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Space Transportation & Propulsion Technologies Reviewed

* Europe (ESA)

* Germany

* United Kingdom

* France

* China

* India

* Italy

* Israel

* Norway

* lraq

* South Korea

* Brazil

Ariane Family & Hermes Space Plane

Sanger Aerospace Plane

Hotoi Aerospace Plane

Star H Aerospace Plane

Long March Family

SLV, ASLV, PSLV & GSLV

Advanced Small Launch Vehicle (ASLV)

Shavit

LittLEO

ABID

New Initiative

Cancelled Program

Summary of Europe's Advanced Propulsion Technology Activities

* Majority of Propulsion Technology Development Work Is Directly Related to the
ESA's Ariane 5 Program and Heavily Involves SEP in All Areas:

Vulcain I-I/O Engine Is a Major Development Led by SEP; 1st Ignition
Sequence in 7/90; 1st Full Power Firing in 12/90

Performance Improvements Underway, Including Thrust and Combustion
Pressure Increases

Solid Propulsion Being Expanded, as SEP & BPD Have Formed Europulsion

Company Headquartered in Paris for the Main Purpose of Building Large
Solids for/u'iane 5; Trying to Reduce Costs and Improve Reliability--Like

ALS Objectives, But Not as Ambitious.

Man Rating of Ariane 5 for Hermes Flights Will be Accomplished in Parallel
With Flights of Unmanned Ariane 5 Flights

* Hermes

Composite Applications in Small Storable Rocket Engines (Hermes ACS);
Have Accomplished 10,000 s of Firing in 200 N Class Engine

* Advanced Work on Magnetic Bearings for Turbomachinery

* Electric Propulsion, Using Cs and Xe Propellants Being Done By SEP in France,

MBB ERNO in West Germany, and by Culham Lab in UK
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Summary of Europe's Advanced Propulsion Technology
Activities (Cont.)

* Successfully Test Fired H/O Composite (Carbon/Silicon Carbide) Nozzle Exit
Cone on 3rd Stage of Ariane (HM7)

* Turbine Blades Made of Composites to Allow Increase in Gas Temperature and
Improvement in Efficiency

Combined Cycle (Turboramjet/Rocket) Engine Analysis Work Being Done by
Hyperspaee, a New Joint Effort of SEP and SCNECMA

SEP Looking At Future Launchers By Conducting Studies to Determine
Advantages of Expendable vs Reusable; Manned vs Unmanned; and Solids vs
Liquids

ESA Advanced Program Studies Looking Beyond Ariane 5: What Payloads Will
be Needed in the Future? What Cost Reductions Are Poss_le? What is

Needed For Manned Flight?

585



European (ESA) Ariane Family

orllne 1 srlone 3 arlane 4 orlane 4 nrlane 4 arlane S nrlane S
(42P) (44LP) (441,.) (L-S) (Hermes)

+e36 kg' 2eoo ko- _kg. ,,_o kO" ,+_0 k0" U_m" _ kmnee m

lo+-.E_ orlm

ARIANE 1
SUMMARY

STATUS: INACTIVE

1ST LAUNCH: 1979

LAST LAUNCH: 1986

DRY MASS: 21 MT

LIFT-OFF MASS: 210 MT

PAYLOAD MASS INTO GTO:

11 FLIGHTS

2 FAILURES

1760 kg
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STAGE NO./
MANUFACTURER

STAGE DESIGNATION

LIFTOFF MASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

ENGINE DESIGNATION

ENGINE
MANUFACTURER

THRUST PER
ENGINE (kN)

APPROXIMATE 18p (8)

PROPELLANTS

ARIANE 1

VEHICLE STAGE CHARACTERISTICS
1

AERO$_TIALE

L140

2

MBB/ERNO

3

AEROSPATIALE

L33 H8

161,000 37,500 9700 323/642

147,600 34,100 8230

2480 726 61

ENGINE DATA

Viking V (4) Viking IV (1) HM-7 (1)

