. NAG3-17

o pRSrp SR
/W 63—
322535

/0/';27«%

(NASA-CR-187953) APPLICATIONS OF ARTIFICIAL) N91-26806

INTELLIGENCE YO MISSION PLANNING Final — G ,ﬁQ

Technical Progress Report, period ending 31 5399[

Aug. 1990 (Alabama Univ.) ~232— CSCL 098 . Unclas
2772 G3/63 0332835

The University of Alabama in Huntsville

Applications of Artificial Intelligence
to Mission Planning

FINAL REPORT

————

for
‘ Mission Analysis Division
Systems Analysis and Integration Laboratory
George C. Marshall Space Flight Center

by
Donnie R. Ford
Stephen A. Floyd
and John S. Rogers
The University of Alabama in Huntsville
Huntsville, AL 35899

Table of Contents

1.0 INTOGUCHION.......corireriererirctetccteeret ettt e s s saese s bbb e besrs e eeaas 1
2.0 Object-oriented Programming Task...........cecevveervreeeecenieneniceisieressessessssesseneennes 3
2.1 Task StatemMent........ccooiiiiirecer et e 3
2.2 TasK CONAItIONS.......cccueuiiiieiiiciee ittt be s se et esnneesaeesaens 3
2.3 TaSK APPIOACKN.......coitenteietrriesienrcteeeere et ss et rensaes et saesssssssssntessenaeas 5
2.4 Task RESUIS ..ottt e s10
3.0 Rule-Based Programming Taskccccccrereverineriereeninmneeneseesessssesesesssnsnsnans 11
3.1 Task Statement...........cciieniiiecrr ettt b e 11
3.2 Task CONAIIONS........coeeerenririieiciieecesteseeesrrsresie e bresnesaesre s 11
3.3 Task APProacCh.........ccccceimeninririieniirreriesse et sessers e s st ss e eans 11
3.4 TasK RESUIS......c.covierrererecee ettt et et 14
4.0 Algorithms for Resource AllOCatioN............ccoeeiievnii i, 17
4.1 Task StAtEMENL.......covvercreircce st e 17
4.2 Task CONAItIONS......coveerrienerirrerrirereeiesre s e resresaeses s e e s s aas 17
4.3 Task APPrOACH.....ccuieirrrnernicirie ettt st bt 17
4.4 Task RESUIS....cooiireceiecec et ceersses st s st st s ss e aens 23
5.0 Connecting A Symbolics 10 A VAX ..o 60
5.1 Task Statement..........ccviieiiiiieeiececeertee et erse e ses e s ecsr e s s st e ebe s 60
5.2 Task CONIIONS........ceeviieieiiceeceeiecre e sie e seeanessresr e cssaseaesbs e eraasanens 60
5.3 Task APPrOaACh......covriirieietiicsr ittt ettt seese s sra e sa s 60
5.4 Task RESUIScoiiiece et e e bbb e 61
6.0 FORTRAN froOm LiSP....cveeereririeriieiet et see e e svesnensesnesereenreas 62
6.1 Task Statement..........ccvoiiiie e 62
6.2 Task Conditions.........cccceveiieieeieeeciinenrerer e eterreeereeereeraenaaeraene 62
6.3 TaSK APPrOACH.....cc.ouiiiireireier ettt ettt ev e sbe s ers 62
6.4 Task RESUNS ..ot st ssae b saeas 63
7.0 Trees and FOTeSt TASK.......ccceceevveiceireeecerieeseeveie st e esras s e s sssessssessseanes 64
7.1 Task Statement...........cvoiiireeece s et 64
7.2 Task Conditions........cccocvvvevveververiresernennae teerteerrere e etebeee e beeaeeaaeenbens 64
7.3 TasSK APPIrOACH.......c.cccvevirciecrtrtt ittt sas e nens 64
7.4 TasKk RESUIS........ooeevereeeceeeceie ettt er e e s sve b sn e s 66
8.0 Software Data Structure Conversionmvveeivvveeene. 69
8.1 Task StatemMent ... 69
8.2 Task CONAItIONScoooeiiieeeeeeeeeeee et 69
8.3 Task APProaCh..........c.cviiiuietieeeeeeee et s 71
8.4 Task ReSURS ...t 75
9.0 Software Functionality Modifications and Enhancements............ 76
9.1 Task Statement.........cccooveiiiiiceee et 76
9.2 Task CONAItIONS........cccueevieiecrieieeeeeeeee et 76
9.3 Task AppProach..........ccccecceveeveeercerieseesesresiee e, et 76
9.4 Task RESUHS ..ot 78
10.0 Portability of Resource Allocation To A Tl MicroExplorer........... 81
10.1 Task Statement ...t 81
10.2 Task ConditiONS...........o.oooiieeicceeec e 81
10.3 Task APPrOaCH ...t 81

10.4 TASK RESUILS ..o e et e e e e eeae s 82

11.0 Frontier of Feasibility Software System............n. 83

11.1 Task Statement ..., 83

11.2 TaSK CONAItIONS c..oovieeeeeeeeeeeeeeeeeeeeeeee ettt 83

11.3 TaSk APPrOACHc.coiceiiieeeeeeeeeeeeee ettt 84

A C IV IS e et s 84
RESOUICES........eeceeeeeeeeeeeeeee ettt 85

Graphical Representation of Search Space......................... 86

State Space Search Methods............ccoccoevieveviieicnieee e 88

Modified Breadth SearCh ... 89

11.4 TasKk RESUIS ..o 91

T2.0 CONCIUSIONS ..ottt ettt s r e s seenaeneene s 92

Appendix A Code Listing, for Object-Oriented Programming Task
Appendix B Symbolics Code Listing for the Multiple Pass Multiple

Resource Allocation Program

Appendix C Vax Code Listing for the Multiple Pass Single Resource

Allocation Program

Appendix D Symbolics Code Listing for the Multiple Pass Single

Resource Allocation Program

Appendix E Symbolics Code Listings for Flavor Definitions of

Object Structures

Appendix F Symbolics Liép Code for Modified Single Allocation Step

Process

Appendix G Symbolics Lisp Code for Frontier of Feasibility System

1.0 Introduction
The scheduling problem facing NASA MSFC Mission Planning is

extremely difficult for several reasons. The most critical factor is
the computational complexity involved in developing a schedule. The
problem space is combinatorially explosive. The size of the search
space is large along some dimensions and infinite along others.
There can be infinite number of choices to assign activities, and a
large number of choices of crew assignments to activities.
Additionally, the goal of the scheduling process is to produce a
“good” schedule. This is ill-specified and encounters a number of
often conflicting requirements. These requirements can include
efficient use of resources, no time or resource constraint
violations, and maximum production during a specified time period.
Interrelational requirements between activities, the performance
placement of each of the activities, and resource usages can make
constraint violations difficult to predict and avoid.

It is because of these and other difficulties that many of the
conventional operation research techniques are not feasible or
inadequate to solve the problems by themselves. Therefore, the
purpose of this research is to examine various artificial intelligence
techniques to assist these conventional techniques or replace them
entirely.

In June 1988, the Mission Analysis Division of the Systems
Analysis and Integration Laboratory of the Marshall Space Flight
Center (MSFC) of NASA tasked UAH to study the mission planning
activities and how artificial intelligence techniques may benefit
these activities. = The specific tasks to be performed were (1)
identify mission planhing applications for object-oriented
programming and rule-based programming; (2) investigate
interfacing Al dedicated hardware (Lisp machines) to VAX hardware;
(3) demonstrate how Lisp may be called from within FORTRAN
programs; (4) investigate and report on programming techniques
used in some commercial Al shells, such as KEE; and (5) investigate
and report on algorithmic methods to reduce complexity as related
to Al techniques. The results of this study, the prototype computer

software and their loperational instructions were reported to NASA
MSFC in the first Interim . Report (UAH Research Report JRC 90-07)
and presented in the form of an oral presentation in November 1989.
At the conclusion of this oral presentation and during
subsequent meetings with the MSFC staff new goals were set for
continuing research on the previously defined. tasks. These new
goals focused on two areas: software and technique. Specific
modifications and enhancements to prototype resource allocation
software have been incorporated to increase its functionality and
performance capabilities. Coupled with the modified software, new
Frontier of Feasibility traversing techniques have been developed
and evaluated A description of each of the alterations and additions
to the prototype software and differing techniques were detailed in
the second Interim Report (UAH Research Report JRC 90-48) and
were presented to MSFC personnel in the Summer of 1990.
' The following is the Final Report for research conducted under
NASA Grant NAG8-717. UAH would like to thank the NASA MSFC
Mission Planning personnel for thier support and cooperation during
the conduct of this research. The contents and conslucions is the
sole responsibility of the authors and implies no official position on
the part of the National Aeronautics and Space Administration.

2.0 Object-oriented Programming Task

2.1 Task Statement

The purpose of this research was to investigate some of the advantages’
and disadvantages of using an object-oriented paradigm to assist in solving the
scheduling/resource allocation problem that is peculiar to MSFC NASA Mission
Planning. This is further targeted to the Space Station effort. In order to assist
in this task, the decision was made by UAH personnel to develop a
demonstration prototype of the MSFC NASA experiment and payload scheduler
using the object-oriented paradigm. This work was conducted by Dave B_rown

and Dr. Stephen Floyd.
2.2 Task Conditions

The conditions of this task are that the prototype was developed using a
Symbolics 3600 machine, that the object-oriented paradigm (Flavors) that is
presently supported by this platform was appropriate, and the experiment
scheduling experience and data gained from the Spacelab missions was an
appropriate starting point for this prototype. Also, this task excluded
consideration of between experiment constraints, and focused_on within
experiment constraints (time and resources).

Because of the newness of the subject, it is appropriate to preface the
following sections with a brief introduction to object-oriented programming.
Object-oriented programming is becoming popular and important in many
areas. This term implies that behavior is associated with objects, usually in the
form of code. Thus, each object can possess particular knowledge needed to

function in its world. Consequently, programs become a collection of objects

rather than lines of code. Other terms relating to objects are inheritance,
message, methods, classes, and metaclasses. Definitions of these terms follow.

Class - a template from which objects are modeled or created.

Objects are usually clustered based on behavior, thus a taxonomic

relationship can be developed from this. Behavior can be

attributed to an individual object or to the class of objects. Classes

control the manner in which 6bjects are structured.

Inheritance - the ability of an object to automatically- share

behavior between classes.

Message - the means by which ari object may be requested to

perform a certain behavior or action. This is the fundamental

- control mechanism and is the hallmark for object-oriented
programmming. ‘

Method - an actual implementation of a message

Metaclasses - the means for classifying objects and placing

them in a hierarchy for inheritance purposés. Metaclasses control

the manner-in which objects in subclasses are represented.

All of these concepts are needed to have an object-oriented paradigm or
programming language.

An object is composed of slots that hold the code and/or information that
makes the object unique and a member of a particular class. What is in the slot
is called the value of the slot. Thus, the structure of the object is the collection of
slots that compose the object. Objects can inherit slots and/or values from the
classes that are above it in the hierarchy of inheritance. Consequently, the
terms parent and child are used when discussing inheritance. ‘An object can
have more than one parent. Also, an object or object class can have behavior

that is not inherited.

When an object is created, it inherits its structure from its parents, and is
referred to as an instance of a particular class. There are various inheritance
mechanisms that control what exactly is passed to children. These can be
simple or very sophisticated. These mechanisms are located at various levels
of the inheritance hierarchy.

The advantages of using object-oriented programming are varied, but the
most cited are (1) information hiding, (2) reuseability of code, (3) restricted
visibility, and (4) ease of adding program functionality. Some of the
disadvantages are (1) size of the program, (2) no standard language, and (3)

training in object-oriented programming.
2.3 Task Approach

The approach taken in this task was to develop a demonstration

prototype to test the desirability of object-oriented programming for the
- scheduling problem. This prototype was developed to handle a subset of the
Mission Planning scheduling problem and used experiment data from the
Spacelab project. Everything involved in the scheduling process that was
modeled in this prototype was represented as objects. The following are the
items treated as objects in the prototype:

Resources (durable, consumable, non-depletable)

Crew members

Targets - locations on earth

Attitudes - the orientation of the space vehicle with respect to the
earth

Experiments - this includes the general characteristics of an
experiment and not specific characteristics of individual
experiments

Performance - one complete iteration of an experiment

Step - one operation of a performance. These were divided into-
startup, normal, and shutdown

timeline - divided into seconds
Other bookkeepping items and the interface for the program were also handled
as objects, thus, the program is completely object-oriented.

An interactive resource editor and display mechanism was designed and-
partially implemented. Currently, the editor handles crew; target, attitude,
consumable, and durable resources. The editor allows new resources in these
categories to be defined, as well as existing resources to be modified. This
includes items, such as quantity available or time period available.

An interactive experiment/performance/step editor has been partially
designed. Major work still needs to be done in this area, as most of the
functions are stubs.

The heart of the scheduling mechanism has been designed and
implemented, but not thoroughly tested. A larger test set of data should be used
for a more rigorous test. The data used to test the prototype was some small
subsets of Spacelab experiment data. This included eighteen experiments with
their associated characteristics.

At present the prototype has the ability to schedule experiment data that
has been manually entered into a file structure on the Symbolics. Also, the
prototype uses the f'front-end loading” scheduling strategy. This means that the
first available time that an experiment can be scheduled is used immediately
and no other locations are determined as suitable.

Scheduling with respect to this prototype consists of the following steps:
(1) selection of an experiment to be scheduled, (2) selection of a time period to

begin the first step of a performance of the experiment, (3) determination of start

6

time for each step, and (4) step scheduling. Determination of the start time for a
step consists of an examination of each step, and determination of the earliest
and latest start time of the next step. Each step must be examined in order to
determine whether the performance can be scheduled at the time period
specified. The determination of the start time for the next step is based on
duration and delay factors. The mechanism for doing this is essentially a depth
first search with backtracking. When a feasible set of times has been identified
that satisfies all resource constraints and time constraints for the step, then step
scheduling is entered. At this time, resources are decreased, and linkages to
objects representing the time periods are made. The portion dealing with the
depth-first search with backtracking has been partially implemented but not ‘
sufficiently tested.

‘The prototype should have the ability to automatically schedule the
desired number of performances for each experiment, resourceé permitting,
according to several schemes. The user should control which scheme is
actually used. 'l:his concept was demonstrated in the earlier version; however,
these schemes have not been implemented in the latest version-of the
prototype.

At present, the prototype does not allow for any interaction with the user
during the scheduling process. ldeally, interactive scheduling is a desired and
necessary feature for the scheduling process. However, the user does have the
ability to select an experiment and a time period and attempt to schedule a
performance of the experiment to start in the selected time period after a
schedule has been generated. Also. the user is allowed to specify a time
period, and nominate a list of performances which can be scheduled to start
during that time period. The prototype also allows the user to specify an
experiment, and nominate a list of time periods in which a performance of that

7

experiment can be started. In all cases, determination of startup and shutdown
steps is accomplished with consideration being given to all other constraints.
Other desirable features for future’ prototypes that have begun being
developed are data entry, automatic scheduling, interactive scheduling, and
data output (hardcopy, file, and display). Data Entry will include mechanisms
for interactively entering all types of data required , as well as mec_:hanisms to
read the data from files. To some extent, yet to be determined, the user will be
able to control which data elements are to be interactively entered and which
are to be read from files. Currently, input data is thought to consist of
experiments, together with their steps, to include startup and teardown steps;
resources, with available quantities and time periods (as appropriate); and
other mission control data, such as mission duration, desired level of time
resolution. '
| Resources include crew members, targets, attitudes (of the platform),
durable goods (those items are available in fixed quantities throughout the
mission and are not expended by use), consumable items (those items
available initially in some fixed quantity, and which are expended by use, such
as quantities of chemicals), and non-depletable items (those items which are
generated aboard the platform at some rate, and which may or may not be able
to be stockpiled for later use, such as electricity from fuel cells). Resource
objects capture how much of each resource is available during each time
period (defaulted to- 1 per period for'each crew member, target and attitude).
an-depletable goods object has not been designed yet. |
Experiments are to be represented as a series of steps. Steps are of
three varieties -- normal, startup, and shutdown. A performance is an execution
of the ordered set of normal steps. The startup steps will be conducted before

the performance which occurs first, and the shutdown steps will be executed

8

after the performance which is conducted last. Note that these are not the same
as the first performance scheduled and the last performance scheduled. The
automatic scheduling and un-scheduling of startup and shutdown steps is
necessary to facilitate interactive scheduling. Currently, an experiment has the
following attributes; a name, minimum number of performances to be
performed, maximum number of performances to be performed, desired number
of performances to be performed (to be used in automatic scheduling), the
experiment window (time between start of first stép, earliest performance and
end of last step of latest performance), and minimum and maximum delay times™
between performances. Performances inciude a performance window (similar
to experiment window, but dealing with normal steps only). Steps include a-
maximum and minimum duration, a maximum and minimum delay until next
step, and lists of resources required. Additionally, steps include a flag for crew .
lock-in (that is, when a crew member(s) has been selected to perform a specific
step of one performance, that same crew member(s) must perform the same-
step of all other performances of the experiment). The step also includes the
ability to specify subsets of the crew from which members must be selected
(independent of crew lock-in). It is recognized that the step must have the ability
to be scheduled with respect to some other step of another experiment, but the
capture mechanism for this data has not been determined.

Automatic scheduling involves the selection of different strategies and
being able to schedule from user specified files. Interacitve scheduling involves
adding the ability to interact with the prototype during the actual scheduling of
experiments. Finally, data output is the ability to generate various forms of the
schedule for the user. This includes hardcopy, file storage, and display. A
mechanism to save the input beyond the working session still must be

developed. This will not be accomplished until the mechanisms for reading in

data files are completed, as it is intended that the output will have the same

format as the input to simplify-data loading.
2.4 Task Results

There have been two versions of the prototype scheduling system.
developed. The latest version has more functioality than the first. The
development of these two versions have served to highlight one of the
disadvantagés of object-oriented programming; that is, that the size of the
program becomes extremely large during execution. In treating everything as
an object, there is no way‘ to know with any certainty how large the program will
become. The main problem in this area stems from the way that the timeline is
handled. The timeline was broken down into seconds with each second
becoming an object. One can readily see that it does not take a very long time
span to cause an enormous number of objects to be created. An associated
problem with this is that during the bookkeepping ‘process each time interval
must be checked for resources available and other updating functions. Another
method of handling the timeline must be developed. -

On the other hand, treating the experiments as objects has much
potential as a solution to the scheduling problem. More work should be done to
determine the appropriate level of grandularity for these objects. That is, should

just the experiments be objects or should each step be an object? -

10

3.0 Rule-Based Programming Task

3.1 Task Statement

The purpose of this research project was to develop a research prototype
of a system to schedule an experiment payload using the Space Station as a
target. The problem used was a very small subset of the payloads for
Spacelab. Also, the prototype deals with only two resources. An indirect
objective of this research was to study the feasibility of using Knowledge
Engineering Environment (KEE) to develop and implement a small prototype

scheduler. This work was conducted by Dr. Fan Tseng and Dr. Rajeesh Tyagi.
3.2 Task Conditions

The prototype was built on Symbolics 3620 using Knowledge
Engineering Environment (KEE) version 2. Symbolics 3620 is a Lisp machine
marketed by Symbolics Incorporated, Cambridge, Massachusetts, and KEE is a
commercial knowledge-based system development tool marketed by Intellicorp

Incorporated.
3.3 Task Approach

KEE is a set of software tools designed to assist system developers in
building their own knowledge-based systems. The main features of KEE
include: frames for the representation of knowledge, a rule system for rule-
based reasoning, graphics for user interface, and object-oriented programming.

Frame-based representation is a means of representing objects and their
attributes. A frame includes all the knowledge about a particular object, stored

and organized in a pre-defined manner. The frame is composed of slots (or

11

fields) that contain specific information relevant to the frame (or object). For

example, the frame for a generic experiment may contain four slots as follows:

SLOT YALUE
Agency NASA
Duration 20 hours
Power 1200 kilowatts
Runs 1

The prototype scheduler is comprised of three components as shown in
Figure 1. The components are: a knowledge base, a model base, and a user
interface. The knowledge base possesées information on various experiments
and their attributes (like the time needed to run an experiment and peak power
consumption during the run). It also contains information on availability of
resources needed to run the experimenté (like power supply). The model base
contains a set of scheduling rules that may be used to develop a schedule for
the experiments. And the user interface provides the dialog between the user

and the system.

Models Knowledge
Base g - Base

User
Interface

Figure 1. The basic structure of the prototype.

12

Given the time constraints to complete this study, there wasn't sufficient
time to develop a prototype with all the capabilities one would have desired.
Since the focus of this research was on the suitability of using KEE for
developing the scheduler, it was decided to include only a set of basic features
that would be sufficient to allow a comprehensive evaluation of KEE's ability to
integrate all the three components mentioned above. Therefore, the knowledge
base contains information on only ten experiment and two resources. And a set
of four scheduling rules constitute the model base.

The knowledge base is organized in the form of frames. Each
experiment is represented by a frame. Each frame consists of slots
corresponding to the attributes of the experiment. Figure 2 shows the frame

corresponding to an experiment called "Crystal Growth". The experiment is

Frame for Experiment: "Crystal Growth"

SLOT VALUE
Agency NASA
Duration 20 hours
Power 1200 kilowatts
Runs 1

Starting Time -~

Ending Time --

FIGURE 2. An example data structure for the prototype.
sponsored by NASA and is to be run only once. the experiment run requires a
power supply of 1200 kilowatts os)ér 20 hours, the duration of the experiment.
The starting and ending times for the experiment are to be determined by the

| scheduling criterion selected by the user to generate the schedule, and are
automatically placed in their respective slots." In addition to frames for the
experiments, there are two frames for the two resources considered in the

prototype, namely, mission length and power supply.

13

The Model Base contains a set of scheduling strategies that may be used
to generate a séhedule, based on the objectives and/or requirements of the
user. These strategies are: (1) Decreasing Run Time, (2) Increasing Run
Time, (3) Decreasing Power Usage, and (4) Increasing Power Usage. These
rules have been implemented in the form of Lisp functions which are executed
from KEE.

The user interface provides the dialog betweén the user and the
scheduler in the form of windows, menus, and gréphica! displays. The user
controls the execution of the system by specifying the strategy to be used in
generating a schedule. The user may also perform what-if analyses. This
analysis may use any of the other scheduling rules to provide alternate
schedules. It may also be used to evaluate the effects of changing experiment
parameters; e.g., varying the duration of an experiment. Any schedule
generated will result in starting and ending times for the experiments being
placed in their respective slots. It also produces a chart displaying any unused

power.
3.4 Task Resuits

KEE allows for knowledge bases to be created fairly easily using the |
frames representation. It also displays a pictorial representation of the
knowledge base. |

Lisp functiohs can be executed from within the KEE environment. This
feature was used to implement the scheduling rules of the prototype. It was
observed, however, that KEE was relatively slow to execute any user-written

Lisp code.

14

The user's manuals were very hard to follow for someone using KEE for
the first time. No complete example is worked out in the manual, which makes it
difficult to get started for a beginner. Unfortunately, for the KEE installed at
UAH, none of the demos provided completely worked.

Toward the end, when the prototype was close to completion, a new
version of KEE was installed; however, it wasn't fully compatible with the old
version and the prototype would not work on it. The people who worked on
building this prototype had an extensive software-development background,
though not specifically with Lisp or KEE. Their experiences with KEE indicate
that for someone with such a background, it is not easy to develop a proficiency
in using KEE in a short period of time. The knowledge base can be constructed
rather easily using KEE. Building a scheduler, however, would necessitate
strong programming skills in Lisp since all the scheduling algorithms and the
~ Gantt charts would have to be implemented by the developer in Lisp. When
selecting a software tool, one mﬁst consider the portability of the software tool,
both in terms of transferability to a different hardware system, as well as in terms
of conversion to another software system; While it may not be possible to
transfer and re-compile Lisp code developed on KEE onto a different
hardware/software system, the same cannot be said of the knowledge base
developed on KEE. To restate a point mentioned in an earlier section, it was
found that execution of Lisp functions in KEE environment is appreciably slower
than in operating syétem environment. The knowledge base developed for the
scheduler prototype comprised only a small number of experiments. The
response time of the protbtype of KEE was not impressive at all. We believe |
that if the knowledge base were to be expanded to include a more realistic set
of experiments, the performance of the prototybe would deteriorate even further.

In light of the above conclusions, it is recommended that a comprehensive

IS

system like the scheduler not be developed using a commercial expert system
tool. Instead, given the current state of the art technology regarding Lisp-based
machines, it would be prudent to develop a mainly Lisp-based system. Such a

system would be significantly more portable.

16

4.0 Algorithms for Resource Allocation

4.1 Task Statement

The purpose of this research was to study the feasibility of using an
algorithmic approach to provide a solution to the resource allocation problem.
The solution to this problem would become the starting point for an experiment
scheduler. This primary purpose of the resource allocation problem is to speed
up the devélopment of good schedules for the NASA MSFC mission planning
process. Also, another purpbse is to provide the capability 6f rapidly evaluating

alternative schedules.

~

4.2 Task Conditions

The conditions of this task were intentionally left open ended. The main
constramt was that data from the Spacelab missions be used for testmg and
developing the algorithms. This data was not actual data but was
representative of the types that would need to be handled by the algorithms.
The prbblem size was kept small for development and testing purposes. The
other consideration was that peﬁormance of the algorithm on the computer
should be sufﬁcieht to handle an expanded data set. Finally, the Symbolics lisp
machine was used to develop the prototype programs and Common Lisp was

not strictly utilized.
4.3 Task Approach

There are many subtle differences between scheduling and resource
allocation; however, the main difference is basically granularity. Scheduling is
more detailed and strictly adheres to any resource or mission constraints than

does resource allocation. Resource allocation considers constraints in an

17

aggregate manner, that is, the area under a curve. The objective of these

resource allocation algorithms is to maximize the usage of the area under the

curve only. Other relationships and constraints are ignored in this process but

are handled by the scheduler.

The algorithms were developed by MSFC Mission Planning personnel or

by UAH personnel after consultation with the Mission Planning personnel.

There are two that are discussed in this report. These are the Free Expansion

Algorithm and the Multiple Pass Algorithm.

The Free Expansion Algorithm was initiated by Mr. James Lindberg of

MSFC. It is basically a controlled expansion of a tree where each node

represents a combination of experiments. The objective is to find the "best”

combination without exceeding the amount of resource available.

This algorithm requires that a starting point be provided. The first step

was to determine the feasibility of the starting point. If the starting point is

feasible, then the algorithm is as follows:

(1)
()
(3)

(4)

(5)
(6)
(7)
(8)

Add starting point to feasible solutions
Expand the starting point
Is the point feasible?

Yes, continue.

No, prune this branch and choose another point.
Add point to feasible solutions
Expand point
Repeat steps 4 and 5 until all branches are pruned.
Repeat steps 4, 5, and 6 until all branches are pruned.
Stop when the tree is exhausted.

This is the general algorithm; however, some points need to be explained. One

is how a point is expanded.

Point expansion is best explained using a simplistic example with |

illustrations. Assume that there are three experiments and each experiment can

18

have a maximum of four performances during the mission. Also, assume that
the starting point is one performance of each experiment. This can be
represented as (111). This makes the graphical illustration easier to use. Thus,
the root of the tree is (111) or graphically
QO 111

To expand this point, certain rules apply. Each child can only have one
performance level changed. Also, subsequent children can only change the
performance level that was changed to generate them or any successive
performance level. Figure 1 illustrates the fist rule using the assumed root
node. Here each performanée level is changed to create three new nodes or
children. This is also referred to as a generation or level when considered in
aggregate. This is fairly simple and straight forward; however, the second rule

is not as apparent.

211 O 121 112

Figure 1. Rule 1 of expansion of a point.

This is illustrated in Figure 2. Here a portion of the tree in Figure 1 is
used to illustrate the second rule. The first child (211) of the starting poiht is
used and expanded. The expansion produces three children. Because this
point was created by changing the first performance level, all the performance

levels can be changed to create children. If the second child is considered,

19

then only the second and third performance levels can be changed. Thus, the
further right a node is in the tree, the less children it can have. Or stated another
way, the majority of the children will occur in the left-most branch of the tree.

Figure 3 illustrates this point very well.

211

311 221 O 212

Figure 2. Rule 2 of expansion of a point.

Using rules one and two will generate a very.neat and orderly tree. This
allows the tree to be searched in an orderly fashion for the points of infeasibility.
When.all branches aré searched and each point of infeasibility is established,
then the frontier of feasibility is established. This is important for the decision
maker when alternative solutions are a requirement.

The final rule for expansion is that the performance level can be changed
by only one performance at a time. This is not as important as the other two
rules and it has been found that it may be better to relax this rule at times. More
research needs to be done in this area.

Using this algorithm, a model was developed and functions were written
on paper; however, none of these were encoded nor tested on a computer. It is
- believed that this algorithm has some potential, but it was dete}mined that other
algorithms may be more appropriate. The reason for this is that this algorithm
will conduct an exhaustive search of the tree. This is an unacceptable process

due to the amount of time required to search a tree that represents a realistic

20

data set. Thus, work was stopped on this algorithm and a new algorithm was
developed.

The new algorithm was also initiated by Mr. James Lindberg of MSFC
and is called the Multiple Pass Algorithm. The first pass is made with the
objective being to allocate resources to the minimum number of performances
required for each experiment. The second pass is made to fill-in any empty
spaces with extra performances of the experiments.

This algorithm requires that the minimum number of performances for
each experiment be provided with the data set. Also, the time per performance,
the power required, and mission duration'are given. From this information, a
prioritized list based on power required is generated. | The list is in descending

order of power required. The algorithm is as follows:
v (1) remove the first experiment from the list.
(2) allocate the resource to this experiment beginning at time
zero.
If amount available is > amount needed, continue.
It amount available is « amount needed, go to (5).
(3) create a new time interval using the duration of the
experiment.
(4) update the amount of resource available.
If resource available at this point is zero, then go to (5),
I resource available is greater than zero, then go to (1).
(5) Move to next available time interval.
(6) Repeat steps 1 - 4 until list is exhausted.

The objective of this algorithm is to maximize the resource usage at all
the time intervals. Once the first pass is completed, all the experiments are
placed back on the experiment list and each time interval is searched for
unused resource. At each time interval that has resource available, the

experiment list is checked to find an experiment that can fit in this interval.

21

Multiple performances of an experiment can be allocated; however, singia=
performancés of multiple experiments are preferred.

The best graphical representation for this algorithm is a Gantt chart... The
best representation of this algorithm on the computer is an association ist..
There are two versions of this algorithm: (1) the Mulitple Pass-Single Rsscource,
and (2) the Multiple Pass-Multiple Resource. Both of these algorithms wenre
implemented on the Symbolics machine using Common Lisp. Also, the Miultiple
Pass-Single Resource algorithm was transported to VAX Common L:sp See
Appendix B the Symbolics code listing of the Mulitple Pass-Multiple Rescuurce
Algorithm, Appendix C for a VAX code listing of the Multiple Pass-Single
Resource Algorithm, and Appendix D fora Symbolics code listing of the MMultiple

Pass-Single Resource Algorithm.
4.4 Task Resuilts

The results of testing the Multiple Pass-Single Resource program “ccr the
Symbolics machine are presented in Table 1. The test began with a se: zr- 18
experiments and the set was increased each time by six until 42 was rezcnned..
After this run, a set of 50 experiments was used. The execution times a—=
expressed in seconds. Also, five replications were made for the set of 1= zand
24 experiments only. The other sefs had only two replications. This was cuue to
the amount of time required for the Iargef sets. Finally, a graph showing :ne
average execution time for each experiment set is included in Table 2.

The system developed on the Symbolics was tested extensively 1=
ensure that the coded algorithm performed as intended. A sample sesscn v\;ith

the resource allocation program follows.

’3 PRECEDING PAGE BLANK NOT FILMED

Connend: (R)iscete-Cusewrees)

[
muit-dumemy-3.dsts.
mult-dummy-2.dots. 4

mult-dummy-1.dsts. 4
mult-twelve-frames.dets. 4
muit-twelve-frames.dats. 2

e 50— e o
Oyremic Lisp Uatener

Honse-l, th, =l Ledeet L choree.,
To sece other cormnands, press Shift, Control, Meta-Shift, or Super.
(tw 8 Jhm 19:53:94) CKeydoers [~GRTIT User [mowt

The Resource Allocation Program is initiated by typing the
command (Allocate-Resources). At the start of the program, a
menu will appear displaying the available data files for the
program. The user may select the appropriate data file by simply
placing the mouse on the file name and clicking. The menu will
then disappear and the data will be displayed in the Experiment

Data Editor as shown on the following page.

Experiment Data Editor

€npar {nent Munber " Power Reguired flen Pover Duretion Perfornences
osF] S199 ? 0 16
CF 2 12900 1 bel ’
sCF 3 2208 2 3¢ 3]
FP¥ 4 2100 4 N 3
CFEF S ©99 2 149 s
FIF [} 8000) J4 10
PCCF 4 6099 2 s [
(114 [15000 2 25 1
LeF 9 1300] b14 14
(v o ad 1e %09 1 214 2
pser 11 300 14 19 59
BIFF 12 309 1 19¢ s

Experiment Data Editor Window
]

touneet: s o2p Mouseel: tten,

. e s - I
To sec other comnands, press Shift, Control, teta-Shift, or Super.
e B Jun 11:32:29) ISP CL USkeR: User lnput

This is the experiment data editor window. Everything displayed
on the screen except for the title, Experiment Data Editor, is
mouse-sensitive. The columns represent resources, and the rows
represent experiments. Some of the menu operations include:
Load New Datafiles, Save Current Data to File and Exit Data Editor.
Descriptions of the three mouse -sensitive buttons are found on the

next page.

GRIGINAL PAGE IS

25
OF POOR QUALITY

MENU OPERATI(ONS

. LOAD NNEW DATAFILES

- SAVE CUJRRENT DATA TO FILE

. EXIT DATTA EDITOR

The Load New Data File buttez cenables you to }oad a new data file
into the experiment data editor window, overwriting the datafile
currently on display. The Szve: Current Data to File allows the
user to save the data currenty displayed in the window to disk.
The Exit Data Editor leaves thne data editor, and initiates the
allocation process. The next page shows what happens when

Load New Data File is clicked.

g

Experiment Data Editor

Enper (nent Munber Pover Required Ron Pouer Ouretion Perfornances
" 3 108 2 (1) 16
ver 2 12300 1 " ’
SCF ? 3208 2 4 13
Fre 4 2190 4 k>4 13
CrEF 5 <990 2 1¢9 S
1.4 ¢ 88Pu 3 34 19
PCCF ’ 6000 2 s ¢
CF [} 15000 2 3 1
LeF 9 1500 1 s? 14
[» ead 19 %90 1 74 2
[4 1l 300 2 10 50
oIsF 12 308 1 199 3

ate File Uf(

mult -dummy-3.dats. 4
muit-dummy-2.dsts. 4
muit-dummy-1.dets. 4
mult-twelve-frames.dats. 4
mult-twelve-frames.doats.]

‘ Experiment Dete Edltor Window
L]

LETTENTES S & B | B AR I TR I . L
fo sec other comnmands, preass Sinft, Control, Heta-Shift, or Super.

St @ Jun 13:32:32] LISPR Q. useR: User lrnout

Clicking on the Load New Data File Button causes this screen to
appear. A menu of the data files in the datafile directory is
presented. A new data file to be edited can be selected by
clicking on the file name. If we were to click on the Save Current
Data to File button, the screen shown on the next page would

appear.

27 ORIGINAL PAGE IS
OF POOR QUALITY

f Experimen't‘.:"']);a‘_'ta Editor

Pover Beautred - . Ran Pouer Ouratton Perfocmantes

ooF | o S100 2 40
bard L B 10 . 1 ” l:
BCF - 2 3200 2 4 1s
9w 4 nn 4 2 13
CFEF s 4000 2 149 s
e & [ied 2 . 10
PCOF 7 08 2 s
(1] BN 15000 ? "y o B |
LeF e 1598 [y s? ’
3 aad 10 .- 500 1 24 ?
oser ", o8 2 1¢ 38

120 90 . R 1%)

" [Save Fite Utiiity

—
(A L I TR TV

i 8 Jun 11:58:4%) Keyboerd

Clicking on the Save Current Data to File button, presents a
window in which the filename the data to be saved on is entered.
In order to save the file, type the filename, press return, and the
click on Doﬂé. Clicking on abort will return program operation to

the experiment data editor window without saving the file.

ORIGINAL PAGE IS
OF POOR QUALITY

RESOURCE OPERATIONS

. SET VALUE GLOBALLY

. SET MAXIMUM VALUE

. MOVE THIS RESOURCE

. DELETE THIS RESOURCE

. ADD RESOURCE

. EDIT RESOURCE CONSTRUCTS

The' coltumns of the experiment data editor window each represent
a resourcce. Clicking on a column title will present the resource
operationns menu. There are six operations that can be performed
on a rescource. The first operation is Set Value Globally. This sets
the seleccted resource to a global value in every experiment. The
second -operation is Set Maximum Value. This places an upper
bound oon the value a resource can take. Move This Resource
allows izne position of a column to be changed. Delete This

Resource removes a resource from the experiment data editor
window. Add a Resource can add a new resource to the data file,

either to the right or to the left of a selected resource. Edit

Resource Constraint edits the constraining function of a resource.

)]
Data Editor

y
Sel Maximum Value
flove thie Resowrce

o Pouer Durat ton Perlornences

Lrper trent Delete this Resource
sy I Add Resowrce to the LEFT 2 PPy Py
veF 2 Ma fesource to the RIGHT 1 . l'
‘sg 3 €div Resource Constraints 2 3¢ 18
, .
CFEF 3 €00@ H 133 lg
FIF [3 2800] Je 1@
PCCF ? 6000 2 55 [
114 [15000 H Fe 14 1
LR b4 1590 H 14 14
Crey (1 500 1 274 2
os8F i3 300 ? 11) “?
BIFF 12 00 1 1% 3
CREEXEIND GEEERIITIEUTIEIRD IR

Exporiment Date Editor Window
(]

lovaesl, =t =l Leleot thig chigiee, . -
To see other commancs, i ess Lhift, Control, Mrta-Shift, ar Super.

v 0 A 11:33:47) Kevboerd Oy USER: User frowt

If the user were to click on the column title Power Required, a
menu of operations that can be performed on this resource would
appear. If the Edit Resource Constraint menu option had been

selected, the screen on the following page would appear.

30 » ~ ORIGINAL PAGE is
OF POOR QUALITY

i Experiment Data Editor

|7 Power Peoutred . - Man Pover O ation Parformamtes

Expor inard Rarder

obr - 'y s 5108

g . ; . T 12500 : ;; l:

oy -1 azee e 4 15
) 1nee .

CFEP) 4889 2 149 K

'3 [sena] 34 .

PLOF ’ 60 ? 83]

:g [] 13008 2 29 l.
] ot L4 ?

Croe . . 274 ?

GM‘" . (LABDR (N) (¢s X (GEY “POVER-REOUIRED. ‘RESOURCE-LINIT)Y) l'.: . ‘2

~ [Constraint £ditor Window (Prese <END> 2oy to EXIT

o - L —
therie =t s Lerlect senedow; ftoue sl %

w @ Sn 11:99:12

. The Edit Resource Constraint menu option has been selected,
~presenting the Constraint Editor Window. The current resource
constraint is displayed, and can be modified as desired. The
constraint is expressed as a lambda expression, with X
respresenting the sum of the resources used during one time slice.
When the constraint is edited as much as desired, press the End

key to return to the experiment data editor window.

ORIGINAL PAGE
:
! OF POOR QUALITY

Power Regutires - - Mo Pover Nratton Perfornantes

T sige :
Lo 115ee o 1 ")

100
L4999

o eeee
. 13008

w

3

9
o
cerecin b

~
-i
»
NN AN
"4
»

]
-
wlusmesvaa

i

L.
=
.-

. 274
l The PESOURCE nened Csperliaent Busber hos been dulsted. 1% o

. |message Mindow (Press any hey te EXIT)

s e s S et
ol € wancdose; [Ty ,e-

Y 8 Jun 12:00:78] Keyboerd

In this case the column title Experiment Number has been clicked
on, and the Delete This Resource menu option has been selected.

The Message Window confirms that the resource has been deleted.

32 ORIGINAL PAGE I§
OF POOR QUALITY

Expenment Data Editor

‘1Add Resource Utitity

T P imanc s Enter RESOURCE MK : Resource |
1 g {nitis) Veluer 20

B J208 - .. I 4 —
rhe N H 32 18 q
CFEF . oue B 149 s
L2 - [3 e 10
PCOF - 6008 .. t 5% [
T 15609 T T 1
Ler 1508 -] . sp H
Coor- e I 0.]
0SEF . I 2 18 s
. 580 - 1 s

This screen depicts a situation in which the resource Performance

has been clicked and the Add a Resource to the Right Menu option
has been selected. The Add Resource Utility Window now
appears. To -add a resource first type the resource name, then
click on the default Intitial value of 0, next type the new intitial

value, press return, and choose Done.

ORIGINAL PAGE IS
33 OF POOR QUALITY

Experiment Data Editor

Pouer Required Men Pouer Durstton Perfornences Qesouwrce | Re

osF 108 - 2 4

VCF 127308 1 ’: 't ;
o 3200 2 e 3 »
1ad 2100 q n 13 »
CFEF 4008 2 149 s »
FI¥ []] e 19 »
PCCF 6000 2 53 [] »
1114 1598 2 Feld 1 »
L 1300 1 k14 14 »
Crey S8] 74 2 »
oSeF see ? 10 8 »
oIFf 5900 % 1% s »

Pgeg, et Pherag, B R . N
1o see other commmanids, preas Shift, Control, HMeta-Shift, or Super.
a vsem User lrnput

An intcrésting feature about the Experiment Data Editor window
is ‘that it is dynamic. This means that it allows resources and
experiments to extend beyond the borders of the screen. Data
beyond the borders can be seen by clicking on the scroll bars
which are the arrows located in the bottom right hand corner of
the screen. In this instance, the ncw'ly added resource, Resource 2

is partly visible on the right of the screen.

34 ORIGINAL PAGE IS
‘ OF POOR QUALITY

ta Editor

otion Perfornences Resowrce | Pesource 2
- 16 » 2
kel ’ » F 3
2 13 kol kel
2 19 bod »

1¢9 9 » %
2 19 k] U

3 [] ko N

™] » 29
(1, [4 2 Fed

27¢ 2 ko4 k.]
10 se » 44

199] k] 29

Exporiment Date Editor Window
LJ

Pouce=1f, Mesog,: R . R R
To see other commanids, press Shift, Control, Heta-Shift, or Super.
User lrout

The Experiment Data Editor window has been scrolled to the right.
This is done by moving the mouse to the right scrolling arrow and

clicking. As a result, the Resource 2 column is fully revealed.

ORIGINAL PAGE IS
35 OF POOR QUALITY

.. Experiment Da’té_" Editor

- © . Poner c..m« N Aan Pover . u}'uu!u Perfornences fesource fe

T o YT P S . ' %»
z e LT 17 [” " :
[od R .. I 2 3¢ . 0
-4 T 11 4 2 . 3
(=4 4 . B, .. B 2 149] g:
e - D e 3 M .
PCOr - L kel - 2 ss ® ol
1] : S0 15008 H . ™ [} :
osar LN :
BISF - -

’ .. - [Constraint £ditor Window (Proso <END> By te £XIT T

In this case the column title Resource 1 has been selected, and the

Edit Resource Constraint menu option has been chosen. The
Constraint Editor window now appears. Since Resource 1 was
added using the Add a Resource option', its resource constraint is
nil. A constraint for this resource can be added or it may be left

nik. In order to exit this window, press the end key.

ORIGINAL PAGE iS
OF POOR QUALITY

36

Experiment Data

owce Verformances:
Set Vsl Globally
Set Maximum Velue
fove this Resowrce

P, rett! -]
over Required flan Pover Duretton Add Resource to the LEFY Pesowrce L -

| ik 100 . 2 a9 Add Pesource to Lhe Q10HS £

voF 17500 1 " €dit Resowrce Constraints »

L -4 3299 2 4 »

(14 2100 ¢ 32 15 »

crer 4000 2 149 3 »

FIv 8000 3 e 19 »

PCCF 008 2 5% [»

€tF 13000 2 25?7 [} »

X4 1300 1 s? 14 2%

(> aad 300 1 74 2 »

oseF 300 2 10 e »

(HA4 300 1 1% k] »

Experiment Datn Editor Window
L]

Suwcae ol Neng,

1o see other covmnands, press Shift, Control, Heta-Shift, or Super.

This is an instance in which the column title Performances haas
been selected. The Resource Options menu now appears. Aniv

option can be selected by moving the mouse and clicking on it

s

ORIGINAL PAGE 18
37 OF POOR QUALITY

Expenment Data Edltor

C]ser Pevlotmancu Value Clebelly
———
aclcbol Velve: §

. 'e..- Dmn‘ : fan Poner e ree t Re
ooF . ? 4 Oone Abort 2
v - 1. T oy »
o©F 2 M 19 [
(o 4 2 193 »
CFEP - 2 149 - 3 »
(.4 b] J¢ 10 *»
PCOF 2 9 |] [d
(1 . 2 ¢ 14 1 .
Lo, 3 sr ’ .»
[~ c ol 1 L] 74 . 4 -
3.4 2 18 S8 . B
1 s ».

[
R
.-
w

Dnystemanene,

After having selected Performances, the Set Value Globally option
has been chosen. The Set Value Globally window is presented. A
global value for the Performance resources can be entered by
typing the value, pressing return, and selecting Done, or the option

can be aborted.

38

ORIGINAL PAGE js
OF POOR QUALITY

~ Experiment Data Editor

o M Rocutrad - T fem Poner hrotton Perforponces Resouren 1 [

. o : T . 0 %
g": A neg- e v f) g . : :
e i - T O . »
. o4] 149 0 »
o e i] e . »
:&' : cooe - 2 39 [} :

e 19098 t 214 . »
LY pod
o %
oSeF - . Use nouse to SELECT uhich RESOUSCE to »

LU . h plece Perforasaces Deside.)

Message Window (Press any Rey to EXIT) o ':')

" '_,yt.u:m mneng,

Once again the column title Performances is selected but in this
case the Move This Resource option is chosen. Once this is done
the message window appears. The message window describes the
process for moving a resource. In order to close the message
window, press any key. A resource is moved by clicking of the
title of another resource. A menu will bé presented with two
options. The user can chose to add to the left of the selected
resource or add to the right of the selected resource. Once the
direction has been chosen,.the Experiment Data Editor window

will be redrawn with the resource moved.

" ORIGINAL PAGE IS
39 OF PCOR QUALITY

.. Experiment: Data Editor

i . [set Man POWEr Naniaus Veloves -

B Po--hqu B"‘"""‘-V"““ ¢ 1o Reyource 1 Peefornences e,
; ' ') .
ouF - . 8108 | (one [o 3 H
s 1 - = E :
oo 2108 4 2 x H
’ : 2 e 9 '
':w's' toes H o) % s
33 . 15008 1 Lied n s
: - 1500 1 o :
Loy Fs : 4 :
osoF T see 2 18 » .

{14 30 1 1%

S gk, Mipwua—:'t: Veres,

et
H leky 1t

Prgnne el s Heplace thes treld; Howse-I: L o —Shife, -

h;' 's:\e othier cominanids, press Shift, Control, Neta-Linfe_ Tupewer, or Tamer Shift

In this instance the column tte Man Power has been selected,
and the Set Maximum Value optionn has been chosen. In order to
set a maximum value for the Man: Power resource, simply type a
new value, press return, and sslecc Done. The user also has the

choice to abort the option.

ORIGINAL PAGE s

OF PoOR CUALITY
40

Experiment Data Editor

Power fequired Men Pover Duret ton Resource 1 Perfornances Q¢

s100 2 .] e
g 1398 1 ”s n [
soF 3200 2 3¢ » 4
ad 100 . 7 — » .
CFEF 4900 2 149 /] °
FIF o060 F) e - » 1)
PCGF 6000 2 53 » .
EEF 15000 2 57 » [}
4 1308] 3? 2 :
cPPY See 1 274 39
[4 00 ? 10 20 :
BIrFF 590] 19 E]

£xperiment Date Editor Window
o . -

toune=l: --. 7w 3royec - o) Houne=H: Nean, - - i i
lo sce other commands, press Shift, Controt, Meta~Shift, or Super.

This screen shows what the revised Experiment Data window
looks like with the changes made to this point. Thus far we have
demonstrated what happens when we click on various columns
which represent resources. We have also shown how some of tﬁe
options operate. Now we will focus on the rows which represent

different experiments.

ORIGINAL PAGE IS
OF POOR QUALITY

41

EXPERIMENT OPERATIONS

. MOVE THIS EXPERIMENT

DELETE THIS EXPERIMENT

. ADD AN EXPERIMENT

Each row in the Experiment Editor window represents an
experiment. Clicking on an experiment name will present a menu
of experiment operations. There are three operations that can be
performed that can be performed on an experiment. The Move
this Experiment option can change the position of a selected
experiment. The Delete This Experiment option will delete a
selected experiment. Finally, the Add an Experiment enables the
user to add a new experiment above or below a selected

experiment.

42

. .
Experiment Data Editor
Povar feguired Man Pover Ouret fon Resouwrce 1 Performences Re
or Cxpec! Lo $100 2 o » .
fove this (wawrirenene 12500 1 ” 29 0
Detete thts Exgererompme 2 4 »
— T T im o : 1 % ’
- 4]
Add on (—l' t- BELOM ; e x :
- <000 2 93 k. d []
€EF 15008 2 »? E M
(8.4 1508 1 L 14 » [
cree £ 1 v: ko) [
oS Sen ? i kL]
8ifF 08 1 199 E [}
LJ
twl-—n Swtan ¢ Editor Window
L]

llou'("l 2, “H: Llciect thez choice.
fo sce olhev comanancds, peess Shift, Control, Mo(a Shift, or Super.

FEVIU S O B~ AT Leytoere QL uste: User frout

This is ~what the screen would look like if the Move This
Experimennt options was selected.from the Experiment Options
menu. TIhe message window gives instructions for moving an
experiment... This process is described in detail on the next page.

In order tco close the message window, simply press any key.

ORIGINAL PAGE IS
43 OF POOR QUALITY

EXPQgimézit Data | Fditor

. Pt Baquired Ron Poner Ourattom Resoree | Perfornences fe
ouF - - PRI | R o = . » []
vt LAV | :) [¢] » L]
o ’ 2 ol » e
oo : nee 4 92 % H
(nds B . S o 2 149 N
for - L eeee - H 3 0 .
PCOF : RO ., 2 3] [
13 S T 1%] 737 - n ¢
(.4 . . ¢ ?
croe . []
oSeF . . RV [
004 o Use ~ouse te SELECT which IMPERIMENT to M
. . ploce FPF Destde,
~
. Ressege Window (Prese aay hey te EXIT)) .. T

S —— e e e oot i s e S e
Thous e=b s Lo led U sosidow; Hous el byutemanenn, .

In this case the experiment name FPF has been selected. Once
again, in order to select an experiment simply place the mouse on
the desired experiment and click. After this is done, the

experiment options menu is presented.

ORIGINAL PAGE
. IS
44 . OF BOOR QuALITY

Experiment Data Editor

Pover Reguired flen Power Buretion Resowrce | Perfornences
ume 2 <« » [
17300 1 ” » 0
7% 2 3¢ » [
2100 4 n n []
4«08 2 149 » []
008 3 e » [
4000 2 5; : :
15008 2 3
1508 1 3? » 1 4
a8 1 e » [
508 e 10 » [
LY 1 1% Je]

Expeviment Deta Editor Window

Doy liz thenn, 3 .
1o see other commanids, press Shift, Contro), Meta-Shift, or Super.

Jor L usem: User lrowt

To move the FPF experiment, another experiment name must be
selected. The user can do this by using the mouse to click on the
desired experiment. In this instance, the EEF experiment has been
selected as the experiment to place FPF. This is done by clicking
either above EEF or below EEF.

45 ORIGINAL PAGE |5
OF POOR QUALITY

.

Re|

Ol Expérimeni Data Editor

D 'u-v toquired L fen Pontr . . Arorion Tesourte 1 Perfornences e
vor - - SRR 17 YE 3 " ag » v
v - . cL T 1798 i ” »]
ocs . (el o) Fod .
4 S L L e . 149 » .
1.3 T eeee H 24 %» ¢
o d DL e T T3 a3 ”» .
5PE S e 4 R 2 .
" P e ™ . " 0
Lo 00]
:‘.,” _ Lo The EXPERIMENT nemed 84 has been deleted. :
’ ', " Message Hindow (Press any Rey te EXIT)

yotesn menn,

This is a situation in which the experiment name SCF has been
selected, and the Delete This Experiment option has been chosen
from the experiincnt operations menu. The message window
confirms the deletion of SCF. In order to exit the message

window, press any key.

46 ORIGINAL PAGE IS
OF POOR QUALITY

R Experiment Data Editor

T . oo Bretton - Nesouree 1 Perfornences P}
v : o on % .
CFEF - DR 3o 149 » .
(3 LI Lo R ™ " []
T A Y- - t a3 » e
Add Experiment Utt1lity ¥ ‘:3 ,’: :
Btnur OPERIMENT WG Mev-enper fnent :: -) ‘. L0 » :
£t . . ae o »
Oone Abory t A S | » !
[SR 19 » .

@ Jun €:02:2) Jow CL uUstR: User Inout

In this case, the experiment narﬁe EEF has been selected, and the
Add an Experiment Below option has been chosen from the
experiment operations menu. The Add Experiment Utility
Window is used to enter the new experiment name by typing the
experiment name, pressing return and then clicking on Done. The

user also has the option to abort the command.

ORIGINAL PAGE IS

47 OF POOR QUALITY

Experiment Data Editor

Powver Required Ron Pover Duretion fesource | Perfornancey Re!

. L] » [4
-4 ‘!l. : pa- x :
(44 000 - H % :’: H
FI¥ 2000 3 o H
PCCF 000 2 33 » H
(1o nes . ”1? : H
(114 15006 2 by .‘ . -4
rEu-OPERIMENT ®] o » H
L0 1308 1 o H
(~ 1ad 500 1 74 H
oS8F kool ? ie » H
[}{44 500] 19 »

imont Dete Edivor Window

This is what the screen looks like after the experiment New-
Experiment has been added to the Experiment Data Editor
Window. Notice that it has resource values of 0. Each resource
value can be changed by clicking on the value, typing in a new
value, and pressing return. In this case the Duration for

experiment CFEF has been selected for editing.

ORIGINAL PAGE IS

48 OF POOR QUALITY

J

Experiment Data Editor

Pouer Required Ran Pover Duretion Resource 1| Perforaences L
(-4 1 ? 0 %]
VCF 12500 1 ” E L4
CFEF 4000 2 % e e
1.4 0000] 3¢ o] M
PCCF <000 ? ss E] [
e 2100 . » 2 []
{14 15000 2 P14 b]
MEM-EIPERTNENT 2900) 2] 1" .
LRF 1508 1 L4 »)
(> ead 00 1 274 2 0
os8F 00 2 10 Eo] []
(1114 508 1 190 » L]
(- - e CEEETSNETTEVEIRD CEIIEETIIIED

Experiment Data Edltor Window
-

e, e, ’)
fo sre other caminands, press Shife, Control, Heta-Shift, or Super.
User Irput

The user can easily change the resource values for the New-
Experiment. This can be done by selecting each value individually
and editing them. To select a value, simply place the mouse over the
value you wish to edit and click. To edit, just type in the desired

value.

CRIGINAL PAGE IS
OF POOR QUALITY

49

DISPLAY CHOICES

SELECT DISPLAYED OUTPUT FROM RESOURCES

TYPE OF GRAPHIC DISPLAY
- NO GRAPH

. LINE GRAPH

SELECT GRAPHICS OUTPUT FROM THE DISPLAYED
OUTPUT |

- When the Exit Data Editor button is clicked, the dAata in the
| Experiment Data Editor window is passed to the allocator. Three
menus will be presented. One menu fs the Select Displayed Output
menu. This is a menu from which the resources to be displayed
during pass results are chosen. The second menu is the Type of
Grabhic Display menu. This menu allows the selection of a graph
type on which to display resource data. The final menu is the Select
Graphics Output menu. This menu provides the resources to be

displayed on the graph.

50

Power Required
ran Power

corerimmmaee |00 Resource Allocauon Results

Ourstion
Perforsances

I%g Qllﬂnio‘ 'legg]
¢ lec t on te N

The Select Displayed Output menu is displayed. This menu allows
the user to select the resources which will be displayed during the
pass results. In order to choose a resource, simply place the mouse
on the resource you wish to select. When this is done the resource .
will be highlighted. You may choose to pick one resource or all of
therh. Once you have highlighted the appropriate resource or
resources, click on them. After- you are done, click on Section
Complete. The screen will disappear and the Type of Graphical
Display menu will appear.

51

Resource Allocation Results

sses FIRET PASS RESWLIS seee

raphical Ulsplay

wh
No Oisplay

AResource Allocation Window
A -

Phoer =l Ploenand 70 B -
o scn other corfunands, press Shift, Control, Heta-Shift, or Super.
bt 9 Jun 9:14:62 Jor . Q. usely User lnout

This is the Type of Graphical Display menu. The user can only
generate graphs of resources selected from the Select Displayed
Output menu. The user has the option to make a line graph of the
available resources or to make no display. After the graph or no
display option is chosen, the screen will disappear and the Select

Graphics Output menu will appear.

52

Select Graphlcy Qutpyt
tec tron Covplete
Power Required

Resourcé Allocation Results

un Htﬂ) K‘I.

The Select Graphics Output menu is now presented. The resources
that are to be included on the graphical display are selected from
those listed on the menu. The user may decide to make graphs from
all available resources or just a select few. Once this is done this

screen will disappear and the results from the First Pass will appear.

53
ORIGINAL PAGE IS
OF POOR QUALITY

Resourqe Mllocation Results

eses FIRST POES RECWLIS eese

Tine Sebheduted Cvents

0 (VCF LIF Ds8F CPof

10 (VCF 06aF CPPF BIFF)

ko {VCF CPPF B1FF)

340 (VCF B81FF)

“%3 (OIFF S2¥ osf)

1003 {0LFF 0SF PCCF)

1349 (9SF rCOF]

1423 (PCCF SCF CFEF)

1443 (6CF CFEF)

1039 (CFEF FPF)

{(rrs)
Qe i{
268 niL
Pouer lequired flon

n < 15098 "~
Eaz RS - 14000 s
Aesowrce Allocation Window

i1 Mok e to tops twinttelelt: to hottar

o : : TNz e 1 . SrPYT -
1enn and botd Left nouse button to scroll "I'HR'N": - " i :l:;l';l,lo ﬂ’;:,:(‘-"g\::;..:-::.uy('l;."!"‘(' fop bine to muk,

The screen is now divided into twc: different windows. Each window
can be scrolled independently. TThe top half of the screen is the
Resource Allocation Window. In -this window the First Pass Results
are displayed. The bottom hals of the screen is the Resource
Allocation Graphics Display Wizndow. In this instance, Power
Reqixired and Man Power were ez two resources selected from the
Select Displayed Output menu. Ll ine Graph was selected from the
Type of Graphical Display Window.. Power Required and Man Power
were also selected from the Select: Graphics Output Window. It is
important to remember that the First Pass Results only satisfy

minimum requirements. This accounnts for the gaps in the graphs.

(N

ORIGINAL PAGE IS
OF POOR QUALITY

Pouer Regquired. Sea Pouer

- 13008]
14008 - 9
13300 3
13008 2
14400 [
11600]
14300 [
13200 - ¢
7208 <
(312 [
2100]

[[

Itee Bemainteng Scheduled

[od [} 16
[, d [L4
F [13
(1ad [J 4
CFEF 1 [}
(L4 L] 16
(454 [0
(314] [
L ¢ 14
cree [2
UseF [J b J
SIFF [3

Pover fequired h—
nn 'M easannnnean

. | | ——‘—Ihh

thQuee =t Plectsun, .
1o see other comnands, press Shift, Controf, t1eta-Shilt, or Super.

ihu 8 Jun €:26:12 Jor QL USER: User lrowt .

The Resource Allocation Window is longer than one screen. Thus the
results from the First Pass exceed what is visible. In order to display
the rest of the pass results the screen can be scrolled down. To do

this just place the mouse on the scroll down arrow and click.

55 ORIGINAL PAGE IS
OF POOR QUALITY

ssee SICER0 PRES RUSULIS o009

tes Scheduled fventy

» (VCT LF DSOF CPof)
299 (VCF DSOF CPPS 9IFF)
300 (VCF CPPF QIFF LRF)
348 (VCE QIFF LAF DSOF)
614 (VCF B1FF DSOF)

0 (VCF SIFF)

563 (BI5F FIF OSF)

q Pover Bequired ———
i Mor. Power e

Mesource Allocation Graphioa Display

Sy B Jun 4:2):0)

After the First Pass Results are presented, the program will continue
and the Second Pass Results can be scrolled up. Notice that the
Second Pass attempts to fill in the gaps left by the previous pass.
The line graph is now much more complete than before. The Second
Pass is similar to the First Pass in that the Resource Allocation

Window is loxger than one screen.

s ORIGINAL PAGE IS
OF POOR QUALITY

HW T | 4
500 15000 q
340 130080 3
61 17588 q
630 12009 2
%3 1¢a8 ¢
1009 168 [3
1340 116800 3
1349 1608 []
149 1309 [
1443 12290 [
1% 7re8 [
1030 r2ee .
1039 108 [
14600 3
2124 338 []
2147 3790 q
2182 e 2
2158 []]
ften Sremtaingey Seheduled
esr [] 16
VCF =< [
SCF < 16
(1.4 [3 h]
CrerF | 3 .
1 X1d [] ie
rCCF -> 13 ,
(114 3 []
LeF -4 13
cree [] 2
[- 4 -14 (2]
olrr []]
§ i| Pouer Reautred
I:_
[]
¢ ~
MReeouwrce Allocation Grawicacs Diepley
s "

bt e bed Gine to tegs {bndut t-Lefl: to bottom); thdlle: Hove to 77X of tustory; tight: Top tine to k.
P1ese and hold Left smaine h:button to scroll upwards repeatedly. Right: downwards,

The rest of the Second Pass Results can be seen by scrolling down. In
order to do this., follow the same process of moving the mouse to the

scroll down arrcow and clicking.

ORIGINAL PAGE IS
OF POOR QUALITY
57

Table 1. Multiple Pass Algorithm Timing Test Results

est Number] 18 24 30 36 42 50

" Run #1 29.09 | 110.9 | 888.72 |2005.57 | 1536.94 | 4804.59
Run #2 2396 | 113.2 | 895.8 [1977.82|1542.82|4821.25
Run #3 27.22 | 111.3
Run #4 24.16 | 114.34

Run#5- | 26.84 | 120.99

Average | 26.25 | 114.14 | 892.27 [1991.69|1539.88{4812.92

Table 2. The Timing Tests Results for the Multiple Pass Algorithm

5000
4500
4000
3500
3000
2500

Seconds

2000

1500

1000
500

24

- 30

36

42

Number of Experiments

58

50

In conclusion, the Multiple Pass algorithm performed in a satisfactory
manner; however, more §vork needs to be done to refine the algorithm to reduce
the total executibn time so that larger sets of data can be tested. More tests
need to be performed to ensure the algorithm is suitable for being considered
for future work. The Free Expansion algorithm needs to further refined so that

an exhaustive search is avoided, yet meaningful results are obtained.

59

5.0 Connecting A Symbolics to A VAX
5.1 Task Statement

The 'purpose of this task was to provide a cursory look at two ways of

connecting a Symbolics lisp machine to a VAX minicomputer.
5.2 Task Conditions

The conditions of this task was that the machines to be considered were
already in placé at the NASA MSFC facilities. The Symbolics machine is a
3670 and the VAX is a 785 machine. They are currently located in separate
buildings at MSFC that are some distance apart. At present, there is an existing
network that could be used as a medium for connecting the machines, if
necessary and possible. The desired result is to have the two machines be

able to share memory during execution and not just to pass files between them.

5.3 Task Approach

There are two basic ways of connecting the Symbolics Lisp machine to a
VAX. These are software and hardware. The least expensive from an
implementation stand point is usually the software approach. This approach
consists of cables and protocol systems. The cost of this approach is situation
dependent; however, the EtherNet cable can be purchased for approximately
one dollar per linear foot. |

The primary consideration in any situation is the location of the machines
to be connected. The distance between them determines the amount a.nd cost
of the cable needed. The other expenses include the connector boxes for each

machine and the software to facilitate the communications.

60

Symbolics supports all the traditional communication protocols, such as
TCPIP, DECNET, etc. These are available from Symbolics, Inc. along with the
price list. However, the cabling should be purchased from another source
(Inmac) to reduce cost. '

The other approach, hardware, is a more expensive proposition. A
company in Amherst, NH, provides a hardware product, Bus-link, for connecting
a Symbolics machine to a VAX. Basically, this device connects the machines at
the bus level and allows the Symbolics to map and address the memory of the
VAX, as if it resided in the Symbolics. This allows existing programs on the VAX
to operate and write their information so the Symbolics can directly address it.
Thus, a direct coupling of knowledge-base and conventional systems can
occur. The cost of this device with the associated peripherals is between
$30,000 and $40,000. A more detailed discussion of this product is provide in

the company information provided to the Mission Planning personnel.
5.4 Task Resuits

It is recommended that the software approach be used to connect the
Symbolics and the VAX machines. This is the lowest cost approach and will
come closer to accomplishing the objectives of MSFC Mission Planning
personnel. The main consideration here is that the Mission Plénning personnel
would like to have the programs thgt already exist on the VAX to be able to
communicate with some programs on the Symbolics. Thus, the direction of
communication is important; thus, the Bus-link device is not the preferred
approach to solving this potential problem. If the choice of direction changes

then the Bus-link may be the most acceptable alternative.

61

6.0 FORTRAN from Lisp
6.1 Task Statement

This task involves finding ways to call Lisp functions from inside
FORTRAN other than just spawning a process. The intent here is for an
application in FORTRAN to be able to call Lisp functions during execution and

to be able to pass data and information back and forth.
6.2 Task Conditions

The conditions of this task are (1) Lisp must be called from inside a
FORTRAN application, (2) data and/or information must be passéd, (3) the two
languages are resident on the same computer, and (4) the computer should be
a VAX.

