flllocation Results~3~4Z"

*Font«)
(cond ((nul1 «resources-outpot*)

(send *d1sp1«y-nenut :set-label 'Select Displayed Output')

(send *disp)ay-nenu* :set-iten-list *resources*)
(send sdfsplay-nenu* :choose)
(setq *resources-output*

(reverse (send sdisplay-nenu* ihighlighted-values)))))
(fornat *resource-output-uindoH* '~4Z ««*« FIRST PRSS RESULTS »***~22"))

(t
(fornat «resource-output-uindoM* '~4?. **** SECOND PRSS RESULTS ****")))

(select-graphical-display)
(let ((x-y-locations (Initialire-Graph-infornation >9raphical-outputs))

(space 10))
(shou-scheduled)
(1oop for resource in 'resources-output*

PAGE IS
QUAL/Ty



ANDY:>jsr>resource-allocation>multipIe-horizontal-filI>multiple-resources.lisp£6ge 4

Initially (space-over *resource-output-uindou* (• 6 space))
do

(space-over *resource-output-ulndou> space)
(fornat *resource-output-ulndou* '~'bc~a~3" resource))

(loop for tine in «tine-list«
for next-tine in (cdr «tine-list»)
do

(setq x-y-locations (display-output-sensitive "~2" tine next-tine x-y-locations
:strean *resource-output-ufndou>))

(loop for variable in (nake-variables 'resources-output*)
for header in (resources-output*
as width = (string-length header)
for colunn first (* space (/ uidth 2.8) space)

then (• space (' uidth 2.8) colunn)
do

(fornat «resource-outpul-nindou* (fornat nil " a t " (zl:fix colunn)))
(fornat >resource-output-Hi ndoM* "~88a" (-gethash tine (eval variable)))
(setq colunn (• (f uidth 2.8) colunn)))))))

(defun display-output-sensitive (return tine next-tine x-y-locations
&key (stream >resource-nenu-uindou*)

(type 'label-type))
(du:uith-output-as-presentation (:single-box t

:strean strean
:dont-snapshot-variables t
:type type
tobject (list tine))

(print-it strean return tine))
; (print-it *graph1cs-uindou* return tine))

(if (and (not (equal *graphical-dlsplay* 'none)) x-y-1ocations)
(setq x-y-locations (funcall *graphical-dfspI ay* x-y-locations next-tine)))

x-y-1ocations)

(defun print-it (strean return tine)
(fornat strean (fornat nil "a'n" return tine)))

(defun nake-variables (1st)
(loop for string in 1st

collect ( nake-vari able-f roit-str Ing string)))

(defun shou-used ()
(fornat *resource-output-uindou* '~3Z~18TIten~28tRenalnin9~4BtSchedul ed~I")
(loop for iten in (get 'list-of 'nanes)

do
(fornat *resource-output-ufndou* "~2~18T~R~23t~a~43t~a" iten (get iten 'perfornances)

(get iten 'scheduled-perfornances))))

Second Pass Functions

(defun non-scheduled (1st used)
(let ((possible 1st))

(loop for iten in used
do

(setq possible (renove iten possible :test 8'equal )))
possible))

Connon Pass Functions

(defun f i nd-neu-paraneters (&optional (current nilHparans nil))
(let ((1st «tine-list«))
(cond ((null current)

(setq 1st (cons 8 1st)))
(t
(setq 1st (nenber current *tine-list* :test 8'= ))))

(loop uith start = (cadr 1st)
uith status = (if parans parans (current-status start))
for tine in (cddr 1st)
uhile (conpare-each-tinc-status status tine)
finally (return (list start (if tine (- tine start)

(- *nax-tlne* (cadr 1st))))))))

ORIGINAL P« IS
OF POOR QUALITY



ANDY:>jsr>resource-allocation>muItiple-horizontal-fill>multiple-resources.lispB6ge5

(defun ftnd-next-paraneter (.current tine)
(let ((next (napcar »'(lanbda (x y) (if (> x y) * y)) current

(current-status tine))))
(list next (cadr (nenber tine *tine-1iat*)))))

(defun renove-next-tine-events (tine 1st)
(loop for iten in (gethash tine scheduled-itens)

do
(setq 1st (renowe-exper1nent-fron-schedule-list iten 1st)))

1st)

(defun coiipare-each-tl tie-status (status tine)
(loop for pos fron 8

for each in SHaxfnlzing-resource-lfst*
for location in tnaxliiizlng-resource-positlon*
always (<= (gethash tine (eval each))

(nth location status))
finally (return t)))

(defun Paraneters-ulthfn-range (current-status)
(loop for each in *naxinizing-resource-list*

for location in *naxinizfng-resource-pos1tfon*
always (> (get each 'resource-1init)

(nth location current-status))))

(defun update-Hash-tables (start 1st}
(loop for (itenl duration) in 1st

as end-tine = (* start duration)
do

(cond ((null (nenber end-tine »ttne-1ist« : test «'=))
(1oop for resource i n (cons 'scheduled-itens «resource-variables«)

do
(suaphash end-ti ne (Get-hash-value end-tine resource nil) (eval resource)))

(setq *t1ne-llst« (sort (cons end-tine (copy-list *tine-list»)) tt'<))))
(loop for tine in (nenber start stine-lists)

until (= end-tine tine)
do

(suaphash tine (append (Gethash tine scheduled-itens) (list itenl))
scheduled-itens)

(loop for resource in 'resource-variables*
do

(suaphash tine ( * (Get-hash-value tine resource)
(get itenl resource)) (eval resource))))))

(defun Get-hash-value (tine resource &optional (not-new t))
(let ((value (gethash tine (eval resource))))

(cond (value value)
(not-new ni1)
(t (gethash (loop with previous = 0

for last-tine in stlne-lfsts
until (>= last-tine tine)
finally (return previous)
do

(setq previous last-tine)) (eval resource))))))

(defun find-resource-candidates (,1st tndpoint start)
(loop for exp in (find-interval-candidates 1st endpoint)

if (check-constraints (add-constrai nt-values (current-status start) exp))
collect exp into resource-candidate-1ist

f inal1y (return resource-candidate-1ist)))

(defun find-interval-candidates (1st tndpoint)
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return vari able)))

(defun feasible-Interval (experintnt tndpoint)
(< (get experinent 'duration ) endpoint))

(defun ffnd-posslble-dounuard-paths (sv 1st)
(let* ((top (car 1st))

(botton (cdr 1st))

ORIGiiMAL PAGE IS.
OF POOR QUAL



ANDY:>jsr>resource-allocation>muItiple-horizontal-fill>niultiple-resources.lispP6ge 6

( val (add-constraint-values sv top) ) )
(cond ((null (check-constraints val)) '(()))

(botton
(loop for doun-1 st on (cdr 1st)

append ( group- inter nediate-1 1sts
top (find-possible-dounuard -paths val doun-lst)) into var

finally (return var)))
(t (list 1st)))))

(defun add-constraint-values (1st exp)
(loop Tor resource in (resource-variables*

for value in 1st
if (null value)
do (setq value 0)

collecting (* value (get exp resource))))

(defun check-constraints (1st)
(loop for resource in 'resource-variables*

for value in 1 st
aluays (apply (get resource ' resource-constraint-funct ion) (list value))
finally (return t) ) )

(defun f fnd-nax-path (tine sv 1st)
( loop uith nax-paths = ni 1

u i th nax-va lue = 0
f or neu-1 st on 1 st
as paths = (find-possible-paths sv neu- 1st)
as value = (get-tine-interval-priority-value (get-group-values (car paths) ) sv)
finally (setq nax- paths (sort-nax-paths nax-paths))

(suaphash tine nax-paths *paths»)
(return (car nax-paths))

do
(cond ((= nax-value value)

(setq nax-paths (append nax -paths paths)))
((< nan-value value) (setq nax-paths paths

nax-value value)))))

(defun sort-nax-paths (paths)
(let ((1st (loop for path in paths

collecting (list path (get-group-values path)))))
(loop for pos in (reverse 'rtaxinizfng-resource-posftion*)

do
(setq 1st (sort 1st 8'> :key (lanbda (x) (nth pos (cadr x))))))

1st))

(defun get-tin e-interyal-priortty-value (v&tues t-s£ ̂ optional ( pos 8) )
( cond ( t/alurs

(*• (nth (nth pos *naxinizing-re3ource-posit(on*) values)
( nth (nth pos Snaxlnlzlng-resource-position*) 1st)))

(t G)))

(defun group-internedlate-lists ( it«n 1st)
( loop for each in 1st

col 1 ect (cons it en each)))

( defun renove-experlnent-fron-schedule-llst («jrp 1st)
( renove exp (copy-1 ist 1st) : test tt* equal ) )

(defun find-posstble-paths ((/a? resourcf-
(let ((1st (find-possibl e-dounuard -paths val re source- candi dates) ) )
(cond ((null lst)( return-fron find -possible-paths ni 1) )

(t (get-naxinized-sub-path 1st)))))

(defun get-naxinl zed-sub-path (paths)
( 1 oop for resource in *fiaxinlzln9-resource-1ist<

for position in tnaxlnlzing-resource-positions
until (= (length paths) 1)
do

(setq paths
(loop for 1st in paths

ui th nax-val = 9
ui th nax- Ists = nil

ORSGilS'AL PAGE IS
OF POOR QUAL5TY



ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lispJ26ge7

as re source- value = (nth position (get- group-values 1st))
finally (return (reverse nax-lsts))
do

( cond ( ( > re source- val ue nax-val )
(setq nax-val resource-value

nax-lsts (list 1st)))
((= resource-value nax-val)
(setq nax-lsts (cons 1st nax-lsts) ))))))

paths)

(defun get-sroup -values (group)
(loop for it en in 'resource -variables*

collecting (loop for each in group
sunning (get each iten))))

(defun current-status (tine)
( 1 oop for each in Sresource-variables*

as value = (get hash tine (eval each))
if (null value)
do (setq value 0)

collecting value))

(defun shoH-scheduled ()
(fornat Sresource-output-uindou* ""2?. Tine ~20tScheduled Events" 2" )
(loop for tine in *tine-list*

do
(fornat *resource-output-MindoM* *"?. ~fl ~20t~fl" tine (get hash tine scheduled-itens)))

( fornat *resource-output-Mindon* m ~2.?.u ) )

(defun shou -re source (resource)
( loop for tine in *tine-list*

do
(fornat t *"?. "fi ~28t~R" tine (gethash tine resource))))

;(defun nake-nouse-sensitive-labels (return object &key (stre&n Sresource-nenu-uindou*)
; (type '1abel-type))
; (dw:uith-output-as-presentation (:single-box t
; :strean strean
; :type type
; :object object)
; (fornat strean (fornat nil "~a~fl" return (cadr object)))))

ORIGINAL PAGE IS
OF POOR QUALITY



ANpy:>]sr>resource-allocation>multiple-horizontal-fill>multiple-resources-graDhical-disp
lays.lisp.6 Page 1

',',', -*- Syntax: Connon-Lisp; Package: USER; Base: 18j Mode: LISP -*-

(defun select-graphical-display ()
(cond ((null "graph!ca!-dlsplay»)

(let ((choice (du:nenu-choose '("Line Graph" "Mo Display")
:pronpt "Type of Graphical Display"
:center-p t
:nininun-uidth 275)))

(setq 'graphical-display*
(cond ((or (null choice)

(string= choice "Line Graph"))
'nornalized-graphical-di splay-of-resources)

((string= choice "Mo Display")
'none)

(t 'nornalized-graphical-display-of-resources)))))
(t (send *graphics-ulndoM> :cleai—hi story)

(send *graphics-ufndoM> :expose)))
(cond ((equal sgraphlcal-dlsplay* 'none) nil)

(•graphical-output* nil)
(t (send *display-nenu* :set-i ten-1i st (nax-valued-resources))

(send *dtsp1ay-nenu* :set-label 'Select Graphics Output")

(send *dIsplay-nenu* :choose)
(setq'graphical-output*

(reverse (send *dlsplay-nenu* :highlighted-values)))))
(cond ((and (not (equal 'graphical-display* 'none)) (graphical-output*)

(cond ((send *graphics-utndoM* :exposed-p))
(t (nultiple-value-bind ( a b e d )

(send *resource-output~Mi ndou* : edges)
(setq *origfna1-screen-size* (list a b c d))
(send *resource-output-ufndou* :set-edges a b c (- d 220))
(send *graphics-uindou* :set-edges a (- d 229)c d)
(send *graphics-u1ndoM* :expose))))

(drau-axi s-for-graph))))

(defun nax-valued-resources ()
(1oop for vari able in Sresource-var i ables*

if* (get variable *resource-linit)
col 1ect resource into varl

finally (return varl)))

(defun graphical-restart ()
(cond ('original-screen-size*

(send *resource-output-uindou* :set-edges (car (original-screen-size*)
(cadr *ori91nal-screen-size*)
(caddr toriginal-screen-size*)
(cadddr *original-screen-size*))

(setq *orig1nal-screen-sfze* nil
'graphical-display* nil
'graphleal-output* nil))))

(defun Initialize-Graph-lnforn«tfon (1st)
(loop for resourcc-nane in 1st

for style in '(nil 2 4 8 12 28 30 58 89)
uith x = 78
uith dy = 1
as resource = (nake-vartable-fron-string resource-nane)
as nax = (get resource 'resource-1 inU)
as y = (- 155 (* dy 158 (/ (gethash 8 (eval resource)) nax)))
collecting (list resource-nane resource style nax x-y) into var
f inal1y (return var)
count i ng t into pos
do

(shou-graph-legend resource-nane style (* 5 (* pos 15)))))

(defun nornalized-graphical-dlsplay-of-resources (1st tine)
(let ((variable

(loop uith dx = (/ 788 *nax-tine*)
ui th dy = 1.8
uith next-x = (* 78.9 (* dx tine))
for (resource-nane resource style nax x y) in 1st
as next-y = (- 155.0 (* 158.8 dy (/ (gethash tine (eval resource)) nax)))
collecting (list resource-nane resource style nax next-x next-y) into var

OR!G!NAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources-gra^gaBdisplays.lisp.6

finally (return (cons next-x war))
do

(graphics:drau-1ine x y next-x y :strean Sgraphics-uindou*
: dashed style :dash-pattern (Hst style style))

(graphics:drau-1ine next-x y next-x next-y :stream Sgraphics-uindou*
:dashed style :dash-pattern (list style style)))))

(graphics:drau-line (car variable) 153 (car variable) 157 :stream >9rapMcs-uindou*)
(cdr variable)))

(defun dray-axis-for-sraph ()
(graphics:drau-rectangle 70 5 959 155 :fi1 led nil :stream sgraphfcs-uindou*)
(send Sgraphics-uindous :set-cursorpos 35 3)
(fornat Sgraphfcs-uindouS "108/>")
(send Sgraphfcs-uindou* :set-cursorpos 55 145)
(fornat Sgraphics-uindou* "0")
(send Sgraphics-uindoM* :set-cursorpos 73 158)
(fornat 'graphics-uindou* "8*)
(send *graphic3-ufndoM> :set-cursorpos 830 158)
(fornat Sgraphics-uindou* ""a" *nax-ttne*)
(send *graphfcs-ulndoH* :set-cursorpos 442 162)
(fornat Sgraphfcs-uindou* "Tine"))

( defun shou-graph-1 egend ( nd/i* sty 11 pos)
(send *graphic3-uindous :set-cursorpos 860 pos)
(fornat >graphfcs-ufndoM* ""a* nane)
(graphics:drau-1i ne 1000 (* pos 4) 1850 (+ pos 4) :stream Sgraphics-uindou*

:dashed style :dash-pattern (list style style)))

(define-presentation-type tine-type ()
:no-deftype t
:parser ((strean) (loop do (du:read-char-for-accept strean)))
:printer ((object strean)

(fornat strean "the selection "a" (car object))))

(define-presentat ion-act ion tine-type
(tine-type t
:gesture :left
:context-independentt
:docunentation "Shou fldditional Infornation about this Iten.")

(•xit)
(throu 'tine exit))



Appendix C
Vax Code Listing for the Multiple Pass

Single Resource Allocation Program

ORIGINAL PAGE IS
C"' OP POOR



vaxcodeJisp >GffiSON>resource-allocation ANDY-TAYLOR: (34) 5/24/89 Page 1

;;; -•- Syntaxi Connon'Llap; Peckas*: USER; Baae: J8; Hod*: LISP -•-

;;; Input and Variable Initialling Function*; ; j

(d*fun vai-tat-tfata-flle-lUt ()
(aetq tdlr-erray« (njke-array (length (directory >8e*ource-F1 1e-01rectoryi ) ) ) )
(do« ((dlr <d(r«etory »R«»owrc«-F1)t-Dlrectoryt ) (cdr dlr))

(path-nan* (e«r dlr) (c*r dir))
(count 8 (1» count))
(ncwpath nil))
((null dlr) naupath)

(«*tq neupalh (append neupeth (ll»t (f 1 le-nanestrlng path-nan*))))
(**tf (ar*f «dlr-«rr«y« count) (f1 1*-nane»trtng p«th-nanc) ) ))

(d«fun »»»-»pe»-liip«i-f I1« ()
(forn«t t "X -2D«t« F«le Lilt •?.-*')
(t«t« ((«nni«)(«n«w»
(do* ({1nfn« (v«x-9«t-d«t«-f f'«-U»t)(cdr Infllc))

(rtl**n«n« (car 1nf11a)(e«r Infllt))
(count 9 (1« count)))
((null 1nf11«)>

(fornat t "7. "«. "H* count flit-nan*))
(Tornat t "X ~2Cno4c«:] ')
(»ttq ansu (read))
(»atq infll« (ar«f »d1r-array> ansu))

(eond (Infl1« (load (str1n9- append i8eaourc*-F11e-01rectory< 1nf1l«)
ruerbose nil)

(setq «current-f11et InfUe)))))

(defun van-Initial lie-fraud ()
(«etr (act 'llst-of 'nane*) nil)
(do« «f1l«t >franeg< (cdr fH«O)

(fra«« (car fllst)(car Mist))
(nana (car franc) (car frane)))

((null f l lat) (9et 'lltt-of 'nanea»
(tetf (get '11«t-of 'nanea) (append (get 'H»t-of %nane») ( 1 < st nane)))))

(defun vaa-lnl II allie-narkcrs-and-var I abl cs ()
(do« ((fllst ifranait (cdr fU.t))

(eac (car MLtMcar fllat))
(nan* (car eac) (car eac)))

((null fH.t) )
(do< <(*H«t (cdr eac) (cdr ellat))

(each (car ellatXcar eU»t»)
((null *H.t) )

(»etf (get nan* (car each)) (caadr each))))
(aetq >en*rgy-1 <at* (Hat '(8 9) (11*t >nax-t1n*« 8))

(d«fun vai-kulld-lUt ()
(let! ((tenp-1l»t r(l»

(do> ((xllst (get 'llit-of 'nan««) (cdr xliit))
(ei<p (car «11st)(car *!<««.)))

((null ullat) tenp-H»t)
(setq tenp-llat (append tenp-llat (Kit (U«t (get exp 'power-required) exp))»)

(aetq tenp-Uat dort (copy-aH>t tenp-1l*t) l'> :k*y I'car))))

;;;;»;;;;;;;;;;;;;;; 1 op L*««l Funct 1 on*; ;;;;;;;;;;;;;; j ;;;;;;;;;

;;;;;; i i ;;;;;; J i I ; i ; i ;; TM PROCRflfl; ;;;;;;;;;;;;;;;;;;;;;;;;;;.;

(defun v«>-»l l»eat*-teja»rc*» ()
(tin* (vax-RI locate -Refources-aux)

(fornat t "3/!««« Progran lining ii«>~2/!')))

