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ADVANCED MATERIALS FOR SPACE NUCLEAR POWER SYSTEMS 

Robert H. Titran and Toni 1. Grobstein 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

and 

David 1. Ellis 
Case Western Reserve University 

Cleveland, Ohio 44106 

Abstract 

Research on monolithic refractory metal 
alloys and on metal matrix composites is 
being conducted at the NASA Lewis Research 
Center, Cleveland, Ohio, in support of 
advanced space power systems. The overall 
philosophy of the research is to develop and 
characterize new high-temperature power 
conversion and radiator materials and to 
provide spacecraft designers with material 
selection options and design information. 
Research on three candidate materials 
(carbide strengthened niobium alloy PWC-ll 
for fuel cladding, graphite fiber reinforced 
copper matrix composites (Gr/Cu) for heat 
rejection fins, and tungsten fiber reinforced 
niobium matrix composites (W INb) for fuel 
containment and structural supports) consid
ered for space power system applic~tions is 
discussed. Each of these types of materials 
offers unique advantages for space power 
applications. 

Introduction 

The increasing size and complexity of 
space-based hardware and advanced lunar and 
planetary missions mandates increased power 
system needs. The development of advanced 
space power systems is a critical enabling 
technology. Although several different power 
systems are under consideration, they all share 
the same common features which include a 
heat source, a power conversion system, and a 

heat rejection system. Since maximum speci
fic power is a key goal of all power systems, 
the main design requirements for all these 
systems include high-temperature operation 
and minimum system mass. 

Research on refractory metals and metal 
matrix composites is being conducted at the 
NASA Lewis Research Center, Cleveland, 
Ohio in support of advanced space power and 
propulsion systems. The objective of this 
research is to develop and characterize new 
high-temperature power conversion and radia
tor materials to provide space power system 
designers with design information and mate
rial selection options. Rather than developing 
materials for a particular mission, we are 
attempting to anticipate needs and develop 
generally applicable materials for future 
applications. 

The following overview will discuss 
research on carbide strengthened niobium 
alloys and two candidate metal matrix com
posites (MMC's). Specifically we will cover 
on-going research on the thermal stability and 
creep strength of niobium-zirconium-carbon 
(Nb-Zr-C) alloys for fuel cladding, the creep 
strength of tungsten fiber reinforced niobium 
matrix composites (W INb) for advanced sys
tems fuel cladding and high temperature 
structures, and the thermal conductivity and 
thermal expansion of graphite fiber reinforced 
copper matrix composites (Gr/Cu) for heat 
rejection radiator fins. 
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Research and Discussion 

Refractory Metal Alloys Technology 

The SP-I00 space nuclear reactor pro
gram selected the Nb-l %Zr alloy as the 
nuclear assembly test (NAT) material for the 
ground engineering system. NASA in concert 
with General Electric-San Jose Operations, 
Oak Ridge National Laboratory, and West
inghouse Corporation is conducting a series of 
studies to define the thermal stability and 
creep behavior of this alloy. These studies 
have shown that the Nb-l %Zr alloy has mar
ginal strength to meet the design requirements 
of 7 to 10 years, 1350 K, 2-percent creep 
strength for the SP-lOO reactor system. To 
improve the Nb-l %Zr alloy, such things as a 
large grain size microstructure (80 JLm) along 
with minor additions (in the parts per million 
range) of carbon, nitrogen, tantalum, and 
tungsten are being explored. An alternate 
approach is the development and evaluation of 
a higher strength alloy that will still meet the 
liquid metal compatibility requirements for 
SP-I00. We have selected an alloy similar to 
PWC-11, which is the nominal Nb-l%Zr com
position but containing carbon additions up to 
0.11 percent. I -3 Creep tests on material con
taining from 0.06 to 0.11 %C indicate that this 
alloy should posess required creep strength 
and microstructural thermal stability at con
ditions believed to be similar to those encoun
tered in SP-IOO fuel pin claddings. Both 
Nb-l%Zr and PWC-11 are being tested at 
1350 K and stress levels of 10 and 34.5 MPa. 
With test data in excess of 34 000 h, as shown 
in F ig. 1, PWC-11 containing only 0.062%C 
exhibited essentially no creep deformation 
while the Nb-l %Zr reached I-percent creep in 
11 000 hand 2-percent creep in 18 800 h. 
P WC-ll with 0.10%C has even better creep 
strength as shown in Fig. 2. Tests at 1350 K 
and 34.5 Mpa clearly demonstrate the creep 
strength superiority of the 0.10%C PWC-11 
alloy to PWC-ll containing only 0.062%C. 