The first two conditions are taken from the task statement, the third
condition is very important. This condition must be used or the compléxity of
the problem is to great to make accomplishment possible. Trying to go across
~any connection between machines makes this task virtually impossible because
of the variability of the different connection methods, hardware, etc. The fourth
condition was specified by the Mission Planning personnel; however, strict

adherence to this was not given.
6.3 Task Approach

The first thing done under this task was to check the most familiar
environment to UAH. This is the S_ymbolics Lisp machine. While this was not in
compliance with the fourth condition, it was deemed necessary to acquire an
understanding of the task. Also, a fundamental question as to being able to do

this at all still existed in our minds.

62

The ability to call FORTRAN from Lisp and vice versa on a Symbolics is
provided. This is easily accomplished, when compared to other processors,
because the operating system of the machine is Lisp. Thus, a call from Lisp to
FORTRAN is an operating system function and from FORTRAN to Lisp is an
operating system call. Therefore, the interaction between these two languages
are relatively easy. Cenrtain restrictions do apply. These mainly have to do with
how arrays are handled and some cautions on value referencing. A detailed

explanation can be found in the Symbolics FORTRAN manual.
6.4 Task Results

At present, it is not possible to call Lisp from inside FORTRAN on a VAX
except when spawning a process; Also, it is not advisable to use FORTRAN on
a Symbolics because of the reduced execution speed and increased
compilation speed. The only remaining possibility is to have the FORTRAN
program and the process that is spawned to use some shared memory for
message passing. This is not an easy solution, thus, it is not a preferred
method. Before this problem can obtain an easy solution, some technological
advances need to be made and incorporated on the VAX. The main thing that
needs to occur is for the operating system needs to allow programs that run

simultaneously to communicate with each other.

63

7.0 Trees and Forest Task
7.1 Task Statement

The purpose of this task was to review the software product Trees and
Forest as to their suitability as a programming language for the Mission

Planning personnel to use in developing a scheduling system.
7.2 Task Conditions

The conditions of this task were that a review of the software would be
conducted using the documentation provided by MSFC Mission Planning
personnel. There would be no need for developing a prototype system in the

language. Just a review of the capabilities and limitations would be conducted.

7.3 Task Approach

In 1973, under funding from the National Aeronautics and Space
Administration, an advanced programming language was developed. This
language was called PLANS and its objective was to reduce the cost of
developing and maintaining software to support scheduling and resource
allocation tasks. PLANS was ideally, but not uniquely, suited to writing
scheduling programs. Another product was developed to support PLANS, it
was called PLUS. This product was a iibrary of utility programs written in
PLANS and which represented logic that is common to a broad range of
operations planning and analysis software.

Avyx took PLANS and PLUS, revised them and re-implemented them to
make them PC compatible. The resulting products are called TREES and
FOREST. TREES comrresponds to PLANS and FOREST to PLUS.

64

TREES resulted from the known deficiencies in existing languages ussed
for scheduling and resource allocation. These deficiencies are:

(1) the language level did not correspond to the level of the functicns

typically found in the algorithms, and |

(2) the data structures of the languages (usually only arrays) did not
correspond to those typical of the application problems, thus
contributing greatly to software development time.

According to the developers of TREES, it was designed to achieve thesse

goals:

(1) to allow designers of experimental or constantly changing scheduuling
and resource management algorithms to translate algorithm dessign
to working code directly from their basic functional descriptiors.

(2) to allow designers to do this without performing intermediate &~

~ detailed program design steps, without possessing highly
specialized programming expertise, and with only a minimum: of
span time and manpower costs.
'These two goals are directly related to overcoming the deficiencies previcussty
stated.

Aiso, the developers believe that scheduling and resource managsmeent
problems often involve information strudtures which are logically hierarch.ca.. .
That ié, a component-subcomponent relationship exist among the items
composing the information structures. Thus, the structures are made up o}
different levels of nodes. This is best conceptualized as atree. Notonly z-e1the
results of the scheduling process hierarchical in nature, but so are the inpcts.

TREES was designed around this type of structure and it allows for the=
manipulation of these structures, as well as content, at execution time. Whiie

this feature distinguishes TREES from conventional languages like FORT=AN .,

65

COBOL, PL/1,'ALGOL, and ADA,; it does not separate it from LISP. However,

TREES claims to be easier to use and understand by the user than LISP.

Because it is intended to be used by domain experts rather than

programmers, the language has been designed to minimize functionally

nonessential details, such as data type declarations, entry declarations,. etc.

These features are more appropriate in languages which are intended to

handle quantitative problems. TREES does possess quantitative capabilities,

but emphasizes more the manipulation of the data structures.

TREES possesses the following capabilities:

variables

logical operators
keywords

trees data structure
functions

statements
input/output

iteration and recession.

In addition to the above data structures of variables and trees, arrays are

supported.

7.4 Task Results

* TREES is an interpretive language. It does have a pseudo-compiler,

but I'm not sure how much performance increase it gives.

* TREES requires the programrher to conceptualize the scheduling

and/or resource allocation differently than used, as far as programming

data structures in concerned.

* The tree data structure is very well suited for the scheduling and

resource allocation problems.

66

* The language is PC based which gives it a broader range of
applications and use.

* TREES possesses many FORTRAN similarities. For the scientific
community this will make it easier to develop the‘basic skills of the
language. However, it may eliminate the advantage of using the tree
structure, because the user will tend to use the programming techniques
that he/she already knows. In most cases, FORTRAN programmers use
arrays.

» You can accomplish the same results using LISP or other unstrucured
list languages, as far as programming is concerned.

» TREES syntax is not as friendly or transparent as the developers lead

- you to believe. Sophisticated techniques would require a great deal of
programming ability.

* It is recommended that TREES not be used for the development of a
scheduling system. This is based on a demonstration of the software and
conversation with Avyx personnel. It is believed that the number of |
nodes that can be generated with the current version of TREES is a
serious Iimitatipn. To give you an example, TREES would not be able to
solve the 18 experiment problem because of the node limitation.

« It is recommended that TREES be used for conceptualizing scheduling
and resource allocation problems. Ideas that individual Mission
Planning personnel may have about scheduing and/or resourced
allocation problems could be tested using TREES to better understand -
the issues involved. This is based on the fact that the data structures in
TREES are very well suited to these types of problems and on the
similarities to FORTRAN. This similarity will allow most user to learn the

language a little easier. However, there is one caveat. All users should

67

be required to conceptualize and develop their applications utilizing the
tree structure of TREES and not arrays that are typically used in

FORTRAN.

68

8.0 Software Data Structure Conversion

8.1 Task Statement

The purpose of this research was to continue to examine the
advantages and disadvantages of using object oriented programming
techniques to assist in solving the scheduling/resource allocation
problem that is particular to MSFC NASA Mission Planning. This is
further targeted to the future problems associated with activity
planning for the Space Station.

In the first Interim Report (UAH Research Report JRC 90-07) a
detail description was given on a prototype software system called
the Two Pass - Multiple Resource Allocation Program. Although this
system was developed in Common Lisp on a Symbolics Lisp Machine,
the full power of object oriented programming techniques had not
been utilized. It was decided that this software should be modified
in such a manner that the data could be represented in object form.

8.2 Task Conditions

The conditions of this task are that the prototype was
developed on a Symbolics Lisp Machine and that the object-oriented
paradigm (Flavors) that is presently supported by this platform was
appropriate. As with the original prototype design, the system
focused on time and resource constraints and excluded consideration
of inter-experiment dependencies.

Although the object-oriented programming (OOP) paradigm has
been discussed as with all personnel involved in this current
research effort, a general review of these principals may be
beneficial. OOP has been steadily gaining acceptance as an
alternative software design methodology, especially for large,
distributed systems. OOP techniques have proven most useful in
applications that can be visualized as a collection of objects of
- distinct classes, each with their own data and processing
'requirements, that must collaborate for the system as a whole to

A9

function properly. As an analogy, consider a team of engineers
working together to design a new car. Those responsible for the
interior may be interested in ergonomic data for their work,
whereas those designing the engine may be using fuel efficiency
data, EPA requirements, and so on. But both groups must work
together to decide, for instance, whether the engine will be in the
front or the back. For this type of problem, then, each individual can
operate with a large degree of autonomy, as long as they collaborate
when necessary. Now imagine trying to specify an “algorithm” for
designing a car -- step by step instructions explaining exactly what
needs to be done and when. That sounds pretty difficuit, but suppose
we concentrate on the car first and think about its organization
rather than that of the design process. We can easily break the car
down into a hierarchy of subsystems (like maybe the fuel system,
and below that the fuel injection and fuel storage subsystems, and .
so on), until the leaves of our hierarchical tree are individual parts,
whose design we can specify. Now we have a tree containing not
only structural information about the car, but also procedural
information about designing it. We will have been given some design
parameters describing, probably in general terms, what kind of car
we should design, so now we need only fill those values in and filter
them down through the tree, until a concrete design begins to take
shape. So, in this case, it would seem easier to concentrate on the
object first, rather than the process.

In contrast to this problem, however, consider the task of
building the car once it has been designed. The assembly line
approach has proven to be the best solution here, since each process
is so tightly bound to the output of the previous process and the
input of the next process. In this analogy to conventional
programming, the car being built is like a large data structure being
passed to one processing unit after another, in sequence, until it is
finished. It's not difficult to write down an “algorithm” for making
a car, so it would probably be better to concentrate on the process
rather than the object. Unfortunately, most real-world problems,
including the resource allocation problem, are not as well defined as
an automobile assembly line. For these more interesting problems,

70

it has become clear that we need a new, more natural, way to think
about writing programs.

These examples explain why OOP makes it easier to
conceptualize the automated resource allocation system, but there
are many other advantages as well. Consider the problem of
information presentation. We have said that it may be beneficial to
present procedural information differently, depending on the user's
cognitive presentation biases. Remember that in OOP we construct a
hierarchical tree containing not only structural information, but
procedural information (ie., code) as well. So when we want to
‘present a step in a procedure, for example, we simply activate the
little piece of code, attached to that step, that tells us how it
should be presented, given the current user’'s preferences. This
organization becomes particularly efficient when we consider that
we may ask for a presentation of that step in hundreds of locations
throughout the system.

8.3 Task Approach

The approach taken in this task was to create flavor objects
that would represent the resource allocation data and modify the
actual software system itself to access and utilize this new data
structure. The data representation of both the resources and the
activities (experiments) were converted from its original list
structure to this object format. The resource object structure is
shown in figure 1 and the activity object structure is shown in
figure 2. Appendix A contains the actual Lisp computer code (or
Flavor definitions) for each of the object structures.

As a consequence of the data structure change many of the
data accessing functions had to be changed. In Lisp a list is similar
to an ordered set in that each item (or atorh) contained in that list
occupies a particular position with in the list. However, accessing
information from the list is very dependent on each piece of data
being precisely in a specific position in the list. To retrieve the
fifth data item, the software would be required to pass over the
first four items until it arrived at the desired location. This is

71

obviously not the desired mechanism for data retrieval. It limits
the ability of the system programmer to modify the data structure
or the procedures the access the specific pieces of information.

As stated earlier, using resource and activity objects allows
for data abstraction and encapsulation. This means that the system
designer can now freely modify procedures and specific data items.
In the original prototype, in an attempt to improve on a ordinary list
structure, a property list was utilized. This allowed the user to
more freely access the information by providing some degree of
abstraction. However, internally the system still was storing the
- information in list form. The conversion in the second prototype
from this property list to flavor objects allowed complete
encapsulation and departure from from the internal list structure.

RESOURCE OBJECT STRUCTURE

Resource
- Name
- Limit
- Type
- Priority
- Weight-Factor
- Constraint-Function
- Hash-Table

Figure 4

72

The resource objects are instances of the flavor resource
which is the generalized description of a generic resource. The
flavor structure provides slots called instance variables that can
contain information about the flavor instances. Each individual
resource is an individual flavor instance whose slots contain
information that uniquely describes its properties and behavior. The
instance variables for the resource objects are the resource name,
limit, type, priority, weight-factor, constraint-function, and hash-
table. A description of each of these instance variables is provide
below.

Name - The actual name of the resource (ie. Man-Power).

Limit - The maximum available quantity of this resource
at an instance of time.

Type - Is the resource non-depletable, depletable, or
replenishable.

Priority - Used in the current maximization algorithm to
order resources (ie. primary, secondary, etc...)

Weight-Factor - Will be used in future implementation to
arrive at better overall resource utilization.

Constrain-Function - mathematical expression that
describes the constraining factors for the resource.

Hash-Table - contains a historical hash table that shows
resource utilization as a function of time.

Currently, the software system allocates the resources Power

and Man-Power. However, there is no limitation on the number of
resources that can be allocated.

73

ACTIVITY OBJECT STRUCTURE

Activity
- Name
- Experiment-Number
- Duration
- Power-Required
- Man-Power
- Data-Rate
- Minimum-Performances
- Maximum-Performances
- Scheduled-Performances
- Highlighted

Figure 5

Activity objects, similar to the resource objects, are
individual flavor instances of the flavor activity. They have their
object definitions contained in instance variables. The activity
object’'s instance variables are the activity name, experiment-
number, duration, power-required, man-power, data-rate, minimum-
performances, maximum-performances, scheduled-performances,
and highlighted. A description of each of these instance variables is
provide below.

Name - the name of the activity.

Experiment-»Number - An activity identification number
(if specified)

Duration - the time required to complete the activity.

Power-Required - the instantaneous power requirements
of the activity.

74

Man-Power - the instantaneous personnel requirements
of the activity.

Data-Rate - the instantaneous data production rate of
the activity.

Minimum-Performances - the requested minimum number
of activity performances.

Maximum-Performances - the requested upper limit of
number of performances.

Scheduled-Performances - -the actual number of
performances of the activity that have been
scheduled.

Highlighted - the current state of the the menu item,
showing if this activity is currently selected.

8.4 Task Results

The data structure changes described in the preceding sections
were performed on the prototype resource allocation software
system. Additional testing is needed to determine the extent of any
performance gains. Also, software procedural changes need to be
implemented in the form of flavor methods instead of traditional
function calls. This additional change will allow the flavor instance
variables to be directly accessed by the procedural code used in the
software system.

The use of hash-tables as a means of storing the time history
of the resource allocation process, as well as individual resource
utilization, has proven to be an effective and easily manipulative
means of storing this information. The graphics functions in the
software simply traverses the time line and remove specific values
from the tables. Therefore tabular and graphical representations of
the results are made easier to obtain.

75

9.0 Software Functionality Modifications and
Enhancements

9.1 Task Statement

The purpose of this research project was to continue the
development of the resource allocation system prototype. After a
performance review at the end of the first interim term, it was
decided that it would be desirable to add additional capabilities to
the prototype software. First, the general algorithm that was in use
should be modified from a multiple performance allocation to a
single step performances approach. Secondly, since the allocation
results are distributed across a time line, it would be desirable to
construct a mechanism that would allow the operator to interject at
a specific point in time and make a change to the allocation. The
system should then perform a re-allocation of the resources
starting at that point on the time line.

9.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.
Any modifications to the software were designed solely for the. use
on this platform and may not easily be ported to other platforms.
Also, the data structures of the software were pre-existing and
were not modified in the modification process.

9.3 Task Approach

Although a general description of the resource allocation
software system's allocation algorithm is described in detail in the
previous Interim Report (UAH Research Report JRC 90-07), it may be
beneficial to include a brief description of the original resource
allocation algorithm. The original algorithm employed by the
prototype system would scan the multitude of combinations of
activities selecting a single combination that best utilized a
primary resource. The system then immediately allocated the entire

76

number of minimum requested performances (if possible) for each
activity that was included in the selected combination of activity
performances for that time slice. This therefore treated the
minimum requested number of performances as one singular and
continuous performance. The allocated activities were then removed
from consideration in future allocation combinations during pass one
of the system. This approach, although simple, demonstrated many
short comings and was deemed too coarse. ‘

The modified approach reduced the allocation step size by only
allocating a single performance of each of the activities in the
selected combination instead of the original entire minimum number.
Each of the activities minimum requested number of performances
was then reduced by one. Unlike the original prototype, the activity
remained in the pass one allocation process until it had exhausted
its requested minimum number of performances instead of
immediately being removed.

In a similar manner pass two operations were changéd.
Although it may be less obvious, pass two attempted to allocate
multiple performances of different activities when ever possible.
Now single performances of each selected activity were performed.

The backtracking capability was created to allow the operator
to effect changes to the allocation process. As the system allocated
the resources to the activities a rough schedule is produced. Often
as the grouping of activities process is being performed, multiple
groups of activities are found that have near equal overall resource
utilization. Since the choice of a single group from a list of similar
groupings is completely arbitrary, the computer would simply take
the first member in the list. This selection was then placed on the
agenda for allocation. Although in the immediate time frame the
selection method seems just as valid as ‘any other method for
choosing a candidate from the group of possible candidates, the
selection can cause major changes in future allocation groupings.
Therefore it was deemed desirable to construct a mechanism that
would allow some user control over the candidate selection process.

The backtracking functions required access and control of
three data histories. First, a running history of the actual groups of

77

possible alternative allocation selections had to be constructed in
order for the software system to be able to show possible back-
tracking choices. Secondly, the resource utilization history for each
of the resources needed resetting for future reallocation. And fi-
nally, the activity schedule had to cleared of future scheduled items.
All of these data histories were in the form of hash-tables.

The data structures were reset for downstream reallocation.
Although each of the data structures were hash-tables that use the
allocation time as their key words; the downstream resetting re-
quirements were not the same for each table. For instance, it be-
came necessary to swap the newly selected group for the previous
group first. Then, the correct resource utilization and new time
history could be calculated. All the downstream activities were
then removed and their corresponding number of scheduled events
reduced. The time history that was used as the key words to the
hash-tables was deleted from the point in time of the backtracking.
A new resource allocation process is then started from the point of
backtracking.

The backtracking process is initiated by selecting a mouse
sensitive item from the display. This display shows the allocation
time and the current items allocated at that time. It is the time
item that is mouse sensitive. Selecting a time for backtracking
causes a menu of group selections from which the user must select
an alternative. The reallocation process then begins and the display
is refreshed. The system is cyclic in that the user may backtrack as
many times as is desired. However, the system is a two pass sys-
tem. Once the results from pass one have been accepted, the user
can only backtrack through pass two allocations.

9.4 Task Results

The software system was modified from a multiple allocation
to a single allocation step process. The modified Lisp code is pro-
vided in Appendix F. The system, at least under limited evaluation,
performs a better overall resource allocation based on resource uti-
lization than the previous approach. However, this comes with a

78

Figure 6

Figure 7

he only allocetion sslection given for 010 is the cuwrrently
scated greo

sage Window

(Prese a

Aoy to EXIT)

s FIRST PRGS BESWLTE sese

jassascssnyce

!
]

§3335008884
11333a058n

EEERREREES
534644554
RaEAEQAAE
L

¢

segiiifl

§
{

cc
33

aifiita it

1

[t
(EEF)
Do Mot Chenge Current Activity Schedule

79

e

ORIGINAL PAGE iS
OF POOR QUALITY

price. The system which was already under criticism for the time
requirements necessary for non-trival problems was slowed even
more. The exact amount of this reduced alliocation speed has not yet
been quantified. This will magnify the necessity for evaluating new
group selection techniques.

The backtracking capabilities have been implemented in the
system with good success. The user can modify the activity
schedule and effect changes on the resulting overall resource
allocation. Remember the software system is currently designed as
a two pass system. As mentioned earlier each of the two passes are
considered as being independent of the other for backtracking. Thus
the effects of backtracking are confined to the current pass of the
system

Since the resetting process is relatively smail when compared
to the overall problem of resource allocation, the incremental time
used in backtracking is not significant. However, in a dynamic
environment such as Lisp, the released data or garbage as it is
sometimes called can cause the system itself to slow. This effect
can be seen if repeated backtracking is performed. If excessive
amounts of backtracking and reallocation cycles have been
performed the system's performance is substantially affected.

80

10.0 Portability of Resource Allocation To A TI
MicroExplorer

10.1 Task Statement

The purpose of this research was to investigate the
performance of the resource allocation software on the TI
MicroExplorer platform. At the interim review of the software
prototype. It was determined that portability and varying platforms
for the system should be investigated. The system was easily
ported to a Maclvory system and performed comparable to the
Symbolics Lisp Machines. Since the Mission Planning Group at MSFC
had a Tl MicroExplorer, it was decided that the software system
would be ported to this platform and a performance evaluation
performed.

10.2 Task Conditions

The development language of the Tl MicroExplorer is Common
Lisp. The ported software system therefor was limited to the
domain of functionality of this platform.

10.3 Task Approach

Since the Symbolics Lisp machine was the original
development platform for the Resource Allocation Software System,
any functions that were utilized within the system that were
specific to this platform had to be modified or replaced by functions
that were compatible with the Tl MicroExplorer. Although the TI
MicroExplorer uses a Flavors System similar to that of the
Symbolics, it is currently several generations behind in its
development. This in most cases did not pose a tremendous problem.
However, the windowing system employs a different type of flavor.
There is no predefined, so called "dynamic", window that allows
scrolling, graphics, etc... Therefore, a composite flavor that would

81

cause the Tl MicroExplorer windows to behave similarly to those on
the Symbolics Lisp machines had to be constructed.

Mouse sensitivity is another facility that the Tl MicroExplorer
does not easily provide. This causes problems in the Activity and
Resource Editing Module of the software system since it relies so
heavily on complicated procedures that are initiated via mouse
gestures and selections. Since this is a non-essential portion of the
software system this module was omitted from the initial
implementation of the software on the TI platform. Also the
backtracking capabilities while included in the software were
inhibited from operation due to similar mouse sensitivity problems.
Both of these modules of the software system will be added for this
‘platform.

10.4 Task Results

The software has been poried to the Tl MicroExplorer.
Additions and modifications were produced that allow the system to
function on this platform. The analysis of the performance of the
overall Resource Allocation Software system remains incomplete at
this time. Mouse sensitive parts of the system that were omitted in
the initial implementation of the software system will be added. A
complete transfer of all data files is needed and an evaluation of the
systems performance on this platform conducted. These activities
are proposed as part of a continuing research effort.

82

11.0 Frontier of Feasibility Software System
11.1 . Task Statement

Experimentation in space is rapidly becoming one of the most
exciting areas in science. Experiments from such widely diverse
areas as medicine and metallurgy are performed side-by-side
onboard space-based experimentation platforms. The Space Shuttle
is currently the workhorse of this effort, but NASA's Space Station
Freedom will assume much of this task when it is constructed.

Each experiment or activity to be performed onboard a platform
has certain resource and time requirements. Since the platform has
only a limited supply of resources available, these activities are in
competition with one another. Determining which activities can be
performed is a complex problem that due to its nature has multiple
solutions.

It is likely that multiple performances of a single experiment are
desirable, therefore, each such experiment must be performed
multiple times during the mission duration. One method for
simplifying the solution set of this problem is to generate a number
of possible solutions based solely on resource and time constraints
_for use with a scheduling program. It is therefore the purpose of
this research to examine the techniques for arriving at theses
possible solutions.

11.2 Task Conditions

The prototype software resides on a Symbolics Lisp Machine.
Any modifications to the software were designed solely for the use
on this platform and may not easily be ported to other piatforms.
The prospective of the system is to view the possible starting
points of a scheduler without taking into consideration any intra-
activity or temporal constraints.

83

11.3 Task Approach

The Frontier of Feasibility System is designed to generate "good"
starting points for a scheduling program. This system is not a
scheduler, but is instead a resource allocation program which
operates at a very course level of granularity. A scheduling program
is concerned with placing activities on a time line, while ensuring
that no constraints are violated. The main thrust of a scheduling
package is the ordering of the activities on the time line. The
Frontier of Feasibility System does not attempt to establish a time
line schedule, but instead, only attempts to generate starting points
for a scheduling program by allocating the available resources. The
Symbolics Lisp code listing is provided in Appendix G.

Activities

Experimentation is not the only consumer of resources onboard a
platform. Life support, instrumentation, and other onboard systems
are also in competition for the available resources. For this reason,
in this paper competitors for resources will be referred to as
activities. Each activity is defined by its consumption of various
resources, duration, and performance criteria.

Activities are given an abbreviated name and an experiment
number. Duration is perhaps one of the most important facts given
in the activity description. It is assumed that two or more
performances of a single activity cannot occur simultaneously.
However, it is possible for several different activities to be
operating at the same time, resources allowing. Therefore, by
taking the mission duration and dividing it by the duration of a
single performance of an activity, it is possible to arrive at a hard
constraint on the maximum number of performances possible for an
activity.

The activity description also includes resource usage
information. This lists the amount of each resource that will be
required to perform that activity one time. It is assumed in the

84

Frontier of Feasibility System that this resource usage is
continuous throughout the duration of the activity. This is not an
accurate representation of reality, but the purpose of this system is
to provide a good starting point for a scheduler, not a finished
answer.

The user also enters a minimum requested and maximum desired
number of performances for each activity into the description. This
provides the system with a minimum number of performances of
each activity that must be scheduled to meet the user's bottom line.
Any remaining resources are then allocated among the activities.
The maximum desired number of performances places an upper limit
on the number of performances of an activity that will be scheduled.
This prevents the system from allocating resources to useless
activity repetition. The upper limit established by the wuser is
verified by the system to ensure that it is feasible.

(VCF (experiment-number (2))
(power-required (10))
(duration (1))
(performances (1))
(max-performances (4))
(

scheduled-performances (0)))

Figure 8. A representation of an activity as a Lisp list.

Resources

The resources available aboard the platform are each given an
abbreviated name and an amount available. Resources can be
classified into several different categories. Non-consumable
resources are not depleted by use, and are available in a constant
quantity for the duration of the mission. Consumable resources have
an initial level which is depleted as activities are performed.

85

Replenishable resources are those that can be temporarily depleted,
but which through processes onboard the platform, may be
replenished during the mission.

The current version of the Frontier of Feasibility System uses one
resource during its search process. Versions currently in
development examine the problem using multiple resources.

raphical Repr ntation of rch a

The Frontier of Feasibility System is based around the idea of
representing the resource allocation problem's possible solutions as
~a tree graph. The process of creating a feasible combination of
activity performances can be easily demonstrated using a tree graph.
A manager's decisions about which activity to perform more times
can be followed down a path on the tree.

For instance, if the manager decided to add one performance to
the right-most activity, the node created would be one further down
the -right-hand-side branch. From this new node, the manager will
make another decision regarding which activity to increase next.
This process is repeated until the manager is satisfied with the
results. Therefore, we adopted this structure as a good reference
frame when seeking ways to calculate a solution set more quickly.

Tree Structure

Each node on the tree graph represents one possible combination
of activity performances. An example root node would be (1 1 1),
representing one performance of three different activities. The
children of this node would be (1 12),(121), and (211).
Each child represents its parent with an additional performance of
one activity. Only certain activities can be modified on each branch.
The first, left-most, branch allows the modification of ali
activities. On the other branches, only the activities to the right of
the activity corresponding to the branch number can be modified.
For instance, in a twelve activity problem, if you are looking at the
fifth branch, only the fifth through twelfth activities can be

86

modified. The first four activities remain at their minimum
requested.

Figure 9. A three activity tree graph.

When dealing with a large number of activities, each of which can
be performed multiple times, the size of the tree becomes quite
large. It is therefore necessary to devise methods for reducing the
size of the search space. One of the simplest is to make the root
node values equal to the minimum number of requested performances
of each activity. This action can greatly reduce the size of the
space that must be searched. Since each activity also has a
maximum number of performances requested, it is possible to
restrict the depth of the tree.

A human manager makes decisions, in terms of the tree graph, by
starting at the root node and moving down the tree from parent to
child, until he can go no further due to constraints. A node to which
no more performances of any activity can be added without violating
a constraint is said to be a Frontier Node, commonly referred to as a

87

leaf node. The Frontier Nodes fall along a barrier which we call the
Frontier of Feasibility. It is the nodes that fall along the Frontier
that offer the best starting points for a scheduling program.

Sorting the Activities

It is important to realize that the ordering of the activities
within the nodes affects the shape of the tree. Each activity has a
range of possible performances from its minimum requested to its
maximum desired. Typically, the activities with a large range use a
small amount of resources, while those with a very narrow range
use large quantities of resources. If the activities are sorted so
that the largest range is on the left, and the smallest on the right,
then the tree will be very wide. This is because each new
performance of the first activity represents a new branch. If the
activities are sorted in reverse order, from smallest to largest
range, then the tree will be deeper and narrower. In this case, there
will only be a few branches to the left, thereby restricting the
width of the tree.

Which sorting method is best is still being decided. Each method
has its advantages and disadvantages. The second method narrows
the width of the tree, and thereby the number of Frontier Nodes. But
this method makes the calculations for trading between activities
more cumbersome. Method one, although it has a larger Frontier, has
an easily demonstrated process for handling trades. So, for the
purposes of this paper, we will be discussing the problem in terms
of the first method, largest to smallest range.

Sta ace rch _Methods

There are many different search methods available which could be
used to find the possible solutions to this problem. These are
methods which have been developed over time to handle problems
similar to the Space Station resource allocation problem. However,
most of these methods were developed to seek an optimal solution,
or a single answer. Since the purpose of the Frontier of Feasibility

88

System is to generate several “good” starting points for a
scheduler, many of these methods were ruled out.

Modifi Breadth rch

It was decided that none of the other regular search methods
would complete the search in an acceptable length of time. The
structure of the tree suggested a new search method. The Frontier
Node of the right-most branch is easily calculated, since only the
number of performances of the right-most activity can be changed.
Simply, divide the resources remaining after all activities have been
performed their minimum requested number of times, by the amount
of resources necessary for the right-most activity. This calculation
yields the number of performances which can be added to the
minimum requested. By adding this number to the right-most
minimum and combining this new total with the rest of the root
node, we have calculated the right-most Frontier Node.

Using this Frontier Node as a starting point, it is possible to
cross the tree along the Frontier of Feasibility, thereby eliminating
the need to search the tree in depth. As discussed earlier, the order
in which the activities are sorted can greatly affect the search
process. We have chosen to discuss the largest to smallest range
sort method because it can be more clearly demonstrated in the
context of this paper. Using this method, the first frontier node that
we have just calculated has maximized the number of performances
of the largest resource using activity.

The Frontier search method is composed of six main steps:

1. Examine the number of performances of each activity in the node,
from left to right, for one which is performed more than the
minimum required number of performances. This step begins its
examination at the second node from the left, because of the way
Step 5 operates.

89

2. Reduce the current number of performances'of that activity by
one.

3. Reset all activities to the left of the activity found in Step 1, to
their minimum required number of performances.

4. Recalculate the available resources.

5. Starting just left of the activity found in Step 1 and Continuing to
the left, increase the number of performances of each activity as
much as possible with the available resources. Each new
performance reduces the amount of resources available.

6. When no more performances can be added, store the. new Frontier
Node and repeat the process.

D —

(11111[4))
. o
(11112B)
—
(111128)
‘ -
(111[2113)

Figure 10. Example of the six stage process.

The benefit of using the largest to smallest range sort method is
that removing one performance of an activity in Step 3, guarantees

Q0

at least one performance of another activity when executing Step 5.
This method sorts the activities from smallest to largest resource
users and thereby ensures that enough resources are freed up to add
one performance to the left.

11.4 Task Results

The six stage process describe above produces several hundred
thousand solutions in a small problem. Almost all of these Frontier
Nodes utilize from 95% to 100% of the available resources. There
are several possible mechanisms under consideration to select only
a small subset of these solutions. One of the most promising of
these, reduces the size of the solution set by selecting a starting
node further to the left in the tree. This eliminates all branches
right of the start node from consideration. Random sampling is
another method which could be used. The system would randomly, or
at set intervals, store the node currently under consideration. This
method would provide a smaller solution set, which still
represented most of the branches.

While the system can calculate new nodes fairly rapidly, storage
of the growing solution set slows the systems performance to an
unacceptable level. This problem can be bypassed in several ways,
for instance, by only storing those solutions that use 100% of the
available resources or only the first 10,000 solutions which are
generated.

From the generated solution set, the user must choose a node that
represents a “good” starting point. We are currently working on an
interface which will allow the user to review the solution set and
examine a node in detail. The user would be able to modify the
number of performances of any activity, in order to improve the
“‘goodness” of the node. The combination of these two systems will
provide the user with a powerful tool for generating rough solutions
to the resource allocation problem.

91

12.0 Concfusions

1

. The object-oriented programming techniques would be too

cumbersome for handling complete mission data set. This is based on
the manner in which the problem was modeled in the prototype
developed. In this prototype, everything was treated as an object and
the mission timeline was divided into seconds. If the timeline is
handled in a different manner; that is not as an object, then the object-
oriented approach may be very feasible. The object-oriented approach
should not be eliminated without further study. _

KEE is not suited for the scheduling nor‘resowce allocation problem.
This is because of the extensive amount of code that needs to be
developed to handle efficienctly the bookkeepping procedures. While it .
islpossible to write these functions in KEE, a significant increase in
execution time will be experienced. This may not be satisfactory for the
decision makers.

Ethernet is the most feasible way of connecting Lisp machines and VAX
for MSFC Mission Planning personnel at present.

It is not possible to call Lisp from inside FORTRAN and vice versa on a
VAX.

Resource allocation algorithms show much potential. More heuristics

for increasing the efficiency of the search process need to be

- developed and studied before ruling this approach out completely.

92

| Appendix A
Code Listing, for Object-Oriented Programming Task

ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/89 15:36:19 Page 1

i:: —*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

PR RS RS RS2y R R R Ny S e N SRR R R s A e s ey e R A X R R AN N A A e Nl

;77 top level function to call others
(defmethod (correct-representations-and-build-linkages-after-data-load mission) ()
;;;operations on experiment, performances, steps
(maphash #’ (lambda (exp-name exp)
. exp-name
(correct-time-representation exp))
experiment-template-table)
(get-possible-crew-combinations-for-all-steps self)
(write~crew-lockin-to-step~-level self)
(replace-names-with-objects self)
(transfer-experiments-from-template-table self nil)
;;;operations on resources
; (connect-resource-availability-start-and-end-times init-obj)
(transfer-shift-times-to-crew-members init-obj)
;;;operations on time slices
(initialize-time self))

(defmethod (write-crew-lockin-to-step-level mission) ()
{maphash #° (lambda (exp instance)
exp
(write-crew-lockin-to-step-level instance))
experiment-template-table))

(defmethod (write-crew-lockin-to-step-level experiment) ()
(loop for (lockin-start lockin-end) in crew-lockin
for crew-combo = (crew-combinations (find-step-numbered self lockin-start))
do .

(loop for step-number from lockin-start to lockin-end
for step = (find-step-numbered self step-number)
do . -

(when (and (null (crew-monitor step))

(equal crew-combo (crew-combinations step)))
(setf (crew-lockin step) lockin-start)))))

(defmethod (initialize-time mission) ()
(build-initial-time self)
(load-targets-into-time-steps init-obj)
(load~attitudes-into-time-steps init-obj)
)

(defmethod (restore-data-to-start mission) ()
(setf experiment-table (make-hash-table))
{transfer-experiments-from-template-table self nil)
(initialize~time self))

(defmethod (replace-names-with-objects mission) ()
(maphash #’ (lambda (exp instance)
exp
(replace-names instance))
experiment-template-table))

(defmethod (replace-names experiment) ()
(loop for slot in ' (startup-steps shutdown-steps prototype-step-list)
do
{mapc #’replace-names (symbol-value-in-instance self slot))))

(defmethod (replace-names step) ()
(loop for slot in .
‘ {consumable~resource-list durable-resource-list)
for keyword in ‘ (:consumable :durable)
do
(setf (symbol-value-in-instance self slot)
{loop for (resource-name quant) in (symbeol-value-in-instance self slot)
collect (list (get-object-named (init-obj *mission*) keyword resource-name)
) quant))})
(setf non-depletable-resource-list
(loop for (resource-name quant tolerance) in non-depletable-~resource-list
collect (list (get-object-named (init-obj *mission®) .
:non-depletable resource-name)
quant tolerance)))

A-2 ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/89 15:36:19 Page 2

(setf crew-combinations
(loop for combination in crew-combinations

collect
(loop for crew in combination
collect (get-object-named (init~obj *mission®) :crew crew))))

(setf target-list
‘ioop for target in target-list

collect (get-object-named (init-obj *mission*) :target target)))
{(setf attitude-1list

(loop for attitude in attitude-list
collect (get-object-named (init-obj *mission®) :attitude attitude))))

'-t..'l'tt.t..t..tt'l"!!!.l.'.'.."."ll.'_l'.."l.'tl..".'t.l."t.t"'..t.tt'.('
;s functions to build linkages
(defmethod (transfer-experiments~from-template-table mission) (&optional (query t))
(let ((experiment-list nil) (instance-list nil))
{(when query
(maphash #’ (lambda (key instance)
(push key experiment-list)
(push instance instance-list))
experiment-template-table)
(setf query nil)
(loop until (setf query
(dw:menu-choose
*{("Use All Experiments” :all)
("Use None of These Experiments™ :none)
("Use Some of These Experiments - Present Menu" :some))
:prompt {(format nil * ~A " experiment-list)))))
(cond ((or (null query) (eql query :all))
(maphash #’ (lambda {(key instance)
(setf (gethash key experiment-table) (copy-self instance))
)
experiment-template-table))
((eql query :none) nil)
((eql query :some)
(format t "this is a stub in transfer-experiments-from-template-table")))))
11
(defmethod (connect-resource-availability-start-and-end-times nasa-init-obj) ()
(loop for slot in ’ (consumable-resource-list non-depletable-resource-list)
do
(loop for resource in (symbol-value-in-instance self slot)
do
(connect-~resource-availability resource)
(when (and (eql (length (quantity-availability-list resource)) 1)
(null (qty (first (quantity-availability-list resource))))
(maximum-available resource))
(setf (qty (first (quantity-availability-list resource)))
(maximum-available resource))))))

(defmethod (connect-resource-availability non-durable-resource) ()
{cond ((and (null maximum-available) (null quantity-availability-list)) nil)
{{null quantity-availability-list)
(setf quantity-availability-list
(ncons (make-instance
‘quantity-availability
:name (name self)
iowner-obj self
savailable-times-list
(ncons (make-instance
ravailable-time
:begin 0
iend (max-time (init-obj *mission®))})))))
(setf (owner-obj (first (available-times-~list (first quantity-availability-list))))
(first quantity-availability-list)))
(t (let ((time-list nil) (time-length nil) (max-quant 0))
{loop for quantity-availability-obj in quantity-avajlability-list
do
{when (> (qty quantity-availability-obj) max-quant)
(setf max-quant (qty quantity-availability-obj)))
{loop for object in (available-times-list quantity-availability-obj)
do
(push (begin object) time-list))})
{setf time-list {(sort time-list #'<))

A-3 ORIGINAL PAGE IS

Q";l OF POUR QuaLITY

>

ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/89 15:36:19 Page 3

(setf time-length (1- (length time-list)))
(setf maximum-available max-quant)
(loop for quantity-availability-obj in quantity-availability-list
do
(loop for object in (available-times-list quantity-availability-obj)
for time-position = (position (begin object) time-list)
do
(if (eql time-position time-length)
(setf (end object) (max-time (init-obj *mission*)))
{(setf (end object) (1- (nth (l+ time-position) time-list)}))))))))
(R :

(defmethod (transfer-shift-times-to-crew-members nasa-init-obj) ()
{loop for crew in crew-list
do
(setf (available-times-list crew)
(copy-available-times-list self (work-shift crew)}))
{(loop for avajlable-time-obj in (available-times-list crew)
do
(setf (owner-obj available-time-obj) crew))))

(defmethod (copy-available-times-list nasa~init-obj) (shift-number)
(loop for available-time-obj in (nth (l1- shift-number) shift-availability-objs)
collect (make-instance ’‘available-time :begin (begin available-time-obij)
tend (end available-time-obj))))

(defmethod (build-initial-time mission) ()
(setf time-slice-holder
(make-instance ‘time-slice :start-time 0 :end-time (max-time init-obj))))

(defmethod (load-targets-into-time-steps nasa-init-obj) ()
(loop for target-obj in target-list

do

(loop for available-time-obj in (available-times-list target-obj)

do .
(schedule-event

mission target-obj ‘target-list (begin available-time-obj)
(end avajilable-time-obj)))))

(defmethod (load-attitudes-into-time-steps nasa-init-obj) ()
{loop for attitude-object in attitude-list
do
(loop for available-time-obj in (available-times-list attitude-object)
do
(schedule-event

mission attitude-object ‘attitude-list (begin available-time-obj)
(end avajilable-time-obj)))))

FRA AN S A AR A S AR RN AR LA N2 A R s N R NSNSy N A R A e N e e N N N L]

;;; this section is used to convert various time representations to one standard
(defmethod (correct-time-representation experiment) ()
{setf min-performance-delay-time
(translate-seconds~-to-time-periods
(translate-time-list-to-seconds min-performance-delay-time))
max-performance-delay-time
(translate-seconds-to-time-periods
(translate-time-list-to-seconds max-performance-delay~time))
performance~time-window
(translate-seconds-to-time-periods
(translate-time-list-to-seconds performance-time-window)))
(setf performance-windows
(loop for (begin end performances) in performance-windows
collect (list (translate-seconds-to-time-periods
(translate-time-list-to-seconds begin))
(translate-seconds-to-time-periods
{(translate~time-list-to-seconds end))
performances)))
(loop for slot in ‘ (startup-steps shutdown-steps prototype-step-list)
do
(loop for step in (symbol-value-in-instance self slot)
do
(correct-time-representation step))))

A-4
ORIGINAL PACE 1S

OF POOR (chkLrTY

ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/89 15:36:19 Page 4

(defmethod (correct-time-representation step) ()
(setf max~duration (translate-seconds~-to-time-periods max-duration))

- (setf min-duration (tre..slate-seconds-to-time-periods min-duration))
(setf step-delay-max (translate-seconds-to-time-periods step-delay-max))
(setf step-delay-min (translate-seconds-to-time-periods step-delay-min)))

SRR AN R S SRR A ISR RS R RO AL PO R R A NI PSSR PG T RIS IR IR R PRI TN AT R AN SRS SO RGO sttt

;s theses methods and functions are used to setup the possible combinations of crew
;27 members that satisfy the crew requirements specifications of each step

(defmethod (get-possible-crew-combinations-for-all-steps mission) ()
(maphash #’ (lambda (key instance)

key
(loop for slot in ' (startup-steps shutdown-steps prototype-step-list)
do
(loop for step in (symbol-value-in-instance instance slot)
do

(setf icrew-combinations step)

(get-possible~combinations-of-crew self (crew-requirements step))}))))
experiment-template-table))

(defmethod (get-possible-combinations-of-crew mission) (crew-requirements)
(if (gethash crew-requirements crew-combinations-table)
(gethash crew-requirements crew-combinations-table)
(setf (gethash crew-requirements crew-combinations-table)
(generate-possible-combinations-of-crew self crew-requirements))))

(defmethod (generate-possible-combinations-of-crew mission)
(when crew-requirements
{(merge~candidate-sets

self (generate-candidate-sets self crew-requirements) crew-requirements)))

(crew-requirements)

(defmethod (generate-candidate-sets mission)
(let ((candidate-sets nil))
(loop for (description-list quant) in crew-requirements
for description-set = nil
do
(loop for (type tag) in description-list
for possible-set = nil
do
(if (eql type ‘duty-position)
(loop for crew-obj in (crew-list init-obj)
do
(when (eql (duty-position crew-obj) tag)
{(push (name crew=-obj) possible-set)))
(loop for crew-obj in (crew-list init-obj)
do
(when (eql (name crew-obj) tag)
(push (name crew-obj) possible-set))))
(setf description-set (concatenate ‘list possible-set description-set)))

(push (list description-set quant) candidate-sets))
candidate-sets))

{(crew-requirements)

(defmethod (merge-candidate-sets mission) (candidate-sets crew-requirements)
(let ((final-combinations nil) (all-combinations nil))
(cond ((null candidate-sets)

(error "generate-possible-combinations-of-crew was unable to generate a candidate
set with requirements ~S" crew-requirements))
((= (Length candidate-sets) 1)
(setf all-combinations (generate-combinatorics self
(t (setf all-combinations
(generate-possible-combinations-of-crew-aux
self (generate-combinatorics self (first candidate-sets))
(cdr candidate-sets)))))
(loop for combination in all-combinations
do
(unless (combination-contains-duplicates-p self combination)
(push combination final-combinations)))
final-combinations))

(first candidate-sets))))

(defmethod (generate-possible-combinations-of-crew-aux mission)
(existing-combinatoric candidate-sets)
{if (null candidate-sets)

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>after-data-load-methods.lisp.28 7/11/89 15:36:19 Page$§

existing-combinatoric
{(generate-possible-combinations-of-crew-aux
self
{merge-combinatorics
self existing-combinatoric (generate-combinatorics self (first candidate-sets)))
(cdr candidate-sets))))

(defmethod (merge-combinatorics mission) (first-set second-set)
(loop for grouping-one in first-set

with result = nil

do
(loop for grouping-two in second-set

do.
{push (concatenate °‘list (copy-list grouping-one) {(copy-list grouping-two)) result))

finally (return result)))

(defmethod (generate-combinatorics mission) (candidate-set-and-quant)
(let (({candidate-set (first candidate-set-and-quant))
{quant (second candidate-set-and-quant))
(solution-1list nil))
(loop for i from 1 to quant
for next-solution = nil

do
(if (= 1 1)
(loop for trew in candidate-set
do
(push (list crew) solution-list))
(loop for solution in solution-list
do
(loop for crew in candidate-set
for combo = (if (member crew solution)
nil
{(concatenate ‘list (list crew) (copy-list solution)))
do
(when (and combo (new-entry-p combo next-solution))
_ (push combo next-solution)))
finally (setf solution-list next-solution))))
solution-list))

(defun new-entry-p (combo next-solution)
(let (({result t))
(cond ((null next-solution) t)
{t (loop for set in next-solution
until (null result)
do R
(when (every #’ (lambda (x) (member x combo)) set)
(setf result nil))}))
result))

(defmethod (combination-contains-duplicates-p mission) (combination)
(let ((combination-copy (copy-alist combination))
(flag nil))
{loop for crew-obj in combination
until flag :
do
(setf combination-copy (cdr combination-copy))
(when (member crew-obj combination-copy)
(setf flag t)))
flag))

sssend of crew combination generation

AL S R S S A R N N AR N R A N A A R N e e R AR A SRS S AR AR a s SRS sl teds

A-6

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>edit-presentation-types.lisp.15 7/11/89 15:36:12

R j‘- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

;7 presentation types associated with nasa-init-obj editing

(define-presentation-type single-valued-nasa-init-obj-edit-display (())
thistory t

:printer ((obj stream)
(with-character~style (‘(:fix :bold-italic :normal) stream :bind-line-height t)
(format stream "~SMISSION DURATION ~S ~SMISSION TIME INCREMENT ~S"
(max-time obj)

(time-inc obj))))
:parser ((stream)

{let (({input (read-from-string {(dw:read-standard-token stream))))
(if (eql (type-of input) ‘nasa-init-obj) input
(signal ‘dw:input-not-of-required-type
itype ‘nasa-init-obj
:string input)))))
(define-presentation-type
thistory t

:printer ((obj stream)

misc-obj-edit-display (())

(with-character~style (’(:fix :roman :small) stream :bind-line-height t)
(format stream "~%~A~A~A~¥"(first (display-string obj))
(second (display-string obj))))
)

tparser (({(stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) ’‘query-obj) input
(signal ’‘dw:input-not-of-required-type
:type ‘query-obj
:string input)))))
(define-presentation-type consumable-name-for-edit-display (())
thistory t
:printer ((obj stream)
(with-character-style (’ (:fix :italic :normal)
(format stream "~% NAME ~S ~%"
{name obj))))

stream)

iparser ({stream)
(let ((input (read-from-string
(if (eql
input
(signal ‘dw:input-not-of-required-type
:type ‘consumable-resource
:string input)))))

(dw: read-standard-token stream))))
(type~of input) ‘consumable-rescurce)

(define-presentation-type name-for-edit-display (())
thistory ¢t

:printer ((obj stream)

(with-character-style (’(:fix :roman :normal) stream :bind-line-height t)
(format satream "~ANAME ~S~8" (name obj))))
rparser ((stream)
) (let ((input

{read-from-string (dw:read-standard-token stream))))
(if

(eql (type-of input) ‘availabilty)
input

(signal ‘dw:input-not-of-required-type
:type ‘availabilty
tstring input)))))

(define-presentation-type qu.ntitf—nvnlllbility-odlt-dilplly (Q))
thistory ¢t

:printer ((obj stream)
(with-character-style (’(:fix :bold :small) stream :bind-line-height t)

(format stream * QUANTITY = -S~%" (qty obi))))
:parser ((stream)

(let ((input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) ‘quantity-availability) input
(signal ’‘dw:input-not-of-required-type
:type ‘quantity-availability
:string input)})))

(define-presentation-type durable-resource-edit-display (())

Page 1

ORIGINAL PACE IS
OF PCOR QUALITY

ANDY:>brown>nasa-2>edit-presentation-types.lisp.15 7/11/89 15:36:12 Page 2

thistory t

:printer ((obj stream)
(if (send stream :operation-handled-p ‘:format-cell)

{progn
(formatting-cell (stream :align :center) (format stream (name obj)))
(formatting-cell (stream :align :center)
(format stream “~S5" (available-quantity obj))))
(format stream "#<DURABLE RESOURCE EDIT DISPLAY ~S ~S>"
{name obj) (available-quantity obj)))})
:parser ((stream)
(let ((input (read-from-string (dw:read-standard-token stream))))
{(1f (eql (type-of input) ‘durable-resource) input
(signal ‘dw:input-not-of-required-type
itype ‘durable-resource
tstring input)))))

(define-presentation-type available-time-edit-display(())

thistory ¢t
:printer ((obj stream)
(if (send stream :operation-handled-p :format-cell)
{progn
(formatting-cell (stream :align :center) (format stream "~A" (begin obj)))
(formatting-cell (stream :align :center) (format stream "~A™. (end obj))))
(format stream "#<AVAILABLE-TIME-EDIT~DISPLAY ~A ~A>" (begin obj) (end obj))))

tparser ((stream)

(let ((input
(1f (eql (type-of input) ‘available-time) input

{signal ‘dw:input-not-of-required-type
:type ‘available-time
:string input)})))
’-"'.'.Ql.'.l..'.""t.."l.l.l'.Q'l"'l'ﬂ'l"."'.".'ﬂl""""'."'tll"..'."
;7; presentation types associated with editing experiment templates
(define~presentation-type experiment-template-edit-display (())

thistory t
:printer ((cbj stream)
{format stream "~SMIN-PERFORMANCES ~A MAX-PERFORMANCES ~A DESIRED~PERFORMANCES ~A MAX

-PERFORMANCE-DELAY-TIME ~A MIN-PERFORMANCE-DELAY-TIME ~A" (name obj) (min-performances obj) (max-p
erformances obj) (desired-performances obj) (max-performance-delay-time obj) (min-performance-dela

y-time obj))}

:parser ((stream))
(let ((input (read-from-string (dw:read-standard-token s:tream))))

(if (eql (type-of input) ‘experiment-template) input
(signal ‘dw:input-not-of-required-type
itype ‘experiment-template
tstring input)))}))

(read-from-string (dw:read-standard-token stream)}})

(define-presentation-type experiment-template-name-edit-display (())
thistory t :printer ((obj stream)
(format stream “~SEXPERIMENT NAME: ~A" (name obj)))

:parser ((stream)
({let ((ipput (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) ‘experiment-template) input
(signal ‘dw:input-not-of-required-type
itype ‘experiment-template
:string input)))))

(define-presentation-type step-taemplate-for-editing (())

thistory t
:printer ((obj stream)
(present-step obj stream))

:parser ({(stream)
(let ((input (read-~from-string (dw:read-standard-token szream)))})

(if (eql (type-of input) ‘step) input
(signal ‘dw:iirput-not-of-required-type
itype ‘step
:string input)))))

(define-presentation-type’ shutdown-step-template-for-editing (())
thistory ¢t

:printer ((obj stream)
(present-step obj siream))

-8
: ORIGINAL PAGE IS
OF PCOR QUALITY

ANDY:>brown>nasa-2>edit-presentation-types.lisp.15 7/11/89 15:36:12 Page 3

:parser ((stream)
(let ({(input (read-from-string (dw:read-standard-token stream))))
(if (eql (type-of input) ‘step) input
(signal ‘dw:input-not-of-required-type
itype °‘step
:string input)))))

(define-presentation-type prototype-step-template-for-editing (())
thistory t
:printer ({(obj stream)
. (present-step obj stream))
:parser {(stream)
(let ((input (read-from-string (dw:read-standard-token stream))))
(1f (eql (type-of input) ’step) input
{signal ‘dw:input-not-of-required-type

:type ‘step
:string input)))))

’-l.lt.".i."'ﬂ"l""'"'...'0.'.'.0""'....'Dll.tlt'.'.'..tt'.'ﬁl"l."..'l..'

;;:presentation type associated with editing nasa-screen-manager

(define-presentation-type nasa-screen-manager-edit-display ((}))
thistory t
iprinter ((obj stzeam)
(format stream "~% SCREEN MANAGER")
(FORMAT STREAM “~% CURRENT RESOURCE NAME: ~A"(current-resource obj))
(FORMAT STREAM "~% RESOURCE DISPLAY DIMENSIONS™)
(FORMAT STREAM "~8 LEFT COORDINATE: ~A, RIGHT COORDINATE: ~A, UPPER COORDINATE: ~A, B
OTTOM COORDINATE: ~A"™ (left-x obj) (right-x obj) (upper-y obj) (lower-y obj))
(FORMAT STREAM "~% MINIMUM WIDTH (pixels) EACH TIME PERIOD: ~A; WIDTH EACH TIME PERIO
D: ~A" (min-x-delta obj) (x-delta obj))
(FORMAT STREAM "~% TIME UNITS BETWEEN HORIZONTAL SCALE MARKERS: ~A"
(h-scale-inc obj)) ’
(FORMAT STREAM "~8% UNITS BEFWEEN VERTICAL SCALE MARKERS FOR CURRENT RESOURCE' ~A"
(v-scale-inc obj))
(FORMAT STREAM *"~% LENGTH OF TICK HARKS ON SCALES: ~A" (scale-length obj)))
:parser ({stream)
(let ({input (read-from-string (dw:read-standard-token stream)))})
(if (eql (type-of input) ‘nasa-screen-manager) input
{(signal ‘dw:input-not-of-required-type
itype ’‘nasa-screen-manager
:string input)))))

ANDY:>brown>nasa-2>editor-framework-commands.lisp.1 3/18/89 Pagel

—*- Mode: LISP; Syntax: Common-Lisp: Package: USER; Base: 10 -*-

ey

(DEFINE-PERFORMANCE~SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-CLEAR-INIT-EDIT-HISTORY
:MENU-ACCELERATOR "Clear All Histories"™
:MENU-LEVEL :INIT-EDIT-MENU)
()
(clear-all-histories (screen-manager "*mission*) ‘init-edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE -SCHEDULER-FROM-INIT-EDIT-TO-EDIT
:MENU-ACCELERATOR “"Return To Obj Edit"
:MENU-LEVEL :INIT~-EDIT-MENU)
(§]
(select~-configuration *mission* ‘edit))

(DEF INE-PERFORMANCE -SCHEDULER-COMMAND (COM-PERFORMANCE -SCHEDULER-REDISPLAY-INIT-0OBJ
:MENU-ACCELERATOR "Redisplay Init Obj"
:MENU-LEVEL :INIT-EDIT-MENU)
()
(clear-all-histories (screen-manager *mission*) ‘init-edit)
(edit-obj *mission* ’init-obj))

(DEFINE~PERFORMANCE~SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY-INIT-EDIT-OBJ
:MENU-ACCELERATOR "Redisplay”
:MENU-LEVEL :INIT-OBJ-EDIT-MENU)
()
(clear-history (screen-manager *mission*) ’init-obj-edit)
(edit-init-sub-obj *mission* ’‘init-obj-edit))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY- DU’RABLE-RBSOUR(E
:MENU-ACCELERATOR "Redisplay”
:MENU-LEVEL :DURABLE-RESOURCE-MENU)
()
(clear-history (screen-manager *mission+*) ‘durable-resource-edit)
(edit-init-sub-obj *mission* ‘durable)) . .

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY~CONSUMABLE-RESOURCE
:MENU-ACCELERATOR "Redisplay”
:MENU-LEVEL :CONSUMABLE -RESOURCE -MENU)
()
(clear-history (screen-manager *mission*) ’‘consumable-resource-edit)
(edit-init-sub-obj *mission* ‘consumable))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-REDISPLAY~-CREW-RESOURCE
:MENU-ACCELERATOR “Redisplay"”
:MENU-LEVEL :CREW-RESOURCE-MENU)
()
(clear-history (screen-manager 'missxon") ‘crew-resource-edit)
(edit-init-sub-obj *mission* ’‘crew))

(DEFINE-PERFORMANCE - SCHEDULER-COMMAND (COM-PERFORMANCE -SCHEDULER-REDISPLAY -TARGET -RESOURCE
:MENU-ACCELERATOR "Redisplay”
:MENU-LEVEL :TARGET-RESOURCE-MENU)
Q)
(clear-history (screen-manager *mission*) ‘target-resource-edit)
(edit-init-sub-obj *mission* ‘target))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE -SCHEDULER-REDISPLAY-ATTITUDE~RESOURCE
:MENU-ACCELERATOR "Redisplay"”
:MENU-LEVEL :ATTITUDE-RESOURCE-MENU)
()
(clear-history (screen-manager *mission*) ’‘attitude-resource-edit)
(edit-init-sub-obj *mission* ’attitude))

A-10 ORIGINAL PAGE IS
OF POOR QUALITY

. ANDY:>brown>nasa-2>experiment-methods.lisp.8 7/10/89 15:19:08 Page 1

i:: -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (create-new-obj experiment-template) ()
(query-user~-for-new-values self)
(add-exp-~temp~to-table *mission* self name)

)

(defmethod (create-new-obj experiment) ()
(query-user-for-new-values self)
(add-exp-to-table *mission* self name))

(defmethod (query-user-for-new-values experiment) ()
(let ((choice nil) (choice-list ’(yes no))) choice choice-list
(dw:accepting~values ’
(*standard-output*
sown-window t :label
(format nil
*Input Values For New Experiment™))
(setf name
(accept ‘symbol :default ‘none :query-identifier ‘name
:stream *standard-output®*
:prompt (format nil "enter name of experiment®))
min-performances
(accept ‘number :default 0 :query-identifier ‘min-performances
:stream *standard-output® :prompt
(format nil “enter minimum number of performances "))
max-performances
(accept - ‘number :default 0 :query-identifier ‘max-performances
:stream *standard-output* :prompt
(format nil "enter maximum number of performances"))
desired-performances
(accept ’‘number :default 0 :query-identifier ‘desired-performances
:stream *standard-output®*
:prompt (format nil "enter desired number of performances"))
min-performance-delay-time
(accept ‘number :default 0 :query-identifier ’‘min-performance-delay-time
:stream *standard-output®*
:prompt (format nil "enter min performance delay time "))
max-performance-delay-time
(accept ‘number :default 0 :query-identifier ‘max-performance-delay-time
:stream *standard-output®
:prompt (format nil "enter max performance delay time "))))
(query-user-for-new-values-aux self)))

(defmethod (query-user-for-new-values-aux experiment) ()
{let ((choice nil) (choice-list ‘' (yes no)))
(loop until (setf choice (dw:menu-choose choice-list :prompt "do you want to create any startup
steps?™))) :
{when (eql choice ‘yes)
(create-new-obj (make-instance ‘startup-step-template) self))
(setf choice nil)
(loop until (eql choice ‘no)
do
(loop until (setf choice (dw:menu-choose choice-list :prompt "create another startup step?")))
(when (eql choice ‘yes)
(create-new~-obj (make-instance ‘startup-step-template) self)
(setf choice nil)))
(setf choice nil)
({loop until (setf choice (dw:menu-choose choice-list :prompt "do you want to create any shutdown
steps?®)))
(when (eql choice ‘yes)
(create-new-obj (make-instance ‘shutdown-step~template) self))
(setf choice nil)
(loop until (eql choice ‘no)
do
(loop until (setf choice (dw:menu-~choose choice-list :prompt "create another shutdown step?"))

(when (eql choice ’‘yes)
(create-new-obj (make-instance ’shutdown-step-template) self)

{(setf choice nil}))
(loop until (setf choice (dw:menu-choose choice-list :prompt “do you want to create any regular

steps?”)))
{when (eql choice ‘yes)

A-11 ORIGINA

L PACE ©

()‘: ‘3()()F§ (gijﬁd.ff‘{

ANDY:>brown>nasa-2>experiment-methods.lisp.8 7/10/89 15:19:08 Page 2

(create-new-obj (make-instance °‘step-template) self))
(setf choice nil)
(loop until (eql choice ‘no)
do
(loop until (setf choice (dw:menu-choose choice-list :prompt "create another step?")))
(when (eql choice ‘yes)
(create-new-obj (make-instance ’‘step-template) self)
{setf choice nil)))))

(defmethod (create-new-step experiment-template) ()
(let ((choice ni}l)
{choice-list ’ ((NONE none)
("Startup Step” startup-step-template)
{"Shutdown Step” shutdown-step-template)
("Step™ step-template)}))
{(loop until (setf choice (dw:menu-choose choice-list :prompt "Indicate type of step to be crea
ted, or none™)))
{(unless (eql choice ‘none)
(create-new-obj (make-instance choice) self))))

(defmethod (copy-self experiment) (&rest ignore)
{make-instance ‘experiment
:name name
:non-depletable-tolerance-list non-depletable-tolerance-list
:min-performances min-performances
:max-performances max-performances
:desired-performances desired-performances
:latest-start-time latest-start-time
:performance-time-window performance-time-window
:performance-windows performance-windows
ccrew-lockin crew-lockin
:strategy strategy
raxperiment-time-window experiment-time-window
max-performance-delay-time max-performance-delay-time
‘min-performance-daelay-time min-performance-daelay-time
: schedule-shutdown-with-performance schedule-shutdown-with-pexrformance
:startup-steps startup-steps) e
t shutdown-steps shutdown-steps
tprototype-step-list prototype-step-list
:desired-monitor-steps desired-monitor-steps
1)

ORIGINAL PAGE is
OF -POOR QUALITY

ANDY:>brown>nasa-2>framework-commands.lisp.6 4/11/89 21:41:51 Page 1

$:: -*- Mode: LISP; Syntax: Common-Lisp:; Package: USER; Base: 10 -*-

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-SELECT-EDITOR-CONFIG
:MENU~ACCELERATOR "Select Obj Editor"™
:MENU-LEVEL :NASA-TOP-MENU)
() :
(unless (program-framework (screen-manager *mission®*))
(setup-streams (screen-manager *mission*) dw:*program-frame®*))
(select-configuration *mission* ‘edit))

(DEFINE-PEFiFORMANCE—SCHEDULER-COMMAND (COM~-PERFORMANCE -SCHEDULER~EDIT-INIT-OBJ ~
:MENU-ACCELERATOR "Edit Mission Resources"”
:MENU-LEVEL :TABLES-MENRU)
(§]
(edit-obj *mission* ‘init-obj))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-EDIT-experiment-templates
:MENU-ACCELERATOR “Edit Experiment Descriptions®
:MENU~-LEVEL :TABLES-MENU)
() .
{edit-experiment-templates *mission*))

(DEFINE-PERFORMANCE~SCHEDULER-COMMAND (COM-PERFORMANCE~SCHEDULER~EDIT-SCREEN-MANAGER
:MENU-ACCELERATOR "Edit Screen Manager”
:MENU-LEVEL :TABLES-MENU)
()
(edit-obj *mission* ‘screen-manager))

(DEFINE-PERFORMANCE~SCHEDULER-COMMAND (COM-PERFORMANCE-SCHEDULER-CLEAR-TABLES-HISTORY
' :MENU-ACCELERATOR "Clear History"
:MENU-LEVEL :TABLES-MEND)
0
(clear-history (screen-manager *mission*) ‘edit))

(DEFINE-PERFORMANCE-SCHEDULER~-COMMAND (COM-PERFORMANCE-SCHEDULER-FROM-EDIT-TO-MAIN
“:MENU-ACCELERATOR "Return To Main Screen”
:MENU-LEVEL :TABLES-MENU)
()
(select-configuration *mission* ’‘experiment))

(DEFINE~PERFORMANCE-SCHEDULER~-COMMAND (COM-PERFORMANCE-SCHEDULER-FROM~EDIT~-2-TO~-MAIN
:MENU-ACCELERATOR "Return To Main Screen®
:MENU~LEVEL :TABLES-MENU-2)
(§]
(select-configuration *mission* ’‘experiment))

(DEF INE-PERFORMANCE-SCHEDULER-COMMAND (COM~-PERFORMANCE-SCHEDULER~-CLEAR-TABLES-2-HISTORY
:MENU-ACCELERATOR "Clear History"
:MENU-LEVEL :TABLES-MENU-2) .
()
(clear-history (screen-manager *mission®*) ‘tables-2))

ORIGINAL PAGE i3

A-13
OF POOR QUALITY

'ANDY:>brown>nasa-2>framework.lisp.3 3/18/89 02:30:01 Pagel

;:: -*- Mode: LISP: Syntax: Common-lisp; Package: USER; Base: 10; Default-character-style: (:FIX :
ROMAN :NORMAL) =-w=-
(defvar *standard-margin-components* ’ ({DW:MARGIN-BORDERS)
(DW:MARGIN-WHITE-BORDERS :THICKNESS 2)
(DW:MARGIN-SCROLL-BAR :MARGIN :LEFT)
(DW:MARGIN-SCROLL-BAR :MARGIN :BOTTOM)
{(DW:MARGIN-WHITESPACE :MARGIN :LEFT :THICKNESS 10)))

(DW: DEFINE-PROGRAM~FRAMEWORK PERFORMANCE-SCHEDULER
:COMMAND-DEFINER T
:SELECT-KEY #\a
:selected-pare NASA-LISP-LISTENER
:terminal-io-pane NASA-LISP-LISTENER
: COMMAND-TABLE '
{(:INHERIT-FROM ’ ("colon full command™ "standard arguments” “standard scrolling”)
:KBD-ACCELERATOR-P t)
:STATE-VARIABLES ()
:PANES
((NASA-EXP-AND-PER-ASSISTANT-TITLE
:TITLE :REDISPLAY-STRING "NASA Experiment Performance Scheduler Assistant”
sHEIGHT-IN-LINES 1 :REDISPLAY-AFTER-COMMANDS NIL)
(NASA-EXP~-AND-PER-ASSISTANT-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :NASA-TOP-MENU)
(ERROR-TITLE
:TITLE :REDISPLAY-STRING "NASA Exp Perf Scheduler Asst Error Report®
:HEIGHT-IN-LINES 1 :REDISPLAY-AFTER-COMMANDS NIL)
(ERROR-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :ERROR-MENU)
(ERROR-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:UEFAULT-CHARACTER~STYLE ’ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN~-COMPONENTS
standard-margin-components) '
(GENERAL-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :GENERAL-MENU)
(GENERAL-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTQR 1
:DEFAULT~CHARACTER- STYLE ‘ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
*standard-margin-component s%)
(PERFORMANCES-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :PERFORMANCES-MENU)
(EXPERIMENT- DESCRIBER :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE '’ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
*standard-margin-components®)
(CURRENT-OP-MODE-2ISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE ’ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN~-COMPONENTS
* ((DW:MARGIN-BORDERS)
(DW:MARGIN-WHITE-BORDERS :THICKNESS 2)
(DW:MARGIN-WHITESPACE :MARGIN :LEFT :THICKNESS 10)))
(PERFORMANCES~DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT~CHARACTER-STYLE '’ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
standard-margin-components)
(EXPERIMENTS-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :EXPERIMENTS-MENU)
(EXPERIMENTS-DISPLAY :DISPLAY :END~OF~PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER~-STYLE ‘ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS.
*standard-margin-components®)
(RESOURCES-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :RESOURCES-MENU)
(RESOURCES-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTCR 1
¢t DEFAULT-CHARACTER-STYLE ‘ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
: *standard-margin-components*)
(TABLES~COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :TABLES-MENU)
(TABLES-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER~STYLE ‘ (:FIX :ROMAN :SMALL) -
:more-p nil
;;+ iredisplay-function ’'display-experiments-table- summary-aux
sssctincremental-redisplay ¢t

ORIGINAL PAGE IS
A-14 OF POOR QUALITY.