SEP SEP SEP

620 726 61

EQUIPMENT

BAY/FAIRING

MATRA/

CONTRAVE$

280

UDMH
N204

290

UDMH
N204

425

LH2
LO2

ARIANE 2
SUMMARY

ARIANE 2 VEHICLE

LIFT-OFF MASS: 217 MT

DRY MASS: 20.5 MT

PAYLOAD MASS INTO GTO: 2175 kg

ARIANE 2/$ LAUNCH RECORD

STATUS: INACTIVE

1ST LAUNCH: 1984

LAST LAUNCH: 1989

17 FLIGHTS

2 FAILURES
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STAGE NO./
MANUFACTURER

STAGE DESIGNATION

LIFTOFF MASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

ENGINE DESIGNATION

ENGINE
MANUFACTURER

THRUST PER
ENGINE (kN)

APPROXIMATE Isp (s)

PROPELLANTS

ARIANE 2

VEHICLE STAGE CHARACTERISTICS
1 2 3

AE ROSPATIALE MBB/ERNO AE ROSPATIALE

L140 L33 H8

162,000 39,000 12,300

147,600 35,100 10,700

2690 785 63

ENGINE DATA

Viking V (4) VikinglV (1) HM-7B (1)

SEP SEP SEP

672 785 63

280 435

UH25/H20

N204

290

U_I25/N204
N204

LH2
LO2

ARIANE 3
SUMMARY

ARIANE 3 VEHICLE

LIFT-OFF MASS: 236.8 MT

DRY MASS: 25.5 MT

PAYLOAD MASS INTO GTO: 2580 kg

ARIANE 2/3 LAUNCH RECORD

STATUS: INACTIVE

1ST LAUNCH: 1984

LAST LAUNCH: 1989

17 FLIGHTS

2 FAILURES
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ARIANE 3

STAGE NO./
MANUFACTURER

STAGE DESIGNATION

LIFTOFF MASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

ENGINE DESIGNATION

ENGINE
MANUFACTURER

THRUST PER
ENGINE (kN)

APPROXIMATE Isp (s)

PROPELLANTS

VEHICLE STAGE CHARACTERISTICS
O 1 2 3

AEROSPATIALE AEROSPATIALE MBB/ERNO AE ROSPATIALE

BOOSTERS L140 L33 H8

9750 x 2 162,000 39,000 12,300

7350 x 2 147,600 35,100 10,700

600 x 2 2690 765 63

ENGINE DATA
SOLID

BOOSTERS Viking V (4) Viking IV (1) HM-7B (1)

SNIA/BPD SEP SEP SEP

600 672 785 63

435230

SOLID

CTPB 1613

280

UH25/H20
N204

290

UH25/H20
N204

LH2
LO2

|
©

o0o

ARIAN| 4

ARIANE 4
SUMMARY

STATUS: ACTIVE

1ST LAUNCH: 1988
/tA 40

8 FLIGHTS

..... 1 FAILURE: H20 FLOW TERMINATION

SIX STRAP-ON CONFIGURATION_

GTO
CONFIGURATION PAYLOAD(kg)

40 1900

42P 2600

44P 3000

42L 3200

44LP 3700

44L 4200
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STAGENO./
MANUFACTURER

STAGEDESIGNATION

LIFTOFFMASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

ENGINE DESIGNATION

ENGINE
MANUFACTURER

THRUST PER
ENGINE (kN)

APPROXIMATE Isp (s)

PROPELLANTS

ARIANE 4

VEHICLE STAGE CHARACTERISTICS
1 e

AEROSP_IALE

2
MBB/ERNO

3
AE ROSPATIALE

L220 L33 H10

243;000 37,600 11,900

226,000 34,000 10,700

2690 785 63

ADDITIONAL THRUST MAY BE PROVIDED BY STRAP-ONS

ENGINE DATA

Viking V (4) Viking IV (1) HM-7B (1)

SEP SEP SEP

672 785 63

290280

UH25/H20

N204

UH25/H20
N204

435

LH2
LO2

ARIANE 4 CONFIGURATIONS

BOOSTER DESIGNATION

LIFTOFF MASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

MANUFACTURER

APPROXIMATE Isp (s)

PROPELLANTS

DESIGNATION

BOOSTERS

LIFT-OFF THRUST (kN)

PAYLOAD TO GTO (kg)

STAGE 1 BOOSTER INFORMATION

SOLID LIQUID

PAP PAL

12,700 43,500

9500 39,000

625 666

SNIA-BPD MBB-ERNO/SEP

230 235

CTPB 1613 UH25-H20/N204

STAGE1/BOOSTER CONFIGURATIONS

40 42P 44P 42L 44LP 44L

2 PAP'S
NONE .2 PAP'SI4 PAP'S 2 PAL'S 2PAL'S ¢ PAL'S

2650 3950 5200 4020 5270 5350

1900 2600 3000 3200 3700 4200
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i
4