(defun van-Klleeata-leiaurces-aui ()
(cend (>«econd-t1n*t t)

(t (w*x-op«n-1nput-f II «)
(jatq <*econd-tfn«* t)»

(v*x-1n1t1al1i*-narker»**nd-war1ab1*«)
(l«t (Oat (wax-bulld-Hst)))

(vax-d1apl*y-p**»-on* ( vax-achedwl*-pa»-one lat))
(vax-d1aplay-pa»a-tuo)
( vax-ahow-us*d)
(v»x-»chedul*-pese-tuo lat)
(uax-dlaplay-paactue t)
(v«x-»hou-u«ed))>

;;;;;;;;;;);;;;!;;; TOP LEWEU FUMCTIOMS ;;;;;;;;;;;;;;;;;;;;;;

(defun ...-,ched«l*-p.,i-.-,* (nll.t) ORIGINAL P/iGE
( 1«t« «t1)(p*raf»«ter»)(l»t (copy-Hat nl1at»(var1abl« '()) (perfornance*) (duration) (tine) (var) ( start

(doi («ntarv/al-t1ne (- «nax-t1ne« atart) (- «««x-tlne« -tart))



vaxcode.lisp >GIBSON>resource-al!ocation ANDY-TTAYLOR: (34) 5/24/89 Page 2

(nex-energy (- «nax-energy« sv) (- tnax-energyt sv))
(group (v*M-fInd-nax-path >v (vax-f 1nd-re»ource-cana'Mtes: • run-energy 1st Interval-t(me) tnax-cnergyf)

(vex-flnd-nax-path sv (vax-f lnd-resourca-c*r.a • J.C.IK • «*«-ervergy 1st Interval-tine) tnax-snergyi))
(variable (««ta variable (append variable (Hit (ean« ii.srtrt g>-ei«))»

(setq variable (append variable (I1«t (cart* scartrt group})))))
((or (« start tneii-Hne«)(nul 1 IstKnull group)) v«r»«c'«)

(setq ver n11)
(cond ((atom group))

(t (»«tq tl (vax-regroup-t1
(do« ((group-list group (edr group-T*«))

((ten (car group-11st)(car 9>-sv«-' <iot)) )
((nunberp Uen) (return v»rl)

(<etq performance* (get (ten 'per*jr--«ncT«:e»))
(setq duration (get <ten 'dur«ti3»:)
(>etq tine (t performance* durac'an')
(If (> tine <nterv*1-tlne)

(>etq tine (« (setq perforn«rc«« (f'~\oor (s Interval-tine duration))) duration)))
(If (> perfornancea 8)

(<etq war (append var (list (">rt •--tten tine p«rfor-nancc* (get I ten 'poyer-requlred))))))
(oetf (get Iten '»cnedu)rd-p«rfar-»«re»»rt)(» performance* (get Itcn 'tcheduled-pcrfornancet)))
(self (get Iten 'perf ornenct*)( - ($et • •nxcn 'performances) perf ornances))
(cond ((<» (- (get He« 'perfori.«r«ce«) -: »erforr»«/»c««) 8.)

detq lit (wax-renoue-e>>p«rt>^nc-:-fro>i-«chedule-11et 1ten 1st))))))'
(vax-updetc-energy-tlit start tl)))

(setq parameters (wax-fInd-neu-paraneters start)
start (car parameters)
sw (cadr paranaters)))))

(d*fun vax-ichedule-paas-tMo (nlst)
(l«t< ((1st (copy-Hat nlst)) («<cen (car tenergy-1 lst»)) .' fc-«r-?y—list 'energy-} (stO (detsl led-11st 'detalled-entrgy-l 1st

>)
(duration)(tlne)(war)(possible-choices) (temp)( (nter-.e"-^nne)(oe»t-energy) )

(do< ((test))
((null elten) (return))

(1et> ((group '((8)))(tl nllXenerjy (cadar energy-1's-: '
(dot ((test))

((null group))
(If (nunberp (car group))

(setq energy next-energy))
(setq possible-choices (vax-non-«chedu1ed 1st (cdar :«•_«> 'cied-11 st)>)
(setq tenp (v/ax-get-pass-tuo-t1me-lnterval energy er«-*̂ y- '•: ist) )
(setq Interval-tine (car temp))
(setq next-energy (cadr tenp))
(setq group (wax-f Ind-nax-path energy (wax-f lod-resc>-»-i»—;a:and<date«

(- tmax-ener^y* «nwr-rgy)
po*s<b1e-c(-o - c«j --tnterval-tlne) tmax-energy>) )

(cond ((and (nunberp (car group))(<* next-energy ere^£..)
(return))

((nunberp group))
<t

(setq energy (• energy (car (last group)))
tl (vax-regroup-tl

(let ((var))
(do* ((gllst group (cdr gllst))

(Iten (car gllst)(c«r gllst;;
(performances nil))

((nunberp Iten) (return var))
(setq duration (get Item "durafsi- '
(setq time (s (setq performances ''sor-- (.f Inter-vat-t Ime duration))) duration))
(If (> performances 8)

(setq <var (append var (list >' ' -st item tine performances (get Iten 'power-required))))))
(setf (get Item 'scheduled-perf sr--<ne«3e;s)( • performances (get Item 'scheduled-perf ormances)))
(setf (get Iten "perf ornaocesX - ! j«t item 'performances) performances))))))

(vax-update-energy-llst (car elten) t1)
(setq energy-list (member (car elten) tenergy—'•it* :test t'* :key i'car)

elten (car energy-list)
' detalled-Hst (nenber (caar d«ta1led-l • n;

•detailed-energy-1-«-i :test •'• :key I 'car))))))
(setq energy-list (cdr energy-list)

elten (car energy-list)
detailed-list (cdr detailed-list)))))

(<5efun van-dliplay-pasi-ene (1st)
(format t '-«* •»"• FIRST r«(t RESULT* ****'*')
(format t ' ~2Z~19tl1ne'28tEnersy*38t£xper1nent Started'!';
(dot ((list 1st (cdr list))

(Iten (car HstKcer list))
(tine (car Item) (car Item))
(value '.car (last Item)) (car (last I tem))))

((null Iten) ) ^—. — .»,., ~
(cond (« 8 value) ORIGf^L PAGE !§

(format t i-Z"JBt*B-28fB-38f«t tine value (rev«r-»e : cc- (reverse !cdr .-.an))))))))) -.— POO9 OlIALfTV

(defun »a«-tflspJar-eas*-»«e (toptlonel title)
(1f title (format t "*?. «>•> (CCONO fKSS lEEULTS us.')



vaxcode.!isp >GEBSON>resource-allocation ANDY-TAYLOR: (34) 5/24/89 Page 3

(fornat t '^Z-StHne'lStexpeMnenta Currently Being Conducted'SStPover Required'*')
(dot (OUt • detalled-cnergy-Hat> (cdr Hat))

(< tcn (car HetXcar H«t»
(eMet 'energy-Matt (edr «H«t))
(other (car allatXcar *lUt»)

((or (null 1tan)(nul1 other) ))
(fornat t ••JrSt-fl'lSfn"63fR' (e«r Uen) (cdr (ten) (eedr other))))

(defun v«»-ihon-«ied ()
(format t '-sa-lBTIten-ZatRenalnlng^BtScheduled-:!1)
(do« ((Hat (get "Mst-of 'nanesXcdr lf«t»

(tten (cer HetMear Hat)))
((null (ten) )

(forme t "?.~191~R~23t~R~*3t~H' Iten (set Iten 'perfornancea) (set (ten 'acheduled-perfornancea))))

i i l i l i i i i i S i i i l i i i SECOMD PflSS FUNCTIONS ; ; ; j ; i ; ; j ; i i ; ; ; ; ; ; i ; ; i

(defun vax-nen-»cheduled (lat uaed)
(let ((poaalbla lat))

(dot ((IMat uaed (cdr 1Mat)>
(Uen (car 111at)(cer 1l1at)))

((null IMet))
(aetq possible (renowc Utn possible :teat I'equal :key I'cadr)))

possible))

(defun vax-get-pasi-tiia-tliia-lnterval (energy energy-Mat)
(let ((start (caar energy-Hat)))

(*f (» atart >nax-t(n«») (return-fron waK-9et-paa*-tuo-t<ne-<nterval '(8 8)))
(do" ((( ten (cdr energy-11st) (cdr 1ten»

(end (caar 1ten)(caar Uen))
(power (cadar 4ten)(cadar I ten)))

((or (null (cdr ( ten))(< energy power)) (return (Hat (- end atart) (cond ((< energy power) power)
(t energy))))))))

•;;:;;;;;;;;;;;;;;; Connon Path Functions ;;;;;;;;;;;;;;;;;;;;;

(defun v«»-fInd-neii-peraKeten (current)
(cadr (nenber current tenergy-11st« :test »'- :key I'car)))

(defun va>-regro«p-tl (lat)
(sort (copy-Mat lat) l'< :key '(lanbda (xXcadr H))))

(defun va«-upd«te-ener(y-llit (atart lat)
(leti ((energy 'OKdetaHed 'OXex f t t)(t<ni>)(peuer) (old-power) (old-data* led-powar)«tcnl))

(do ((Mat lat (cdr Mat)))
((null Mat))

(aetq <tenl (car Mat)
old-power nil
old-detailed-power nil
tine (• atart (cadr Henl))
power (get (car Henl) 'power-required))

(let' ((end-energy (cdr tenergy-l 1atO)(end-deta1 led (cdr "detal led-energy-M stO )(et1ne)( Uen2)(deta1 led-lten) (exl t t
)

(energy)(deta1led))
(do ((MatJ ienergy-Hat« (cdr Mat2»

(Mat3 ideta1led-energy-Mat> (cdr I1at3))
(Mat4 (cdr (energy-Mat*) (cdr Hat4))
(MatS (cdr <dcta1lcd-energy-Mati) (cdr MatS)))

((or (null 11«t2) (null MatS) (null exit))
(aetq 1ten2 (car M«t2))
(aetq 'energy-Mat* (append energy end-energy)

•detalled-energy-llat* (append detailed end-detailed))
(cond ((not (nenber tine •energy-Matt :teat l'« :key I'car))

(aetq >deta<l«d-encrgy-Matt
(aort (copy-Mat (cona (cona t1n« old-deta1 led-power)

*deta11ed-energy-11at«}) •'< :Key fear)
•energy-Matt (aort (copy-Mat

(cona (Mat tine old-power)
• energy-Mat')) «'< :kcy I'car)))))

(aetq 1ten2 (car Mat2)
detalled-lten (car MatS)
etlne (car 1ten2))

(cond ((or (< tine etlneXnull Mat4)(null MatS))
(aetq exit nil))

(t))
(aetq end-energy Mat4)
(aetq end-detailed MatS)
(aetq energy (append energy {cond ((or (• atart et1ne)(< atart etlne tine))

(setq old-power (cadr 1ten2)
old-dctalled-power (cdr detalled-lten)
detalled-1ten (append detalled-lten (Mat (car Uenl))))

(Mat (Mat .-.:ne (• (cadr 1ten2) power))))
(t (Mat Ucn2)))))

(aetq detailed (append detailed (Mat detai ltd-ittn)))))))) OREQINAL PAGE DS

OF POOR QUALITY
C-U



vaxcode.lisp >GIBSON>resource-alIocation ANDY-TAYLOR: (34) 5/24/89 Page 4

(defun vaa-flfte'-reseurce'cafts'f dates (available-energy 1st endpolnt)
(Ittl «resourcs-cand1dete-11st))
(do* (OUt (vex-f 1nd-1ntervel-cend1detesj let endpolntHcdr 11st))

(e»p (ear 11st)(car 11*t)))
((nut) HstHratvrn reseurce-eandldaie-1 I st))

(if (<« (ear «HP) evallable-erwrgy)
(setq resource-cend1dat«-11st (append resource-candidate-' 1st (l(»t cxp)))))))

(dtfun v««-f I»s-liittrva1-e«iis'ldate» (1st endpolnt)
(let ((variable))
(do* «H«e 1st (cdr list))

(CMP (c.r UstXeer lUt)))
((null Hit) (return variable))

(If (vax-feeslbls-lntervel exp cndpolnt)
(•ttq variable (append v*r1*blt (Hat op)))))))

(defun v«*-fc«jtblc-lnttrv*l (experlncnt tndpolnt)
(< <9«t (cadr cxpertncnt) 'duration) tndpotnt))

(dcfun
(l.t
(If (null (ear 1st) )(return-fron w«x-f 1nd-po«*1bl*-dounu«rd-p«thB (11«t »w)))
(l«t <(v«! <• »v (c««r l«t)»{top (c«d«r 1»t)))
(cond ((> val nax-energy)(return-fron w«x-f 1nd-po«i1bl«-douni/«rd-p»th» (H«t (Hit »«))))

((or (a wal n«K-cner9y)(nu11 (ccdr 1st)))
(relurn-fron vaK-r<nd-possib1c-dounwsrd-p«ths (list (Mat top val)))))

(do* ((doun-lst (cdr 1st) (cdr douo-l.t)))
((null (car down-lst)) (raturn war))

(setq «ar (append war (vax-9roup-1nternedlatt-l tats top (vax-flnd-posslbla-dounward-paths val down-lst n«*-ener3y) ) )

(defun v««-f t«4-na«-path (sv 1st nax-enersy)
(lee ((path))
(do' ((neu-lst 1st (cdr neu-lst))

(nax-path '(8»
(path (vax-Mnd-posslblc-paths sv neu-lst na»-«nergy) ( v«*-f 1nd-poss(bl«-paths sv neu-lst nax-energy)) )
({null new-lst) (return nan-path))

(if (> (car (last path)) (car (last nax-path))) (satq nax-path path))
(<f (* (car (last nax-path) ) nan-energy) (return nax-path)))))

(defun «ax-(raup-lnternedlate-llsts (1ten 1st)
(let ((neullst nil))
(do> ((11st 1st (edr list))

(each (car I1»t)(car list)))
((null 11st) neullst)

(setq neullst (append neullst (list (cons Iten tach)))))))

(defun v««-rmov«-«»per lntnt-frcn-jchedule-1 1 Jt (exp 1st)
(renova exp (copy-list 1st) :tast f equal :key I'cadr))

(defun va«-f Ind-pesslblc-pathi (val resource-candidate* nax-enargy)
(let ((1st (vax-f 1nd-poss<ble-dounuard-paths val resource-candidates nax-enargy)))

(cond ((aton (car 1st) )(return-fron vax-f 1nd-poss1b1«-paths nil))
(t

(do* ((Hst 1st (cdr list))
(Itan (car KstXcar list))
(nax (car (last (car (sort (copy-list 1st) i'> :key '(lanbda (x) (car (last »)) ) ) ) ) )

(car (last (car (sort (copy-list 1st) l'> :key '(lanbda (x) (car (last x ) ) ) ) ) ) ) ) )
((» (car (last Iten)) nax)(return (ten)))))))

C-5
ORIGINAL PAGE IS

OF POOR



ANDY-TAYLOR:>^ibsoon>resource-aHocation>data>fifty-frames.data.l 4/27/89 Page 1

;;; ... Mode : LISP; Syr-i**:' Co=Bor.-lisp; Package: USER; Base: 10 -•-

(setq "frames* ' ( ( a l ? («r?«rira«nt.-r.-jmber ID)
<pc««T-r«<r-ired (10000.0)) .
(dcrrction (22) )
(pec^xorrur.ces (2) )
(se=i*t*dule<l-performance3 ( 0 ) ) )

(asi ierp««riiBent-r.uinber ( 2 ) )
•:pcwer-r«<r.:ir«d (8500 .0) )
;r.r action (18) )
.perriorr^r.cea (2) )
!jcr.«i*duled-performances ( 0 ) ) )

ianS <t*p«*riB>enc-r.umber (3))
f?o«»er-re<r-ired (1566 .7) )
i=ura-ation (18) )
iper-rf orrr^.-.ces ( 3 ) )
ocr.meduleii-performances ( 0 ) ) )

(aSJ icxoweriroer.r-r.umber ( 4 ) )
iccw«er-r«<T-ir«d (15000.0))
icuraration ( 3 2 ) )

es (10))
performancea (0)))

(bt; (er?«criirer.c-r.U!Eber (5))
(?o*«cr-required (480.0))
; --rac.t i or. (IS!))
•;p«rro.orir̂ r.ces (1))
;s~«x=ule<:~p«rformance3 (0)1)

(bai .«xoa)erir'«r.̂ -r.umber (T))
,.=<»«er-req%;:.red (5125. 0))
±i=xation ( 4 8 ) )
parTforr-.a.-.ces ( 1 ) )
scr::neduiei-?«rf ormancea ( C ) ) )

(c;«* ajcoto«rir«r. ;- number ( 9 ) )
?=*wer-req--:ir«d ( 4 0 0 0 . 0 ) )
au^raticr. :H9) )
p*crforr-a-=es ( 5 ) )
scrrnedulec-p«rf ormances (0) ) )

(cprf ejcacpe r i r« r. ̂  - number (10) )
-jired ( 5 0 0 . 0 ) )

(e«f

p«erfor^--ar.c«s (1 ) )
acrrneduled -performances ( 0 ) ) )
ex=cp«ri:ie-i-number ( I D )
?oower-r*<r---r«d (500.0))
ou^raticr. (10) )
p«-cr£orr-a.-.c*s ( 2 0 ) )
acrrnedu.'.ec-performancea ( 0 ) ) )

ri.T«.-.t- number ( 1 2 ) )
req-Jired (15000.0))

:»rrf orrva.-.ces (1))
ce3 ( 0 ) ) )

ri3w.-t -number (13))
?o>«»er-req-jired (725. 0) )

j-jurratior. (7) )
:p«rrrf orrnar.c«a ( S ) )
:»<=nedul»-i-p«rformance3 ( 0 ) ) )

f :ajeatperii>«r.t- number ( 1 4 ) )
:pocm«r- required ( 1 ° 7 2 S . O ) )
••(r.rvratior. (1) )
p«erforw*r.=es ( 5 ) )
s:r=cieduled-performance3 ( 0 ) ) )

( I l f axrxoeriner.t -number (15 ) )
paower- retired (8836 .7 ) )
0-iurat.icr. ( 3 4 ) )
?««r*or=a.-.e«s ( 5 ) )
=^cnedulei-perf ormanccs ( 0 ) ) )

( I S ) )
( 2 0 8 0 . 0 ) )

ri-jraticr. ( 3 2 ) )

-j.ez-p«rf ormances ( 0 ) ) )
exacoeri =>•.-.: -number ( 1 7 ) )

3=>ow«r-re— -ired (1108.3))
ai-ura^-.sr-. (61)
3wr;crr.a.-.c«3 ( 5 ) )

C-7

ORIGINAL PAQI |§
OF POOR QUALITY



ANDY-TAYLOR:>gibson>resource-allocation>data>fifty-rrames.data.l 4/27/3^Page!

(scheduled-performances (0) ) I
( h t f f (experiment-number (18|)

(power-required (6000 .01 )
(duration ( 1 3 ) )
(performances (2) )
(scheduled-performances ( 0 ) ) )

( i f f (experiment-number ( 1 9 ) )
(power-required ( 3 0 0 0 . 0 ) )
(durat ion (11) )
(performances (S))
(scheduled-performances (0)))

(Irf (experiment-number (20))
(power-required (1500.0))
(duration (57))
(performances (11)
(scheduled-performances (0)))

(ofpf (experiment-number (22))
(power-required (5000.0))
(duration (24))
(performances (2))
(scheduled-performances (0)1)

(opcqf (experiment-number (23))
(power-required (1650.0))
(duration (13))
(performance's (2))
(scheduled-performances (0)))

(pqcf (experiment-number (24))
(power-required (620.0)1
(duration (8>)
(performances (20))
(scheduled-performances (0)1)

(pcqf (experiment-number (25) )
(power-required (6000.0))
(duration (55)1
(performances (II)
(scheduled-performances (0)))

(rscf (experiment-number (26) )
(power-required (550.0))
(duration (12))
(performances (2))
(scheduled-performances (0)))

(scf (experiment-number (26)1
(power-required (3160.0))
(duration (34))
(performances (1))
(scheduled-performances (0)))

(vcf (experiment-number (29))
(power-required (12490.0))
(duration (951)
(performances (IP
(scheduled-performances (0)))

(vf sqf (experiment-number (30) )
(power-required (5710.0))
(duration (12))
(performances (3) )
(scheduled-performances (0)))

(zaa (experiment-number (3D)
(power-required (750.0)1
(duration (30))
(performances (2) )
(scheduled-performances (0) ) )

(zab (experiment-number (32))
(power-required (1000.0))
(duration (15)1
(performances (1) )
(scheduled-performances ( 0 ) ) )

(zac (experiment-number ( 3 3 ) )
(power-required ( 6 6 3 . 0 ) )
(duration ( I S O ) )
(performances (4))
(scheduled-performances (0)))

(zad (experiment-number (34))
(power-required (987.0))
(duration (10))
(performances (3))
(scheduled-performances (0)))

ORSGINAL PAGE IS
OF POOR QUALITY

C-8



ANDV-TAYLOR:>gibson>resource-alIocation>data>fifty-frames.data.l 4/27/89 Page 3

(zae (experiment-number (35))
(power-required (10000.0))
(duration (30))
(performances (211
(scheduler-performances (0)))

(zaf (experiment-number (36))
(power-required (600.0))
(duration (IS))
(performances (5) )
(scheduled-performances (0)))

(za<5 (experiment-number (37))
(power-required (7000.0))
(duration (75))
(performances (D)
(scheduled-performances (0)))

(zah (experiment-number (38))
(power-required (SOO.O))
(duration (10))
(performances (9))
(scheduled-performances (0)))

(zai (experiment-number (39))
(power-required (1500.0))
(duration (ID)
(performances (D)
(scheduled-performances (0)))

<zaj (experiment-number (40)1
(power-required (2075.0))
(duration (7))
(performances (1))
(scheduled-performances (0) ))

(zak (experiment-number (41))
(power-required (15000.0)1
(duration (250))
(performances (D)
(scheduled-performances (0)))

(zal (experiment-number (421)
(power-required (480,0))
(duration (190))
(performances (D)
(scheduled-performinces (0)))

(zam (experiment-number (43))
(power-required (3000.0))
(duration (ID)
(performances (S)>
(scheduled-performances (0)))

(zan (experiment-number (44))
(power-required (8000.0))
(duration (13))
(performances (2) )
(scheduled-performancos (0)))

(zao (experiment-number (4S))
(power-required (1108.3))
(duration <6»
(performance* (5))
(scheduled-performances (0)))

(zap (experiment-number (46))
(power-required (5125.0))
(duration (48))
(performances (1) )
(acheduled-performances (0) ))

(zaq (experiment-number (47))
(power-required (725.0))
(duration (7))
(performances (1) )
(scheduled-performances (0)))

(zar (experiment-number (48))
(power-required (10000.0))
(duration (22))
(performances (2) )
(scheduled-performances (0)))

(zas (experiment-number (49))
(power-required (8500.01)
(duration (18))
(performances (2))
(scheduled-performances (0)))

(zat (experiment-number (SO))

C-9 OF POOR QUALITY



Appendix D
Symbolics Code Listing for the Multiple Pass-

Single Resource Allocation Program

D-l



ANDY-TAYLOR:>jsr>resource-allocation>resource-variabIes.lisp.2 3/03/89 Page 1

... ... syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -»-

; ; ; ; ; ; ; ; ; ; ; ; ; ; Glob«l V«rl»bl«« ; ; ; ; ; ; ; ; ; ; ; ;

(defvar •mjuc-«n«cgy* 15000)

(defvar *frun«s*> ;; Loaded f rom data f i le .