ANDY:>brown>nasa-2>framework.lisp.3 3/18/89 02:30:01 Page 2

tMARGIN~-COMPONENTS
rstandard-margin-components®)

(irit-edit-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :init-edit-MENU)

(init-obj-edit~-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :init-obj-edit-MENU)

(tazget-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :target-resource-MENU)

{crew-resource~-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :crew-resource-MENU)

(astitude-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :attitude-resource-MENU)

(ccnsumable-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :consumable-resource-MENU)

(é:rable-resource-COMMAND :COMMAND-MENU :ROWS 1 :MENU-LEVEL :durable-resource-MENU)

(target-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT- CHARACTER STYLE ’ (:FIX :ROMAN :SMALL)
:more~p nil -
:MARGIN-COMPONENTS
standard-margin~-components)
(init-obj-display :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE ’ (:FIX :ROMAN :SMALL)
imore-p nil
:MARGIN-COMPONENTS
*standard-margin-components®)

(aztitude-resource~-DISPLAY :DISPLAY :END-OF~PAGE-MODE :SCROLL SCROLL ~FACTOR 1
:DEFAULT-CHARACTER-STYLE ’ (: FIX :ROMAN :SMALL)
imore-p nil
:MARGIN-COMPONENTS
*standard-margin-components®)

(ccew-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1

:DEFAULT-CHARACTER-STYLE ’(FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
*standard-margin-components?)
(csnsumable-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE ’ (:FIX :ROMAN :SMALL)
imore-p nil
:MARGIN~COMPONENTS
standard-margin-components)
(duirable-resource-DISPLAY :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE ’ (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
standard-margin-components¥)
(TASLES-COMMAND-2 :COMMAND-MENU :ROWS 1 :MENU-LEVEL :TABLES-MENU-2)
(TASLES-DISPLAY-2 :DISPLAY :END-OF-PAGE-MODE :SCROLL :SCROLL-FACTOR 1
:DEFAULT-CHARACTER-STYLE * (:FIX :ROMAN :SMALL)
:more-p nil
:MARGIN-COMPONENTS
standard-margin-components)
(NASA-LISP-LISTENER :LISTENER :HEIGHT-IN-LINES 3 :MORE-P NIL
:MARGIN-COMPONENTS
standard-margin-components))
:CONTIGURATIONS
* ((CW: :NASA~PERFORMANCE-SCHEDULER
{:LAYOUT
(DW: : NASA-PERFORMANCE-SCHEDULER
:COLUMN NASA-EXP-AND~-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-COMMAND
SUB-AREAS-1 NASA~LISP-LISTENER)
(SUB-AREAS-1 :ROW EXPERIMENT-WINDOW RESOURCES-WINDOW)
(EXPERIMENT-WINDOW
:COLUMN EXPERIMENTS-COMMAND EXPERIMENTS-DISPLAY)
(RESOURCES-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
{:SIZES .
(DW: : NASA-PERFORMANCE-SCHEDULER
(NASA-EXP-AND-PER-ASSISTANT-TITLE 1 :LINES)
(NASA-EXP-AND-PER-ASSISTANT-COMMAND
:ASK-WINDOW SELF :SI2E-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (SUB-AREAS-1 :EVEN))
(SUB-AREAS-1 (EXPERIMENT-WINDOW .35) (RESOURCES-WINDOW .65))
(RESOURCES-WINDOW
{RESOURCES-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE RESOURCES~-COMMAND)
:THEN (RESOURCES-DISPLAY :EVEN))
(EXPERIMENT -WINDOW
(EXPERIMENTS-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE EXPERIMENTS~COMMAND)
:THEN (EXPERIMENTS-DISPLAY :EVEN)))} .
(Cv::edit-init-config
:layout

ORIGINAL PAGE IS
A-15 OF POOR QUALITY-

ANDY:>brown>nasa-2>framework.lisp.3 ' 3/18/89 02:30:01 Page 3

(dw::edit-init~config :COLUMN init-edit-command init-edit-displays NASA-LISP-LISTENER)
(init-edit-displays :row other-init-edit-displayécmd durable-resource-displayécmd
consumable~resource-display&cmd)
(other-init-edit-display&écmd
:COLUMN init-obj-edit-command init-obj-display crew-resource-command
crew-resource-display target-resource-command target-resource-display
attitude-resource-command attitude-resource-display)
{(durable-resource~displayécmd
:column durable-resource-command durable-resource-display)
(consumable-resource-displayécmd
:column consumable-resource-command consumable-resource-display))
(:SIZES
(dw: :edit-init-config
(init-edit-command :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (init-edit-displays :EVEN})
(init-edit-displays (other-init-edit-display&cmd .33)
{(durable-resource-display&cmd .33)
(consumable-resource-display&cmd .34))
(other-init-edit-display&cmd
(init-obj-edit-command :ASK-WINC . SELF :SIZE-FOR-PANE init-obj~edit-command)
(crew-resource-command :ASK-WINDUA SELF :SIZE-FOR-PANE crew-resource-command)
itarget-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE target-resource-command)
(attitude-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE attitude-resource-command)
{crew-resource~display .25) (target-resource-display .25)
(attitude-resource-display .25) :then (init-obj-display :even))
(durable-resource-displayscmd
(durable-resource-command :ASK-WINDOW SELF :SIZE-FOR-PANE durable-resource-command)
:then (durable-resource-display :even))
(consumable-resource-displayé&écmd
(consumable-resource-command :ASK-WINDOW SELF
. :SI2ZE-FOR-PANE consumable-resource-command)
:then (consumable-resource-display :even))))
(DW: : GENERAL~INFO-CONFIG
(: LAYOUT
(DW: : GENERAL-INFO-CONFIG
:COLUMN NASA-EXP-AND-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-~COMMAND
SUB-AREAS NASA~LISP~LISTENER)
{SUB-AREAS :ROW GENERAL-WINDOW RESOURCES-WINDOW)
(GENERAL-WINDOW
:COLUMN GENERAL~COMMAND GENERAL-DISPLAY)
(RESOURCES~-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
(:SIZES
(DW: : GENERAL-INFO-CONFIG
(NASA-EXP-AND-PER-ASSISTANT-TITLE 1 :LINES)
(NASA-EXP-AND-PER-ASSISTANT-COMMAND
:ASK-WINDOW SELF :SIZE-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) -:THEN (SUB-AREAS :EVEN))
(SUB-AREAS (GENERAL-WINDOW .35) (RESOURCES-WINDOW .65)})
(RESOURCES-WINDOW
(RESOURCES-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE RESOURCES-COMMAND)
:THEN (RESOURCES-DISPLAY :EVEN))
(GENERAL-WINDOW
(GENERAL-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE GENERAL-COMMAND)
:THEN (GENERAL-DISPLAY :EVEN))}))
(DW: : NASA-CONFIG-2 ’
(: LAYOUT
(DW: : NASA-CONFIG~-2
:COLUMN NASA-EXP-AND-PER-ASSISTANT-TITLE NASA-EXP-AND-PER-ASSISTANT-COMMAND
SUB-AREAS NASA-LISP-LISTENER)
(SUB-AREAS :ROW PERFORMANCE-WINDOW RESOURCES~WINDOW)
(PERFORMANCE-WINDOW
:COLUMN EXPERIMENT-DESCRIBER CURRENT-OP-MODE-DISPLAY PERFORMANCES-COMMAND
PERFORMANCES-DISPLAY)
(RESOURCES-WINDOW :COLUMN RESOURCES-COMMAND RESOURCES-DISPLAY))
(:SIZES
(DW: : NASA-CONFIG-2
(NASA-EXP-AND-PER~ASSISTANT-TITLE 1 :LINES)
{(NASA-EXP-AND-PER-ASSISTANT-COMMAND
:ASK-WINDOW SELF :SIZE-FOR-PANE NASA-EXP-AND-PER-ASSISTANT-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (SUB-AREAS :EVEN))
(SUB-AREAS (PERFORMANCE-WINDOW .35) (RESOURCES-WINDOW .65))
(RESOURCES-WINDOW
(RESOURCES-COMMAND :ASK-WINDOW SELF :SI2E-FOR-PANE RESOURCES-COMMAND)

A-16 ORIGINAL PAGE is
: OF POOR QUALITY

ANDY:>brown>nasa-2>framework.lisp.3 3/18/89 02:30:01 Page 4

:THEN (RESOURCES-DISPLAY :EVEN))
(PERFORMANCE~WINDOW
(EXPERIMENT-DESCRIBER 6 :LINES) (CURRENT-OP-MODE-DISPLAY 3 :LINES)
(PERFORMANCES-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE PERFORMANCES-COMMAND)
:THEN (PERFORMANCES-DISPLAY :EVEN))))
(DW: : ERROR-REPORTING
(:LAYOUT
(DW: : ERROR-REPORTING
:COLUMN ERROR-TITLE ERROR-COMMAND ERROR-DISPLAY NASA-LISP-LISTENER))
(:SIZES
(DW: : ERROR-REPORTING
(ERROR-TITLE 1 :LINES)
(ERROR-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE ERROR-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (ERROR-DISPLAY :EVEN))))
(DW: : TABLES-REPORTING
(:LAYOUT
(DW: : TABLES-REPORTING
:COLUMN TABLES-COMMAND TABLES-DISPLAY NASA-LISP-LISTENER))
(:SIZES
(DW: : TABLES-REPORTING
(TABLES-COMMAND :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (TABLES-DISPLAY :EVEN))))
(DW: : TABLES-REPORTING-2
(:LAYOUT
{DW: : TABLES-REPORTING-2
:COLUMN TABLES-COMMAND-2 TABLES-DISPLAY-2 NASA-LISP-LISTENER))
(:SIZES '
(DW: : TABLES-REPORTING-2
(TABLES-COMMAND-2 :ASK-WINDOW SELF :SIZE-FOR-PANE TABLES-COMMAND)
(NASA-LISP-LISTENER 3 :LINES) :THEN (TABLES-DISPLAY-2 :EVEN))))
})

ORIGINAL PAGE s
Al OF POOR QUALITY

ANDY:>brown>nasa-2>globals.lisp.59 7/12/89 12:10:23 Page 1

~*- Mode: LISP; Syntax: Common-Lisp; Package: USER:; Base: 10 -*-

(setf *suppress-glyph* t)

(defvar *mission-table* (make-hash-table))
'-"'.."""ﬁ.'..."'Q...'l"'.'.l...'..Q'.l...".'l'"'.."'l".'.t.'."'l'ﬂ".'
;;;resource mixins
(defflavor available-time ((begin nil)
(end nil)
{owner-obj nil))
&
.(:conc-~name nil)
:writable-instance~variables
:readable~instance-variables
:initable-instance-variables)

(defflavor availability ((name nil)
(available-times-list nil)) ,list of instance of available-time
()
(:conc-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor quantity-availability ((qty nil)
(owner-obj nil}))
(availability)
(:conc-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

I A A s R R R N R SN N N N R R R N N N s S R A RS N A A N N AR A NN AR SRR d

;;; resources come in six types
;;; crew members are self-explanatory
;2s targets are locations on the earth
attitudes refer to the orientation of the satalite with respect to ?
;2; durable resources are things that are not consumed, but are available in some
;s: fixed quantity, such as video recorders, or manned maneuver units
;s; consumable resources are things which are consumed, such as food rations, most
;2¢ chemicals, etc. .
finally, non-depletable-resource [nasa term, not mine] is an item which is
consumed, but is also re-generated at some rate, such as wattage from fuel cells,
;/:; oxygen thru an activated charcoal filter, water thru waste re-cycling, etc.
(defflavor durable-resocurce ((name nil)

(available-quantity nil))

sss

rss

L

Q) .
(:conc-name nil)
:writable-instance-variables
:readable-instance-variables
rinitable-instance-variables)

(defflavor non-durable-resource ({name nil)
{quantity-~availability~-list nil))
0
{:conc~name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor consumable-resource ()
(non-durable-resource)
(:conc-name nil)
:writable~-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor non-depletable-rescurce ()
{non-durable-resource)
{:conc-name nil)
:writable-instance-variables
;readable-instance-variables
:initable-instance-variables)

ORIGINAL FAGE I3
OF POOR QUALlTY

A-18

F

T mw— TR R

ANDY:>brown>nasa-2>globals.lisp.59 7/12/89 12:10:23 Page 2

(defflavor crew-mamber
((duty-position nil)
(work-shift nil))
(availability)
(:conc-name nil)
:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

(defflavor target ()
(availability)
{:conc-name nil)
:writable-instance-variables
:readable~instance-variables
:initable-instance-variables)

(defflavor attitude ()
(availability)
{:conc~name nil)
:writable~instance-variables
:readable-instance-variables
:initable-instance-variables)

;ﬂ...'.ﬁ..t.t"t..".""'l....".""'.'
;s2 the query obj is used to provide generic capability to a context sensitive environment
(defflavor query-obj (type (display-string nil))
() .

(:conc-name nil)

iwritable-instance-variables

:readable-instance-variables

tinitable-instance~variables)

AR IR RN R R A SRR AR I PP C RS RS AT AP AP IR AP AR A ARSI RIA SRR RS SR O RB B AR AR IR EIRAI AR RO RN

;:¢ flavors devoted to the depiction of time and capturing scheduled events N
(defflavor time-slice-~axis ((end-one-x 0)’
(end-one-y 0)
(end-two-x 0)
{end-two-y 0)
(spike~coord-list nil)
(orientation nil))
. 9]
(:conc-name nil)
:writable-inatance~variables
:readable-instance-variables
tinitable-instance-variables)

SRR A AR AR N SR RN RIS SR E NP 2SN B AN ST PP I AR AN S R TR I IS IR E R A AN AR AAR NI TN AO RTINSO

;;; the screen manager attempts to orchestrate the user interface [at least, that was
;s the programmers initial concept]
(defflavor nasa-screen-manager
({(program-framework nil)
(stream-table (make-hash-~table))
(left-x 50)
(right-x 1050)
(lower-y 475)
(upper~-y 25)
{x-delta nil)
(h-scale-inc 20) ,;; the number of time slices between scale markers
(v-scale-table (make-hash-table))
(current-resource nil)
(v-scale-inc 10)
(scale-length 5) ,length of spikes on scales
(min-x-delta 4)
(last-config nil)
(y-axis-table (make-hash-~table))
; (make-instance 'time-slice-~axis :orientation ’‘vertical)
(x~axis (make-instance ‘time-slice-axis :orientation ‘horizontal))
(y-axis nil)
{owner-obj nil))
(¢
(:conc-name nil)
:writable~instance-variables
:readable-instance~-variables

A-19

ANDY:>brown>nasa-2>globals.lisp.59 . 7/12/89 12:10:23 Page 3

tinitable-instance-variables)

(defflavor nasa~init-obj
((mission-id nil)
(mission-launch-date nil) s1list of day month year
(mission~-launch-time nil) ;1ist of hour minute second
(universal-start-time nil)

(mission-duration nil) ; list of days hours minutes seconds

(mission-end-date nil)
(mission-end-time nil)
{(universal-end-time nil)

(seconds-until-start-of-day nil) ;1list of seconds and a flag indicating

;whether a new day
{seconds-per-week 604800)
(seconds-per-day 86400)
(seconds-per-hour 3600)
(seconds-per-shift nil)
(first-sunday-start-time nil)
(number-of-crew-shifts nil)
{(shift-start-times ’((1 (0 8 0 0)) (2 (0 -4 0 0))))
(max-time nil)
(time-inc 60) ;,;; seconds per time period
(durable-resource-list nil)
(non-depletable-resource~list nil)
(consumable-resource-list nil)

(crew-list nil);;; a-list (name (list of lisés_of (begin-avail-time end-avail-time)))

(target-list nil),;;a~list (name (available times))
fattitude-list nil)/;; a-1ist (name (available times)})
{owner-obj nil)

(shift-availability-objs nil)

(misc-objs ' ((durable-resource , (make-instance ‘query-obj :type ‘durable-resource))

{crew-member , (make-instance ‘query-obj :type 'crew-member))

(consumable-resource

, {(make-instance ’'query-obj :type ‘consumable-resource))

(non-depletable-resource

., (make-instance ‘query-obj :type ‘non-depletable-resource))

(target , (make-instance ’'query-obj :type ‘target))

(attitude , (make-instance ‘query-obj :type ‘attitude))
{(experiment , (make-instance ‘query-obj :type ’‘experiment))
{performance , (make-instance ’‘query-obj :type ’‘performance))

(step , (make-instance ‘query-obj :type ’step))
IR D)

()
(:conc-name nil)
:writable-instance-variables
treadable-instance-variables
:initable-instance-variables)

(defflavor mission ((experiment-template-table (make-hash-table))
(experiment-table (make-hash-table))
(time-slice-holder nil)
(screen-manager (make-instance ‘nasa-screen-manager))
(init-obj (make-instance ‘nasa-init-obj))
(selected-time-slice nil)
(selected-performance nil)
(operation nil)

(crew-combinations~table {make-hash-table :test #’'equal))

(time~table (make-hash-table))
(power-table (make-hash-table))
(sorted-power-keys nil)
(sorted-time-keys nil)
(title nil)
(sorted-instance-list nil)
(multiple-scheduling ail))
[§]
(:conc-name nil)
twritable-instance-variables
:readable-instance-variables
:initable-instance~-variables)

(declare (special temp-list))

(defmethod (make-instance mission :after) (érest ignore)

A-20

AGE 1S
R\G\NN_ P
8; POOR QUALITY

ANDY:>brown>nasa-2>globals.lisp.59 ' 7/12/89 12:10:23

(setf (owner-obj screen-manager)} self
(owner-obj init-obj) self))

(defvar *mission~*

(defflavor experiment

)
(:conc-name nil)

(make-instance 'mission}))

{{name nil)

(min-performances Q)

(max-performances 0)

(desired-performances nil)

(performance-list nil)

(latest-start~time nil)

{(performance-time-window nil) ;,;aka max perf duration - code
s;;was developed before I realized that I was dealing with one
s2;svalue instead of two

(performance-windows nil)

{crew=lockin nil) ;,;; nil or a list of lists of first and last
s2/ steps requiring lockin ex ((1 5) (7 9))
‘(non-depletable-tolerance-list nil)

(stxategy nil) ;;;see esp users manual section on scenarios --
;s sswhen used, strategy will consist of keyword :cascade or

; /s imax-weigth, and list of scenarios and weights. example
;sil:cascade ((((:consecutive 1 15)) 90)

28s (((:consecutive 2 14)) 45)
EF (((:consecutive 2 14) (:sequential (14))) 70)
K (((:sequential (21 3 5 6 1))) 80)))

(axperiment-time-window nil) ;,;max time between start first
;:;step first performance, and end last step, last performance

(max-performance-delay-time nil) ;,.,max time between end of last

;2;step of one performance and start of first step, next
;s;performance

(min-performance-delay-time 0) ,;;;min time between end of last
;;;step of one performance and start of first step, next
sssperformance

{schaedule-~shutdown-with-performance t);if I need this one,
s;swhy don’t 1 need one for start-up? I need this for use
;ssduring automatic scheduling, to prevent scheduling and
;s:sunscheduling of shutdown steps after each performance.
;2sNote that automatic scheduling must insure shutdown
ss28cheduled with last auto performance, and this flag is "on"
;2; afterwards :
(startup-steps nil)

({shutdown-steps nil)

(prototype-step-list nil)

(desired-monitor-steps nil)

(min-performances-displayed-p nil))

:writable-instance-variables
:readable-instance-variables
:initable-instance-variables)

{(defflavor performance ((number 0)

Q)
(:conc-name nil)

(scheduled-start-time nil)
{scheduled-end-time nil)
(performance~-time-window nil)
(scheduled-p nil)

(required-p nil)

‘(step-list nil) .
(execute-start-up-steps-p nil)
{execute~shutdown-steps-p nil)
({last-time~slice nil) R
(owning-experiment nil))

:writable-instance-varc.ables
:readable-instance-variables
rinitable-instance-variables)

(defflavor step ((id nil)
(number nil)

A-21

Page 4

ORIGINAL PAGE IS
OF POOR® QUALITY

ANDY:>brown>nasa-2>globals.lisp.59 7/12/89 12:10:23 Page §

(scheduled~start-time nil)

{scheduled-end-time nil) ;:;.needed because of variable duration
(max-duration nil)

(min-duration nil)

(step-delay-min nil)

(step-delay-max nil)

{next~-step nil)

(previous-step nil)

(last-time-slice nil)

(cumulative-consumable-~list nil)

{resource-carry-thru nil)

(consumable-resource-list nil) ,;,a-list (resource-name qty)
(durable-resource-list nil) ;:a-list (resource-name qty))
(non-depletable-resource-list nil) ;,a-list (resource-name qty tolerance)
;;;no tolerance entry or nil entry is equivalent to zero
(crew-requirements nil),;,;;list of lists: Inner list is list of list
2;;0f how identified, crew-members and qty to be used. expample
;i;(((duty-position pilot nav asst-pilot) 2}

;¢s7 ((duty-position senior-mission-scientist mission—scientist)l)
::; ((name smith jones) 1))

(crew-combinations nil) ,,;;list of lxs:s -+~ each inner list
;;;represents a combination of crew members, by object, which
;s;3atisfy the crew requirements

(failed~-crew-combinations nil)

(crew=-lockin nil) ;;; nil or the number of the step holding the
;7s; lockin crew list -~ note that even if specified as a lockin
;:; step, flag will be nil unless crew lockin tequxrements are the
;;; same and monitoring is not required

{crew-monitor nil)

{(crew~duration nil)

(crew-cycle nil)

(crew-early-shift nil)

(crew~late-shift nil)

(concurrent-with nil) /;; (exp step)

(target-list nil) /,,; A LIST OF LISTS; INNER LIST CONSIST OF

/;; ONE OF THE KEY WORDS :intersect :select :avoid AS THE FIRST
;s ELEMENT, AND A LIST OF TARGETS AS THE SECOND ELEMENT; KEY WORDS
ss7s CANNOT BE REPEATED

{attitude-list) [/, (avoid-or-required attitude-l1ist)
{scheduled-crew~1list nil) ,;;list of list of (crew-id lockin)
(crew-monitoring-time 1.0) ;,,fraction of step length crew members
;;.required to monitor this step

(owning-object nil))

{:conc-name nil)

twritable-instance~-variables
:readable-instance-variables
:initable-instance-variables)

(defmethod (:print-self step) (stream ignore ignored)
(cond ((null owning-object)
(format stream “#<STEP ~A ~A ~A>" id number nil))
({{typep owning-object ’‘experiment)
(format stream "#<STEP ~A ~A ~A>" id number (name owning-object)))
{(typep owning-object ‘performance)
(format stream "#<STEP ~A ~A Perf & ~A of -~a>"
id number (number owning-object) (name (owning-experiment owning-object))))
(t (format stream “#<STEP ~A ~A ~A>" id number owning-object))))

(defflavor starxrtup-step () (step) (:conc~name nil) :writable-instance-variables
:readable~instance-variables :initable-instance-variables)

(defflavor shutdown-step () (step) (:conc-name nil) :writable-instance-variables
: readable-instance-variables :initable-instance-variables)

(defflavor experiment-template () (experiment) (:conc-name nil) :writable-instance-variables :read
able-instance-variables :initable~instance-variables)

{defflavor step-template () (step) (:conc-name nil) :writable-instance-variables
:readable-instance-variables :{initable-instance-variables)

(defflavor shutdown-step-template () (shutdown-step) (:conc-name nil)
:writable-instance-variables :

A-22

ANDY:>brown>nasa-2>globals.lisp.59 7/12/89 12:10:23 Page 6

:readable-instance-variables :initable-instance-variables)

(defflavor startup-step-template () (startup-step) (:conc-name nil)
iwritable-instance-variables
:readable~instance~-variables :initable-inatance-variables)

(defflavor time-slice ((start-time nil)
(end-time nil)
(performance-step-table (make-hash-table :test #’equal))
;sckey is list (exp perf step)
(crew-list nil) ;;; until the mechanism for implementing
22; monitoring is devised, simply a list of
;727 [crew-member committed who-info)
(consumable-resource-list nil) ;list of (resource committed who-info)
(cumulative-consumable-table (make-hash-table))
(non-depletable-resource-list nil}
ss21ist of (resource committed tolerance who~-info)
(durable-resource-list nil) ;list of (resource committed who-info)
(target-list nil) ;,;;targets available in this time-sliced
(attitude-list nil) ;;;attitude during this time-slice
(next-slice nil)
(prev-slice nil)
(start-x nil)
(top~y nil))
O

(:conc-name nil)

:writable-instance-variables

:readable-instance~variables

:initable-instance-variables)

(defun clear-listener ()
(send (gethash ’listener (stream-table (screen-manager *mission*))) :clear-history))

AGE 1S
ALITY

help-methods.lisp >brown>nasa-2 ANDY: (5) 7/14/89 11:13:45 Page 1

?3; ~%*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defvar *help-window* nil)

(defmethod (help mission) ()
(cond (*help-window®

(send *help-window* :expose)

)

t - . '

(setf *help-window* (tv:make-window ‘tv:window
:edges ‘(100 100 1000 600)
texpose-p t
tactivate-p t
:blinker-p nil
:default-character-style
*(:fix :roman :normal)
:save-bits t
:label "Mission Help Window"))

(format *help-window* “~STURN THE DYNAMIC GARBAGE COLLECTOR ON !!!-~%~8To locad the data necessary
to run the model, execute the method (locad-mission-data *mjission*). ~%~%To cause the model to run, execut
e the function (test~scheduler *mission* (list of experiment names] ~8S(number of replications each]). The

last argument is a single number. ~%To get a list of experiment names, execute the method (get-list-of-l
ocaded-experiment-names *mission*) ~MAfter the model has been run, if you wish to run it again, execute th
e function ~%(restore-data-to-start *missionr*), and the test-scheduler again. ~8~3To get printed output

of the results, execute the function (output-mission-data *mission* ~%[OPTIONAL list-of-time-slice-instan
ces]). This will cause files in the directory NASA-EXP-SCH-2:0UTPUT-DATA; to be deleted and expunged, an
d new files created for the time line and each experiment that has been scheduled. When the optional lis
t-of-time-slice-instances is supplied, only those time slices will be written out. ~%~%To get a list of

time slices covering a time period, execute the function (get-time-instance~list *mission* ~%start-time e
nd-time {OPTIONAL time-slice-instance)). The start-time and end-time are in terms of mission time -~%peri
ods; that is, the number of seconds since launch divided by the time increment (currently 60). See the f
ile NASA-EXP-SCH~2:NASA=-EXP-SCH-2;TIME-TRANSLATORS.LISP for functions that can assist in obtaining the c
orrect ~%values. The optional time-slice-instance is used when you have a handle on an instance which is
closer to the ~%desired instances than the first instance.~%~8Data can also be written out in a binary fo
rm by executing the method (dump-mission-to-~file *mission* ~8[OPTIONAL (FILENAME NASA-EXP-SCH-2:BIN-FILES
;MISSION-FASD-FILE.BIN]). The method name comes from the use of the sys:dump-forms-to-file function, and

the file name from the use of FASD [FASt Dump] forms for every object. If you haven’t used these before
, be advised that they cannot handle recursive structures; you must modify the ~%saved instance to remove
backpoints to objects, and restore the backpointers upon reload. ~%~%To reload a saved mission, simple
execute (load [filename)). ~%~%To view this message again, execute (help *mission*)")}}))

(help *mission*)

ORIGINAL PAGE 1S

A-24 OF POOR QU

ALITY

ANDY:>brown>nasa-2>load-methods.lisp.18 7/12/89 12:10:28 Page 1

::; -"- Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -*-

(defmethod (load-mission-data mission) ()
(load-mission-data init-obj)
(load-resource-data self)
(load-all-experiment-data self)
{setup-crew-member-duty-shifts init-obj)
(correct-representations-and-build-linkages-after-data-load self))

(defmethod (load-lockin-test mission) ()
(load-mission-data init-obj)
({load-resource~data self)
(let ((experiment (make-instance ‘experiment :name ‘lockin-test)))
{load-experiment-data experiment ‘lockin-test)
{setf (gethash ‘lockin-test experiment-template-table) experiment))
(setup-crew-member-duty~-shifts init-obj)
(correct-representations-and-build-linkages-after-data-load self))

(defmethod (load-mission-data nasa-init-obj) ()
(load "nasa-exp-sch-2:data;mission-data® :verbose nil)
(loop for (slot value) in temp-list
do’
(setf (symbol-value-in-instance self slot) value))
(determine-initial-universal-times self)
(determine-end-times self)
(setf max-time (floor (- universal-end-time universal-start-time) time-inc)))

(defmethod (load-resource-data mission) ()
(load-consumable-resource-data self)
(load-non-depletable-resource-data self)
(lcad-durable-resource-data self)
(load-crew-resource-data self)
{load-target-resource-data self)
(load-attitude-resource-data self))

(defmethod (load-consumable-resource-data mission) ()
(load "nasa-exp-sch-2:data;consumable-resources”™ :verbose nil)
(when temp-list
(setf (consumable-resource-list init-obj)
(loop for (symbol value) in temp-list
for resource =
(make-instance
‘consumable-resource
tname symbol
rquantity-availability-list
(ncons (make-instance
‘quantity-availability
:name symbol
iqty value
tavailable-times-list
(ncons (make-instance ‘available~time
:begin 0
cend (max-time (init-obj *mission*))})))))
collect resource))
(loop for resource in (consumable-resource-list init-obj)
do
(loop for qty-avail-obj in (quantity-availability-list resource)
do
(setf (owner-obj qty-avail-obj) resource) .
(loop for avail-time-obj in (available-times-list qty-avail-obj)
do
(setf (owner-cobj avail-time-obj) qty-avail-obij)}})))

(defmethod (load-non-depletable-resource-data mission) ()
(load "nasa-exp-sch-~2:data;non-depletable-resources" :verbose nil)
{when temp-list
(setf (non-depletable-resocurce-list init-obj)
(loop for (symbol qty-av-list) in temp-list
collect
{make-instance

‘non-depletable-resource

:name symbol

tquantity-availability-list

A-25 AL
1GIN
oF QOR

of P

? ;a\, :SE

)
aL\tyY

e U

ANDY:>brown>nasa-2>load-methods.lisp.18 7/12/89 12:10:28 Page 2

(loop for (day hour minute second quant)} in qty-av-list
collect
(make-instance
‘quantity-availability
tavailable-times-list
(ncons
(make-instance
‘available-time
:begin
(translate-seconds-to-time-periods
(translate~time-list-to-seconds.
(list day hour minute second)))))
:qty quant)))
))
(loop for resource in (non-depletable-resource-list init-obj)
do
(loop for qty-avail-obj in (quantity-availability-list resource)
do

(setf (owner~-obj qty-avail-obj) resource)
(loop for avajl-time-obj in (available-times-list qty-avail-obj)
do
(setf (owner-obj avail-time-obj) qty-avail-obil))))))

(defmethod (load-durable-resource-data mission) ()

(load "nasa-exp-sch-2:data;durable-resocurces” :verbose nil)

(when temp-list

(setf (durable-resocurce-list init-obj)

(loop for (nname aavailable-quantity) in temp-list
collect (make-instance ‘durable-resource

:name nname
tavailable-quantity aavailable-quantity)))))

(defmethod (load-crew-resource-data mission) ()
(load "nasa-exp-sch-2:data;crew-resources” :verbose nil)
(when temp-list
(setf (crew-list init-obj)
(loop for (crew-name crew~position crew-shift) in temp-list
collect (make-instance ’‘crew-member
. :name crew-name
:duty-position crew-position
:work-shift crew-shift)))
))

(defmethod (load-target-resource-data mission) ()
(load "nasa-exp-sch-2:data;target-resources” :verbose nil)
(when temp-list
()
))

(defmethod (load-attitude-resource-data mission) ()
(load "nasa-exp-sch-2:datasattitude-~resources™ :verbose nil)
(when temp-list
O
)

(defmethod (load-all-experiment-data mission) ()
{load "nasa-exp-sch-2:data;experiment-list” :verbose nil)
(loop for experiment-name in temp-list
for experiment = (make-instance ‘experiment)
do
(load-experiment-data experiment experiment-name)
(setf ’'gethash experiment-name experiment-template-table) experiment)))

(defmethoc (load-experiment-data experiment) (experiment-name)
(load (format nil "nasa-exp-sch-2:exp-data;~S" experiment-name) :verbose nil)
(unless (eql (first temp-list) experiment-name)
(error "~% Experiment Name in Experiment List, ~S, Does Not Match Name in File, ~-S"
experiment-name (first temp-list)))
(setf name (first temp-list))
(load-experiment-data-aux self (cdr temp-list))
(when strateqgy
(setf strategy
{list

A-26 NN—
. G“
‘)‘t\‘;()C)@l

PAGE
Qut

\S
aa T

ANDY:>brown>nasa-2>load-methods.lisp.18 7/12/89 12:10:28

{(first strategy)
(sort (copy-alist (second strategy)) #’> :key #’'second)))))

(defmethod (load-experiment-data-aux experiment) (data-list)
(cond {{null data-list) nil)

((member (first (first data-list))
* (prototype-step-list startup-step-list shutdown-step-list))

(build-steps self (first data-list))

(load-experiment-data-aux self (cdr data-list)))

(t (setf (symbol-value-in-instance self (first (first data-list})))

(second (first data-list)))
(load-experiment-data-aux self (cdr data-list)))))

(defmethod (build-steps experiment) (data-list)
(setf (symbol-value-in-instance self (first data-list))
(loop for step-data in (second data-list)
for step = (make-instance ‘step :owning-object self)
collect step
do :
(build-step step step-data non-depletable-tolerance-list))))

(defmethod (build-step step) (step-data non-depletable-tolerance-~list)
(let ({result nil))
(loop for (slot value) in step-data
do
(setf (symbol-value-in-instance self slot) value))
(loop for (resource quant) in non-depletable-resource-list
do
(if (member resource non-depletable-tolerance-list :key #°first)
(push (list resource quant
(second

Page 3

(first (member resource non-depletable-tolerance-list :key #’'first))))

result)
(push (list resource quant 0) result)))

(setf non-depletable-resocurce-list result)

(setf min-duration (translate-time-list-to-seconds min-duration)
max-duration (translate-time-list-to-seconds max-duration)
step~delay-min (translate-time-list-to-seconds step-delay-min)
step-delay-max (translate-time-list-to-seconds step-delay-max))

(when crew-monitor

(setf crew-duration (translate-seconds-to-time-periods
(translate-time-list-to-seconds crew-duration))
crew-cycle (translate-seconds-to-time-periods
(translate~-time-list-to~-seconds crew-cycle))
crew-early-shift (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-early-shift))

crew-late-shift (translate-seconds-to-time-periods

(translate-time-list-to-seconds crew-late-shift)})))))

A-27

ANDY:>brown>nasa-2>nasa-exp-sch-2.lisp.40 7/17/89 14:56:04 Page 1

;:: -*- Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; -+-

(defsystem nasa-exp~sch-2
(:default-pathname "nasa-exp-sch-2: nasa-exp-sch-2;"
:pretty-name "NASA Experiment and Performance Tool"
:default-package ‘cl-user
:patchable nil
tinitial-status .experimental
:bug-reports ("bhug-nasa-exp&perf-scheduler”

"Report problems with NASA Experiment and Performance Tool code™)

sadvertised-in (:herald :finger :disk-label)
:maintaining-sites (:mayberry)
:source~category (:basic)
:distribute-sources ¢t

:distribute-binaries t)

(:module
(:module

(:module

{:module
(:module

(:module

(:module
(:module

(:module

globals ("globals™ “framework” }))
graphics-defs ("edit-presentation-types®)
(:uses-definitions-from globals))
methods ("nasa-init-obj-methods™ "new-mission-methods""screen-manager-methods”
"resource-methods™ "step-methods™ “"experiment-methods” “"time-translators”
"time-slice-methods"” "performance-methods”)
(:uses-definitions-from graphics-defs))
loader ("load-methods” “"after-data-load-methods")
(:uses-definitions~from globals))
output ("output-to-file®™ "ocutput-methods”)
(:uses-definitions-from globals))
scheduler ("scheduler-feasibility-methods-performance-level”
"scheduler-feasibility-methods-step-level® “"scheduler-methods"”
"scheduler-feasibility-methods-crew-steps”
"scheduler-feasibility-methods-other-steps”
"scheduler-feasibility-pre-and-post-step”
"sacheduler-feasibility-methods~-resource”
"scheduler-feasibility-methods-targets”
"scheduler-feasibility-methods-non~depletable®
"scheduler-feasibility-methods-durable-resource”)
(;uses-definitions~from globals))
unscheduler ("unschedule-methods*”)
(:uses-definitions-from globals))
commands ("framework-commands" "presentation-commands" "editor-framework-commands")
(:uses-definitions-from graphics-defs))
help ("help-methods”)
;221 lie - it doesn’t use any definitions other that thcse in globals; but
sssthis will insure it is loaded last!
{:uses-definitions-from commands unscheduler scheduler output loader methods)))

A-28

P
ORIGINAL
OF POOR Q4

AGE 1S
ALITY

ANDY:>brown>nasa-2>nasa-init-obj-methods.lisp.16 6/12/89 13:44:14 Page 1

¢:: =*=- Mode: LISP; Syntax: Common-Lisp: Package: USER; Base: 10 -+-

(defmethod (delete-resource nasa-init-obj) (type)
(delete~resource-aux self (case type
(durable-resource ‘durable-resource-1list)
(consumable-resource ‘consumable-resource-1list)
(crew-member ‘crew-list)
(attitude ‘attitude-list)
(target ‘target-list))))

{defmethod (deleta-resource-aux nasa-init-obj) (type)
(let ((choice nil) (the-list (cons ’ (Quit quit)
' (mapcar #’ (lambda (obj) (list (name obj) obj))
(symbol-value-in-instance self type)))))
(locp until
(setf choice
(dw:menu-choose the-list
:prompt "Select Name of Resource to be Deleted or Quit~)))
(unless (eql choice ’‘quit)
(setf (symbol-value-in-instance self type)
(delete choice (symbol-value-in-instance self type))))))

{defmethod (add-resource nasa-init-obj) (obj slot)
(push obj (symbol-value-in-instance self slot))
;s add code for any other actions to be done when adding a resource
)

(defmethod (edit-sub-obj nasa-init-obj) (tag)
(case tag
(init-obj-edit (present self ’single-valued-nasa-init-obj-edit-display
:stream (select-stream *mission* ’'init-obj-edit)))
(durable (display-durable-resource-for-editing
self (select-stream *mission* ‘durable-resource-edit)))

(consumable (display-consumables-for-editing
self (select-stream *mission* ‘consumable-resource-edit)))
(target (display-targets-for-editing self (select-stream *mission* ‘target-resource-edit)))
(attitude
(display~attitudes-for-editing self (select-stream *mission* ‘attitude-resource-edit)))
(crew (display-crew-for-editing self (select-stream *mission* ‘crew-resource-edit)))))

(defmethod (edit-self nasa-init-obj) ()
(select-configuration *mission* ‘init-obj-edit)
(setup-query-string self)
(present self ’'single-valued-nasa-init-obj- edit ~-display
:stream (select-stream *mission* ’‘init-obj-edit))

(display-durable-resource-for-editing

self (select-stream *mission®* °‘durable-resource-edit))
(display-consumables~-for-editing self (select-stream *mission* ‘consumable-resource-edit))
(display-crew-for-editing self (select-stream *mission* ‘crew-resource-edit))
(display~targets-for-editing self (select-stream *mission* ’‘target-resource-edit))
(display-attitudes-for~editing self (select-stream *"mission* ’attitude-resource-edit)))

(defmethod (setup-query-string nnsu-init-obj) ()
(unless (display-string (second (assoc ‘durable-resource misc-objs)))

(setf
(display-string (second (assoc ’durable-resource misc-objs)))
‘{"MOUSE LEFT HERE TO CREATE A NEW DURABLE RESOURCE" “MOUSE CENTER TO DELETE A DURABLE RESOURC
E™) \
(display-string (second (assoc ’‘crew-member misc-objs)))
* {"MOUSE LEFT HERE TO CREATE A NEW CREW MEMBER" "MOUSE CENTER TO DELETE A CREW MEMBER")
(dispiay~-string (second (assoc ‘consumable-resource misc-objs)))
* {("MCUSE LEFT HERE TO CREATE A NEW CONSUMABLE RESOURCE*"
“"MCUSE CENTER TO DELETE A CONSUMABLE RESOURCE")
(display-string (second (assoc ‘target misc-objs)))
* ("MCUSE LEFT HERE TO CREATE A NEW TARGET" "MOUSE CENTER TO DELETE A TARGET")
(display-string (second (assoc ‘attitude misc-objs)))
* ("MCUSE LEFT HERE TO CREATE A NEW ATTITUDE®" "MOUSE CENTER TO DELETE AN ATTITUDE")

")

(defmethcd (display-available-times-for-editing availability) (stream)
(formatzing-table (stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)

L PAGE 1S

A-29 ORIGINAL QUALITY

' OF POOR

|

ANDY:>brown>nasa-2>nasa-init-obj-methods.lisp.l6 6/12/89 13:44:14 Page 2

(formatting~cell (stream :align :right) * BEGIN AVAILABLE TIME ")
(formatting-cell (stream :align :right) "END AVAILABLE TIME"))
{loop for available-time in avajlable-times-list
do
(formatting-row (stream)
(present available-time ’available-time-edit-display :stream stream}})})

(defmethod (display-durable-resource-for-editing nasa-init-obj) (stream)
(with-character-style (’(:fix :bold :normal) stream :bind-line-height t)
(format stream "~% DURABLE RESOURCES FOR MISSION~%&"))
{(when durable-resource-list
(formatting-table {(stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :slign :left) " RESOURCE NAME ")
(formatting-cell (stream :align :left) TAVAILABLE QUANTITY"))
(loop for resource in durable-resource-list
do :
(formatting-row (stream)
(present resource ‘durable-resource-edit-display :stream stream)))))
(present (second (assoc ’‘durable-resocurce misc-obis)) ‘misc-obj-edit-display :stream stream))

(defmethod (display-consumables-for-editing nasa-init-obj) (stream)
(with-character-style (’ (:fix :bold :normal) stream :bind-line-height t}
(format stream "~% CONSUMABLE RESOURCES FOR MISSION"))
(loop for resource in consumable-resource-list
do
{(present resource ‘consumable-name-for-edit-display :stream stream)
(loop for quantity-availability in (quantity-availability-list resource)
do
(present quantity-availability ‘quantity-availability-edit-display :stream stream)
(display-available~-times-for-editing quantity-availability stream)))
(present (second (assoc ‘consumable-resource misc-objs))
‘misc-obj-edit~display :stream .stream))

(defmethod (display-crew-for-editing nasa-init-obj) (stream)

(with-character-style (’/ (:fix :bold :normal) stream :bind-line-height t)
(format stream "~% CREW MEMBERS FOR MISSION"))

(loop for crew-member in crew-list

do

(present crew-member ‘name-for-edit-display :stream stream)
{(display-available-times-for-editing crew-member stream))

(present (second (assoc ‘crew-member misc-objs)) ‘misc-obj-edit-display :stream stream))

(defmethod (display-targets-for-editing nasa-init-obj) (stream)

{(with-character-style (’(:Zix :bold :normal) stream :bind-line-height t)
(format stream "~% TARGETS FOR MISSION™))

(loop for target in target-list

do

(present target ‘name-for-edit-display :stream stream)
(display-svailable-times-for-editing target stream))

{present (second (assoc ‘target misc-objs)) ‘misc-obj-edit-display :stream stream))

(defmethod (display-attitudes-for-editing nasa-init-obj) (stream)
(with-character-style (’(:fix :bold :normal) stream :bind-line-height t)
(format stream "~% ATTITUDES FOR MISSION"})
(loop for attitude in attitude-list
do
(present attitude ‘name-for-edit-display :stream stream)
(display-available-times-for-editing attitude stream))
(present (second (assoc ’'attitude misc-objs)) ‘misc-obj-edit-display :stream stream))

(defmethod (get-resource-list nasa-init-obj) ()
(mapcar #’ (lambda (x) (list (name x) x))
(append consumable-resource-list durable-resource-list)))

A-30 . AGE S
ORIGINAL P
OF POOR QUAL‘

e T T

ANDY:>brown>nasa-2>new-mission-methods.lisp.15 7/14/89 11:09:11 Page 1

;::; =*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (get-list-of-loaded-experiment-names mission} ()
(let ((result nil))
(maphash #’ (lambda (exp ignore)
(push exp result))
experiment-table)
(sort result #’alphalessp)))

(defmethod (get-rescurce-list mission) ()
(get-resource-list init-obj))

(defmethod (add-rescurce mission) (obj slot)
(add-resource init-obj obj slot)
;;-add code for any other function that must be done when adding a new resource
)

(defmethod (delete-resource mission) (type)

(case type
({target attitude crew-member consumable-resource durable-resource)
(delete-resource init-obj type))
(experiment-template (delete-exp-template self))
(experiment (delete-exp self)))

2s; add code to clear up any other pointer, including displays

)

(defmethod (delete-exp-template mission) ()
(format tv:initial-lisp-listener "this is a stub (delete-exp-template mission)"))

(defmethod (delete-exp mission) ()
(format tv:initial-lisp-listener "this is a stub (delete-exp mission) "))

(defmethod (edit-init-sub-obj mission) (tag)
(edit-sub-obj init-obj tag))

(defmethod (edit-obj mission) (obj-tag)
(edit-self (symbol-value-in-instance self obj-tag)))

(defmethod (report-error mission) (error-msg)
(format tv:initial-lisp-listener "~s~A"error-mag))

(defmethod (select-configuration mission) (key)
(select-configuration screen-manager key))

(defmethod (select-stream mission) (key)
(select-stream screen-manager key))

(defmethod (clear-history mission) (key)
(clear-history screen-manager key))

(defmethod (select-configuration-and-clear-history mission) (key)
(select-configuration screen-manager key)
(clear-history screen-manager key))

(defmethod (edit-experiment-templates mission) ()
{let ((stream (select-stream self ‘tables~2))})
(unless (display-string (second (assoc ’‘experiment (misc-objs init-obj))))
(setf
(display-string (second (assoc ‘experiment (misc-objs init-obj))))
* {("MOUSE LEFT HERE TO CREATE A NEW EXPERIMENT" "MOUSE CENTER TO DELETE AN EXPERIMENT")
(display-string (second (assoc ‘performance (misc-objs init-obj))))
* {"MOUSE LEFT HERE TO CREATE A NEW PERFORMANCE" "“MOUSE CENTER TO DELETE AN PERFORMANCE")
(display-string (second (assoc ‘step (misc-objs init-obj))))
* {("MOUSE LEFT HERE TO CREATE A NEW STEP" "MOUSE CENTER TO DELETE AN STEP")))
(select-configuration-and-clear-history self ‘tables-2)
(maphash #’ (lambda (key experiment-template)
key
(display-experiment-template~for-editing experiment-template stream))
experiment-template-table)
(present (second (assoc ‘experiment (misc-objs init-obj))) ‘misc-obj-edit-display :stream stre
am) }))

(defmethod (display-experiment-template-for-editing experiment) (stream)

1S
A-31 NAL PM‘E
ORIGH

ANDY:>brown>nasa-2>new-mission-methods.lisp.15 7/14/89 11:09:11

(present self ‘experiment-template-name-edit-display :stream stream)
(present self ’‘experiment-template-edit-display :stream stream)
(loop for slot in ’ (startup-steps shutdown-steps prototype-step-list)
do
(format stream “"~A"slot)
{mapc #’ (lambda (step)
(present step ‘step :stream stream))
(symbol-value-in-instance self slot})
(present (second (assoc ’‘step {(miac-obijs (init-obj *mission*))))
‘misc-obj-edit-display :stream stream)))

(defmethod (add-exp-temp-to-table mission) (experiment-template name)
(setf (gethash name experiment-template-table) experiment-template))

(defmethod (add-exp-to-table mission) (experiment name)
(setf (gethash name experiment-table) experiment))

A-32

Page2

———— e—

ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48

;2; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -+*-

(defmethod (:fasd-form available-tima) ()
*{make-instance ‘available~-time
:begin ‘,begin
tend ’,end})

{defmethod (:fasd-form availability) ()
‘ (make-instance ‘availability
:name ‘,nama
ravailable-times-list ’,available-times-list))

(defmethod (:fasd-form quantity-availability) ()
‘{make-instance ‘quantity-availability
tname ’‘,name .
tavailable-times-list ’,available~times~1list
iqey ‘,qty g
towner-obj ’, (name owner-obj)))

(defmethod (:fasd-form durable-rescurce) ()
‘({make-instance ’‘durable-resource
:name ’,name .
ravailable-quantity ‘,available-quantity))

{defmethod (:fasd-form non-durable-raesocurce) {)
‘*(make-instance ‘non-durable-resource
:name ’, name
iquantity-availability-list ’,quantity-availability-list))

{defmethod (:fasd-form consumable-resource) ()
‘(make-instance ‘consumable-resource
tname ‘,name
tquantity-availability-list ’,quantity-availability-list))

(defmethod (:fasd-form non-depletable-resource) ()
‘(make-instance 'non-depletable-resource '
. :name ‘,name
tquantity-availability-list ‘,quantity-availability-list))

(defmethod (:fasd-form crew-member) ()
‘{make-instance ‘crew-member
:duty-position ’,duty-position
iwork-shift *,work-shift
tname ’‘,name
tavailable~times-list ‘,available-times-list))

(defmethod (:fasd-form target) ()
‘(make-instance ‘target
:name ‘,name ,
tavailable-times-list ‘,available-times-list))

(defmethod (:fasd-form attitude) ()
‘{make~instance ‘attitude
:name ‘,name
:available-times-1list ’,available-times-list))

(defmethod (:fasd-form nasa-init-obj) ()
‘{make-instance ‘nasa-init-obj

:mission-id ’,mission~-id
:mission-launch-date ‘,mission-launch-date
:mission-launch-time ’',mission-launch-time
tuniversal-start-time ‘,universal-start-time
:mission-duration ’,mission-duration
:mission-end-date ’‘,mission-end-date
:mission-end-time ‘,mission-end-time
tuniversal-end-time ’,universal-end-time
:seconds-until-start-of-day ‘', seconds~until-start-of-day
:seconds~-per-week ‘', seconds-per-week
:seconds~-per-day ‘', seconds-per-day
:seconda-per-shift ‘, seconds-per-shift

A-33

Page 1

| s
ORIGINAL PAGE |

T——— ——— -

ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48

:first-sunday-start-time ’,first-sundav-start-time
:number-of-crew-shifts ‘,number~of~cre. -shifts
:shift-start-times ’,shift-start-times

:max-time ’,max-time

itime-inc ’,time-inc

:durable~resource-list ’,durable-resource-1list
:non-depletable-resource-list ‘,non-depletable-resource-list
:consumable-resource-list ‘,consumable-resource-list
tcrew-list ‘,crew-list

:target-list ’,target-list

cattitude-list ‘,attitude-list
:shift-availability-objs ’,shift-availability-objs))

(defmethod (:fasd~form nasa-screen-manager) ()
*{make-instance ’'nasa-screen-manager

(defmethod (:fasd-

‘{make-instance

*(make~instance

:program~framework ’,program-framework
:stream-table ’,stream-table

tleft-x ’,left-x

tright-x ‘,right-x

:lower-y ’,lower-y

tupper-y ‘,upper-y

:x-delta ’,x-delta

th-scale-inc ‘,h-scale-inc
:v-scale~table ’',v-scale-table
icurrent-resource ‘,current-resource
:v-scale-inc ‘,v-scale-inc
tscale-length ’, scale-length
tmin-x-delta ‘,min-x-delta
:last-config ‘,last-config
iy-axis-table ’',y-axis-table

:x-axis ‘,x-axis

sy-axis ‘,y-axis))

form mission) ()

‘mission

sexperiment-template-table ‘,experiment-template-table
iexperiment-table ’,experiment-table
:time-slice-holder ’,time-slice-holider
:screen-manager °’, screen-manager

tinit-obj ‘,init-obj <
:selected-time-slice ', selected-time-slice
:selected-performance ’, selected-performance
:operation ‘,operation

icrew-combinations-table ’,crew-combinations-table
:time-table ‘,time-table

:power-table ‘', power~table

:sorted-power-keys ', sorted-power-keys
:sorted-time-keys ‘, sorted~-time-keys

:title ’,title

:sorted-instance-list ‘,sorted-instance-list
:multiple-scheduling ‘,multiple-scheduling))

(defmethod (:fasd-form experiment) ()

‘experiment

iname ‘,name

:min-performances ‘,min~-performances

:max-performances ’,max-performances
:desired-performances ’,desired-performances
:performance-list ’,performance-list

:latest-start-time ’,latest-start-time
:performance-time-window ’,performance-time-window
:performance-windows ‘, performance-windows

tcrew-lockin ‘,crew-lockin
:non-depletable~tolerance-1ist ‘,non-depletable-tolerance-list
tstrategy ’,strategy

:max-performance-delay-time ',nnx-po:tormAnc.-doluy-tim-
:min-performance-delay-time ’,min-performance-delay-time -

Page 2

--chodulo--hutdovn-vith-poxtornanco ', schedule- lhutdovn-vith-pozto:mnnc.

:startup-steps ', startup-steps
:shutdown~steps ‘, shutdown-steps
:prototype-step-list ‘', prototype-step-list

' :desired-monitor-stepa ’,desired-monitor-steps

:min-performances-displayed-p ’,min-performances-displayed-p})

A-34

E S
ORIGINAL PAC
()F ‘:cﬁjﬁt CﬁJ‘ﬂ-rrY

ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48 Page 3

(defmethod (:fasd-form performance) ()
*(make-instance ‘performance

:number ‘, number

:scheduled~start-time ’,scheduled-~start-time
:scheduled-end-time ‘,scheduled-end-time
:performance-time-window ’, performance-time-window
:scheduled-p ’,scheduled-p

trequired-p ’, required-p

:step-list ’,step-list .
texecute-start-up-steps-p ’,execute-start-up-steps-p
:execute-shutdown-steps~-p ’,execute-shutdown-steps-p
:last-time-slice ’, ({f last-time-slice (start-time last-time-slice) nil)
))

(defmethod (:fasd-form step) ()

*(make-instance

‘step

:id ,id

:number ‘, number

:scheduled-start-time ‘,scheduled-start-time
:scheduled-end-time ‘, scheduled-end-~time

smax-duration ’,max-duration

:min-duration ‘,min-duration

:step-delay-min ’, step-delay-min

:step-delay-max ’,step-delay-max

tnext-step ’,next-step

:previous~step nil L
:last-time-slice ’, (if last-time-slice (start-time last-time-slice) nil)
scumulative-consumable-list ‘, cumulative-consumable-list
:resource~carry-thru ’, resource-carry-thru
:consumable~resource~list ’,consumable-resource~list
:durable-resource-list ‘,durable-resource-list
:non-depletable-resource-list ‘,non-depletable-resource-list
icrew-requirements ’,crew-requirements

icrew-combinations ’,crew-combinations
:failed~crew-combinations ’, failed-crew-combinations
icrew-lockin ‘,crew-lockin

ccrew-monitor ‘,crew-monitor

:crew-duration ’,crew-duration “
icrew-cycle ’,crew-cycle

:crew-early-shift ‘,crew-early-shift

icrew-late-shift ‘,crew-late-shift

:concurrent-with ’,concurrent-with

itarget-list ‘,target-list

tattitude~list °,attitude-list

:scheduled-~crew~-list *’, scheduled-crew-list
:crew-monitoring-time ‘,crew-monitoring-time

:owning-object nil))

(defmethod (:fasd-form time-~slice) ()

‘(make-instance

‘time-slice

:start-time ‘,start-time

;end-time ‘,end-time .