ARIANE 5
SUMMARY

STATUS: IN DEVELOPMENT

1ST LAUNCH: 1998

d

STAGE NO./
MANUFACTURER

STAGE DESIGNATION

LIFTOFF MASS (kg)

PROPELLANT MASS (kg)

TOTAL THRUST (kN)

ENGINE DESIGNATION

ENGINE
MANUFACTURER

THRUST PER
ENGINE (kN)

APPROXIMATE Isp (o)

PROPELLANTS

ARIANE 5

VEHICLE STAGE CHARACTERISTICS
0 1 2

EUROPROP. AE ROSPATI/_LE MBB/ERNO

P 230 H 150 L 7

270,000 x 2 169,000 8130

230,000 x 2 156,000 7200

6000 x 2 1025 28

ENGINE DATA

P 230 VULCAIN (1)

EUROPROPo SEP MBB/ERNO

6000 1025 28

-ITPB/AP/At
LH2
LOX
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ARIANE 5 CONFIGURATIONS

LIFT-OFF MASS (kg)

LIFT-OFF THRUST (kN)

HEIGHT (m)

PAYLOAD (kg)

DOUBLE SINGLE HERMES

LAUNCH LAUNCH LAUNCH

721,000 " 721,000 735,000

13,043 13,043 13,043

49.6 50.4 49.6

5950 6290 22,000

GTO GTO LEO

Ariane 5 - Vulcain Engine

Major Engine Development for SEP and Other
$ubcontractors

System Uses Gas Generator; Separate LH 2 and
LOX Turbopumps

* Parameters:

Vacuum Thrust

Propellant
O/F
I_(Vac)
Po
Engine Mass

LH2 Turbine Speed

LOX Turbine Speed
LH2 Turbine Power

LOX Turbine Speed

1025 kN (230,000 lb)
LHJLOX
5.2

431.6 s

100 Bars (1450 psi)

1300 kg (2860 Ibs)
34,200 rpm

13,000rpm

11,300kW

2,900 kW
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Ariane 5 - Solid Propellant Boosters (P 230)

I _i II -Prom,antN,

• 1113

Central segment

Propellant mass
106,7 t

4) 1231

I

4_ 1169

® 1549

Rear segment

Propellant mass
103,7 t

* Being Led by Europulsion

* Development Plan Includes 10 Full-Scale Tests

* Uses Steel Case and HTPB/AP Propellants

Known Motor Parameters:

Thrust 1,346,000 ib (5987 kN)

Propellant HTPB/AP/AL

Propellant Mass 230,000 kg
Motor Diameter 3.05 m

Motor Length 30.6 m

Dry Mass 39,400 kg

tb 125 s

Hermes

* Europe's Answer to Manned Spaceflight Independence; First Flight on Ariane
5 Currently Scheduled for 1998; Flight Rate of 2 Per Year

* Missions to: Columbus Free-Flying Lab, Space Station Freedom, Soviet Space
Station Mir

* 3-Manned Crew, Delta-Winged Space Plane that Lands on Runway

* Hermes Consists of: Space Plane (13 m, 15 MT); Resource Module (6 m, 8 MT);

and Propulsion Module (1 m); Hermes Robotic Arm (HERA)

Storable Propellant Propulsion Module Consists of ACS with 32 - 20 & 400 N
Class Storable Propellant Engines and 2 Main Orbit Injection Engines with 27.5
kN Thrust Level Each; Four Tanks Holding 7200 kg Propellant

* 3 MT Payload Capability; 2000 km Cross Range Landing Capability

* Includes a Crew Ejection System

* Primary Structure Made of Carbon-Resin Composites

* -$5 Billion Program; -170 Organizations with -1500

Presently, With - 5000 by 1992 593

People Working
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Hermes (Cont.)