(defvar *m*x-tlm«* 2160)

(defvar •«n*ro^-li>t*)

{defvar «det«il«<l-«n«rgy-li»t* ' ( ( 0 ) ) )

(defvar 'second-tint** n i l )

(defvar *curr«nt-fil«* "")

(dofvar «R««ourc%-ril«-Dir«ctory* "andy : > jsr>reaource-allocation>data-f i lea> M )

(defvar *r«»ourc»««)

(defvar *r««ourc*-v«riabl«**)

(defvar *r««ource-m«nu-window* ( tv : make-window • dw :dynamic-«indow
: label "Experiment Data Editor Window"
:blinker-p t ) )

; (defvar *D»t«-choic«»-in«nu* ( tv: make-window • tv:momentary-menu
; : border a 4

: label "Alternate D»t» File Li«f)>

(defvar *m«»»*g«-»indow* (tv .-make-window ' dw: dynamic-window
:blinker-p nil
:edge«-from • (300 300 850 400)
: margin-components
' ( (dw:margin-scroll-bar visibility :if-needed)

(dw : margin-ragged-borders : thickness 4)
(dw: margin- label

: margin bottom-
string 'Vtoaaag* Window (Pr»»* any k«y to EXIT).")))}

(defvar *ront» (si :backtranslate-font
(fed: read-font-from-bfd-f ile "sys: fonts; tv; 40vr.bfd. newest" ) ) )

ORIGINAL K'-:'£. «$
OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/8908:16:53 Page 1

;;; -•- Mode: LISP; Syntax: Common- lisp; Package: USER; Base: 10 -•-

; ; ; ; ; ; ; ; ; ; ; Input and Variabl* Initializing Function* ; ; ; ; ; ; ; ;

(defun op*n-input-fil« ()
(lot ( ( inf i le (dw: menu-choose (get-data-file-list)

: prompt "Data Fila List")))
(cond ( i n f i l e (load (string-append *JU»ovirc«-Fil«-Dir«ctory* i n f i l e )

: verbose n i l )
(initialize- frames)
(setq *curr«nt-fil«* i n f i l e ) ) ) ) )

(defun initi*liz*-fr*jn*» ()
(zl:putprop 'list-of nil 'names)
(loop for frame in *truu»f*

as name - (car frame)
do

(zl:putprop 'list-of (append (get 'list-of 'names) (list name)) 'names) ))

(defun inlti«llt«-ra«rk«r»-«nd-v*rl*bl«» ()
(loop for eac in *fr«m<*

aa name « (car eac)
do

(loop for each in (cdr eac)
. do

(zl:putprop name (caadr each) (car each))))
(setq *«n«rgy-li»t« (list '(0 0) (list *m«x-tim«* 0))

'((0))))

(defun build-li»t ()
Ul:sortcar (loop for exp in (get 'list-of 'names)

collect (list (get exp 'power-required) exp)) '>))

:Top Laval Functions;

:;;;MAIM PROGRAM;;;;;

(de fun ltlloc«t«-R»«ourc»» ()
(time (Allocate-Resources-aux)

(format t "-3%**** Program Timing ****-2%")) l

(defun A-lloc«t«-R««ourc««-«ux ()
(cond (•••cond-tia** t)

(t (open-input-f i le)
(setq *s«cond-tiM* t ) ) )

( ini t ial ize-markers-and-variables)
(let ((1st (bu i ld - l i s t ) ) )

(display-pass-one (schedule-pass-one 1s t ) )
(display-pass-two)
(show-used)
(schedule-pass-two 1st)
(display-pass-two t)
(show-used)))

TOP LEVEL FUNCTIONS

(defun »ch*dul«-pm««-on« (n la t )
(let ( ( t i ) (parameters) (1st (copy-list n l s t ) ) )

(loop wi th start - 0
wi th sv - 0.0
until (or (= start *m«x-tim«*) (null 1st))
as interval-time » (- *m«x-tlm«* s tar t )
as max-energy » (- *m*x-«n«rgy* sv)
as group •> (find-max-path sv (find-resource-candidates

max-energy 1st interval-time) *m*je-«n«rgy<)
until (null group)
collecting (cons start group) into variable
f ina l ly (return variable)

do
(cond ( (a tom group))

(t
(setq ti (regroup-ti ORSGSNAL PAGE IS

(loop for i tem in group _
unti l (numberp i tem) OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/8908:16:53 Page 2

&a performances - (gee item 'performances)
as duration - (get item 'duration)
as time - (• performances duration)
if (> time interval-time)
do (setq time

(* (setq performances
<zl:fix (/ interval-time duration))) duration))

if (> performances 0)
collect (list item time performances

(get item 'power-required)) into var
finally (return var)
do

(zl:putprop item (+ performances (get item ' scheduled-performances))
'scheduled-performances)

(zliputprop item (- (get item 'performances) performances) 'performances)
(cond ((<- (- (get item 'performances) performances) 0.)

(setq 1st (remove-experiment-from-schedule-list item 1st)))))))
(update-energy-list start ti))) .-.-Modifies the global variable 'energy-list*
(setq parameters (find-new-parameters start)

start (car parameters)
sv (cadr parameters)))))

(defun »ch«dul«-p«»»-tvo (nJ.se)
(let ((1st (copy-list nlst))(eitem (car *«n«rgy-li»t«)) (energy-list *«n«rgy-li«t«)

(detailed-list *d«t«il«d-«n«rgy-li»t«) )
(loop

do '
(cond ((null eitem) (return)))
(loop with group = '((0))

with ti = nil
with energy = (cadar energy-list)
if (numberp (car group))
do (setq energy next-energy)

as possible-choices = (non-scheduled 1st (cdar detailed-list))
as (interval-time next-energy) = (get-pass-two-time-interval energy energy-list)
do

(setq group (find-max-path energy (find-resource-candidates
(- *m«x-«n«rgy* energy)
possible-choices intervai-time) *max-«n«rgy*))

(cond ((and (numberp (car group))(<= next-energy energy))
(return))

((numberp group))
(t
(setq energy (+ energy (car (last group)))

ti (regroup-ti
(loop with performances » nil

for item in group
until (numberp item)
as duration " (get item 'duration)
as time « (• (setq performances

(zl:fix (/ interval-time duration)))
duration)

if (> performances 0)
collect (list item time performances

(get item 'power-required)) into var
finally (return var)
do

(zl:putprop item ( + performances
(get item 'scheduled-performances))

'scheduled-performances)
(zl:putprop item (- (get item 'performances) performances)

'performances)
)) )

(update-energy-list (car eitem) ti) ;.-Modifies the global variable 'energy-list'
(setq energy-list (member (car eitem)

••n«rgy-li«t* :test l'= :key t'car)
eitem (car energy-list)
detailed-list (member (caar detailed-list)

*d*tail«4-*n«rgy-li*t* :test f= .-key I'car)))))
(setq energy-list (cdr energy-list)

flitem (car energy-list)
detailed-list (cdr detailed-list)))))

(defun di»pl»y-p«»»-on« (1st)

(format t "-4% •••« FIRST PASS RESULTS ••*•-%") ©KfGHV^'l p-^C IK?
(format t "-2»-10tTime-20tEnergy-30tExperiment Started-%") - ' '"~



ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/889 08:16:53 Page 3

(loop for item in 1st
as time - (car item)
as value - (car (last item))
do

(cond <(< 0 value)
(format t "-%-10t-A-20t-a-30t-a" time value (reverse (cdr (reverse :=r i;e-),,))))))

(defun dl»pl«y-p«»«-t*o (toptional title)
(if title (format t "-4% **** SECOND PASS RZSOXI3 •**•"))
(format t "~2%-5tTime-15tExperiments Currently Being Conducted-6Ct?ower -d--_i_ire = -%" i
(loop for item in *d«t«il«d-«n«rgy-ll»t»

for other in *«n«rgy-li»t*
do

(format t "-%-5t-a-15t-A-63t-A" (car item) (cdr item) (cadr other))))

(defun »how-u»«d ()
(format t "-3%-10TItem-20tRemaining-40tScheduled-%")
(loop for item in (get • list-of. • names)

do
(format t "-%-10T-A-23t-a-43t-a" item (get item 'performances)

(get item 'scheduled-performances))) )

Sacond Paa* Function*

(defun non-«ch«dul*d (1st used)
(let ((possible 1 s t ) )

(loop for item in used
do

(setq possible (remove item possible :test I'equal :key I'cadr)))
possible))

(defun g«t-p«««-two-tima-int«rv«l (energy energy-list]
(Jet ((start (caar energy-list)))

(if (= start *MX-tiin«*) (return-from get-pass-two-c i.-ne-interval ' (C :
(loop for (end power) in (cdr energy-list)

until (< energy power)
finally (return (list (- end start) (cond ( (< energy power- pc-.-sr

(t energy)))))))

Common Pan* Function*

(defun find-n«w-p«r»m«t«r« (current)
(cadr (member current *«n«rgy-H; » :test »'= :key I'car)))

(defun r«<jroup-ti (1st)
(sort (copy-list 1st) f'< :key '(lambda (x)(cadr x))))

(defun upd»t«-«n«rgy-li»t (start 1st)
(loop for iteml in 1st

as old-power = nil
as old-detailed-power » nil
as time = (+ start (cadr iteml))
as power • (get (car iteml) 'power-required)
do

(loop for item2 in *«n«rgy-li»t*
for detailed-item in *d»t»il«d-«n«rgy-li»t«
as etime " (car item2)
until (< time etime)
for end-energy - (cdr *«n«rgy-li«t*l then (cdr end-energy)
for end-detailed = (cdr *d«t*il«d-«n«rgy-li»t*) then (cdr end-ce-i-le<3c
collecting (cond ((or (= start etime)(< start etime time))

(setq old-power (cadr item2)
old-detailed-power (cdr detailed-item)
detailed-item (append detailed-iterr. ( i ^ a t :i^r -;e.T.l) ) ) )

(list etime (••• (cadr item2) p o w e r ) ) )
(t item2»

into energy
collecting detailed-item into detailed
f ina l ly (setq *«n«r?y-li*t* (append energy end-energy)

*d«t«ll«d-«n«rgy-li»t* (append detailed end-details,
(cond ( ( n o t (member time *«n»rgy-li»t« :test l'= : *ey *';j-:

(setq *d»t«il»d-«n«rgy-li»t*
(sort (copy-list (cons (cons time old-detai".«ti--:i-ower'

•d«t»il«d-«n«rqy-li*c» - '< :*ey » 'ca r )
*«n*rgy-liat* (sort (copy-list

(cons ( l is t ti.T.e oli-ecv<jr /M^IMIKIJII ~
ORIGSNAL PAGE IS

D~5 OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-a!location>resource.lisp.7 3/03/89 08:16:53 Page 4

••n«rgy-li«t*)) »•< :key I*car)))))))

(dafun £ind-r««ouro*-OAadidat«* (available-energy 1st endpoint)
(loop for exp in (find-interval-candidates 1st endpoint)

if (<- (car exp) available-energy)
collect exp into resource-candidate-list
finally (return resource-candidate-list)))

(defun find-lnt»rv«l-cmndid«t«» (1st endpoint)
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return variable)))

(defun f»a»ibl«-lnt«rv«l (experiment endpoint)
(< (get (cadr experiment) 'duration ) endpoint))

(defun find-po»Blbl«-downw«rd-p»th« (av 1st man-energy)
(if (null (car 1st))(return-from find-possible-downward-paths (list sv)))
(let ((val ( + sv (caar 1st))I(top (cadar 1st)))
(cond ((> val max-energy)(return-from find-possible-downward-paths (list (list sv))))

( (or ( = val max-energy) (null (cadr 1st)))
(return-from find-possible-downward-paths (list (list top val)))))

(loop for down-lst = (cdr 1st) then (cdr down-lst)
while (car down-lst)
append (group-intermediate-lists

top (find-possible-downward-paths val down-lst max-energy)) into var
finally (return var))))

(defun find-ouuc-pmth (sv 1st max-energy}
(loop with max-path = '(0)

for new-lst = 1st then (cdr new-lst)
while new-lst
aa path « (find-possible-paths sv new-lst max-energy)
finally (return max-path)
do

(if (> (car (last path)) (car (last max-path))) (setq max-path path))
(if (= (car (last max-path)) max-energy) (return max-path))))

(defun group-int*rmdiat«-li*t* (item 1st}
(loop for each in 1st

collect (cons item each)))

(defun r«mov«-«jcp«riai*nt-from-*ch*dul«-li«t (exp 1st}
(remove exp (copy-list 1st) :tesr. •'equal : key »'cadr))

(defun find-po«»ibl«-p*th« (val resource-candidates max-energy)
(let ((1st (find-possible-downward-paths val resource-candidates max-energy)))
(cond ((atom (car 1st))(return-from find-possible-paths nil))

(t
(loop with max = (car (last (car (sort (copy-list 1st) »*>

:key '(lambda (x) (car (last x)))))))
for item in 1st
until (• (car (last item)) max)
finally (return item))))))

ORSG3MAL PAGE IS
OF POO* QUALITY



ANDY-TAYl,OR:>jsr>resource-allocation>muIt!ple-resource-variables.Iisp.6 Page 1

... ... syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -•-

;;;;;;;;;;;;;;Globml V*xi«bl««;;;;;;;;;;;;

(defflavor selection-menu ()
(tv:drop-3hadow-borders-mixin
tv:multiple-menu))

(defflavor shadowed-cv-window ()
(tv:drop-shadow-borde rs-mixin
dw;dynamic-window))

(defvar *fr*a»»«*) ;; Loaded from data file.

(defvar «m«x-tiBi«*)

(defvar *tim»-li«t«)

(defvar *lunbd*-li«t«*)

(defvar *p«th«*)

(defvar *origin«l-«cr««n-«iz«* nil)

(defvar. •••eond-tia»* nil)

(defvar *current-file* "")

(defvar *R««ourc«-Fil«-Dir»ctory* "andy:>jsr>re3ource-allocation>multiple-data-files>")

(defvar *r««ouxc«««)

(defvar *r««ourc«-v«ri»bl«»*)

(defvar *r««ourc«»-output* nil)

(defvar »ch»dul«d-it«m«)

(defvar *mAXio>lxing-r«aourc«-li»t*)

(defvar *m*ximlxing-r«»ourc«-po»ition*)

(defvar *7r«pM.c«l-output* nil)

(defvar *gr«phic«l-dl«pl«y* nil)

(defvar •r««ourc«-output-window* (tv:make-window •dw:dynamic-window
: label "Resource Allocation Window"
:blinker-p n i l ) )

(defvar *dl*play-nmnu* (tv:make-window
•selection-menu
:label "Select Displayed Output"
:default-character-style '(:fix :roman :large)
:special-choices '(("Selection Complete" :funcall-with-self complete))))

(defvar *r«*ourc*-in*nu-windoir* (tv:make-window • dw:dynamic-window
: label "Experiment Data Editor Window"
:blinker-p t ) )

; (defvar *0«t«-choic««-in«nu* (tv:make-window • tv:momentary-menu
; : borders 4

: label "Alt«rn«t« Data Fil« Liat") )

(defvar *m««»«g«-window« (tv:make-window •dw:dynamic-window
:blink.er-p nil
:edges-from •(300 300 850 400)
:margin-components IftBiriNAI
• «dw:margin-scroll-bar visibil i ty : if-needed) URIOll^ML.

(dw:margin-ragged-borders :thickness 4) Qf POOR QUALITY
(dw:margin-label

:margin :bottom
: string 'VU»«ag« Window (Prm** any k«y to EXIT)"}}}}



ANDY-TAYLOR:>jsr>resource-aIlocaDan3>TnuItiple-resource-variables.lisp.6 Page 2

fde fva r *9raphlc« -window* (tv: make- window • 3»: ^-=yr-a=ic-wi.-.da«»
r-r r__
"fiexurtTcc Allocation Graphics Display") >

(defvar *Font* (si :backtranalate-font
(fed: read-font-f rom-bfd-5i-< ' rzys : -ir.t a; zv; < Ivr.bfd. newest" ) ) )

OF POOR



ANDY-TAYLOR:>jsr>resource-allocation>muItiple-resources.lisp.24

;;; -•- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -•-

4/08/8&

•Input and Variable Initialiring Function*;

(defun op»n-input-fil« ()
(let ( ( in f i l e (dw: menu-choose (get-data-f i le- l is t )

: prompt "Data Fil« Liat" )))
(cond ( i n f i l e (load (string-append *R«»ourc«-Fil«-Dir»ctory* i n f i l e )

:verbose nil)
( in i t i a l i ze - f rames)
(setq * current -fil«* i n f i l e ) ) ) ) )

(defun
(zl:putprop 'list-of nil 'names)
(loop for frame in *frmo>***

as name - (car frame)
do

(zl:putprop ' list-of (append (get • list-of 'names) (list name)) 'names) ))

(defun d«t*rmin«-m«ximizing-r*iourc« ()
(setq •maximizing-r««ourc«-li»t* (prioritize-resource-list)

*m*jcimixing-r««ourc«-po»ition*
(loop for resource in *m«jcimiiing-r«»ourc»-li»t*

collecting (position resource •r««ourc«-v«ri«±>l«»«) ) ) )

(defun r«««t-l«jabd«-function« ()
(loop for (resource priority max-val lambda) in *lambd«-ll»t»*

do
(zl:putprop resource max-val 'resource-limit)
(zi:putprop resource priority 'resource-priority)
(zi:putprop resource lambda 'resource-constraint-function)))

(defur. initi«liz«-h««h-t*bl«« ()
(let ( (parameters

(loop for resource-item-string in *r««ourc«»*
as resource • (make-variable-f rom-string resource-item-string)
collecting resource into var
collecting 0 into value
finally (setq *r»«ourc«-v»riabl««* var)

(return (list (append ' ("paths' scheduled-items) var)
(append '(nil nil) value))))))

(~.:op for resource in (car paraneters)
for val in (cadr parameters)
do

icond ( (boundp resource)
(clrhash (eval resource)))

(c (set resource (malce-hash-table) ) ) )
(swaphash 0 val (eval resource))
(swaph*9h *max-time* val (eval resource)!)))

(defur. initimlir«-m«rk«r»-»nd-v«ri«bl«» ()
(loop for eac in *frux»a*

as name - (car eac)
do

(;oop for each in (cdr eac)
do

(zl:putprop nama (caadr each) (car each))))
(setq *tiM~li«t* (list 0 «max-tiiM*) )
(initialize-hash-tables)
(re set- lambda- functions)
(determine-maximizing-resourcei )

;, -Returns a sorted list based on highest priority resource
;;in form of ' (expl exp2 exp3 ...)
(defur. build-list ()

(le; ((1st (get 'list-of 'names)))
(loop for resource in (reverse *maximizing-r«*oure«-li*t*)

as Ist2 = (zl:sortcar (loop for cxp in 1st
collect (list (get exp resource) exp) ) *'>)

do
(setq 1st (loop for each in ls*2

collecting (cadr each))))
Is:) )

(def-jr . prioritlz«-r»»ourc«-li»t (1

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>multipIe-resources.lisp.24 4/08/89 Page 2

(sore (remove 0 (copy-list *r««ourc»-v«ri»bl««*) :test l'»
:key • (lambda (x) (get x ' r e source-pr io r i ty ) ) )

!•> :key t '(lambda (x) (get x ' r e source -pr io r i ty ) ) ) )

:Top L*v«l Functions;

; ;;/MAIN PROGRAM;;;;;

(defun Alloc«t«-R««ourc»« ()
( t ime (Allocate-Rssources-aux)

( format t "^3%**** Progr*m Timing ••**-2»1 1)))

(de-fun AJ.loc«t«-R««Ourc*«-«ux ()
(cond (*»*cond-tiiba* t)

(t (open-input-file)
(aetq ••«cond-tin»* - ) ) )

(initialize-markecs-and-variaoles)
; (examine-data)

(send *r««ourc«-OMtput-window* :clear-history)
(send *r««ourc«-ovtput-window* :select)
(let ((1st (build^list) ) )

(schedule-pass-one 1st)
(display-pass t)
(show-used)
( format *r««ourc^-Output-window* "-3%-a" (catch 'resource (accept 'label-type :stream *r»*ourc»-outpu

t-window*
:prompt n i l ) ) )

(schedule-pass-two 1st)
(display-pass)
(show-used))

; (send *gr»phic«-window* : select)
(format *r«»ourc«-output-window* "-3%-a" (catch 'resource (accept 'label-type :stream *gr»phic«-window*

:prompt n i l ) ) )
(zl:readline *r«»«urc«-output-window*))

TOP LEVEL FUNCTIONS

( D e f u n «ch«dul«-p««»-on«
(loop wi th 1st - (copy-list n l s t )

for (start interval- t ime) = (list 0 *m«x-tin**)
then (find-new-parameters s tar t )

unti l (or (•> start *m«x-tiM*) (null 1st))
as group ~ (f ind-max-path start (current-status s tar t )

( f ind-resoucce-candidates 1st interval-time s t a r t ) )
do

( format t "-%-A -a " group start)
(cond ( ( a t o m (car g r o u p ) ) )

(t
(update-hash-tables start

(loop for item in (car group)
as performances = (get item 'performances)
as duration » (get item 'dura t ion)
as time • (* performances duration)
if (> time interval-time)

do (aetq time
(* (setq performances

( z l : f i x ( / intorval-time d u r a t i o n ) ) )
durat ion) )

if (> performances 0)
collect (list i tem time) into var

f ina l ly ( re turn var)
do

(z l :putprop item (+ performances
(get item ' scheduled-performances) )

' scheduled-performances)
(zl :putprop i tem (- (get item 'performances) performances)

'performances)
(cond ( «= (- (get item 'performances) performances) 0.)