:performance-step-table ‘,performance-step-table
screw-list ‘,crew-list

tconsumable-resource~list ‘,consumable-resource-list
:cumulative-consumable-table ‘,cumulative-consumable-table
:non-depletable~-resource-list ’,non-depletable-resource-list
:durable~resource-list ‘',durable-resource-list
starget-1list ‘,target-list

tattitude~list ’,attitude-list

:next-slice ’, (if next-slice next-slice nil)

:prev-slice ’, (if prev-slice (start-time prev-slice) nil)
sstart-x ‘,start-x

ttop-y ‘,top-y))

{defmethod (:fasd-form time~slice-axis) ()
‘{make-instance ‘time-slice-axis

:end-one-x ‘,end-one-x

:end-one-y ’,end-one-y

tend-two-x ’,end-two-~x

:end-two-y °’,end-two~y
:spike-coord-list ’,spike~coord-list
sorientation ’,orientation))

A-35 | ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>output-methods.lisp.2 7/13/89 15:36:48 Page 4

(defmethod (dump-mission-to-file mission)
(6éoptional (filename "nasa-exp-sch-2:bin-files;mission-fasd-file.bin"))
(sys:dump~forms-to~-file filename
*((setf *mission* ’, self)
(restore-object~-linkages *mission*))
*(:package ‘user)))

(defmethod (restore-object-linkages mission) (&rest ignore)
(restore-object-linkages time-slice-holder) .
(loop for table in '’ (experiment-template-table experiment-table)
do
{maphash #’(lambda (exp instance)
exp .
(loop for slot in ’ (startup-steps prototype-step-list shutdown-steps)
for prev-step = nil
do
(loop for step in (symbol-value-in-instance instance slot)
do
(restore-object-linkages step instance prev-step)
(setf prev-step step))
(loop for performance in (performance-list instance)
do
(restore-object-linkages performance instance))))
(symbol-value-in-instance self table)))
(restore~object-linkages init-obj self))

(defmethod (restore-object-linkages step) (owner prev-step)
{setf owning-object owner)
- (if (typep owner ‘experiment)
(when prev-step (setf previous-step (id prev-step)
(next-step prev-step) id))
(when prev-step (setf previous-step prev-step
(next~step prev-step) self))))

(defmethod (restore-object-linkages performance) (owner &rest ignore)
(let ((last-slice nil))
(setf owning-experiment owner)
(loop for step in step-list
with prev-step = nil
do
(restore-object~-linkages step self prev-step)
(when (scheduled-start-time step)
(setf last-slice (get-time-instance *mission* (scheduled-start-time step) last-slice))
(setf (last-time-slice step) last-slice)) ’
(setf prev-step step))
(setf last-time-slice last-slice)))

(defmethod (restore-object-linkages time-slice) (&optional previous-slice &rest ignore)
(when previocus-slice
(setf prev-slice previous-slice))
(when next-slice
(restore-object-linkages next-slice self)))

(defmethod (restore-object-linkages nasa-init-obj) (&rest ignore)
(loop for slot in '’ (attitude-list target~list crew-list consumable-resource-list non-depletable-
resource-list)
do .
(loop for resource in (symbol-value-in-instance £ slot)
do
(restore-object-linkages resource resource))))

(defmethod (restore-object-linkages availability) (owner &rest ignore)
(loop for avail-obj in available-times-list
do
(setf (owner-obj avail-obj) owner)))

(defmethod (restore-object-linkages non-durable-resource) (owner &rest ignore)
(loop for quant-avail-obj in quantity-availability-list
do
{setf (owner-obj quant-avail-obj) owner)
(restore-object-linkages quant-avail-obj quant-avail-obj)))

| - ORIGINAL PM-‘-:E. 1S
| OF POOR QUALITY

ANDY:>brown>nasa-2>output-to-ﬁle.lisp.13‘ 7/14/89 10:41:59 Page 1

;i: =*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (output-shift-available-times mission) ()
(loop for shift in (shift-availability-objs INIT-OBJ)
for count from 1
do
(with-open~file (stream (format nil "nasa-exp-sch-2:output-data;shift-available-~S"count)
:direction :output)
(format stream " SHIFT AVAILABILITY TIMES FOR SHIFT ~S " count)

(FORMAT STREAM "~% START END™)
(LOOP FOR OBJ IN SHIFT
DO

(FORMAT STREAM "~%")

(output-time-date~to-stream init-obj STREAM (BEGIN OBJ))
(format stream " ")

(output-time-date-to-stream init-obj STREAM (END OBJ))))))

(defmethod (output-mission-data mission) (&optional (time-line-list nil))
(fs:wildcard-map "nasa-exp-sch-2:output-data;*.*.*" #’delete-fi.e)
(fs:expunge-directory "nasa-exp-sch-2:output-data:*”)

(if time-~line-list
(output-time~line-list self time-line-list)
(output-time-line self nil))
(output-scheduled-experiments sel:)

(defmethod (output-time-line-list mission) (time-line-list)
(loop for (time-slice exp-name) in time-line-list
do
(output-time~-line
self time-slice exp-name
(format nil "nasa-exp-sch-2:output-data;time-line-data-for-~S" exp-name))))

(defmethod (output-time-line mission) (&optional time-slice title filename) .
(with-open-file (stream (if filename filename "nasa-exp~sch-2:output-data;time-line-data”)
:direction :output)
(cond (time-slice
(setf time-slice (find-first-slice time-slice)))
(t (setf time-slice time-slice-holder)))
(when time-slice
(output-time-slice time-slice stream title))))

(defun find-first-slice (time-slice)
(cond ((null (prev-slice time-slice)) time-slice)
(t (find-first-slice (prev-slice time-slice)))))

(defmethod (output-time-slice time-slice) (stream title)
(format ’tream --‘itt'tt"t".'..'i-."'.i..".'tﬁﬂ"""ttt.t‘tt"tl)
(when title
(format stream "~% TIMELINE ~S" title))
(FORMAT STREAM "~% START TIME = =)
(output-time-date-to-stream (init-obj *MISSION*) STREAM start-time)
(format stream " END TIME = *)
(output-time-date-to-stream (init-obj *MISSION*) STREAM end-time)
(when crew-list
(format stream “~% CREW MEMBER SCHEDULED DURING THIS PERIOD-~%")
(formatting-table (stream :equalize-multiple-~column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "CREW MEMBER"))
(output-atep-headings stream))
(loop for (crew step) in crew-list
do .
(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "~a" (name crew)))
(output-step-values step stream)))))
{when consumable-resource-list
(format stream “~% CONSUMABLE RESOURCES SCHEDULED THIS PERIOD~A")
(formatting-table (stream :equalize-multiple-column-widths t)
(formatting~-coclumn-headings (stream :underline-p nil)
(formatting~cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream “QUANTITY"))
{output-step-headings stream))
{loop for (consumable quant step) in consumable-resource-list
do

A-37 v ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>output-to-file.lisp.13 7/14/89 10:41:59 Page 2

(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "~s" (name consumable)))
(formatting-cell (stream :align :right) (format stream "~s™ quant))
(output-step-values step stream)))))
(unless (zerop (send cumulative-consumable-table :filled-elements))
(format stream "~% CUMULATIVE CONSUMABLE RESOURCE USAGE~%")
(let {(cum-list nil))
(maphash #’ (lambda (resource quant)
(push (list resource quant) cum-list))
cumulative~consumable-table)
(setf cum-list (sort cum-list #‘alphalessp :key #’first))
(formatting-table (stream :equalize-multiple-column-widths t)
(formatting~column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESQURCE™))
(formatting-cell (stream :align :right) (format stream “QUANTITY")))
(loop for (resource quant) in cum~list
do
(formatting-row (stream)
(formatting-cell (stream :align :left) (format stream "~s" (name resource)))
(formatting-cell (stream :align :right) (format stream "~s" quant)))))))
(when non-depletable-resource-list
(format stream "~% NON-DEPLETABLE RESOURCES SCHEDULED THIS PERIOD-~&")
(formatting-table (stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream “QUANTITY"))
(formatting-cell (stream :align :right) (format stream “TOLERANCE"))
(output-step-headings stream))
(loop for (non-depletable quant tolerance step) in non-depletable-resource-list
do
(formatting-row (stream) '
(formatting-cell (stream :align :left) (format stream "~s" (name non-depletable)))
(formatting-cell (stream :align :right) (format stream "~s™ quant))
(formatting-cell (stream :align :right) (format stream "~s" tolerance))
{(output-step-values step stream)))))
(when durable-resource-list
(format stream "~% DURABLE RESOURCES' SCHEDULED THIS PERIOD~A")
{(formatting-table (stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting~cell (stream :align :right) (format stream "QUANTITY™))
(output-step-headings stream))
(loop for (durable quant step) in durable-resource-list
do
(formatting~-row (stream)
(formatting-cell (stream :align :left) (format stream "~s” (name durable)))
(formatting-cell (stream :align :right) (format stream “~s" quant)) -
(output-step-values step stream)))))
{when next-slice
(output-time-slice next-slice stream title)))

(formatting~cell (stream :align :CENTER) (format stream "STEP ID"))
(formatting-cell (stream :align :CENTER) (format stream "STEP NUMBER"))
(formatting-cell (stream :align :CENTER) (format stream "PERFORMANCE NUMBER"))
(formatting-cell (stream :align :CENTER) (format stream "EXPERIMENT NAME"))) "’

l (defun output-~step-headings (stream)

(defmethod (output-step-values step) (stream)
(formatting-cell (stream :align :CENTER) (format stream "~s* id))
(formatting-cell (stream :align :CENTER) (format stream "~s"™ number))
-(formatting-cell (stream :align :CENTER) (format stream "~s” (number owning-object)))
(formatting-cell (stream :align :CENTER)
(format stream "-~-s” (name (owning-experiment owning-object)}))))

{defmethod (output-scheduled-experiments mission) ()
{maphash #’ (lambda (exp instance)

exp

(when (performance-list instance)
(unless (every #’ (lambda (perf)

(null (scheduled-p perf))) (performance-list instance))
(output-performances instance))))
experiment-table))

A-38
ORIGINAL PACE iS
OF POOR QUALlTY

ANDY:>brown>nasa-2>output-to-file.lisp.13

(defmethod (output-performances experiment) ()
(let (days hours mins secs)
(with-open-file (stream (format nil “nasa-exp-sch-2:output-data;exp-~S“”name)

:direction :output)

(format stream "~% EXPERIMENT

~5" NAME)

(FORMAT stream “~% MIN PERFORMANCES ~S MAX PERFORMANCES
min-performances max-performances) .
(multiple-value-setq (days hours mins secs)

(translate-mission-period-to-mission-time

(translate-mission-period-to-mission-time

(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell
(formatting-cell

(LOOP FOR (START END PERFORMANCES) IN performance-windows
DO

(stream
(stream
{stream
(stream
(stream
(stream
(stream
(stream
(stream

7/14/89 10:41:59 Page 3

~S"

(init-obj *missionv)

min-performance-delay-time))
(format stream "~% MIN PERFORMANCE DELAY TIME ~S ~S ~S ~S5" days hours mins secs)
(multiple-value-setq (days hours mins secs)

(init-obj *mission*)

max-performance-delay-time})
(format stream "~% MAX PERFORMANCE DELAY TIME ~S ~S ~S ~S" days hours mins secs)
(multiple-value-setq (days hours mins secs)

(translate-mission-period-to-mission-time (init-obj *missionw)
performance-time-window))

(format stream "~8 PERFORMANCE DURATION ~S ~S ~S ~S" days hours mins secs)

(FORMAT STREAM "~% PERFORMANCE WINDOWS~%")
(formatting-table (stream :equalize-multiple-column-widths t :dont-snapshot-variables t)

(formatting-column-headings (stream :underline-p nil)

calign :right) (format stream
talign :right) (format stream
talign :right) (format stream
talign :right) (format stream
talign :right) (format stream
talign :right) (format stream
calign :right) (format stream
talign :right) (format stream
talign :right) (format stream

(formatting-row (stream :dont-snapshot-variables t)
(multiple-value-setq (days hours mins secs)
(translate-mission-period-to-mission-time (init-obj *mission®*) START))

(formatting~cell
(formatting-cell
(formatting-cell
(formatting-cell

(stream :align

(multiple~-value-setq (days hours mins secs)
(translate-mission-period-to-mission-time (init-obj *mission*) END))

(formatting-cell
(formatting-cell
(formatting~cell
(formatting-cell
(formatting-cell

(when strategy

(stream

(format stream "~8$STRATEGY")
(LOOP FOR (strat-list weight) in strategy

do

(format stream "~% WEIGHT ~S STEPS * WEIGHT)
(LOOP FOR ELEMENT IN STRAT-LIST

Do :
(COND ((EQL (FIRST ELEMENT) :CONSECUTIVE)

(FORMAT STREAM *, ~S THRU ~S" (SECOND ELEMENT)

((EQL (FIRST ELEMENT) :SEQUENTIAL)
(LOOP FOR STEP-NUMBER IN (SECOND ELEMENT)

DO

(FORMAT STREAM ",~S “STEP-NUMBER)))))))
(loop for performance in

{setf performance-list

do

{(when (scheduled-p performance)
(output-performance performance stream))))))

(defmethod (output-performance performance) (stream)

(LET (days hours mins secs)
(fozmt stre.m .-."".'"'.t"""-"".'I."'l".".t'."t"'t"'l')

PERFORMANCE ~S™ NUMBER)

(multiple-value-setq (days hours mins secs)
(translate-mission-period-to-mission-time (init-obj *mission*) SCHEDULED-START-TIME))

(format stream "~% SCHEDULED START TIME ~S ~S ~5 ~5" days hours mins secs)

(format stream "~%-~%

A-39

"START"))
= "))
")
"))
“END"))
")

= "))

"NUMBER OF PERFORMANCES™)))

:right) (format stream “~S“ days))
(stream :align :right) (format stream "~S" hours))
(stream :align :right) (format stream "~S" mins))
(stream :align :right) (format stream "~S" secs))

(stream :align :right) (format stream "~S™ days))

{stream :align :right) (format stream "~S" hours))

(stream :align :right) (format stream "~S™ mins))

{(stream :align :right) (format stream "~S" secs))

:talign :right) (format stream "~S* PERFORMANCES)))})

(THIRD ELEMENT)))

(sort performance-list #°< :key #’'number))

ORIGINAL PAGE 1S
OF POOR QUALITY

ANDY:>brown>nasa-2>output-to-file.lisp.13 7/14/89 10:41:59 Page 4

(multiple-value-setq (days hours mins secs)
(translate-mission-period-to-mission-time :nit-obj *mission*) SCHEDULED~END-TIME))
(format stream "~% SCHEDULED END TIME ~S ~S -5 ~S" days hours mins secs))
(LOOP FOR STEP IN STEP-LIST
DO
(OUTPUT-STEP STEP STREAM)))

(defmethod (output-prototype-experiments missi:z) ()
(maphash #‘ (lambda (key value)
key
(output-prototype-experiment va_:e))
experiment-template-table))

(DEFMETHOD (QUTPUT-BAD-EXPERIMENTS MISSION) ()
(LOOP FOR EXPERIMENT-NAME IN ‘ (ALLOY-S BRIDG™AN CONTFLOW HW-MAINT VAP-CRYS WM~MAINT)
FOR EXPERIMENT = (GETHASH EXPERIMENT-NAME EXPERIMENT-TEMPLATE-TABLE)
DO
(output -prototype-experiment EXPERIMENT)))

(defmethod (output-prototype-experiment experireat) ()
(with-open-file (stream (format nil "nasa-exs-sch-2:output-data:prototype-exp~~S" name)
:direction :outpu:
(let (days hours mins secs)
(format stream “~% EXPERIMENT ~S" NAMZ:
(FORMAT stream "~% MIN PERFORMANCES ~S% MAX PERFORMANCES ~S*"
min-performances max-performances
(multiple-value-setq (days hours mins se:s)
(translate-mission~-period-to-mission-::ne (init-obj *mission¥)
min-performance-delay-time))
(format stream "~% MIN PERFORMANCE DELAY 71I) ~8§ ~S ~S ~S" days hours mins secs)
(multiple-value-setq (days hours mins se:s)
(translate-mission-period-to-mission-z:me (init-obj *mission*)
max-performance-delay-time))
(format stream "~% MAX PERFORMANCE DELAY “IME ~S ~S ~S ~S" days hours mins secs)
(multiple~value-setq (days hours mins se:s)
(translate-mission-period-to-mission-:.ze (ini:-obj *missionv)
performance-time-window))
(format stream “~% PERFORMANCE DURATION -5 ~S ~S ~S" days hours mins secs)
(FORMAT STREAM "~% PERFORMANCE WINDOWS=~A®:
(formatting-table (stream :equalize-mult:zle-column-widths t :dont-snapshot-variables t)
(formatting-column-headings {(stream :u-cerline-p nil)
(formatting-cell (stream :align :rig=:) (format stream “"START"))
(formatting-cell (stream :align :rig::) (format stream " *))
(formatting-cell (stream :align :rig=:) (format stream " "))
(formatting-cell (stream :align :rig=:) (format stream " "))
(formatting-cell (stream :align :rig=:) (format stream "END"))
(formatting-cell (stream :align :rig::) (format stream " "))

(formatting-cell (stream :align :rig::) (format stream " "))
(formatting-cell (stream :align :rig::) (format stream " "))
(formatting-cell (stream :align :rig=:) (format stream "NUMBER OF PERFORMANCES")))
(LOOP FOR (START END PERFORMANCES) IN rerformance-windows
DO

(formatting-row (stream :dont-snapsh::-variables t)
{(multiple~value-setq (days hours m-zs secs)
(translate-mission-period-to-miss:s:on-time (init-obj *mission*) START)}
(formatting-cell (stream :align :r:3ht) (format stream "~S" days))
(formatting-cell {(stream :align :r. (format stream “~S" hours))
(formatting-cell (stream :align : (format stream "~S" mins))
(formatting-cell (stream :align :] (format stream "~5" secs))
(multiple-value-setq (days hours n.=s secs)
(translate-mission-period-to-miss::.cn-time (init-obj *mission®*) END))
(formatting-cell (stream :align st) (format stream "~S“ days}))
(formatting-cell (stream :align =t) (format stream "~S" hours))
(formatting-cell (stream :align < (format stream "~S™ mins))
{(formatting-cell (stream :align ~t) (format stream "~S” secs))
(formatting-cell (stream :align :r:3=%) (format stream "~S" PERFORMANCES)))))
(when strategy
(format stream “~ASTRATEGY"™)
(LOOP FOR (strat-list weight) in stratess
do
{format stream "~8 WEIGHT ~S STEPS °' WZIIGHT)
(LOOP FOR ELEMENT IN STRAT-LIST
DO

”

OR\G\NA

L PAGE 1S

ANDY:>brown>nasa-2>output-to-file.lisp.13 7/14/89 10:41:59 Page§

(COND ((EQL (FIRST ELEMENT) :CONSECUTIVE)
(FORMAT STREAM ", ~S THRU ~S" (SECOND ELEMENT) (THIRD ELEMENT)))
((EQL (FIRST ELEMENT) :SEQUENTIAL)
(LOOP FOR STEP-NUMBER IN (SECOND ELEMENT)
DO
(FORMAT STREAM ", ~S "STEP-NUMBER)))}))))
{(when non-depletable-tolerance-list
(format stream "~% NON-DEPLETABLE RESOURCE TOLERANCES~%")
(FORMATTING-TABLE
(stream :equalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-column-headings (stream :underline-p nil)
(formatting~-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream “"TOLERANCE")))
(LOOP FOR (RESOURCE TOLERANCE)} IN non-depletable-tolerance-list
Do
(formatting-cell (stream :align :left) (format stream "~A" RESQURCE))
(formatting-cell (stream :align :right) (format stream "~A" TOLERANCE)))))
(WHEN crew-lockin
(FORMAT STREAM "~% CREW LOCKIN REQUIREMENTS~&")
(FORMATTING-TABLE
(stream :equalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-~column-headings (stream :underline-p nil)
(formatting-cell (stream :align :CENTER) (format stream "FROM STEP"))
(formatting-cell (stream :align :CENTER) (format stream "THRU STEP")))
(LOOP FOR (START-STEP END-STEP) IN crew-lockin
DO
(formatting-cell (stream :align :CENTER) (format stream "~A" START-STEP))
(formatting-cell (stream :align :CENTER) (format stream "~A" END-STEP)))))
(COND (STRATEGY
(FORMAT STREAM "~%~% STEPS")
(loop for step in prototype-step-list
do
{output-step step stream)))
(T
(format stream "~% START UP STEPS")
(loop for step in startup-steps
do
(output-step step stream }))
{(format stream "~% CORE STEPS")
(loop for step in prototype-step-list
do
(output-step step stream))
(format stream "~% SHUTDOWN STEPS")
(loop for step in shutdown-steps
do
{(output-step step stream)))))})

(DEFMETHOD (OUTPUT-~STEP STEP) (STREAM)
(form‘t stream "..‘t.."".t.t"..t"t't"".'ttlttt'.'l""".'.""")
(LET (DAYS HOURS MINS SECS)
(FORMAT STREAM "~%\~% STEP ~S NUMBER ~5~%" ID NUMBER)
(formatting-table (stream :equalize-multiple-column-widths t :dont-snapshot-variables t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream " "))
(formatting-cell (stream :align :right) (format stream "DAYS"))
(formatting-cell (stream :align :right) (format stream "HOURS "))
(formatting-cell (stream :align :right) (format stream "MINUTES "))
(formatting-cell (stream :align :right) (format stream "SECONDS ")})
(LOOP FOR SLOT IN '’ (SCHEDULED-START-TIME SCHEDULED-END-TIME max-duration min-duration
: step-delay-min step-delay-max)
FOR LABEL IN ’ ("SCHEDULED START TIME™ "SCHEDULED END TIME" "MAX DURATION"
"MIN DURATION®" "MIN DELAY" "MAX DELAY")

Do
(FORMATTING-ROW (STREAM :dont-snapshot-variables t)

(multiple-value-setq (days hours mins secs)

(translate-mission-period-to-mission-time (init-obj *mission*)
(symbol-value-in-instance self SLOT)))

(formatting-cell (stream :align :left) (format stream "~A" label))

(formatting-cell (stream :align :right) (format stream "~S" days))

(formatting-cell (stream :align :right) (format stream "~S" hours))

(formatting-cell (stream :align :right) (format stream "~S" mins))

(formatting-cell (stream :align :right) (format stream "~S" secs))}))

A-41 - AGE 18
) ORIGINAL P

ANDY:>brown>nasa-2>output-to-file.lisp.13 : 7/14/89 10:41:59 Page 6

(when durable-resource-list
(format stream "~SDURABLE RESOURCES~M")
(FORMATTING-TABLE (stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY™)))
(LOOP FOR (RESOURCE QUANT) IN DURABLE-RESOURCE-LIST
DO
(FORMATTING-ROW (STREAM)
(FORMATTING-CELL (stream :align :left) (FORMAT STREAM "~S" (NAME RESOURCE)))
. (FORMATTING-CELL (stream :align :right) (FORMAT STREAM "~S" QUANT))))))
{(when NON-DEPLETABLE-resource-list
(format stream "~SNON-DEPLETABLE RESOURCES~%")
(FORMATTING~TABLE (stream :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN NON-DEPLETABLE-RESOURCE-LIST
DO -
(FORMATTING~-ROW (STREAM)
(FORMATTING-CELL (stream :align :left) (FORMAT STREAM "~S5" (NAME RESOURCE)))
(FORMATTING-CELL (stream :align :right) (FORMAT STREAM "~S" QUANT))))))
(when CONSUMABLE-resource-list
(format stream "~MCONSUMABLE RESOURCES~A")
(FORMATTING-TABLE (strecam :equalize-multiple-column-widths t)
(formatting-column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESQURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY")))
{LOOP FOR (RESOURCE QUANT) IN CONSUMABLE-RESOURCE-LIST
Do

(FORMATTING-ROW (STREAM)
(FORMATTING~-CELL (stream :align :left) (FORMAT STREAM "~S“ (NAME RESOURCE)))
(FORMATTING-CELL (stream :align :right) (FORMAT STREAM "~S"™ QUANT))))))
(WHEN cumulative-consumable-list
(FORMAT STREAM "~SCUMULATIVE CONSUMABLES~%")
(FORMATTING-TABLE (stream :equalize-multiple-column-widths t)
(formatting~column-headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream "RESOURCE"))
(formatting-cell (stream :align :right) (format stream "QUANTITY")))
(LOOP FOR (RESOURCE QUANT) IN cumulative-consumable-list
DO

(FORMATTING-ROW (STREAM)
{(FORMATTING-CELL (stream :align :left) (FORMAT STREAM "~S" (NAME RESOURCE)))
{(FORMATTING-CELL (stream :align :right) (FORMAT STREAM "~S" QUANT))))))
(when crew-requirements
(format stream "~SCREW REQUIREMENTS")
(loop for (crew-list quant) in crew-requirements
do
(format stream “~8% NUMBER REQUIRED ~S FROM THE FOLLOWING:"™ quant)
(loop for (specification tag) in crew-list
do
(format stream "~SIDENTIFIER ~S IDENTITY ~S™ specification tag)))
(FORMAT STREAM "~MPOSSIBLE CREW COMBINATIONS")
(LOOP FOR CREW~-LIST IN crew-combinations
DO .
(FORMAT STREAM "~§% COMBINATION: *)
(LOOP FOR CREW IN CREW-LIST
DO
(FORMAT STREAM "~S " (NAME CREW))))
(cond (crew-monitor
{format stream "~% CREW MONITOR: ~S ~8" CREW-MONITOR)
(FORMATTING-TABLE
(stream :equalize-multiple-column-widths t :DONT-SNAPSHOT-VARIABLES T)
(formatting-~-column-headings (stream :tunderline-p nil)
(formatting-cell (stream :align :left) (format stream ™ %))
(formatting-cell (stream :align :RIGHT) (format stream "DAYS™))
(formatting-cell (stream :align :RIGHT) (format stream "HOURS®))
(formatting-cell (stream :align :RIGHT) (format stream "MINUTES™))
(formatting-cell (stream :align :RIGHT) (format stream “SECONDS")))
(LOOP FOR SLOT IN ° (CREW-CYCLE CREW-DURATION CREW-EARLY-SHIFT CREW-LATE-SHIFT)
FOR LABEL IN ’ ("MONITOR CYCLE:" “DURATION OF MONITOR:" .
“"MAX MONITOR EARLY SHIFT:" "MAX MONITOR LATE SHIFT:")
jole]

A-42 ORIGINAL PACE 1S
OF POOR QUALITY

ANDY:>brown>nasa-2>output-to-file.lisp.13 7/14/89 10:41:59 Page 7

(multiple-value-setq (days hours mins secs)

(translate-mission-period-to-mission-time (init-obj *mission®)
(SYMBOL-VALUE-IN-INSTANCE SELF SLOT)))

(FORMATTING-ROW (STREAM :DONT-SNAPSHOT-VARIABLES T) :
(formatting-cell (stream :align :left) (format stream "~A“LABEL))
(formatting-cell (stream :align :RIGHT) (format stream "~S" DAYS})
(formatting-cell (stream :align :RIGHT) (format stream "~S" hours))
(formatting-cell (stream :align :RIGHT) (format stream “~S" mins))

(formatting-cell (stream :align :RIGHT) (format stream “~5" secs)))))
(WHEN scheduled-crew-list
(FORMAT STREAM "~SSCHEDULED CREW LIST: ~%")

(formatting-table

(stream :equalize-multiple-column-widths t :DONT-SNAPSHOT-VARIABLES T)
(formatting-column~headings (stream :underline-p nil)
(formatting-cell (stream :align :left) (format stream “FROM"))
(formatting~cell (stream :align :RIGHT) (format stream "DAYS"))
(formatting-cell (stream :align :RIGHT) (format stream "HOURS"))
(formatting-cell (stream :align :RIGHT) (format stream "MINUTES"))
(formatting-cell (stream :align :RIGHT) (format stream "SECONDS"))
(formatting-cell (stream :align :left) (format stream "TO"))
(formatting-cell (stream :align :RIGHT) (format stream "DAYS"))
(formatting-cell (stream :align :RIGHT) (format stream "HOURS"))
(formatting-cell (stream :align :RIGHT) (format stream "MINUTES"))
(formatting-cell (stream :align :RIGHT) (format stream "SECONDS"))
(formatting-cell (stream :align :RIGHT) (format stream “USING"))
(LOOP FOR { FROM 2 TO (LENGTH (FIRST (FIRST SCHEDULED-CREW-LIST)))

DO
(formatting-cell (stream :align :RIGHT) (format stream ™ "})))
(LOOP FOR (CREW-LIST START END) IN SCHEDULED-CREW-LIST
DO

(FORMATTING-ROW (STREAM :DONT-SNAPSHOT-VARIABLES T)

(formatting-cell (stream :align :left) (format stream " "))
(multiple-value-setq (days hours mins secs)

(translate-mission-period-to-mission-time (init-obj *mission*) START))
(formatting-cell (stream :align :RIGHT) (format stream "~S" DAYS))
(formatting-cell (stream :align :RIGHT) (format stream "~S" hours))
(formatting-cell (stream :align :RIGHT) (format stream “~S® mins))
(formatting-cell (stream :align :RIGHT) (format stream “~S" secs))
(formatting-cell (stream :align :left) (format stream " "))
(multiple-value-setq (days hours mins secs)

. (translate-mission-period-to-mission-time (init-obj *mission*) END))

(formatting-cell (stream :align :RIGHT) (format stream "~S" DAYS))
(formatting-cell (stream :align :RIGHT) (format stream "~S" hours))
(formatting-cell (stream :align :RIGHT) (format stream "~S"™ mins))
(formatting-cell (stream :align :RIGHT) (format stream "~S" secs))
(LOOP FOR CREW IN CREW-LIST
Do
(formatting-cell (stream :align :RIGHT) (format stream *~S™ (NAME CREW))))
IRREN ’ :
(T
(FORMAT STREAM “~MSCHEDULED CREW LIST: ")
(LOOP FOR CREW IN scheduled-crew-list
DO
(FORMAT STREAM *~S " (NAME CREW)))})))
(WHEN TARGET-LIST
(FORMAT STREAM "~8 TARGET INFORMATION")
(LOOP FOR (DESIGNATOR SUBLIST) IN TARGET-LIST
DO
(CASE DESIGNaTOR
(:AVOID (FORMAT STREAM “~% TARGETS TO BE AVOIDED~A"))
(:INTERSECT (FORMAT STREAM "~V TARGETS WHOSE PRESENCE MUST INTERSECT~%&"))
(:SELECT (FORMAT STREAM "~ATARGETS OF WHICH AT LEAST ONE MUST BE PRESENT-~%")))
(LOOP FOR TARGET IN SUBLIST
Do
(FORMAT STREAM "~S " (NAME TARGET)))))
(WHEN attitude-list
(FORMAT STREAM "~SATTITUDE INFORMATION-~A")
(LOOP FCOR (DESIGNATOR SUBLIST) IN ATTITUDE-LIST
Do
(CASE JESIGNATOR
(:AVOID (FORMAT STREAM "~SATTITUDES TO BE AVOIDED"))
{:INTERSECT (FORMAT STREAM “"~SATTITUDES WHOSE PRESENCE MUST INTERSECT~A"))

A-43 ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>output-to-file.lisp.13 7/14/89 10:41:59 Page 8

(:SELECT (FCRMAT STREAM "~SATTITUDES OF WHICH AT LEAST ONE MUST BE PRESENT~&")))
(LOOP FOR ATTITUDE IN SUBLIST
DO
(FORMAT STREAM "-~S “ (NAME ATTITUDE})}})))
{(WHEN PREVIOUS~STEP
(FORMAT STREAM "~% PREVIOUS STEP: ~S" (IF (SYMBOLP previous-step) previous-~step
’ {id previous-step))))
(WHEN NEXT-STEP
(FORMAT STREAM "~% NEXT STEP: ~S" (IF (SYMBOLP NEXT-step) NEXT-step
(id NEXT-step)}))))

(defmethod (output-durable-resource durable-resource) (stream)
(format stream "~%~8 DURABLE RESOURCE ~S ~S" name available-quantity))

(defmethod (output-non-depletable-resource non-depletable-resource) (stream)

(format stream "~%~% NON DEPLETABLE RESOURCE ~S" name)
(output -non-durable-resource self stream))

(defmethod (output-conaumaﬁle-tesource consumable-resource) (stream)
(format stream "~%~% CONSUMABLE RESOURCE ~S" name))
(output-non-durable-resource self stream)) N

(defmethod (output-non-durable-resource non-durable-resource) (stream)
(loop for qty-avail in quantity-availability-list
do .
(format stream "~% Quantity ~S Available in Time Periods: ~% BEGIN
END™
(qty qty-avail))
(loop for avail-obj in (available-times-list qty-avail)
do
(FORMAT STREAM "~%")
(output-time-date-to-stream (init-obj *mission*) STREAM (begin avail-obj))
(format stream ")
(output-time~date-to-stream (init-obj *mission*) STREAM (end avail-obj}))))

{(defmethod (ocutput-durable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;durable-resources” :direction :output)
(loop for durable-resource in durable-resource-list
do
(output-durable-resource durable-resource stream))))

(defmethod (ocutput-non-depletable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;non-depletable-resources"
:direction :output)
(loop for non-depletable-resource in non-depletable-resource-list
do .
{(output-non-depletable-resource non-depletable-resource stream))))

(defmethod (output-consumable-resources nasa-init-obj) ()
(with-open-file (stream "nasa-exp-sch-2:output-data;consumable-resources® :direction :output)
(loop for consumable-resource in consumable-resource-list
do
{output ~consumable-resource consumable-resource stream))))

(defmethod (ocutput-resources nasa-init-obj) ()
(output -durable-resources self)
(output -non-depletable-resources self)
(output-consumable-resources self))

A-44
: ORIGINAL PAGE 1S
OF POOR QUALTY

ANDY:>brown>nasa-2>performance-methods.lisp.2 6/21/89 16:28:12

;:: =-*- Mode: LISP: Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (compute-and-store-cumulative-consumption performance) (&rest ignore)
(setf (cumulative-consumable-list (first step-list))
(consumable-resource-list (first atep-list)))
(when (second step-list)
(compute~and-store-cumulative-consumption
(second step-list) (cumulative-consumable-list (first step-list))))}

{(defmethod (compute-and-store-cumulative-consumption step) (prev-consum-list)

(loop for (resource quant) in prev-consum-list
for same-resource = (member resource consumable-resource-list :key #’first)
do

(if same-resource
{push (list resource (+ quant (second (first same-resource))))
cumulative~consumable-list)

(push (list resource quant) cumulative~consumable-list)))

(loop for (resource quant) in consumable-resource-1list

Page 1

for already-included-p = (member resource cumulative-consumable-list :key #’first)

do
(unless already-included-p
(push (list resource quant).cumulat1ve-consumable—list)))

(when next-step
(compute~-and-store-cumulative-consumption next-step cumulative-consumable-list)))

A=45

ORIGINAL page
()F.FD{)CH! (?lbq;77is

ANDY:>brown>nasa-2>presentation-commands.lisp.9 4/11/89 21:53:43

¢3; -*- Mode: LISP; Syntax: Common-Lisp:; Package: USER; Base: 10 -*-

"."'l"'.....'.'l..'"...'.'.".'.."'.."".'.'.'.'""....t.."""""".'l"
;;;object presented for init-obj edit
(DEFINE~-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE~SCHEDULER-CREATE-NEW-resource
(MISC-0OBJ-EDIT-DISPLAY
:GESTURE :LEFT
:DOCUMENTATION "Create A New Resource Object™
)
(owner-object)
(cp:build-command ’‘com-performance-scheduler-create-new-resource
owner-object))

(DEF INE-PERFORMANCE ~SCHEDULER~COMMAND
(COM-PERFORMANCE ~-SCHEDULER ~CREATE-NEW~RESOURCE)
((owner-object ‘misc-obj-edit-display))
(create-new-obj owner-object)
)

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE ~ SCHEDULER-DELETE-RESOURCE
(MISC-OBJ-EDIT-DISPLAY

:GESTURE :MIDDLE
:DOCUMENTATION "Delete A Resource Object”
)

{owner-object)

(cp:build-command ‘com-performance-scheduler-delete-resource

owner-object))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(COM-PERFORMANCE - SCHEDULER-DELETE-RESOURCE)
((owner-object ‘misc-obj-edit-display))
(delete-resocurce owner-object)

)

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE ~ SCHEDULER-ADD -AVAILABLE - TIME
(NAME-FOR-EDIT-DISPLAY

:GESTURE :LEFT
:DOCUMENTATION "Add Additional Times This Resource Available"
)

(owner-object)

{(cp:build~command ‘com-performance-scheduler-add-available-time

owner-object))

(DEFINE-PERFORMANCE-SCHEDULER~COMMAND
(COM-PERFORMANCE - SCHEDULER-ADD-AVAILABLE -TIME)
((owner-object ‘name-for-edit-display))
(add-available-time owner-object))

(DEFINE~PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE~SCEEDULER-delete-AVAILARLE-TIME
(KAME-FOR-EDIT-DISPLAY
:GESTURE :middle
:DOCUMENTATION “"Delete Time Period This Resource Available”
) "
{owner-object)
(cp:build-command ‘com-performance-scheduler-delete-available-time
owner-obiject))

(DEFINE~-PERFORMANCE-SCHEDULER-COMMAND
{(COM-PERFORMANCE - SCHKEDULER~DELETE-AVAILABLE-TIME)
((owner-object ‘name-for-edit-display))
(delete~available-time owner-object))

(DEFINE~PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE - SCHEDULER-ADD-AVAILABLE-TIME-FOR-QUANTITY
(QUANTITY-AVAILABILITY-EDIT-DISPLAY
:GESTURE :LEFT
DOCUMENTATION "Add Additional Times This Quantity Available”

-~ e

A746

Page 1

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>presentation-commands.lisp.9 4/11/89 21:53:43 Page 2

{owner-object)
(cp:build-command ‘com-performance-scheduler-add-avajilable-time-for-quantity

owner-object))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND

(COM-PERFORMANCE - SCHEDULER-ADD-AVAILABLE - TIME ~-FOR-QUANTITY)
({owner-object ‘quantity-availability-edit-display))
(add-available-time owner-object))

(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE - SCHEDULER-ADD-QUANTITY -AND-AVAILABILITY
(CONSUMABLE -NAME-FOR-EDIT-DISPLAY

:GESTURE :LEFT
:DOCUMENTATION "Add Additional Quantity And Times This Resource Available”

(owner-obiject)
(cp:build-command ‘com~-performance-scheduler-add-quantity-and-availability

owner-object))

(DEF INE-PERFORMANCE ~SCHEDULER-COMMAND
{COM-PERFORMANCE - SCHEDULER-ADD-QUANTITY~AND-AVAILABILITY)
((owner-object ‘consumable-name-for-edit-display))
(add-quantity-availability owner-object))

’-.""".ﬁ.l......ﬂ..'l'.t't..l"'l."ll'..'l.ﬂ.."".l.'."l.."'..‘l..ll.t.ll'.
;;; objects presented for experiment template edit
(DEFINE-PRESENTATION-TO-COMMAND-TRANSLATOR
PERFORMANCE - SCHEDULER-CREATE-NEW~step
(experiment -template-name~edit-display
:GESTURE :LEFT
:DOCUMENTATION "Create A New Step”

(owner-cobject) : .
(cp:build-command ‘com-performance-scheduler-create-step

owner~object))

(DEFINE-PERFORMANCE-SCHEDULER-COMMAND
(com-performance-scheduler-create-step)
({owner-object ‘experiment-template-name-edit-display))

(create-new-step owner-object)
)

A-47

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>resource-methods.lisp.19 7/11/89 15:36:17 Page 1

:$;: =%~ Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defmethod (deleta-rescurce query-obj) ()
(delete-resource *mission* type))

(defmethod (create-new-obj query-obj) ()
(create-new-obj (make-instance type)))

(defmethod (create-new-obj durable-resource) ()
(let ((new-name ‘unnamed) (new-available-quantity 0))
(dw:accepting~values
{*standard-output* :own-window t
:label
(with-character~style ('’ (:fix :bold :very-large)
nil :bind~line-height t)
“"Describe New Resource "))
(setf new-name
(accept ‘symbol :default new-name :query-identifier ’‘new-name
.:stream *standard-output*
:prompt {(format nil "Enter Name of Durable Resource®))
new—available-quantity
{accept ‘number :default new~available-quantity
:query~-identifier ‘new-available-quantity
:stream *standard-output* :prompt
(format nil "Enter Quantity of Durable Resource Available®))))
(setf name new-name available-quantity new-available-quantity))
(add-resource *mission* self ‘durable-resource-list))

(defmethod (create-new-obj consumable-resource) ()
(let ((new-name ‘unnamed))
(dw: accepting-values
(*standard-output* :own-window t :label

(with-character~style ('’ (:fix :bold :very-large)
nil :bind-line-height t)
“Describe New Resource "))

(setf new-name .
(accept ’symbol :default newrname :query-identifier ‘new-name
:stream *standard-output*
:prompt (format nil "Enter Name of Consumable Resource™))))
(setf name new-name))
(add-quantity-availability self)
(add-resource *mission* self ’‘consumable-resource-list))

(defmethod (quantity-already-exists-p consumable-resource) (new-quantity)
(loop for quantity-availability in quantity-availability-list
do
(when (= new-quantity (qty quantity-availability))
(report-error *mission* (format nil "~MAn object already exists for consumable resource -~S o
f quantity ~S. New availability times must be added to the existing object” name new-quantity))
(return t))))
(defmethod (add-quantity-availability consumable-xesource) ()
(let ({(qty-avail-obj nil) (choice nil) (new-quantity 0))
(loop until (and choice (eql choice ‘no))
do
(loop until
(setf choice
{(dw:menu-choose
.* {{yes yes) (no no))
:prompt (format nil "Describe Another Quantity For ~$2?"name))))
(unless (eql choice ‘no)
(setf qty~avail-obj (make-instance ’‘quantity-availability :owner-obj self :name name))
(dw:accepting-values
(*standard-output* :own-window t :label
(with-character-style (’ (:fix :bold :very-large)
nil :bind-line-height t)
. "Describe New Resource "))
(setf new-quantity
{(accept ‘number :default new-quantity :qQuery-identifier ’‘new-quantity
:stream *"standard-output®*
:prompt (format nil "Enter Quantity Available N "*))))
(unless (quantity-already-exists~p self new-quantity)

ORIGINAL PAGE IS

A-48
OF POOR QUALITY

ANDY:>brown>nasa-2>resource-methods.lisp.19 7/11/89 15:36:17 Page 2

(setf (qty qty-avail-obj) new-quantity)
(get-available-times
qty-avail-obj
{format nil "Specify An Available Time Period for Quantity ~S of ~S52?"
new-quantity name}) .
(push gty-avail-obj quantity-availability-list))))
))

(defmethod (add-available-time availability) ()
(get-available-times self (format nil "Specify An Available Time Period for ~S?" name)))

(defmethod (delete-available-time availability) ()
{let ((choice-list (loop for avail-obj in available-times-list
collect (list (format nil "~A thru ~A" (begin avail-obj)
{end avail-obj)) avail-obj)))
(choice nil})) '
(loop until (setf choice (dw:menu-choose (push ‘' (NONE NONE) choice-list)
:prompt "Choose time period to delete or NONE")))
(unless (eql choice ‘none)
(setf available-times-list (delete chozce available-times- lxst)))))

(defmethod (get-available-times availability) (query-string)
;;;get~available-times elicites the times that a resource is to be available and
s2;checks whether the new times are logical (begin before end) and ensures they
;;;don’t overlap other times. Additionally, if the object is a
;ssqQuantity-availability (implicitly, belonging to a consumable resource, checks
/s;not only the current quantity but other quantities as well.
(let ((avail-obj nil) (choice nil) (new-begin 0) (new-end 0))
(loop until (and choice (eql choice ’‘no))
do
(loop until
(setf choice
(dw:menu-choose
*{(yes yes) (no no))
:prompt query-string
1))
{(unless (eql choice ’no)
{setf avail-obj (make-instance ‘available-time :owner-obi self))
(dw:accepting-values
(*standard-output* :own-window t :label .
(with-character-style (’(:fix :bold :very-large)
" nil :bind-line-height t)
"Describe Available Times "))
(setf ’
new-begin
(accept ‘number :default new-begin
:query-identifier ‘new-begin
:stream *standard-output®* :prompt
(format nil "Enter Time Resource Becomes Available "))
new~-end
(accept ‘number :default new-end
:query-identifier ’‘new-end
:stream *standard-output®* :prompt
{format nil "Enter Last Time Resource is Available "))))
(setf (bedin avail-obj) new-begin) .
(setf (end avail-obj) new-end)
(unless (improper-times-p self new~begin new-end)
(push avajil-obj available-times-list))))))

{(defmethod (improper-times-p availability) (new-begin new-end)
{cond ({< new—end new-begin)
(report-error
mission
(format
nil
"attempt to specify an end time earlier that the start time for ~S of type ~S"
(name self) (type-of self)))
t)
((= new-begin new-end)
(report-error
mission
(format nil
"attempt to specify an end time equal to the start time for ~S of type ~S"

pnsd ORIGINAL PAGE I8
OF POOR QUALITY

ANDY:>brown>nasa-2>resource-methods.lisp.19 7/11/89 15:36:17 Page 3

(name self) (type-of self)))
t)
({overlapping-times-p self new-begin new-end) t)
(t nil)))

(defmethod (overlapping-times-p availability) (new-begin new-end)
(overlapping-times-p-aux self new-begin new-end))

(defmethod (overlapping-times-p quantity-availability) (new-begin new-end)
(overlapping-times-p (owner-obj self) new-begin new-end (qty self)))

(defmethod (overlapping-times-p consumable-resource) (new-begin new-end quant)
(loop for quantity-availability in quantity-availability-list
do

(when (overlapping-times-p-aux quantity-availability new-begin new-end quant)
{return t))))

(defmethod (overlapping-times-p-aux availability) (new-begin new-erid éoptional quant)
(loop for available~time in available-times-list
do :
(unless
(or (and (< new-begin (begin available-time))
(< new-end {(begin available-time)))
{and (> new-begin (end available-time))
(> new-end (end available~time))})
(report-error
mission
(if (typep self ’‘quantity-availability)
(format nil
"the new beginning ~S and ending time ~S for quantity ~S overlap an existing a
vailable time frame. You must modify the exiting one first, whose beginning time is ~S and end:ng
time is ~5 for ~S , quantity = ~S, of typé ~S" new-begin new-end quant (begin available-time) ien
d available-time) (name self) (qty self) (type-of self)) .
(format nil
"the new beginning ~5 and ending time ~S overlap an existing available time frare.
You must modify the exiting one first, whose beginning time is ~S and ending time is ~S for ~S o
£ type ~5"
new-begin new-end (begin available-time) (end available-time) (name self)
{type-of self))))
(return t))))

(defmethod (create-new-obj crew-mamber) ()
(get-name-and-available-times self)
(add-resource *mission* self ‘crew-list))

(defmethod (get-name-and-availabiw-times availability) ()
(let ((new-name ‘unknown))
(dw:accepting-values (*standard-output* :own-window t :label "Enter Name of New Resource”)
(setf new-name (accept ‘symbol :default new-name :query-identifier ’‘new-name
:stream *standard-output® :prompt
"Enter Name ")))
(setf name new-name)
(get-available-times
self (format nil "Specify An Available Time Period for ~S$?" new-name))})

{defmethod (create-new-obj attitude) ()
(get~-name-and-available-times self)
(add-resource *mission* self ’‘attitude-list))

(defmethod (create-new-obj target) ()
{(get-name-and-available-times self)
{add-resource *mission* self ‘target-list))

FEAEE AR SRSl SRR st id Rttt d s dsadidg sttt titidlstaadsds

;7; mathods to program crew member shifts

(defmethod (setup-crew-member-duty-shifts nasa-init-obj) ()
(setf seconds-per-shift (/ seconds-per-day 2))
(correct-shift-start-time-representation self)

(setf shift-availability-objs
{(list (setup-crew-member-duty-shifts-aux
self
1)

ORIGINAL PAGE IS

OF POOR QUALITY
. A-50

ANDYz:>brownsnasa-2>resource-methods.lisp.19 7/11/89 15:36:17 Page 4

(setup-crew-member-duty-shifts-aux
self 2)))

(=e‘macz=o2 {create-first-available-time-period nasa-init-obj)
isnift-number)
lez ‘{szarz-time (second (assoc shift-number shift-start-times))))
vasiues
nnoon {(make-instance
‘available~-time
:begin (if (< start-time universal-start-time)
0
(translate-universal-time-to-time-period start-time))
tend (l- (translate-universal-time-to-time-period
(+ start-time seconds-per-shift)))))
-~ sTar=-time seconds-per-day))))

‘correct-shift-start-time-representation nasa-init-obj) ()
-start-times
for (shift-num start-time-list) in shift-start-times
collect
{(list shift-aum
{+ universal-start-time
(translate-time-list-to-seconds start~time-list}})))})

=

{zeinecnc
2 s
!

izefmezinzg setup-crew-member~-duty-shifts-aux nasa-init-obj)
. s=ift-pnumber)
f<~-availat’e-objs nil)

lez
~d-shift-scart-time nil))
-2 SUN _e-value-setq (shift-available-objs second-shift-start-time)
ezze~-first-available-time-period self shift-number})
- w: done = nil ’
E il done
count from 1
£:- shift-start-time from second-shift-start-time
by seconds-per-day
shift-end-time = (+ seconds-per-shift shift-start-time)
‘{shift-time-falls-on-a-sunday-p *mission* shift-start-time)
{setf second-shift-start-time shift-start-time done t))
‘2z {(push (make-instance
‘available-time
:begin (translate-universal-time-to-time-period
- shift-start-time)
tend (1- (translate-universal-time-to-time-period shift-end-time)))
shift-available-objs))))
.zzzz £:: shifrt-start-time from (+ second-shift-start-time seconds-per-day)
by seconds-per-day
below (- universal-end-time seconds-per-shift)
counter from O by 1
{zerop (mod counter 7))
{make-instance -
‘available-time
:begin (translate-universal-time-to-time-period shift-start-time)
send (1- (translate-universal-time-to-time-period
(+ shift-start-time seconds-per-shift))))
shift-available-objs)))
cevwerse shift-available-objs)))
(Zefmazzzed "shift-time-falls-on-a-sunday-p mission) (shift-start-time)
< _-rst-s:unday-start-time init-obj)

snrifz-start-time
- ({£irsz-sunday-start-time init-obj) (seconds-per-day init-obj))}))

ORIGINAL PAGE IS
OF POOR QUALITY
A-51

ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.17 Page 1

i7¢ =-*"- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

L 2]

‘ (find-time-crew-available-after crew-available-in-time-periods-sux-2 crew-available-in-time-perio
ds-aux crew-available-in-time-periods-p crew-not-present-in-time-periods-p crew-not-present-in-tim
e-periods-aux find-earliest-time-crew-combination-available crew-combination-available-in-periods-
aux crew-combination-available-in-periods-p step-schedulable-crew-viewpoint-aux step-schedulable-c¢
rew-viewpoint-p)

i1é

(defmethod (:print-self consumable-resource) (stream &rest ignore)
(format stream "#<CONSUMABLE-RESOURCE ~A>" NAME))

(defmethod (:print-self non-depletable-resource) (stream &rest ignore)
(format stream "#<NON-DEPLETABLE-RESOURCE ~A>" NAME))

(defmethod (:print-self crew-member) (stream &rest ignore)
(format stream "#<CREW-MEMBER ~A>" NAME))

(defme-nod (:print-self available-time) (stream &rest ignore)
(format stream "#<AVAILABLE~-TIME ~A ~A>* BEGIN END))

(defmethod (:print-self time-slice) (stream &rest ignore)
(format stream "#<TIME-SLICE ~A ~A>" start-time END-time))

(defmethod (:print-self durable-resource) (stream srest ignore)
(format stream "#<DURABLE-RESQURCE ~A>* name))

(defmethod (:print-self experiment) (stream érest ignore)
(format stream "#<EXPERIMENT ~A>" name))

(defmethod (:print-self performance) (stream &rest ignore)
(format stream "#<PERFORMANCE ~S EXP ~S>"number
(if owning-experiment (name owning-experiment) nil)))

(defmethod (step-schedulable-crew-viewpoint-p step)
{scheduled-period-list start-time &key (dont-use-current-crew nil))
(let ((result :all-combinations-failed) (combination-result nil)
(hew-start-time nil) (new-time-list nil) (combination-list nil))
(cond ((or (null crew-requirements) crew-monitor) (setf result :success))
((and crew-lockin (not (= crew-lockin number)))

(multiple-value-setq (result new-start-time)
{crew-combination-available-in-periods-p self scheduled-period-list
(scheduled-crew-list (find-step-numbered owning-object crew-lockin))
start-time))

(if (eql result :success)

(setf start-time new-start-time
scheduled-crew-1list .
{scheduled-crew-list (find-step~numbered owning-object crew-lockin})))
(setf result :lock-crew-failure)))
((null crew-combinations)
(error “crew~-combinations have not been set for step ~S" self))
(t .

(when dont-use-current-crew
{push scheduled-crew-list failed-crew-combinations) (setf scheduled-crew-list nil))

(loop for crew-combination in crew-combinations until (eql result :success)

do
(multiple-value~setq (combination-result new-start-time)
ssscrew-combination-avajilable-in-periods-p returns :success and start-time if
/¢s:sucessful, and returns nil and the time (if any) the combination is
sé;available
(crew-combination-available-in-periods-p
self scheduled-period-list crew-combination start-time))
(cond ((eql combination-result :success)
(setf scheduled-crew-list crew-combination)
(setf result :success))
(t
(when new-start-time
(push crew-combination combination-list)
(push new-start-time new-time-list)))))
(setf new-start-time nil)
(cond ((eql result :success) nil)
{{null new-time-list)

A-52 ORIGINAL PAGE IS
OF POOR QUALITY

- ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.17 Page 2

(setf start-time nil failed-crew-combinations nil))
(t (loop for time in new-time-1list
for crew-combo in combination-list
do
(unless (member crew-combo failed-crew-combinations
{cond ((null new-start-time)

(setf new-start-time time scheduled-crew-list crew-combo))
({< time new-start-time)

(setf new-start-time time scheduled-crew-list crew-combo))
(t nil))))

(setf start-time new-start-time)

(when (null new-start-time)

{setf result :all-combinations-failed start~time (l1+ start-time))))}})
(values result start-time)))

itest #’equal)

(defmethod (find-step-numbered performance)
(let ((result nil))
(loop for step in step-list
until result
~ do
(when (= (number step) step-number)

(setf result step)))
result))

(step-number)

(defmethod (crew-combination-available-in-periods-p step)

(period-list crew-combination start-time)
(let ((result :success))

(loop for crew in crew-combination

until (not (eql result :success))
do

(multiple-value-setq (result start-time)
(crew-avajlable-in-time~-periods-p crew start-time max-duration))
(cond ((and (not (eql result :success)) (null start-time))
ssisthis crew member never available for a sufficiently long time

nil) :

((not (eql result :success))

nil)

(t (multiple-value-setqg (result start-time)

{(crew-not-present-in-time-periods-p self period-list crew start-time))
nil)));;; we passed both checks

(values result start-time)))

(defmethod (crew-combination-available-in-periods-aux step)
(let ((result :crew-conbination-not-available))
(loop until (or (eql result :success)
(null start-time)
(> (1~ (+ start-time max~-duration))

(crew-combination start-time)

do

(multiple-value-setq (result start-time)
(crew-combination~available-in-periods-p
self
(get-time-instance-list
mission start-time (1~
(1f last-time-slice
last-time-slice
(1f previous-step
(last-time-slice previous-step)
nil)))
crew-combination start-time)))
(if (eql result :success) start-time nil)))

(max-time (init-obj *missionv*))))

(+ max-duration start-time))

(defmethod (find-first-time-crew-scheduable-after step) (time)
(let (({times nil))

(loop for combination in crew-combinations

for new-time = (find-earliest-time-crew-combination-available
self combination (l1+ time))
do

ORIGINAL PAGE IS
A-53 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.17 Page 3

(when new-time
(push new-time times)))
(if times (apply #'min times) nil)))

(defmethod (find-earliest-time-crew-combination-available step)
(crew~-combination start-time)
{let ({result nil))
(loop until (or (eql result :success)
(null start-time)
(> {1- (+ start-time max~-duration)) (max-time (init-obj *mission+*))))
do
(multiple-value-setq (result start-time)
(crew-combination-available-in-periods-p
self (get-time-instance-list
mission start-time (1- (+ max~-duration start-time))
(if last-time-slice
last-time-slice
(if previous-step
(last-time-slice previous-step)
. nil)))
crew-combination start-time)))
(if (eql result :success) start-time nil)}))

(defmethod (crew-not-presant-in-time-periods-p step) (periods-list crew start-time)
{let ((result :success)))
{loop for period in periods-list
ss7until (not (eql result :success))
do
(when (resource-present-in-period period :crew crew)
(setf result :crew-already-scheduled)
(setf start-time (l+ (end-time period)))))
;27 (crew-not-present-in-time-periods-aux self crew (l+ (end-time period))))))
(values result start-time)))

(defmethod (crew-not-present-in-time-periods~aux step) (crew start-time)
(let ((result nil))
(loop until (or (eql result :success) .
(> (+ start-time max-duration) (max-time (init-obj *mission*))))
do
(multiple~value-setq (result start-time)
(crew-not-present-in-time-periods-p
self
(get-time-instance-1ist
mission start~-time (1- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(1f previous-step :
(last-time-slice previous-step)
nil)))
crew start-time)))
(if (eql result :success) start-time nil)))

(defmethod (crew-available-in-time-periods-p crew-member) (atart-time duration)
fcond ((null start-time) (values nil nil))
(t
(let ((end-time (1- (+ duration start-time))) (result nil))
{multiple-value-setq (result start-time)
(crew-avajlable-in-time-periods~aux self start-time end-time))

(unless (eql result :success)
(setf start-time (crew-available-in-time-periods-aux-2 self start-time duration)))

(values result start-time)))))

(defmethod (crew-available-in-time-periods-aux availability) (time step-end-time)
(let ((available~obj (available-at-time self time)))
{(cond ((null available-obj)

nil)
;:;¢ indicates some time period for which the crew member was unavailable

((> time step-end-time)
;2s for this to be true, we must have found an available object for each

;. time period)
(setf available-obj :success))

ORIGINAL PAGE IS

A-54 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-crew-steps.lisp.17 Page 4

{((S step-end-time {end available-obj))

;;s the time period of interest is completely covered by this

;2: available-time obj

{setf available-obj :success))

(¢t ,;; the crew-member is available in the current time period, but we

;2: have not covered all times yet

({setf available-obj

{crew-avajilable-in-time-periods-aux
self (1+ (end available-obj)) step-end-time))))

(values available-obj time)))

{defmethod (crew-available-in-time-periods-aux-2 crew-mamber) (start-time duration)
(cond {(null start-time) (values :crew-not-available nil)))
(t
(let ({result nil))
(loop until (or (eql result :success)
(null start-time)
{(> (1~ (+ start-time duration))
(max-time (init-obj *mission*))))
do
(setf start-time (find-time-crew-available-after self start-time))
(multiple-value-setq (result start-time)
(crew-available-in-time-periods-p self start-time duration)))
(if (eql result :success) start-time nil)))))

(defmethod (find-time-crew-available-after crew-member) (start-time)
(let ({result nil))

(loop for available-obj in available-times-list
until result
do

{(when (> (begin available-obj) start-time)
(setf result (begin available-obj)}))
result))

A=55 ORIGINAL PAGE 1S
, OF POOR QuALTY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-durable-resource.lisp.9 Page 1

xf;;; -%*~ Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

{defmethod (step-schedulable-durable-viewpoint-p step)
(period-1list delay-list start-time)
{let ((result :success) (new-time start-time))
(loop for (resource quant) in durable-resource-list
until (not (eql result :success))
do
(multiple-value-setq (result new-time)
(sufficient-durable-resource-in-periods-p
self period-list resource quant start-time))
(cond (({not {eql result :success))
{setf result :durable-resource-not-available)
(when new-time
(setf new-time (step-schedulable-durable-viewpoint-aux self new-time))))
({and resource-carry-thru
(not (zerop step-delay-min)))
(multiple~value~setq (result new-time)
(sufficient-durable-resource-in-periods-p
self delay-list resource quant
(+ max-duration start-time)))
(cond ((not (eql result :success))
(setf result :durable-resource-not-available)
(when new-time
(setf new-time (step-schedulable-durable-viewpoint-aux self new-time))))
(t nil)))))
{(values result .new~time)))

(defmethod (step-schedulable-durable-viewpoint-aux step) (start-time)
(let ((result :success) (new-time start-time))
(cond ((> (+ start~time min-duration) (max-time (init-obj *mission*)))
(setf result :max-time-exceeded new-time nil))
(t
(multiple-value-setq (result new-time)
(step-schedulable-durable~-viewpoint-p
self
(get-time-inatance~list
*mission® new~time (1- (+ max-duration new-time))
(if last-time-slice
last-time-slice
(if previous-step
{last-time-slice previous-step)
nil)))
(if (or (null resource-carry-thru) {(zerop step-delay-min))
nil
(get-time-instance-1list
mission (+ max-duration new-time)
(1- (+ step-delay-min max-duration new-time)))
(if last-time-slice
last-time-slice
(if previous-step
(last-time~slice previous-step)
nil)))
new-time)))).
(if (eql result :success) start-time new-time)))

(defmethod (sufficient-durable-resource-in-periods-p step)
{period-list resource quant start-time)
(let ((result :success) (new-time start-time))
(loop for period in period-list
until (not (eql result :success))
do .
(multiple-value-setq (result new-time)
{sufficient-durable-resource-in-period
self period resource quant start-time)))
(values result (if (eql result :success)
(+ max-duration start-time)
new~-time))))

{(defmethod (sufficient-durable-resource-in-period step)

(period resource quant step-start-time)
;s;the start time of the period may be less that the start time of the step for the

ORIGINAL PAGE 18
A-56 OF POOR QUALITY,

ANDY:>brown>nasa-2>scheduler-feasibility-methods-durable-resource.lisp.9 Page 2

;;;first period, and the end time may be greater than the end time of the step for
;;;the last period
(let* ((result :success) (return-time step-start-time)
(max-quant (available-quantity resource))
(step~-list nil) (commited-quant nil))
(multiple-value-setq (commited-quant step-list)
(find-quant-durable-resource~already-committed
period resource))
(unless
(and max-quant (2 max-quant
(+ quant
commited-quant)))
(setf result :insufficient-durable-resource return-time
(find-time-durable-resource-no-longer-held-by-steps self step-list resource)))
(values result return-time)))

(defmethod (find-quant-durable-resocurce-already-committed time-slice) (resource)
(let ((result 0) (step-list nil))
(loop for (com-resource com-quant step) in durable-resource-list
do
(wvhen (eql resource com-resource)
(incf result com-quant)
(push step step-list)))
{(values result (min step-list))))

(defmethod (find-time-durable-resource-no-longer-held-by-steps step) (step-list resource)
(let ((result 0))
(loop for step in step-list
for last-time =
(find-time-durable-resource-no~longer-held-by-steps-aux step resource)
do .
{(when (> last-time result)
(setf result last-time)))
result))

(defmethod (find-time-durable-resource-no-longer-held-by-steps-aux step) (resource)
(cond ((and next-step (member resource durable-resource-list :key #'first))
(find-time-durable-resource~no-longer~held-by-steps-aux next-step resource))
((member resource durable-resource-list :key #’first)
(1+ scheduled-end-time))
(t scheduled~start-time)))

A-57 ORIGINAL PAGE 1S
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduIer-feasibility-methods-non-depletable.lisp.4 Page 1

;73 =*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 ~-*-

(defmethod (step-schedulable-non-depletable-viewpoint-p step)
(period-list delay-list start-time)
(let ((result :success) (new-time start-time))
(loop for (resource quant tolerance) in non-depletable-resource-list
until (not (eql result :success))
do
(multiple-value-setq (result new-time)
(sufficient-non-depletable-in-periods-p
self periaod-list resource quant tolerance start-time))
(cond ((not (eql result :success))
(setf result :non-depletable-not-available)
{(when new-time
(setf new~time (step-schedulable-non-depletable-viewpoint-aux self new-time))))
((and resource-carry-thru (not (zerop step-delay-min))}
(multiple-value-setq (result new-time)
(sufficient-non-depletable-in-periods-p
self delay-list resource quant tolerance (+ start-time max-duration)))
(cond ((not (eql result :success))
(setf result :non-depletable-not-available)
(when new-time
(setf new-time (step-schedulable-non-depletable-viewpoint-aux
self new-time))))))))
(values result (if (eql result :success) start-time new-time))))

{(defmethod (step-schedulable-non-depletable-viewpoint-aux step) (start-time)
(let ((result :success) (new-time nil)) . =
{(cond ((> (1- (+ start-time max-duration)) (max-time (init-obj *mission*)))
nil)
(t
(multiple-value-setq (result new-time)
(step-schedulable~non-dapletable-—-iewpolint-p
self (get-time-instance-list
mission start-time (l1- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(1f previous-step
(last-time-slice previous-step)
nil)))
(1f (or (null resource-carry-thru) (zerop step-delay-min))
nil
(get-time-instance-list
mission (+ max~-duration new-time)
(1- (+ step-delay-min max-duration new-time)))
(if last-time-slice
last-time-slice
(1f previous-step
(last-time-slice previous-step)
nil})))
start-time))
(cond ((eql result :success) start-time)
(t new-time))))))

(defmethod (sufficient-non-depletable-in-periods-p step)
(period~list resource quant tolerance start-time)
(let ((result :success) (new-time start-time) (return-time start-time)
(return-result :success))
{loop for period in period-list
do
(multiple-value-setq (result new-time)
(sufficient-non-depletable-in-period
self period resource quant tolerance start-time))
{unless (eql result :success)
(setf return-result result)
(setf return-time new-time)))
{values return-result (if (eql return-result :success)
(+ max-~duration start-time)
return-time))))

{defmethod (sufficlent-non-depletable-in-period step)
(period resource quant tolerance start-time)

=

ORIGINAL PACE 15

© A-58 OF POOR & - -i¥

ANDY:>brown>nasa-2>scheduler-feasibility-methods-non-depletable.lisp.4 Page 2

and the end time may be greater than the end time of the step for
;;;the last period
(let ((result :success)

(already-committed nil) (max-pos-tol nil)
(available-time-obj
(resource-available-in-period resource (max start-time (start-time period}))))
(multiple-value-setq (already-committed max-pos-tol max-neg-tol)

(find-quant-non-depletable-already-committed period resource))
{cond ((null available-time-obj)

/s there is no availability object --
;;; implies 0 availability
(setf result

;;;/the start time of the period may be less that the start time of the step for the
s::first period,

(return-time start-time)

(max-neg-tol nil)

:non~depletable~not-available
return-time (start-time

(find-earliest-available-time-after
resource (l1+ (start-time period))))))
((and (check-quantities

self already-committed max-pos-tol max-neg-tol quant tolerance
(qty (owner-obj available-time-obj)}))
;;; we have enough

(2 (end -available-time-obj)

{end-time period))) ,;;/we’ve looked at
;2s,all times
(setf return-time (l+ (end-time period))))
((check-quantities

self already-committed max-pos-tol max-neg-tol quant tolerance
(gty {(owner-obj available-time-obj)))

;77 haven’t looked at all times
(multiple-value-setq (result return-time)
(sufficient-non-depletable-in-period
self period resource quant tolerance (l+
(t ;7

there is some available,
(setf result

;/:; we have enough but

(end available-time-obij)))))

:non-depletable-not-available return-time
(min (1+ (end-time period)) (1+
(values result return-time)))

but not enocugh

(end available-time-obj)))})))
(defmethod (check-quantities step)

(already-committed max-pos-tol max-neg-tol quant tolerance avail-quant)
{(cond ((zerop tolerance) ;;; If there is no toleranca, consider the max amount of
;2. negative tolerance (reserve resource) which must be maintained
(S (+ quant already-committed) (+ avail-quant max-neg-tol)))
{{(minusp tolerance) ;,;; if the tolerance is negative, consider the largest
;;7; required reserve
(1f (< tolerance max-neg-tol)

(S (+ quant already-committed) (+ avail-quant tolerance))
(S (+ quant already-committed)
(t

(+ avail~quant max-neg-tol))))
(cond ((zerop max-neg-tol)
(s
(t

(if

;;; we still must maintain sufficient reserve

(+ quant already-committed) (+ avail-quant max-neg-tol)))

(> tolerance max-pos-tol)

(S (+ quant already-committed) (+ avail-quant tolerance))

(S (+ quant already-committed) (+ avail-quant max-pos-tol))})))))

(defmethod-(tind-quant-non-dgpletable—llttady-committ.d time-slice) (resource)
(let ((committed 0)

(max-pos-tol 0) (neg-tol 0))
(loop for (com-resource com-quant tol-quant dummy) in non-depletable-resocurce-list
do
durmy

(when (eql resource com-resource)
(incf committed com-quant)
(cond {((null tol-quant) nil)
((zerop tol-quant) nil)
((and (minusp tol-quant) (< tol-quant neg-tol))
(setf neg~tol tol-quant))
{{and (plusp tol-quant) (> tol-quant max-pos-tol))
{setf max-pos-tol tol-quant)})))
(values committed max-pos-tol neg-tol)))

ORIGINAL PAGE IS
A-59 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-other-steps.lisp.12 Page 1

ll

;¢ =*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -=-

#l1
* (BACKTRACK SCHEDULE-OTHER-STEPS)
e

(defmethod (SCHEDULE~OTHER-STEPS performance)
(current-step start-time &key (dont-use-current-crew nil))
(cond ((null current-step) (values :success start-time))
(t
{let
({last-step (previous-step current-step)) (new-time start-time) (result nil})
(if last-step
(multiple-value-setq (result new-time)
(step-schedulable-starting-between-inclusive-times-p
current-step
(if (numberp new-time) new-time
(calc-next-step-earliest-start-time last-step))
(calc-next-step-latest-start-time last-step)
:dont-use~current-crew dont-use-current-crew))
(multiple-value-setq (result new-time)
(step-schedulable~-starting-at~time-p
current-step start-time nil
:dont-use-current-crew dont-use-current-crew}})
(cond ((eql result :success)
;¢; 1 have a start time within the window
(if last-step
(setf (scheduled-start-time current-step) new-time
{scheduled-end-time current-step)
(1- (+ new-time (max-duration current-step))))
(setf (scheduled-start-time current-step) start-time
{scheduled-end-time current-step)
(1- (+ start-time (max-duration current-step)))))
(multiple-value-setqg (result new-time)
;;s all others have a start time
(SCHEDULE-OTHER-STEPS self (next-step current-step)
{(calc-next-step-earliest-start-time current-step))))
((and (listp result) (eql (first result) :lock-crew-failure))
(if (= (second result) (number current-step))
(schedule-other-steps-aux self current-step start-time)
nil))
({(null (previous-step current-step))
;s 1 am trying to schedule the first step, and it has failed ~
;:; raturn the values of result and new-time, and quit
nil)
(new-time ;;; i have a start time outside of the window
(when (and (crew-lockin current-step)
(= (crew-lockin current-step) (number current—scep)))
(setf (failed-crew~combinations current-step) nil))
(multiple-value-setq (result new-time)
(BACKTRACK self (previous-step current-step) new-time)))
(t ;;; this step can never be scheduled
nil))
(values result new-time)))))

(defmethod (schedule-other-steps-aux performance) (current-step start-time)
{multiple-value-bind {result new-time)
(schedule-other-steps self current-step start-time :dont-use-current-crew t)
(values result new~time)))

(defmethod (BACKTRACK performance) (current-step earliest-start-time-of-next-step)
(let ((prev (previous-step current-step)) result)
(cond ((S (calc-next-step-earliest-start-time current-step)
earliest-start-time-of-next-step
(calc-next-step-latest-start-time current-step))
;;ithe proposed new start time of the next step is within the delay limits
;;;0f this step as currently scheduled.
{multiple-value-setq (result earliest-start-time-of-next-step)
{schedule~-other-steps self current-step
earliest-start-time-of-next-step))
(values result earliest-start-time-of-next-step))
{({null prev)
;2;1f you get here, you are working on the first step, and the time it is

ORIGINAL PAC™

ORIGINAL PAGE IS of pooR

A-60 OF '3()\;ﬁ (}'; ;’}"]f

e

ANDY:>brown>nasa-2>scheduler-feasibility-methods-other-steps.lisp.12 Page 2

s;;currently scheduled in is not ok
(setf (scheduled-start-time current-step) nil)
{values :total-failure .
(- earliest-start-time-of-next~-step (max-duration current-step)))})
(t ;;,the proposed new start time of the next step is not within the delay
s2;1imits of this step. The earliest and latest start times for
s2;the this step are computed which would allow next step to be
/2 :scheduled at the desired time [earliest-start-time-of-next-step]
{let ({earliest (calc-this-step-earliest-start-time
current-step earliest-start-time-of-next-step))
(latest (calc-this-step-latest-start-time
current-step earliest-start-time-of-next-step))
(start-time nil))
(multiple-value-setq (result start-time)
(step-schedulable~starting-between-inclusive-times-p current-step earliest
latest))
(cond (start-time , (eql result :success)
;ssa start time for the current step has been found within the delay
;;s;1imits of this step which allows the next step to be scheduled at
sssthe desjred time - now, we must check whether the new start time
;22 for the current step is compatable with the start time of its
sssparent.
(multiple-value-setq {(result earliest-start-time-of-next-step)
(backtrack self prev start-time))
(values result earliest-start-time-of-next-step))
(t .
;;;a start time cannot be found which will permit this step
/;/,to be scheduled within the delay limits imposed by scheduling
/;;the next step at earliest-start-time-of-next-step. Calculate
;s;the closing time of that window, and search forward from that
siitime.
{setf (scheduled-start-time (next-step current-step)) nil)
(values result start-time))))))})

ORIGINAL PAGE IS
OF POOR QUALITY

A-61

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 1

;¢ ~*= Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(2]

' (find-end-time-without-shutdown-steps find-start-time-without-startup-steps find-earliest-schedul
able-time-after startup-or-shutdown-steps-required-p between-experiment-constaints get-time-instan
ce-list get-tims-instance get-linked-object update-other-object link-steps copy-step find-step-num
bered remove-steps generate-required-steps copy-step-list calc-this-step-latest-start-time calc-th
is-step-earliest-start-time calc-next-step-latest-start-time calc-next-step-earliest-start-time bu
11d-1ist-from-linked-structure get-first-shutdown-step get-last-startup-step join-shutdown-steps 3
oin-startup-staps performance-schedulable-at-starting-time-p-aux-2 performance-schedulable-at-star
ting-time-p-aux find-first-time-no-overlap find-new-performance-window performance-schaedulable-at-
starting-time-p)

té

'-."'l""'...‘..'.""t'-"t""t".i."'."""""""""'"."Qt"'lt"".'t

;7 high level performance and step scheduling feasibility methods

! (defmethod (performance-schedulable-at-~starting-time-p performance)
(starting-time &optional scenario-number last-performance)
;s;the purpose of this method is to check whether there is an up-front, above
f s:;3tep level reason that the performance cannot be scheduled at the time
;. sdesignated
(let (new-time ok)
;;;check within experiment begin time constraints
(multiple-value-setq (ok new-time)
(ok-to~schedule-performance-starting-at-starting-time-p
owning-experiment starting-time last-performance))

s;s:0k will be t if ok, some other value otherwise
;/; new=time will be time to end, or nil if scheduling after last already
/7s; scheduled performance; otherwise, will indicate earliest time to try
! ;2 ;check between experiment constraints
;2/ have to check for directional and mutual dependencies, and for exclusions
;s; dependencies can be concurant start, during, and sequential
;sschaeck if startup or shutdown steps required
(cond ((and (eql ok t) (null (strategy owning-experiment)))
(multiple-value-setq (ok new-time)
(performance-schedulable-at-starting-time-p-aux
self starting-time scenario-number last-performance)))
({(and (eql ok t) (strategy owning-experiment))
(let ((table (make-hash-table)))
(loop for i from 0 to
(if (eql (first (strategy owning-experiment))
:max-weight)
[]
(1- (length (second (strategy owning-experiment)))))
do
(setf (gethash i table) starting-time))
(multiple-value-setq (ok new-time scenario-number)
(multiple~strategy-performance-scheduable-at-starting-time-p
self table (if scenario-number scenario-number 0) starting-time
last-performance))
(values ok new-time scenario-number)))
((eql ok :start-time-not-within-performance-window)
{setf new-time (find-new-performance-window owning-experiment starting-time)))
({eql ok :maximum-performances-violation)
(setf new-time nil))
((eql ok :overlap)
(setf new-time (find-first-time-no-overlap owning-experiment starting-time)))
({(eql ok :performances-per-window-violation) .
(setf new-time (find-new-performance-window owning-experiment starting-time))))
(values ok new-time)))