Hermes Participants: France 43.5%; Germany 27%; Italy 12.1%; Belgium 5.8%;

Spain 4.5%; Netherlands 2.2%; Switzerland 1.5%; Sweden 1.3%, Canada 0.45%;
Austria 0.5%; Denmark 0.45% and Norway 0.2%

Phase B to be Complete Mid-1991; Program Phase C/D E:xpected to Begin in
Late 1991

Four Major Technology Challenges Identified by ESA:

- Materials Necessary for Structures and Their Thermal Protection

- Math Models for Aerodynamic, Aerothermal and Flight Simulations

- H/O Fuel Cells for Electric Power

Flight Electronics and Software

Germany/MBB - Sanger Aerospace Plane

* Manned Reusable 2-Stage Winged HTO Vehicle Concept

* GLOW 340 MT; Airbreathing to M -.- 6.8 at 31 kin; Uses Airbreathing LH_
Turboramjet

* Aircraft Version Can Cruise at M = 4.4, and Carry 230 Passengers From
Frankfurt to LA in Less Than 3 Hours

* Nominal Takeoff Thrust Level 1500 kN with 5 Engines

* Employs Expendable Stage CARGUS (Cargo Upper Stage) for 15 MT Payloads;
From Arianc 5 Core Stage; Engine (HM.60) Thrust 1050 kN; LOX/LH2

* Reusable Stage HORUS (Hypersonic Orbital Reusable Upper Stage) for Manned

Missions; Main Engine Thrust 1200 kN; Expansion Ratio 325; 1_ = 472 s; O/F
= 6.7; OMS Thrust 80 k.N; I_ = 437 s; Payload -- 3300 kg

MBB Is Conducting Technology Work on the Turboramjet for the First Stage

of the Sanger; MBB Testing a GH2 Ramjet Prototype in Math 5 Wind Tunnel

Funded at a $225 M Level Through 1992

Will Likely Be a $10 B Demonstrator Program Funded by ESA
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United Kingdom/British Aerospace - Hotol Aerospace Plane

* Horizontal Take Off and Horizontal Landing -- Hotol

* Manned Reusable Single-Stage-to-Orbit Vehicle Concept

* Uses Launch Trolley; GLOW 250 MT; Airbreathing to M=5 at 85 kft

* Employs Hybrid RB545 (Remains Classified) - Dual Mode Rocket Chamber that
Utilizes Air as Oxidant in Lower Atmosphere

* H/O OMS; GH_ RCS Thrusters

* Metal or Composite TPS, No Tiles

Deliver 7 to 8 MT Into LEO

Operational Cost "" $4 to 5 M per Flight

Proof of Concept in 1988; Wind Tunnel Tests from M -- 5 to 18

O

595



Hotol Propulsion System

Propulsion System Comparison

Olympus in Concorde

RB545 in HOTOL

Olympus Power Plant Mass = 4080Kg

RB54S Power Plant Mass = 2840Kg

France - Star H Aerospace Plane

French CNES Supported Study by
Dassault/SNECMA/SEP/ONERA

A Two-Stage to Orbit Aerospace Plane

Reusable First Stage With Air-Breathing
Engines

An Expendable Second Stage With a HM-
60 Cryogenic Engine

* Reusable Orbiter Derived from Hermes

400 MT GLOW; 280 MT 1st Stage; 120 MT

2nd Stage

Studying Various Engine Cycles; Testing

Scramjet; Wind Tunnel Tests
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China - Long March Family

* China's Space Activities Date Back to the Late 1950's

* In 1964, China Launched It's First Launch Vehicle

* On April 24, 1970, China Launched it's First Earth Orbiting Spacecraft
with Long March-1 (LM-1)

* In November 1975, China Launched a Recoverable Satellite Using LM-2

* In April 1984, LM-3 Was Successfully Launched

* China Has Now Developed a Successful, Reliable and Significantly Competitive

Launch Capability

O
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Long March Family of

Launch Vehicles

Model LM-ID LM-2C LM-2E LM-3 LM-3A LM-4

Overall length(m) 28 35 5 ! 43.85 52.3 42

Lift-off weight(t) 80 191 464 202 240 249

Lift-off thrust(t) 112 284 600 284 300 300

Payload capability 700-750 2500 8800 2,500
in LEO (kg) " (SSO)*

Payload capability
in geostationary 1,400 2.500
transfer orbit (kg)