(setq 1st ( remove-experiment -f rom-schedule-list
item 1st) ) ) ) ) ) ) ) ) )

(defun »ch»dui»-p«»»-two InJst) AQ£ IS
(loop w i t h 1st * (copy-list n ls t ) QF PQO»

for (start in terval- t ime) • ( f ind-new-parameters ) • v»wn



ANDY-TA\YLOR:>jsr>resource-allocation>muItiple-resources.lisp.24 4/08/89 Page 3

then (f ind-new-parameters s tar t )
fa - r current-status • (current-status start)
i-_— ^^ (. start *BAX-tix»*)
ts i possible-choices - (non-scheduled 1st (gethash start scheduled-items) )

a:
f;r=*i2-. t '-3* start - -A -20t-a" start current-s ta tus)

1 ̂ cz wwi t i* . params • nil
-wr.iie interval-time
. vr.ile (?araneters-wi thin-range cur ren t - s ta tus ) ; ; Need exit condition here
i.as group » (f ind-raax-path start current-status

(find-resource-candidates
possible-choices interval-time s ta r t ) )

,f;rrmat t '-%I.-.terval time - -a -20t-a-40t-a" interval-time current-status group)
— -tr- ( (ator-. (car group))

(cor.d ((= (+ start interval-time) *mAX-tiin«*)
(setq interval-time nil) )

(t
(setq params (f ind-next-pari-^eter current-status

(» start interval-time))
possible-choices (remove-next-time-events

(+ start interval-time) possible-choices))
(setq current-status (car params)

interval-time (- (cadr params) start )))))
(t

(update-hash-tables start
(loop for item in (car group)

as duration - (get item 'duration)
as performances = (zlifix (/ interval-time duration))
as time - (• performances duration)
collect (list item time) into varl
minimize time into var2
finally (setq interval-time var2)

(return varl)
do

(zl:putprop item (•» performances
(get item • scheduled-perf ormances) )

' scheduled-performances)
(zl: put prop iteir. (- (get item 'performances)

performances)
' performances)

(setq possible-choices ( remove-experiment-f rom-schedule-list
item possible-choices) ) ) )

(setq interval -time nil))))))

(aefur cjitrr'l«-ac« (self)
(sere «.:' : r eac t iva te ) )

(cefun dirylA-ry-p*»« t fact ional ( t i ' t ie n i l ) )
(dw: : *:- .2---=--p~--~ runcat ion (*r««ourc«-oucput-window* :horizontal t)

:crr-.at *r««ourc«-output-window* "-2%-38t-vffiBsource Allocation Results-34%"
•Font*)

-.==.-.d ( (null •r««ourc««-output*)
(s«nd •dl*play-Mnu* .-set-label "Select Displayed Output")
(sand •dl«pl»y-ta»nu* : set-item-list *r»»ourc«««)
(s«nd *di«pl«7-D*nu* : choose I
(s«tq *r««ourc«»-output«

(reverse (send *di«pl«y-nwnu* : highl ighted-values) ) ) ) )
.iirwac «r«»«ure«- output -window* " - 4 % **** FIRST PASS RESULTS ***»-2%"M

.rcrrvat *r*»oure«- out put -window* "-4% «**• SECOND PASS RESULTS **•*")))
( se ;«•:-. --rrrrapr: i ca 1 -di spl ay )
(ie; .t — ---locations (Ini t ia l ize-Graph-inf ormation *gr»phlc«J.-output») )

s=oiace 1C) )

cr resource in *r«*ourc«>-output*
-...-.itiaily (space-over *r«»oure«-output -window* (* 6 space))

— ever *r«»ourc«-output-window* space)
v:- *r««ouxo«-output-window* "-'bSa-3 resource))
::-: tir» ir. 'time- list*
:-cr r,ext-tine in (cdr -time-list*)

L PA^S IS
-.= : x-y-i = ca t ions (display-output-sensitive "-%" time next-time x-y-locations OF POO^ Q

is t ream *r»«ourc*-output-window*) )



ANDY-TAYLOR:>jsr>resource-allocation>muItipIe-resources.lisp.24 4/08/89 Page 4

(loop for variable in (make-variables •r«»ouro»«-output*)
for header in *r««ourc»«-output*
as width • (string-length header)
for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)
do

(format *r««ourc«-output-window» (format nil " «t" (zl:fix column)))
(format *r«»ouro«-output-window* "-88a" (gethash time (eval variable)))
(setq column (* (/ width 2.0) column)))))))

(defun di«pl»y-output-»«n«itiv« (return time next-time x-y-locations skey (stream *r«»ourc«-in«nu-window«)
(type 'l«b«l-tyj»») )

(dw:with-output-as-presentation (:single-box t
: stream stream
:dont-snapshot-variables t
:type type
:object (list time))

(print-it stream return time)
(print-it *o;r«phic«-window* return time))

; (if (and (not (equal *o;r«phic*l-di«pl»y* 'none)) x-y-locations)
; (setq x-y-locations (funcall *gr*pbic*l-display* x-y-locations next-time)))
x-y-locations)

(defun print-it (stream return time)
(format stream (format nil H-a~A" return time)))

(defun mak«-v&riabl*» (1st)
(loop for string in 1st

collect (m*X«-v»ri«il«-froin-»tring string)))

(defun •how-u««d ()
(format *r*aourc«-output-window* "-3%-10TIt«m-20tR«m«inlng-40t3ch«dul«d-%-)
(loop for item in (get • list-of 'names)

do
( format *r»«ourc»-output-window* "-%-10T-A-23t-a-43t-a" i tem (get item 'performances)

(get item •scheduled-per formances) ) ) )

Second Pa» Function*

(defun non-«ch«dul*d (1st used)
(let ((possible 1s t ) )

(loop for item in used
do

(setq possible (remove item possible :test I'equal )))
possible))

Common Pass Functions

(defun find-n«w-p«r«m«t«r» (soptional (current nil)(params nil))
(let ((1st 'time-list'))

(cond ( (null current)
(setq 1st (cons 0 1st)))

(t
(setq 1st (member current *tla»-li»t« -.test t'= ))))

(loop with start - (cadr 1st)
with status • (if params params (current-status start))
for time in (cddr 1st)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)

(- *m*x-tims* (cadr 1st))))))))

(defun find-n*xt-paraiMt*r (current time)
(let ( (next (mapcar »• (lambda (x y) (if (> x y) x y)) current

(current-status t i m e ) ) ) )
(list next (cadr (member time *tlm«-H«t«) ) ) ) )

(defun r«mov«-n«xt-tim«-«v«nt» (t ime 1st)
(loop for item in (gethash time scheduled-items)

do
(setq 1st (remove-experiment-from-schedule-list item 1st)))

1st)

(defun coenp«r«-««ch-tiii»«-»t»tu» (status time)
(loop for pos from 0

ORIGINAL PAGE S3
OF POOR QUAUTY



ANDY-TAYLOR:>jsr>resource-allocation>muItiple-resources.lisp.24 4/08/89 Page 5

for each in *m«ximising-raioura«-li«t*
for location in *n«iM «1 iioq-r««ourc«-po«it ion*
always (<- (gethash time (eval each))

(nth location status) )
f inal ly ( re turn t) ) )

(defun P*r«jn«t«r»-"ithln-r»ng« (current-s ta tus)
(loop for each in *m»ximixino.-r««ourc«-li«t«

for location in *Buucimizing-r«*ourc«-poiition*
always (> (get each ' resource- l imit)

(n th location c u r r e n t - s t a t u s ) ) ) )

(defun upd«t«-Hm»h-t«i>l«« (start J a t )
(loop for (i teml dura t ion) in 1st

as end-time » (+ start dura t ion)
do

(cond I (nul l (member end-time *tim*-liit* :test I ' " ) )
(loop for resource in (cons • scheduled-items *r«»ouro«-v«ri*bl««*)

do
(swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))

(setq •tim«-li»t« (sort (cons end-time (copy-list *tia«-li»t*) ) *'<))))
(loop for time in (member start *tiin«-li»t*)

until (= end-time time)
do

(swaphash time (append (Gethash time scheduled-items) (list iteml))
scheduled-items)

(loop for resource in *r««ourc«-v«ri»bl«a*
do '

(swaphash time (+ (Get -hash-value time resource)
(get iteml resource)) (eval resource))))))

(defun G«t-b««h-valu« (time resource toptional (not-new t)) ,̂-'
(let ((value (gethash time (eval resource))))

(cond (value value)
(not-new nil)
(t (gethash (loop with previous = 0

for last-time in *tlm«-li«t*
until (>= last-time time)
finally (return previous)
do

(setq previous last-time)) (eval resource))))))

(defun find-r»«ourc»-c«rvdid«t«» (1st endpoint start)
(loop for exp in (find-interval-candidates 1st endpoint)

if (check-constraints (add-const raint-values (current-status start) exp))
collect exp into resource-candidate-list

finally (return resource-candidate-lisc) ) )

(defun find-int«rv«l-c»ndid«t«« (1st endpoint}
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return variable)))

(defun f«>*lbla-int«rvml (experiment endpoint}
(< (get experiment 'duration ) endpo in t ) )

(defun find-po««ibl«-downward-patha (sv 1st}
(let* ( (top (car 1st))

(bottom (cdr 1st))
(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) '(()))
(bottom

(loop for down-lst on (cdr 1st)
append (group-intermediate-lists

top (find-possible-downward-paths val down-lst!) into var
finally (return var)))

(t (list 1st)))))

(defun »dd-con»tr«int-v«lu»» (1st exp)
(loop for resource in *r«»ourc«-v«ri«bl«»*

for value in 1st
if (null value)

collecting (* value (get exp r e s o u r c e ) ) ) ) ©KIGUjMAL PAGE

OF

D-13



ANDY-TAYLOR:>jsr>resource-aUocation>muUiple-resources.lisp.24 4/08/89 Page 6

(defun cb*cJc-con«trmlnt* (lac)
(loop for resource in *r«»ourc*-v«ri«bl«»*

for value In 1st
always (apply (get resource 'resource-constraint-function) (list value))
finally (return t) ) )

(defun find-ottx-ptth (time sv 1st)
(loop with max-paths • nil

with max-value = 0
for new-lst on 1st
as paths • (find-possible-paths sv new-lst)
as value • (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))

(swaphaslt time max-paths 'paths')
(return (car max-paths))

do
(cond ( (*> max-value value)

(setq max-paths (append max-paths paths)))
((< max-value value) (setq max-paths paths

max-value value)))))

(defun •or-t-m*jc-p»th« (paths)
(let ((1st (loop for path in paths

collecting (list path (get-group-values path)))))
(loop for pos in (reverse *m*ximizing-r«*ourc«-po*ition*)

do
(setq 1st (sort 1st »'> :*ey (lambda (x) (nth pos (cadr x) ) ) ) ) )

1st) )

(defun 7«t-tim»-int«rv»l-priority-v«lu« (values 1st (optional (pos 0))
(cond (values

( + (nth (nth pos *maxinizino;-r*iourc*-po«ition*) values)
(nth (nth pos *m*jtimirlng-r««ourc«-po«itlon*) 1st)))

(t 0) ) )

(defun (jroup-lnt«n»di«t»-ll«t« (item 1st}
(loop for each in 1st

collect (cons item each)))

(defun r«mov«-»xp«riin«nt-froin-»eh»dul«-li«t (exp 1st)
(remove exp (copy-list 1st) :test t'equal))

(defun find-po««ibl«-p«tb« (val resource-candidates)
(let ((1st (find-possible-downward-paths val resource-candidates)))

(cond ((null 1st)(return-frcm find-possible-paths nil))
(t (get-maximized-sub-path Lit)))))

(defun g»t-mAxlmix»d-tub-path (paths)
(loop for resource in 'maxlml rlno;-r««ourc«-l 1st*

for position in •m«»1mi«lag-r«»oure«-po«ition<

until (» (length paths) 1)
do

(setq paths
(loop for 1st in paths

with max-val - 0
with max-lsts - nil
as resource-value • (nth position (get-group-values 1st))
finally (return (reverse max-lsts))
do

(cond ((> resource-value max-val)
(setq max-val resource-value

max-lsts (list 1st)))
((» resource-value max-val)
(setq max-lsts (cons 1st m a x - l s t s ) ) ) ) ) ) )

paths)

(defun 7»t-o;roup-valu«« (group)
(loop for item in *r««ourc«-vari«bl«»«

collecting (loop for each in group
summing (get each item))))

( d e f u n curr«nt-«t«tu» ( t ime) _
(loop for each in •r««ourc»-v»ri«bl«»« ORIGINAL PAG&

as value - (gethash time (eval each)) "



ANDY-TAYLOR:>jsr>resource-alIocation>multiple-resourcesJisp.24 4/08/89 Page?

if (null value)
do (setq value 0)

collecting value))

(defun •how-«ch*dul*d ()
( format *r««ourc«-output-window* '-2% Tim* -20tSch«dul«d Ev«nt«-%")
(loop for time in 'time-list*

do
(format *r««ourc«-output-window* "-% -A -20t-A" time (gethash time scheduled-items)))

(format *r«»ourc»-autput-window* "-2%"))

(defun show-resource (resource)
(loop for time in 'time-list*

do
(format t "-% -A -20t-A" time (gethash time resource))))

(defun mak«-oou««-»«n«itiv«-lab«l» (return object Skey stream *r«»ourc«-»»nu-window*)
(type 'l*b«l-tyj>«) )

(dw:with-output-as-presentation (:single-box t
: stream stream
•.type type
:object object)

( format stream (format nil "-a-A" return (cadr o b j e c t ) ) ) ) )

(defun mak*-v*riabl«* (1st)
(loop for string in 1st

collect (m*ka-wi&bla-fram-«tring s t r i n g ) ) )

(defun •how-u**d ()
( fo rma t »r«»ourc*-output-window* "-3%~10TIt»m-20tR«m»inlng~40tSch«dul«d-%")
(loop for item in (get ' list-of 'names)

do
( fo rma t *r«»ourc«-output-window* "-%-10T-A-23t-a-43t-a" item (get item 'performances)

(get item 'scheduled-performances) ) ) )

S«cond Pa>« Function*

(defun non-»cb«dul«d (lit used)
(let ((possible 1st))

(loop for item in used
do

(setq possible (remove item possible :test ('equal )))
possible))

Common Pa«« Function*

(defun find-n«w-p»r«m«t«r» (^optional (current n i l ) ( p a r a m s n i l ) )
(let ((1st ' t ime-list*))

(cond ( (nul l current)
(setq 1st (cons 0 1 s t ) ) )

(t
(s«tq 1st (member current *tia*-li*t* :test »'- ))))

(loop with start - (cadr 1st)
with status • (if params params (current-status start))
for time in (cddr 1st)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)

(- *MX-tim«* (cadr 1st))))))))

(defun 2ind-n*xt-p<uraaMt«r (current time)
(let ( (nex t (mapcar I ' ( lambda (x y) (if (> x y) x y)) current

(current-status t i m e ) ) ) )
( l ist next (cadr (member time *tim«-li«t*))) ) )

(defun r*mov«-n*xt-tiaa-«v«nt> (time 1st)
(loop for item in (gethash time scheduled-items)

do
(setq 1st (remove-experiment-from-schedule-list item 1s t ) ) )

1st)

(defun co«np«r«-««ch-tim«-«t«tu« (status t ime)

ORIGINAL PAGE IS
Of POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources,lisp.24 4/08/89 Page 8

(loop for pos from 0
for each in •m*Jtiml»ing-r«»ouro«-li«t*
tor location in •«i«»1«i«lng-r««ourc«-po«itlon«
Always (<• (gethash time (eval each))

(nth location status))
finally (return t))l

(defun P*zuMt«r*-vlthl.n-raAg* (current-status)
(loop for each in *m«ximirino;-r«»ourc»-li«t*

for location in *mjLximizing-r«iourc*-po*ition*
always (> (get each 'resource-limit)

(nth location current-status))))

(de fun upd»t«-H«»h-t«bl«« (start lit]
(loop for (i teml durat ion) in 1st

as end-time - (+ start duration)
do

(cond ((null (member end-time *tioM-li*t* :test I ' " ) )
(loop for resource in (cons 'scheduled-items *r««ourc«-v«ri«bl«»*)

do
(swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))

(setq *tiaa-li»t* (sort (cons end-time (copy-list *tln«-ll«t*)) »'<))))
(loop for time in (member start *tiM-li«t*)

until (= end-time time)
do

(swaphash time (append (Gethash time scheduled-items) (list iteml))
scheduled-items)

(loop for resource in *r««ourc«-v»ri«i>l««*
do

(swaphash time ( + (Get-hash-value time resource)
(get iteml resource)) (eval resource))))))

(defun G*t-h«»h-v«lu« (time resource (optional (not-new t>)
(let ((value (gethash time (eval resource))))

(cond (value value)
(not-new nil)
(t (gethash (loop with previous - 0

for last-time in *tiin«-li«t«
until (>« last-time time)
finally (return orevious)
do

(setq previous last-time)) (eval resource))))))

(defun find-r««ouro«-c«ndld*t«» (1st endpoint start)
(loop for exp in (find-interval-candidates 1st endpoint)

if (check-constraints (add-constraint-values (current-status start) exp))
collect exp into resburce-candidate-list

finally (return resource-candidate-list)))

(defun find-int«rval-c*ndidat«« (1st endpoint) '
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return variable)))

(defun f*a«ibl«-int«rval (experiment endpoint)
(< (get experiment 'duration ) endpoint))

(defun find-po»iibl«-dovnward-p«th« (sv 1st)
(let* ((top (car 1st) )

(bottom (cdr 1st))
(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) '((>))
(bottom

(loop for down-1st on (cdr 1st)
append (group-intermediate-lists

top (find-possible-downward-paths val down-lst)) into var
finally (return var)))

(t (list 1st)))))

(defun «dd-con»tr«int-v«lu«« (1st exp)
(loop for resource in *r««ourc«-v»xi«bl««*

for value in 1st
if (null value)

do (setq value 0)
collecting (» value (get exp resource) ) ) )

D-16

ORIGINAL PAGE IS
Of: POOR QUALITY



ANDY-TAYLOR:>jsr>resource-alIocation>muItipIe-resources.Hsp.24 4/08/89 Page 9

(defun ch«cJc-con«tr«int* (lac)
(loop for resource In *r*«ouxc«-variabl«**

for value in 1st
always (apply (get resource 'resouice-constraint-function) (list value))
finally (return t)»

(defun find-ux-path (time av 1st)
(loop with max-paths « nil

with roax-value • 0
for new-lst on 1st
as paths » (find-possible-paths sv new-lst)
as value • (get-time-interval-priority-value (get-group-values (car paths)I sv)
finally (setq max-paths (sort-max-paths max-paths))

(swaphash time max-paths 'paths*)
(return (car max-paths})

do
(cond ((= max-value value)

(setq max-patha (append max-paths paths)))
((< max-value value) (setq max-paths paths

max-value value)))))

(defun «ort-m*x-path« (paths)
(let ((1st (loop for path in paths

collecting (list path (get-group-values path)))))
(loop for pos in (reverse *maximizing-r«<ouro*-po«ition*)

do
(setq 1st (sort 1st f> :key (lambda (x) (nth pos (cadr x) ) ) ) ) )

1st) )

(defun 7«t-tim«-int«rv«l-priority-v«lu« (values 1st {optional (pos 01)
(cond (values

( + (nth (nth pos *m«jciniizino;-r«»ourc«-po»ition«) values)
(nth (nth poa *m«jcimixing-r«»ourc«-po»ition*) 1st)))

(t 0) ))

(defun o;roup-intonnndi«t«-li»t» (item 1st}
(loop for each in lat

collect (cons item each)))

(defun r*mov«-«xp«riiMnt-from-«ch*dul*-li*t (exp 1st}
(remove exp (copy-list lat) :test I'equal))

(defun find-po««ibl«-p»th« (val resource-candidates)
(let ((1st (find-possible-downward-patha val resource-candidates)))

(cond ((null 1st)(return-from find-possible-paths nil))
(t (get-maximized-sub-path 1st)))))

(defun gat-maxlmlzttd-iub-patb (paths)
(loop for resource in *ia*ximixing-r««ourc«-li3t*

for position in *m»jcimiiing-r«»ourc»-po»iti.on*
until (= (length paths) 1)
do

(setq paths
(loop for 1st in paths

with max-val • 0
with max-lsts • nil
as resource-value = (nth position (get-group-values 1st))
finally (return (reverse max-lsts))
do

(cond ((> resource-value max-val)
(setq max-val resource-value

max-lsts (list lat)))
(( = resource-value max-val)
(aetq max-lsts (cons lat max-lats)>)))))

paths)

(defun <j«t-group-v«J.u«« (group)
(loop for item in *r«»ourc«-v«ri.«bl«««

collecting (loop for each in group
summing (get each item))))

(defun curr«nt-»t«tu« (time)
(loop for each in «r««ouxc«-vari»bl«»*

as value " (gethash time (evai each))

D-17

ORIGINAL PASS it
OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>muItiple-resources.lisp^4 4/08/89 Page 10

if (null value)
do (setq value 0)

collecting value))

(defun (how-schedulvd ()
(format *re«ourc«-output-window* "-2% Time, -20tSch«dul»d £v«nt»-%-)
(loop for time in "time-list*

do
(format «r»»ourc«-output-window* "-% -A -20t-A- time (gethash tine scheduled-items)))

(format *r*«ourc«-output-window* "-2%"))

(defun show-resource (resource)
(loop for time in 'time-list*

do
(format t "-% -A -20t-A" time (geehash time resource))))

ORIGINAL PAGE IS
D-18 OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-allocation>muItiple-resource-interface^s|jpJ7 Page 1

... ... Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -*-

t ! t f f f f ! r t f i } ' ' f _ f r f ' ' ! ' f t f } ! } ! t } r ! r t t l ' ' i ' ' ' ' ' ' t f t ' '.',''*''; /Presentation types and actions for mouse sensitiyiity. ; ;
r } t t r t t ! t r r } > > ' f ' f ' ' f r } f t f j f f f f f f f f f f } f i r ! ! ! } i f ' ' ' ' ' ' ' ' ' f t

;;This defines th« label presentation types.
(define-presentatlon-type lab«l-typ« ()

:no-deftype t
:parser ((stream) (loop do (dw: read-char-for-accept stream)))
:printer ((object stream)

(format stream "the selection -a" (car object))))

; ; Tills is what is don* when a column or row label is selected .
(de fine-present at ion-act ion l«b«l-typ«

(l*b«l-typ« t
: gesture :left
: context-independent t
: document at ion "Resource Operations")

(exit)
( throw 'resource e x i t ) )

;;This defines the label presentation typ«s.
(define-presentation-type *xp-lab«l-typ« ()

:no-deftype t
:parser ( ( s t r eam) (loop do (dw:read-char-for-accept s c r e a m ) ) )
:printer ((object stream)

(format stream "the selection -a" (car o b j e c t ) ) ) )

;;This is what is dona when a column or row lab*l is ••l*ct*d.
(de fine-present at ion-act ion «xp-l«b«l-typ«

(•xp-l«b«l-typ« t
: gesture :left
: context-independent t
:documentation "Experiment Operations")

(exit)
(throw 'resource ex i t ) )

;;This d«fin*s th« itom pr«a«ntation typ« and documentation 1~=j* -^z
(define-presentation-type r««ourc«-typ« (/

:no-deftype t
:parser ( ( s t r eam) (loop do (dw: read-char-for-accept s t r e a m ) ) )
:printer ((object stream)

( format stream "the resource -A" (car o b j e c t ) ) ) )

; ; This is what is don* whan th« it«m ia »«l*ct«d
(de fine-present at ion-act ion chooi«-typ«

(r*«ourc«-typ« t
:gesture : le f t
: context-independent t
: document at ion "Change this value")

(resource)
(throw ' resource

(list resource (g«t (caar resource)
(read-from-string (format ni l "-a-prcsentat ior." (caza.: r» esc_r:e) ) ) ) ) ) )

;;This d*fin«s th« it«m pr«santation typ« and documentation 1 ' -m <i=_i*play
(define-presentation-type control -typ« ()

:no-deftype t
:parser ( ( s t ream) (loop do (dw: read-char-for-accept s t r e a m ) ) )
:printer ( (object stream)

(format stream "the selection -a" (car o b j e c t ) ) ) )

; ; This is what is don* whan a command is selected
(de fine-present at ion-act ion control-typ*

(control-typ* t
igesture :left
: context-independent t
: document at ion "Execute this Command")

( throw 'resource (read-f rom-string e x i t ) ) ) . ORIGINAL PAGE IS

0£ POOR QUALITY
i l i i i t t l t i l t t l l t t t l i t l l l l l i i t t i t t i l i t i i t t i l t i i ' i ' ' - ' '