(defmethod (multiple-strategy-performance-scheduable-at-starting-time-p performance)
(table scen-number time last-performance)
(let ((result :multiple-scenario-failuare) (new-time nil) (new-scenario nil))
(multiple-value-setq (result new-time)
(performance-schedulable-at-starting-time-p-sux self time scen-number last-performance))
(cond ((eql result :success)
(values result new-time scen-number))
(t (setf (gethash scen-number table) new-time)
{setf new-time nil)
{loop for new-scenario-number from 0 below (send table :filled-elements)

ORIGINAL PAGE IS
A-62 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 2

for new-scenario-start-time = (gethash new-scenario-number table)

do
(cond ((null new-scenario-start-time)
nil)
(({null new-time)
{setf new-time new-scenario-start-time
new-scenario new-scenario-number))
((< new-scenario-start-time new-time)
(setf new-time new-scenario-start-time
new-scenarioc new-scenario-number))
(t nil)))
(when new-time
(multiple-valve-setq (result new-time new-scenario)
(multiple-strategy-performance~scheduable-at-starting-time-p
self table new-~scenario new-time last-performance))))
(values result new~time new-scenario))))

(defmethod (find-new-performance-window experiment) (start-time)
(loop for (start end performances) in performance-windows
do
(when (> start start-time)
(return start))))

(defmethod (find-first-time-no-overlap experiment) (start-time)
(let ((acheduled-times-list nil) (new-time nil))
(loop for performance in performance-list
do
{(when (scheduled-p performance)
(push (list (if (execute-start-up-steps-p performance)
(find-start-time-without-startup~-steps performance)
(scheduled-start-time performance))
(if (execute-shutdown-steps-p performance)
(+ (find-end-time-without-shutdown-steps performance)
min-performance-delay-time)
{+ {scheduled-end-time performance) min-performance-delay-time)))
scheduled-times-list)))
(loop for (start end) in
(setf scheduled-times-list (sort scheduled-times-list #°'< :key #’'first))
with done = nil until done
do
{cond ((S end start-time)
:;; this pair ends earlier than the time we are interested in
nil)
{{and new-time (< new~time start))
::; we previously found a new time,
:;; next performance -- we are done
(setf done t))

{(new-time
;22 we previously found a new time, but it fails to be strictly less

;22 than the start time of the next already scheduled performance
(setf new~-time nil})
({> end start-time)
;27 this is the first end greater than the start time when new-time is
;20 still nil
(setf new-time (1+ end)))))
new-time))

and it is less than the start of the

(defmethod (performance-schedulable-at-starting-time-p-aux performance)
(starting-time doptional (scenario-number nil) last-performance)
:s;the purpose of this method is to determine the scenario we are working on,
:s;the steps, and call aux-2 to do the real work
{let (ok new-time shutdown-steps-p start-up-steps-p)

(cond (scenario-number
;2 there i3 a strategy, and we are to examine a particular scenario

(generate-required-steps owning-experiment self scenario-number)
(compute-and-store-cumulative-consumption self)
(multiple-value-setq (ok new-time)
(performance-schedulable-at-starting-time-p-aux~2
self starting-time scenario-number last-performance))
(values ok new-time))

setup

ORIGINAL PAGE IS
OF POOR QUALITY

A-63

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 3

(t ;;.default case of startup, core and shutdown steps
(generate-required-steps owning-experiment self scenario-number)
{(multiple-value-setq (start-up-steps-p shutdown-steps-p)

(startup~or-shutdown- steps required-p owning-experiment satarting-time})
(when start-up-steps-~-p

(join-startup-steps self (first step-list))

(setf execute-start-up-steps-p t))
(when shutdown-steps-p (join-shutdown-steps self)

(setf execute-shutdown-steps-p t))
(compute-and-store-cumulative-consumption self)
(multiple~value~setq (ok new-time)

(performance-schedulable-at-starting-time-p-aux-2
self starting-time nil last-performance))
{(values ok new-time)))))

(defmethod (performance-schedulable-at-starting-time-p-aux-2 performance)
(starting-time éoptional scenario-number last-performance)
(let (result new-time (first-step (first step-list)))
(multiple-value-setq (result new-time)
(schedule-other-steps self first-step starting-time))
(cond
((eql result :success)
(setf scheduled-start-time (scheduled-start-time first-step)
scheduled-end-time (scheduled-end-time (first (last step-1list))))
(multiple-value-setq (result new-time)
(check-for-completion-within-performance-duration self result new-time))
(when (eql result :success)
(multiple-value~-setq (result new-time)
(Chock-tor-min-dolny-botvoen-portotmnnco-violntion self result new-time))
{(when (eql result :success)
(multiple-value-setq (result new-time)
{check-for-completion-within-performance-window sel’ result new-time))))
(setf new-time scheduled-start-time))
((and (not {eql result :success})
new-time scenario-number
(S new-time (max-time (init-obj *mission*))))
(multiple-value-setq (result new-time)
(performance-schedulable-at-starting-time-p-aux-2
self new-time scenario-number))
))
(values result new-time)))

R R R R A R R N T A R T R A R R N N T A T A A A N AT R I A T N T A TN A AR AN RN RN T T O NN AN NN XA R AN AN s o

;2:1low level functions

(defmethod (join-startup-steps performance) (first-step)
(let* ((startup-step-list (copy-step-list (startup-steps owning-experiment)))
(last-startup-step (first (last startup-step-list))))
(setf (next-step last-startup-step) first-step
(previous-step first-step) last~startup-step)
(setf step-list (concatenate ‘list startup-step-list step-list))))
(defmethod (jocin-shutdown-steps performance) ()
(let* ((last-step (first (last step-list)))
(shutdown-step~-list (copy-step-list (shutdown-steps owning-experiment))))
(setf (next-step last-step) (first shutdown-step-list)
(previous-step (first shutdown-step-list)) last-step)
(setf step-list (concatenate ‘list step-list shutdown-step-list))))

(defmethod (get-last-startup-step experimant) ()
(first (last startup-steps)))

(defmethod (get-first-shutdown-step experiment) ()
(first shutdown-steps))

(defun build-list-from-linked-structure (top-of-structure accessor)
(if (null top-of-structure)
nil

S
: RIGINAL PAGE |
A-64 , gF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.Iisp.33 Page 4

(cons top-of~-structure (build-list-from-linked-structure
(funcall accessor top-of-structure) accessor)}))

(defmethod (calc-next-step-earliest-start-time step) ()
(+ scheduled-start-time
step-delay-min max-duration))

(defmethod (calc-next-step-latest-start-time step) ()
(+ scheduled-start-time step-delay-max max-duration))

{(defmethod (calc-this-step-earliest-start-tima step) (start-time)
(- start-time (+ step-delay-max max-duration}))

(defmethod (calc-this-step-latest-start-time step) (start-time)
(- start-time (+ step-delay-min max-duration)))

(defmethod (copy-step-list performance) (new-step-list)
(loop for the-step in new-step-list
for this-step = (copy-step the-step self)
with prev-step = nil
collect this-step
do
(setf (owning-object this-step) self)
(when prev-step
(link-steps prev-step this-step))
(setf prev-step this-step)))

(defmethod (generate-required-steps experiment) (perf scenario-number)
(remove-steps perf)
{cond ((null scenario-number)
/¢ss; default case of startup, prototype and shutdown steps
(first (setf (step-list perf) (copy-step-list perf prototype-step-list))))
((and (eql (first strategy) :max-weight) (null (zerop scenario~number)))
(error "~%Sgenerate-required-steps called with max-weight strategy,
and scenario-number not equal to zero for performance ~S of experiment ~S"
perf self))
(t (loop for substrategy in (first (nth scenario-number (second strategy)))
with steps = nil
do
{if (eql (first substrategy) :consecutive)
(setf steps
(concatenate
*list steps
(loop for i from (second substrategy) to (third substrategy)
: collect (find-step-numbered self i))))
(setf steps
{concatenate
‘list steps
(loop for i in (second substrategy)
collect (find-step-numbered self i)))))
finally (setf (step-list perf) steps))
(first (setf (step-list perf)
(copy-step-list perf (step-list perf)))))))

(defmethod (remove-steps performance) ()
(setf step-list nil))

(defmethod (find-step-numbered experiment) (desired-number)

(let {((result nil))
(cond ((and shutdown-steps (2 desired~number (number (first shutdown-steps))))

(loop for step in shutdown-steps
until (= desired-number (number step))

finally (setf result step)))
({and prototype~step-list (2 desired~number (number (first prototype-step-list))))

(loop for step in prototype-step~list
until (= desired-number (number step))
finally (setf result step)))
(startup-steps

(loop for step in startup-steps
until (= desired-number (number step))

finally (setf result step)))
(t nil))
result))

AGE 1S

RIGINAL PAG!
A-65 (O)F POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page §

(defmethod (find-step-named performance) (desired-name)
(loop for step in step-list
until (= desired-name (name step))
finally (return step)))

(defmethod (copy-step step) (toptional (owner nil))
(make-instance ’step

:id id
:number number
:max~-duration max-duration
:min-duration min-duration
:step-delay-min step-delay-min
:step-delay-max step-delay-max
:cumulative~consumable~list nil
:consumable-resource-1list consumable-resource~list
:durable-resource-list durable-resource-list
:non-depletable-resource-list non-depletable-resource-list
:crew-requirements crew-requirements
:crew-combinations crew-combinations
:crew-lockin crew-lockin
ccrew-monitor crew-monitor
:crew-cycle crew-cycle
:crew-duration crew-duration
tcrew-late-shift crew-late-shift
icrew-early-shift crew-early-shift
:concurrent-with concurrent-with
ttarget-list target-list
tattitude-list attitude-list
:scheduled-crew-list nil
:crew-monitoring-time crew-monitoring-time
towning-object (if owner owner owning-object)))

(defun link-steps (prev-step n-step)
(setf (next-step prev-step) n-step (previous-step n-step) prev-step))

SRR A S AR O A AN R IR AR AR RS AR A IR A AN SR T AR AR I AN DS ST SRR OO T AR IR IR R AR R T ARA IR AR AR

;7 ;Stubs

(defun update-other-object (arg) arg
;ssthis stub is to be used to do actuval scheduling of an object which is to be
ssisconcurr:ntly scheduled with the object currently being scheduled
;{format t "this is a stub { defun update-other-object] with 1 arg ~A " argqg)
nil)

(defmethod (get-linked~-object mission) (arg) arg
;22 this stub is to be used to retrieve the actual object to be scheduled
;s concurrently with the currently being scheduled object. the return is passed
/;; to update-other-object
s (format t "this is a stub: [get-linked-object mission) with 1 arg = ~A" arg)
nil)

(defmethod (get-time-instance mission) (time-period &optional time-slice)
{cond {((null time-slice)
(get-time~-instance time-slice-holder time-period))
((S (start~-time time-slice) time-period (end-time time-slice))
time-slice) :
(t (get-time-instance time-._ice time-period))))

(defmethod (get-time-instance time-slice) (time-period)
(cond ((S start-time time-period end-time)
self)
((and (< end-time time-period) next-slice)
{(get-time-instance next-slice time-period))
({and (> start-time time-period) prev-slice)
(get~time-instance prev-slice time-period))))

(defmethod (get-time-instance-list mission) (start-time end-time &optional starting-instance)
(when (< end-time start-time)
{(error "~jget-time-instance-list called with start-time ~S5 greater than end-time ~S*
start-time end-time))
(loop with done = nil until done
with result = nil
with next-instance = nil
do

ORIGINAL PAGE IS

A-66 . OF POOR' QUALITY

_ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 6

(setf next-instance (get-time-instance
self start-time .
(if next-instance next-instance starting-instance)))
(cond ((> end-time (end-time next-instance))
{(push next-instance result)
(setf start-time (l+ (end-time next-instance))))
((S (start-time next-instance) end-time (end-time next-instance))
;;; this is the last instance A
(push next-instance result) ’
(setf done t)))
finally (if result (return (reverse result)) result)))

(defmethod (between-experiment-constaints step) ()
;{format t “this is a stub { between-experiment-constaints step] thh no args")

nil) -

(defmethod (startup-or-shutdown-steps-required-p axperiment) (time)
(let ({startup-p t) (shutdown-p schedule-shutdown-with-performance))
ss/s3tartup-p and shutdown-p initialized to t and
;7 ;schedule-shutdown-with-performance so that the proper values will be returned
;s7sin the case where the first performance is being scheduled
(unless startup-steps (setf startup-p nil))
(unless shutdown-steps (setf shutdown~p nil))
(when performance-list
{loop for performance in performance-list
with startup-flag = startup-p
with shutdown-flag = shutdown-p
222 1If this flag is set, we should be scheduling a sequence of
;:;; performances, each after the other, meaning that each will have to
/7,7 have shutdown steps scheduled and then un-scheduled unless we
s:;; intervne
until (and (null startup-flag) (null shutdown-flag))
do
(when (scheduled-p performance)
(cond ((and startup-flag
(< (find-start-time-without-startup-steps performance) time))
sssthis performance starts earlier than the new tima, hence, startup
;/s;,5teps not needed
(setf startup-flag nil))
((< time (find-start-time-without-startup-steps performance))
this performance starts later than the new time, hence,
;72; shutdown steps are not needed
{setf shutdown-flag nil))
((and shutdown-flag
(= (find-start-time-without-startup-steps performance) time))
this performance starts at the same time -~ save work by
;:: returning immediately will nil nil, knowning another check will
;2; reject this time
(setf startup-flag nil shutdown-flag nil))))
finally (progn (setf startup-p startup-flag)
(setf shutdown-p shutdown-flag))))
(values startup-p shutdown-p)))

i

sie

{(defmethod (find-start-time-without-startup-steps performance) ()
(if execute-start-up-steps-p

(loop for step in step-list
with first-core-step = (first (prototype-step-list owning-experiment))
do

(when (and (eql (name first-core-step) (name step))
(= (id first-core-step) (id step)))
(return (scheduled-start-time step))))
(scheduled-start-time (first step-list))))

(defmethod (find-end-time-without-shutdown-steps performance) () .
(if execute-shutdown-steps-p

(loop for step in step-list
with last-core-step = (first (last (prototype-step-list owning-experiment)))

AGE 1S
UALITY

A7 ORIGINAL P

OF POOR Q

ANDY:>brown>nasa-2>scheduler-feasibility-methods-performance-level.lisp.33 Page 7

do
{(when (and (eql (name last-core~step) (name atep))
{= {(id last-core-step) (id atep)))
{return (scheduled-~end-time step))))
{scheduled-~end-time (first (last step-listjl}})

ORIGINAL PAGE IS
OF PCOR QUALITY
A-68

ANDY:>brown>nasa-2>scheduler-feasibility-methods-resource.lisp.15 - Page 1

72 -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

ti
‘ {resource-available-in-period resource-available-in-periods get-object-named find-maximum-resourc

e-available find-quant-resource-already-committed sufficient-resource-in-period-aux sufficient-res
ource-in-period sufficient-resource-in-periods-p step-schedulable-durable-viewpoint-p find-earlies
t-step-schadulable-after-time step-schedulable-durablae-viewpoint-aux step-schedulable-non-depletadb
le-viewpoint-aux step-schedulable-non-depletable-viewpoint-p step-schedulable-consumable-viewpoint
-aux step-schedulable-consumable-viewpoint-p)

Ie

(defmethod (step-schedulable~-consumable-viewpoint-p step)
(period-list start-time)
(let ((result :success) (new-time start-time))
(loop for (resource quant) in cumulative-consumable-list
until (not (eql result :success))
do
(multiple-value-setq (result new-time)
(sufficient-consumable-in-periods-p self perjiod-list
resource quant start-time))
(when (eql result :success)
(multiple-value-setq (result new-time)
(sufficient~consumables-at-quant-availability-change-points
self resource quant start-time)))
(unless (eql result :success)

(when new-time
(setf new-time (step-schedulable-consumable-viewpoint-aux self new-time)))))

(values result (if (eql result :success) start-time new-time))))

{defmethod (step-schedulable-consumable-viewpoint-aux step) (start-time)
(let ((result :success))
(multiple~value-setqg (result start-time)
(step-schedulable~consumable-viewpoint-p
self (get-time-instance-list
mission start-time (l- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(if previous-step
(last-time-~slice previous-step)
. nil)))
start-time))
(1f (eql result :success) start-time nil)))-

(defmethod (sufficient-consumables-at-quant-availability-change-points step)
(resource quant start-time)
(let ((result :success) (new-time start-time))
(loop for period in (find-resource-availability-change-points resource start-time)
while (eql result :success)
de
(multiple-value-setqg (result new-time)
(sufficient-consumable-in-period self period resource quant (end-time period))))

(values result new-time)))

(defmethod (find-resource-~availability-change-points consumable-resource) {(time)
(let ((result nil)) - :
(loop for quant-avail in quantity-availability-list
with last-slice = nil
do
(loop for avail-obj in (available-times-list quant-avail)
do .
(when (€ time (end avail-obj))
(setf last-slice (get-time-instance *"mission* time last-slice))
) (push last-slice result))))
(when result
(setf result (sort result #’< :key #‘end-time)))

result))

VI II L0002l ieieeiiiidis
:2; these methods chack the availability of a resource with respect to a time-slice =
s;; namely the presence or absence of some resource in a time period, or the quantity
;22 in which the resource has already been committed.
(defmethod (sufficlient-consumable-in-periods-p step)

(period-list resource quant start-time)

ORIGINAL pp
G
A-69 OF Poor QUALE;T?

ANDY:>brown>nasa-2>scheduler-feasibility-methods-resource.lisp.15 Page 2

(let ((result :success) (new-time start-time))
(loop for period in period-list
do

(multiple-value-setq (result new-time)
{sufficient-consumable-in-period
self period resource quant start-time)))
{(values result (if (eql result :success)
(+ max-duration start-time)
new-time))))

(defmethod (sufficient-consumable-in-period step)
{(period resource quant start-time)
;;;the start time of the period may be less that the start time of the step for the
;::first period, and the end time may be greater than the end time of the step for
;;:the last period
(let ({result :success) (return-time start-time)
' (already-committed
(find-quant-consumable-already-committed period resource))
(available-time-obj .
(resource-available-in-period resource (max start-time (start-time period)))))
{(cond ((null available-time-obj) ,;; there is no availability object --
277 implies 0 availability
(setf result :consumable-not-~available
return-time (start-time
(find-earliest-available-time-after
resource (l+ (start-time period)))}))
((and (2 (qty (owner-obj available-time-obj))
. {+ quant already-committed)) ;,;;, we have enough
(2 (end available-time-obj) (end-time period))) ,,;we’ve looked at
;;;all times
(setf return-time (1+ (end-time period))))
{(2 (qty (owner-obj available-time-obj))
(+ quant already-committed)) .,,, we have enough but
2;: haven’t looked at all times
{multiple-value-setq (result return-time)
(sufficient-consumable-in-periocd
self period resource quant (l+ (end available-time-~obj})))})
(t ;;; there is some available, but not enough
(setf result :consumable-not-available return-time
{min (1+ (end-time period)) (1+ (end available-time-cbj))))))
(values result return-time)))

(defmethod (find-quant-consumable-already-committed time-slice) (resource)
(let ((result 0))
(setf result (gethash resource cumulative-consumable-table))
{unless result {(setf result 0))
result))

(defmethod (get-object-named nasa-init-obj) (resource-type resource)
(unless (member resource-type ‘ (:durable :consumable :non-depletable
:crew :target :attitude))
(error "get-object-named invoked on resource-type ~S" resource-type))
(loop for obj in (case resocurce-type
(:durable durable-resource-1list)
(:consumable consumable-resource-list)
(:non-depletable non-depletable-resource-list)
(:crew crew-list)
(:target target-list)
(:attitude attitude-list))
do (when (eql (name obj) resource)
(return obj))))

'..".'......'...".'..'.'.'...9".""'.."".'.".'.'.".".'.t'.'.....".'."..
s :s methods for determining whether a resource is available from the resource

;;: availability data -- whether these are really need will be determined when i
;2; finally decide what information will be recorded in each time period.

{defmethod (rescurce-available-in-periods non-durable-resource) (period-list)

(let ((result t))
{loop for period in period-list
do

ORIGINAL PAGE IS
A-70 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-resource.lisp.15

(unless (resource-available-in-period self (start-time period))
(setf result nil)))
result))

{defmethod (resource-available-in-period non-durable-resource) (time-period)
;2; returns an instance of available-time if sucessful
(let ((result nil))
{loop for quantity-availability-object in quantity-availability-1list
until result
do

(setf result (avajilable-at-time quantity-availability-object time-period)})

result))

(defmethod (find-earliest-available~time-after non-durable-resource) (time)
(let ((after-1ist nil)) .
{loop for quantity-availability-object in quantity-availability-list
do

Page 3

(loop for available-time-obj in (available-times-list quantity-availability-object)

do
{(when (> (begin available-time-obj) time)
(push available-time-obj after-list))))
(first (setf after-list (sort after-list #’'< :key #’begin)))))

A-71

ORIGINAL PAGE I§
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-step-level.lisp.34 Page 1

;:: —*- Mode: LISP:; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

1

’ (step-schedulable-starting-batwaen-inclusive-times-p available-at-time resource-present-in-pariod
resource-presant-in-periods-p-aux resource-present-in-periods-p resource-not-present-in-periods-p
step-schedulable-attitudae-viewpoint-aux stap-schedulable-attitude-viewpoint-p step-schedulable-ta
rget-viawpoint-aux step-schedulable-target-viewpoint-p analyze-times-for-type-failure step-schedul

able-starting-at-time-aux step-schedulable-starting-at-time-p)

11#

;2.things that still need to be done

;s;time-slice storage should be changed from a list to linked objects, or the insert
;;/;new mechanism must be redone

SARR R R G AR AL ARG AR RN IR R RO A RE SRR G LI RIO PG AR PRI EORR RO AR R AR IR EIRORR GO L S

;2s; this section deals with determining whether a step can be scheduled to begin at a
;2 specific time

;;/sthe proximity of this step to other steps in the same performance has already

;;;been checked by schedule-other-steps

;2:for now, - ’

;ssignore between-step and between experiment constraints

;;;ignore crew lockin

;s;/;ignore crew monitoring

2s;:,do check

;/.sdurable resource constraints

;s:non-depletable resource constraints

//sconsumable resource constraints

;sstarget constraints

;;/sattitude constraints

s2screw availablity constraints (simplified)

(defmethod (step-schedulable-starting-at-time-p step)
{start soptional last-slice &key (dont-use-current-crew nil)) -
;sswhen successful, returns the ending plus one on the step ; otherwise, returns the
s;:first time after the starting time that the step can be scheduled at
(let {((result nil))

(cond
((> (+ start (1- min-duration)) (max-time (init-obj *mission®)))
(setf result :exceeds-mission-duration start nil))
(t

(let* ((sch-pers
{(get-time-instance~list
mission start (l- (+ max-duration start))
{if last-slice last-slice
(if previous-step (last-time-slice previous-step) nil))))
{(delay-pers
(if (or (null resource-carry-thru) (zerop step-delay-min))
nil
(get-time-instance-list
mission (+ max-duration start)
{1- (+ max-duration start step-delay-min)))
(if sch-pers (first (last sch-pers)) nil)))
consum-p non-dep-p dur~p tgt-p att-p crew-p tgt-time consum-time non-dep-time
dur-time att-time crew-time (poss-1lst nil))
(multiple-value-setq (consum-p consum-time)
(step-schedulable-consumable-viewpoint-p self sch-pers start})
(multiple-value-setq (non-dep-p non-dep-time)
(step-schedulable-non-depletable-viewpoint-p self sch-pers delay-pers start))
(multiple-value-setq (dur-p dur-time)
{step-schedulable-durable-viewpoint~p self sch-pers delay-pers start))
(multiple-value-setq (tgt-p tgt-time)
{step-schedulable-target-viewpoint-p self sch-pers start))
(multiple-value-setq (att-p att-time)
(step-schedulable-attitude-viewpoint-p self sch-pers start))
(multiple-value-setq (crew-p crew-time)
(step-schedulable-crew-viewpoint~-p :
self sch-pers start :dont-use-current-crew dont-use-current-crew))
{cond ((and (eql :success consum-p) (eql :success non-dep-p) (eql :success dur-p)
(eql :success tgt-p) (eql :success att-p) (eql :success crew-p)}
(setf scheduled-start-time start result :success
scheduled-end-time (1- (+ start max-duration)))

6h¢uu&L PAGE IS
A-72 E}r ',LJ‘JK Q.‘"ALlTY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-step-level.lisp.34 Page 2

(setf start (+ max-duration start step-delay-min)
last-slice
(1f delay-pers (first (last delay-pers)) (first (last sch-pers)))))
((and (eql :success consum-p) (eql :success non-dep-p) (eql :success dur-p)
{eql :success tgt-p) (egl :success att-p) (eql :lock-crew-failure crew-p))
(setf result (list :lock-crew-failure crew-lockin)))
((and (eql :success consum-p) (eql :success non-dep-p) (eql :success dur-p)
{eql :success tgt-p) {eql :success att-p)
(eql :all-combinations-failed crew-p))
(setf result :all-combinations-failed start
(find-first-time-crew-scheduable-after self start)))
{(and consum-time non-dep-time dur-time tgt-time att-time crew-time)
(unless (eql :success consum-p)} (push consum-time poss-1lst))
{unless (eql :success non-dep-p) {push non-dep-time poss-lst))
{(unless (eql :success dur-p) (push dur-time poss-1lst}))
{(unless (eql :success tgt-p) (push tgt-time poss-lst))
(unless (eql :success att-~p) (push att-time poss-1st))
(unless (eql :success crew-p) (push crew-time poss-lst))
(multiple-value-setq (result start)
(step-schedulable-starting-at-time~aux self (apply #'max poss-lst))))
(t (setf start nil result
(analyze-times-for-type-failure
self consum-time non-dep-time dur-time tgt-time att-time
crew-time))))})))
(values result start)))

(defmethod (step-schedulable-starting-at-time-aux step) (start-time)
(let ((result nil))

(loop until (or {eql result :success)
(null start-time) .
(> (1= (+ start-time max-duration)) (max-time (init-obj *mission*})))

do
(multiple-value-setq (result start-time)
{step-schedulable-starting-at-time-p self start-time)))
(values nil (if (eql result :success) scheduled-start-time nil))))

(defmethod (analyze-times-for-type-failure step)
(consumable-time non-depletable-time durable-time target-time attitude-time
crew-time)
(let ((result nil))

(cond-every ((null consumable-time) (push :consumable-not-available result))
({null non-depletable-time) (push :non-depletable-not-available result))
{{null durable-time) {(push :durable-not-available result))
({null target-time) (push :target-not-available result))
({null attitude-time) (push :attitude-not-available result))
{{null crew-time) (push :crew-not-available result)))

result))

SIIIIILSILI 82277771770/ 170077777

(defmethod (step-schedulable-attitude-viewpoint-p step) (period-list start-time)
(let ((result :success))
(loop for attitude in attitude-list
until (not (eql result :success))
do
(multiple-value-setq (result start-time)
(resource-present-in-periods-p self petiod list :attitude attitude start-time))
(unless (eql result :success)
(when start-time
(setf start-time
{step-schedulable-attitude-viewpoint-aux
self :attitude attitude start-time)))))
{(values result start-time)))

(defmethod (step-schaedulable-attitude-viewpoint-aux step) (resource-type resource start-time)
{let (({result nil))
(loop until (or (eql result :success)
(> (1- {+ start-time max-duration)) (max-time (init-obj *mission®)})))

do

{multiple-value-setq (result start-time)

{step-schedulable-attitude-viewpoint-p

self
(get-time-instance-list

ORIGINAL PAGE s

OF POOR QUALITY
A-73

ANDY:>brown>nasa-2>scheduler-feasibility-methods-step-level.lisp.34

idont-use~current-crew dont-use-current-crew))
, (cond ((and (eql result :success)
(S first-start-time scheduled-start-time last-start-time))
:;; the step can be scheduled at the start time
(setf new-time scheduled-start-time))
({(eql result :success)
s2s; this shouldn’t happen

(error "~% step-schedulable-starting-between-inclusive-times-p got a value of

uccess back, but the time was not within limits>))

({and (listp result) (eql (first result) :lock-crew-failure)) nil)
{{(null new-time)

;2; we can’t find a time to schedule the step
nil)

((S first-start-time new-time last-start-time)

Page 4

;s we can’t schedule at the start time, but some other acceptable time

;;; was found
(setf result :success)
{setf new-time scheduled-start-time))

(t ;;; we found a time, but it is not acceptable -- return nil result and

;¢; new-time
nil})}
(values result new-time)))

A-75
PRECEDING PAGE BLANK NOT FILMED

HE -]

ANDY:>brown>nasa-2>scheduler-feasibility-methods-targets.lisp.3 ~ 7/11/89 Page 1

is; -*- Package: USER; Base: 10; Mode: LISP; Syntax: Common-lisp; =*=-

(defmethod (step-schedulable-target-viewpoint-p step) (period-list start-time)
(let ((result :success) (new-time start-time))
{(cond ((null target-list) nil)
{t (multiple-value~-setq (result new-time)
(step-schedulable~-target-intersect-p self period-list start-time))
(unless (egl result :success)
(multiple~value-setq (result new-time)
(step-schedulable-target-avoid-p self period-list start-time))
{unless (eql result :success)
{multiple-value-setq (result new-time)
(step~schedulable~-target-select-p self period-list start-time)))
(when new-~time
(setf new-time
(step-schedulable-target-viewpoint-aux self period-list new-time))))))
{(values result new-time)))

{(defmethod (step-schedulable-target-viewpoint-aux step) (resource-type resource start-time)
(let ((result nil}))
(loop until (or (eql result :success)
(> (1- (+ start-time max-duration)) (max-time (init-obj *mission®*))))
do
(multiple-value-setq (result start-time)
(step-schedulable-target-viewpoint-p
self
(get~time-instance-list
mission start-time (1- (+ max-duration start-time))
(if last-time-slice
last-time-slice
(if previous-step
(last-time-slice previous-step)
nil)))
resource-type resource start-time
M)
(if (eql result :success) start-time nil)))

(defmethod (step-schedulable-target-intersect-p step) (period-list start-time)
(let ((result :success) (new-time start-time))
(loop for. (designator target-sublist) in target-list
until (not (eqgl result :success))
do
(cond ((eql designator :intersect)
(loop for target in target-sublist
until (not (eql result :success))
do .
(multiple-value-setq (result new-time)
(resource-present-in-periods-p self period-list :target target start-time))
{unless (eql result :success)
(setf result :intercept-target-failure))))
At nil)))
(values result new-time)))

(defmethod (step-schedulable-target-avoid-p step) (period-list start-time)
(let ((result :success) (new-time start-time))
(loop for (designator target-sublist) in target-list
until (not (eql result :success))
do
{cond ({eql designator :avoid)
(loop for target in target-sublist
until (not (eql result :success))
do
(multiple~-value-setq (result new-time)
{target~not-present-in-periods-p self period-list target start-time))
(unless (eql result :success)
{setf result :intercept-target-failure))))
(t nil)))
(values result new-time)))

{(defmethod (target-not-present-in-periods-p step) (period-list target start-time)
(let ((result :success)})
(loop for period in period-list

A-76 ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-methods-targets.lisp.3 7/11/89

do
(cond ((resource-presaent-in-period period period :target target)
taviod-target-failure))

(setf start-time (1+ (end-time period)) result

(t nil)))
{values result start-time)))
(period~-list start-time)

(defmethod (step-schedulable-target-select-p step)
(new-time start-time))

{let ((result :init-value)
{loop for (designator target-sublist) in target-list
until (member result ’(:success :select-target-failure))
do

(cond ((eql designator :select)

{setf result :select-target-failure)

(loop for target in target-sublist
until (eql result :success)
do

(multiple-value-setq (result new-time)
(resource-present-in-periods-p

self period-list :target target start-time))))

(t nil)))

(unleas (eql result :success)
(setf result :select-target-failure start-time new-time))

{values result start-time)))

A-77

Page 2

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-pre-and-post-step.lisp.5 Page 1

-*- Mode: LISP:; Syntax: Common~Lisp; Package: USER:; Base: 10 -*-

AR
‘ (check-for-completion-vithin-performance-window check-for-min-delay-between-performance-violation

check-for-completion-within-performance-duration start-time-not-within-performance-window start-t
ime-violates-performances-per-window-restriction max-performances-violation-p start-time-is-within
-the-scheduled-time-of-some-other-performance-p ok-to-schedule-performance-starting-at-starting-ti

me-p)
11#

I R N N P R N S N AN S N A R R R R Y N P P N T YR SR R Ty eyl

;:¢ pre step scheduling constraint checkers
{defmethod (ok-to-schedule-performance-starting-at-starting-time-p experiment) (start-time srest i
gnore)
(cond ' ((max-performances-violation-p self)
(values :maximum-performances-violation nil))
({start~-time-is-within-the-scheduled-time-of-some-other-performance-p
self start-time)
(values :overlap nil))
{(start-time-not-within-performance-window self start- txme)
(values :start-time-not-within-performance-window nil))
((start-time-violates-performances-per-window-restriction self start-time)
(values :performances-per-window-violation nil))
(t (values t nil))))

(defmethod (start-time-is-within-the-scheduled-time-of-some- othor-portormanco-p experiment)
(starting-time) .
(when performance-list
(loop for performance in performance-list
for adjusted-end-time = (find-start-time-without-startup-steps performance)
for adjusted-start-time = (find-end-time-without-shutdown-steps performance)
do
{cond ({null (scheduled-p performance))
s2; if the performance has not been scheduled, don‘t worry about it
nil) ;
({(< starting-time (- adjusted-start-time min-performance-delay-time))
;;2clearly, not a violation
nil)
((S starting-time adjusted-start-time)
the starting-time is before the core of the other steps, but not at
;¢s least the minimum delay time before
(return t))
((< (+ adjusted-end-time min-performance-del. -time) starting-time)
clearly, not a violation

T

nil)
{{< adjusted-end-time starting-time)
;s; the starting-time is after the core of the other steps, but not at
;;; least the minimum delay time after
(return t))
((S adjusted-start-time starting-time adjusted-end-time)
;;¢ the new performance is to start during the core steps of the other
;2¢ performance
{return t)))))
;77 any violatlion causes an immediate return; hence, if we get here, there is not
s22 violation .
nil)

{defmethod (max-performances-violation-p experiment) ()
>

(loop for performance in performance-list
with count = 1
do

(when (scheduled-p performance)
{incf count))

finally {return count))

max-performances))

(defmethod (start-time-vioclates-performances-per-window-restriction experiment) (starting-time)
{loop for (start end allowed-performances) in performance-windows .
with count = 1 ;;,;the performance we are tying to schedule
for start-period = start
for end-period = end
do

ORIGINAL PAGE IS

A-78
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-feasibility-pre-and-post-step.lisp.5 Page 2

{when (S start-period starting-time end-period)
(loop for performance in performance-list
do
(when (and (scheduled-p performance)
(S start-period (scheduled-start-time performance) end-period))
(incf count)))
{return (> count allowed-performances})}))

(defmethod (start-time-not-within-performance-window experiment) (starting-time)
(let ((result nil))

(loop for (start end performances) in performance-windows
;:¢; this loop finds if the performance is in a window ~ result must be
;2¢ "not-ed” before being returned
until result
do-

(when (S start starting-time end)
(setf result t)))
(not result)))

SANE S RN AR ARG A IR SRR AR IR A I IR TR I AR R IR R R R AR R AN IR IR ISR SRR R ARG R RO SRR RO IR IR N AR A RS

s;; post step feasibility constraint checks

(defmethod (check-for-completion-within-performance-duration performance) (ok new-time)

(if (null new-time)

(values "check-for-completion-within-performance-duration called with null new-time"

new~time)
(1f (S (- scheduled-end-time scheduled-start-time)
(performance-time-window owning-experiment))
(values ok new-time)
(values :not-completed-within-performance-duration nil))))

(defmethod (check-for-min-delay-betwean-performance-violation performance) (ok new-time)
(if (null new-time) .
{values "check-for-min-delay-between-performance-violation called with null new-time"
new-t ime)
(loop for performance in (performance-list owning-experiment)
with adjusted-start-time = nil
do
(when (and (scheduled-p performance)
(< (scheduled-start-time performance)
{(+ scheduled-end-time
(min-performance-delay-time owning-experiment}))))
(if (execute-start-up-steps-p performance)
{progn
s2:1f the performance has start-up steps, then these steps will have to
;;:;be re-scheduled, and that must be taken into consideration when
;sschecking for the delay between performances
(setf adjusted-start-time (find-start-time-without-startup-steps performance))
(when (< adjusted-start-time
(+ scheduled-end-time
(min-performance-delay-time owning-experiment)))
(return (values :min-between-performance-delay-violation performance))))
(return (values :min-between-performance-delay-violation performance)))))
(values ok new-time)))

(defmethod (check-for-completion-within-performance-window performance) (ck new-time)
{when (null scheduled-end-time)
(error "check-for-completion-within-parformance-window called with null scheduled end time"
))
(loop with done = nil until (eql done :done)
for (start end performances) in (performance-windows owning-experiment)
do
(cond ((and (S start scheduled-start-time end)
(< end scheduled-end-time))
(setf done :almost-done new-time nil
ok (list :not-completed-within-perforrance-window (list start end))))
({eql done :almost-done)
(setf new-time start done :done))
(t nil)))
(values ok new-time))

ORIGINAL PAGE IS
OF POOR QUALITY

A-79

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 1

;i =*- Mode: LISP:; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(AN :

’ (update~cunilative-consumables add-tima-slice-to-list add-new-instance-to-time-slice-list schedul
e-event schedule-step-crew-members schedule-staep-cumulative-consumables schedule-step-consumable-r
esources schedule-step-non-depletable-resources schedule-step-durable-resources schedule-step sche
dule-performance record-performance-and-step-times find-unscheduled-performance schedule-n-perform
ances-of~experiment-beginning test-scheduler

resource~available-in-period resource-available-in-periods get-object-named find-maximum-rescurce-
available find-quant-resource-slready-committed sufficient-resource-in-period-aux sufficient-resou
rce-in-period sufficient-resource-in-periods-p step-schedulable-durable-viewpoint-p find-earliest-
step-schedulable-after-time step-schedulable-durable-viewpoint-aux step-schedulable-non-deplatable
~viewpoint-aux step-schedulable-non-depletable-viewpoint-p step-schedulable-consumable-viewpoint-a
ux step-schedulable-consumable-viewpoint-p

check-for-completion-within-performance-window check-for-min-delay-between-performance-violation ¢
heck-for~completion-within-performance-duration start-time-not-within-performance-window start-tim
e-violates-performances-per-window-restriction max-performances-viclation-p start-time-is-within-t
he-scheduled-time-of-some-other-performance-p ok-to-schedule-performance-starting-at-starting-time

i 4
BACKTRACK SCHEDULE-OTHER-STEPS

find-time-crew-available-after crew-available-in-time-periods-aux-2 crew-available-in-time-periods
-aux crew-available-in-time-periods-p crew-not-present-in-time-periods-p crew-not-present-in-time-
periods-aux find-earliest-time-crew-combination-available crew-combination-available-in-periods-au
X crew-combination-avajilable-in-periods-p step-schedulable-crew-viewpoint-aux step-schedulable-cre
w-viewpoint-p :

step-schadulable-starting-between-inclusive-times-p available-at-time resource-present-in-periocd r
esource-present-in-periods-p-aux resource-present-in-periods-p resource-not-present-in-periods-p s
tep-schedulable-attitude-viewpoint-aux step-schedulable-attitude-viewpoint-p step-schedulable-targ
et-viewpoint-aux step-schedulable-target-viewpoint-p analyze-times-for-type-failure step-schedulab
le-starting-at-time-~aux step-schedulable-starting-at-time-p

find-end~time-without-shutdown-steps find-start-time-without-startup-steps find-earliest-scheduladb
le-time-after startup-or-shutdown-steps-required-p between-experiment-constaints get-time-instance
-list get-time-instance get-linked-cbject update-other-object link-steps copy-step find-step-numbe
red remove-steps generate-required-steps copy-step-list calc-this-step-latest-start-time calc-this
-step-earliest-start-time calc-next-step-latest-start-time calc-next-step-carliest-start-time buil
d-list-from-linked-structure get-first-shutdown-step get-last-startup-step join-shutdown-steps joi-
n-startup-steps performance-schedulable-as-starting~-time-p-aux-2 performance-schedulable-at-starti
ng-time-p-aux find-first-time-no-overlap find-new-perforrance-window performance-schedulable-at-st
arting-time-p)

(NE]

(defmethod (test-scheduler-all mission) ()
(let {{the-list * (ACOUSTIC EPITAXY ALLOY-S BRIDGMAN HIGHTEMP MEMBRANE SOL-CRYS VAP-CRYS TRAIN-1)
)
;7 /;ACOUSTIC EPITAXY ALLOY-S BRIDGMAN HIGHTEMP MEMBRANE
/7 :SOL=-CRYS VAP-CRYS TRAIN-1
(result nil)) CONTFLOW HW-MAINT WM-MAINT
(build-initial-time self)
(push (loop for key in the-list
for value = (gethash key experiment-table)
collect
(list value (lis: time-slice-holder key)
(schedule-n-performances-of-experiment-beginning
value (round (max-performances value) 4) 0)))
result)
(format t "~§ result = ~S"result)
(push (loop for key in the-list
for value = (gethash key experiment-table)
collect
(list value (list time-slice-holder key)
(schedule-n-performances-of-experiment-beginning
value (- (max-performances value)
(round (max-performances value) 4)) 0)))
result)
(schedule-desired-crew-monitcring self)
result))

ORIGINAL PAGE |s
OF POOR QuALITY

A-80

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 2

(defmethod (test-scheduler mission) (experiment~-list num-of-perf-each)
(let ((result nil))
(loop for exp in experiment-1list
for instance = (gethash exp experiment-table)
do
{push (list instance (list time-slice-holder exp)
{schedule-n-performances-of-experiment~beginning
instance num-of-perf-each 0))
result))
result))

(defmethod (schedule-desired-crew-monitoring mission) ()
(maphash #° (lambda (exp instance)
exp
{schedule-desired-~crew-monitoring instance))
experiment-table))

(defmethod (schedule-desired-crew-monitoring experiment) ()
(when desired-monitor-steps
(loop for performance in performance-list
do
(when (scheduled-p performance)
(schedule-desired-crew-monitoring performance)))))

(defmethod (schedule-desired-crew-monitoring performance) ()
(loop for step in (desired-monitor-steps owning-experiment)
for performance-step = (find-step-named self (name step))
do B
(schedule-feasible-crew-monitor performance-step)))

(defmethod (test-scheduler-2 mission) (the-list)
(build-initial-time self) -
(loop for name in the-list
for value = (gethash name experiment-table)
for dummy = (setf (performance-list value) nil)
for count from 1
suntil (> count 3)
collect
(list value (list time-slice-holder name)
(schedule-n-performances-of-experiment~beginning value 1 0))
do
dummy
(build-initial-time self)))

(defmethod (schedule-n-performances-of-aexperiment-beginning experiment)
(number-of-perf beginning-time)
(setf schedule-shutdown-with-performance nil)
(let ((new-time nil) (result (list :success number-of-perf))
(test nil) (scenario-number nil) (last-performance nil))
(unless (eql name ‘dummy-value)
(loop for i from 1 to number-of-perf
until (not (eql (first result) :success))
for next-performance = (find-unscheduled-performance self)
do
{(unless next-performance
(setf next-~performance (make-instance ‘performance :owning-experiment self
. :number (l+ (length performance-list)))))
(when (= i number-of-perf)
{setf schedule-shutdown-with-performance t))
(loop with done = nil until done
do

(multiple-value-setq (test new-time scenario-number)
(performance-schedulable-at-starting-time-p
next-performance beginning-time scenario-number
(if last-performance last-performance
(find-performance-preceeding self beginning-time))))
{cond ((eql test :success)
{schedule-performance next-performance ‘priority)
(setf (scheduled-p next-performance) t)
(setf beginning-time
(+ min-performance-delay-time (scheduled-end-time next-performance)})
(setf done t)
(push next-performance performance-list)

- A-81 ORIGINAL PAGE 1S
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 3

(setf last-performance next-performance))
- (new~time (setf beginning-time new-time))
({null new-time)
(setf done t result (list test 1)))}))}))
result))

{(defmethod (find-performance-preceeding experiment) (time)
(let ((result nil))
(cond ((null performance-list) nil)
(t (loop for performance in performance-list
do
{when (scheduled~p performance)
(cond ((> (scheduled-start-time performance) time) nil)
({null result)
(setf result performance))
((> (scheduled-start-time performance) (scheduled-start-time result))
{setf result performance))
{t nil))))))
result))

(defmethod (find-start-time-for-earliest-start-scenario experiment) (new-times-list)
(let ((selected-time nil) (scenario~number nil))
(lf (every #’ (lambda (x)
(null (second x)))
new-times-1list)
(setf scenario-number new-times-1list)
(loop for (result new-time scenario-num) in new-times-list
do
(cond ((or (and new-time (null selected-time))
(and selected-time naew-time (< new-time selected-time))}
(setf selected-time new-time)
(setf scenario-number scenario-num))
({{and selected-time new-time (= new-time selected-time)
(< scenario-num scenario-number))
(setf scenario-number scenario-num))
(t nil)))) ’
{(values selected-time scenario-number)))

(defmethod (find-unscheduled-performance experiment) ()
(loop for instance in performance-list
do '
{unless (scheduled-p instance)
(return instance))))

(defmethod (record-performance-and-step-times performance) ()
(setf scheduled-p t
scheduled-start-time (scheduled-start-time (first step-list)))
- {setf scheduled-end~time
{(scheduled-end-time (first (last step-list)))))

(defmethod (schedule~-performance performance) (monitor-level)
(let ((last-step
(loop for step in step-list
do .
(schedule-step step monitor-level)
finally (return step))))
(setf last-time-slice (last-time-slice last-step))
{(when (cumulative-consumable-list last-step)
(update-cumulat ive-consumables
{(get-time-instance *mission* (1+ (scheduled-end-time last-step))
(last-time-slice last-step))
{(cumulative-consumable-list last-step)
;'..".')l)’).)...!..ttll"'..'..'..'..t.t"..lt.'t'"‘.C"'.I".t.ttt.'...t.tt.t'tl'l
;27 high level step scheduling
(defmethod (schedule-step step) (monitor-level)
(let ((time-slice nil))
(setf last-time-slice
(setf time-slice
(schedule-step-durable-resources salf)))
(setf time-slice
(schedule~step-non-depletable-resources self))

(when (and time-slice (not (eql last-time-slice time-slice))) OR‘GiNAL pAGE |s

OF PCOR QUALITY

A-82

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page 4

(setf last-time-slice time-slice))
(setf time-slice
{schedule-step-crew-mersbers self monitor-level))
{(when (and time-slice (not (eql last-time-slice time-slice)))
(setf last-time-slice time-slice))
(setf time-slice
{(schedule~step-consumable-resources self))
(when (and time-slice (not (eql last-time-slice time-slice)))
(setf last-time-slice time-slice))
{schedule-step-cumulative-consumables self)
(when (between-experiment-constaints self)
(update-other-object (get-linked-object *mission* self)))))

(defmethod (schedule-step-durable-resources step) ()
(loop for (resource quant) in durable-resocurce-list
with time-slice =
(get-time-instance *mission* scheduled-start-time
{(if previous-step (last-time-slice previous-step) nil))
do
(setf time-slice
(schedule-event
mission
(list resource quant self)
‘durable-resource-list scheduled-start-time
(if (and (not (zerop step-delay-min)) resource-carry-thru)
(+ scheduled-end-time step-delay-min)
scheduled-end-time)
time-slice))
finally (return time-slice)))

(defmethod (schedule-step-non-depletable-resocurces step) ()
(loop for (resource quant tolerance) in non-depletable-resource-list
with time-slice = (get-time-instance *mission* scheduled-start-time last-time-slice)
do
{(setf time-slice (schedule-event
*mission®
(list resource quant tolerance self)
‘non-depletable-resource-list scheduled-start-time
"{(if (and (not (zerop step-delay-min)) resource-carry-thru)
(+ scheduled-end-time step-delay-min)
scheduled-end-time) time-slice))
finally (return time-slice)))

(defmethod (schedule-step-consumable-rescurces step) ()
(loop for (resource quant) in consumable-resource-list
with time-slice = (get-time-instance *mission* scheduled-start-time last-time-slice)
do
(setf time-slice
(schedule-event

mission
(l1ist resource quant self)
‘consumable-resource-list scheduled-start-time scheduled-end-time time-slice))

finally (return time-slice)})

(defmethod (schedule-step-cumlative-consumables step) ()
{let ((time-slice-list
(get-time-instance-1list .
*mission® scheduled-start-time scheduled-end-time
last-time-slice))}
(loop for (resource quant) in cumulative-consumable-list

do
(loop for time-slice in time-slice-list

for exisiting-quant = (gethash resource
(cumulative-consumable-table time-slice))

do

(setf (gethash resource (cumulative-consumable-table time-slice))
(if exisiting-quant .
(+ exisiting-quant quant)
quant})))))

(defmethod (schedule-step~crew-members step) (monitor-level)
{let ((result last-time-slice))

ORIGINAL PAGE 18
A-83 OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page$

(cond ((null crew-monitor)
(loop for crew-member in scheduled-z:ew-list
with time-slice =
(get-time-instance *mission® scheduled-start-time last-time-slice)
do
(setf time-slice (schedule-event
mission
(list crew-member self)
‘crew-list scheduled-start-time scheduled-end-time
time-slice))
finally (setf result time-slice))
)
((eql crew-monitor monitor-level)
(setf result (schedule-feasible-crew-monitor self)))
(t nil))
result))

(defmethod (print-time-slices time-slice) ()
(format t "~% ~Sv"self)
(when next-slice
(print-time-slices next-slice)))

(defmethod (schedule-event mission) (event slot begin end &optional desired-time-slice)
;ss,cases which must be handled:
;72 the time slice starts and ends at the same time as the event
;;s; the time slice starts at the same time as the event but ends after the event
;27 the time slice starts at the same time as the event but ends before the event
;27 the time slice starts before the event but ends at the same time as the event
;; the time slice starts before the event starts and ends before the event ends
the time slice starts before the event and ends after the event
;; howaver; the time slice cannot start after the event, or get-time-instance has
;s; a bug
(unless (and desired-time-slice
(S (start-time desired-time-slice) begin (end-time desired-time-slice)))
(setf desired-time-slice (get-time-instance self begin)))
(let ({(new-instance nil))
(cond ((and (= begin (start-time desired-time-slice))
(= end (end-time desired-time-slice)})
{push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
({and (= begin (star---_ime desired-time-slice))
(< end (end-time desired-time-slice)))
/:; time slice too long - create a new one after to old one
(add-time-slice-after-this-one desired-time~-slice end)
(push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
{(and (= begin (start-time desired-time-slice))
(> end (end-time desired-time-slice)))
sistime slice too short - add events to this one and the next one
(push event (symbol-value-in-instance desired-time-slice slot))
(schedule-event self event slot (1+ (end-time desired-time-slice)) end
(next~slice desired-time-slice))
desired-time-slice)

((and (> begin (start-time desired-time-slice))
(= end (end-time desired-time-slice)))
s;:time slice begins too soon - add a new one as the previous
(setf new-instance
(add-time-slice-before-this-one desired-time-slice begin))
{(push event
(symbol-value~in-instance desired-time-slice slot))
new-instance)
((and (> begin (start-time desired-time-slice))
(< end (end-time desired-time-slice)))
sistoo long in both directions
{(add-time-slice-before-this-one desired-time-slice begin)
(add-time~slice-after-this-one desired-time-slice end)
(push event (symbol-value-in-instance desired-time-slice slot))
desired-time-slice)
{{and (> begin (start-time desired-time-slice))
(> end (end-time desired-time-slice)))
(add-time-slice-before-this-one desired-time-slice begin)
(push event {(symbol-value-in-instance desired-time-slice slot))

Aot ORIGINAL PACE S

OF POOR QUﬁUTY'

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56

{schedule-event self event slot {1+ {end-time desired-time-slice)) end
{next-slice desired-time-slice)))
128}

(defmethod (add-tima-slice-before-this-one time-slice) (begin)
(let ((new-slice (copy-self self)))
(setf (end-time new-slice) (1- begin)
start-time begin)

(Lf prev-slice

(setf (next-slice prev-slice} new-slice)

(setf (time-slice-holder *mission®*) new-slice))
(setf (prev-slice new-slice) prev-slice)
(setf (next-slice new-slice) self)
(setf prev-slice new-slice)
(setf (consumable-resource-list new-slice) consumable-resocurce-list)
(maphash #’ (lambda (key value)

(setf (gethash key (cumulative-consumable-table new-slice)) valuel)
cumulative-consumable~table)

(setf consumable-resource-list nil)
self))

(defmethod (add-time-slice-after-this-one time-slice) (end)
(let ((new-slice (copy-self self)))
(setf (start-time new-slice) (1+ end)
end-time end)
(when next-slice
(setf (prev-slice next-slice) new-slice))
(setf (next-slice new-slice) next-slice)
(setf (prev-slice new-slice) self)
(setf next-slice new-slice)
(setf (consumable-resource-list new-slice) nil)
(maphash #’ (lambda (key value)
(setf (gethash key (cumulative-consumable-table new-slice)) value))

cumulative-consumable~table)

self))

#11
;2; no longer used ?
{(defmethod (add-new-instance-to~time-slice-list mission) (new-instance)
(setf time-slice-list (add-time-slice-to-list self new-instance time-slice-list)))

(defmethod (add-time-slice-to-list miseion) (new-instance slice-list)
{cond ((null slice-list)

s2;last element

{(ncons new-instance))
((< (start-time new-instance) (start-time (first slice-list)})

(cons new-instance slice-list))

(t

(cons (first slice-list)

(add-time-slice-to-list self new-instance (cdr slice-list))))))

(defmethod (update-cumulative-consumables time-slice) (cum-consum-list)
(loop for (resource quant) in cum-consum-list
do
(setf (gethash resource cumulative-consumable-table)
(if (gethash resource cumulative-consumable-table)
(+ (gethash resocurce cumulative-consumable-table) quant)
quant)))
{(unless (null next-slice)
(update-cumulative-consumables next-slice cum-consum-list)))

F T IR S S S I N S NS A N N N N NN N I R N N N N P N N N PN N Y N R NN N PR Py]

;:¢ schedule crew monitor time .
(defmethod (schedule-feasible-crew-monitor step) ()
({let ((time-list (generate-list-of-monitor-times self)) (result last-time-slice))
(loop for (start end) in time-list
for selected-combination = nil
do
(loop until selected-combination
for combination in crew-combinations

do

A-85

Page 6

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>scheduler-methods.lisp.76 7/13/89 15:36:56 Page7

(when (crew-combination-available-for-monitor self combination start end)

(setf selected-combination combination)
(setf result (schedule-crew-monitor self combination start end))))
(unless selected-combination
(loop until selected-combination
for early-shift from 1 to crew-early-shift
for shift-start = (- start early-shift)
for shift-end = (- end early-shift)
do
(loop until selected~combination
for combination in crew-combinations
do
{when (crew-combination-available-for-monitor
self combination shift-start shift-end)
(setf selected-combination combination)
(setf result (schedule-crew-monitor self combination shift start shift-end))})))
(unless selected-combination
(loop until selected-combination
for late-shift from 1 to crew-late-shift
for shift-start = (+ start late-shift)
for shift-end = (+ end late-shift)
do
({loop until selected-combination
for combination in crew- combxnatxons
do
(when (crew-combination-available-for-monitor
self combination shift-start shift-end)
(setf selected-combination combination)
{setf result (schedule-crew-monitor self combination shift-start shift-end))})})))

result))

(defmethod (schedule-crew-monitor step) (combination shift-start shift-end)
(let ((result nil))
(push (list combination shift- -start shift-end) scheduled-crew-1list)
(loop for crew-member in combination
with time-slice =
(get-time-instance *mission® scheduled-start-time last-time-slice)
do
(setf time-slice (schedule-event
mission
{list crew-member self)
‘crew-list shift-start shift-end
time-slice))
finally (setf result time-slice))
result))

(defmethod (crew-combination-available~for-monitor step) (combination start end)
(let ((result :success) (other-time nil))
(loop while (eql result :success)
with period-list = (get-time-instance-list
mission start end
(if last-time~slice last-time-slice
(if previous-step (last-time-slice previous-step) nil)))
for crew in combination
do
{multiple~-value-setq (result other-time)
{crew-available-in-tima-periods-p crew start (l+ (-~ end start))))
(when (eql result :success)
(multiple-value-setq (result other-time)
(crev-not-present-in-time-periods-p
self period-list crew start))))
(if (eql result :success) result nil)))

(defmethod (generate-list-of-monitor-times step) ()

(reverse
(loop for time from (+ scheduled-start-time crew-cycle)

to scheduled-end-time by crew-cycle
for monitor-start = (- time crew-duration)

for monitor-end = (1- time)
collect (list monitor-start monitor-end))))

A-86
ORIGINAL PAGE IS

OF POOR QuALITY

ANDY:>brown>nasa-2>screen-manager-methods.lisp.11 4/11/89 19:39:36 Page 1

77 =*- Mode: LISP; Syntax: Common-Lisp: Package: USER; Base: 10 -*-

(defmethod (setup-streams nasa-screen-manager) (dw:*program-frame*)
(setf program-framework dw:*program-frame*)
(setf (gethash ’‘error stream-table) (dw::get-program-pane ‘error-DISPLAY)

(gethash ‘general stream-table) (dw::get-program-pane ‘general-DISF_AY)
(gethash ’exp-describer stream-table) (dw::get-program-pane ’‘experiment-describer)
(gethash ’'op-mode stream-table) (dw::get-program-pane ‘CURRENT-OP-MODE-DISPLAY)
(gethash ’performances stream-table) (dw::get-program-pane ‘perforrances-DISPLAY)
(gethash ‘experiments stream-table) (dw::get-program-pane ’‘experiments-DISPLAY)
(gethash ‘resources stream-table) (dw::get-program-pane °‘RESOURCES-DISPLAY)
(gethash ’‘edit stream-table) (dw::get-program-pane °‘TABLES-DISPLAY)
(gethash ’‘init-obj-edit stream-table) (dw::get-program-pane ’init-cbj-display)
{gethash ‘durable-resource-edit stream-table)
(dw: :get-program-pane ‘durable-resource-DISPLAY)
(gethash ‘consumable-resource-edit stream-table)
(dw::get-program-pane ‘consumable-resource-DISPLAY)
(gethash ’crew-resource-edit stream-table)
(dw: :get-program-pane ‘crew-resource-DISPLAY)
(gethash ‘target-resource-~edit stream-table)
(dw: :get-program-pane ‘target-resource-DISPLAY)
(gethash 'attitude-resource-edit stream-table)
{(dw: :get-program-pane ‘attitude-resource-DISPLAY)
(gethash ’listener stream-table) (dw::get-program-pane ‘NASA-LISP-LISTENER)

(gethash ‘tables-2 stream-table) (dw::get-program-pane ‘'TABLES-DISPLAY-2)

|3

(defmethod (clear-~all-histories nasa-screen-manager) (master-key)
(mapc #°’ (lambda (key) (clear-history self key))
(case master-key
(init-edit ' (init-obj-edit durable-resource-edit consumable-resource-edit crew-resocurce-
edit target-resource-edit attitude-resource-edit)))))

{defmethod (clear-history nasa-screen-manager) (key)
(let ((dw:*program-frame* program-framework))
(send (gethash key stream-table) :clear-history)))

(defmethod (select-configuration nasa-screen-manager) (key)
(let ((dw:*program-frame* program-framework))

(case key
(init~obj-edit (dw::set-program—-frame-configuration ‘dw::edit-init-ccnfiqg))
(edit (dw::set-program~-frame-configuration ’‘DW::TABLES-REPORTING))
(error (dw::set-program-frame-configuration ‘DW::ERROR-REPORTING))
(performance (dw::set-program-frame-configuration ’DW::NASA-CONFIG-2))
(general (dw::set-program-frame-configuration ‘DW::GENERAL-INFO-CONF23})
(experiment (dw::set-program-frame-configuration °‘DW::NASA-PERFCRMANCZ-SCHEDULER))
(tables-2 -(dw::set-program-frame-configuration ‘DW::TABLES-REPORTING-2)))

(gethash key stream-table))) :

(defmethod'(loloct--tzenn nasa-screen-manager) (key)
(gethash key stream-table))

(defmethod (edit-self nasa-screen-manager) ()
(apply #‘update-self (cons self (get-new-values self)))
(display-self self (select-configuration self ‘edit)))

(defmethod (compute-resource-display-intoto nasa-screen-manager) () nil)

(defmethod (update-self nasa-screen-manager) (new-left-x new-right-x new-lcwer-y new-upper-y
new-x-delta new-h-scale-inc
new-v-scale-inc new-scale-length
new-min-x~delta new-resource-p)
(unless (and (= left-x new-left-x)

(= right-x new-right-x)

(= lower-y new-lower-y)

(= upper-y new-upper-y)}

(= x-delta new-x-delta)

(= h-scale-inc new-h-scale-inc)

(= v-scale-inc new-v-scale-inc)

(= scale-length new-scale-length)

(= min-x-delta new-min-x-delta)

{null new-resource-p))

A-87 ORIGINAL PAGE I3

OF POOR QUALITY

ANDY:>browma>nasa-2>screen-manager-methods.lisp.11 4/11/89 19:39:36 Page 2

~x new-left-x
- -x rew-right-x

_wez-r-y rew-_ower-y

UTerr-y rew-ugper-y

»—m_:_tAa rnew-x-delta

r—eca zle-inc rew-h-scale-inc

-scx zie~-inc rew-v-scale-inc

|3 c«-length new-scale-length

- :-—»-delza rew-min-x-delta)
(compzis—~sxesource-Zisplay-intoto self)))

(set?

e

(defmethod (gec-rnew-resocurce nasa-screen-manager) ()
(let (chc:ioe
' (cezma——_ist
izoTs ‘(quit quit)
{deiete (list (name current-resource) current-resource)
(get-resource-list owner-obj) :test #’'equal))))

.sac= I choice
(dw:mencu-choose

choice-list’

:pro=pt

(format nil
"The Current Resource is ~S; Select A Different Resource or Quit"
(name current-resource)))))

(if (eg. mm==::ce ‘guiz) nil choice)))

(defmethoc [jwt-:~new-values nasa-screen-manager) ()
(let (rew-l:IT--x rew-right-x new-lower-y new-upper-y new-x-delta new-h-scale-inc
new -tv-:zz z.e~inc new-scale-length new-min-x-delta new-resource)
(setf{ =e,-:23:30Urce (get-new-resource self))
(when =es.-:2x:source
(sez? = ni-resource new-resource)
(sexf v-scx:.e-inc !(gethash (name currenz-resource) v-scale-table)
v-axz:.s {(gethash (name current-resource) y-axis-table)))
(dw:ac—mem_oo-values
(*sca=zp= output”*
iCwT ow T :label
fommaz Ll
"Indicate Modifications To Vaiues For Display Control”™))
(sez? naw- -ieft-x
pozztept ‘nurber :default left-x :guery-identifier ‘new-left-x
:stream *standard-output®*
:pro=pt (format nil "enter new left coordinate for resource display "))
nEs-—-:1ghi-x
p#rzztept ‘nurber :default right-x :query-identifier ‘new-right-x
:stream *standard-output® :prompt
{forrat nil "enter new right coordinate for resource display "))

tdefault lower-y :query-identifier ‘new-lower-y

:stream *standard-output® :prompt

{forzat nil “enter new bottom coordinate for resource display "))
nee——uTper-y
pomxzept ‘number :default upper-y :query-identifier ‘new-upper-y

:stream *standard-output®

:prompt (format nil "enter new top coordinate for resource display "
nee——ziin-x-delta

so=tept ‘number :default min-x-delta :query-identifier ’‘new-min-x-delta

:stream *standard-output”

:prormpt (format nil "enter new time increment minimum width *))
nee-—--delta
pozatezt ‘number :default x-delta :query-identifier ‘new-x-delta

:stream *standard-output®*

:pro=pt (format nil "enter new time increment width "))
nee-~--:1-scale-inc
aozatest ‘number :default h-scale-:inc :query-identifier ‘new-h-scale-inc

:szream *standard-ocutput®

:pro~pt (format nil "enter new horizontal scale labeling increment M
TR -scale-inc
- tdefault v-scale-inc :query-identifier ‘new-v-scale-inc
. *standard-output*
(format nil "enter new vertical scale labeling incremen:z "))

A-88
ORIGINAL PAGE IS

OF POGR QUALITY

.