Available for

commercial service 1991 1982 1990 1986 1992 1988

*$S0' S#ms3.n_'hrmlota orbit

50m

40m

30m

20m

10m

1.
LM-ID LM-2C LM-2E LM-3

_n

LM-3A LM-4

598



China's Launch History

1 Dong Fang Hong 1 24-4-1970 LM-I

2 Shi Jian ! 3-3-1971 LM-1

3 Technical Experiment 26-7-1975 LM-2A

4 Recoverable 26-11-1975 LM-2C

5 Technical Experiment 16-12-1975 FB-1

6 Technical Experiment 30-8-1976 FB-1

7 Recoverable 7-12-1976 LM-2C

8 Recoverable

9 Shi Jian 2

10 Shi Jian 2A

11 ShJ Jian 2B

26-I-1978 LM-2C

20-9-1981 FB-I

12 Recoverable 9-9-1982 LM-2C

!3 Recoverable 19-8-1983 LM-2C

14 Experimental

15 Experimental Geostationary Communications

16 Recoverable

29-1-1984 LM-3

8-4-1984 LM-3

12-9-1984 I_2¢1-2C

17 Recoverable 18-9-1985 LM-2C

18 Operational Geostationary Communications 1-2-1986 LM-3

19 Recoverable 6-10-1986 I3Vl-2C

20 Recoverable 5-8-1987 LM-2C

21 Recoverable 9-9-1987 LM-2C

22 Operational Geostationary Communications 7-3-1988 LM-3

23 Recoverable 5-8-1988 LM-2C

24 Meteorological 7-9-1988 LM-4

25 Operational Geostationary Communications 22-12-1988 LM-3
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Long March - 1D

Fairing

maximum diameter

static effective diameter

Third Stage

propellant (solid)
diameter

Second Stage

propellant (UDMH/N.,O,)

diameter

First Stage

propellant

(UDMH/HNO_-27S)

diameter

2.054m

1.754m

0.625t

2.05m

12.2t

2.25m

60I

2.25rn
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Long March - 2C

Fairing

maximum external
diameter

static effective
diameter

Second Stage

propellant (UDMH/N:O.,)

diameter

First Stage

propellant (UDMH/N 20.,)

diameter

3.35m

3.07m

35t

3.35m

144t

3.35m
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Long March- 2E

Fairing

maximum external 4.2m
diameter

static effective diameter 3.8m

Second Stage

propellant (UDMH/N_tOF) 86t

diameter 3.35m

First Stage

propellant ('UDMH/N2OQ IgTt

diameter 3.35m

Liquid Strap.on Boosters

propellant

(U DMH/N_O÷)

diameter

4x37.5t

2.25m
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Long March- 3

Fairing (A) (B)

maximum
external diameter 2.60m 3.00m

static effective
diameter 2.32m 2.72m

Third Stage

propellant (LH/LOX) 8.5t

diameter 2.25m

Second Stage

propellant (UDMH/N_O_) 35t

diameter 3.35m

First Stage

propellant (UDMI'ilN20._) 142t

diameter 3.35m
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Long March- 3A

Fairing

maximum external diameter 3,35m

static effective diameter 3.00m

Third Stage

propellant (LH/LOX) 17.6t

diameter 3.(X)m

Second Stage

propellant (UDMH/N_O_) 29.6t

diameter 3.35m

First Stage

propellant (UDMH/N:O+) 170t.

diameter 3.35m
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Long March - 4

Fairing

maximum external

diameter

static effective diameter

Third Stage

propellant (UDMH/N20,)

diameter

Second Stage

propellant (UDMH/N204)

diameter

First Stage

propellant (UDMH/N204)

diameter

2.90m

2.36m

14.15t

2.90m

35.55t

3.35m

183.20_

3.35m
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India's Launch Vehicle Systems

Satellite Launch Vehicle (SLV-3)
- Approximately 15 MT Lifloff Mass

- 23 m Long; I m Diameter Base

- 4 Solid Propellant Stages; Segmenting Used on 1st Stage

- 40 kg Payload Up to 800 km Circular at 45 °
- 4 Launches, 3 Successes in 1980 to 1983

Augmented Satellite Launch Vehicle (ASLV)

- SLV with 2 Solid Propellant Strapon Boosters
- 150 kg Payload to LEO
- 2 Failed Launches in 1987 and 1988