D-19



ANDY-TAYLOR:>jsr>resource-aIlocation>multiple-resource-interface.lisp.27 Page 2

Program functions

;;Thi» i« th« Driving Function for th« Data Editor.
(do fun •xukina-data ()

(send *r*«ourc*-a»nu-vindov* : select)
(dw; : with-output-t runcation (•r«»ourc»-B»»nu-wlndow* :horizontal t)

(loop with again « t
while again
do

{ make -window- lay out )
(send *r*»oux-c«-fli«nu-wlndow* :set-cursor-visibili ty nil)
(setq again

(loop with finished « nil
until finished
as choice « (change-data-point)
while choice
do

(cond ( (atom choice)
(case choice

(load
(open-input-file)
(initialize-markers-and-variables)
(return t) )

(save (save-new-f ile) )
(exit (return nil) ) ) )

(t (case (car choice)
(exp

(take-experiment-action
(cadr c- ice)
(get-op- .on-list (format nil "For Experiment ~'bea-2>"

(cadr choice) )
' ("Move this Experiment"

"Delete this Experiment"
"Add an Experiment ABOVE"
"Add an Experiment BELOW")))

(return t) )
(resource

(take- re source -act ion
(cadr choice) (caddr choice)
(get-option-list (format nil "For' Resource -'bea-3"

(cadr choice) )
(cond ( (member (cadr choice)

' ("Duration" "Performances")
:test I' string-equal)

• ("Set Value Globally"
"Set Maximum Value"
"Move this Resource"
"Add Resource to che LEFT"
"Add Resource to the RIGHT"
"Edit Resource Constraints"))

(t
•("Set Value Globally"
"Set Maximum Value"
"Move this Resource"
"Delete this Resource"
"Add Resource to the LEFT"
"Add Resource to the RIGHT"
"Edit Resource Constraints"))))))

(return t) )))))))
(send «terminal-io* rselectl)

(defun g»t-option-li»t (prompt options)
(dw; menu-choose options

: prompt prompt
:center-p t
: row-wise nil))

(defer. t*Jc«-ra*ourc«-«ction (resource poa action!
(cond ((string-equal action "Set Value Globally")

(let ( (va lue (get-stream ' ( ( n u m b e r : prompt "Global Value" s\nirM(VlAI P&ftf? IS
: default 0 ORIGIN*"- r«V3& 10
:q - j e ry - iden t i f i e r : s r ) ) Of POOR QU ALlT I



ANDY-TAYLOR:>jsr>resource-allocation>multipIe-resource-interface.lisp.27 Page 3

(if value
(initialize-experiment-resource-value

(make-variable-from-string resource ) v a l u e ) ) ) )
((string-equal action "Set Maximum Value")
(zl:putpcop resource (get-stream '((number :proropt "Maximum Value"

:default , (get resource ' resource- l imit)
:query-identifier j s r ) )

( f o r m a t nil "3«t -• beft-^Uxianun V«lu«
(make-variable-from-string resource )))

• resource-l imit))
((string-equal action "Edit Resource Constraints")
(modify-resource-constraint-equations (make-variable-from-string resource)))

((string-equal action "Move this Resource")
(send-message-to-user ( fo rmat nil "-2% Use mouse to SELECT which RESOURCE to-

-* place ~'beA-3beside. " resource))
(remove-resource resource ni l )
(let ((posit ion (find-position 'label-type resource)))

(setq *r*>ourc*«* (insert-item-in-list *r««ourc«»« resource position)
*r»»ourc«-v«jri«±>l««» (insert-item-in-list *r««ourc«-v«ri«bl««*

(m*Jw)-v«ri«bl«-«rom-»trlng resource) p o s i t i o n ) ) ) )
((string-equal action "Delete this Resource")
(remove-resource resource))

((string-equal action "Add Resource to the LEFT")
(add-resource pos))

((string-equal action "Add Resource to the RIGHT")
(add-resource (+ 1 p o s ) ) ) ) )

(defun tnodify-r««ourc»-con«tr«int-«qu«tion» (resource)
(send *m«»»»7«-window* :set-margin-components

' ( (dw:margin-scro l l -bar v is ibi l i ty :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label

margin :bottom
: string "Constraint Editor Window <Pr»*f <END> key to EXI

T) ") ) )
(send *m«»»*9«-window* : clear-history)
(send *m«»«»g«-window* :select)
(format *m««««o;«-wlndow* "-2»")
(send *ra«««»g«-»indow* : set-cursor-visibility .-blink)
(edit-constraint-equation resource)
(send *M««>9a-window* : deselect I
(send *n**»g*-vindow* :set-cursor-visibility nil)
(send *o«»««9«-window« :set-margin-components

'((dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin*label

tmargin :bottom
: string 1te««ag« Window (Prmss any k»y to EXIT)"}))}

(defun •dit-con»tr«int-«qu«tion (resource)
(let ((buffer (tv:kbd-get-io-buffor!)

(equation (format nil "-a* (get resource ' resource-constraint-functior.) )))
(send *m«»««<j«-wlndoi»* :clear-input)
(loop for i from 0 to (- (length equation) 1)

do
(tv:io-buffer-put buffer (char equation i)))

(zl: put prop resource (read-f rom-string (accept 'string .'stream *ma««ag«-»indow*
:activation-chars •(l\end)
:prompt nil)) 'resource-constraint-function)))

(defun find-poiition (type resource)
(let ((position)

(data (catch 'resource (accept type
:prompt nil
:stream •r»»ourc«-in«nu-window«) ) ) )

(case (car data)
(exp

(setq position (position (cadr da ta ) (ge t ' list-of ' n a m e s ) ) )
(case (read-from-string

(get-option-list ( format nil "Pl«e« -'beA-3 resource)
(list (format nil "Above -'b€A-=> (cadr d a t a ) ) ORIGINAL PflrF l<

(format nil "Below -'beA-3 (cadr d a t a ) ) ) ) ) . VKlUinML. THVat I,

(ABOVE (* 1 pos i t ion)) Qf POOR QUAUP
(t (* 2 posi t ion) ) ) )



ANDY-TAYLOR:>jsr>resource-alIocatiois>raidtiple-resource-interface.lisp.27 Page 4

(aetq position (position (cadr da;« *r«»»ocre»»* :test I' string-equal ))
(case
( read- f com- *t ring

(get-option-list (format nil Tl̂ eB* -• =e*-S resource}
(list (forsat .T-_ -l«5t. o* -'bcA-3 (cadr d a t a ) )

(formar -__ . •?_!;= t of -'beft-3 (cadr d a t a ) ) ) ) )
(LEFT (+ 1 pos i t ion) )
( t (» 2 position) ) ) ) ) ) )

(defun taJt*-«xp«rin»»nt-aetion (exp action;
(cond ((string-equal action "Move this Ejrarinrwr. ~. *

(send-message-to-user ( fo rmat nil ' - 2 % Vse -ouae to SELECT which EXPERIMENT to-
-% place -• beA-:rB3LC.ae. * exp) i

(remove-experiment exp nil)
(let ((posit ion (f ind-posit ion ' •»—-'• *••"»' -~yp" e x p ) ) )

(zl :putprop ' list-of (insert-i.:en— in—.-lis - (get ' l ist-of 'names)
exp position) ' n a m e s ) ) )

((string-equal action "Delete this txsasrire-i" )
(remove-experiment exp t))

((string-equal action "Add an Exp« r^_T»r.T. - ASCVE')
(add-experiment ( + 1 (position er: rate- ' l i s t -o f ' n a m e s ) ) ) ) )

((string-equal action "Add an Exc«r-_r«r.c-. -. BZI-CW")
(add-experiment (+ 2 (position ex= jesi ' l is t-of ' n a m e s ) ) ) ) ) ) )

(defun -r*nov«-«xp«ri8ttnt (exp message)
(z l : put prop 'list-of (remove exp (get ' '.-K— r . r5 ' - i _nes l : 'names)
(if message

(send-message-to-user
(format nil "-2%-5tThe EXPERIMENT T_or«a -'=«2-=r.ss been deleted." e x p ) ) ) )

(defun •dd-wcpcrinMnt (position) °
(let ( (variable (make-variable-f rom-ssri-i

(get-stream ' ( (a t r i . - .g : zc-nrra; -I.-.ter EXPERIMENT NAME"
: ̂ jery-ident i f ier jsr) )

"JUlc IzpcDvrlMst ability " ) ) ) )
(zl:putprop ' list-of (insert-item-i.-.-l.iC "aei ' l is t- = f ' n a n w s ) variable position) 'names)
(loop for item in *r*«ourc*-varlafcl***

do
(zl:putprop variable 0 i t e m ) ) ) )

;;Thi» function i« th« top l«v«l cc=^r collar for th* Input window.
(defun m*k«-window-l«yout ()

(send *r««ourc«-oMnu-vlndow* :clear-his; :r/
(format *r»«ourc»-m«nu-window« "-2%-4C;-^-Es=«<:ri.-rer ̂  2ata Editor-s4%* *Font*)
(let* ( (space 10) )

(setq *r«»ourc«-v«ri«±>l«»* (loop for r«jcv;rrrce :r *r»«ourc««*
ini;;t__ ./ is=4ce-over •r«»oure«-ai«nu-»indow*

(•>• 6 space) )
coller-. .Tinaxe— .-ariarle-f rom-string resource) into var
cou.-.t^.TC - ir.^: place
final l.i rxe:-rr. var)
do

(space-over *r«»»«rir-c«-B*aa-window* space)

(list ' rt3cur:rce resource p l a c e ) ) ) )
(format *z«*ouraa-n*nu-vindow* "-%")
(loop for exp in (get ' list-of 'names.!

counting r. into place
do

(make-mouse- sensitive- label 3 »-.%•
(list 'exp exp place))

(loop for variable in *r«»ourc»-v«xi*ila»» '
for header in *r«aourcaa*
as width - (string-length heac«r
for column first (+ space (/ «-rr-. 1.: 5 pace

then (* space (/ wizi." 1. .t r : 1 U.T.T. :
do

(place-variable column variable ex-
(setq column (+ (/ width 2 . 0 ) colur=.

(place-command,,,, ORIGINAL PAGE IS

;;Thi« command put* th« column and r-rw lab«l« •« pr***ntations . QF POOR OUAUTY
(defun m«k«-Boxi»«-»«n«itiv«-l«b«l» (recur- a?;-s-rr: ;•. ay ( J i r e am »r«»ourc«-n>»nu-window«)



ANDY-TAYLOR:>jsr>resource-allocation>muItiple-resource-interface.lisp.27 Page 5

: stream stream
:type type
robject object)

(format stream (format nil "-a-A" return (cadr o b j e c t ) ) ) ) )

/ /This command ereat* tha command* at bottom of manu.
(defun pi«c*-oonmAnd« ()

( format *r««ourc«-in»nu-window* "-6%")
(loop for command in ' ("Exit Data Editor" "Save Current Data to File"

"Load New Data File")
do

(space-over *r««ourc*-Mnu-vindow* 17)
(dw:with-output-as-presentation (:single-box t

: stream *r«»ourc«-in«nu-window«
:type 'control-type
robject command)

(surrounding-output-with-border (*r«»ourc«-o>«nu-windo»* : shape :oval
:filled t
:move-cursor n i l )

(format *r««ourc*-iMau-window* c o m m a n d ) ) ) ) )

;;Thia function assists in proper relative heading column spacing
{defun *p«c«-ov*r (stream space)

(format stream (format nil " Aa" space) " " ) )

;;This function takes a string and returns an atoa.
(defun Bak«-variabl*-from-*tring (str)

(loop wi th flag « 1
for item being the array-elements in str
if (not (string-equal i tem " "))

collect item into var
and do
(setq flag 0)

else if (= f lag 0)
collect "-" into var
and do
(setq flag 1)

f ina l ly (return (read-from-str ing
(apply I*string-append

(cond ((- f lag 1)
(reverse (cdr (reverse v a r ) ) ) )

( t v a r ) ) ) ) ) ) )

;;This function assists in correct column spacing
(defun pl*c«-v«ri*bl« (column variable exp)

( format *r««ourc«-nwnu-window* (format nil " at" ( z l : f i x c o l u m n ) ) )
(format-i tem-mouse-sensit ive *r«>ourc*-m*nu-windo«* (get exp variable}

(list (list exp variable}
(multiple-value-bind (a b)

(send *r««ourc«-tn»nu-window* : read-cursorpos)
(list a b ) ) ) ) )

;;This function prints th« itam to th« scra«n with mousa sansitivity
(defun format-tt«a-mou««-««nsitiv« (stream i tem descriptors)

(zl :putprop (caar descriptors) item (cadar descriptors))
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(clearspace stream)
(zl :putprop (caar descriptors)

(dw:with-output-as-presentation (:single-box t
:stream stream
:type •r«»ourc»-typ«
:object descriptors)

(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
( format stream "-88a" i t em))

(read-from-string (format nil "-a-presentation" (cadar d e s c r i p t o r s ) ) ) ) )

;;Thic function ramoves tha typad in valu«s to allow for presentations.
(defun cl««r«p*c« (scream)

(loop repeat 8
do

(send stream :clear-char)

Of POOR QUALITY
(send stream : forward-char) )) ORIGSNAL PAGE IS

;This function raads in a value; but doas not issua a lina-faad.



I
i

ANDY-TAYLOR:>jsr>resource-allocation>multipIe-resource-interface.lisp.27 Page 6

tkey (activation-characters ' f t \Re tu rn t\End )))
(loop with cursor-position » (list (multiple-value-bind (a b)

(send stream :read-cursorpos) (list a b ) ) )
with var2 - nil
wi th position • 0
as varl • (send stream : ty i )
as total-length • (length var2)
until (member varl act ivat ion-characters)
if varl

do
(cond ( ( a n d (equal varl I V r u b o u t ) va r2)

(send stream :tyo t\backspace)
(send stream :clear-char)
(setq var2 (cdr var2)

position (1- posit ion)
cursor-position (cdr cursor -pos i t ion) ) )

( (and (or (equal varl »\c-B)(equal varl »\backspace)) var2)
(setq position (1- pos i t ion))
(send stream :tyo v a r l ) )

( (equal varl l\c-F)
(cond ( (< position total-length)

(setq position (1+ pos i t ion) )
(send stream :tyo v a r l ) ) ) )

( (= position total- length)
(setq var2 (cons varl v a r 2 )

posit ion (1+ posit ion)
cursor-position (cons (multiple-value-bind (a b)

(send stream :read-cursorpos)
(l ist a b)) cursor-posi t ion))

(format stream "-a" v a r l ) !
( (o r (equal varl *\c-B> (equal var l »\rubout ) ) )
(t (send stream : insert-char)

(format stream "-A" v a r l )
(setq var2 (reverse (loop for temp « nil

then (append temp (list (car e n d ) ) )
for end = (reverse var2) then (cdr end)
repeat position
f ina l ly ( re turn

(append temp (cons varl e n d ) ) ) ) ) ) ) )
f ina l ly (return (cond (var2 (setq var2 ( read-from-st r ing

(apply I 'string-append (reverse v a r 2 ) ) ) ) ) ) ) ) )

;;This function allows the data values to be changed.
(defun ch*jig;«-d»t*-point ()

(let ( ( da t a (catch 'resource (accept ' ( ( o r r«*ourc«-typ« control-typ*
l*b«l-typ« «xp—l»b«l-typ«))

:prompt nil
: stream *r««ourc«-n»nu-windotr*) ) )

(original-position (mult iple-value-bjnd (a b)
(send *r«»ourc«-m«nu-window* :read-cursorpos)

(list a b ) ) )
(posi t ion))

(cond ( ( o r (atom data) (atom (car d a t a ) ) ) data)
(t
(setq position (cadar da ta ) )
(send *r«>ourc«-nMnu-window* :erase-displayed-presentation (cadr d a t a ) )
(send *r««ourc»-n>»nu-window* : set-cursorpos (car position) (cadr pos i t ion ) )
(send *r»»ourc«-m«nu-vindow« :set-cjrsor-visibiiity :blin)O
(format-item-mouse-sensitive *r»»ourc«-m«nu-»indow*

(read-without-return *ra*ourc«-m*nu-windov*)
(car da t a ) )

(send *r»»ourc«-m«nu-wlndow* :sot-cursor-visibility n i l )
(send *r**ourc«-aMnu-vindov* :set-cursorpos (car original-posit ion)

(cadr original-posit ion))
• d a t a ) ) ) )

;;This function returns the list of data files that can be selected.
(defun 9«t-d*t*-fil«-li»t ()
(loop for directory in (cdr (fs:directory-list *R««ourc«-Fil«-Dir«ctory« ))

as pathname - (cond ((not (string* (send (car directory) :name) "err"))
(format nil "-A" (send (car directory) : string-for-dired))))

collect pathname )) nnf^S IQORSGSNAL PAGt IS
;;Thls function allows the modified data to be saved to a data file. _ prjQR QUAUTY
(defun •«v«-n«w-fil« () . Or rU""*



ANDY-TAYLLOR:>jsr>resource-alIocation>multipIe-resource-interface.lispJl7 Page 7

(get-scream '((string iprompt "Enter the Filename"
:query-identifier jsr) )

"S«v» ril« Utility ••)
" .data")

: direction :output
: i f -exis ts : new-version)

(fci-M: --r.rea.T, "- i%!setq *r«»ourc««* • ( " )
( loop ':- .-resource i- *r*«ourc*«*

a;
(5rrs*z :^-rea.-= • -a-A-a " »\» resource »\"))

(forrr*; scr-Tea.T. ")i-2%:setq *fruM>* '(")
doer i:: * exp ir. (get ' list-of 'names)

a:
(frnr.it ;-=trea.- "-%-a" (cons exp (loop for prop in *r»»ourc»-v»ri«bl»»*

collect (list prop (list (get exp prop) ))))))
(for-Mi scr-xeam -))")))

;;Thla f~c±<=c±.ion cr*at«a a window and prompts th« u»*r for a £11* nam*.
(defun 9«t-nvcBB«<i (arg^ne.-,ts header)

(dw: accept —'a^lues aryu.T«.it.s
: OWN-WINDOW t
:"esp=rary-p nil
:?ro=pt header
: i.-.i;ially-select-query-identi f ier ' jsr) )

;;Thi.« fc^crciion control* th« adding of a r«oourc«.
(defun «jid - r»*oioTir c« pea; :^ on)

(let* rn-. — resource (.— .1 1 ipie-value-bind (a b)
(get-stream ' ((string : prompt "Enter RESOURCE NAME"

:query-identifier jsr)
(number : prompt "Initial Value"

: default 0))
"Add R««ourc« Dtllity ")

list a b) ) )
vtri-ui=ie (-.a*e-variable-f rom-string (car n e w - r e s o u r c e ) ) ) )

(cer.c Twn=r.i>er var iable *ra»ourc«-variabl««*)
• sr.f-c-nessage-- c-user

: -srr.ar r.il "-2»-5tThe RESOURCE named -• bsa-Dalready exists."
:=ar r.ew-resource) ) ) )

u.-..r.i-t ial . ze-experiment-resource-value var iable (cadr new-resource ) )
js-^iq *r«»ourc*»* ( i .nsert-item-in-list *r««ourc«»« (car new-resource) positioi.

*r««ouxc«-v«ri«i>l««« ( insert-item-in-list *r«»ourc«-v«ri«i>l»»*
variable p o s i t i o n ) ) ) ) ) )

; ; This fû r̂ -a.on put* an initial valu* in th« c*>ourc* variable a.
(de fun l_nit.ij-l_-LZ»-»xp-«rija«nt-r««ou-rc«-v«lu« (new-resource value}

(loop ':: .:3--er ir. -:=et ' l i s t -of 'names)

(z l :p- i ; r - - i;er. va lLe .lew-resource)))

;;Thi» 'uzo^^ion in««rta an it*m in a list at position.
(defun ti*«j^-i-i-t«m-in-li«t (1st item position)

(loop fcr . :rros 1
f:r «a<=- or. -at

z:ll«<rmi-g ( c a r each) into var
f-r . t__y ( r e tu r r . !a?pend var ( l ist i tem) e a c h ) ) ) )

;;Tni« fur>rci.ion allow* cosaaunication b«tw««n th« uaar and th* program.
(defun »*ad-aMis*ag*-to-us«r (message)
(send *a»«-(«3<B*-vindô r* : clear-history)
(send *a»**«a0*-via4o'V* : set-cursor-visibility nil)
(senc *B»»-»*a«j»-wlrxlô r* : select)
(forn-.a; •BM*'**?* -window* .-r>ej3ags)
(send »n»»*»a«>»- window* :any-tyi)
(send *a»t̂ ««oiov-window* : Deselect))

; ; This f^i^rciion r«sov«* a r*«ourc« from con*id«ration by program.
(defun i«i>. i'»-r-r»»ourc* • resource (optional (message t))

(setq *r»«rgm<-««* re.-cve resource *r«»ourc»»* :test I' string-equal)
•r»»TTirtro»-v«_ri»i>i«»* (remove (make-variable-f rom-string resource)

•r««ourc«-v»ri*bl»«*) ) ^ir^-ntn; DA«C 1C
(if .rease-. ORiGsSMAL PAvaE IS

' (««- :U>:»r . - : : :^.r_ OF POOR QUALITY



ANDY-TAYLOR:>jsr>resource-alIocation>multipIe-resources-graphical-displays.HspJPage 1

... ... Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -•-

(defun s«l«ct-graphical-display ()
(cond ((null 'graphical-display*)

(let ((choice (dw:menu-choose '("Line Graph" "No Display")
:prompt "Type of Graphical Display"
:center-p t
:minimum-width 225)))

(setq 'graphical-display*
(cond ((or (null choice)

(string, choice "Line Graph"))
• normalized-graphical-display-of-resources)
((string- choice "No Display")
'none)
(t 'normalized-graphical-display-of-resources)))))

(t (send 'graphics-window* :clear-history)
(send 'graphics-window' :expose)))

(cond ((equal 'graphical-display* 'none) nil)
('graphical-output' nil)
(t (send *display-manu* :set-item-list (max-valued-resources))

(send * display-mama* : set-label "Select GraphlCS Output")
(send *display-Mnu* :choose)
(setq *graphical-output*

(reverse (send *display-msjnu* :highlighted-values) ) ) ) )
(cond ((and (not (equal 'graphical-display* 'none)) 'graphical-output*)

(cond ((send 'graphics-window' :exposed-p>)
(t (multiple-value-bind ( a b e d )

(send *r««ourc«-output-window* :edges)
(setq *original-scr*«n-sizsi* (list a b e d ) )
(send *r«sourc«-output-window* :set-edges a b c (- d 220))
(send 'graphics-window* :set-edges a (- d 220)c d)
(send 'graphics-window* :expose)).))