ANDY:>brown>nasa-2>screen-manager-methods.lisp.11 4/11/89 19:39:36 Page 3

(accept ‘number :default scale-length :query-identifier ‘new-scale-length
tstream *standard-output®
:prompt (format nil "enter new scale tick mark length “¥N)
(list new-left-x new-right-x new-lower-y new-upper-y new-x-delta new-h-scale-inc
new-v-scale-inc new-scale-length new-min-x-delta new-resource)))

(defmethod (display-self nasa-screen-manager) {(stream)
(present self ‘nasa-screen-manager-edit-display :stream stream))

A-89

ORIGIN :

AL PAGE 1S

ANDY:>brown>nasa-2>step-methods.lisp.7 7/04/89 12:27:55 Page 1

;s; -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -=-

(defmethod (present-step step) (stream)
;ssthis is a first cut-- obviously, this needs to be broken up into several display
;s functions to handle the cases whare the input is not a single value, to relieve
;.the user of the burden of knowing the syntax of each of the lists.
(format stream "~%ID ~A MAX-DURATION ~A MIN-DURATION ~A STEP-DELAY-MIN ~A STEP-DELAY-MAX ~A CREW
-MONITORING-TIME ~A CONCURRENT-WITH ~A" id max-duration min-duration
step-delay-min step-delay-max crew-monitoring-time concurrent-with)
(format stream "~8% CONSUMABLE-RESOURCE-LIST :%)
(if consumable-resource-list
(mapc #’' (lambda (resource-gty)
(format stream "~% ~A ~A" (first resource-qty) (second resource-qty)})
consumable-resource-list)
{format stream * NONE"))
(format stream "~% DURABLE-RESOURCE-LIST:")
(if durable~resource-list
(mapc #’ (lambda (resource-qty-releasable)
(format stream "~% ~A ~A" (first resource-qty-releasable)
(second resource-qty-releasable)))
durable-resource-1list)
(format stream " NONE"))
{format stream "~% CREW-REQUIREMENTS :")
(if crew-requirements
(mapc #’ (lambda (crew-list-qty)
(format stream "-~% ~A ~A" (first crew-list-qty) (second crew-list-qty)))
crew-requirements)
(format stream ™ NONE"}))
(format stream "~% TARGET-LIST:*")
(if target-list
(mapc #‘ (lambda (target) (format stream "~% ~A" target))target-list)
(format stream * NONE"))
(format stream "~% ATTITUDE-LIST:")
(if attitude-list
(mapc #’ (lambda (attitude)
(format stream "~% ~A" attitude)) attitude-list)
(format stream " NONE")))

(defmethod (create-new-obj step-template) (owner)
(setf owning-object owner)
(push self (prototype-step-list owner)))

(defmethod (create-new-obj startup-step) (owner)
(setf owning-object owner)
(push self (startup-steps owner)))

(defmethod (create-new-obj shutdown-step) (owner)
(setf owning-object owner) -
(push self (shutdown-steps owner)))

(defmethod (create-new-obj step) (owner)
(setf owning-object owner)
(push self (step-list owner)))

(defmethod (create-new-obj step :after) (&rest ignore)
(format tv:initial-lisp-listener "this is a stub (create-new-obj step :after)”))

A-90

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>time-slice-methods.lisp.7 7/11/89 11:14:34 Page 1

723 -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-
(defmethod (copy-self time-slice) ()
(let ((new-instance
(make-instance ‘time-slice :start-time start-time

:end-time end-time
:craw-list (copy-list crew-list)
:non-depletable-resource-list
(copy-alist non-depletable-resource-list)
:durable-resource~-list (copy-alist durable-resource-list)
itarget-list (copy-list target-list) .
cattitude-list (copy-list attitude-list)
:start-x start-x :
ttop-y top-y)))

(maphash #’ (lambda (key value)
(setf (gethash key (performance-step-table new-instance)) value))

performance-step-table)
new~instance))

ORIGINAL PAGE }‘8
OF POOR QUALITY

ANDY:>brown>nasa-2>time-translators.lisp.8 7/12/89 12:10:32 Page 1

7;: -*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(defun translate-universal-time-to-time-period (univ-time)
(floor (- univ-time (universal-start-time (init-obj *mission*)))
(time~inc (init-obj *mission*))))

{(defun translate-seconds-to-~time-periods (seconds)
(/ seconds (time~-inc (init-obj *mission*))))

(defun translate-time-list-to-seconds (czme-lxst)
(+ {(fourth time-list)
(* 60 (+ (third time-list)
(* 60 (+ (second time-list)
(* 24 (first time=list))))))))

(defmethod (translate-mission-period-to-universal-time nasa-init-obj) (mission-periods)
{multiple-value-bind (secs mins hours day month year day-of-week)
(decode-universal-time (+ universal-start-time (* time-inc mission-periods)))
(values secs mins hours day (CASE month

(1 *JAN)

(2 'FEB)

(3 ’'MAR)

(4 ‘APR)

(S ‘MAY)

(6 ‘JUN)

(7 *JUL)

(8 ‘AUG)

(9 *SEP)

{10 °OCT)

(11 °NOV)

(12 ' DEC))

year (case day-of-week

(0 ‘mon)
(1 *tue)
(2 *wed)
(3 ’thu)
(4 *fri)
(5 *sat)

(6 ‘sun)))))

(DEFMETHOD (translate-mission-period-to-mission-time nasa-init-obj) (mission-period)
(let ((days 0) (hours 0) (mins 0) (secs 0) (remainder 0})
(multiple-value-setq (days remainder)
(floor (* time~-inc mission-period) seconds-per-day))
(multiple-value-setq (hours remainder)
(floor remainder seconds-per-hour))
(multiple-value-setq (mins secs)
(floor remainder 60))
{values days hours mins secs)))

(defmethod (output-time-date-to-stream nasa-init-obj) (stream mission-periods)
(multiple-value-bind (secs mins hours day month year day-of-week)
(translate-mission-period-to-universal-time self mission-periocds)
(IF (< day 10)
(format stream *~S, ~S ~S ~S, ~S:~S:~S" day-of-week day month year hours mins secs)
{(format stream "~S, ~S ~S ~§, ~S:~S:~S" day-of-week day month year hours mins secs))))

S ERP RS R RN R AR AR AR BRI NSNS S PRI AR IS NPT N R P ORI I P IR AT IR RN ARG IR PR EAER AR R RSSO ROS

;77 CALCULATIONS FOR INITIAL TIMES

(defmethod (determine-universal-start-time nasa-init-obj) ()
(setf universal-start-time
{encode-universal-time (third mission-launch-time)
(second mission-launch-time)
(first mission-launch-time)
(first mission~-launch-date)
(second mission-launch-date)
(third mission-launch-date))))

(defmethod (determine-initial-universal-times nasa-init-obj) ()
(determine~universal-start-time self)
(multiple-value-bind

A-92 '
ORIGINAL PAGE IS

. OF POOR QUALITY

ANDY:>brown>nasa-2>time-translators.lisp.8 7/12/89 12:10:32 Page 2

(second minute hour day month year day-of-week)
(decode-universal-time universal-start-time)
year month day
(determine-seconds-until-start-of-first-full-day self second minute hour)
(determine-start-of-first-sunday self day-of-week)
N

(defmethod (determine-end-times nasa-init-obj) ()
(setf universal-end-time
(+ universal-start-time (translate-time-list-to-seconds mission-duration))})
(multiple-value-bind
(secs mins hrs day month year)
. (decode-universal-time universal-end-time)
(setf mission-end-date (list day month year)
mission-end-time (list hrs mins secs))))

{defmethod (determine-seconds-until-start-of-first-full-day nasa-init-obj)
{second minute hour)
{setf seconds-until-start-of-day
(add-seconds-for-each-hour
hour ({add-seconds-for-each-minute minute {add-seconds-as-needed second)))))

(defmethod (determine-start-of-first-sunday nasa-init-obj) (day-of-week)
(setf first-sunday-start-time
(+ universal-start-time
(add-seconds-for-each-day day-of-week seconds-until-start-of-day))))

(defun add-seconds-as-needed (second) .
;s;return the number of seconds until the start of the next minute, and a flag to
;ssindicate whether we started on a partial minute
(if (zerop second)

(list O nil)
{list (- 60 second) t)))

(defun add-seconds-for-each-minute (minute seconds-and-add-minute-flagq)
/;;return the number of seconds until the start of the next hour, and a flag to
;s;;indicate whether we started on a partial hour
(when (second seconds-and-add-minute-flag)
(incf minute))
(cond ((zerop minute)
;;;wa can have 0 minutes only if we had zero seconds -- hence we launched on
/s7the hour, .
(list 0 nil))
(t (list (+ (first seconds-and-add-minute-flag)
(* (-~ 60 minute) 60))
t))))

(defun add-seconds-for-each-hour (hour seconds-and-add-hour-flag)
{when (second seconds-and-add-hour-flag)
(incf hour))
(cond ((zerop hour)
ssswae can have 0 hours only if we has zero seconds and zero minutes -- hence
;s we launched at midnight
{(list 0 nil))
(t (list (+ (first seconds-and-add-~hour-flag)
(* (- 24 hour) 60 60))
£))))

(defun add-seconds-for-each-day (day-of-the-week seconds-and-add-day-flag)
(when (second seconds-and-add-day-flag)
{incf day-of-the-week))
(cond ((= day-of-the-week 7)
;;/sto get here, we must have launched on sunday ~- since the crew gets the
;s;rest of the launch day off, we need time on next sunday
{(+ (* 6 (seconds-per-day (init-obj *mission®)))
(first seconds-and-~add-day-flag)))
{(and (zerop (first seconds-and-add-day-flaqg))
(= day-of-the-week 6))
;;;once again, sunday, this time at midnight
(* (* 7 (seconds-per-day (init-obj *mission*}})))
(¢t ;;,;if the day is 6 (sunday), then the mission launched after midnight

A=33 ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>brown>nasa-2>unschedule-methods.lisp.3 7/11/89 10:57:27 Page 1

ii7 -*- Package: USER: Base: 10; Mode: LISP; Syntax: Common-lisp; -*-

(defmethod (unschedule-self performance) ()

(mapc #’unschedule~self step-list)
(setf scheduled-start-time nil scheduled-end-time nil scheduled-p nil step-list nil))

(defmethod (unschedule-~steps-from performance) (first-step-number)
({let ({unschedule-list (member first-step-number step-list :key #’number)))
(setf scheduled-end-time (scheduled-end-time (previous-step (first unschedule-list))))

(mapc #‘unschedule-self unschedule-list)))

(defmethod (unschedule-shutdown-steps performance) ()

(unschedule-steps-from
self (find-step-numbered self (number (first (shutdown-steps owning-experiment))))))

(defmaethod (unschedule-self step) ()
(let ((period-list
(get-time-instance-list
mission scheduled-start~time scheduled-end-time last-time-slice)))
(loop for period in period-list
do
{unschedule-crew self period)
(unschedule-durables self period)
(unschedule-non-depletables self period)
(unschedule~consumables self period))
(when (and resource-carry-thru (not (zerop step-delay-min)))
(setf period-list (get-time-instance-list
mission (+ scheduled-start-time max-duration)
(1- (scheduled-start-time next-step))
.(next-slice (first (last period-list)))))
(loop for period in period-list
do
(unschedule~durables self period)
(unschedule-non-depletables self period)))
(setf period-list
(get-time-instance-list
mission
(if next-step
(1~ (scheduled-start-time next-step))
(+ scheduled-start-time max-duration))
(max-time (init-obj *mission"))
(next-slice (first (last period-list)))))
(unless next-step
({loop for period in period-list
do
(unschedule-cumulate-resources self period)))))

(defmethod (unschedule-crew step) (period)
{loop for crew in scheduled-crew-list

do
(setf (crew-list period) (delete (list crew self) (crew-list period) :test #’equal))))

(defmaethod (unschedule-durables step) (period)
(loop for (resource quant) in durable-resource-list
do .
(setf (durable-resource-list period)
(delete (list resource quant self) (durable-resource-list period) :test #’equal))))

(defmethod (unschedule-non-depletables step) (period) ’ .
(loop for (resource quant tolerance) in non-depletable-resource-list
do

(setf (non-depletable-resource~list period)
(delete (list resource quant tolerance self) (non-depletable-resource-list period)

itest #’equal))))

(defmethod (unschedule-consumables step) (period)
(loop for (resource quant) in consumable-resource-list
do
(setf (consumable-resource-list period)
(delete (list resource quant self)
{consumable-resource-list period) :zest #’equal)))
(loop for (resource quant) in cumulative-consumable-list
do

A-95 . ORIGINAL PAGE IS
OF POOR QUALITY

PRECEDING PAGE BLANK NOT FILMED

ANDY:>brown>nasa-2>unschedule-methods.lisp.3 7/11/89 10:57:27 Page 2

(setf (gethash resource (cumulative-consumable-table period))
(decf (gethash resource (cumulative-consumable-table period)) quant))))

(defmethod (unschedule-cumulate-resocurces step) (period)
(loop for (resource quant) in cumulative-consumable-list

do
(setf (gethash resource (cumulative-consumable-table period))
(decf {gethash resource {(cumulative-consumable-table period)) quant))}}

A-96

ORIGINAL PAGE 18
OF POOR QUALITY

Appendix B
Symbolics Code Listing for the Multiple Pass
Multiple Resource Allocation Program

B-1

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resource-varidtdge.lisp.6

L

Syntax: Common-Lisp; Package: USER; Base: 189; Mode: LISP -:x-

(defflavor selection-nenu ()

(tv:drop-shadowu-borders-nixin
tv:nultiple-nenu))

(defflavor shadoued-tv-window ()
(tv:drop-shadow-borders-nixin
dw:dynanic~window))

(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
(defvar
{defvar
(defvar
(defvar

(defvar

(defuvar

(defvar

3franess) ;;Loaded fron data file.
snax-tines)

stine-lists)

tlanbda-listss)

spathss)

toriginal-screen-sizes nil)

ssecond-timex nil)

scurrent-files **)

3Resource-File-Directorys "andy:>jsroresource-allocation>nultiple-data-files>")
Sresourcess)

sresource-variabless)

tresources-outputs nil)

scheduled-itens)

snaxinizing-resource-lists)
snaxinizing-resource-positions)
sgraphical-outputs nil)

sgraphical-displays nil)

tresource-output-uindous (tv:make-windouw 'du:dynamic-uwindou
:1abel “Resource Allocation Window™”

:blinker-p nil))

sdisplay-nenus (tv:make-window
‘selection-nenu
:1abel “Select Displayed Output®
:default-character-style '(:fix :roman :large)
:specigl-choices '(("Selection Complete” :funcall-uith-self conmplete))))

sresource-nenu-nindous (tv:make-uwindow ’'du:dynamic-windouw
:1abel "Experiment Data Editor Window”
:blinker-p t))

; (defvar 3Data-choices-nenus (tv:make-window ’tv:monentary-menu

3

3

(defvar

:borders 4
:1abel "Alternate Data File List"))

tnessage-uindous (tv:make-windou ’du:dynanic-wuindow
; :blinker-p nil.
:edges-fron '(300 300 850 480)
:margin-components
*((dw:nargin-scroll-bar :visibility :if-needed)
(du:nargin-ragged-borders :thickness 4)

CRIGINAL PAGE I8
OF POOR QUALITY

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resource-varidtdge.Osp.6

(du:margin-label
:nargin :botton
:string "Message Window (Press any key to EXIT)"))))

(defvar sgraphics-uindous (tv:nake-window ’du:dynanic-uindou
:blinker-p nil
:1abel “Resource Allocation Graphics Display”))

(defvar 3Fonts (si:backtranslate-font
(fed:read-font-fron-bfd-file "sys:fonts;tv;406vr.bfd.neuest”)))

ORIGINAL PAGE I8
OF POOR QUALITY

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49

;:: -*- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -*-

::This defines the label presentation types.
(define-presentation-type label-type ()
:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)
(format stream "the selection ~a" (car object))))

;:This is what is done when a column or row label is selected.
(define-presentation-action label-type
(label-type t
:gesture :left
:context-independent t
:documentation "Resource Operations")
(exit)
(throw ‘resource exit))

;:This defines the label presentation types.
(define-presentation-type exp-label-type ()
:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)
(format stream "the selection ~a" (car object))))

::This is what is done when a column or row label is selected.
(define-presentation-action exp-label-type

(exp-label-type t

:gesture :left

icontext-independent t

:documentation "Experiment Operations")

{exit)

(throw ‘resource exit))

;:This defines the item presentation type and documentation line display
(define-presentation~-type resource-type ()

:no-deftype t .

:parser ((stream) (loop do (dw:read-char-for-accept stream)))

:printer ((object stream)
(format stream "the resource ~A" (car object))))

;:This is what is done when the item is selected
{define-presentation-action choose-type
(resource-type ¢t
:gesture :left
:context-independent t
:documentation "Change this value")
(resource)
(throw ’resource
(list resource (get (caar resource)
(read-from-string (format nil "-~a-presentation" (cadar resource)))))))

;:This defines the item presentation type and documentation line display
(define-presentation-type control-type ()
:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))
:printer ((object stream)
(format stream "the selection ~a" (car object))))

::This is what is done when a command is selected
(define-presentation-action control-type

(control-type t

:gesture :left

:context-independent t

:documentation "Execute this Command”)

{exit)

(throw ‘resource (read-from-string exit)))

Page 1

ORIGINAL PAGE IS
()F E)()()Fe (E{ﬁﬁﬁLfTWf

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49

;;This is the Driving Function for the Data Editor.
(defun examine-data ()
(send *resource-menu-window* :select)
(loop with again = t
while again
do
(dw::with-output-truncation (*resource-menu-window* :horizontal
{make-window-layout) .
{send *resource-menu-window* :set-cursor-visibility nil)
(setq again
(loop with finished = nil
until finished
as choice = (change-data-point)
while choice
do
{cond ((atom choice)
(case choice
(load
(open-input-file)
(initialize-markers-and-variables)
(return t))
(save (save-new~file))
(exit (return nil))))
(t (case (car choice)
{exp
(take-experiment-action
(cadr choice)
(get-option-list (format nil "For Experiment ~’'beca~>D"
(cadr choice))
‘ {"Move this Experiment"”
"Delete this Experiment"
"Add an Experiment ABOVE"
"Add an Experiment BELOW")))
(return t))
(resource
(take-resource-action
(cadr choice) (caddr choice)
(get-option-list (format nil "For Resource ~‘b&a~D"
(cadr choice))
(cond ((member (cadr choice)
‘ (“Duration” "Performances")
:test #’string-equal)
' {"Set Value Globally"
"Set Maximum Value"
"Move this Resource”
"Add Resource to the LEFT"
"Add Resource to the RIGHT"
"Edit Resource Constraints"))
(t
* {"Set Value Globally"
"Set Maximum Value™
"Move this Resource”
"Delete this Resource"
“Add Resource to the LEFT"
"Add Resocurce to the RIGHT"
"Edit Resource Constraints")))))
(return t))}))))))
(send *terminal-io* :select}))

(defun get-option-list (prompt options)
(dw:menu~-choose options
:prompt prompt
:center-p t
rrow-wise nil))

(defun take-resource-action (resource pos action)
(cond (({string-equal action "Set Value Globally")

t)

Page 2

ORIGINAL PAGE IS
OF POOR QUALITY

T

ANDY:>jsr>muitiple-resource-interface.lisp.29

(let ((value (get-stream ' ((number :prompt “Global Value"”

:defaulc 0
:query-identifier jsr))

(format nil "Set ~‘b&A~Value Globally " resource))))

(if value
(initialize-experiment-resource-value
(make-variable-from-string resource) value))))
((string-equal action "Set Maximum Value")

(let ((resource-var (make-variable-from-string resource)))

(zl:putprop resource-var

(get-stream ‘((number :prompt "Maximum Value"
:default , (get resource-var ’‘resource-limit)

:query-identifier jisr))
(format nil "Set ~'be&A~“Maximum Value "
resource))

‘resource-limit)))

({string-equal action "Edit Resource Constraints")
(modify-resource-constraint-equations (make-variable-from-string resource)))

({string-equal action "Move this Resource"”)

(send-message-to-user (format nil "~2% Use mouse to SELECT which RESOURCE to~

~% place ~'beA~Dbeside." resource))

(remove-resource resource nil)

(let ((position (find-position ‘label-type resource)))
(setq *resources™ (insert-item-in-list *resources*

resource-variables (insert-item-in-list *resource-variables*

(make-variable-from-string resource) position))))

({string-equal action "Delete this Resource")
(remove-resource resource))

((string-equal action "Add Resource to the LEFT")

(add-resource pos))

((string-equal action "Add Resource to the RIGHT")

(add-resource {(+ 1 pos))})))

(defun modify-resource-constraint-equations (resource)

(send *message-window* :set-margin-components
' ({dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
" imargin :bottom)
:string "Constraint Editor Window
(send *message-window* :clear-history)
(send *message-window* :select)
(format *message-window* "“~2%")

(send *message-window* :set-cursor-visibility :blink)

(edit-constraint-equation resource)
(send *message-window* :deselect)
(send *message-window* :set-cursor-visibility nil)
(send *message-window* :set-margin-components
' {({dw:margin-scroll-bar :visibility :if-needed)
{(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin :bottom
:string "Message Window

(defun edit-constraint-equation (resource)
(let ((buffer (tv:kbd-~get-io-buffer))

(equation (format nil "~a" (get resource ’‘resource-constraint-function))))

(send *message-window* :clear-input)

(loop for i from 0 to (- (length equation) 1)
do
(tv:io-buffer-put buffer (char equation i)))

(zl:putprop resource (read-from-string (accept ‘string

ractivation-chars * (#\end)
:prompt nil)) ‘resource-constraint-function)))

(defun find-position (type resource)
(let ((position)
(data (catch ‘resource (accept type
:prompt nil
:stream *resource-menu-window*))))
(case (car data)
(exp

C-3

resource position)

(Press <END> key to EXIT)'™)))

(Press any key to EXIT)"))))

:stream *message-window*

1/31/91 11:20:49 Page 3

OR’G’NA

OfF p

L

ALiTy

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49

(setq position (position (cadr data) (get ‘list-of ‘names)))
(case (read-from-string
(get-option~list (format nil "Place ~'b&A~d resource)
(list (format nil "Above ~’bE&A~3 (cadr data))
(format nil "Below ~’'b&A~® (cadr data)))))
(ABOVE (+ 1 position))
(t (+ 2 position))))
{(resource
{setq position (position (cadr data) =*resources* :test #’string-equal))
(case
(read-from-string
(get-option-list (format nil "Place ~’'b&A~3 resource)
(list (format nil "Left of ~’'b&A~® (cadr data))
(format nil "Right of ~'b&A~>® (cadr data)))))
(LEFT (+ 1 position))
(t (+ 2 position)))))))

(defun take-experiment-action (exp action)
(cond ((string-equal action "Move this Experiment")

Page 4

(send-message-to-user (format nil "~2% Use mouse to SELECT which EXPERIMENT to~
~% place ~'be&A~Dbeside.” exp))

(remove-experiment exp nil)

(let ((position (find-position 'exp-label-type exp)))

(zl:putprop ’'list-of (insert-item-in-list (get ’‘list-of ‘names)
exp position) ‘names)))

(({string-equal action "Delete this Experiment”)

(remove-experiment exp t))
((string-equal action "Add an Experiment ABOVE")

(add-experiment (+ 1 (position exp (get ’‘list-of ‘names)})}))
({string-equal action "Add an Experiment BELOW")

(add-experiment (+ 2 (position exp (get ’'list-of ‘names)))))))

(defun remove-experiment (exp message)
(zl:putprop ‘list-of (remove exp (get ‘list-of ‘names)) ‘names)
(if message
(send-message-to-user
(format nil "~2%~5tThe EXPERIMENT named ~’'b&a~Shas been deleted.” exp))))

(defun add-experiment (position)

(let ((variable {(make-variable-from-string
(get-stream ’ ((string :prompt "Enter EXPERIMENT NAME"
:query-identifier jsr))
"Add Experiment Utility "))

(zl:putprop ‘list-of (insert-item-in-list (get ’'list-of ‘names) variable position)
(loop for item in *resource-variables*

do

(zl:putprop variable 0 item))))

;:This function is the top level controller for the input window.
(defun make-window-layout ()
(send *resource-menu-window* :clear-history)
(format *resource-menu-window* "~2%~40t~vExperiment Data Editor~®4%" *Font*)
(let* ((space 10))
(setqg *resource-variables* (loop for resource in *resources*
initially (space-over *resource-menu-window*
(+ 6 space)) '
collect (make-variable-from-string resource) into var
counting t into place
finally (return var)
do
(space-over *resource-menu-window* space)
{make-mouse-sensitive-labels "*
(list ’‘resource resource place))))
(format *resource-menu-window* "~%")
{loop for exp in (get ’list-of ‘names)
counting t into place
do
{make-mouse-sensitive-labels “~%"
(list 'exp exp place))
{loop for variable in *resource-variables~*
for header in *resources*
as width = (string-length header)

‘names)

ORIGINAL PAGE ig
OF POOR QUALITY

T—— - .

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49 Page 5

for column first (+ space (/ width 2.0) space)
then (+ space (/ width 2.0) column)
do - .
(place-variable column variable exp)
(setqg column (+ (/ width 2.0) column))))
{(place-commands)))

;:This command puts the column and row labels as presentations

(defun make-mouse-sensitive-labels (return object &key (stream *resource-menu-window~)
(type ‘label-type))

{(dw:with-output-as-presentation (:single-box t
:stream stream
itype type
:object obiject)
(format stream {(format nil "~a~A" return (cadr cbiject)))))

;:This command creats the commands at bottom of menu.
(defun place-commands ()
(format *resource-menu-window* "~6%")

(loop for command in ‘' ("Exit Data Editor" "Save Current Data to File”
"Load New Data File")
do
(space~over *resource-menu-window* 17)
(dw:with-output-as-presentation (:single-box t

:stream *resource-menu-window*
:type ‘control-type
:object command)
(surrounding-output-with~border (*resource-menu-window* :shape :oval
:filled t
:move-cursor nil)
(format *resource-menu-window* command)))))

;;This function assists in proper relative heading column spacing
(defun space-over (stream space)
(format stream (format nil "~~~Aa" space) ""))

;:This function takes a string and returns an atom.
(defun make-variable-from-string (str)

(loop with flag =1 .
for item being the array-elements in str
if (not (string-equal item " "))

collect item into var
and do
(setqg flag 0)
else if (= flag 0)
collect "-" into var
and do
(setqg flag 1)
finally (return (read-from-string
(apply #'string-append
(cond ((= flag 1)
(reverse (cdr (reverse var))))
(t var)))

;:This function assists in correct column spacing
(defun place-variable (column variable exp)
(format *resource-menu-window* (format nil "~~~at"™ (zl:fix column)))
(format~-item-mouse-sensitive *resource-menu-window* (get exp variable)
(list (list exp variable)
(multiple-value-bind (a b)
{send *resource-menu-window* :read-cursorpos)
(list a b))))) ~

;:This function prints the item to the screen with mouse sensitivity
(defun format-item-mouse-sensitive (stream item descriptors)
(zl:putprop (caar descriptors) item (cadar descriptors))
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(clearspace stream)
(zl:putprop (caar descriptors)
(dw:with-output-as-presentation (:single-box t
:stream stream
:type ’resource-type

' OF POOR QUALITY

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49

:object descriptors)
{send stream :set-cursorpos {(caadr descriptors) (cadadr descriptors))
(format stream "~8@a" item))
(read-from-string (format nil "~a-presentation" (cadar descriptors)))))

::This function removes the typed in values to allow for presentations.
(defun clearspace (stream)
(loop repeat 8
do
(send stream :clear-char)
(send stream :forward-char)))

;:This function reads in a value, but does not issue a line-feed.
(defun read-without-return (&optional {(stream *standard-output*)

tkey (activation-characters ‘ (#\Return #\End }})
(loop with cursor-position = (list (multiple-value-bind (a b)
(send stream :read-cursorpos) {(list a b)))
with var2 = nil
with position = 0
as varl = (send stream :tyi)
as total-length = (length var?2)
until (member varl activation-characters)
if varil .

do
(cond ({(and (equal varl #\rubout) var2)
(send stream :tyo #\backspace)
(send stream :clear-char)
(setq var2 (cdr var2)
position (l1- position)
cursor-position (cdr cursor-position)))
((and (or (equal varl #\c-B) (equal varl #\backspace)) var2)
(setq position (1- position))
(send stream :tyo varl))
((equal varl #\c-F)
(cond ({< position total-length)
(setq position (1+ position))
(send stream :tyo varl)))) .
{(= position total-length) '
(setqg var2 (cons varl var2)
position (l+ position)
cursor-position (cons (multiple-value-bind (a b)
(send stream :read-cursorpos)
(list a b)) cursor-position))
(format stream "~a" varl))
{{or (equal varl #\c-B) (equal varl #\rubout)))
(t {(send stream :insert-char)
(format stream "~A" varl) :
(setqg var2 (reverse (loop for temp = nil
then (append temp (list (car end)})
for end = (reverse var2) then (cdr end)
repeat position
finally (return
(append temp (cons varl end))))))))
finally (return (cond (var2 (setq var2 (read-from-string
(apply #’string-append (reverse var2)))}))))))

;:This function allows the data values to be changed.
(defun change-data-point ()
(let ((data (catch ’'resource (accept ‘' {({or resource-type control-type
label-type exp-label-type))

:prompt nil
:stream *resource-menu-window*)))
(original-position {(multiple-value-bind (a b}
(send *resource-menu-window* :read-cursorpos)

(list a b)))
(position))
(cond ((or (atom data) (atom (car data))) data)

(t

(setq position (cadar data))

(send *resource-menu-window* :erase-displayed-presentation (cadr data))
(send *resource-menu-window* :set-cursorpos {(car position) (cadr position))
(send *resource-menu-window* :set-cursor-visibility :blink)
(format-item-mouse-sensitive *resource-menu-window*

Page 6

()R?G“P&QL Fﬂq 3
GE |
OF POOR QuaLiTy

ANDY:>jsr>multiple-resoﬁrce-interface.lisp.29 1/31/91 11:20:49 Page 7

(read-without-return *resource-menu-window*)
(car data))

(send *resource-menu-window* :set-cursor-visibility nil)

(send *resource-menu-window* :set-cursorpos {(car original-position)
(cadr original-position))

‘data}))))

;:;This function returns the list of data files that can be selected.
(defun get-data-file-list ()
(loop for directory in (cdr (fs:directory-list *Resource-File-Directory*))
as pathname = (cond ((not (string= (send (car directory) :name) "“err”))
(format nil "~A" (send (car directory) :string-for-dired))))
collect pathname }))

::This function allows the modified data to be saved to a data file.
(defun save-new-file ()
(with-open-file (stream (string-append *Resource-File-Directory*
(get-stream ‘ ({(string :prompt "Enter the Filename"
:query-identifier jsr))
"Save File Utility ")
*.data")
:direction :output
:if-exists :new-version)
(format stream "~2%(setq *resources* ' (")
(loop for resource in *resources*

do
(format 'stream " ~a~A~a " #\" resource #\"))
(format stream ")) ~2%(setqg *frames* ‘' (")
(loop for exp in (get ‘list-of ‘names)
do
(format stream "~%~a" (cons exp (loop for prop in *resource-variables*

collect (list prop (list (get exp prop}))))))
(format stream "))")))

;:This function creates a window and prompts the user for a file name.
{(defun get-stream (arguments header)
(dw:accept-values arguments
:OWN-WINDOW t
:temporary-p nil
:prompt header
:initially-select-query-identifier ‘jsr))

;:This function controls the adding of a resource.
(defun add-resource (position)
(let* ((new-resource (multiple-value-bind (a b)
(get-stream ‘' ({(string :prompt "Enter RESOURCE NAME"
rquery-identifier jsr)
(number :prompt “"Initial Value”
:defaultc 0))
"Add Resource Utility ")
(list a b)))
(variable (make-variable-from-string (car new-resource))))
(cond ({member variable *resource-variables*)
(send-message-to-user
(format nil "~2%~5tThe RESOURCE named ~'b&a~Dalready exists."
(car new-resource)}})
(t
{initialize~experiment-resource-value variable (cadr new-resource))
(setq *resources* (insert-item-in-list *resources* (car new~-resource) position)
resource-variables (insert-item-in-list *resource-variables*
variable position))))))

::This function puts an initial wvalue in the resource variables.
(defun initialize-experiment-resource-value (new-resource value)
(loop for item in (get ‘list-of ‘names)
do
(zl:putprop item value new-resource)))

;:This function inserts an item in a list at position.
(defun insert-item-in-list (lst item position)
(loop for i from 1
for each on lst
until (= i position) '

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>jsr>multiple-resource-interface.lisp.29 1/31/91 11:20:49 Page 8

collecting (car each) into var
finally (return (append var (list item) each))))

;:This function allows communication between the user and the program.
(defun send-message-to-user (message)

(send *message-window* :clear-history)

(send *message-window* :set-cursor-visibility nil)

(send *message-window* :select)

(format *message-window* message)

(send *message-window* :any-tyi) .

(send *message-window* :deselect})

;;This function removes a resource from consideration by program.
(defun remove-resocurce (resource &optional (message t))
(setq *resources* (remove resource *resources* :test #‘’string-equal)
resource-variables (remove (make-variable-from-string resource)
resource-variables))
(if message
(send-message-to-user
(format nil "~2%~5tThe RESOURCE named ~’'b&a~Shas been deleted." resource))))

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lisp Rége 1

;5 —%- Mode: LISP; Syntax: Common-1isp; Package: USER; Base: 18 -sx-

i3

(defun open-input-file ()
(let ((infile (dw:menu~-choose (get-data-file-list)
:prompt "Data File List®)))
(cond (infile (load (string-append 3Resource-File-Directorys infile)
:verbose nil)
(initialize-franes)
(setq 3current-files infile)))))

(defun initialize-frames ()
(z):putprop 'list-of nil ’'nanes)
(loop for frame in 3franess
as name = (car frane)
do
(z1:putprop 'list-of (append (get 'list-of 'names) (list nanme)) ’names)))

(defun determine-maxinizing-resource ()
(setq ¥maxinizing-resource-list? (prioritize-resource-list)
tnaxinizing-resource-positions
(loop for resource in tnaximizing-resource-lists
collecting (position resource $resource-variabless))))

{defun reset-lanbda-functions ()
(toop for (resource priority max-val lambda) in slambda-listss
do
(z1:putprop resource nax-val 'resource-linit)
(z1:putprop rescurce priority ’'resource-priority)
(2):putiirop resource lambda ’'resource-constraint-function)))

(defun initialize-hash-tables ()
(et ((parameters
(loop for resource-item-string in Sresourcess
as resource = (make-variable-fron-string resource-iten-string)
collaecting resource into var
collecting O into value
finally (setq 3resource-variablest var)
(return (list (append '(*paths* scheduled-items) var)
(append '(nil nil) value))))))
(loop for resource in (car parameters)
for val in (cadr paraneters)
do
(cond ((boundp resource)
(cirhash {eval resource)))
(t (set resource (make-hash-table))))
(swaphash 8 val (eval .resource))
(suaphash tmax-timex val (eval resocurce)))))

(defun initialize-markers-and-variables ()
(loop for eac in s2framess

as nane = (car eac)
do
(loop for each in (cdr eac)
do

(2):putprop name (caadr each) (car each))))
(satq stime-lists (list @ smax—-times))
(initialize-hash-tables)
(reset-lanbda-functions)
(deternine-naxinizing-resource))

;;Returns a sorted 1ist based on highest priority resource
;3in form of ’(expl exp2 exp3 ...)
(defun build-list ()
(let ((1st (get 'list-of 'nanmes)))
(loop for resource in (reverse ¥maxinizing-resource-lists)
as 1st2 = (zl:sortcar (loop for exp in lIst
collect (1ist (get exp rescurce) exp)) #°'>)
‘do
(setq 1st (loop for each in 1st2
collecting (cadr each))))

. AGE iS
ORIGINAL P/

ANDY :>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lisp Rége 2

1st))

(defun prioritize-resource-1ist ()
(sort (remove @ (copy-list 3resource-variabless) :test H's
) :key '(lambda (=) (get x 'resource-priority)))
#'> :key #'(lanbde (x) (get x ’'resource-priority))))

(defun Allocate-Resources ()
(time (Allocate-Resources-aux)
(format t "~32%3%3% Program Tining $333722")))

(defun Allocate-Resources-aux ()
(cond (%second-times t)
(t (open-input-file)
(setq 3second-tines t)))

(initialize-narkers-and-variables)
(examine-data)
(send 3resource-output-uindous :clear-history)
(send sresource-output-muindouz :select)
(et ((1st (build-list)))

(schedule-pass-one Ist)

(display-pass t)

(shou-used)

(format Zresource-output-uindous *~327a"

(catch ’resource (accept ’'label-type :stream gresource-output-uindous
:prompt nil)))

(schedule-pass-tuo 1st)

(display-pass)

(show-used))
(format tresource-output-uindous "~327a"

(catch ’resource {accept ’'label-type :stream 3¥resource-output-uindous
:prompt nil)))

(zl:readline 3resource-output-uindout))

3553353533555 TOP LEVEL FUNCTIONS ;;;;::::5::5

(Defun schedule-pass-one (nlsz)
(loop with 1st = (copy~-list nlst)
for (start interval-time)=(list @ smax-tinmes)
then (find-neu-parameters start)
until (or (= start smax-times)(null 1st))
as group = (find-max-path start (current-status start)
(find-resource-candidates 1st interval-time start))

do
s (format t ""2"A ~a " group start)
(cond ((atom (car group)))
(t

(update-hash-tables start
(loop for item in (car group)
as performances = (get item ’'performances)
as duration = (get item 'duration)
as tine = (* performances duration)
if (> tine interval-time)
do (setq time
{(* (setq perfornances
(zV:fix (7 interval-time duration)))
duration})
if (> perfornances 9)
collect (list item time) into var
finally (return var)
do
(21:putprop item (+ perfornances
(get itenm °’scheduled-performances))
*scheduled-perfornances)
(z):putprop iten (- (get item ’performances) performances)
‘perfornances)
(cond ((<= (- (get item °'perfornances) performances) 0.)
(setq 1st (remove-experiment-from-schedule-list

ORIGINAL PAGE IS
OF POG® QUALITY

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lisp Rége 3

L fren 15£))))))))))

: (defun schedule-pass-tuo (nist)
’ (loop vith 1st = (copy~list nist)
for (start interval-time) = (find-neu-paraneters)
then (find-new-paraneters start)
for current-status = {current-status start)
until (= stert smax-times)
i as possible-choices = (non-scheduled 1st (gethash start scheduled-itens))
do
; (format t "~32 start = "A “20t~a" start current-status)
(loop with paramns = nil
vhile interval-tine
while (Paraneters-uithin-range current-status) ;;Need exit condition here
as group = (find-nax-path start current-status
(find-resource-candidates
possible-choices intearval-tine start))
do
; (fornat t "~“2Interval time = “a "20t~a"40t~a" interval-time current-status group)
(cond ((aton (car group))
(cond ((= (+ start interval-tine) smax-tines)
(setq interval-time nil))
(t . .
(setq parans (find-next-parameter current-status
(+ start interval-time))
possible-choices (remove-next-time-events
(+ start interval-time) possible-choices))
(setg current-status (car parans)
interval-tine (- (cadr parans) start)))))
(¢t :
(update-hash-tables start
{loop for item in (car group)
as duration = (get item ’duration)
as perfornances = (2l:fix (7 interval-time duration))
as time = (32 performances duration)
collect (list item time) into varl
nininize tine into var2
finally (setq interval-time var2)
(return varl)
do
(21:putprop iten (+ performances
(get item 'scheduled-performances))
'scheduled-perfornances)
(z1:putprop item (- (get item ’performances)
perfornances)
'performances) ,
(setq possible~choices (remove-experiment-from-schedule-list
itemn possible-choices))))
(setq interval-tine nil))))))

(defun complete (self)
(send self :deactivate))

(defun display-pass (Zoptional (title nil))
(du::with-output-truncation (Sresource-output-windous :horizontal t)
(cond (title
(format sresource-output-uindons "~22~38t~vcResource Rllocation Results~>~42"
sFonts)
(cond ((null gresources-outputs)
(send sdisplay-nenus :set-label "Select Displayed Output*)

(send sdisplay-menuz :set-iten-list Sresourcess)
(send sdisplay-nenut :choose)
(setq sresources-outputs
(reverse (send 2display-nenu® :highlighted-values)))))
(fornat sresource-output-uindous "~47 szszz FIRST PRASS RESULTS s2332722"))
(t
(fornat sresource-output-uindows "~42 sssz SECOND PASS RESULTS ss33')))
(select~graphical-display)
(1et ((x-y-locations (Initialize-Graph-infornation sgraphical-outputs))
(space 18))
{shouw-scheduled)
(loop for resource in sresources-outputs

ORIGINAL PagE
e IS
OF PoOR QuaLTY

ANDY:> jsr>resource-allocatiori>multiple-horizontal-ﬁll>multiple-resources.lisp26ge 4

initially (space-over $resource-output-uindous (+ 6 space))
do
(space-over tresource-output-uindous space)
(fornat sresource-output-uindous "~'bc~a~3>" resource))
(loop for time in rtime-lists
for next-time in (cdr stime-lists)
do
(setq x-y-locations (display-output-sensitive *"2° time next-time x-y-locations
:strean $resource-output-windous))
(loop for variable in (make-variables sresources-outputs)
for header in tresources-outputs
as width = (string-length header)
for colunn first (+ space (7 width 2.8) space)
then {+ space (7 uidth 2.8) colunn)
do
(format sresource-output-windous (format nil *~~“~at® (zl:fix colunn)))
(format sresource-output-uindous "~80a" (gethash time (eval variable)))
(setq colunn (+ (7 width 2.0) column)))))))

(defun display-output-sensitive (return tine next-time x-y-locations
&key (stream sresource-menu-uindous)
(type 'label-type))
(du:uwith-output-as-presentation (:single-box t
istrean strean
:dont-snapshot-variables ¢t
rtype type
:object (list time))
(print-it streamn return time))
(print-it sgraphics-uindous return time))
(if (and (not (equal tgraphical-display® ’'none)) x-y-locations) .
(setq x-y-locations (funcall sgraphical-displays x-y-locations next-tine)))
x-y-locations)

(defun print-it (stream return tine)
(format stream (format nil "~a~R" return time)))

(defun wake-variables (1st)
(loop for string in lst
collect (make-variable-fron-string string)))

(defun shou-used ()
(formnat sresource-output-uindous *732718TIten”20tRenaining™48tScheduled™2")
(loop for item in (get ’list-of ’nanes)
do
(format sresource-output-uindous *~2718T A~23t"a~43t~a" iten (get item ’performances)
(get item 'scheduled-performances))))

333iiiiiiisis55 Second Pass Functions ;55555555

(defun nan-scheduled {(ls¢ used)
(let ((possible 1st))
(lcop for item in used
do
(setq possible (remove iten possible :test #'equal)))
possible))

"""""" ; Comnon Pass Functions ;;;;;;:::;:;

rrevrrrrsrsrry

(defun find-neu-paraneters (&optional (current nil){(parans nil))
(et ((1st xtime-lists))
(cond ((null current)
(setq 1st (cons B 1Ist)))
(t
(setq Ist (member current stime-lists :test #’=))))
(loop with start = (cadr 1st)
with status = (if parans parans (current-status start))
for time in (cddr 1st)
while (compare-each-tine-status status tine)
finally (return {(list start (if tine (- tine start)
(- smax-tinez (cadr ist))))))))

AGE 1S
ORIGINAL PAG
QF POOR QUALITY

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lisp Rége 5

(defun find-next-paraneter {current tine)
(let ((next (mapcar #'(lambda (x y) (if (> x y) x y)) current
(current-status time))))
(list next (cadr (member time stime-lists)))))

(defun remove-next-tine-events (tine Ist)
(loop for item in (gethash time scheduled-itens)
do
(setq 1st (remove-experinent-fron-schedule-list item 1st)))
1st)

(defun conmpare-each-tine-status (status tinme)
(1cop for pos from 8
for each in smaxinfzing-resource-lists
for location in smaximizing-resource-positions
aluays (<= (gethash time (eval each))
{nth location status))
finally (return t)))

(defun Parameters-uithin-range (current-status)
(loop for each in smaxinizing-resource-lists
for location in 3maximizing-resource-positions
aluays (> (get each ‘resource-linmit)
(nth location current-status))))

(defun update-Hash-tables (start Ist)
(loop for (iteml duration) in)st
as end-tine = (+ start duration)
do
(cond ((null (member end-time stime-lists :test #t'=z))
(loop for resource in (cons ‘'scheduled-itens gresource-variabiess)
do
(suaphash end-time (Get-hash-value end-time resource nil) (eval resource)))
(setq stine~listt (sort (cons end-time (copy-list stime-listz)) #'<))))
(loop for time in (menber start 3time-lists)
until (= end-tine tine)
do
(swaphash time (append (Gethash tine scheduled-items) (list iteml))
scheduled-itens)
(loop for resource in 3resource-variabless
do
(swaphash time (+ (Get-hash-value time resource)
(get iteml resource)) (eval resource)))})))

(defun Get-hash-value (time resource &optional (not-new t))
(let ((value (gethash tine (eval resource))))
{cond (value value)
(not-new nil)
(t (gethash (loop with previous = 8
for last-tine in ttine~-lists
until (>= last-time time)
finally (return previous)
do
(setq previous last-tine)) (eval resource))))))

(defun find-resource-candidates (ls¢ endpoint start)
(loop for exp in (find-interval-candidates lst endpoint)
if (check-constraints (add-constraint-values (current-status start) exp))
collect exp into resource-candidate-list
finally (return resource-candidate-list)))

(defun find-interval-candidates (lst endpoint)
(loop for exp in Ist
if (feasible-interval exp endpoint)
collect exp into variable
finally (return variable)))

(defun feasible-interval (experinent endpoint)
(< (get experiment ’'duration) endpoint))

(defun find-possible-dounuard-paths (sv Is¢)
(lets ((top (car 1st))
(botton (cdr 1st))

ORICINAL PAGE V
OF PGOR QUAL!

, \

ANDY:>jsr>resource-allocation>multiple-horizontal-ﬁll>multiple-resources.lisp.ESge 6

(val (add-constraint-values sv top)))
{cond ({(null {check-constraints val)) '(()))
(botton
(loop for doun-1st on (cdr 1st)
append (group-intermediate-lists
top (find-possible-downward-paths val doun-1st)) into var

finally (return var)))

(¢ (list 1st)))))

(defun add-constraint-values (1st exp)
(loop for resource in Sresource-variabless
for value in 1Ist
if (null value) |
do (setq value Q)
collecting (+ value (get exp resource))))

(defun check-constraints (1st)
(loop for resource in sresource-variabless
for value in 1Ist
aluays (apply (get resource ’resource-constraint-function) (list value))
finally (return t})) :

(defun find-nax-path (tine sv Is¢)
(loop with max-paths = nil
with max-value = 8
for new-lst on Ist
as paths = (find-possible-paths sv neu-lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max—paths nax-paths))
(swaphash time max-paths xpathss)
(return (car max-paths))
do
(cond ((= max-value value)
(setq max-paths (append max-paths paths)))
({< max-value value) (setq max-paths paths
max-value value)))))

(defun sort-max-paths {paths)
(let ((1st (loop for path in paths °
collecting (1ist path (get-group-values path)))))
(Yoop for pos in (reverse smaximnizing-resource-positions)
do
(setg 1st (sort 1st #’> :key (lambda {x) (nth pos (cadr x))))))
ist))

(defun get-tine-interyal-priority-value (values lst %optional (pos 8))
(cond (values
(+ (nth (nth pos smaximizing-resource-positions) values)
(nth (nth pos smaximizing-resource-positions) 1st)))

(v @)))

(defun group-internediate-lists (iten Ist)
(loop for each in 1st
collect (cons item each)))

(defun remove-experiment-fromn-schedule~list (exp Ist)
(remove exp (copy-list 1st) :test #’'egual))

(defun find-possible-paths (val resource-candidates)
(let ({ist (find-possible-downuard-paths val resource-candidates)))
{cond ((null 1st)(return-fron find-possible-paths nil))
(t (get-maxinized-sub-path 1st)))))

(defun get-maxinized-sub-path (paths)
(loop for resource in smaximizing-resource-lists

for position in smaximizing-resource-positions

until (= (length paths) 1)

do

(setq paths
{loop for 1st in paths

with nax-val = @
with nax-Ists = nil

ORIGINAL PAGE i5
OF PCOR QUALITY

ANDY:>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources.lispRége 7

as resource-value = (nth position (get-group-values 1st))
finally (return (reverse nax-1sts))
do
(cond ({> resource-value nax-vatl)
(setq max-val rescurce-value
nax-1sts (1ist 1st)))
({= resource-value nax-val)
(setq max-1sts {cons 1st max-lists)))))))
paths)

(defun get-group-values (group)
(loop for item in 3resource-variabless
collecting (loop for each in group
sunning (get each item))))

(defun current-status (tine)
(loop for each in sresource-variabless
as value = (gethash time (eval each))
if (null vatue)
do (setq value 9)
collecting value))

(defun shou-scheduled ()
(format sresource-output-uwindous “~22 Time ~28tScheduled Events™2")
(loop for time in stime-lists
do
(format sresource-output-uindems "~2 “A “28t"A" time (gethash time scheduled-items)))
(format sresource-output-uwindows "~22"))

(defun shouw-resource (resource)
{loop for time in stime~listx
do
(format t "~2 "R “28t~R" time (gethash time resource))))

;(defun wake-mouse-sensitive-labels (return object &key (strean sresource-menu-uindous)
; (type 'label-type))

;3 (dw:with-output-as-presentation (:single-box t

; istream strean

H itype type

5 :object object)

; (fornat stream (format nil "~a”R" return (cadr object)))))

ORIGINAL PAGE IS
OF POOR QUALITY

f\NDY:>' r>resource-allocation>multipIe-horizontal-fill>multiple-resources-grag,hical-disp
ays.lisp. age 1

;33 —%- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISP -s-

(defun select-graphical-display ()
(cond ({(null sgraphical-displays)
(let ({choice (dw:menu-choose ’'("Line Graph®" "No Display®)
:prompt “Type of Graphical Display®
rcenter~p t
tnininun-width 275)))
(setq tgraphical-displays
(cond ((or (null choice)
(string= choice "Line Graph®))
‘normalized-graphical-display-of -resources)
({string= choice "No Display")
'none)
(t ’normalized-graphicali-display-of-resources)))))
(t (send sgraphics-uindous :clear-history)
(send sgraphics-uindous :expose)))
(cond ((equal sgraphical-displays ’none) nil)
(sgraphical-outputs nil)
(t (send sdisplay-menus :set-iten-list (max-valued-resources))
(send sdisplay-nenut :set-label °Selact Graphics Output*)

(send sdisplay-menus :choose)
(setq sgraphical-outputs
(reverse (send sdisplay-nenus :highlighted-values)))))
(cond ((and (not (equal 3graphical-displays ’'none)) tgraphical-outputs)
(cond ((send sgraphics-uwindous :exposed-p))
(t (nultiple-value-bind (a b c d)
(send sresource-output-uindous :edges)
(setq soriginal-screen-sizez (list a b ¢ d))
(send sresource-output-uindous :set-edges a b c (- d 2208))
(send zgraphics-uindous :set-edges a (- d 228)c d)
(send sgraphics-uindous :expose))))
(drau-axis-for-graph))))

(defun nax-valued-resources ()
(loop for variable in fresource-variabless
for resource in Sresourcess
if (get varisble 'resource-limit)
collect resource into varl
finally (return varl)))

(defun graphical-restart ()
(cond (soriginal-screen-sizes
(send tresource-output-uindous :set-edges (car soriginal-screen-sizes)
(cadr soriginal-screen-sizes)
(caddr soriginal-screen-sizes)
(cadddr toriginal-screen-sizes))
(setq soriginal-screen-sizes ni)
sgraphical-displays nil
sgraphical-outputs nil))))

(defun Initiatize-Graph-information (ls¢)
(loop for resource-name in Ist

for style in "(nil 2 4 8 12 20 38 SO 89)
with x = 70
with dy =1
as resource = (nake-varisble-fron-string resource-nane)
as nax = (get resource ’'resource-linit)
as y = (- 155 (x dy 158 (7 (gethash @ (eval resource)) nax)))
collecting {1ist resource-nane resource style max x‘'y) into var
finally (return var)
counting t into pos
do

(shou-graph-legend resource-nane style (+ S (% pos 15)))))

(defun normalized-graphical-display-of-resources (Is¢ tine)
(let ((variable
(loop with dx = (7 788 tmax-tines)
with dy = 1.0
with next-x = (+ 790.0 (* dx time))
for (resource-nane resource style max x y) in Ist
as next-y = (- 155.0 (s 158.8 dy (7 (gethash tine (eval resource)) nax)))
collecting (list resource-nane resource style nax next-x next-y) into var

ORIGINAL PAGE |5
OF POOR QuALITY

‘ ANDY :>jsr>resource-allocation>multiple-horizontal-fill>multiple-resources-graphgaBdisplays.lisp.6

finally (return {cons next-x var))
do
(graphics:drau-line x y next-x y :strean sgraphics-windous
:dashed style :dash-pattern (list style style))
' (graphics:drau-line next-x y next-x next-y :stream tgraphics-uindous
:dashed style :dash-pattern (list style style)))))
(graphics:drau-line (car variable) 153 (cor variable) 157 :strean sgraphics-uindous)
(cdr variable)))

| (defun drau-axis-Ffor-graph ()
(graphics:drau-rectangle 78 5 858 155 :filled nil :streanm sgraphics-wuindous)
(send sgraphics-windous :set-cursorpos 35 3)
(format tgraphics-uindous "1082°)
(send sgraphics-uindous :set-cursorpos 55 145)
i (format sgraphics-uindous "@*)
) (send sgraphics-uindous :set-cursorpos 78 158)
(format sgraphics-windows "8")
(send tgraphics-uindous :set-cursorpos 838 158)
(format sgraphics-uindous "~a* swax-tines)
(send sgraphics-uindous :set-cursorpos 442 162)
(fornat sgraphics-uindous "Tine"))

(defun shou-graph-legend (nane style pos)
(send sgraphics-uindous :set-cursorpos 868 pos)
(fornat xgraphics-uindouz "~a' nane)
(graphics:drau-line 18808 (+ pos 4) 1858 (+ pos 4) :streamn sgraphics-uindouz
:dashed style :dash-pattern (list style style)))

(def ine-presentation-type time-type ()
tno-deftype t
:parser ((strean) (loop do (du:read-char-for-accept strean)))
:printer ({(object strean)
(format strean "the selection “a" (car object))))

(def ine~-presentation-action tine-type
(tine-type t
:gesture :left
:context-independent t .
:docunentation "Shou Additional Information about this Item.”)
(exit)
(throu ’'time exit))

ORIGI
OF pocik PAgs is

Appendix C
Vax Code Listing for the Multiple Pass
Single Resource Allocation Program

AGE 1S
ORIGINAL PAGE '3
OF POOR QUALIT:

vaxcode.lisp >GIBSON>resource-allocation ANDY-TAYLOR: (34) 5/24/89 Pagel

535 -%- Synten: Common-Lisp; Packege: USER; Base: 19; Mode: LISP -s-
iiilnput and Varieble Initializfng Functions;;;

(defun vex-get-data-file-1ist ()
(setq sdir-errays (nske-erray {length (dtirectory 1Rescurce-File-Directorys))))
(dot ((dir (directory SResource-File-Directorys)(cdr dir))
(path-nane (car dir) (car dir))
(count @ (1 count))
(nevpath nil))
((null dir) newpath)
(setq newpeth (append nevpath (14st (f1le-nanestring path-nane))))
(setf (aref sdir-array® count) (file-nanestring path-nene))))

(defun vax-epen~input-file ()
(fornet ¢t "~2 ~2Data File List ~272°)
(tets ((inftle)(ansu))
(dos ({inf1le (van-get-deta-file-1ist)(cdr inf1le))
(tile-nane (car infile)(cer infile))
(count @ (1e count)))
((null 1nfile))
(fornet t *~2 A, "R count f1le-nane))
(fornat t "2 “2Chofce:] °)
(setq answ (read))
(setq infile (aref adir-arrays ansu))
(cond (infile (load (string-append tResource-File-Directorys infile)
tverbose nil)
(vax-1nitisltze-franes)
(setq tcurrent-files infile)))))

(defun vex-tnitialize-frones ()
(sec? (get 'list-of 'nanes) nil)
(dos ((f1ist sfraness (cdr flisc))
(frame (car f1ist)(cer flist))
(nare (cer frane) (car frane)))
({(nul) flitse) (get *1ist-of ‘nanmes))
(setf (get 'Visc-of ‘names) (append (get 'list-of ‘nanes) (list nene)))))

(defun van-inftialize-narkers-and-varisbles ()
(dos ((flist sframess (cdr f1ist)) .
(eac (car fiigt)(car fiist))
(nane (car cec)(car eac)))
({(null flisce))
(dos ((elist (cdr eac)(cdr elist))
(each (car elist){car elist)))
({null «list))
(setf (get nane (cer eech)) (ceade each))))
(setq senergy-lists (1ist '(8 @) (1ist smax-tines Q))
sdetatled-energy-lists *{(08))))

(defun vaz-build-list ()
{1ets ((temp-list ri)))
(dos ((xlist (get °"list-of ‘nanes) (cdr xlist))
(enp (coar x1ist)(car x1ist)))
((null x)ige) temp-list)
{setq tenp=list (append temp-list (1ist (1ist {(get exp ’'pouwer-required) exp)))))
(setq temp-list (sort (copy-alist temp-list) 8°> :key 8'car))))

(defun vax-Rllecate-Ressurces ()
{cine {vax-Rllocete-Resources-aux)
(fornet ¢t "~323sts Progran Tining 8123°22°%)))

(defun vax-ARllocate-Resources-eux ()
(cond (ssecond-tines t)
{t {vax-open-input~file)

(setq t*second-times t)))
(vax-initislize~narkers-and-variables)
(1et ((1st (van~build-list)))

(vax-displey-pess-one {vex-schedule-psss-one l1st))
{vax-display-pesss-tuwo)

(van-shou-used)

{van-schedule~-pess-tuo lst)

(vex-display-pass~-two t)

(vax-show-used)))

----------------- TOP LEVEL FUNCTIONS ;;;i555:555i5i33538335354:3

(defun vax-schedule-pass-ene (nlist) OREG"\!AL Pﬁ‘GE 78
(tets ((ti)(paranecers) (st (copy=1ist nlist))(varteble ‘())(perfornances)(duration)(tine)(var)(start 8)(sQ).aMNNOD
(dos ({interval-tine (- fmax-tines start) (- ¥max-tinet atart)) Y * k-9 O0R QUALiTV
r.n

vaxcode.lisp >GIBSON>resource-allocation ANDY-TFAYLOR: (34) 5/24/89 Page2

(rax-energy (- tmax-energys sv) (- Snax-energyt sv))
(group (vex-find-nen-path sv (vex-find-resource-candtzecexs nan-energy st intervel-tine) Snex-energyt)
(ven-find-nax-peth sv (van-find-resource-cencicetexs nax-energy Jst interval-time) tnex-energys))
(variebla (eetq vertable (eppend variable (liat (cons szarct grow))))
(setq veriable (append varisble (11st (care starert growp))))))
({or (= start sman-tinet){null l1st)(null group)) verrec’e:
(setq var nil)
(cond ((atom group)})
(¢t (setq t1 (vax-regroup-td
(dos ({group-1ist group (cdr group-Tt!sz))
(1ten (car group-list)(cer graus—~'istst}))
((runberp ften) (return var))
(setq perfornances (get ttea 'per”r—encrces))
(setq duretfon {(get ftem *duratism))
(setq tine (¢ performances duraciaor’’
(if (> tine interval-tine)
(setq tine (s (setq perforrarces (! "iocor (7 interval-tine duration))) duration)))
(if (> perfornances @)
(setq var (eppend var (1ist (1isz ‘-izen time perfornances (get item 'pouer-required))))))
(setf (get 1ten 'scheduled-perfor=ercesss)(+ performances (get ttem *scheduled-perfornances)))
(secf (get {temn 'performances}(- (get - iten 'performances) perfornances))
(cond ({¢= (- (get iten *perforrances) - perfornances) 9.)
(setq 1st (vex-renove-engertrant—-froa—schedule~list ften 1st))))))’
{vex-updste-energy-tist start ti)))
(setq psrancters (van-find-neu-parancters start)
start (car perancters)
sv (cadr paranaters)))))

(defun vax-schedyle-pass-tuo (nist)
(lets ((1st (copy~list nlst)) (eften (car tenergy~-1ists)) . e~ergy--—~1ist Senergy-lises) (detsiled-list sdetoiled-energy-list
s)
(duration)(time)(var){possible-choices){tenp)(inter.a -<:rme){nent-energy))
(dos ((test))
((ru1) eiten) (return))
(Yets ((group '({(@)))(t1 nil)(energy (cader energy-lis: °
(dos ((test))
((ru)) group))
(1f {nunberp (car group))
{setq energy next-energy))
{setq possible-choices (vax-non-scheduled Vst (cdar 2e2a1 cied-11st)))
(setq temnp (vax-get-pass-tuo-tine-interval energy ere~3v-:-:18t))
(setq 1nterval-tine (car temp))
(setq next-energy (cadr temp))
(setq group (vax-find-nax~peth energy (ven-find-rescirzs-cxsndidates
(= sSman-eners-s enmrergy) -
possibie-crc o3 --1nterval-time) fran-energys))
(cond ({(and (nunberp (car group)) (<= next-energy ere~g..)
(return))
((nunberp group))
(¢
(setq energy (¢ energy (cer (last group)))
ti (vex-regroup=-ti
(let ((ver))
(dos ({glist group (cdr glist))
(teen (car glist){car glise
(perforrances nil))
({nunberp iten) (return ver))
(setq duretion (get {tem ‘durec-sr'
(setq tire (5 (setq perfornances ““2ar- (7 intervel-time duration))) duretion))
(1r (> perfornances 0)
(setq var (eppend var (list {‘'st 1ten tine perfornances (get iten ‘pouver-required))))))
(setf (get 1tem 'scheduled-perfcr-arcaxms)(* performences (get iten *scheduled-perfornances)))
(secf (get item ‘perfornences)(- {get 1tea °pe~formances) performances))))))
(vex-update-energy-1ist {cer eiten) tit)
(setq enargy-list (nenber (car atiten) senergy—~"-scr :test 8'= :key 8°car)
elten (car energy-list)
* detailed-1ist (nenber (coeor detatled~1:sz}
sdetafled-energy~T"s32 :test §'s :key 8°'car)})))))
(setq energy-~list (cdr energy-list)
eiten (car energy~list)
detailed-1ist (cdr detailed-11st)))))

(dafun vax-display~pass-one (1st)
(format ¢ °~42 ss3s FIRST PASS RESULTS ssas~2°)
(format ¢t "~22°10tT ine"20tEnergy " 30tEnperinant Started™2°;
(des ((V1tat Vet (cdr Vise))
(tten (car Tist){car list))
(tine (cor iten) (car iten)) N
(value ‘car (last iten)) (car (last ttem))))

({nul) tten)) -
(cond ((¢< 8 value) ORKGENHL PAGE Ig
{(formet ¢t *~271Bt A28t A~30t A’ time value (rece~se - :ce- (reverse [(2gr .12m))))))))) OF POOR QUMJ'TY

{(defun vex-display-pass-tue ($optional title)
(1F title (formnat ¢t °~42 ssss GELOND PASS RESULTS snaes’)’

LS

vaxcode.lisp >GIBSON>resource-allocation ANDY-TAYLOR: (34) 5/24/89 Page 3

(formnet t *~22-Stline~15tExperinents Currently Being Conducted E@tPover Required~2®)
(dos ((1ist tdetatled-energy-1ists (cdr list))
(tten (car Viet)(car 11st))
(eltat zenergy-1tats (cdr aliae))
(other (car eltst)(car elist)))
({or (null iten)(null other)))
(formet ¢t *~2°St"A~15t"R~63t"R* (cer item) (cdr iten) (ceadr other))))

(defun vex-shou-vsed ()
(format ¢ *~32-187Iten"20tRenaining~40tScheduled~2’)
(dos ({1ist (get *list-of ’nanes)(car list))
(iten (car 1ist)(car 1iat)))
((null 1tan))
(formet ¢t ‘“2718T7RT23t"AT43t"R" ften (get ften ‘perfornsnces) (get {tem ‘scheduled-perfornences))))

------------------ SECOMD PASS FUNCTIONS ;;;;55;5;555:ii3i33338333

(defun vex-non-scheduled (st used)
(let ((possiblie Tst))
(daos ((11ist used (cdr 111st))
(1ten (car 111st)(cer 11ist)))
({null {list})
(setq possible (remove 1tem possible :test 8'equal :key 8°cadr)))
poasible))

(defun var-get-pass-tuo-tine-intervel (energy energy-list)
(let ((atart (csar energy-list)))

(17 (= stert ’nax-tine?) (return-from vex-get-pass-tuo-tine-intervel °*(8 8)))

(dos ((1ten (cdr energy-list)(cdr iten))
(end (caar fren){caar tten))
(pover (cadar iten){cedar ften)))
({or (nU1) (cdr ften))(¢ energy pover)) (return (Vist (- end start) (cond ((< energy pover) pover)

(t energy)}))))))

....................