- 2 Launched Scheduled Through 1993

Polar Satellite Launch Vehicle (PSLV)
- Approximately 275 MT Liftoff Mass

44 m Long; 2.8 m Diameter Base

4 Solid Propellant Stages; Solid/Liquid/Solid/Liquid
1st Stage Has 6 Solid Motor Strapons

1000 kg Payload Up to 900 km Circular at 90-100 °

3 Launches Scheduled Through 1994

Geosynchronous Launch Vehicle (GSLV)
In Phase A/B; Goal Is 2 MT to GTO; Launches Planned in 1993-1995

Use Existing/ImprovedStages, Plus New H/O Stage 3

* 1st

* 2nd

India Propulsion Technology- PSLV Focused

Stage (5 Segments) Is the 3rd Largest in the World
Motor Is 20 m Long and 2.8 m in Diameter

Uses HTPB-Based Propellant

Secondary Injection TVC Uses Strontium Perchlorate

Steel Case; Silicon Carbide Phenolic Composite Nozzle Liner

Successfully Static Tested on 10/21/89

Stage Liquid

Viking Engine Licensed from SEP
UDMH/NTO Propellants

8 Tests with 820 s Firing Time Completed

* 3rd Stage Solid

- Motor is 2 m Long and 2 m in Diameter

- Uses HTPB-Based Propellant

- Submerged, Flex Seal Nozzle System
- Kevlar Case

- 2 Static Test Firings Completed in 4/89 and 1/90

* 4th Stage Liquid

Restart Capability
Engines Gimballed for TVC

Ti/AI Tankage and Structure

"Battleship" (Steel) Version Tested 7/89
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India PSLV Model

Other Launch Vehicles

Italy - Advanced Small Launch Vehicle (ASLV)
- Fiat (Italy) and LTV (US) Formed Partnership in 11/89

Fait's SNIA BPD Subsidiary to Build Scout 2

Scout 2 is Scout with 2 Strapon Boosters

SNIA BPD to Market Europe; LTV North America

Launch from San Marcos, Wallops, Vandenbcrg
460 kg Payload to 555 km Circular (San Marcos)

4 Strapon Configuration Planned

Israel - Shavit

Derived from Jericho Missile

2 Successful Launches, 9/88 and 4/90

160 kg Payload to 210 x 1500 kin at 143 °

3-Stage, Solid Propellant

Iraq Has a Launcher Called ABID, a 3-Stage Missile System

South Korea Has Announced Plans to Build Satellites and Develop an

Independent Launch Capability

Norway is Developing LittLEO, a Scout-Class Launcher; 1st Launch in 1991

Brazil Just Cancelled It's Program by the New Government
607 O



Ariane Launch Record

Issue: V36

by

European Space Agency

ARIANE LAUNCH RECORD

REFERENCES

• Con,'_. I_. M.U.A.

AR4 - - E,tlm'q_: 44LP 02!

/_arw4 _WL[)A [ I - _I,.DA4400

! - Fl_ng 0.6m
BOOIl_rl: O, 2, 0¢ 4 __ FIIk_ _ 2 m F_A_gr6m

( =- r,_,,.,,,,

} [ 0 " NoSPELDALp.soM-uqu_ SPELOA _ Z - _ S_LOA

I. 2 - Long SPELDA

• Od_; GTO Nomk'vd _ 1200 Km 135,IN Km

• Perlormance: SOac:m:n_n'vum _. Adeplm I SYLOA I 5PELOA

• Paytoea ream: Spaceo'_ man _ =0q:>to_

• Tk'T_: UT. - _ Tlmo ( Local line KOUROU + 3 bourn)
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SECTION 1.6

ENVIRONMENTAL CONSIDERATIONS

617 PRECEDING PAGE BLANK NOT FILMED





Joyce Jatko NASA HQ

_N¥IRONMENTAL CONCERNS IN PROPULSION TECHNOLOGY

EN¥IROMMENTAL NRDTA

- AIR EMISSIONS

- RESTRICTIONS DEPENDENT ON LOOATIOH OF TESTinG
- REGULATED BY TOTAL EMISSIONS OR CHANGE TO AMBIENT AIR QUALITY

- CONTROL TECHNOLOGY NOT ALWAYS AVAILABLE (DEVELOPMENTAL REQMT)