(draw-axis-for-graph))))

(defun max-valuad-nsourcsis ()
(loop for variable in *rsjsourcsj-variabl«s*

for resource in *r«sou,rc«s*
if (get variable 'resource-limit)
collect resource into varl

finally (return varl)))

(defun graphical-restart ()
(cond i*original-scrsj«n-siz**

(send *r«sourc«-output-window* : set-edges (car *original-scr*«n-sizsj*)
(cadr •original-aerMn-aiz**)
(caddr *original-scr««n-siz«*)
(cadddr *original-scr««n-siz**))

(setq *origlnal-scre«n-«lz»* nil
'graphical-display* nil
•graphical-output* n i l ) ) ) )

(defun Znitializat-Graph-infonnation (1st.)
(loop for resource-name in 1st

for style in ' (n i l 2 4 8 12 20 30 SO 80)
wi th x - 70
with dy - 1
as resource - (maJca-variablo-from-atring resource-name)
as max - (get resource ' resource-l imit)
as y > (- 155 (* dy 150 (/ (gethash 0 (eval resource)) m a x ) ) )
collecting (list resource-name resource style max x y) into var
f ina l ly (return var)
counting t into pos
do

(show-graph-legend resource-name style (» 5 (• pos 1 5 ) ) ) ) )

(defun normallx»d-graphical-display-of-r«sourc«s (1st time) — ....»..,. „„ -..~..- .,»
(let ((variable ORIGINAL PAGE IS

(loop with dx - (/ 180 .BAx-tia.*) Qp pOOR QUALITY
with dy - 1.0 *
with next-x - (+ TO.O (• dx time))
for (resource-name resource style max x y) in 1st
as next-y - (- 155.0 (• 150.0 dy (/ (gethash time (eval resource)) max)))
collecting (list resource-name resource style max next-x r.ext-y) into var
finally (return (cons next-x var))
do .



ANDY-TAYLOR:>jsr>resource-allocation>muHiple-resources-graphicaI-dispIays.lisp.5>age2

:dashed style :dash-pattern (list style style))
(graphics:draw-line next-x y next-x noxt-y : stream *g»phic>-window*

:dashed style :dash-pattern (list style style)))))
(qraphics:draw-lino (car variable) 153 (car variable) 157 :stream 'graphics-window*)
(cdr variable)))

(defun dr»w-«jci»-for-gr«pb ()
(graphics:draw-rectangle 70 5 850 155 :filled nil zstream 'graphics-window*)
(send *flr«phic«-window* :set-cursorpos 35 3)
(format *gr«phic»-window* "100%")
(send "graphics-window* :set-cursorpos 55 145)
(format *gr«phic«-window* "0")
(send *gr«phic»-window* :set-cursorpos 70 158)
(format 'graphics-window* "0")
(send 'graphics-window* :set-cursorpos 830 158)
(format 'graphics-window* "-a" 'ovuc-tiM*)
(send *<jraphlc«-window* : set-cursorpos 442 162)
(format *graphie*-window* "Tim*"))

(defun •bow-gr«pb-l*7*nd (nama style pos)
(send *<yr«phic»-window* : set-cursorpos 860 pos)
(format *graphic«-window* "-a" name)
(graphics:draw-line 1000 (+ pos 4) 1050 (+ pos 4) :stream *gr«phie«-window«

:dashed style :dash-pattern (list style style)))

(defirve-preaentation-type tio»-typo ()
:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ( (object stream)

(format stream "the selection -a" (car object))))

(define-presentat ion-action tim*-typ«
(tiM-typ* t
:gesture :left
:context-independent t
:documentation "Show Additional Information about this Item.")
(exit)

(throw 'time exit))

.ORIGINAL PAGE IS
OF POOK QUAUTY



Appendix E
Symbolics Code Listings for Flavor Definitions of Object Structures

E-l



ANDY:>jsr>resource-allocation>multiple-with-flavors>inuItiple-resource-flavors-and-variables.li
* o

;;; -*- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: Lisp -*-

Resource Allocation Flavors

(defflavor RESOURCE
((limit nil)
(priority nil)
(constraint-function nil)
(hash-table nil))

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables)

(defflavor ENVIRONMENT
((resources nil)
(activities nil)
(total-time nil)
(expendables nil))

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables)

(defflavor ACTIVITY
((duration nil)
(performances nil)
(max-performances nil)
(scheduled-performances nil)
(Constraint-function nil))

:readable-instance-variables
:writable-instance-variables
:initable-instance-variables)

(defflavor SELECTION-MEND ()
(tv:drop-shadow-borders-mixin
tv:multiple-menu))

(defflavor SHADOWED-TV-WINDOW ()
(tv:drop-shadow-borders-mixin
dw:dynamic-window))

:Special Flavor Functions;

(defun revise-flavor-instances (flavor-name instance-variables)
(let ((current (append (flavor:FLAVOR-ALL-INSTANCE-VARIABLES

(flavor:find-flavor flavor-name))))
(new (mapcar '(lambda (x) (cond (distp x) (car x) ) (t x))) instance-variables)))

(cond ((and (= (length current) (1+ (length instance-variables)))
(every '(lambda (x) (member x current)) new))

nil)
(t
(flavor:remove-flavor flavor-name)
(eval *(defflavor ,flavor-name

,(append instance-variables
' (Constraint-function) )

()
:readable-instance-variables
:writable-instance-variables
:initable-instance-variables))))))

(defmacro with-modified-flavor-definition (flavor-name instance-variables
flavor-instances 6body body)

"(let ((flavor (flavor: find-flavor .flavor-name)))
(revise-flavor-instances .flavor-name .instance-variables)
(loop for each in .flavor-instances

do
(flavor:transform-instance each f l avor ) )

,8body))

(defun supply-instance-variables-with-values (variables-and-values instances)
(cond ( (and instances variables-and-values)

(loop with flavor = (f lavor: flavor-name ORIGINAL PAGE !S

OF POOR QUALITY



ANDY:>jsr>resource-aIlocation>multiple-with-flavors>inultiple-resource-flavors-and->Jaarptfles.lisp.7

(flavor: :%INSTANCE-FLAVOR
(eval (caar variables-and-values) ) ) )

for (instance value) in variables-and-values
as variable = (read-from-string

(format nil "-a — A" flavor instance))
do

(eval Msetf (.variable , (eval instance)) .value))))))

; ; ; ; ; ; ; ; ; ; ; ; ; ; Global Variables ; ; ; ; ; ; ; ; ; ; ; ;

(defvar *«ctivity*)

(defvar *activity-v«riablas* nil)

(defvar Environment*)

(defvar *frajnaa*) ;, -Loaded from data file.

(defvar *max-tin»*)

(defvar *time-liat*)

(defvar *lajnbd»-liata*)

(defvar *p»th«*)

(defvar *origin«l-acr««n-siz«* nil)

(defvar *a«cond-tin»* nil)

(defvar * currant -fila* "")

(defvar *R»aouxco-Fil«-Dir«ctory* "andy:> jsr>resource-allocation>multiple-data-f iles>")

(defvar *r«aourc«s*)

(defvar *r«aourco-v«riabl«a* nil)

(defvar *r»aourc«s-output* nil)

(defvar achaduled-itama)

(defvar *maximlzing-raaourca-liat*)

(defvar *nuocimizing-reaourc«-position*)

(defvar *graphic»l-output* nil)

(defvar *gr«phlc«l-diaplay* nil)

(defvar *r*»ourc«-output-window* (tv: make-window ' dw:dynamic-window
: label "Resource Allocation Window"
:blinker-p nil))

(defvar *di»play-n»ejnu* (tv: make-window

Displayed Output"
:default-character-style '(:fix : roman : large)
: special-choices '(("Selection Complete" : funcall-with-self complete))))

(defvar *raaourca-manu-window* (tv: make-window ' dw: dynamic-window
: label "Experiment Data Editor Window"
:blinker-p t) )

; (defvar *Dat*-choic«a-n>Bnu* (tv: make-window ' tv: momentary-menu
; : borders 4

: label "Alt«rnat« Data Fil« List"))

(defvar *n» • a aga- window* (tv:make-window • dw: dynamic-window
; :blinker-p nil .

-.edges-from • (300 300 850 400)
: margin-components
' ( (dw:margin-scroll-bar :visibility :if-needed)

(dw: margin-ragged-borders : thickness 4)
(dw : margin-label

: margin : bottom
: string 'ite«»aga Window (Pr»»* may key to EXIT)")}))

(defvar *graphica-window* (tv:make-window • dw: dynamic-window QR!G5MAL PAGE ?S



ANDY:>jsr>resource-allocation>inultiple-with-flavors>multiple-resources-with-flavorsBE9e6L

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

:Input and Variable Initializing Function*;

(defun opan~input-fila> ()
(let ( ( inf i le (dw:menu-choo3e (get-data-file-list)

:prompt "Data Fil« List")))
(cond (infile (load (string-append *R*aouxe«-Fil«-Dir«ctozy* infile)

:verbose nil)
(initialize-frames)
(setq *eurz«nt-fil»* infile)))))

(defun initializa-framoa ()
(loop for frame in *frames*

collect (car frame) into names
finally (setf (environment-activities *»nvironm«nt*) names)))

(defun datarmina-may 1 mlging-raaourea ()
(setq *m«jcimizing-r««ourc«-li«t* (prioritize-resource-list)

*majcimixin<3-raaourc«-poaition*
(loop for resource in *m*jcimizing-raaourc«-liat*

collecting (position resource *r»aourc«-vaxiabl«a*))))

in *lambda-liata*
(defun raaat-lambda-functiona ()

(loop for (resource priority max-val lambda)
do

(cond ((and (boundp resource)(instancep (eval resource)))
(setf (resource-limit (eval resource)) max-val)
(setf (resource-priority (eval resource)) priority)
(setf (resource-constraint-function (eval resource)) lambda))

(t
(set resource (make-instance 'resource

:limit max-val
:priority priority
:constraint-function lambda))))))

(defun initializa-haah-tablaa ()
(let ((parameters

(loop for resource-item-string in *r«aourc«a*
as resource = (make-variable-from-string resource-item-string)
collecting resource into var
collecting (read-from-string (format nil "activity—a" resource)) into var2
collecting 0 into value
finally (setq *ra>aourc«-vaxiabl«a* var

*activity-variable** var2)
(return (list (cons 'scheduled-items var)

(append '• (nil nil) value))))))
(loop for resource in (car parameters)

for val in (cadr parameters)
do

(cond ((boundp-in-instance (eval resource) val)
(clrhash (resource-hash-table (eval resource))))

(t (setf (resource-hash-table (eval resource))
(make-hash-table))))

(swaphash 0 val (resource-hash-table (eval resource)))
(swaphash *max-time* val (resource-hash-table (eval resource))))))

(defun initializA-markaira-and-variablca ()
(loop for eac in *framaa*

as name = (car eac)
do

(loop for each in (cdr eac)
do

(zl:putprop name (caadr each) (car each))))
(setq *tiflx»-liat* (list 0 *mAx-tim»«) ) )

(defun cr»at«-obj«ct-8tructur»8 ()
(define-environmental-structures)
(loop for eac in *frain»a*

as name = (car eac)
do

(loop for each in (cdr eac)
append (list (read-from-string (format nil ":-a" (car each)))

(caadr each)) into var-list
finally (set name (revise-flavor-instances ORIGINAL PAGE !S

OF POOE? QUM/FY



ANDY:>jsr>resource-allocation>multiple-with-flavors>multipIe-resources-with-navorsBB^Ee

(make-instance 'activity)
var-list)))

do
(zl:putprop name (caadr each) (car e a c h ) ) ) )

(aetq *tina-li«t* (list 0 *nuuc-tim«*))
(initialize-hash-tables)
(revise-flavor-instances 'activity *raaourea-wi*blaa*)
(reset-lambda-functions)
(determine-maximizing-resource))

(defun dafina-anvironmantal-atructuraa ()
(if (null *anvironnant*)

(setq *«nvironmBnt* (make-instance 'environment
:total-time *max- t ime«)) ) )

;;Returns a sorted list based on highest priority resource
;;in form of '(expl exp2 exp3 ...)
(defun build-liat ()

(let ((1st (environment-activities *activity*)))
(loop for resource in (reverse *maximizing-r*aouro«-li«t*)

as Ist2 = (zl:sortcar (loop for exp in 1st
collect (list (funcall resource exp) exp)) f>)

do
(setq 1st (loop for each in Ist2

collecting (cadr each))))
1st))

(defun prioritiza-raaourca-list ()
(sort (remove 0 (copy-list *r«8ourc«-v«ri»bl«»*) :test *'=

:key #'resource-priority)
ft' > :key #'resource-priority))

rTop Level Functions;

;;;;MAIN PROGRAM;;;;;

(defun Allocmta-Raaourcaa ()
(time (Allocate-Resources-aux)

(format t "-3%**** Program Timing ****~2%")))

(defun Allocata-Raaourcaa->ux ()
(cond (*«acond-tiaa* t)

(t (open-input-file)
(setq *Mcond-tima* t ) ) )

(craata-objact-atructuraa)
(initialize-markers-and-variables)
(examine-data)
(create-object-structures)
(send *ra>ourca-output-window* :clear-history)
(send *ra»ourca-output-window* :select)
(let ((1st (build-l ist)))

(schedule-pass-one 1st)
(display-pass t)
(show-used)
(format *raaourca-output-window* "-3%-a"

(catch 'resource (accept 'label-type :stream *r»»oure«-output-window*
:prompt n i l ) ) )

(schedule-pass-two 1st)
(display-pass)
(show-used))

;(send 'graphics-window* :select)
(format *r«»ourc«-output-window* "~3%-a"

(catch 'resource (accept 'label-type :stream *gr«phic«-window*
:prompt n i l ) ) )

(zl:readline *ra>ourca-output-window*))

TOP LEVEL FUNCTIONS

(Defun achadula-paaa-ona (nlst)
(loop with 1st = (copy-list nlst)

for (start interval-time) = (list 0 *muc-tima*)
then (find-new-parameters start)

until (or (= start *majt-tima*) (null 1st))
as group = (find-max-path start (current-status start)

(find-resource-candidates 1st interval-time start))

POOR



ANDY:>jsr>resource-allocation>multiple-with-flavors>muItiple-resources-with-flavorsBB5E0

do
(format t "-%-A -a " group start)

(cond ( ( a tom (car group)))
(t
(update-hash-tables start

(loop for item in (car group)
as performances = (activity-performances item)
as duration = (activity-duration item)
as time = (* performances duration)
if (> time interval-time)

do (setq time
(* (setq performances

(zl : f ix (/ interval-time dura t ion) ) )
duration))

if (> performances 0)
collect (list item time) into var

finally (return var)
do

(setf (activity-scheduled-performances item)
(+ performances (activity-scheduled-performances i t e m ) ) )

(setf (activity-performances item)
(- (activity-performances i t e m ) ) )

(cond ( ( < = (- (activity-performances item) performances) 0.)
(setq 1st (remove-experiment-from-schedule-list

item 1 s t ) ) ) ) ) ) ) ) ) )

(defun acb«dul«-p«a»-two (nlst)
(loop with 1st = (copy-list nlst)

for (start interval-time) = (find-new-parameters)
then (find-new-parameters start)

for current-status = (current-status start)
until (= start *m*x-tim»*)
as possible-choices = (non-scheduled 1st (gethash start scheduled-items))

do
(format t "-3% start = -A -20t~a" start current-status)

(loop with params = nil
while interval-time
while (Parameters-within-range current-status) ;;Need exit condition here
as group = (find-max-path start current-status

(find-resource-candidates
possible-choices interval-time start))

do
; (format t "~%Interval time = -a -20t-a-40t~a" interval-time current-status group)

(cond ((atom (car group))
(cond ( (= (+ start interval-time) *max-tin»»*)

(setq interval-time nil))
(t

(setq params (find-next-parameter current-status
(+ start interval-time))

possible-choices (remove-next-time-events
(+ start interval-time) possible-choices))

(setq current-status (car params)
interval-time (- (cadr params) start )))))

(t
(update-hash-tables start

(loop for item in (car group)
as duration = (activity-duration item)
as performances = (zl:fix (/ interval-time duration))
as time = (* performances duration)
collect (list item time) into varl
minimize time into var2
finally (setq interval-time var2)

(return varl)
do

(setf (activity-scheduled-performances item)
(+ performances (activity-scheduled-performances item)))

(setf (activity-performances item)
(- (activity-performances item) performances))

(setq possible-choices (remove-experiment-from-schedule-list
item possible-choices))))

(setq interval-time nil))))))

(defun complot* (self)

(send self deactivate)) ORIGINAL PA3E IS

OF PQ®% QUALITY



ANDY:>jsr>resource-allocation>muldple-with-flavors>multiple-resources-with-flavorsB^jE6t

(defun diaplay-pa*• ({optional (title nil))
(dw::with-output-truncation (*r««ouro«-output-window* ihorizontal t)
(cond (title

(format *r««ourc«-output-window* "-2%-38t-vBB3Ource Allocation Results~s4%"
•Pont*)

(cond ((null *resourcaa-output*)
(send *diaplay-monu* : set-label "Select Displayed Output")
(send *dlsplay-monu* :set-item-list *r«>ourc*a*)
(send *di.aplay-manu* :choose)
(setq *r»sourcas-output*

(reverse (send *di«play-m»nu* :highlighted-values)))))
(format *r«sourc«-output-window* "-4% **** FIRST PASS RESULTS ****-2%"))

(t
(format *r«sourc*-output-window* "-4% **** SECOND P&SS RESULTS ****")))

(select-graphical-display)
(let ((x-y-locations (Initialize-Graph-information 'graphical-output*))

(space 10))
(show-scheduled)
(loop for resource in *ra»ourc««-outp\>t*

initially (space-over *r«*ourc«-output-window* ( + 6 space))
do

(space-over *r«sourc«-output-window* space)
(format *r«aourc«-output-window* "-'bea-3 resource))

(loop for time in 'time-list*
for next-time in (cdr *time-list«)
do

(setq x-y-locationa (display-output-sensitive "-%" time next-time x-y-locations
:stream *r*aourc*-output-window*))

(loop for variable in (make-variables *r«*ouro»*-output*)
for header in *r«»ourc«s-output*
as width = (string-length header)
for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)
do

(format *r««ourc«-output-window* (format nil " at" (zl:fix column)))
(format *r»aourc«-output-window* "~8@a" (gethash time (eval variable)))
(setq column (+ (/ width 2.0) column)))))))

(defun display-output-sanaitiva (return time next-time x-y-locations Skey (stream *r*aourca-manu-window*)
(type 'label-typ«))

(dw:with-output-as-presentation (:single-box t
:stream stream
rdont-snapshot-variables t
rtype type
:object (list time))

(print-it stream return time))
(print-it *graphics-window* return time))

(if (and (not (equal 'graphical-display* 'none)) x-y-locations)
(setq x-y-locations (funcall 'graphical-display* x-y-locations next-time)))

x-y-locations)

(defun print-it (stream return time)
(format stream (format nil "-a~A" return time)))

(defun mak«-variable* (1st)
(loop for string in 1st

collect (maJc«-variabl«-from-«tring string) ) )

(defun •how-UMd ()
(format *r«»ourc«-output-window* I>~3%~10TXt*m-20tR*aaining~40tScb*dul*d-%n)
(loop for item in (environment-activities •environment*)

do
(format *r«»ourc«-output-window* "~%-10T-A-23t-a~43t~a" item (activity-performances item)

(activity-scheduled-performances i t e m ) ) ) )

Second Pass Functions

(defun non-achadul*d (1st used)
(let ((possible 1st))

(loop for item in used
do

(setq possible (remove item possible :test *'equal )))
possible))

;;;;;;;;;;;;;; Common Pass Functions ;;;;;;;;;;;

ORIGINAL
OF POOR



ANDY:>jsr>resource-allocation>muItiple-with-flavors>multiple-resources-with-flavorsB^5E6

(defun find-naw-paramatara ((optional (current nil) (params nil))
(let ((1st "time-list*))
(cond ((null current)

(setq 1st (cons 0 1st)))
(t

(setq 1st (member current *tia»-li»t* :test #' = ))))
(loop with start = (cadr 1st)

with status = (if params params (current-status start))
for time in (cddr 1st)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)

(- *majc-tima* (cadr 1st))))))))

(defun find-naxt-paramatar (current time)
(let ((next (mapcar I'(lambda (x y) (if (> x y) x y)) current

(current-status time))))
(list next (cadr (member time *tima-liat*)))))

(defun ramova-naxt-tima-evanta (time 1st)
(loop for item in (gethash time scheduled-items)

do
(setq 1st (remove-experiment-from-schedule-list item 1st)))

1st)

(defun compara-aach-time-atatua (status time)
(loop for pos from 0

for each in *maximizing-raaourea-li«t*
for location in *nuix1m1 zing-raaeurca-po«ition*
always (<= (gethash time (eval each))

(nth location status))
finally (return t) ) )

(defun Paramatara-within-ranga (current-status)
(loop for.each in *nmx1mlzing-raaouroa-liat*

for location in *maximizing-raaourca-poaition*
always (> (resource-limit each)

(nth location current-status))))

(defun updata-Haab-tablaa (start 1st)
(loop for (iteml duration) in 1st

as end-time = (+ start duration)
do

(cond ((null (member end-time *tima-li«t* :test #'=))
(loop for resource in (cons 'scheduled-items *raaouroa-variablaa*)

do
(swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))

(setq *tiroo-list* (sort (cons end-time (copy-list *tlma-liat*)) #'<))))
(loop for time in (member start *time-liet*)

until (= end-time time)
do

(swaphash time (append (Gethash time 'scheduled-items) (list iteml))
scheduled-items)

(loop for resource in *raaourca-vmri«blaa*
for operation in *activity-variabla»*
do

(swaphash time (+ (Get-hash-value time (resource-hash-table resource))
(funcall operation iteml)) (resource-hash-table resource) )))))

(defun Gat-baah-valua (time resource-table Soptional (not-new t))
(let ((value (gethash time resource-table)))

(cond (value value)
(not-new nil)
(t (gethash (loop with previous = 0

for last-time in *tiffla-liat*
until (>= last-time time)
finally (return previous)
do

(setq previous last-time))
resource-table)))))