$iidisiiidisiisiiss Conmon Path Functions ;;;iiiisiiiaiiisissiii

(defun vax-find-neu-paraneters (current)
(cadr (menmber current Tenergy-lists :test 8'= :key 8'car)))

(defun ven-regroup~ti (1st)
(sort (copy-list lst) 8°¢ :key '(lanbdas (x)(cadr x))))

(defun vax-update-energy-tist (start 1st)
(lets ((energy °())(detatled ‘())(exit t)(tine)(pover)(cld-pover)(old-detatled-pouar)(iteni))
(do ((Vist st (cdr Vist)))
({(null 1ist))

(setq ttenl (cer list)
old-pover nil
old-detailed-~pover nil
tine {+ start (cadr itenl))
pouer {get (car itenl) 'pover-requirecd))

(lets ((end-energy (cdr tenergy-lists))(end-detailed (cdr sdetailed-energy-1ists))(etine)(iten2)(detailed-iten)(exit ¢

(energy)(detatled))
(do ((11st2 senergy-1ists (cdr 1ist2))
(113t sdetatled-energy-1ists (cdr 1{st3))
(11st4 (cdr senergy-lists) (cdr 1{ste))
(1istS (cdr sdetailed-energy~-1ists) (cdr 1{st$)))
((or (Au1) Y11822) (null 1i8t3) (null exit))
(setq 1ten2 (car 11st2))
{satq tenergy-lists {sppend energy end-energy)
sdetailed-energy-lists (append detailed end-detailed))
(cond ((not (nember time Senergy-lists :test 3°s :key 8°car))
(setq tdetatled-energy-)ists
(sort {copy-list (cons {(cons time old-detailed-power)
tdetalled~energy-1ists)) 8°¢ :key 8°cor)
senargy~1ist? (sort (copy-list
(cons (Vist time old-power)
tenergy-11sts)) 8°¢ :key 8'car)))))
(setq iten2 (car 11st2)
detailed-iten (cor 11st3)
etime (car iten2))
(cond ({or (¢ tine etine)(null 1istd)(mul) 14stS))
(setq exit nil)) ’
(2))
(setq end-energy 1istd)
(setq end-detailed 11st93)
(setq energy (sppend energy (cond {(or (= start etimg)(¢ start etime tine))
(setq old-power (cadr (ten2)
old-detailed-power (cdr dets{led-{ten)
detailed-iten (append detatled-iten (1ist (car ttenl))))
(119t (1ise .-img {+ (cadr iten2) pouver))))
(¢t (1ist iten2)))))
(setq detatled {oppend detetled (1ist detailed-iten)))))))) ORlﬁlNAL PAGE 1S

Ly
s OF POOR QUA
.

vaxcode.lisp >GIBSON>resource-allocation ANDY-TAYLOR: (34)

(defun vea-find-reseurce-condidates (evailable-energy Ist endpoint)
(1ets ((resource-candidate-1ist))
(dos ((Vist (vex-fing-intervel-candidetes Vet endpoint)(cdr 11st))
(enp (car 11gt)(car 11st)))
((rull V1ige){return resource-condidate-1ist))
(1f (<= (cor exp) sveilable-energy)
(setq resource-cendidate-1ist (append rescurce-candidate-list (ifst expl}})}})

(defun vax-find-intervel-candidates (1st endpoint)
(let ((vartadle))
{dos ((1ist 1st {cdr list))
(exp (car Vtst)(car 113t)))
{(null 1ist) (return varieble))
(4f (van-fessibla-tnterval exp endpoint)
{(setq variable (sppend variable (V1ist exp)))))))

(defun vex~fessible~interval (experinent endpoint)
(< (gat {cadr experinent) 'duration) endpotnt))

(defun vax~find-pessible-dosunnard-peths (sv st nax-energy)
(let {(var))
(4f (nul) (car VYst))(return-fron vax-find-possible-downuard-paths {1ist sv)))
{(1et ({va) (» sv (caar 1st)))}{(top (cadar lst)))

(cond ((> vel mex-energy)(return-from vax-find-possible-downvard-peths (1ist (1ist sv))))

((or (3 val nax~energy)(null (cadr 1st)))
{return-fron vax-find-possible-dounwvard-paths (113t (1ist top vel)))))
(dos ((doun-lst (cdr Vst){cdr down-ist)))
({(rul1 (car down~1st)) (return var))

5/24/89 Page4

(Setq ver (append var (van-group-intermediste-lists top (vax-f{nd~possible-dounuerd-paths val doun-ist max-energy)))

MmN

(defun vex-find-max~path (sv 1st nax-energy)
(lec ((path))
(dos {(new-1st 13t (cdr neu-1st))
(max-path '(Q))

(path (vax-find-possible-paths sv new-ist nan-energy) (vex-find-possible-peths sv nev-1st nax-energy)))

({nu1l new-lst)(return nan-path))
(4f (> (coar (last path)) (car {VYast nax-path))) (setq nax~path path))
(if (= (car (last nex-peth)) nax-energy) (return nax-path}))))

(defun vax-greup-iaternediate-tists (iten Vst)
(let ((neulist ni1))
(dos ((V14st let (cdr 1ist))
(each (car list)(car list)))
((null Yist) newlist)
{setq newlist (append newvlist (Vi1st (cons item rach)))))))

(defun vax-renove-experinent-fron-schedule-1ist (exp lst)
(remove exp (copy~list lst) :test 8'equal :key B’'cadr))

(defun vax-find-possible-paths (val resource-candidates nax-energy)
{let ({1st (vex=find-possible-dounvard-peths val resource-candidates nmax-energy)))
(cond ({aton (car 1st))(return-from vex-find-possible-paths nil))
(¢
(gos ((ifst 1st (cdr)ist))
(item (cor Yist)(cer Yist))

(nex (car (last (car (sort (copy~1ist 1st) 8°'> :key ‘'(lanbda (x) (cor (last x))})))))
(car (last (car (sort (copy~list ist) 8°'> :key °'(landbds (x) (car (Yast x)))))))))

{(s (cor (last iten)) man)(return i2en)))))))

Cc-5

ORIGINAL PAGE S
OF POOR QUALITY

ANDY-TAYLOR:>gibsoon>resource-allocation>data>(ifty-frames.data.1

:3: -*- Mode: LISP:; $y—iax: Cozemon-lisp; Package: USER; Base: 1) -+

(setq *framas* ‘ {(alf (expseriment-number (1))
(pcwepr-req:ired (10000.0))
{dcraetion (22))
(pectiormances (2))
{scnereduled-performances (0)))

(asf (expmeriment-~umber (2))
iscwerr~reqiired (8500.0))
izizazxtion (18))
.rerriorranrces (2))
{sznamduled-performances (0)))

(amf (expeeriment-number (3})
{(cweer-req:ized (1566.7))
iZiraation (18))

" iperriormances (3))
{scheeduled-performances (0)))

(aff{ (expwerimernt-number (4))
izcwerer-req:ired (15000.0))
{Cirzazion (32))
{per-formances (10))
{schmeduled-performances (0}})

(bif {expmarzimert-~umber (5))
{(rcwerr-zequized (480.0))
iziraction (192))
ipecfxormarces (1))
isctewzuled-~performances (0)))

(Bsf ‘expwerimeni-number (7))
sowwer~req:ired (5125.0))
‘furxation (48))
ser-formances (1))
scnneduled-performances (0)))

(cfef exxperizesi-aumber (9))

awwer-zeg:ired (4000.0))
zozraticn (249))
peccforzarnces (S))
scchedu.eZ-performances (0)))

(cpzf exxperirerni-number (10))

‘powwer-rezoired (500.0))
dquxraticn (274))
peecforrarces (1))
sccneduled-performances (0)))

(da=f exmperimeri-aumber (1l1))

scwower-reg.ired (500.0})
durraticn (10))
pecrfor-ances (20))
sernedu’ . ez -performances (0)))

(eef exaperimert-number (12))
scwwer-resoized (15000.0))
=uzrasiorn (257))
ser-formances (1))
senedulec-performances (0)))

(e.f exxperimenI-number {13}
sowwer-req-ired (725.0))
iZarration (7))
perTfocrmarces (S5))
:sconeduled-performances (0)))

(em.? 'exxperimenz-number (14))
‘poower-reqguired (1725.0))
‘qrrratier (7))

prerformances (95))
sccheduled-performances (0)))
(f1f exuxperiment-number (15))
Prower-regiired (8816.7))
azuraticn (34))
oyvezforances (5))
szznedu.ez-performances {(0)))

(3¢ exxperiment-anumber (19))

poower-reciired (2080.0))
azcraties (32))
srerfecrmances (1))
szTned.lez-performances (0)))

(4£¢ exzperiment-number (17))

ooower-seT.ired (1108.3))
Tzurazisn (6})
orerfcrmances (5))

4/27/89 Page 1

ORIGINAL PAGE |8
OF POOR QUALITY

ANDY.TAYLOR:>gibson>resource-allocation>data>fifty-frames.data.1

(scheduled-performances (0)))
(htff (experiment-number (18))
(power-required (8000.0))
{(duration (1))
(performances (2))
(scheduled-performances (0)))
(iff (experiment~number (19)) . -
(power-required (3000.0))
(duration (11))
{(performances (S))
(scheduled-performances (0)))
(lrf (experiment-number (20))
(power-required (1500.0))
(duration (57))
(performances (1))
(scheduled-performances (0)))
(ofpf (experiment-number (22))
(power-required (5000.0))
(duration (24))
(performances (2))
(scheduled-performances (0)))
(opcgf (experiment-number (23))
(power-required (1650.0))
{duration (13))
(performances (2}))
(scheduled-performances (0)))
(pgct (experiment-number (24))
{power-required (620.0))
(duration (8))
{(performances (20))
{scheduled-performances (0)))
(pcgf (experiment-number (25))
(power-required (6000.0))
(duration (55))
{performances (1))
(scheduled-~performances (0)))
(rscf (experiment-number (26))
(power-required (550.0))
(duration (12})
(performances (2))
{scheduled-performances (0)))
{scf (experiment-~number (28))
(power-required (3160.0))
{duration (34))
(performances (1))
{scheduled-performances (0)))
(vef (experiment~number (29))
{power-required (12490.0))
(duration (95))
(performances (1))V
{schedulad-~performances (0)))
(visgf (experimeant-number (30))
(power-required (5710.0))
(duration (12))
(performances (3))
{scheduled-~performances (0}))
(zaa (experiment-~number (31))
{(power-required (750.0))
{duration (30))
(performances (2})
({scheduled-~performances (0)))
(zab (experiment-~number (32))
(power-required (1000.0))
(duration (15})
{performances (1))
(scheduled-performances (0)))
(zac (experiment~number (33))
{(power-required (683.0))
(duration (150))
(performances (4))
{scheduled-performances (0)))
(zad (experiment-number (34))
(power-required (987.0)) OR’G!NAL PAGE IS
(duration (10)) ;

(performances (3)) OF POOR QUALITY

{scheduled-performances (0}))

c-8

ANDY-TAYLOR:>gibson>resource-allocation>data>fifty-frames.data.1

(zae

(zaf

(zag

(zah

(2ai

(2a]

(zak

(zal

{zam

(zan

(zao

(zap

(zaq

(zar

{zas

(zat

(experiment-number (35))
{pover-required (10000.0})
{duration (30))

(performances (2)}
{scheduled-performances (0)))

{(experimant -number (36))
{(power~required (600.0))
{duration (15))

(performances (5))
{scheduled-performances (0)))

(experiment -number (37))
(power-required (7000.0))
{duration (75))

(performances (1))
{scheduled-performances (0)))

(experiment -number (38))
{(power-required (500.0))
(duration (10))

{performances (9))
(scheduled-performances (0)))

(experiment ~number (39))
{(power-required (1500.0))
(duration (11))

(performances (1))
(scheduled-performances (0)))

{experiment-aumber (40))
{power-required (2075.0))
(duration (7))

(performances (1))
{scheduled-performances (0)))

(experiment -number (41})
{power-required (15000.0))
(duration (250))
(performances (1))
{scheduled-performances (0)))

(experiment-number (42})
{power~-required (480.0))
(duration (190))
(performances (1))
(scheduled-performances (0)))

(experiment-number (43))
{power~required (3000.0))}
(duration (11))

(performances (5))
{scheduled-performances (0)))

(experiment-number (44))
{power-required (8000.0}}
{(duration (13))

(pecformances (2))
(scheduled-performances (0)))

(experiment-number (45))
(power-required (1108.3))
(duration (6})

(performances (5))
(scheduled-performances (0)))

(experiment -number (46))
(power-required (5125.0))
(duration (48))

(performances (1))
(scheduled-performances (0)))

{experiment~-number (47))
{(power-required (725.0))
(duration (7))

(performances (l})}
(scheduled~performances (0)))

{experiment ~number (48))
(power-required (10000.0))
(duration (22))

{(performances (2})
{scheduled-performances (0)))

(experiment -number (49))
(power-required (8500.0))
(duration (18))

(performances (2})
{scheduled-performances (0)))
(experimant-number (50))

Cc-9

4/27/89 Page3

ORIGINAL ba3E VS
OF POOR QUALITY

Appendix D
Symbolics Code Listing for the Multiple Pass-
Single Resource Aliocation Program

ANDY-TAYLOR:>jsr>resource-allocation>resource-variables.lisp.2 3/03/89 Page l‘

;¢ =*- Syntax: Common-Lisp:; Package: USER; Base: 10; Mode: LISP -+*-

ii3::iiii5::;:Global Variables;;;:;:i;ii:::
(defvar *max-energy® 15000)
(defvar *frames?) ;:Loaded from data file.
{dafvar *max-time* 2160)
(defvar *energy-list®)
(defvar *detailed-energy-list¥ ' ((0)))
(defvar *second-time* nil)
(defvar tcurrent~filet *")
{defvar *Rescurce-File-Directory* “andy:>jsr>resource-allocation>data-files>®)
{defvar *resources?)
(defvar *resource-variablest)
(defvar *resource-menu-window* (tv:make-window ‘dw:dynamic-window
:1abel "Experlment Data Editor Window"

:blinker-p t))

{defvar *Data-choices-menu* (tv:make-window ‘tv:momentary-menu
:borders 4
:label "Alternate Data File List"))

(defvar *message~window?® (tv:make-window ‘dw:dynamic-window

:blinker-p nil

:edges~from * (300 300 850 400)

tmargin-components

*{{dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4§)
(dw:margin-label

imargin :tbottom.

:string %usago Window (Press any key to EXIT).'))))

(defvar *Font*® (ai:backtranslate-font
(fed:read-font-from-bfd-file "sys:fonts;tv;40vr.bfd.newest™ }))

ORIGIMAL b0 75 S
OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/89 08:16:53 Pagel

-*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

ss e
sae

::222:2::::Input and Variable Initializing Functions;;;;;;:;
(defun opea-input-file ()
(let ((infile (dw:menu-choose (get-data-file-l:st)
:prompt "Data File List~")))
{cond (infile (load (string-append *Rescurce-File-Directory* infile)
:verbose nil)
(initialize~frames)
{(setq *current-file* infile)))))

(defun initialize~frames ()
(zl:putprop ‘list-of nil ‘names)
(loop for frame in *frames®*
as name = (car frame)
do
(zl:putprop ‘list-of (append (get ‘list-of ‘names) (list name)) ‘names)))

(defun initialize-markers-and-variables ()

(loop for eac in *framas®*
as name = (car eac)
do

{loop for each in {(cdr eac)
. do
{zl:putprop name {(caadr each) {(car each))))

(setq *energy-list* (list ‘(0 0) (list *max-time* 0)

detailed-energy-~l1ist ' {(0))))

{defun bulld-list ()
(2l:sortcar (loop for exp in (get ‘list-of ‘names)
collect (list (get exp ‘power-required) exp)) ‘>))
iiiiiisiiiei;:Top Level Functions;;;;:;::::;:

MAIN PFKN:RJU‘ A

.~
.
~
e
~.
~.
~
.~
~e
~

e+ s o
[

!defun Allocate-Resocurces ()
(time (Allocate-Resources-aux)
(format t "~3\t%%* Drogram Timing *t¥2.2%37)))

(defun Allocate~-Resocurces-asux ()
{cond (*second-time* t)
(t (open-input-file)

(setqg *second-time* t)))
(initialize-markers-and-variables)
(let ((lst (build-list)))

{display-pass-one (schedule-pass-one lst))
{display-pass-two)

{show-used)

{schedule-pass-two lat)

{display-pass-two t)

(show-used)))

2222302:2:2:2: TOP LEVEL FUNCTIONS ;::::::::::2

(defun schedule-pass-one (nlst)
(let ({(ti) (parameters) (lst (copy-list nlst)))
(loop with start = 0
with sv = 0.0
until (or (= start *max-time®*) (null lst))
as interval-time = (- *"max-time® start)
as max-energy = (- *max-energy* sv)
as group = (find-max-path sv (find-resource-candxdates
max-energy lst interval-time) *max-energy*)
until (null group)
collecting (cons start group) into variable
finally (return varlable)
do
{cond ({atom group))
44

(perq td (re(?::;p;:i item in group ORﬁGENAL PAGE IS
until (numberp item) OF POOR QUALn-Y

ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/89 08:16:53

(zl:

(21:

as performances = (get item ’'performances)
as duration = (get item ‘duration)
as time = (* performances duration)
if (> time interval-time)
do (setq time
(* (setq performances
(zl:fix (/ interval-time duration))) duration))
if (> performances 0)
collect (list item time performances
(get item ‘power-required)) into var
finally (return var)
do
putprop item (+ performances (get item ’acheduled-performances))
‘scheduled-performances)

putprop item (- (get item ’perfcrmances) performances) ‘performances)

{(cond ((<= (- (get item ‘performances) performances) 0.)

(update-energy=-li
(setq parameters
start (car
sv (cadr pa

(detun schedule-pass-two
(let ({(lst (copy-list n

{setq lst (remove-experiment-from-schedule-list item 1lst)))))))

st start ti))) ;:Modifies the global variable *energy-list*
(find-new-parameters start)
parameters)

rameters)))))

(nlst)
lst)) (eitem (car *energy-list*)) (energy-list *energy-list®)

(detailed-list *detailed-energy-listr))

(loop
do *
(cond {((null eitem)
(loop with group =
with ti = nil
with energy =

(return)))
F((0))

(cadar energy-list)

if (numberp (car group))
do (setq energy next-energy)
as 'possible-choices = (non-scheduled lst (cdar detailed-list))

as (interval-
do

time next-energy) = (get-pass-two-time-interval energy energy-list)

{setq group (find-max-path energy (find-resource-candidates

(- *max-energy* energy)
possible-choices intervai-time) *max-energy*))

(cond ((and (numberp (car group)) (<= next-enerqgy energy))

(return))

{ (numberp group))

(t

{setq energy (+ energy (car (last group)))
ti (regroup-ti

(loop with performances. = nil
for item in group
until (numberp item)
-as duration = (get item ‘duration)
as time = (* (setq performances
(zl:fix {/ interval-ctime duration)))
duration)
if (> performances 0)
collect (list item time performances
’ : (get item ’‘power-required)) into var
finally (return var)
do ’
(zl:putprop item (+ performances
(get item ‘scheduled-performances))
. * scheduled-performances)
(zl:putprop item (- (get item ’‘performances) performances)
‘performances)
N

Page 2

(update-energy-list (car eitem) ti) ;:;Modifies the global variable *energy-list®
(setq energy~list (member (car eitem)

energy-list® :test #’= :key #‘'car)

eitem (car energy-list)
detailed-list (member (caar detailed-list)

detailed-energy-list :test #°'= :key #‘car)))))

(setq energy-list (cdr energy-list)
eitem (car energy-list)

derailed-list

(cdr detailed-list)))))

(defun display-pass-one (lst)
(format ¢t "~408 ®**** FIRST PASS RESULTS tewt.j~)
(format t "~2%~10tTime~20tEnergy~30tExperiment Started~%")

D-4

ANDY-TAYLOR;>jsr>resource-aliocation>resource.lisp.7 ' 303/989 08:16:53 Page3

(loop for item in lst
as time « (car item)
as valye = (car (last item))
do

(cond ((< O value)
(format t 5~%~10t-~A~20t~a~30t~a™ time value (reverse (cdr (reversza ====I _zem),ss)1))}))

{defun display-pase-two (&optional title)
(Lf title (format t "~4% #*#%% SECOND PASS RESULTS ##ewx"))

(loop for item in *detailed-energy-list®*
for other in *energy-liste
do
(format t "~8~5t~a~15t~A~63t~A" (car item) (cdr item) (cadr other))})

(defun show-usad ()
(format t "~3%~10TItem~20tRemaining~40tScheduled~-%")
tloop for item in (get 'list-of ‘names)
do
(format t "~8§~10T~A~23t~a~43t~a" item (get item ‘performances)
(geat item ‘scheduled-performances))))

221022020022 Second Pass Functions [/7/:::0::2.°

(defun non-scheduled (lst used)
(let ((possible 1lst))
(loop for item in used
do .
(setq possible (remove item possible :test #‘’equal :key #’cadr)))
possible))

(defun get-pass-two-time-interval (energy energy-list)
(let ((start (caar energy-list)})
(if (= start *max-time®) (return-from get-pass-two-time-interva. ' (L !
(loop for (end power) in (cdr energy-list)
until (< energy power)
finally (return (list (-~ end start) (cond ((< energy power =2wa:
{(t energy)))})))i

Jiii2ir ;s Common Pass Functions [..:.:.::::

(defun find-new-parameters (current)
(cadr (member current %*energy-li: = :test #'= :key #'car)))

(defun regroup-ti (lst)
(sort (copy-list lst) #‘< :key ’{lambda (x) {(cadr x))))

(defun update-energy-list (starct 1st)
(loop for iteml in lst
as old-power = nil
as old-detailed-power = nil
as time = (+ start {(cadr iteml))
as power = (get (car iteml) ’power-required)
do
{loop for item2 in *energy-list*
for detailed-item in *detailed-energy-liste
as etime = (car item2) -
until (< time etime)
for end-energy = (cdr *energy-list®*) then (cdr end-energy)
for end-detailed = (cdr *detailed-energy-list*) then (cdr end~cezi..e=c
collaecting (cond ((or (= start etime) (< start etime time))
(setq old-power (cadr item2)
old~detailed-power (cdr detailed-item)

detailed-item (append detailed-item (l.sx =:z2=: ::eml))))
(list etime (+ (cadr item2) power)))
{t item2))

into energy
collecting detailed-item into detailed
finally (setq *energy-list* (append enerqgy end-energy)
tdetailed-energy-14ist* (append detailed end-ceta:
{cond {(not (member time *energy-list® :test #'= :xey ¢
(setq *detalled-energy-list®
(sort (copy-list (cons (cons time old-deta..si-zTowero!
tdetailed-energy-lisz~ c’< :key #’car)
energy-liat (sorc (copy-iist

{cons (list time old-zcwar OR'GiNAL PAGE IS
s OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>resource.lisp.7 3/03/89 08:16:53 Paged

*energy-list?®)) #’'< :key #'car})))))))

{defun find-resource-candidates (available-energy lst endpoint)
{loop for exp in (find-interval-candidates 1st endpoint)
iIf (<= (car exp) available-energy)
collect exp into resource-candidate-list
finally (return resource-candidate-list)))

(defun find-interval-candidates (lst endpoint)
(loop for exp in lst
if (feasible-interval exp endpoint)
collect exp into variable
finally (return variable)))

(defun feasible-interval (experiment endpoint)
(¢ (get ({cadr e;periment) ‘duration) endpoint))

(defun find-possible-downward-paths (sv lst max-energy)
(if (null (car lst)) (return-from find-possible-downward-paths (list sv)))
(let ((val (+ sv (caar lst))) (top (cadar lst)))
{cond ({> val max-energy) (return-from find-possible~downward-paths (list (list sv))))
((or (= val max-energy) (null (cadr lst)})
(return~from find-possible-downward~paths (iist (list top val)))))
(loop for down-1lst = (cdr lst) then (cdr down-1lst)
while (car down-lst)
append (group-intermediate-lists
top (find-possible-downward-paths val down-lst max-energy)) into var
finally (return var))))

(defun find-max-path (sv lst max-energy)
(loop with max-path = ‘' (C)

for new-1st = lst then (cdr new-1lst)
while new-1st
as path = (find-possible-paths sv new-lst max-enerqgy)
finally (return max-path)
do

(if (> (car (last path)) (car (last max-path))) (setg max-path path))

(if (= (car (last max-path)) max-energy) (return max-path})))

(defun group-intermsdiate-lists (item lst)
(loop for each in lst
collect (cons item each)))

(defun remove-experiment-from-schedule-list (exp lst)
(remove exp (copy-list lst) :test #'equal :key #’cadr))

(defun find-possible-paths (val resource-candidates max-energy)
(let {(lst (find-possible-downward-paths val resource-candidates max-energy)))
(cond ((atom (car 1lst)) (return-from find-possible-paths nil))
(t
(loop with max = (car (last (car (sort (copy-list lst) #’'>
tkey ‘ (iambda (x) (car (iast x))}))))

for item in lst

until (= (car (last item)) max)

finally (return item))))))

ORIGINAL PAGE IS
OF PCO® QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-variables.lisp.6

;:: -%- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: LISPp -+-
232N sGlobal Vaxiables;: ;222
(defflavor selection-menu ()
{(tv:drop-shadow-borders-mixin
tv:multiple-menu))
(defflavor shadowed-tv-window ()
(tv:drop-shadow-borders-mixin
dw:dynamic-window))
(defvar s*frames*) ;:Loaded from data file.
(defvar *max-~timet*)
(defvar *time-listvw)
(defvar *lambda-lists®)
(defvar *pathst*)
(defvar *original-screen-size* nil)

(defvar *second-time* nil)

(defvar *current-filet *-)

(defvar *Resource-File-Directory* "andy:>jsr>resource-allocation>multiple-data-files>")

(defvar *resocurcest)

(defvar *resource-variables*)

{(defvar *resources-output*® nil)

(defvar scheduled-itens)

(defvar *maximizing-resocurce-listt)
(defvar *maximizing-resource-positiont)
(defvar r*graphical-output* nil)

(defvar *graphical-display* nil)

(defvar *resource-cutput-window®* (tv:make-window ‘dw:dynamis-windo

:label "Resource Allocation Window"

:blinker-p nil))

.

(defvar *display-menu* (tv:make-window
selectxo "
:1abe1 "Select Displayed Output

:default-character-style ’ (:fix :roman :large)

Page 1

:special-choices ’ (("Selection Complete” :funcall-with-self complete))))

(defvar tresource-menu-window® (tv:make-window ’dw: dynamxc-u1n

:label Experlment Data Editor Window"
:blinker-p t))

: (defvar *Data-choices-menu®* (tv:make-window ‘tv:momentary-menu
: :borders 4
: :label "Alternate Data File List"))

(defvar *message-window?®* (tv:i:make-window ‘dw:dynamic-window
: :blinker-p nil

tedges-from * (300 300 850 400)

imarqgin-components

‘((dw:margin-scroll-bar :visibility :if-needed)
{dw:margin-ragged-borders :thickness 4)
(dw:margin-label

:margin :bottom

ORIGINAL PAGE IS
OF POOR QUALITY

:string 'Meassage Window (Prass any key to EXIT)™))))

D>

ANDY-TAYLOR:>jsr>resource-allocatisn>>multiple-resource-variables.lisp.6

{defvar *graphices-window® (tv:make-window ‘9e: Tayramic-wlindow
:blinker—z -

1label " 'fmrce Allocation Graphics Display*))

(defvar *Font* (si:backtranslate-font .
{fed:read-font-from-bfd-*-_¢ 'r=ys:fznis;tvi4Svr.pfd.newest”)]))

Page 2

CRIGINAL BARE IS
OF PooR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89~Page 1

;22 -*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

22::::2:2:::;;Input and Variable Initializing Functions;;;;;:;;

(defun open-input-file ()
({let {((infile (dw:menu-choose (get-data-file-list)
. :prompt “Data File List™)))
(cond (infile (load (string-append *Resource-File-Directory® infile)
iverbose nil)
(initialize-frames)
(setq *current-file* infile)))))

(defun initialize-frames ()
(zl:putprop ‘list-of nil ‘names)
(loop for frame in *frames*
as name = (car frame)
do
(zl:putprop ‘list-of (append (get ‘list-of ‘hames) (list name)) ‘names)))

(defun determine~maximizing-resource ()
(setq *maximizing-resource-~list* (prioritize-resource-list)
*maximizing-rescurce-position®
(loop for resource in *maximizing-resocurce-list#
collecting (position resource *resocurce-variables*))))

(defun reset-lambda-functions ()
{loop for (resource priority max-val lambda) in *lambda-lists*
do
(2. :putprop resource max-val ‘resource-limit)
{(zl:putprop resource priority ’resource-priority)
(z.:putprop resource lambda ‘resource-constraint-function)))

{defur initialize-hash-tables ()
(le: ((parameters
(loop for resovurce-item-string in *resourcest*
as resource = (make-variable-from-string resource-item~string)
collecting resource into var
collecting O into value
finally {setq *resource-variables* var) .
(return (lis: (append ‘' (*paths* scheduled-items) var)
(append ’ (nil nil) value)))}))
(1sop for resource in {(car parameters)
for val in (cadr parameters)
do
icond ((boundp resocurce}
(clrhash (eval resource)))
(t (set resource (make-hash-table))))
{swaphash 0 val (eval resource))
{swaphash *max-time* val (eval resource)!})))

(defur initialize-markers-and-variables ()

(loct for eac in *framest®

as name = (car eac)

do

(ioop for each in (cdr eac)
do
(zl:putprop name {(caadr each) (car each)}))

(sezq *time-list? (list 0 *max-time?))
{initialize~hash-tables)
(reset-lambda-functions)
(determine-maximizing-resource;)

;:Returns a sorted list based on highest priority resource
;2in form of ' {expl exp2 exp3 ...)
(defur build-list ()
(lez ((lst (get ‘list-of ‘names)))
(loop for resource in (reverse *maximizing-rescurce-listw)
as 1st2 = (zl:sortcar (loop for exp in lst
collect (list (get exp resource) exp)) #’>)
do
(setq lst (loop for each in 1lst2

collecting (cadr each)))) ORIGINAL PAGE IS
basn) OF POOR QUALITY

(def.r prioritize-rescurce-list ()

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page 2

(sort (ramove 0 (copy-list f*resource-variables®) :test #'=
_:key ‘ (lambda (x) (get x ‘resource-priority)))
#'> :key #’{lambda (x) (get x ’resource-priority))))

S s e s 0 e e s 0008 s
DA RN]

~

Top Level Functions;;::;:;::;::::

.
~

.~
~e
~e
.
~e

.. I3
A

(defun Allocate-Rescurces ()
(time (Allocate-Resources-aux)
(format t "~3gy%*** Drogram Timing **=¢-.2%")))

{defun Allocate-Resources-aux ()
{cond (*second-timet t)
(t (open-input-file)
" (setq *sacond-tima* -)))
{inftialize-markers-and-varianles)
; (examine-data)
(send *resource-output-window* :clear-history)
{send *resource-output-window®* :select)
{let ((lst (build-1list)))
{schedule-pass-one 1lst)
(display-pass t)
(show-used)
(format *resource-output-window% "-~3%-a" (catch ‘resource (accept ‘label-type :stream *resource-outpu

t-window®
tprompt nil)))
(schedule-pass~two lst)
(display-pass) .
(show-used))
: {send *graphics-window* :select)

(format *resource-cutput-window®* "-3%-a" (catch ‘resource (accept ‘label-type :stream *graphics-window*

tprompt nil)))

(zl:readline *resgurce-output-window®))
ii22i224:2:2:. TOP LEVEL FUNCTIONS ;... ::00:0::

(Defun schedule-pass-one (nlst)
(loop with lst = {copy-list nlst)
for (start interval-time)=(list O *max-time®)
then (find-new-parameters start)
until (or (= start *max-time®) (null lst))
as group = {(find-max-~path start (current-status start)
(find-resource-candidates lst interval-time start))

do
: {format t "~8%~A ~a " group start)
{cond ((atom (car group)))

(t
(update-hash-tables start
{loop for item in (car group)

as pverformances = (get item ‘performances)

as duration = (get item ‘duration)

as time = (* performances duration)

if (> time interval-time)

do (setq time
(* (setq performances
(zl:fix (/ interval-time duration)))
duration))
if (> performances 0)
.collect (list item time) into var

finally (return var)

do
(zl:putprop item (+ performances

(get item ‘scheduled-performances))
’ scheduled-performances)
(zl:putprop item (- (get item ’‘performances) performances)
‘performances) . .
{(cond ((<= (-~ (get item ‘performances) performances) 0.)
{(setq lst (remove-experiment-from-schedule-1list
item 1st))))))))))

{defun schedule-pass-two (nlst) ORlG’NAL PAGE’S
{loop with lst = (copy-list nlst) OF POOR WAL"TY

for (start interval-time) = (find-new-parameters)

ANDY-TAYYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page 3

then (find-new-parameters start)
fae-r current-status = (current-status start)
==—t] (= start *max-time®)
13 : possible-choices = (non-scheduled lst (gethash start scheduled-items))

*~3% start = ~A ~20t~a”™ start current-status)
params = nil

interval-time

(Parameters-within-range current-status) ;;Need exit condition here
grewp = (find-max-path start current-status
{find-resource-candidates

possible-choices interval-time start))

: (for=maz t “~%Interval time = ~a ~20t~a-~40t-a" interval-time current-status group)
{{atom (car group)) :
(cond ((= (+ start interval-time) *max-time*)
{setg interval-time nil))
(t
(setq params (find-next-para:—eter current-status
- {(+ start interval-time))
possible-choices (remove-next-time-events
(+ start interval-time) possible-choices))
(setq current-status (car params) '
interval-time (-~ (cadr params) start)))))

t
(update-hash-tables start
(loop for item in (car group)
as duration = (get item ‘duration)
as performances = (zl:fix (/ interval-time duration))
as time = (* performances duration)
collect {list item time) into varl
minimize time into var2
finally (setq interval-time var2)
{return varl)
do
(zl:putprop item (+ performances
(get item ’scheduled-performances))
* scheduled-performances)
(2l:putprop item (- (get item ‘performances)

performances)
'‘performances)
(setq possible-choices (remove-experiment-from-schedule-list
- item possible-choices))))

(sexq interval-time nil))))))

(cefur =zorrieacte (se.f)
{senc se.: :zeactivaze))

tcefun displarv-pass (Sortional (title nil))
({dw: : -zruncation (*resource-output-window® :horizontal t)

resource-output-window? "-~2%-38t-vEBesource Allocation Results-3qs~
*Font®)
cznd ((Rull *resources-output?)

(send *display-menu* :set-label ~Select Displayed Output-)

(send *display-menu* :set-item~1list Tresourcesv)

(send *display-menu* :chocse)

(setq Tresources-output?

(reverse (send *display-menu* :highlighted-values)))))

Zzrwatl T'resource-ocutput-window® “-4y wt*t¢ FIRST PASS RESULTS **twx.2%"))

fcrmat *resource-output-window® “-4% tate SECOND PASS RESULTS w*eeec)))
(se.ez:-soraphical-display)
(lez x~~v=-_ccations (Initialize-Graph-information *graphical-ocutput?))
sspace 10))
{srse-2azneduled)
ixmsr resource in Tresources-output®
initially (space-over *rescurce-output-window* (+ € space))

sx~-cver Trescurce-ocutput-window® space)
sresource-output-window® “-’'b€a~>d resource))
~ime in *time-list*
next-tim@ in (cdr *time-list") -
JGI v \En

se1z : x-y-lizcations (display-output-sensitive "~%" time next-time x-y-locations QF POOR
:stream Tresource-output-windowr))
noa e

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page 4

(loop for variable in (make-variables *resources-output®)

for header in fresources-output®

as width = (string-length header)

for column first (+ space (/ width 2.0) space)

then (+ space (/ width 2.0) column)

do
(format frescurce-ocutput-window* (format nil ~"~~~at"™ (zl:fix column)}))
(format *resource-output-window® "-g8f8a" (gethash time (eval variable)))
(setq column (+ (/ width 2.0) column)))}))))

(defun display-output-sensitive (return time next-time x-y-locations &key (stream *resource-menu-window*)
(type ’label-type))
(dw:with-output-as-presentation (:single-box t
:stream stream
:dont-snapshot-variables t
itype type
tobject (list time))
{print-it stream return time)
{print-it *graphics-window® return time))
H (1f (and (not (equal *graphical-display* ’‘none)) x-y-locations)
H (setq x-y-locations (funcall *graphical-display* x-y-locations next-time)))
x-y-locations)

{defun print-it {(stream return time))
(format stream (format nil “"~a~A" return time)))

{(defun make-variables {lst)
(loop for string in lst
collect (make-variable-from-string string)))

(defun show-used ()
(format *resource-output-window® "“~3%~10TItem~20tRemaining~40tScheduled~4~)
(loop for item in (get ‘list-of ‘names)
do
(format *resource-output-window* "~%~10T~A~23t~a~43t~a" item (get item ‘'performances)
{(get item ’‘scheduled-performances))))

J2iiizi20:32::; Second Pass Functionms ;.;:;;.;:;.:

(defun non-scheduled (lst used)
(lat ((posaible lst))
(loop for item in used
do
(setq possible (remove item possible :test #’'equal)))
possible))

2222300232232 Common Pass Functions ;;:::;:;::::

(defun find-new-parameters (soptional (current nil) (params nil))
(let ((lst *=ime~list*))
{cond ((null current)
(setq lst (cons O lst)))
(t
{setq lst (member current *time-list®* :test #'=)}))
{loop with start = (cadr lst)
with status = (if params params (current-status start))
for time in (cddr 1lst)
‘while (compare-each-time-status status time)
finally (return (list start (if time (- time start)
(- *max-time* (cadr 1st))))))))

(defun find-next-parametexr (current time)
(let ((next (mapcar #’(lambda (x y) (if (> x y) x y)) current
(current-status time))))
{list next (cadr {member time *time-listv¥)))))

(defun remove-next-time-events (time lst)
(loop for item in (gethash time scheduled-items)
do
{setq lst (remove-experiment-from-schedule-list item lst)))

1st) ORIGINAL PAGE IS
OF POOR QUALITY

(defun compare-each-time-status (status time)
(loop for pos from O

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page s

for each in *maximizing-resource-list?*
for location in *maximizing-resource-position®*
always (<= (gethash time (eval each))
(nth location status))
finally (return t}))

{defun Parameters-within-range (current-status)
{loop for each in *maximizing-resource-list®
for location in *maximizing-resource-position*
always (> (get each ‘resource-limit)
(nth location current-status))))

(defun update-Bash-tables (start lst)
(loop for (iteml duration) in 1lst
as end-time = (+ start duration)
do
{cond ((null (member end-time f*time-list* :test #‘=))
(loop for resource in (cons ‘scheduled-items *resource-variables®)
do
(swaphash end-time (Get-hash-value end-time resource nil)
(setq *time-list® (sort (cons end-time (copy~list *time-list®)) #'<))))
(loop for time in (member start *time-list¥)
until (= end-time time)
do
(swaphash time (append (Gethash time scheduled-items)
scheduled~items)
(loop for resource in *resource-varisblest*
do
(swaphash time (+ (Get-hash-value time resource)
{get iteml resource)) (eval resource))))))

(eval resource)))

(list iteml))

(defun Get-bash-value (time resource éoptional (not-new t))
(let ((value (gethash time (eval resource))))
(cond (value value)
(not-rew nil)

(t (gethash (loop with previous = 0
for last-time in *time-list¥*

until (>= last-time time)
finally {(return previous)

do
(setq previous last-time)) (eval resource)}))))

(defun find-resource-candidates (lst endpoint start)
{loop for exp in (find-interval-candidates lst endpoint)
if (check-constraints (add-constraint-values (current-status stari) exp))
collect exp into resource-candidate-list
finally (recturn resource-candidate-lisc)))

(defun find-interval-candidates (lst endpoint)
(loop for exp in lst
if (feasible-interval exp endpoint)
collect exp into variable
finally (return variable)))

(defun feasible-interval (experiment endpoint)
(< (get experiment ’duration) endpoint))

(defun find-possible-downward-paths (sv lst)
(let* ((top (car lst)) !
{(bottom (cdr lst))
(val (add-constraint-values sv top)))
(cond ((null (check-constraints val)) *(()))
{bottom
(loop for down-lst on (cdr lst)
append (group-intermediate-lists
top (find-possible-downward-paths val down-lst!) into var
finally (return var}))
(t (list 1lst)))))

(defun add-constraint-values (lst exp)
(loop for resource in *resource-variablest*
for value in 1lst
if (null value)

do (setq value 0) g
collecting (+ value (get exp resource)))) OR&G“NAL ?AGE §-§
OF POOR QUALITY

D-13

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page 6

(defun check-constraints (lst)
{loop for resource in *rescurce-variables*

for value in lst
always (apply (get resource *resource-constraint-function) (list value))

finally (return t)))

(defun find-max-path (time sv lst)
(loop with max-paths = nil
with max-value = 0
for new-1lst on lst
as paths = (find-possible-paths sv new-lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))
{swaphash time max-paths *paths®)
(return {(car max-paths))
do
(cond ((= max~value value)
(setq max-paths (append max-paths paths)))
((< max-value value) (setq max-paths paths
max-value value))}))

(defun sort-max-paths (paths)
(let ((lst (loop for path in paths
collecting (list path (get-group-values path)))))
(loop for pos in (reverse *maximizing-resourca-positiont)
do
(setq lst (sort lst #’> :key (lambda (x) (nth pos (cadr x))))))
lst))

{cefun get-time-interval-priority-value (values lst &optional (pos 0))
{cond (values
(+ (nth (nth pos *maximizing-rescurce-position*) values)
(nth (nth pos *maximizing-resource-position®*) lst)})
(t 0))) :

(defun group-intermediate-lists (item Ist)
{loop for each in lst
collect {cons item each)))

(defun remove-experiment-from-schedule-list (exp lst)
(remove exp (copy-list lst) :test #‘equal})

(defun find-possible-paths (val resocurce-candidates)
{let ((lst (find-possible-downward-paths val resource-candidates)))
(cond ((null 1lst) (return-frcm find-possible-paths nil))
(t (get-maximized-sub-path 1lst})))))

{cefun get-maximized-sub-path (paths)
(loop for resource in fmaximizing-resource-list*
for position in *maximizing-resource-position®
vntil (= (length paths) 1)
do
{setq paths
(loop for lst in paths
with max-val = 0
with max~lsts = nil
as resource-value = (nth position (get-group-values lst))
finally (return (reverse max-lsts))
do
(cond ((> resource-value max-val)
(setq max-val resource-value
max-lsts (list lst)))
({= resource-value max-val)
(setq max-lsts (cons lst max-lsts))))))})
paths)

(defun get-group-values (group)
{lcop for item in tresource-variables*
collecting (loop for each in group
summing (get each item))))

(cefun current-status (time)

{loop for each in *resource-variablest* L PAGE ts
P as valuye 8.(qethash time (eval each)) gg‘?@gﬁﬁ @UA

ANDY-TAYLOR:>jsr>resource-allocation>muitiple-resources.lisp.24 4/08/89

if (null value)
do (setq value 0)
collecting value))

{(defun show-scheduled ()
(format *resource-cutput-window? ~.24 Time ~20tScheduled Events-\")
(loop for time in *time-liste

do
(format *resource-output-windowr ~-§ -A ~20t~A” time (gethash time scheduled-items)))

(format *resource-output-window* ~.2%7))

(defun show-resource (resource)
(loop for time in *time-liste
do
(format t "~% ~A ~20t~A" time (gethash time resource))))

(defun make-mouse-sensitive-labels (return object &tkey stream *resocurce-menu-windowt)
’ (type ‘label-type))
(dw:with-output-as-presentation (:single-box t
:stream stream
H) itype type
:object object)
(format stream (format nil "~a~A" return (cadr object))})))

(defun make-variables (lst)
{loop for string in 1lst
collect (make-variable-from-string string)))

(defun show-used ()
(format *resource-output-window* "~3%~10TItem~20tRemaining~40tScheduled~s")
{loop for item in (get ’list-of ‘names)
do
(format *resourca-output-window* "-%~10T~A~23t~a~43t-~a" item (get item ’‘performances)

(get item ’ascheduled-performances))))

;::::: Second Pass Functions ;:::::::::;

~

PR I SN
DA A Ay Ay

(defun non-scbhbaduled (lst used)
(let ((possible 1lst))
(loop for item in used
do
(setq possible (remove item possible :test #’equal)))
possible))

J2iii2220::022; Common Pass Functions RN

{(defun find-new-parameters (&optional (current nil) (params nil))
(let ((lst *time-list*))
(cond ({null current)
(setq lst (cons 0 1lst)))
(t
(setq lat (member current *time-list* :test #’'=))))
(loop with start = (cadr lst)
with status = (if params params (current-status start))
for time in (cddr 1lst)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)
(- *max-time® (cadr lst))))))})

(defun find-next-parameter (current time)
(let ((next (mapcar #’ (lambda (x y) (if (> x y) x y)) current
(current-status time))))
(l1ist next (cadr (member time *time-lietw)))))

(defun remove-next-time-events (time 1lst)
(loop for item in (gethash time scheduled-items)

do
(setq lst (remove-experiment-from-schedule-list item 1lst)))

lst)

(defun compare-each-time-status (status time)

’ ~_12

Page 7

IS
ORIGINAL PAGE
OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24

(loop for pos from O
for each in *maximizing-resouroce-liste
for location in *saximizing-rescurce-position*
always (<= (gethash time (eval each))
{nth location status))

finally (return t)))

(defun Parameters-within-range (current-status)
{loop for each in *maximizing-resource-list*
for location in *maximizing-rescurce-positiont*
always (> (get each ’‘resource-limit)
{(nth location current-status))))

(defun update-Hash-tables (start lst)
{loop for (iteml duration) in lst
as end-time = (+ start duration)
do
{(cond ((null (member end-time *time-list® :test #’'=))
{loop for resource in (cons ‘scheduled-items *resource-variables?)
do
(swaphash end-time (Get-hash-value end-time resource nil)
(setq *time-list* (sort (cons end~time (copy-list *time-list*)) #'<)})))
(loop for time in (member start *time-listw)
until (= end-time time)
do
(swaphash time (append (Gethash time scheduled-items)
scheduled-items)
(loop for resource in fresource-variables®
do
(swaphash time (+ (Get-hash-value time resource)
(get iteml resource)) (eval resource))})})

(list iteml))

(defun Get-hash-value (time resource &optional (not-new t))
(let ({value (gethash time (eval rescurce))})
(cond (value value)
(not-new nil)

(t (gethash (loop with previous = 0
for last~time in *time-listw

until (>= last-time time)
firally (return vrevious)

do
{setq previous last-time)) (eval resource})))))

{defun find-resource-candidates (lst endpoint start)
(loop for exp in (find-interval-candidates lst endpoint)
if {(check-constraints (add-constraint-values /{current-status start) exp))
collect exp into resource-candidate-list
finally (return resource~candidate-list)))

(defun find-interval-candidates (lst endpoint)
{loop for exp in lst
if (feasible~interval exp endpoint)
colle=t exp into variable
finally (return variable)))

(defun feasible-interval (experiment endpoint)
(< {get experiment ‘duration) endpoint))

(defun find-possible-downward-paths (sv lst)
(let* ((top (car 1lst))
(bottom (cdr lst))
(val (add-constraint-values sv top)))
(cond ((null (check-constraints val)) ‘(()))
(bottom
(loop for down-lst on (cdr 1lst)
append (group-intermediate-lists
top (find-possible-downward-paths val down-1lst))
finally (return var)))
(t (list 1lst)))))

{defun add-constraint-values (lst exp)
(loop for resource in *resource-variables*
for value in lst
if (null value)
do (setq value 0)
collecting (+ value (get exp resource))))

D-16

4/08/89

(eval resource)))

into var

Page 8

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89

(defun check-constraints (lst)
{loop for rescurce in *resource-variables*
for value in lst
always (apply (get resource ‘resource-constraint-function) (list value))
finally (returzn t))}

(defun find-max-path (time sv lst)
(loop with max-paths = nil
with max-value = 0
for new-lst on lst
as paths = (find-possible-paths sv new-1lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv}
finally (setq max-paths (sort-max-paths max-paths))
(swaphash time max-paths *paths®)
{return (car max-paths))
do
(cond ((= max-value value)
(setq max-paths (append max-paths paths)))
((< max-value value) (setq max-paths paths
max-value value)))))

{defun sort-max-paths (paths)
{let ((lst (loop for path in paths

collecting (list path (get-group-values pach)))))
(loop for pos in (reverse *maximizing-resource-position®)
. . do
(setq lst (sort lst #°> :key (lambda (x) (nth pos (cadr x)}}})))
1st))

(defun get~time-interval-priority-value (values lst &optional (pos 0))
(cond (values
(+ (nth (nth pos *maximizing-resource-position®*) values)
(nth (nth pos *maximizing-resource-position®) 1lst)})
(t 0)))

{(defun group-intermadiate-lists (item lst)
(loop for each in lst
collect (cons item each)))

{(defun remove-experiment-from-schedule-list (exp lst)
(remove exp (copy-list lat) :test #’'equal))

(defun find-possible-paths (val resource-candidates)
(let ((lst (find-possible-downward-paths val resource-candidates)))
(cond ((null lst) (return-from find-possible-paths nil})
(t (get-maximized-sub~path lst)))))

(defun get-maximized-sub-path (paths)
(loop for resource in *maximizing-resource-list*
for position in *maximizing-resource-position*
until (= (length paths) 1)
do
(setq paths)
(loop for lst in paths
with max-val = 0
with max-lsts = nil
as resource-value = (nth position (get-group-values lst))
finally (return (reverse max-1lsts))
do
(cond ((> resource-value max-val)
(setq max-val resource-value
max-lats (list lst)))
({= resource-value max-val) .
(setq max-lsts (cons lst max-lsts)))))))
paths)

(defun get-group-values (group)
{loop for item in *resource-variablest®
collecting (loop for each in group
summing (get each item))))

(defun current-status (time)
(loop for each in *resource-variables*

Page 9

as value = (gethash time (eval each)) : OR|G|NAL pAGL lg
D-17 OF POOR QUAL

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources.lisp.24 4/08/89 Page 10

if (null value)
do (setq value 0)
collecting value))

(defun sbow-scheduled ()
(format *resource-output-window* "-2% Time ~20tScheduled Events~y~)
(loop for time in *time-liste*
do
(format *rescurce-output-window® "~% ~A ~20t~A” time (gethash time scheduled-items)))
(format *resource-ocutput-window® "-~2%"))

(defun show-resource (resource)
(loop for time in *time-list~
do
(format t "~% ~A ~20t~A" time (gethash time resource))))

ORIGINAL PAGE IS
D-18 OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-interface lispp.27 Page 1

:;: =*- Syntax: Common-Lisp: Package: USER; Base: 10; Mode: LISP -*~

:;:;:;;::::i:;..,,,..::;:::;z;:;;;:;;;;;:;;::;;¢..,:;,:;;;
; ;Presentation types and actions for mouse sensitiviity.;;
L I I I I I R R R I - - - L T I I S T T R T T N T I I I . . -t d - R . d.
A A A A A A A A A A B R A A A A A A A A N I I A R R A A A AR A A AU A A A AN AR R A A A

;;This defines the label presentation types.
(define~presentation-type label-type ()
:no-deftype t
:parser {(stream) (loop do (dw:read-char-for-accept stream)})
:printer ((object stream)
(format stream “the selection ~a® (car object}))}

;:This is what is done when a column or row labael is selected.
(define-presentation-action label-type
{label-type t
igesture :left
:context-independent t
:documentation "Resource Operations")
(exit)
(throw ‘resource exit))

;;This defines the label presentation types.
(define-presentation-type exp-label-type ()

:no-deftype t

sparser ((stream) (loop do (dw:read-char-for-accept stream)))

:printer ((object stream)
(format stream "the selection -a" (car object))))

;:This is what is done when a column or row label is selected.
(define-presentation~action exp-label-type
{(exp-label-type t
:gesture :left
:context-independent t
:documentation “"Experiment Operations™)
(exit)
(throw ‘resource exit))

;;This defines the item presentation type and documentation li-ae ==isplay
(define~-presentation-type resource-type ()

:no-deftype t
:parser ((stream) {(loop do (dw:read-char-for-accept stream)))

:printer {{object stream)
(format stream “the resource ~A"™ (car object})}))

;;This is what is done when the item is selected
(define-presentation-action choose-type
(resource-type ¢
:gesture :left
tcontext-independent t
:documentation “Change this value®)
{resource)
(throw ‘rescurce

{list resource (get (caar resource)
{read-from-string (format nil “"-~a-presentation®™ (caza: -2esz.rze)))))))

;:Thii defines the item presentation type and documentation li-a c=isplay

{(define-presentation-type control-type ()

:no-deftype t
:parser ((stream) (loop do (dw:read-char-for-accept stream)))

:printer ((object stream)
(format stream "the selection ~a" (car object))))

;:This is what is done when a command is selected
(define-presentation-action control-type

(contxol-type t

:gesture :left

rcontext-independent t
:documentation “Execute this Command*®)

(t(::i:)'resource (read-from-string exit))) . ORIG'NAL PAGE ls
OF POOR QUALITY

~
e
~e
~e
“e
“e
e
e
“e
e
e
e
e
e
~e
~e
“e
~e
we
~e
~e
~e
e
“e
-,
~e
-,
~e
e
~e
~e
.o
“e
-y
e
e
e
e
e
e
~e
-
~
“e
~e
“e
~e
~e
..
~e
~e

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-interface.lisp.27

. ® -4
X Program functions
PRI T iR il il it

;:This is the Driving Function for the Data Editor.
{defun examine-data ()
(send *resource-menu-vindow® :select)
(dw::with-output-truncation (*resource-menu-window® :horizontal t}
(loop with again = t
while again
do
{make-window-layout)
{send fresource-menu-window?® :set-cursor-visibility nil)
(setq again
(loop with finished = nil
until finished
as choice = (change~data-point)
while choice
do
(cond ((atom choice)
(case choice
{load
(open-input-file)
{initialize-markers-and-variables)
(return t))
(save (save-new-file))
(exit (return nil))))
(t (case (car choice)
(exp
(take-experiment~-action
(cadr c- :ice)

(get-op- .on-list (format nil “"For Experiment ~'be€a~d"

(cadr choice))
* ("Move this Experiment"”

"Delete this Experiment"
"Add an Experiment ABOVE"
"Add an Experiment BELOW™)))

(return t))
(resource
(take-resource-action
(cadr choice) (caddr choice)

(get-option~list (format nil "For ' Resource ~’'b&a~D"

(cadr choice))

(cond ((member (cadr choice)
' ("Duration® "Performances”)
itest #’'string-equal)
*("Set Value Globally"
"Set Maximum Value®
"Move this Resource”
"Add Resource to zhe LEFT"
"Add Resource to the RIGHT"™
"Edit Resource Constraints®))

(t

‘{"Set Value Globally"
"Set Maximum Value”
"Move this Resource”
"Delete this Resource”
“Add Resource to the LEFT"™
"Add Resource to the RIGHT*
“Edit Resource Constraints™))))))

(return t))))))))
(send *terminal-io* :select))

(defun get-option-list (prompt options)
(dw:menu-choose options
iprompt prompt
icenter-p t
trow=-wise nil))

{defun take-resourcs-action (resource pos action)
fcond {(string-equal action "Set Value Globally")
(let ((value (get~stream ’((number :prompt "Global Value”
:defaul: 0
iguery-icdentifier isr))

e B e L T T R RN

Page 2

ORIGINAL PAGE 1S
OF POOR QUALITY

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-interface.lisp.27

(if value
(initialize-experiment-resource-value
(make~variable-from-string resource) value))))
({string-equal action “Set Maximum Value")
(zl:putprop resource (get-stream °‘((number :prompt “"Maximum Value~”

:default , {(get resource ‘resource-limit)

:query-identifier jsr))
(format nil “"Set ~’beA~TMaximum Value

(make~variable-from-string resource))}

‘resource-limit))
({string~equal action “"Edit Resource Constraints®)

{modify-resource-constraint~equations (make-variable-from-string resource)l})

({string-equal action "Move this Resource”)

(send-message-to-user (format nil "-~2% Use mouse to SELECT which RESOURCE to-~

-3 place ~'b&A~Tbeside.” resource))
{remove~-resource resource nil)
{let ((position (find-position ‘label-type resource)))
(setq *resources* (insert-item-in-list *resources® resource position)
resource-variables (insert-item-in-list *rescurce-variables*

(make-variable-from-string resource) position))))

({string-equal action "Delete this Resource”)
(remove-resource resource))

((string-equal action "Add Resource to the LEFT™)
(add-resource pos))

({string-equal action "Add Resource to the RIGHT")
(add-rescurce (+ 1 pos)}))))

(defun modify-resource-constraint-equations (resource)
(send *messsge-window®* :set-margin-components
‘({dw:margin~scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin :bottom
:string "Constraint Editor Window
T)™)))
(send *message-window® :clear-history)
(send *message-window® :select)
(format *message-window® *-24~)
(send *message-window® :set-cursor-visibility :blink)
(edit~constraint-equation resource)
(send *messsge-window?® :deselect)
(send *message-window® :set-cursor-visibility nil)
(send *message-window® :set-margin-components
' {(dw:margin~scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin :bottom

Page 3

(Press <END> key to EXI

:string 'M-llago Window (Press any key to EXIT) "

{defun edit-constraint-equation (resource)
(let ((buffer (tv:kbd-get-io-buffer})
(equation (format nil "-~a" (get resource 'resource-constraint-functior))))
(send *message-window* :clear-input)
{loop for i from 0 to (- (length equation) 1)
do
(tviio-buffer-put buffer (char equation i)))

{(zl:putprop resource (read-from-string (accept ’string :stream *message-window?*

tactivation-chars * (#\end)
:prompt nil)) ’'resource-constraint-function)))

{defun find-position (type resource)
(let ((position)
(data (catch ‘resource (accept type
iprompt nil
:stream Tresourcea-manu-windowt®))))
(case (car data)
(exp
(setq position (position (cadr data)(get ‘list-of ‘names)))
(case (read-from-string
(get-option-list (format nil "Place ~'bE€A~D resource)
(l1ist (format nil "Above ~’'b€A~D (cadr data))
(format nil "Below ~'b&A~3d (cadr data)}))})
(ABOVE (+ 1 position))
(t (+ 2 position))))

. ORIGINAL PAGE ¢
OF POOR QUALIT

ANDY-TAYLOR:>jsr>resource-allocation>>multiple-resource-interface.lisp.27 Page 4

(setq position (position (cadr daza r*rxescc=ces? :test #’'string-equal))

(case
(read~from=-string
(get-option-list (format ni. "Flacse ~’' ><A-D resource)
(list (forma: 2. ~_ef:z of ~'bEA~D (cadr data))
(forma:z =-_ . "Fig=t cf ~'b&A~D (cadr data)))))

(LEFT (+ 1 position))
(t (+ 2 position)))))))

(defun take-experiment-action (exp actior:
{cond ((string-equal action "Move this Zitmr:izme-:
{send-message~to-user (format ni. *-3} ~se =suse to SELECT which EXPERIMENT to~
~8 place ~'beA-xes:cge.® exp))
({remove-experiment exp nil)
(let ((position (find-position ‘exz—:azpe.-:vpe exp)))
(zl:putprop ‘list-of (insert-i:em:z--_:sc (ge: ‘list-of ‘names)
exp position) ‘names)))

{{string-equal action "Delete this Zxce=cieni”)

{remove-experiment exp t))

({string-equal action "Add an Exper—ren—: AE:'T')

(add-experiment (+ 1 (position exz zem=: sz-cf ‘names)))))

({string-equal action "Add an Excer_menc= _ow®")

(add-experiment (+ 2 (position exz gzecz: *_:-st-0f ‘names))))))})

(defun remove-axperiment (exp message)
(zl:putprop ‘list-of (remove exp (get ‘..s-=:f "r~zmes): ‘names)
(if message
(send-message-to~-user
{format nil "~2%~5tThe EXPERIMENT -srex -~'c><=a2-r.as been deleted." exp))))
(defun add-experiment (position) ¢
(let ((variable (make-variable-from-str-.=g
(get-stream ’ ((satrinrg TXPERIMENT NAME"
csoery-identifier jsr))

"Adié Ixpoerimac=t Utility "N
(zl:putprop ‘list-of (insert-item-in-._:= :ge: “_:ist-zf ‘names) variable position) ’‘names)
(loop for item in *resource-variables*

do
(zl:putprop variable 0 item))))

;;This function is the top level cc=:r=sller for the input window.
(defun make-window-layout ()
(send *resource-mesnu-window® :clear-hisz::-7s
{format *resource-menu-window® "~2%-4C:-:Z:icac: eI Zata Editor-»4%" *Font¥)
(let* ((space 10))
(setq *resource-varisbles* (loop for -s:cuzTce .- Tresources*
inizzia.ly (stace-cves Tresource-menu-window*
(+ 6 space))
col.e>. nnaxe-wvariac.e-from-string resource) into var
countLg
finall:
do
(space-cve: *Trrescorce-meau-window? space)
(make-mcis~sercnsitive-_adbels "°
(list * -escuxrce -esource place))))
(format *resource-menu-window* “-\")
{loop for exp in (get ‘list-of ‘names:
counting t into place
do
{make-mouse-sensitive-labels "~%"
{list ‘exp exp place))
(loop for variable in *resource-varias.as<~
for header in *resourcea*
as width = (string-length heace:
for column first (+ space (/ w:
then (+ space (/ w.

do
{place-variable column variable ex:
{setq column (+ (/ width 2.0) colo==—.

(place-commands))) ‘ | ORIGINAL PAGE IS
;:This command puts the column and =:w ia%els as presentations . OF POOR QUALITY

(defun make-mouse-sensitive-labels (returs w:-2rc: ey [(sIream *resource-msnu-windoww)
HE L sal-type))

0

.

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-interface.lisp.27 Page 5

:stream stream
:type type
tobject object)
{format stream (format nil “~a~A" return (cadr object)))))

;:;This command creats the commands at bottom of menu.
(defun place-commands ()
(format f*resource-manu-window® “.ggy~)
(loop for command in ‘ ("Exit Data Editor™ "Save Current Data to File"®
"Load New Data File™)
do
{space-over f*resource-memi-window® 17)
(dw:with~output-as-presentation (:single-box t
:stream *resource-menu-window®
itype ‘control-type
:object command)
(surrounding-output-with-border (*rescurce-menu-window® :shape :oval
:filled t
:move~-cursor nil)

(format *resource-menu-window* command)))))

;:This function assists in proper relative heading column spacing .
{defun space-over (stream space)
(format stream (format nil *~--~Aa" space) "))

;:;This function takes a string and returns an atom.
(defun make-variable-from-string (str)
(loop with flag =1
for item being the array-elements in str
if (not (string-equal item " ™))
collect item into var
and do
{setq flag 0)
else if (= flag 0)
collect "-" into var
and do
(setq flag 1)
finally (return {(read-from-string
(apply #’string-append
{cond ((= flag 1)
{reverse (cdr (reverse var))))
(¢ var)))))})

;.This function assists in correct column spacing
(defun place-variable (column variable exp)
{format t*resource-menu-window®* (format nil "~~~at™ (z1l:fix column)))
(format~item~mouse—sensitive fresource-menu-window¥ (get exp variable)
(list (list exp variable)
(multiple-value-bind (a b)
(send *resource-menu-window?® :read-cursorpos)
{list a b)))))

;:This function prints the item to the ascreen with mouse sensitivity
(defun format-item-mouse-sensitive (stream item descriptors)
(zl:putprop (caar descriptors) item (cadar descriptors))
(send stream :set-cursorpos (caadr descriptors) (cadadr descriptors))
(clearspace stream)
(zl:putprop (caar descriptors)
{dw:with-output-as-presentation (:single-box t
:stream stream
itype ‘resource-type
iobject descriptors)
{send stream :set-cursorpos {(caadr descriptars) (cadadr descriptors))
(format stream “~88a" item))
(read-from-string (format nil “"~a-presentation”™ (cadar descriptors)))))

;;This function removes the typed in values to allow for presentations.
(defun clearspace (stream)
(loop repeat 8
do

::::g stream icl::::;:E:::r)n ORIGINAL PAGE IS
OF POOR QUALITY

::Thi-vfunction reads in a value. but does not issue a line-faed.

T ir ecped_owibthane g tiima feme T amy” les ram @ o5 yomgemo e e v

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resource-interface.lisp.27 Page 6

&kay ftactivation-characters ’‘(#\Return #\End)))
(loop with cursor-position = (list (multiple-value-bind (a b)
(send stream :read-cursorpos) (list a b)))
with var2 = nil
with position = 0
as varl = (send stream :tyi)
as total-length = (length var2)
until (member varl activation-characters)
if varl
do
(cond ((and (equal varl #\rubout) var2)
(send stream :tyo #\backspace)
(send stream :clear-char) .
(setq var2 (cdr var2)
position (1- position)
cursor-position (cdr cursor-position)))
({and (or (equal varl #\c-B) (equal varl #\backspace)) var2)
(setq position (1- position))
(send stream :tyo varl))
((equal varl #\c~F)
(cond ((< position total-length)
(setq position (1+ position}))
(send stream :tyo varl))))
((= position total-length)
(setq var2 (cons varl:var2)
position (l+ position)
cursor~position (cons (multiple-value-bind (a b)
(send stream :read-curscrpos)
(list a b)) cursor-position))
{format stream "~a" varl))
({(or (equal varl #\c-B) (equal varl #\rubout)))
{t (send stream :insert-char)
(format stream "~A" varl)
(setq var2 (reverse (loop for temp = nil
then (append temp (list (car end)))
for end = (reverse var2) then (cdr end)
repeat position
finally (return
(append temp (cons varl end))))))))
finally (return {(cond (var2 (setq var2 (read-from-string
(apply #’'string-append (reverse var2))}))))))

;:This function allows the data values to be changed.
(defun change-data-point () '
{let ((data (catch ‘resource (accept ’'((or resource-type control-type
label-type aexp-label-type))
:prompt nil
:stream *resource-msnu-window®)})
(original-position (multiple-value-bind (a b)
(send *rescurce-menu-window® :read-cursorpos)
(list a E)))
(position}) :
(cond ((or (atom data) (atom (car data))) data)
(t
(setq position (cadar data))
(send *rescurce-menu-window* :erase-displayed-presentation (cadr data))
(send *resource-menu-window* :set-cursorpos (car position) (cadr position))
(send *resource-menu-window* :set-cursor-visibility :blink)
(format-item-mouse-sensitive *resource-menu-window®
{read-without-retuzn *resource-menu-windoww®)
(car data))
(send *resource-manu-~window® :set-cursor-visibility nil)
(send *resource-manu-window® :set-cursorpos (car original-position)
(cadr original-position))
‘data))))

;:This function returns the list of data files that can be selacted.
(defun get-data-file-list ()
(loop for directory in (cdr (fs:directory-list *Resource-File-Directory*))
as pathname = (cond ((not (strirg= (send (car directory) :name) “err"))
(format nil "~A" (send (car directory) :string-for-dired))))
collect pathname)) ' -
ORIGINAL PAGE IS
::This function allows the modified data to be saved to a data file. OOR QUAUTY
e-new-file () OF P

CA e e a= ar e v+ vmmie~ tTa@arima PR - R I I P

ANDY-TAYLLOR:>jsr>resource-allocation>multiple-resource-interface.lisp.27 Page 7

{(get-stream ‘({string :prompt "Enter the Filename"
iquery-identifier jsr))
"Save File Utility ")
".data")
direction :output
-exists :new-version)
am "~Z%!seilq *rescurces* ’ (“)
source i fresources®

(fzrma: :=-reax= ~2~A~a " #\" resource #\"))
(forme: sizTeam "), ~2% 'setq *framas* ‘' (")

{locs Iz: 2exp in !ge:l ‘list-of ‘names)
a:
- (f2rmaz :=iream "~%-2" (cons exp (loop for prop in tresource-variables*

collect (list prop (list (get exp prop))))})))
(forma: :22zTeam ")) ")),

;;This fu=criion creates a window and prompts the user for a file naxe.
(defun get-smcImmam (argurmests header)
(dw:ac-epi-—raz2iues argu-ents
:OWN-WINDOW ¢t
itergcrary=~p nil
: < header
simize ally-select-query-identifier * jsr}))

;:;This fz=cttion controls the adding of a resource.
(defun add-rssmzurce :zcs:::ion)
(let~ nee~—resource (Tiltiple-value-bind (a b)
(get-stream ‘ ((string :prompt “Enter RESQURCE NAME"
tquery-identifier jsr)
(number :prompt "“Initial Value”
:default 0))

"Add Resource Utility ")
-ist a b)))
vgrioeol {mraxe--ariable-from-string (car new-resource))))
(cermz semmDer varratle *resource-variablest)

termz-message-zc-user
mat nil "~2%~5tThe RESOURCE named ~’'b&a~Dalready exists."”
‘zar rew-resource))))

sla..ze-experiment-resource-value variable (cadr new-resource))
resources (insert-item-in-list *resources®* (car new-resource) positior
resocurce-variables (insert-item-in-list *resource-variables*

variable positicn))))))

3

;:This £t=z==zion puts an initial value in the resocurce variablas.
(defun icitiail~ze-eaxperiment~-rescurce-value (new-resource value)
(loop r .:ze- in {se: 'list-of ’‘names)

Tz item valie new-resource)))

;:This fr=cz-ion inserts an item in a list at position.
(defun {zserz-::team-in-list (lst item position)
(loop ¢ Lol

pesiticn)
(za: each) into var
eturn ‘agpend var (list jtem) each))))

;:This furactiion allows communication between the user and the program.
(defun sesd-nmssmsage-to-user (message)

(send *messsgwe-window® :c-lear-history)

(send *massace-window® :set-cursor-visibility nil)

{senc Toessaame-window® :selec:)

(forra: *mmsssage-window? message)

(send *messagwe-window?® :any-tyi)

(send *massacwe-~window® :zeselect))

;:This fr=ctiion rexoves a xesource from consideration by program.