- CHLOROFLUOROCARBONS (CFCs) - RESTRICTIONS ON AVAILABILITY

- NUCLEAR

- PUBLIC CONCERN OVER SAFETY

- DOE PROBLEMS AND RESULTANT PUBLIC PERCEPTIONS

- HAZARDOUS WASTE MANAGEMENT

- REGULATIONS BECOMING MORE RESTRICTIVE

- EXOTIC FUELS MORE DIFFICULT TO DISPOSE OF

- DISPOSAL COSTS ACCELERATING

- WASTE PROPELLANT DISPOSAL OPTIONS BECOMING MORE LIMITED

- NATIONAL ENVIRONMENTAL POLICY ACT (NEPA)

- NEPA CONCERNS MUCH GREATER VISIBILITY THAN IN PAST

- PROCESS REQUIRED PRIOR TO IMPLEMENTING NEW PROGRAMS
- 12-1B MONTH PROCEDURE BEFORE RECORD OF DSCISION CAN BE ISSUED

IMPACT TO PROGRAM

- SCHEDULE: NEED TO PLAN ON TIME FOR:

- NEPA PROCESS (NEW TEST SITES)

- PERMITS (AIR AND/OR WATER DISCHARGES, HAZARDOUS WASTE

- COST (INCREASED COSTS FOR TESTING PROGRAMS)

- HAZARDOUS WASTE DISPOSAL COSTS INCREASING SHARPLY

- CFC°s INCREASING IN COST, DECREASING AVAILABILIT_
- FUNDING OF R&D EFFORT FOR:

- CLEANER PROPELLANT

- WASTE MINIMI_ATION

- MATERIALS SUBSTITUTION

- LOCATION OF TESTING
- SOME SITES MAY REPRESENT INCREASED ENVIRONMENTAL COSTS

- TESTING MAY NEED TO BE PERFORMED AT SITE ALREADY PERMITTED

- THERE MAY BE RESTRICTIONS ON EXPANSION OF EXISTING FACILITIES

NEED FOR GREATER COOPERATION AMOND CENTER_

- SUPPORT FOR TEST PROGRAMS IN LESS ENVIRONMENTALLY SENSITIVE AREAS

- MORE SHARING OF TEST FACILITIES

- PLANNING FOR ENVIRONMENTAL COMPLIANCE

- ADVANCED PLANNING AND COORDINATION
- COST AND SCHEDULE IMPACTS
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AGENDA

Session A: Liquid Propellant Combustion
Rm. 112 Kern

SECTION 2.1

Session Chairmen:

2:00 Dr. Charles L. Merkle,
Director

Dr. Robert J. Santoro

Center Overview

2:30 Dr. Kenneth K. Kuo and
Dr. Robert J. Santoro

3:00 Dr. Stephen R. Turns

3:30 Dr. Vigor Yang

4:00 Dr. Harold R. Jacobs and
Dr. Robert J. Santoro

4:30 Dr. Fan-Bill Cheung and
Dr. Kenneth K. Kuo

5:00 Dr. Domenic Santavicca

Cryogenic Combustion Laboratory

Ignition and Combustion of Metallized Propellants

Theoretical Study of Combustion Instabilities in Liquid-Propellant
Rocket Motors

Spray Combustion under Oscillatory Pressure Conditions

Liquid Jet Breakup and Atomization in Rocket Chambers under
Dense Spray Conditions with Compression/Shock Wave Interaction

Turbulence-Droplet Interactions in Vaporizing Sprays

Laser Spark Ignition

Session B: Liquid Propulsion Technologies
Rm. 101 Kern

Session Chairman:

2:00 Dr. Charles L. Merkle,
Director

2:30 Dr. Robert Pangbom and
Dr. Richard A. Queeney

3:00 Dr. Alok Sinha and
Dr. Kon-Wel Wang

3:30 Dr. Marc Carpino

4:00 Dr. Laura Pauley

4:30 Dr. Michael M. Micci

5:00 Dr. Charles L. Merkle

Dr. Michael M. Micci

Center Overview (Rm. 112 Kern)

Hydrogen Management in Materials for High Pressure
Hydrogen/Oxygen Engines

Robust and Real-Time Control of Magnetic Bearings for Advanced
Propulsion Rockets

Analysis of Foil Bearings for High Speed Operation in Cryogenic
Applications

A Study of Methods to Investigate Nozzle Boundary Layer Transition

Optical Diagnostic Investigation of Low Reynolds Number Nozzle
Flows

Rowfield Analysis of Low Reynolds Number Rocket Engines
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