(defun find-raaourca-candidataa (1st endpoint start)
(loop for exp in (find-interval-candidates 1st endpoint)

if (check-constraints (add-constraint-values (current-status start) exp) )
collect exp into resource-candidate-list

finally (return resource-candidate-list))) ORJGSNAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>resource-alIocation>multiple-with-flavors>multiple-resources-v¥ith-navorsBi5Effi

(defun find-intarval-eandidataa (1st endpoint)
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return variable)))

(defun faaaibla-intarval (experiment endpoint)
(< (get experiment 'duration ) endpoint))

(defun £ind-poaaibl«-domvard-patba (sv 1st)
(let* ((top (car 1st))

(bottom (cdr 1st))
(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) '(()))
(bottom

(loop for down-lst on (cdr 1st)
append (group-intermediate-lists

top (find-possible-downward-paths val down-lst)) into var
finally (return var)))

(t (list 1st) )) ) )

(defun add-conatraint-valuaa (1st exp)
(loop for resource in *raaourca-variablaa*

for value in 1st
if (null value)
do (setq value 0)

collecting (+ value (get exp resource))))

(defun chack-conatrainta (1st)
(loop for resource in *raaourca-variablaa*

for value in 1st
always (apply (resource-constraint-function resource) (list value))
finally (return t)))

(defun find-max-path (time sv 1st)
(loop with max-paths = nil

with max-value = 0
for new-lst on 1st
as paths = (find-possible-paths sv new-lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))

(swaphash time max-paths *paths*)
(return (car max-paths))

do
(cond ((= max-value value)

(setq max-paths (append max-paths paths)))
((< max-value value) (setq max-paths paths

. max-value value)))))

(defun aort-max-patha (paths)
(let ( (1st (loop for path in paths

collecting (list path (get-group-values path)))))
(loop for pos in (reverse *max1m1zing-raaouroa-poaition*)

do
(setq 1st (sort 1st #'> :key (lambda (x) (nth pos (cadr x))))))

1st) )

(defun gat-tima-intarval-priority-valua (values 1st Soptional (pos 0))
(cond (values

(+ (nth (nth pos *aaximizing-raaourca-poaition*) values)
(nth (nth pos *maximizing-raaourca-poaition*) 1st)))

(t 0) ))

(defun group-intanaadiata-lista (item 1st)
(loop for each in 1st

collect (cons item each)))

(defun ramova-axparimant-from-achadula-liat (exp 1st)
(remove exp (copy-list 1st) :test I'equal))

(defun find-poaaibla-patha (val resource-candidates)
(let ((1st (find-possible-downward-paths val resource-candidates)))
(cond ((null 1st)(return-from find-possible-paths nil))

(t (get-maximized-sub-path 1st)))))

OF



ANDY:>jsr>resource-alIocation>multipIe-with-flavors>muItiple-resources-with-flavorsDiqe^

(defun get-mucimiz«d->ub-path (paths)
(loop for resource in *maximlzing-r««ouxc«-list*

for position in *maximiring-r«»ourc»-po»ition*
until (= (length paths) 1)
do

(setq paths
(loop for 1st in paths

with max-val = 0
with max-lsts = nil
as resource-value = (nth position (get-group-values 1st))
finally (return (reverse max-lsts))
do

(cond ((> resource-value max-val)
(setq max-val resource-value

max-lsts (list 1st)))
((= resource-value max-val)
(setq max-lsts (cons 1st max-lsts)))))))

paths)

(defun gat-group-values (group)
(loop for item in *«ctivity-v«riabla»*

collecting (loop for each in group
summing (funcall item (aval each)H H

(defun eurr»nt-»t«tu» (time)
(loop for each in *r«aourc«-v«rimbl««*

as value = (gethash time (resource-hash-table (eval each)))
if (null value)
do (setq value 0)

collecting value))

(defun show-»ch«dul«d ()
(format *ra»ourc»-output-window* "~2% Tim* ~20t3eh«dul«d Ev«nt«-%")
(loop for time in 'time-list*

do
(format *r*»ourca-output-window* "-% -A ~20t-A" time (gethash time scheduled-items)))

(format *r«»ourc«-output-window* "-2%"))

(defun show-resource (resource)
(loop for time in *time-list*

do
(format t "-% -A ~20t-A" time (gethash time resource))))

(defun maJc«-mou»«-s«naitiva-lab«l» (return object Skey (stream *r»»ourc«-iD«nu-window*)
(type 'l«b«l-typ»))

(dw:with-output-as-presentation (:single-box t
:stream stream
:type type
:object object)

(format stream {format nil "-a~A" return {cadr object)))})

OKIG3MAL PAGE IS
OF PO0& QDAUTY



Appendix F
Symbolics Lisp Code for Modified Single Allocation Step Process

ORIGINAL t^AGE IS
F'L OF FOOft Q"*-.'.fV



ANDY:>jsr>resource-allocation>multiple-single-performance-step>muItiple-resources.fiSg(28

; ; ; -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

(det'un op«n-input-fil« ()
(let ( (inf ile (dw: menu-choose (get-data-file-list)

.•prompt "D«t» Fil« List')))
(cond (infile (load (string-append *R»»ourc«-Fil«-Dir«ctory* infile)

: verbose nil)
(initialize-frames)
(setq *currwnt-£il«* infile)))))

(defun initializc-fruMB ()
(zl:putprop 'list-of nil 'names)
(loop for frame in *fr«mo«*

as name = (car frame)
do

(zl:putprop 'list-of (append (get 'list-of 'names) (list name)) 'names) ))

(defun d«t«rmin«-m»ximiiing-r«»ourc« ()
(setq *m*ximiring-r»«ourc«-li»t* (prioritize-resource-list)

*m*xlmiring-r«»oure«-po»ition*
(loop for resource in *maximizing-r««ourc«-li«t*

collecting (position resource *r»«ourc«-v«ri«bl«»*) ) ) )

(defun r«a«t-lambd»-functions ()
(loop for (resource priority max-val lambda) in *lunbd«-li«t**

do
(zl:putprop resource max-val 'resource-limit)
(zl:putprop resource priority 'resource-priority)
(zl:putprop resource lambda 'resource-constraint-function)))

(defun initializ«-haah-tmblaa ()
(let ( (parameters

(loop for resource-item-string in *r»»ourc»»*
as resource = (make-variable-f rom-string resource-item-string)
collecting resource into var
collecting 0 into value
finally (setq *r»»ourc«-v»ri«bl«»* var)

(return (list (append ' (*paths* scheduled-items) var)
(append '(nil nil) value))))))

(loop for resource in (car parameters)
for val in (cadr parameters)
do

(cond ( (boundp resource)
(clrhash (eval resource) ) )

(t (set resource (make-hash-table))))
(swaphash 0 val (eval resource) )
(swaphash *max-time* val (eval resource))))

(loop for exp in (get 'list-of 'names )
do

(zl:putprop exp nil 'when-scheduled)))

(defun initi»lix«-m«rk.ora-mjid-vmri«t>l«» ()
(loop for eac in *fr«n»«*

as name = (car eac)
do

(loop for each in (cdr eac)
do

(zl:putprop name (caadr each) (car each))))
(setq «tim»-li»t* (list 0 *max-tin>a* ) )
(initialize-hash-tables)
(reset -lambda- functions)
(determine-maximizing-resource) )

;, -Returns a sorted list based on highest priority resource
;;in form of ' (expl exp2 exp3 ...)
(defun build-li»t ()

(let ((1st (get 'list-of 'names)))
(loop for resource in (reverse *m*ximirino;-r«»ouro»-li»t*) "

as Ist2 = (zl:sortcar (loop for exp in 1st
collect (list (get exp resource) exp)) f>)

do
(setq 1st (loop for each in Ist2

collecting (cadr each))))
1st) )

(defun Rig-to-»ub»t-gibby»-frontiar-noda«-«»-minlimimi» ()
ORIG^AL
OF POO??



ANDY:>jsr>resource-aHocation>multiple-single-perfonnance-step>multiple-resources.BSgfi8

(with-open-file (stream *Gibbys-frontier-node-file*
:if-does-not-exist nil)

(cond (stream
(loop for each in (read stream)

for value in (read stream)
do

(zl:putprop each value 'performances)))
(t
(format t "-3%-vffiLbby, I need a frontier node!!!-s3%" '(:eurex ritalic rhuge))
(beep)
'missing) ) ) )

(defun prioritize-reaource-liat ()
(sort (remove 0 (copy-list *re>ource-variable>*) :test §' =

:key '(lambda (x) (get x 'resource-priority)))
*'> :key f (lambda (x) (get x 'resource-priority))))

(defun permanently-atore-paaa-one-revults ()
(loop for resource in *reaource-variablea*

as results = (eval resource)
do

(zlrputprop resource results 'pass-one))
(loop for each in (get 'list-of 'names)

do
(zl:putprop each (get each 'when-scheduled) 'pass-one))

(setq *Paaa-one-time-lina* *time-liat*))

:Top Laval Functions;

;; ; ;MAIN PROGRAM;;;;;

(defun Allocate-Reaourcea ()
(time (Allocate-Resources-aux)

(format t "~3%**** Program Timing ****~2%")))

(defun Allocate-Reaourcea-aux (ikey (Gibby nil))
(cond (*aeeond-time* t)

(t (open-input-file)
(setq *aecond-time* t)))

(initialize-markers-and-variables)
(if (and gibby (Rig-to-subst-gibbys-frontier-nodes-as-minimums))

(return-from Allocate-Resources-aux "Program Terminated Due to File-Mot-Found"))
(examine-data)
(let ((1st (build-list)))

(send *r»aourc«-output-window* :clear-history)
(send *r««oure»-output-window* :select)
(continue-allocation-pass-one 1st)
(permanently-store-pass-one-results)
(continue-allocation-pass-two 1st)))

(defun continiM-allocation-paas-on* (1st)
(schedule-pass-one 1st)
(display-pass t)
(show-used)
(place-exit-button "Continue- to Second Pass")
(proceed 'continue-allocation-pass-one))

(defun continue-allocation-pasa-two (1st)
(schedule-pass-two 1st)
(display-pass)
(show-used)
(place-exit-button "Terminate Program")
(proceed 'continue-allocation-pass-two))

Back Tracking Capabilities

(defun Proceed (function)
(let ((response

(car (catch 'resource (accept 'label-type :stream *re»ourc«-output-window*
:prompt ni1)))))

(cond ((numberp response)
(backtrack function response))

((equal response 'proceed))))) OR'G.'S\{'£} :
IS



ANDY:>jsr>resource-allocation>multiple-singIe-perfonnance-step>multiple-resources.BS^28

(defun backtrack (function time-slot)
(let ((choices (gethash time-slot *path»*)))

(loop while
(if (> (length choices) 1)

(remove-and-restart function time-slot choices)
(send-message-to-user
(format nil "The only allocation selection given for -a is the currently-%allocated gro

up"
time-slot))))))

(defun r«mov«-«nd-r««t«rt (func time choices)
(loop as selection = (get-option-list

(format nil "Select Alternate Activity Schedule at Time -a" time)
(append (string-lists (cdr choices))

'("Do Not Change Current Activity Schedule")))
when selection
do

(cond ((listp (read-from-string selection))
(reset-data-structures func time choices selection)
(funcall func time))

(t
(return-from remove-and-restart t)))))

(defun r«s«t-d»t«-»tr-ucturos (func time choices selection)
(let* ((choice (read-from-string selection))

(common (intersection choice (car choices)))
(new (intersection common choice :test #'(lambda (x y) (not (eql x y)))))
(old (intersection common (car choices) :test #'(lambda (x y) (not (eql x y)))))
(kill-time (cdr (member time' *tlm«-li»t*)) ))

(loop for exp in (get 'list-of 'names)
as scheduled = (get exp 'scheduled-performances)
as perfs = (get exp 'performances)
as times = (get exp 'when-scheduled)
do

(loop for eac in times
until (<= eac time)
counting t into number
finally

(zl:putprop exp (subseq times (1- number)) 'when-scheduled)
(zl:putprop exp (- scheduled number) 'scheduled-performances)
(zlrputprop exp (+ perfs number) 'performances)))

(loop for resources in *ro«ourc«-v«ri«bl«»*
as table = (eval resources)
do

(Remove-hash-entries-with-times-greater-than table time))))

(defun R«mov«-h«»h-«ntrias-with-tim»«-gr««t«r-th«n (table start-time)
(maphash •(lambda (time value)

(if (> time .start-time)
(remhash time ,table)))

table))

(defun string-lists (1st)
(mapcar ' (lambda (x) (format nil "-a" x)) 1st))

(defun Placa-axit-button (message)
(format *r«»ourc«-output-window* "~2%-20t")
(dw:with-output-as-presentation (:single-box t

:stream *r««ourc*-output-window*
:type 'lab*l-typ*
:object 'proceed)

(surrounding-output-with-border (*r*aourc*-output-window* :shape :oval
:filled t
rmove-cursor nil)

(format *r**ourca-output-window* message))))

TOP LEVEL FUNCTIONS

(Defun «ch«dul«-p«««-on« (nlst skey (backtrack-time n i l ) )
(loop with 1st = (copy-list nlst)

for (start interval-time)= (if backtrack-time
(find-new-parameters backtrack-time)
(list 0 *max-tia»*) )

then (find-new-parameters start)
until (or (= start *max-tim«*) ORIGINAL PAGE !S

(nu11 l s t ) ) OF POOR QUALT7Y



ANDY:>jsr>resource-allocation>muItiple-singIe-p€rformance-step>multipIe-resources.Ps^§

as possible-choices = (non-scheduled 1st (gethash start scheduled-items))
as group = (find-max-path start (current-status start)

(find-resource-candidates
possible-choices interval-time start))

do
(format t "-%-A -a " group start)
(cond ((atom (car group)))

(t
(update-hash-tables start

(loop for item in (car group)
as performances = (get item 'performances)
as time = (get item 'duration)
collect (list item time) into var
finally (return var)
do

(zl:putprop item (cons start (get item 'when-scheduled))'when-scheduled
)

(zltputprop item {+ 1 (get item ' scheduled-performances))
'scheduled-performances)

(zl:putprop item (- performances 1)
'performances)

(cond ((<= performances 1.)
(setq 1st (remove-experiment-from-schedule-list

item 1st))))))))))

(defun 8ch«dulo-p««a-two (nlst)
(loop with 1st = (copy-list nlst)

for (start interval-time) = (find-new-parameters)
then (find-new-parameters start) i

for current-status = (current-status start)
until (= start *max-tima*)
as possible-choices = (non-scheduled 1st (gethash start scheduled-items))

do
(format t "-3% start = -A -20t-a" start current-status)
(loop with params = nil

while interval-time
while (Parameters-within-range current-status) ;;Need exit condition here
as group = (find-max-path start current-status

(find-resource-candidates
possible-choices interval-time start))

do
(format t "~%Interval time = -a -20t-a-40t-a" interval-time current-status group)
(cond ((atom (car group))

(cond ( (= ( + start interval-time) *m«jc-tim«*)
(setq interval-time nil))

(t
(setq params (find-next-parameter current-status

(+ start interval-time))
possible-choices (remove-next-time-events

(+ start interval-time) possible-choices))
(setq current-status (car params)

interval-time (- (cadr params) start )))))
(t
(update-hash-tables start

(loop for item in (car group)
as duration = (get item 'duration)
as performances = (zl:fix (/ interval-time duration))
as time = (* performances duration)
collect (list item time) into varl
minimize time into var2
finally (setq interval-time var2)

(return varl)
do

(zlrputprop item (+ performances
(get item 'scheduled-performances))

'scheduled-performances)
(zlrputprop item (- (get item 'performances)

performances)
'performances)

(setq possible-choices (remove-experiment-from-schedule-list
item possible-choices))))

(setq interval-time nil))))))

(defun coapl.t. (self) ORIGINAL PAGE IS
(send self :doactivate» QF pQQR



ANDY:>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.

(defun di»pl«y-p«»» (^optional (title nil))
(dw::with-output-truncation (*r««ouro*-output-window* :horizontal t)
(cond (title

(format *r«»ourc«-output-window* "-2%-38t-vHBsource Allocation Results-s4%"
•Font*)

(cond ((null *ro»ourc««-output*) e

(send *diaplay-nwnu* : set-label "SclCCt Displayed Output")
(send *di»play-m«nu* :set-item-list *r«»ourc«»*)
(send *di«pl«y-m«nu* :choose)
(setq *ro«ourc«»-output*

(reverse (send *dl«pl«y-n*«nu* :highlighted-values) ))))
(format *re»ourc»-output-window* "-4% **** FIRST PASS RESULTS ****-2%"))

(t
(format *r<»«ourc«»-output-window* "-4% **** SECOND PASS RESULTS ****")))

(select-graphical-display)
(let ((x-y-locations (Initialize-Graph-information *gr«phic*l-ovitput*))

(space 10))
(show-scheduled)
(loop for resource in *r«»ourc«»-output*

initially (space-over *r«»ourc«-output-window* (+ 6 space))
do

(space-over *rosourc«-output-window* space)
(format *r«aourca-output-window* "-'bea-3 resource))

(loop for time in 'time-list*
for next-time in (cdr "time-list*)
do

(setq x-y-locations (display-output-sensitive "-%" time next-time x-y-locations
:stream *r««ourc«-output-window*))

(loop for variable in (make-variables *r«»ouro«»-output*)
for header in *ro»ourc«»-output*
as width = (string-length header)
for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)
do

(format *r«sourc«-output-window* (format nil "---at" (zl:fix column)))
(format *r«aourc«-output-window* "-8@a" (gethash time (eval variable)))
(setq column (+ (/ width 2.0) column)))))))

(defun diaplmy-output-s«naitiva (return time next-time x-y-locations
(key (stream *r««ouro«-msnu-window*)

(type ' l«i»l-typ«) )
(dw:with-output-as-presentation (:single-box t

:stream stream
:dont-snapshot-variables t
:type type
:object (list time))

(print-it stream return time))
(print-it *9r«phics-window* return time))

(if (and (not (equal 'graphical-display* 'none)) x-y-locations)
(setq x-y-locations (funcall *ô r*phic*J.-di»pl«y* x-y-locations next-time) ) )

x-y-locations)

(defun print-it (stream return time)
(format stream (format nil "~a~A" return time))) ,

(defun maka-variables (1st)
(loop for string in 1st

collect (maJca-variabla-from->tring string)) )

(defun anow-uaad ()
(format *rosourc«-output-window* "-3%-10TIt«m-20tB«m«1nlnj-40t8chadulad-%")
(loop for item in (get 'list-of 'names)

do
(format *r««ourc«-output-window* "~%-10T-A-23t-a-43t-a" item (get item 'performances)

(get item 'scheduled-performances))))

Second Pass Function*

(defun non->cb*d\U.«d (1st used)
(let ( (possible 1st))
(loop for item in used

do
(setq possible (remove item possible :test 8'equal )))

possible))

ORIGINAL 'PAfcE |$
OF FOQS i .. .*•*



ANDY:>jsr>resource-allocation>multiple-single-performance-step>muItiple-resources.§S^8

Common Pas* Functions

(defun find-n*w-par«£>atar« ((optional (current nil) (params nil))
(let ((1st 'time-list*) )
(cond ((null current)

(setq 1st (cons 0 1st)))
(t
(setq 1st (member current *timo-li«t* :test *'=))))

(loop with start = (cadr 1st)
with status = (if params params (current-status start))
for time in (cddr 1st)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)

(- *mmx-tin»* (cadr 1st))))))))

(defun find-next-parameter (current time)
(let ((next (mapcar f (lambda (x y) (if (> x y) x y)) current

(current-status time))))
(list next (cadr (member time *tim»-li»t*)))))

(defun remove-nejct-time-eventa (time 1st)
(loop for item in (qethash time scheduled-items)

do
(setq 1st (remove-experiment-from-schedule-list item 1st)))

1st)

(defun comp«re-e«ch-time-atatus (status time)
(loop for pos from 0

for each in *majcim±zing-r«sourc«-li8t*
for location in *maximiring-ra«ourc«-po»ition*
always (<= (gethash time (eval each))

(nth location status))
finally (return t)))

(defun Paramet«r»-within-range (current-status)
(loop for each in *maximizing-rasourca-li>t*

for location in *maximizing-raaoure«-position*
always (> (get each 'resource-limit)

(nth location current-status))))

(defun upd«te-H«sh-t»bleo (start 1st}
(loop for (iteml duration) in 1st

as end-time «• (+ start duration)
do

(cond ((null (member end-time *time-li»t* :test »'=))
(loop for resource in (cons ' scheduled-items *re»ourc«-v«ri«l>l««*)

do
(swaphaah end-time (Get-hash-value end-time resource nil) (eval resource)))

(setq *ti«DB-li»t* (sort (cons end-time (copy-list *tim»-li«t*)) #'<))))
(loop for time in (member start *tim«-li«t*)

until (= end-time time)
do

(swaphash time (append (Gethash time scheduled-items) (list iteml))
scheduled-items)

(loop for resource in *resource-vari«bl««*
do

(swaphash time (+ (Get-hash-value time resource)
(get iteml resource)) (eval resource))))))

(defun Get-hash-v»lu» (time resource (optional (not-new t))
(let ((value (gethash time (eval resource))))

(cond (value value)
(not-new oil)
(t (gethash (loop with previous = 0

for last-time in *tin»-li»t*
until (>= last-time time)
finally (return previous)
do

(setq previous last-time)) (eval resource))))))

(defun find-raaourea-eandidataa (1st endpoint start)
(loop for exp in (find-interval-candidates 1st endpoint)

if (check-constraints (add-constraint-values (current-status start) exp))

collect exp into resource-candidate-list n»T?irB?J£vL PMa£ 33
finally (return resource-candidate-list))) UK!Ul!)î «- r "

OF PQG8 QUALITY



ANDY:>jsr>resource-allocation>multiple-singIe-performance-step>muItiple-resources.ft^8

(defun find-intarval-eandidataa {1st endpoint)
(loop for exp in 1st

if (feasible-interval exp endpoint)
collect exp into variable

finally (return variable)))

(defun faaaibla-intarval (experiment endpoint)
(< (get experiment 'duration ) endpoint))

(defun find-poaaibla-downward-patha (sv 1st)
(let* ((top (car 1st))

(bottom (cdr 1st))
(val (add-constraint-values sv top)))

(cond ((null (check-constraints val)) '(()))
(bottom

(loop for down-lst on (cdr 1st)
append (group-intermediate-lists

top (find-possible-downward-paths val down-lst)) into var
finally (return var)))