(defun reacve-resource isescurce éoptional (message t})) ,
(setg TresI=ITces® r-e~cve rescurce *resources* :test #‘string-equal)

*rescTooe-variables® (remove (make-variable-from-string resource)

(it mestema Tresourcazvasiablest) ORIGINAL PAGE IS
nersrzesiioire . . . N OF POOR QUALITY

fee-c-"ws:z327e~-72" L3

‘- I

9’-5/

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources-graphical-displays.lisp.Page 1

i;: ="~ Syntax: Common-Lisp; Package: USER; Base: 10: Mode: LISP -*-

(defun select-graphical-display ()
(cond ((null t*graphical-display*)
{let ((choice (dw:menu-choose ’ ("Line Graph" "No Display™)
iprompt "Type of Graphical Display~”
icenter~p t
tminimum-width 225)))
(setq *graphical-display*
{cond ((or (null choice)
(string= choice "Line Graph"))
'normalized—qraphical-display-of-resoutces)
({string= choice "No Display")
‘none)
(t ‘normalized-graphical-display-of-resources)))))
(t (send *graphics-window* :clear-history)
(send *graphics-window® :expose)))
(cond ((equal *graphical-display® ‘none) nil)
(*graphical-output® nil)
(t (send *display-menu* :set-item-list (max-valued-resqurces))
{send *display-menu* :set-label ~Select Graphlcs (3utput~)
(send *display-menu* :choose)
(setq *graphical-output*
(reverse (send *display-menu* :highlighted-values)))})
(cond ((and (not (equal *graphical-display* ‘none)) *graphical-output®*}
(cond ((send *graphics-window®* :exposed-p))
(t (multiple-value-bind (a b c d)
{send f*resource-output-window® :edges)
(setq *original-screen-size* (list a b ¢ d}))
{send *resource-output-window® :set-edges a b c (- d 220))
(send *graphics-window* :set-edges a (- d 220)c d)
(send *graphics-window®* :expose)).))
(draw-axis~for-graph)}))

(defun max-valued-resources ()
(loop for variable in *resource-variables*
for resource in *resources*
if (get variable ‘resource-limit)
collect resource into varl
finally (return varl)))

(defun graphical-restart ()
(cond {*original-screen-size*
{send *resource-output-window* :set-edges (car *Yoriginal-screen-sizer)
(cadr *original-screen-sizet®)
(caddr *original-screen-size®)
(cadddr *original-screen-size®))
(setq *original-screen-size®* nil
grapbical-display nil
vgraphical-output® nil))})

{(defun Initialize-Graph-information (.ist)
(loop for resource-name in lst

for style in “(nil 2 4 8 12 20 30 S50 80)
with x = 70
with dy = 1
as resource = (make-variable-from-string cesource-name)
as max = (get re3ource ‘resource-limit)
as y = (- 155 (* dy 150 (/ (gethash 0 (eval resource)) max)))
collecting (list resource-name resource style max x y) into var
finally (return var)
counting t into pos
do

(show-graph~legend resource-name style (+ S (* pos 15)))))

{defun normalized-graphical-display-of-resources (lst time)
(let ({variable
(loop with dx = (/ 780 *max-timat¥)
with dy = 1.0
with next-x = (+ 70.0 (* dx time))
for (resource-name resource style max x y) in lst
as next-y = (- 155.0 (* 150.0 dy (/ (gethash time (eval resource))

ORIGINAL PAGE iS
OF POOR QUALITY

collecting (list resource-name resource style max next-x next-y}! into var

finally (return (cons next-x var))
do ,

N e v ot mmrtan th i e i bmmembd mewindane

ANDY-TAYLOR:>jsr>resource-allocation>multiple-resources-graphical-displays.lisp.Page 2

:dashed style :dash-pattern (list style style))
(graphics:draw=-1line next-x y next-x next-y :stream *graphics-window*
:dashed style :dash-pattern (list style style)})))
(graphics:draw-line (car variable) 153 (car variable) 157 :stream *graphics-windoww)
(cdr variable)))

(defun draw-axis-for-graph ()
(graphics:draw-rectangle 70 5 850 155 :filled nil :stream *graphics-window?)
({send *g¢graphics-window* :set-cursorpos 35 3)
(format *graphics-window* "100%")

{send *graphics-window* i3et-cursorpos 55 145)
(format *graphics-windowt* “0")

{send *graphics-window* :set-cursorpos 70 158)
(format *graphics-window* "Q~)

(send *graphics-window?® :set-cursorpos 830 158)
(format *graphics-window* "-a" *max-time*)
(send *graphics-window* :set-cursorpos 442 162)
(format *graphics-window®* "Time"))

(defun show-graph-legend (name style pos)
{send *graphics-window* :set-cursorpos 860 pos)
(format *graphics-window®* "~a" name)
{graphics:draw=-line 1000 (+ pos 4) 1050 (+ pos 4) :stream *graphics-window®
:dashed style :dash-pattern (list style style)})

(define-presentation~type time-type ()
:no-deftype t
:parser ((stream) {(loop do (dw:read-char-for-accept stream}))
:printer ((object stream)
(format stream “"the selection ~a® (car object)))})

(define-presentation~acticn time-type
(time-type t
:gesture :left
:context-independent t
:documentation "Show Additional Information about this Item."”)
(exit)
(throw ‘time exit))

ORIGINAL PAGE |s
OF FOOR QuaLTY

Appendix E
Symbolics Code Listings for Flavor Definitions of Object Structures

?pN7DY:> jsnresource-allom'tion>mu|tiple-with-ﬂavors>muItiple-resource-ﬂavors-and-v‘;ariablles.li
. age

;;: -*- Syntax: Common-Lisp; Package: USER; Base: 10; Mode: Lisp ~*-

;.:::;; Resource Allocation Flavors ;;;;;:;

(defflavor RESOURCE
{((limit nil)
(priority nil)
(constraint-function nil)
{(hash-table nil))
()
:readable-instance-variables
-:writable-instarice-variables
:initable~instance-variables)

(defflavor ENVIRONMENT

({resources nil)

{activities nil)
{total-time nil)
(expendables nil))

()
:readable-instance-variables
:writable~instance-variables
:initable~instance-variables)

(defflavor ACTIVITY
((duration nil)
(performances nil)
(max-performances nil)
(scheduled~-performances nil)
{Constraint-function nil))
(§]
:readable-instance-variables
:writable~-instance-variables
:initable-instance-variables)

(defflavor SELECTION-MENU ()
(tv:drop-shadow-borders-mixin
tv:multiple-menu))

(defflavor SHADOWED-TV-WINDOW ()
{tv:drop-shadow~borders-mixin
dw:dynamic-window))

;::::2::::::;:Special Flavor Functioms;;;::;:;;;:;

(defun revise-flavor-instances (flavor-name instance-variables)
(let ((current (append (flavor:FLAVOR-ALL-INSTANCE-VARIABLES
{flavor:find-flavor flavor-name))))
(new (mapcar ‘ (lambda (x) (cond ({(listp x) (car x))(t x))) instance~-variables)))
(cond ((and (= (length current) (l1+ (length instance-variables)))
(every ‘(lambda (x) {(member x current)) new))
nil)
{t
(flavor:remove-flavor flavor-name)
(eval ‘(defflavor , flavor-name
, {(append instance-variables
* {(Constraint~-function))
)
i readable-instance-variables
:writable-instance-variables
:initable-instance-variables))))))

(defmacro with-modified-flavor-definition (flavor-name instance-variables
flavor-instances &body body)
‘{let ((flavor (flavor:find-flavor ,flavor-name)})

(revise-flavor-instances , flavor-name ,instance-variables)

(loap for each in ,flavor-instances
do

(flavor:transform~instance each flavor))
, @body))

(defun supply-instance-variables-with-values (variables-and-values instances)
(cond ((and instances variables-and-values)

{lodp with flavor = (flavor:flavor-name oRlG]NAL PAGE 1S
OF POOR QUALITY

ANDY :>jsr>resource-allocation>multiple-with-flavors>multiple-resource-flavors-and-Bagatiles.lisp.7

(flavor: : SINSTANCE-FLAVOR
(eval (caar variables-and-values))))
for (instance value) in variables~-and-values
as variable = (read-from-string
(format nil "~a-~A" flavor instance))
do
(eval ‘(setf (,variable , (eval instance)) ,value))))))

22:2:222::2::::Global Variables::;;:;:::::::

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

{defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

(defvar

ncﬁivity)

activity-variablaes nil)

*environmentt)

framas) ;s Loaded from data file.

max~-time)

*time-listw)

*] ambda-listsar)

paths)

ofiginal-acreen-size nil)

second-time nil)

current-file ")

Resource-File-Directory "andy:>jsr>resource-allocation>multiple~data-files>")

resources¥)

resource-variables nil)

resources-output nil)

scheduled-items)

*maximizing-resource-listv)

maximizing-resource-positiont)

graphical-output nil)

graphical-display nil)

resource-output-window (tv:make-window ‘dw:dynamic-window
:1abel "Resource Allocation Window"
:blinker-p nil}))

display-menu (tv:make-window
’Select}o -menu __
c1avel "Select Displayed Output"
:default-character-style ' (:fix :roman :large)
:special-choices ‘' (("Selection Complete” :funcall-with-self complete))))

resource-menu-window (tv:make-window ’‘dw:dynamic-window
:1abel "Experiment Data Editor Window"
:blinker-p t))

; (defvar *Data-choices-menu* (tv:make-window ‘tv:momentary-menu

H

;

(defvar

{defvar

tborders 4
:label "Alternate Data File List-))

message-window (tv:make-window ‘dw:dynamic-window
H tblinker-p nil
:edges—from ‘ (300 300 850 400)
:margin-components .
' {{dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin :bottom
:string ‘Message Window (Press any key to EXIT)'))))

graphics-window (tv:mak_e-window 'd\fl:dynamic-window ORIGINAL PAGE IS
N BN 2M1A7 19

Rl aYaren i 1

ANDY:>jsr>resource-allocation>multiple-with-flavors>multiple-resources-with-flavorsRisged

i:: ~*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-

;2223520 Input and Variable Initializing Functions;;;;:

..
v

~e

(defun open-input-file ()
(let ((infile (dw:menu-choose (get-data-file-list)
:prompt "Data File List=™)))
(cond (infile (load (string-append *Rescurce-File-Directory* infile)
:verbose nil)
(initialize-frames)
(setq *current-file* infile)))))

(defun initialize-frames ()
(loop for frame in *frames*
collect (car frame) into names
finally (setf (environment-activities *environment®*) names)))

{defun determine-maximizing-resource ()
(setq *maximizing-resource-list* (prioritize-resource-list)
mayimizing-raesource-position
(loop for resource in *maximizing-resource-list*
collecting (position resource *resource-variables*))))

(defun reset-lambda-functions ()
(loop for (resource priority max-val lambda) in *lambda-lists*
do
{(cond ((and (boundp resource) (instancep (eval resource)))
(setf (resource-limit (eval resource)) max-val)
(setf (resource-priority (eval resource)) priority)
(setf (resource-constraint-function (eval resource)) lambda))
(t .
(set resource (make-instance ’resource
:limit max-val
:priority priority
:constraint-function lambda)))})))

(defun initialize-hash-tables ()
(let ((parameters
(loop for resource-item-string in *resources*
as resource = (make-variable-from-string resource-item-string)
collecting resource into var
collecting (read-from-string (format nil "activity-~a" resource)) into var2
collecting 0 into value :
finally (setg *resource-variables* var
activity-variables var2)
(return (list (cons ‘scheduled-items var)
(append *’ (nil nil) value))))))
(loop for resource in (car parameters)
for val in (cadr parameters)
do .
(cond ((boundp-in-instance (eval resource) val)
(clrhash (resource-hash-table (eval resource))))
(t (setf (resource-hash-table (eval resource))
{make-hash-table)})))
(swaphash 0 val (resource-hash-table (eval resource)))
{swaphash *max-time* val (resource-hash-table (eval resource))))))

; (defun initialize-markers-and-variables ()
; (loop for eac in *frames*

H as name = (car eac)

H do

: (loop for each in (cdr eac)
H do

(zl:putprop name (caadr each) (car each))))
; (setqg *time-list* (list 0 *max-timew)))

(defun create-object-structures ()
(define-environmental-structures)
(loop for eac in *frames+*
as name = (car eac)
do
{loop for each in (cdr eac)
append (list (read-from-string (format nil ®:~a"™ (car each)))
(caadr each)) into var-list

finally (set name (revise-flavor-instances OR!GINAL P;’;XGE 'S
OF POOR QUALITY

ANDY:> jsr>resource-allocation>multiple-with-flavors>multiple-resources-with-flavorsiige @

(make-instance ‘activity)
var-list)))
do
(zl:putprop name (caadr each) (car each)}))
{setq *time-list* (list 0 *max-time*))
(initialize-hash-tables)
(revise-flavor-instances ‘activity *resource-variables®)
(reset-lambda-functions)
(determine-maximizing~resource))

(defun define-environmental-structures ()
(if (null *environmentw)
(setq *environment* (make-instance ‘environment

itotal-time *max~-timex))))

:;Returns a sorted list based on highest priority resource
;:in form of ’ (expl exp2 exp3 ...)
(defun build-list ()
{let ((lst (environment-activities *activityw)))
(loop for resource in (reverse *maximizing-resource-list®)
as 1st2 = (zl:sortcar (loop for exp in 1lst

collect (list (funcall resource exp) exp)) #’>)

do
(setqg lst (loop for each in 1lst2
collecting (cadr each))))

1st))

(defun prioritize-resource-list ()
(sort (remove 0 (copy-list f*resource-variables*) :test #'=
:key #’resource-priority)
#’> :key #’resource-priority))

Jiriiiisiiieii s MAIN PROGRAM: ;0007032

~e
~e
~

(defun Allocate-Resources ()
(time (Allocate-Resources-aux)
(format t "~3%%%*%%* Program Timing #**#x.2%")))

(defun Allocate-Resources-aux ()
(cond (*second-time* t)
(t {open-input-file)

(setq *second-time* t)))
(create-object-structures)
(initialize-markeras-and-variables)
(examine-data)

(create-object-structures)
(send *resource-ocutput-window* :clear-history)
(send *resource-output-window* :select)
(let ((lst (build-list)))
{schedule-pass-one lst)
(display-pass t)
(show-used)
(format *resource-output-window®* "~3%~5"

(catch ‘resource (accept ‘label-type :stream *resource-output-window*

{schedule-pass-two lst)

(display-pass)

(show=-used))
;: {(send *graphics-window* :select)
(format *resource-output-window®* “~3%-a"

:prompt nil)))

(catch ‘resource (accept ’‘label-type :stream *graphics-window*

(z1l:readline *resource-output-windowt))
2222202333022 TOP LEVEL FUNCTIONS ;:;;::::::::::

(Defun schedule-pass-one (nlst)
(loop with 1lst = (copy-list nlst)
for (start interval-time)=(list 0 *max-timet)
then (find-new-parameters start)
until (or (= start *max-time*) (null lst))
as group = (find-max-path start (current-status start)

:prompt nil)))

(find-resource-candidates lst interval-time start))

ORIGINAL PAGE |5

OF POOR Quairry

ANDY :>jsr>resource-allocation>multiple-with-flavors>multiple-resources-with-flavorsBisge @

do
: (format t "~%8~A ~a " group start)
(cond (({atom {(car group)))
(t
(update-hash-tables start
(loop for item in (car group)
as performances = (activity-performances item)
as duration = (activity-duration item)
as time = (* performances duration)
if (> time interval-time)
do (setqg time
(* (setq performances
(zl:£fix (/ interval-time duration)))
duration))
if (> performances 0)
collect (list item time) into var
finally (return var)
do
{setf (activity-scheduled-performances item)
(+ performances {(activity-scheduled-performances item)))
‘(setf (activity-performances item)
(- (activity-performances item)))
(cond ((<= (- (activity-performances item) performances) 0.)
(setq lst (remove-experiment-from-schedule-list
item 1st))))))))))

{defun schedule-pass-two (nlst)
(loop with 1lst = (copy-list nlst)
for (start interval-time) = (find-new-parameters)
then (find-new-parameters start)
for current-status = (current-status start)
until (= start *max-time*)
as possible-choices = (non-scheduled 1lst (gethash start scheduled-items))
do
H (format t "~3% start = ~A ~20t~a" start current-status)
(loop with params = nil
while interval-time
while (Parameters-within-range current-status) ;;Need exit condition here
as group = (find-max-path start current-status
{(find-resource-candidates
possible-choices interval-time start))
do
; (format t "~%Interval time = ~a ~20t~a~40t~a” interval-time current-status group)
(cond ((atom (car group))
{cond ((= (+ start interval-time) *max-time*)
(setq interval-time nil))
(t
(setq params (find-next-parameter current-status
(+ start interval-time))
possible~choices (remove-next-time-events ’
(+ start interval-time) possible-choices))
(setq current-status (car params)
interval-time (- (cadr params) start))))})
(L
{(update-hash-tables start
(loop for item in (car group)
as duration = (activity-duration item)
as performances = (zl:fix (/ interval-time duration))
as time = (* performances duration)
collect (list item time) into varl
minimize time into var2
finally (setq interval-time var2)
{return varl)
do
(setf (activity-scheduled-performances item)
(+ performances (activity-scheduled-performances item)))
(setf (activity-performances item)
(- (activity-performances item) performances))
(setq possible~choices (remove-experiment-from-schedule-list
item possible-choices))))

(setq interval-time nil))))))

(defun complete (self)

(send self :deactivate)) OR!G“\”\L ?;\EE ‘s
OF POU® OUALITY

3

ANDY:>jsr>resource-allocation>multiple-with-flavors>multiple-resources-with-flavorsRisge6

(defun display-pass (soptional (title nil))
(dw: :with-output-truncation (*resource-output-window* :horizontal t)
(cond (title
{(format *resource-output-window* "~2%~38t~vBesource Allocation Results~=q%”"
“Fontt)
(cond ((null *resources-output*) .
(send *display-menu* :set-label ~Select Dlsplayed Output")
(send *display-menu* :set-item-list *resourcest¥)
(send *display-menu* :choose)
(setq *resources-output*
{(reverse (send *display-menu* :highlighted-values)))))
(format fresource-output-window® "~4% t#%t FIRST PASS RESULTS #®#&#awx.2%"))
(t
(format *resource-output-window®* "-4% #*t*%* SECOND PASS RESULTS ##%#")))
(select~graphical-display)
(let ((x~y-locations (Initialize-Graph-information *graphical-outputt))
(space 10))
(show-scheduled)
(loop for resource in *resources-output®*
initially (space-over *resocurce-output-window* (+ 6 space))
do !
(space-over *rasource-output-window* space)
(format *resource-output-window* "~’‘b€a~3 resource))
{loop for time in *time-list*
for next-time in (cdr *time-listw)
do
(setq x-y-locations (display-output-sensitive "~%" time next-time x-y-locations
:stream *resource-output-windowt))
(loop for variable in (make-variables *resources-output®)
for header in *resources-output*
as width = (string-length header)
for column first (+ space (/ width 2.0) space)
then (+ space (/ width 2.0) column)
do
(format *resource-output-window* (format nil "~~~at” (zl:fix column)))
(format *resource-output-window* "-8@a" (gethash time (eval variable)))
(setq column (+ (/ width 2.0) column)))))))

(defun display-output-sensitive (return time next-time x-y-locations &key (stream *resource-menu-window*)
(type ‘label-type))
(dw:with-output-as-presentation (:single-box t
: :stream stream
:dont-snapshot-variables t
:type type
tobject (list time))
(print-it stream return time))
H (print-it *graphics-window* return time))
(if (and (not (equal *graphical-display* ‘none)) x-y-locations)
(setq x-y-locations (funcall *graphical-display* x-y-locations next-time)))
x-y-locations)

(defun print-it (stream return time)
(format stream (format nil "~a~A" return time)))

(defun make-variables (lst)
(loop for string in lst
collect (make-variable-from-string string)))

(defun show-used ()
(format *resource-output-window®* "~3%~10TItem~20tRemaining~40tScheduled~%")
(loop for item in (environment-activities *environment®)
do
(format *resource-output-window* "~§~10T~A~23t~a~43t~a" item (activity-performances item)
(activity-scheduled-performances item))))

------ ; Second Pass Functions ;;;;;;:;::;:

(defun non-scheduled (l1st used)
(let ((possible lst))
{loop for item in used
do
(setq possible (remove item possible :test #’equal)))

possible))

-------- ; Common Pass Functions ;;;;;;:;:;::;:
ORIGINA. FPAGE 18
OF POOR OUALIY

ANDY:> jsr>resource-allocation>multiple-with-ﬂavors>multiple-rcsources-with-ﬁavorsn‘ngeﬁ

(defun find-new-parameters (&optional (current nil) (params nil))
(let ((lst *time-list+))
(cond ((null current)
(setqg 1lst (cons 0 lst)))
(t
(setq lst (member current *time-list* :test #'=))))
{(loop with start = (cadr 1lst)
with status = (if params params (current-status start))
for time in (cddr lst) N
while (compare-each-time-status status time)
finally (return (list start (if time (-~ time start)
(- *max-time* (cadr 1lst)))))})))

(defun find-next-parameter (current time)
(let ((next (mapcar #’'{(lambda (x y) (if (> x y) x y)) current
(current-status time))))
(list next (cadr (member time *time-list®*)))))

(defun remove-next-timae-events (time lst)
(loop for item in (gethash time scheduled-items)
do
(setq 1st (remove-experiment-from-schedule-list item 1lst)))
1lst)

(defun compare-each-time-status (status time)
(loop for pos from 0 s .
for each in *maximizing-resource-list¥
for location in *maximizing-resource-position*
always (<= (gethash time (eval each))
(nth location status))
finally (return t)))

(defun Parameters-within-range (current-status)
(loop for, each in *maximizing-resource-list*
for location in *maximizing-resource-position*
always (> (resource~limit each)
{nth location current-status))))

(defun update-Hash-tables (start lst)
(loop for (iteml duration) in 1lst
as end-time = (+ start duration)
do
(cond ((null (member end-time *time-list* :test #'=))
(loop for resource in (cons ‘scheduled-items *resource-variables*)
do
{swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))
(setq *time~list* (sort (cons end-time (copy-list *time-list¥*)) #°'<))))
(loop for time in (member start *time-listw))
until (= end-time time)
do
(swaphash time (append (Gethash time ‘scheduled-items) (list iteml))
) scheduled-items)
(loop for resource in *resource-variables*
for operation in *activity-variables*
do
(swaphash time (+ (Get-hash-value time (resdurce-hash-table resource))
(funcall operation iteml)) (resource-hash-table resource))))))

(defun Get-hash-value (time resource-table &optional (not-new t))
(let ((value (gethash time resource-table)))
(cond {(value value)
{(not-new nil)
{t (gethash (loop with previous = 0
for last-time in *time-list*
until (>= last-time time)
finally (return previous)
do
(setq previous last-time))
resource-table)))))

(defun find-resource-candidates (lst endpoint start)
(loop for exp in (find-interval-candidates lst endpoint)
if (check-constraints (add-constraint-values (current-status start) exp))
collect exp into resource-candidate-list

finally (return resource-candidate-list))) OR'G’!NAL PAGE 's
OF POOR QUALITY

'ANDY:>jsnrmurce-allomtion>multiple-with-ﬂavors>multiple-r&ourcs-with-ﬂavorsﬂmﬁ

(defun find-interval-candidates (lst endpoint)
(loop for exp in lst
if (feasible-interval exp endpoint)
collect exp into variable
finally (return variable)))

(defun feasible-interval (experiment endpoint)
(< (get experiment ‘duration) endpoint))

(defun find-possible-downward-paths (sv lst)
(let* ((top (car 1lst))
{bottom (cdr 1lst))
{val (add-constraint-values sv top)))
(cond ((null (check-constraints val)) *(()}))
(bottom
(loop for down-lst on (cdr 1lst)
append (group-intermediate-lists
top (find-possible-downward-paths val down-1st)) into var
finally (return var)))
(t (list 1st))}))

(defun add~-constraint-values (lst exp)
(loop for resource in *rescurce-variables®*
for value in 1lst
if (null value)
do {setqg value 0)
collecting (+ value (get exp resource))))

(defun check-constraints (lst)
(loop for resource in *resource-variables*
for value in 1lst
always (apply (resource-constraint-function resource) (list value))
finally (return t)))

(defun find-max-path (time sv lst)
(loop with max-paths = nil
with max-value = 0
for new-lst on lst
as paths = (find-possible-paths sv new-1lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))
(swaphash time max-paths *paths*)
(return (car max-paths))
do
(cond ({(= max-value value)
{setq max-paths (append max-paths paths)))
((< max-value value) (setq max-paths paths
. max-value value))))) \

(defun sort-max-paths (paths)
(let ((lst (loop for path in paths
collecting (list path (get-group-values path}))))
(loop for pos in (reverse *maximizing-resource-positiont)
do
(setq lst (sort 1lst #°> :key {(lambda (x) (nth pos (cadr x))))))
1st))

(defun get-~time-interval-priority-value (values lst &optional (pos 0))
(cond (values
(+ (nth (nth pos *maximizing-resource-position*) values)
(nth (nth pos *maximizing-resource-position*) 1lst)))
(t O))»

(defun group-intermediate-lists (item lst)
(loop for each in lst
collect (cons item each)))

(defun remove-experiment-from-schedule-list (exp 1lst) -
{remove exp (copy-list lst) :test #‘’equal))

(defun find-possible-paths (val resource-candidates)
(let ((lst (find-possible-downward-paths val resource-candidates)))
{cond {{null lst) (return-from find-possible-paths nil))
(t (get-maximized-sub-path 1lst)))))

ANDY:>jsr>resource-allocation>multiple-with-flavors>multiple-resources-with-flavorsBige

(defun get-maximized-sub-path (paths)
(loop for resource in *maximizing-resource-list*
for position in *maximizing-resource-position*
until (= {(length paths) 1)
do
(setq paths
(loop for lst in paths
with max-val = 0
with max-lsts = nil .
as resource-value = (nth position (get-group-values lst))
finally (return (reverse max-1lsts))
do
(cond ((> resource-value max-val)
(setqg max-val resource-value
max-1sts (list 1lst)))
((= resource-value max-val)
(setq max~lsts (cons lst max-1sts)))))))
paths)

(defun get-group-values (group)
(loop for item in *activity-variablas*
collecting (loop for each in group
summing (funcall item (eval each}})))

(defun current-status (time)
(loop for each in *resource-variables*
as value = (gethash time (resource-hash-table (eval each)))
if (null value)
do (setqg value 0)
collecting value))

(defun show-scheduled ()
(format *resource-output-window* "~2% Time ~20tScheduled Events-~s")
(loop for time in *time-list¥*
do
(format *resource-output-window* "~% ~A ~20t~A" time (gethash time scheduled-items)))
(format *resource-output-window* "~2%"))

(defun show-resource (resource)
(loop for time in *time-list=*
do
(format t "~% ~A ~20t~A" time (gethash time resource))))

; (defun make-mouse-sensitive-labels (return object &key (stream *resource-menu-window#)
H (type ‘label-type))

; (dw:with-output-as-presentation (:single-box t

:) ' :stream stream

; itype type
: tobject object)
; {format stream {format nil "~a~A" return (cadr object)))))

ORICINAL PAGE IS
OF FOOR QUALITY

Appendix F
Symbolics Lisp Code for Modified Single Aliocation Step Process

-1 CRIGINAL PAGE IS
- OF POOR Q2 aTY

ANDY:> jsr>resource-allocation>multiple-single-perfornmnce-step>multiple-i'esources.wa

::; =*- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*-~

(defun open-input-file ()
(let ((infile (dw:menu-choose (get-data-file-list)
:prompt "Data File List~)))
(cond (infile (load (string-append *Resource-File-Directory* infile)
:verbose nil)
(initialize-frames)
(setq *current-file* infile)))))

(defun initialize-frames ()
(zl:putprop ‘list-of nil ‘names)
(loop for frame in *frames®
as name = (car frame)
do -
(zl:putprop ‘list-of (append (get ‘list-of ‘names) (list name)) ‘names)))

(defun determine-maximizing-resource ()
(setq *maximizing-resource-list* (prioritize-resource-list)
maximizing-resource~position
(loop for resource in *maximizing-resource-list*
collecting (position resource *resource-variables®))))

(defun reset-lambda-functions ()
(loop for (resource priority max-val lambda) in *lambda-lists*
do
(zl:putprop resource max-val ‘resource-limit)
(zl:putprop resource priority ’‘resource-priority)
(zl:putprop resource lambda ‘resource-constraint-function)))

(defun initialize~hash-tables ()
(let ((parameters
(loop for resource-item-string in *Tresources*
as resource = (make-variable-from-string resource-item-string)
collecting resource into var)
collecting 0 into value
finally (setq *resource-variables* var) A
(return (list (append ’ (*paths* scheduled-items) var)
(append ‘ (nil nil) value))))))
(loop for resource in (car parameters)
for val in (cadr parameters)
do
(cond ((boundp resource)
(clrhash (eval resource)))
(t (set resource (make-hash-table))))
{swaphash 0 val (eval resource))
(swaphash *max-time* val (eval resource))))
(loop for exp in (get ‘list-of ‘names)
do
(zl:putprop exp nil ‘when-scheduled)))

(defun initialize~markers-and-varisbles ()

{loop for eac in *frames+*

as name = (car eac)

do

(loop for each in (cdr eac)
do
(zl:putprop name (caadr each) (car each))))

(setq *time-ligt* (list O *max-time*))
(initialize-hash~tables)
(reset-lambda-functions)
(determine-maximizing-resource))

;;Returns a sorted list based on highest priority resource
;;in form of ‘ (expl exp2 exp3d ...)
(defun bulild-1list ()
(let ((lst (get ’‘list-of ‘names)))
{loop for resource in (reverse *maximizing-resource-list*)
as 1lst2 = (zl:sortcar (loop for exp in lst
collect (list (get exp resource) exp)) #'>)
do
(setq 1st (loop for each in lst2
collecting (cadr each)}))
1lst))

(defun Rig-to-subst-gibbys-frontier-nodes-as-minimams ()

ORIG!'NAL PAGE IS
OF POOR QUALITY

ANDY :>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.Bag28

{(with-open-file (stream *Gibbys-frontier-node-file*
:if-does-not-exist nil)
(cond (stream
(loop for each in (read stream) *
for value in (read stream)
do
(zl:putprop each value ’‘performances)))
(t
(format t "~3%~v@ibby, I need a frontier node!!!~=38%" ’ (:eurex :italic :huge))
(beep)
‘missing))))

{defun prioritize-resource-list ()
(sort (remove 0 (copy-list *resource-variables*) :test §’'=

tkey ‘ (lambda (x) (get x ‘resource-priority)))
#’> :key #’ (lambda (x) (get x ‘resource-priority))))

(defun permanently-store-pass-one-results ()
{loop for resource in *resource-variables*
as results = (eval resource)
do)
(zl:putprop resource results ‘pass-one))
{loop for each in (get ’‘list-of ‘names)

do
(zl:putprop each (get each ‘when-scheduled) ‘pass-one})

(setq *Pass-one-tima-line* *time-listt))

.
~
~e
~e
-~
~
~
~
~e

Top Level Functions;;;

~
~e
~
.~
~
~
~e
~
~
“~
~e
~e
.~
~e

.~
(9%
~e
~.
“~
~.
~,
~
~

Jiiiiiiiiiiiiis;) MAIN PROGRAM; ;;:;;
(defun Allocate-~Resources ()

(time (Allocate-Resources-aux)
(format t "~3%%*%*%* Program Timing #*##*.2%")))

{defun Allocate-Resources-aux {&key (Gibby nil))
(cond (*second-time* t)
(t (open-input-file)
(setq *second-~time* t)))
(initialize-markers-and-variables)
(if (and gibby (Rig-to-subst-gibbys-frontier-nodes-as-minimums))
{(return~from Allocate-Resources-aux "Program Terminated Due to File-Not-Found"))
(examine-data)
(let ((lst (build-list)))
(send *resource-output-window* :clear-history)
(send *resource-output-window* :select)
(continue-allocation-pass-one 1lst)
(permanently-store-pass-one-results)
(continue-allocation-pass=-two lst)))

(defun continue-allocation-pass-one (1lst)
{schedule-pass-one lst)
(display-pass t)
{show-used)
(place-exit-button "Continue. to Second Pass")
(proceed ‘continue-allocation-pass-one))

(defun continue-allocation-pass-two (lst)
(schedule-pass-two 1lst)
(display-pass)
{show-used)
(place-exit-button "Terminate Program”)
(proceed ‘continue-allocation-pass-two})

::::; Back Tracking Capablilities ;;:;:;:::;:;:.::

~

e s o s s e .
P A A]

(defun Proceed (function)

(let ({response .
{(car (catch ’‘resource (accept ’‘label-type :stream *resource-output-window* .

:prompt nil)))))

(cond ((numberp response) .
{(backtrack function response))
{ (equal response ‘proceed))))) OR!C'NQL .
‘CMAL PAGE 15

flf'ﬁz()cn? CNJ‘RLII]{

ANDY:> jsr>resource-allocation>hultiple-single-performance-step>multiple-resourc&s.ms

(defun backtrack (function time-slot)
(let ((choices (gethash time-slot *paths¥)))
(loop while
(1f (> (length choices) 1)
(remove-and-restart function time-slot choices)
(send-message~-to-user
(format nil "The only allocation selection given for ~a is the currently~%allocated gro
up”
time-slot))})))

(defun remove-and-restart (func time choices)
({loop as selection = (get-option-list
(format nil "Select Alternate Activity Schedule at Time ~a" time)
(append (string-lists (cdr choices))
‘("Do Not Change Current Activity Schedule”)})
when selection
do
(cond ((listp (read-from-string selection))

(reset-data~structures func time choices selection)

{funcall func time))

{t

(return-from remove-and-restart t)))))

(defun reset-data-structures (func time choices selection)
(let* ((choice (read-from-string selection))
(common (intersection choice (car choices)))
(new (intersection common choice :test #’' (lambda (x y) (not (eql x y)))))
{old (intersection common (car choices) :test #’ (lambda (x y) (not (eql x y)))))
(kill-time (cdr (member time *time-ligt¥))))
(loop for exp in (get ‘list-of ‘names)
as scheduled = (get exp ’scheduled-performances)
as perfs = (get exp ’performances)
as times = (get exp ’‘when-scheduled)
do
(Loop for eac in times
until (<= eac time) ,
counting t into number
finally
(zl:putprop exp (subseq times (l1- number)) ‘when-scheduled)
(zl:putprop exp (- scheduled number) ’scheduled-performances)
(zl:putprop exp (+ perfs number) ‘performances)))
(loop for resources in *resource-variables*
as table = (eval resources)
do
{(Remove-hash-entries-with-times-greater-than table time))))

(defun Remove-hash-entries-with-times-greater-than (table start-time)
(maphash *(lambda (time value)
(if (> time ,start-time)
(remhash time ,table}))
table))

(defun string-lists (lst)
(mapcar ‘ (lambda (x) (format nil "~a"™ x)) 1lst))

(defun Place-axit-button (message)
(format *resource-output-window® "-~2%~20t")
(dw:with-output-as-presentation (:single-box t
:stream *resource-output-window*
itype ‘label-type
sobject ‘proceed)
(surrounding~-output-with-border (*resource-output-window* :shape :oval
:filled t
. tmove-cursor nil)
(format *resource-output-window* message))))

3:27:2222:::: TOP LEVEL FUNCTIONS ;;;::;:;;:,;:;

(Defun schedule-pass-one (nlst &key (backtrack-time nil))
(loop with 1lst = (copy-list nlst)
for (start interval-time)= (if backtrack-time
(find-new-parameters backtrack-time)
{(list 0 *max-time*)) ’
then (find-new-parameters start)

until (or (= start *max-time¥) OR‘GiNAL PAGE IS
(null 1lst)) OF POOR QlJAUW

ANDY:>jsr>resource-allocation>multiple-single-performance-step>multiple-resources. P28

~

do
(format t "~%~A ~a " group start)
(cond ((atom (car group)))

as possible-choices = (non-scheduled lst (gethash start scheduled-items))
as group = (find-max-path start (current-status start)
(find-resource-candidates

possible-choices interval-time start))

(t
(update-hash-tables start
(loop for item in (car group)

as performances = (get item ’‘performances)

as time = (get item ‘duration)

collect (list item time) into var

finally (return var)

do

(zl:putprop item (cons start (get item ’when-scheduled)) ‘when-scheduled

(zl:putprop item (+ 1 {(get item ‘scheduled-performances))
* scheduled~performances)
(zl:putprop item (- performances 1)
'performances)
(cond ((<= performances 1l.)
(setq lst (remove-experiment-from-schedule-list
item 1st))))))))))

(defun schedule~pass-two (nlst)

(loép with lst = (copy-list nlst)

for (start interval-time) = (find-new-parameters)
then (find-new-parameters start) V

for current-status = (current-status start)
until (= start *max-time¥)
as possible-choices = (non-scheduled 1lst (gethash start scheduled-items))

do
(format ¢ "~3% start = ~A ~20t-~a" start current-status)

(loop with params = nil

while interval-time
while (Parameters-within-range current-status) ;;Need exit condition here
as group = (find-max-path start current-status
(find-resource-candidates
possible-choices interval-time start))
do
(format t "~%Interval time = ~a ~20t~a~40t~a™ interval-time current-status group)
{cond ({atom (car group)) .
(cond ((= (+ start interval-time) *max-time®)
(setq interval-time nil))
(t
(setq params (find-next-parameter current-status
(+ start interval-time))
possible-choices (remove-next-time-events
(+ start interval-time) possible-choices))
(setq current-status (car params)
interval-time (- (cadr params) start))}))
(t
{update-hash-tables start
(loop for item in (car group)
as duration = (get item ‘duration)
as performances = (2l:fix (/ interval-time duration))
as time = (* performances duration)
collect (list item time) into varl
minimize time into var2
finally (setq interval-time var2)
(return varl)
do
(zl:putprop item (+ performances
(get item ’‘scheduled-performances))
’ scheduled~performances)
(zl:putprop item (- (get item ‘performances)
performances)
‘performances)
{(setqg possible~choices (remove-experiment-from-schedule-list
item possible-choices))))
(setq interval-time nil))))))

{defun complete (self) CRIGINAL PAGE IS

(send self :deactivate)) . OF POOR QUALITY

ANDY:>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.Pag28

(defun display-pass (&optional (title nil))
(dw: :with-output-truncation (*resource-output-window* :horizontal t)
(cond (title
{(format *resource-output-window* "-~2%~38t~vEBesource Allocation Results~D4%"
Font)
(cond ((null *resources-output?®) R
(send *display-menu* :set-label ~Select Dlsplayed 0utput")
(send *display-menu* :set-item-list *resources®)
(send *display-menu* :choose)
(setq *resources-output*
(reverse (send *display-menu* :highlighted-values)))))
(format *resource-output-window*®* ~~4% #*#+* FIRST PASS RESULTS *##*&.2%"))
(t
(format *resource-output-window® "~4% ##*% SECOND PASS RESULTS #%*##x")))
(select-graphical-display)
(let {(x-y-locations (Initialize-Graph-information *graphical-ocutput¥*))
(space 10))
(show~-scheduled)
(loop for resource in *resources-output®
initially (space-over *resocurce-output-window* (+ 6 space))
do
(space-over *resource-output-window* space)
(format *resource-output-window* "~'b&a~5d resource))
(loop for time in *time-list~»
for next-time in (cdr *time-list*)
do
(setq x-y-locations (display-output-sensitive "~%" time next-time x~-y-locations
:stream *resource-output-window?))
(loop for variable in (make-variables *resources-cutputt)
for header in *resources-output®*
as width = (string-length header)
for column first (+ space (/ width 2.0) space)
then (+ space (/ width 2.0) column)
do
(format *resource-output-window* (format nil "~~~at®™ (zl:fix column)))
(format *resource-output-window* "~8@a" (gethash time (eval variable)))
(setqg column (+ (/ width 2.0) column)))))))

(defun display-output-sensitive (return time next-time x-y-locations
tkey (stream *resource-menu-windowt)
(type ‘label-type))
(dw:with-output-as-presentation (:single~box t
:stream stream
:dont-snapshot-variables t
itype type
:object (list time))
(print-it stream return time))
H (print-it *graphics-window* return time))
(if (and (not (equal *graphical-display* ‘none)) x-y-locations)
(setq x-y-locations (funcall *graphical-display* x-y-locations next-time)))
x-y-locations)

(defun print-it (stream return time)
(format stream (format nil "~a~A™ return time))) '

(defun make-variables (lst)
(loop for string in lst
collect (make-variable-from-string string)))

(defun show-used ()
(format *resource-output-window* "~3%~10TItem~20tRemaining~40tScheduled~%")
(loop for item in (get ‘list-of ’‘names)
do
(format *resource-output-window* "~§~10T~A~23t~a~43t-~a" item (get item ’‘performances)
(get item ‘scheduled-performances))))

Pt Second Pass Functions ;:;::.::..;

(defun non-scheduled (lst used)
(let ((possible lst))
(loop for item in used
do
{setq possible (remove item possible :test #'equal)))
possible))

CRIGINAL PARE iS

OF FOOR . .. +¥

ANDY:>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.Rag2 8

;32237232725 :; Comnmon Pass Functions ;;;;;:;:;;;:;

(defun find-new-parameters (&optional (current nil) (params nil))
(let ((lst *time-list*))
{(cond ((null current)
(setq lst (cons 0 1lst)))
(84
(setq lst (member current *tima-list®* :test #'=))))
(Loop with start = (cadr 1lst)
with status = (if params params (current-status start))
for time in (cddr 1lst)
while (compare-each-time-status status time)
finally (return (list start (if time (- time start)
(- *max-time* (cadr 1lst))))))))

(defun find-next-parameter (current time)
(let ((next (mapcar #’(lambda (x y) (if (> x y) x y)) current
{(current-status time))))
(list next (cadr (member time *time-list%*)))))

(defun remove-next-time-events (time lst)
(loop for item in (gethash time scheduled-items)
do
(setq lst (remove-experiment-from-schedule-list item lst)))
lst)

(defun compare-each-time-status (status time)
(loop for pos from 0
for each in *maximizing-resource-listw®
for location in *maximizing-resource-position*
always (<= (gethash time (eval each))
) (nth location status))
finally (return t)))

{(defun Parameters-within-range (current-status)
(loop for each in *maximizing-resource-list+
for location in *maximizing-resource-position*
always (> (get each ‘resource-limit)
(nth location current-status))))

(defun update-Hash-tables (start lst)
(loop for (iteml duration) in 1lst
as end-time = (+ start duration)
do
{cond ((null (member end-time #*time-list* :test #’'=))
(loop for resource in (cons ’‘scheduled-items *resource-variablest)
do
(swaphash end-time (Get-hash-value end-time resource nil) (eval resource)))
(setq *time-list* (sort (cons end-time (copy-list *time-list*)) #/<))))
(loop for time in (member start *time-listw*)
until (= end-time time)
do
(swaphash time (append (Gethash time scheduled-items) (list iteml))
scheduled-items)
(loop for resource in *resource-variables*
do
(swaphash time (+ (Get-hash-value time resource)
(get iteml resource)) (eval resource)))})))

(defun Get-hash-value (time resource &optional (not-new t))
(let ({(value (gethash time (eval resource))))
(cond (value value)
{not-new nil)
(t (gethash (loop with previous = 0
for last-time in *time-list*
until (>= last-time time)
finally (return previous)
do
(setq previous last-time)) (eval resource))}))))

(defun find-resource-candidates (lst endpoint start)
(loop for exp in (find-interval-candidates 1lst endpoint)
if (check-constraints (add-constraint-values (current-status start) exp))

collect exp into resource-candidate-list OR!GBNAL PAGE E‘:S

finally (return resource-candidate-list)))
OF POOR QUALITY

ANDY:>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.RPag23

(defun find~-interval-candidates (lst endpoint)
(loop for exp in lst
if (feasible-interval exp endpoint)
collect exp into variable
finally (return variable)))

(defun feasible-interval (experiment endpoint)
(< (get experiment ‘duration) endpoint))

(defun find-possible-downward-paths (sv lst)
(let* ((top (car 1lst))
(bottom (cdr lst))
(val (add-constraint-values sv top)))
(cond ((null (check-constraints val)) ‘{(()))
(bottom
(loop for down-1lst on (cdr lst)
append (group-intermediate-lists
top (find-possible-downward-paths val down-lst)) into var
finally (return var)))
(t (list 1st)))))

(defun add-constraint-values (lst exp)
(loop for resource 'in *resource-variables*
for value in 1st
if (null value)
do (setqg value 0)
collecting (+ value (get exp resource))))

(defun check-constraints (lst)
(loop for resource in *resource-variablas*
for value in 1st
always (apply (get resource ’‘resource-constraint-function) (list value))
finally (return t)))
(defun find-max-path (time sv lst)
(loop with max-paths = nil
with max-value = 0
for new-1lst on lst
as paths = (find-possible-paths sv new-lst)
as value = (get-time-interval-priority-value (get-group-values (car paths)) sv)
finally (setq max-paths (sort-max-paths max-paths))
(Set-back~-tracking-paths
time (gethash time scheduled-items) max-paths)
(return (car max-paths)) :
do
(cond {((= max-value value)
(setq max-paths (append max-paths paths)))
((< .max-value value)
{setq max-paths paths
max-value value)))))

(defun Set-back-tracking-paths (time prefix suffix)
(swaphash time
(remove-duplicates
(loop for (eac rst) in suffix
collect (append prefix eac))
:test #’equal)
paths))

(defun sort-max-paths (paths)
(let {({1st (loop for path in paths
collecting (list path (get-group-values path)))))
(loop for pos in (reverse *maximizing-resource-positiont)
do
(setq lat (sort lst #’> :key (lambda (x) (nth pos (cadr x))))))
1st))

{defun get-time-interval-priority-value (values lst &optional (pos 0))
(cond (values
(+ (nth (nth pos *maximizing-resource-position*) values)
(nth (nth pos *maximizing-resource-position*) 1lst)))
(c 0)))

{defun group-intermediate-lists (item lst)
(loop for each in lst
collect (cons item each)))

ORIGIMAL PAGE 1S
OF POOR QUALITY

ANDY :>jsr>resource-allocation>multiple-single-performance-step>multiple-resources.Bsg2$8

(defun remove-experiment-from-schedule-list (exp lst)
(remove exp (copy-list lst) :test #’'equal))

(defun find-pessible-paths (val resource-candidates)
(let ((lst (find-possible~downward-paths val resource-candidates)))
(cond ((null lst) (return-from find-possible~paths nil))
(t (get-maximized-sub-path 1st)))))

{defun get-maximized-sub-path (paths)
(loop for resource in *maximizing-resource-list*

for position in *maximizing-resource-position*

until (= (length paths) 1)

do

(setq paths
(loop for lst in paths

with max-val = 0
with max-lsts = nil

as resource-value = (nth position (get-group-values 1lst))
finally (return (reverse max-lsts))
do ’ :

(cond ((> resource-value max-val)
(setq max~-val resource-value
max-1lsts (list 1lst)))
{{= resource-value max-val)
(setq max-lsts (cons lst max-1sts)))))))
paths)

(defun get-group-values (group)
(loop for item in *resource-variables*
collecting (loop for each in group
summing {(get each item))))

(defun current-status (time)
(loop for each in *resource-variables*
as value = (gethash time (eval each))
collecting (if value value 0)))}

(defun show-scheduled ()
{format *resource-output-window®* "~2% Time ~20tScheduled Events-~%")
(loop for time in *time-list*
do
(format *resource-output-window* "~% ~A ~20t~A" time (gethash time scheduled-items)))
(format *resource-~output-window* "~2%"))

(defun show-resource (resource)
(loop for time in *time-list*
do
(format t "~% ~A ~20t~A" time (gethash time resource))))

; (defun make-mouse-sensitive-labels (return object &key (stream *resource-menu-window*)
H . (type ’'label-type))

H (dw:with-output-as-presentation (:single-box t

:stream stream

: itype type

:object object)

: (format stream (format nil "~a~A" return (cadr object)))))

CRIGINAL PAGE IS
OF POOR QUALITY

Appendix G
Symbolics Lisp Code for Frontier of Feasibility System

ORIGINAL PAGE IS
OF POO™ = - - +f

ANDY:>jsr>Frontier-Interface>frontier-interfacé.lisp.9 4/07/90 07:40:09 Page 1

LR - Syntax: Common-Lisp; Package: USER:; Base: 10: Mode; LISP -*-

(defvar *Resource-File-Directory* "andy:>jsr>resource-allocation>multiple-data-files>")
(defva; *framas*)

(defvar *max-resource-area* 0)

(defvar *currently-used* 0)

(defvar *current -file* nil)

(defvar *experiments¥)

(defvar *max-resource-area* 58000000}

(defvar *Not-Previously-Notified* t)

(defvar *message-window* (tv:make-window ‘dw:dynamic-window
H :blinker-p nil
:edges-from ’ (300 300 850 400)
imore-p nil
tmargin-components
‘{(dw:margin-scroll-bar :visibility :if-needed)
(dw:margin-ragged-borders :thickness 4)
(dw:margin-label
:margin ibottom
:string ‘Massage Window (Press any key to EXIT)')))

(defvar *interface-window* (tv:make-window ‘dw:dynamic-window))

(defflavor activity
{(Name
Experiment-Number
Duration
Power~Required
Man-Power
Data-Rate
Performances
Minimum-Performances
Maximum-Performances
Scheduled-Performances
Presentation
(Highlighted nil))

()
{:conc~name
:initable-instance-variables
;readable-instance-variables
:writable-instance-variables)

wey

{defun set-up-objects ()
; (setq *max-resource-area* (* *max-time* *max-resource*))
(loop for each in *frames¥

as name = (car each)
collecting name into name-list
as 1lst = {loop for next in (cdr each)
collecting (read-from-string (format nil ":~a" (car next))) into args
collecting (caadr next) into args
finally (return (append (list :name (format nil "-~a" name)) args)))
finally (setq *Experiments* name-list)
do

(set name (apply #'make-instance (cons ‘activity lst)))
(set-minimum (eval name))})
{calculate-area-used))

(defmethod (set-minimum activity) ()
(setq Minimum-performances Performances))

(defun restart ()
{setq *current-file* nil *currently-used* 0 *used-lst* nil ij 1))

{defun calculate-area-used ()
(setq *currently-usedx*
(loop for name in *experiments*
as duration = {(duration {(eval name))

ORIGINAL pag
E I
OF POOR QuALrTY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 2

as power = (power-required (eval name))

as perfs = (performances (eval name))

summing (* duration power perfs) into tot-area
finally (return tot-area)}})

(defun make-window-layout ()
(let* ((space 10))
(format *interface-window* "~%")
(loop for exp-lst in (subgroup-list *experiments* 12)
counting t into row
collecting {(loop for exp in exp-lst
counting t into column-number
as column = (* 10 column-number)
collect (list exp row column-number) into headings
finally (format *interface-window* "~%")
(return headings)
do

(format *interface-window* (format nil "~~~at~a" (zl:fix column) exp)) } into var

do
(loop for exp in exp-lst
counting t into col-num
as col = (¥ 10 col-num)
do
(place-variable col ‘performances exp))
(format *interface-window* “~2%"))))

;:This defines the item presentation type and documentation line display
(define-presentation~type resource-type ()

:no~deftype t

:parser ((stream) (loop do (dw:read-char-for-accept stream)))

:printer ((object stream)
(format stream "the resource ~A" (car object})))

;:This is what is done when the item is selected
(define-presentation~action choose-type
{resource-type t
:gesture :left
:context-independent t
:documentation “"Change this value”)
{resource)
(throw ’‘resource
(list resource (presentation (eval (caar resource))))))

;:This function assists in correct column spacing
(defun place-variable (column variable exp)
(format *interface-window?* (format nil "~~~at"” (2l:fix column)))
{format-item-mouse-sensitive *interface-window* (funcall variable {eval exp))
(list (list exp variable)
{(multiple-value-bind (a b)]
(send *interface-window* :read-cursorpos)

{list a b)))))

;;This function prints the item to the screen with mouse sensitivity
(defun format-item-mouse-sensitive (stream incoming-item descriptors)
s(if (> ij 172) (dbg:dbg) (setqg ij (+ 1 i3j)))
(let* ((object (eval (caar descriptors)))
(items (verify-value-range object Incoming-item))
{font (car items))
(item (cadr items)))
(eval ‘(setf , {list (cadar descriptors) object) ,item))
{send stream :set-cursorpos (caadr descriptors) (cadadr descriptors})
(clearspace stream)
(setf (presentation object)

(dw:with-output-as-presentation (:single-box t
:stream stream

:type ‘resource-type
:object descriptors)
(send stream :set-cursorpos {(caadr descriptors) (cadadr descriptors))

(format stream "~ve€a~» font item)))))

(defmethod (verify-value-range activity) (item)
s{if (> ij 172) (dbg:dbqg))
(let* ((font ‘ (:fix :roman :normal))
{(upper maximum-performances)
(lower minimum-performances) ;; (zl:fix
(state nil)

(+ (* 2/3 upper) .9)))

ORIGINAL PAGE s
OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 3

(available (- *max-resource-area* *curraently-used*))
(increment (zl:fix (/ available (if (> power-required 0)
(* duration power-required) (abs available)))))
(resource-limit (+ performances
(if (> increment 0) increment 0))))
H (dbg:dbg)
(cond ((and (> item upper)
(>= resource-limit upper))
(setq font ‘ (:fix :bold :normal)
state ‘upper))
({< item lower)
(setq font ' (:fix :italic :normal)
state ‘lower))
{({and (> item resource-limit)
(> upper resource-limit))
(setq font ‘ (:fix :roman :normal)
state ‘resource-limit)))
(case state
(upper (setqg font ‘(:fix :bold :normal))
(send-message-to-user
(format nil "The value you entered (~a) for the number of~
~%Performances of ~a is above the maximum allowed of ~A-~2%~
The maximum value will be used." item name upper))
(setq item upper))
(lower (setqg font ’(:fix :italic :normal))
(send-message-to-user
{format nil "The value you entered (~a) for the number of~
~%Performances of ~a is below the minimum allowed of ~A~2%~
The minimum value will be used.” item name lower))
(setqg item lower))
(resource-limit
(send-message~to-user
(format nil “The value you entered (~a) for the number of~
~%Performances of ~a would exceed the available ~%~
amount of the resource (~A).~2%~
The maximum possible value (~a) will be used."”
item name available resource~limit))
(setqg item resource-limit)))
(cond-every ((= item lower)
(setq font ‘(:fix :italic :normal)))
{{= item upper)
(setq font ‘(:fix :bold :normal))))
(setq *currently-used* (+ *currently-used* (* (- item performances) duration power-regquired)))

(list font item state)))

(defun review-possible-increases ()
(let ((Frontier-node t))
(loop for each in *experiments*
do
(cond ((no-possible-increase (eval each))
(highlight-object (eval each)))
((highlighted (eval sach))
(remove-existing-highlight (eval each))
(setq Frontier-node Nil))
{(not-maximized (eval each))
(remove-existing-highlight (eval each))
{setq Frontier-node Nil))))
Frontier-node))

(defmethod (not-maximized activity) ()
(> maximum-performances performances})

(defmethod (no-possible-increase activity) ()
{> (* duration power-required)
(- *max-resource-area* *currently-usedr)))

(defmethod (remove-existing-highlight activity) ()
(let ((box (dw::presentation-displayed-box presentation))
(original-position (multiple-value-bind (a b)
{send *interface-window* :read-cursorpos)

, (list a b)))
(font ’ (:fix :roman :normal)))
(setq highlighted nil)
(cond ((= performances maximum-performances)

(setqg font ’ (:fix :bold :normal)))
({(= performances minimum-performances)

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 4

(setq font * (:fix :italic :normal))))
(graphics:draw-rectangle (dw::box-left box) (dw::box-top box)
(dw: :box~-right box) (dw: :box-bottom box)
:stream *interface-window* :opaque t :alu :erase)
(send *interface-window* :set-cursorpos (dw::box-left box) (dw::box-top box))
(format *interface-window* "-~vea~® font performances)
{send *interface-window* :set-cursorpos (car original-position) (cadr original-position))))

(defmethod (highlight-object activity) ()
(let ((box (dw::presentation-displayed-box presentation)))
(setg highlighted t)
(graphics:draw-rectangle (dw::box-left box) (dw::box-top box)
(dw: :box-right box) (dw::box-bottom box)
:stream *interface-window* :opaque nil :gray-level .15)))

(defun clearspace (stream)
(loop repeat 8
do
(send stream :clear-char)
(send stream :forward-char)))

;;This function returns the list of data files that can be selected.
(defun get-data-file-list ()
{loop for directory in (cdr (fs:directory-list *Resource-File-Directory*))
as pathname = (cond ((not (string= (send (car directory) :name) "err"))
(format nil “~A" (send (car directory) :string-for-dired))})
collect pathname))

;;This function allows communication between the user and the program.
(defun send-message-to-user (message)

(send *message-window* :clear-history)

(send *message-window* :set-cursor-visibility nil)

(send *message-window* :select)

(format *message-window* message)

(send *message-window* :any-tyi)

(send *message-window* :deselect))

(defun subgroup-list (lst group-sizes)
(let* ((group-size (if (>= group-sizes 1) (zl:fix group-sizes) (length 1lst)))
(len (length lst))
(repeats (/ len group-size)))
(loop repeat (zl:fix (if (not (= (mod len group-size) 0))
(+ 1 repeats) repeats))
as start first 0 then (+ start group-size)
as finish first group-size then (+ finish group-size)
collect (if (> finish len)
(subseq lst start)
(subseq lst start finish)))))

;;This function reads in a value, but does not issue a line-fead.
(defun read-without-return (éoptional (stream *standard-output*)
&key (activation-characters ’ (#\Return #\End)))
(loop with cursor-position = (list (multiple-value-bind (a b)
(send stream :read-cursorpos) (list a b))}
with var2 = nil
with position = 0
as varl = (send stream :tyi)
as total-length = (length var2)
until (member varl activation-characters)
if varl :
do
(cond ((and (equal varl #\rubout) var2)
{send stream :tyo #\backspace)
(send stream :clear-char)
(setq var2 (cdr var2)
position (1- position)
cursor-position (cdr cursor-position)))
({and (or (equal varl #\c-B) (equal varl #\backspace)) var2)
{setq position (1- position))
(send stream :tyo varl})
((equal varl #\c-F)
{cond (({< position total-length)
(setqg position (1+ position))

(send stream :tyo varl)))) OR‘GINAL PAGE !S
{{= position total-length) OF POOR QUAL”'Y

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page S

(setq var2 (cons varl var2)
position (1+ position)
cursor-position (cons (multiple-value-bind (a b)
(send stream :read-cursorpos)
(list a b)) cursor-position))
(format stream “~a" varl))
((or (equal varl #\c-B) (equal varl #\rubout)))
{t (send stream :insert-char)
(format stream "~A" varl)
(setq var2 (reverse (loop for temp = nil
then (append temp (list (car end)))
for end = (reverse var2) then (cdr end)
repeat position
finally (return
(append temp (cons varl end))))))))
finally (return (cond (var2 (setq var2 (read-from-string
(apply #’string-append (reverse var2))}))))))

;:This function allows the data values to be changed.
(defun change-data-point ()
(cond ((and *Not-Previously-Notified* (review-possible-increases))
(send-message-to-user (format nil "~%The current selection represents a Frontier Node.-~2%~
No possible performance INCREASES exist."}))
. {setq *Not-Previously-Notified* nil)
‘Notified)
(t
(let ((data (catch ‘resource (accept ’‘resource-type
:prompt nil
:stream *interface-window*)))
(original-position (multiple-value-~bind (a b)
(send *interface-window* :read-cursorpos)
(list a Db)))
(position))
(setq *Not-Previously-Notified* t)
(cond ((or (atom data) (atom {(car data)))
data)
{t
(setg position (cadar data))
(send *interface-window* :erase-displayed-presentation (cadr data))
(send *interface-window* :set-cursorpos (car position) (cadr position))
(send *interface-window* :set-cursor-visibility :blink)
(format-item-mouse-sensitive *interface-window*
(read-without-return *interface-window*)
(car data))
({send *interface-window* :set-cursor-visibility nil)
(send *interface-window* :set-cursorpos (car original-position)
(cadr original-position})
‘data))))))

(defun frontier-interface ()
(if (null-string *current-file¥*)
(open-input-file))
(loop with again =t
while again
do
(send *interface-window* :select)
(send *interface-window* :clear-history)
(format *interface-window* "-~50t~vErontier Development Interface~®2%" ' (:Fix :bold :normal))
(make-window-layout)
(send *interface-window* :set-cursor-visibility nil)
{(monitor-usage)
(loop with finished = nil
until finished
as choice = (change-data-point)
while choice
do
(monitor-usage))))

(defun monitor-usage ()
{send *interface-window* :set-cursorpos 550 670)
(send *interface-window* :clear-rest-of-line)
(format *interface-window* "-5,2f% Available (~a Remaining ~a Used)*"
(* 100.0 (/ (- *max-resource-area* *currently-used*) *max-resource-area®*))
(float (- *max-resource-area* *currently-used*)) (flocat *currently-usedr)))

(defun null-string (str)

ANDY:>jsr>Frontier-Interface>frontier-interface.lisp.9 4/07/90 07:40:09 Page 6

(= (length str) 0))

{defun open-input-file ()
(let ((infile (dw:menu-choose (get-data-file-list)
:prompt "Data File List")))
(cond (infile (load (string-append *Resource-File-Directory* infile)
:verbose nil)
(set-up~-objects)
{(setq *current-file* infile))))[

(defun test ()
(loop for each in *axperimants*
as eac = (eval each)
do
(format £t "~%~a~l4t~a~20t~a~30t~a~45t~a~60t~A"
each (performances eac) (minimum-performances eac) (maximum-performances eac)
{(* (power-required eac) (duration eac)) (no-possible-increase eac))))

ORIGINAL PAGE IS
OF POOR QUALITY

ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2 4/07/90 07:40:01 Page 1

::; ="- Syntax: Common-Lisp:; Package: USER: Base: 10: Mode: LISP -=*-

(defvar *resource-allocation-graphics~-window*
(tv:make-window ‘dw:dynamic-window))

(defvar *objects* nil)

(defflavor activities
(Value
Horizontal-location
vertical-location
Maximum
Minimum)

Q)
:initable-instance-variables
:readable-instance-variables
:writable-instance-variables)

(defvar *horizontal-limit* 600)
(defvar *vertical-offset* 75)
(defvar *horizontal-offset* 100)
(defvar *scale-x* 3)

(defmethod (draw-object-mouse-left activities) (xref)
(let ({x (+ xref *horizontal-offset¥)))

(graphics:draw-string (format nil “~a" value) (+ Horizontal-location 10) vertical-location
:stream *resource-allocation-graphics-window* :alu :erase
tattachment-y :top :character-style ‘(:fix :roman :very-small))

(graphics:draw-rectangle x vertical-location Horizontal-location (+ S vertical-location)

:stream *resource-allocation-graphics-window* :alu :flip)

(setq Horizontal-location x

Value (calc~-new-value Horizontal-location))

{(graphics:draw-string (format nil "~a" value) (+ Horizontal-~-location 10) vertical-location
:stream *resource-allocation-graphics-windowr
rattachment-y :top :character-style ‘{:fix :roman :very-small})))

(defun calc-new-~value (x)
(/ (- x *horizontal-offset*) *scale-x*))

(defmethod (check-object activities) (y)
(<= vertical~location y (+ 5 vertical-location})))

(defun create-initial-objects (num)
(loop repeat num
for name in ‘' (anfghj ertyuil yupoliu ewyrue ttyyss gsgsgsg iweie83k ieieiokk jfjfjfkl gwernm)
counting t into down
as vert = (+ (* down 10) *vertical-offset¥*)
as val = (random 200)
as hori = (zl:fix (+ *horizontal-offset* (* (/ val 200) *horizontal-limitw*)))
colliect (make-instance ‘activities
:vertical-location vert
:Horizontal-location hori
' iValue val
:Maximum (zl:fix (+ val (* .5 (- 200 val))))
:Minimum (zl:fix (* .S val))) into vars
finally (setqg *objects* vars)
do
(graphics:draw-string (format nil "~a" name) (- *offsaet* 10) vert :stream *resource-allocation-graphi
cs-window*
sattachment-y :top :attachment-x :right :character-style ' (:fix :roman :very-sm
all)) B
(graphics:draw-rectangle *horizontal-offset* vert Hori (+ 5 vert) :stream *resource-allocation-graphi
cs-window*)
(graphics:draw-string (format nil "~a" val) (+ 10 Hori) vert :stream *resource-allocation-graphics-wi
ndow*
tattachment-y :top :character-style ’ (:fix :roman :very-smalll})))

(defun top-level-ii (soptional (num 10))
(send *resource-allocation-graphics-window* :select)
{send *resource-allocatiocn-graphics-window* :clear-history)
(create~initial-objects num)
(dw:with-output-recording-disabled (*resource-allocation-graphics-window*)

(loop with previous = nil OR’G,NAL pAGE ’S
OF POOR QuaL Ty

\

ANDY:>jsr>Frontier-Interface>frontier-graphics-interface.lisp.2

do
(dw:tracking-mouse (*resource-sllocation-graphics-window*
:who-line-documentation-string
"Revise allocation of item")
{:mouse-motion-hold (x y)
(let ((xloc (* (truncate (- x *horizontal-offset*) *scale-x¥)
({f (and previous
(validate-object~maximum previous xloc))
(draw-object~-mouse-left previous xloc))))
{:mouse-click (button x y)
(if (equal button #\mouse-l)
(loop for each in *objects*
when (check-object each y)
do
(setq previous each))))
(:release-mouse ()
(setq previous nil))))))

(defmethod (validate-obiject-maximumm activities) (mouse-position)
(<= minimum (/ mouse-position *scale-x*) maximum))

4/07/90 07:40:01 Page 2

scale-x)))

ORIGINAL PAGE IS
OF POOR Q0

iTY