(t (list 1st) ))))

(defun add-conatraint-valuaa (1st exp)
(loop for resource -in *rasourca-variablaa*

for value in 1st
if (null value)
do (setq value 0)

collecting (+ value (get exp resource))))

(defun chaek-eonatrainta (1st)
(loop for resource in *raaourca-variablaa*

for value in 1st
always (apply (get resource 'resource-constraint-function) (list value))
finally (return t)))

(defun find-max-path (time sv 1st)
(loop with max-paths = nil

with max-value = 0
for new-lst on 1st
as paths = (find-possible-paths sv new-lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))

(Set-back-tracking-paths
time (gethash time scheduled-items) max-paths)

(return (car max-paths))
do

(cond ((= max-value value)
(setq max-paths (append max-paths paths)))
((<.max-value value)
(setq max-paths paths

max-value value)))))

(defun Sat-back-tracking-paths (time prefix suffix)
(swaphash time

(remove-duplicates
(loop for (eac rst) in suffix

collect (append prefix eac))
:test *'equal)

'paths*))

(defun «ort-max-patha (paths)
(let ((1st (loop for path in paths

collecting (list path (get-group-values path)))))
(loop for pos in (reverse *maximi«ing-raaouraa-poaition*)

do
(setq 1st (sort 1st *'> :key (lambda (x) (nth pos (cadr x))))))

1st))

(defun gat-tima-intarval-priority-valua (values 1st Soptional (pos 0))
(cond (values

(+ (nth (nth pos *aaximizing-raaourca-poaition*) values)
(nth (nth pos *oaximizing-raaourca-poaition*) 1st)))

(t 0)))

(defun group-intanaadiata-lista (item 1st)
(loop for each in 1st __.. „. .

collect (cons item each) )) ORIGINAL PAGE 8S

OF POOR QUALITY



ANDY:>jsr>resource-alIocation>multiple-single-performance-step>muHiple-resources.fiS^8

(defun ramov«-«xp«rim«nt-£rom-»ch«dul»-li»t (exp 1st)
(remove exp (copy-list 1st) :test I'equal))

(defun find-pa»»ibl«-patha (val resource-candidates)
(let ((1st (find-po33ible-downward-path3 val resource-candidates)))
(cond ((null 1st)(return-from find-possible-paths nil))

(t (get-maximized-sub-path 1st)))))

(defun gat-maximized-sub-path (paths)
(loop for resource in *maxiinizl.ng-r«>oure«-list*

for position in *maximizing;-r«»ourc*-po»ition*
until (= (length paths) 1)
do

(setq paths
(loop for 1st in paths

with max-val = 0
with max-lsts = nil
as resource-value = (nth position (get-group-values 1st))
finally (return (reverse max-lsts))
do

(cond ((> resource-value max-val)
(setq max-val resource-value

max-lsts (list 1st)))
((= resource-value max-val)
(setq max-lsts (cons 1st max-lsts)))))))

paths)

(defun gat-group-valuaa (group)
(loop for item in *raaourc«-varimbl«»*

collecting (loop for each in group
summing (get each item))))

(defun currant-atatua (time)
(loop for each in *r«sourc«-vari«bl«»*

as value = (gethash time (eval each))
collecting (if value value 0)))

(defun show-seh«dul»d ()
(format *ro»oure«-output-window* "~2% Tim* ~20tSch«dul«d Ev«nt»-%")
(loop for time in *time-list*

do
(format *r«aourc«-output-window* "-% ~A -20t-A" time (gethash time scheduled-items)))

(format *r«»ouro«-output-window* "~2%"))

(defun show-resource (resource)
(loop for time in *time-list*

do
(format t "-% -A -20t-A" time (gethash time resource))))

(defun maka-tf>oua«-aanaitiva-lab«la (return object (key (stream *r*aourca-manu-window*)
(type 'l«b«l-typ«))

(dw:with-ootput-as-presentation (:single-box t
:stream stream
:type type
:object object)

(format stream (format nil "-a-A" return (cadr object)))))

ORIGJ^AL PAGE IS
OF POOR QUAlfTY



Appendix G
Symbolics Lisp Code for Frontier of Feasibility System

p i
ORIGINAL PAGI IS
OF POO", ?• • • •'*



ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 1

;;; -*- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -*-

(defvar *Reaouxce-File-Directory* "andy:>jsr>resource-allocation>multiple-data-files>")

(defvar *framea*)

(defvar *max-reaource-area* 0)

(defvar *currently-uaed* 0)

(defvar 'current -file* nil)

(defvar 'experiments*)

(defvar *max-reaource-area* 58000000)

(defvar *Not-Pr«vioualy-Notified* t)

(defvar "message-window* (tv:make-window 'dw:dynamic-window
:blinker-p nil
:edges-from '(300 300 850 400)
:more-p nil
:margin-components
'((dw:margin-scroll-bar :visibility :if-needed)

(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin :bottom
: string 'Message Window (Press any key to EXIT)")))\

(defvar 'interface-window* (tv:make-window •dw:dynamic-window))

(defflavor activity
(Name
Experiment-Number
Duration
Power-Required
Man-Power
Data-Rate
Performances
Minimum-Performances
Maximum-Performances
Scheduled-Performances
Presentation
(Highlighted nil))

(:cone-name "")
:initable-instance-variables
:readable-instance-variables
:writable-instance-variables)

(defun set-up-objects ()
; (setq *max-reaource-area' (* *max-time* *max-resource"))
(loop for each in 'frames*

as name = (car each)
collecting name into name-list
as 1st = (loop for next in (cdr each)

collecting (read-from-string (format nil ":-a" (car next))) into args
collecting (caadr next) into args
finally (return (append (list .-name (format nil "-a" name)) args)))

finally (setq 'Experiments* name-list)
do

(set name (apply t'make-instance (cons 'activity 1st)))
(set-minimum (eval name)))

(calculate-area-used))

(defmethod (aet-minimum activity) ()
(setq Minimum-performances Performances))

(defun restart ()
(setq *current-file* nil 'currently-used* 0 "used-lst* nil ij I))

(defun calculate-area-used ()
(setq *currently-used*

(loop for name in 'experiments*
as duration = (duration (eval name))



ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/9007:40:09 Page 2

as power = (power-required (eval name))
as perfs = (performances (eval name))
summing (* duration power perfs) into tot-area
finally (return tot-area))))

(defun maJco-window-lay out ()
(let* ((space 10))

(format 'interface-window* "-%")
(loop for exp-lst in (subgroup-list 'experiments* 12)

counting t into row
collecting (loop for exp in exp-lst

counting t into column-number
as column = (* 10 column-number)
collect (list exp row column-number) into headings
finally (format 'interface-window* "-%")

(return headings)
do

(format 'interface-window* (format nil " at-a" (zl:£ix column) exp)) ) into var
do

(loop for exp in exp-lst
counting t into col-num
as col = (* 10 col-num)
do

(place-variable col 'performances exp))
(format 'interface-window* "-2%"))))

;;Thia daflnaa the item presentation type and documentation line display
(define-presentation-type resource-type ()

:no-deftype t
:parser ( (s t ream) (loop do (dw:read-char-for-accept s t r e a m ) ) )
:printer ( (object stream)

(format stream "the resource -A" (car o b j e c t ) ) ) )

;;This is what is done when the item is selected
(define-presentation-action choose-type

(resource-type t
:gesture :left
:context-independent t
:documentation "Change this value")

(resource)
(throw 'resource

(list resource (presentation (eval (caar r e s o u r c e ) ) ) ) ) )

;;This function assists in correct column spacing
(defun place-variable (column variable exp)

(format 'interface-window* (format nil " at" ( z l : f i x c o l u m n ) ) )
(format-item-mouae-sensitive 'interface-window* ( funca l l variable (eval exp))

(list (list exp variable)
(multiple-value-bind (a b)

(send *interface-window* :read-cursorpos)
(list a b ) ) ) ) )

;;This function prints the item to the screen with mouse sensitivity
(defun format-item-mouae-sensitive (stream incoming-item descriptors)

; (if (> ij 172) (dbg:dbg) (setq ij (+ 1 i j ) ) )
(let* ((object (eval (caar descr iptors)) )

(items (verify-value-range object Incoming-item))
(font (car i tems))
(item (cadr i t e m s ) ) )

(eval • (setf , (list (cadar descriptors) object) , i t e m ) )
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(clearspace stream)
(setf (presentation object)

(dw:with-output-as-presentation (:single-box t
: stream stream
:type 'resource-type
:object descriptors)

(send stream :set-cursorpos (caadr descriptors) (cadadr descr ip tors) )
(format stream "-vea-:5 font i t e m ) ) ) ) )

(defmethod (verify-value-range activity) (i tem)
; (if (> ij 172) (dbg:dbg))
(let* ( ( f o n t ' ( : f i x :roman :normal) )

(upper maximum-performances)
(lower minimum-performances) ; ; ( z l : f i x (•*• (* 2/3 upper) . 9 ) ) )
(state nil)

ORIGINAL PAGE IS
OF POOR QUALITY



ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/9007:40:09 Page 3

(available (- *max-reaource-area* *currently-used*))
(increment (zl:fix (/ available (if (> power-required 0)

(* duration power-required) (abs available)))))
(resource-limit (+ performances

(if (> increment 0) increment 0))))
(dbg:dbg)

(cond ( (and (> item upper)
(>= resource-limit upper))

(setq font •(:fix :bold :norroal)
state 'upper) )

( (< item lower)
(setq font •(:fix :italic :normal)

state 'lower))
((and (> item resource-limit)

(> upper resource-limit))
(setq font ' (:fix :roman :normal)

state 'resource-limit)))
(case state

(upper (setq font '(:fix :bold :normal))
(send-message-to-user
(format nil "The value you entered (-a) for the number of-

~%Performances of -a is above the maximum allowed of ~A-2%-
The maximum value will be used." item name upper))

(setq item upper))
(lower (setq font '(:fix :italic rnormal))

(send-message-to-user
(format nil "The value you entered (-a) for the number of-

-%Performances of -a is below the minimum allowed of -A-2%-
The minimum value will be used." item name lower))

(setq item lower) )
(resource-limit

(send-message-to-user
(format nil "The value you entered (-a) for the number of-

~%Performances of -a would exceed the available ~%~
amount of the resource (-A).-2%-
The maximum possible value (-a) will be used."

item name available resource-limit))
(setq item resource-limit)))

(cond-every ((= item lower)
(setq font '(:fix :italic :normal)))

((= item upper)
(setq font '(:fix :bold :normal))))

(setq *currently-uaed* (+ 'currently-uaed* (* (- item performances) duration power-required)))
(list font item state)))

(defun review-posaible-increasea ()
(let ( (Frontier-node t))
(loop for each in 'experiments*

do
(cond ((no-possible-increase (eval each))

(highlight-object (eval each)))
((highlighted (eval each))
(remove-existing-highlight (eval each))
(setq Frontier-node Nil))

((not-maximized (eval each))
(remove-existing-highlight (eval each))
(setq Frontier-node Nil))))

Frontier-node))

(defmethod (not-maximized activity) ()
(> maximum-performances performances))

(defmethod (no-poaaible-increaae activity) ()
(> (* duration power-required)

(- *max-reaource-area* 'currently-used*)))

(defmethod (refflove-exiating-highlight activity) ()
(let ((box (dw::presentation-displayed-box presentation))

(original-position (multiple-value-bind (a b)
(send *interface-window* :read-cursorpos)

(list a b) ) )
(font ' (:fix :roman :normal)))

(setq highlighted nil)
(cond ((= performances maximum-performances)

(setq font '(:fix :bold :normal)))
((= performances minimum-performances)

ORIGINAL PAGE IS
OF POOH QUALITY



ANDY:>jsr>Frontier-Interface>frontier-interface.Iisp.9 4/07/90 07:40:09 Page 4

(setq font '(:fix :italic :normal))))
(graphics:draw-rectangle (dw::box-left box) (dw::box-top box)

(dw::box-right box)(dw::box-bottom box)
:stream *int«r£ac«-windot»* :opaque t :alu :erase)

(send *int«rf«c«-window* :set-cursorpos (dw::box-left box) (dw::box-top box))
(format *intarfac«-window* "-vea-3 font performances)
(send *int«rfac«-window* :set-cursorpos (car original-position)(cadr original-position))))

(defmethod (highlight-object activity) ()
(let ((box (dw::presentation-displayed-box presentation)))
(setq highlighted t) :

(graphics:draw-rectangle (dw::box-left box) (dw::box-top box)
(dw::box-right box)(dw::box-bottom box)
:stream *interfac«-window* :opaque nil :gray-level .15)))

(defun clearapaca (stream)
(loop repeat 8

do
(send stream :clear-char)
(send stream :forward-char)))

;;This function returns the list of data files that can be selected.
(defun gat-data-fila-list ()

(loop for directory in (cdr (fs:directory-list *R«sourco-Fil«-Diroctory* ))
as pathname = (cond ( (not (string= (send (car directory) :name) " e r r " ) )

(format nil "-A" (send (car directory) : s t r i n g - f o r - d i r e d ) ) ) )
collect pathname ) )

;;This function allows communication between the user and the program.
(defun aend-maasage-to-uaar (message)

(send *maasaga-window* :clear-history)
(send *maaaage-window* :set-cursor-visibility nil)
(send "massage-window* : select)
(format *maaaaga-window* message)
(send *m»osag«-window* :any-tyi)
(send *ma»aaga-window* :deselect))

(defun subgroup-liat (1st group-sizes)
(let* ((group-size (if (>= group-sizes 1) (zl:fix group-sizes)

(len (length 1st))
(repeats (/ len group-size)))

(loop repeat (zl:fix (if (not (= (mod len group-size) 0))
(+ 1 repeats) repeats))

as start first 0 then. (+ start group-size)
as finish first group-size then (+ finish group-size)
collect (if (> finish len)

(subseq 1st start)
(subseq 1st start finish)))))

(length 1 s t ) ) )

;;This function reads in a value, but does not issue a line-feed.
(defun read-without-raturn (Soptional (stream "standard-output')

Skey (activation-characters ' ( f \Re tu rn t\End )))
(loop with cursor-position = (list (multiple-value-bind (a b)

(send stream :read-cursorpos) (list a b ) ) )
with var2 = nil
with position = 0
as varl = (send stream :tyi)
as total-length = (length var2)
unti l (member varl activation-characters)
if varl

do
(cond ((and (equal varl #\rubout) var2)

(send stream : tyo It\backspace)
(send stream :clear-char)
(setq var2 (cdr var2)

position (1- position)
cursor-position (cdr cursor-position)))

((and (or (equal varl S\c-B)(equal varl 8\backspace)) var2)
(setq position (1- position))
(send stream :tyo varl))
((equal varl S\c-F)
(cond ((< position total-length)

(setq position (1+ position))
(send stream :tyo varl))))

((= position total-length)
ORIGINAL PAGE !S
OF POOR QUALITY



ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 5

(setq var2 (cons varl var2)
position (1+ position)
cursor-position (cons (multiple-value-bind (a b)

(send stream :read-cursorpos)
(list a b)) cursor-posit ion))

(format stream "-a" v a r l ) )
( ( o r (equal varl »\c-B) (equal varl SXrubout ) ) )
(t (send stream :insert-char)

(format stream "-A" var l )
(setq var2 (reverse (loop for temp = nil

then (append temp ( l i s t (car e n d ) ) )
for end = (reverse var2) then (cdr end)
repeat position
f ina l ly ( re turn

(append temp (cons varl e n d ) ) ) ) ) ) ) )
f inally (return (cond (var2 (setq var2 (read-from-str ing

(apply &'str ing-append (reverse v a r 2 ) ) ) ) ) ) ) ) )

;;This function allows the data values to be changed.
(defun change-data-point ()

(cond ( (and 'Not-Previously-Notified* (review-possible-increases))
(send-message-to-user (format nil "-%The current selection represents a Frontier Node.-2%-

No possible performance INCREASES e x i s t . " ) )
. (setq *Not-Previously-Notified* n i l )

' N o t i f i e d )
(t

(let ( ( d a t a (catch 'resource (accept 'resource-type
:prompt nil
:stream *interface-window*)))

(original-position (multiple-value-bind (a b)
(send *interface-window* :read-cursorpos)

(list a b)))
(position))

(setq *Not-Previously-Notified* t)
(cond ((or (atom data) (atom (car data)))

data)
(t
(setq position (cadar data))
(send *interfaee-window* :erase-displayed-presentation (cadr data))
(send *interface-window* :set-cursorpos (car position)(cadr position))
(send *interface-window* :set-cursor-visibility :blink)
(format-item-mouse-sensitive *interface-window*

(read-without-return *interface-window*)
(car data))

(send *interface-window* :set-cursor-visibility nil)
(send 'interface-window* :set-cursorpos (car original-position)

(cadr original-position))
'data))))))

(defun frontier-interface ()
(if (null-string *current-file*)

(open-input-file))
(loop with again = t

while again
do

(send 'interface-window* :select)
(send 'interface-window* :clear-history)
(format 'interface-window* "-50t-vCrontier Development Interface~32%" ' (:Fix :bold :normal))
(make-window-layout)
(send 'interface-window* :set-cursor-visibility nil)
(monitor-usage)
(loop with finished = nil

until finished
as choice = (change-data-point)
while choice
do

(monitor-usage) ) ) )

(defun monitor-uaage ()
(send 'interface-window* :set-cursorpos 550 670)
(send *interface-window* :clear-rest-of-line)
(format *interface-window* "-5,2f% Available (-a Remaining ~a Used)"

(* 100.0 (/ (- *majc-resource-area* 'currently-used') *max-resource-area*) )
(float (- *max-reaource-area* 'currently-used')) (float 'currently-used')))

(defun null-string (str) _

ORIGINAL
OF



ANDY:>jsr>Frontier-Interface>frontier-interface.Iisp.9 4/07/90 07:40:09 Page 6

(= (length str) 0) )

(defun open-input-file ()
(let ((infile (dw:menu-choose (get-data-file-list)

:prompt "Data Fil« List")))
(cond (infile (load (string-append *R«aource-Filo-Dir«ctory* infile)

:verbose nil)
(set-up-objects)
(setq *curr»nt-fil«* infile)))))

(defun t««t ()
(loop for each in **xp»rim«nt»'

as eac = (eval each)
do

(format t "-%-a-14t-a-20t-a-30t-a-45t-a-60t-A"
each (performances eac) (minimum-performances eac) (maximum-performances eac)
{* (power-required eac) (duration eac))(no-possible-increase eac))))

OR8GWAL PAGE IS
OF POOR QUALFTY



ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2 4/07/90 07:40:01 Page 1

;;; -«- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -*-

(defvar *resource-allocation-g;raphics-windov*
(tv:make-window 'dw:dynamic-window))

(defvar 'objects* nil)

(defflavor activities
(Value
Horizontal-location
vertical-location
Maximum
Minimum)
0

:initable-instance-variables
:readable-instance-variables
:writable-instance-variables)

(defvar 'horizontal-limit* 600)

(defvar *vertical-offset* 75)

(defvar *horizontal-offset* 100)

(defvar *acale-x* 3)

(defmethod (draw-object-mouse-left activities) (xref)
(let ((x (+ xref 'horizontal-offset')))
(graphics:draw-string (format nil "-a" value) (••• Horizontal-location 10) vertical-location

:stream •resource-allocation-graphics-window* :alu :erase
:attachment-y :top :character-style '(:fix :roman :very-small))

(graphics:draw-rectangle x vertical-location Horizontal-location (•*• 5 vertical-location)
:stream *resource-allocation-graphics-window* :alu :flip)

(setq Horizontal-location x
Value (calc-new-value Horizontal-location))

(graphics:draw-string (format nil "-a" value) (+ Horizontal-location 10) vertical-Location
:stream *resource-allocation-graphics-window*
:attachment-y :top :character-style '(:fix :roman :very-small))))

(defun calc-new-value (x)
(/ (- x 'horizontal-offset*) »seale-x*))

(defmethod (check-object activities) (y)
(<= vertical-location y (+ 5 vertical-location)))

(defun create-initial-objects (num)
(loop repeat num

for name in '(anfghj ertyuil yupoliu ewyrue ttyyss gsgsgsg iweie83k ieieiokk jfjfjfkl qwernm)
counting t into down
as vert = ( + (* down 10) *vertical-offsat*)
as val = (random 200)
as hori = (zl:fix (* 'horizontal-offset* (" (/ val 200) 'horizontal-limit')))
collect (make-instance 'activities

:vertical-location vert
:Horizontal-location hori
:Value val
:Maximum (zl:fix (+ val (• .5 (- 200 val))))
:Minimum (zl:fix (* .5 val))) into vars

finally (setq 'objects* vars)
do

(graphics:draw-string (fo'rmat nil "-a" name) (- 'offset* 10) vert : stream *resource-allocation-graphi
cs-window*

: attachment-y :top : attachment-x : right : character-style ' (:fix : roman :very-srr
all))

(graphics:draw-rectangle *horizontal-offset* vert Hori (+ 5 vert) :stream *resource-allocation-graphi
cs-window*)

(graphics:draw-3tring (format nil "-a" val) (+ 10 Hori) vert :stream 'resource-allocation-graphics-wi
ndow*

: attachment-y -.top -.character-style '(-.fix : roman : very-smal 1) )) )

(defun top-level-ii (Soptional (num 101)
(send 'resource-allocation-graphics-window* -.select)
(send *resource-allocation-o;raphics-window* :clear-history)
(create-initial-objects num)
(dw.with-output-recording-disabled ('resource-allocation-graphics-window*)

(loop with previous = nil



ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2 4/07/90 07:40:01 Page 2
N.

do
(dw:tracking-mouse (*r««ouro»-»lloc«tion-gr«pb-ic»-windoi»*

:who-line-documentation-string
"Revise allocation of item")

(:mouse-motion-hold (x y)
(let ((xloc (* (truncate (- x *horiront«l-off»«t«) *«o«i«-x*) *«c*l«-x«)>)

(if (and previous
(validate-object-maximum previous xloc))

(draw-object-mouse-left previous xloc))))
(imouse-click (button x y)
(if (equal button »\mouse-l)

(loop for each in *obj«ct»*
when (check-object each y)
do

(setq previous each))))
(: release-mouse ()

(setq previous nil))))))

(defmethod (v«lid«t»-obj«et-m»xinnim activities) (mouse-position)
(<- minimum (/ mouse-position *»cale-x*) maximum))

OR5GINAL PAGE IS
OF POOR Q'jJ:1 -TV