The high-temperature (0.5Tm) creep 
strength of PWC-11, relative to the order of 
magnitude lower carbon content Nb-l %Zr 

- - -----------

2 

---- ----

alloy has been attributed to the presence of a 
very fine precipitate of (Zr,Nb)C ranging in 
size from submicron to about 10 J.Lm in 
diameter. 4

,5 In the as-rolled and annealed 
conditions, the PWC-11 microstructure pre
dominantly consists of relatively coarse 
(>1 JLm) orthorombic carbides of Nb2C. Pro
long exposure of the material to elevated 
temperatures with or without an applied 
stress gives rise t o the conversion of Nb2C 
particles to fine face-centered cubic carbides of 
Zr and Nb, very finely distributed throughout 
the matrix. The (Zr,Nb)C carbides have a 
lattice parameter ranging from about 0.458 to 
0.468 nm with an accompanying Zr:Nb ratio 
of about 70:30. The characterization of t he 
precipitates in PWC-ll is given in Table I. 
These fine particles provide excellent micro
structure stability and excellent creep strength 
at temperatures as high as 1350 K. Using the 
Orr-Sherby-Dorn6 parameter, 1- and 2-percent 
creep strain was temperature compensated 
and correlated with the applied stress (Fig. 3) . 
Based on the creep tests conducted to dat e, 
projections have been made for the relative 
stress to limit creep st rain to 2-percent in a 
7-year time frame and compared to the design 
requirements for SP-I00. The results are 
shown in Fig. 4. PWC-ll is a factor of four 
times stronger than the Nb-l %Zr tested (21 to 
5 MPa at 1350 K) over the SP-I00 design 
temperature range of 1350 to 1380 K and 
affords excellent growth potential over the 
present SP-I00 design criterion. 

Refractory Metal Composites Technology 

The objective of this part of our pro
gram is to develop and characterize refractory 
metal composites for future space power sys
tems where requirements for several hundred 
kilowatts to megawatts of electricity will need 
to be met. Currently , monolithic niobium
based alloys such as Nb-l%Zr and PWC-11 
are specified for components in the power 
conversion system of space nuclear power 
systems. Tungsten fiber reinforced niobium 
metal-matrix composites (W / Nb) are being 
considered for future applications where higher 
temperature and higher stress conditions may 

- --- --- - -------- ---- ---
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exist to reach these higher power require
ments. W /Nb composites offer potential for 
high tensile and creep strength applications up 
to 1700 K. 7,8 

W /Nb composites were fabricated by the 
Lewistatented arc-spray monotape tech
nique. This process, schematized in Fig. 5, 
consists of wrapping the reinforcing fibers on a 
drum, placing the drum in an air-tight 
chamber, evacuating the chamber, and back
filling it with argon. Next, wires of the 
matrix composition are brought together in 
the arc-spray gun, an arc is struck between 
them, and pressurized argon blows the molten 
matrix covering the fibers; the resulting struc
ture is a Umonotape" consisting of one layer 
of fibers in a matrix. Layers of monotapes 
then can be hot pressed or hot isostatically 
pressed (HIP)' producing a fully densified 
consolidated structure with negligible 
fiber/matrix interfacial reaction (Fig. 6). 
Composite panels can be fabricated with an 
infinite range of angle-plies using this tech
nique. In addition, tubing can be fabricated 
using these monotapes in conjunction with 
HIPing (Fig. 7). 

A macrograph of the microstructure of a 
ST300/Nb-1%Zr composite is shown in Fig. 8. 
This panel contains 35 vol % of 200 JLm 
diameter fibers; however, the fiber spacing, 
fiber diameter, and the volume per~ent can be 
varied for the particular application. The 
comparison of the UTS / density ratio of W /Nb 
composites with 42 vol % 218CS or ST300 
tungsten fibers in Fig. 5 shows that the com
posites have a ratio two to five times that of 
the monolithic Nb-1%Zr or unalloyed Nb. 

The 218CS wire is a commercially avail
able, potassium-doped lamp filament wire, 
whereas the stronger ST300 wire contains a 
fine dispersion of 1.5 wt % Th02• Also, the 
composites made with unalloyed niobium were 
for modeling purposes only; zirconium must be 
added to niobium in order to insure materials 
compatibility in liquid lithium metal cooled 
systems. For example, if any oxygen is pres
ent in the niobium grain boundaries, the 

3 

liquid metal will leach it out. The lithium can 
eventually permeate the entire thickness of the 
container resulting in "weeping" on the outer 
wall surface.9 The zirconium ties up the 
oxygen and keeps it in the niobium matrix. 

One challenge in the use of these materi
als is the possible degradation in properties 
after long times at elevated temperature due 
to interdiffusion between the fiber and matrix. 
Since interdiffusion between tungsten and 
niobium results in a continuous solid solution, 
it is not a catastrophic process. It may, how
ever, cause recrystallization of the tungsten 
fiber which would reduce the strength of these 
fibers. The projected life (greater than 
60000 h) and temperature (up to 1700 K) 
requirements for the composites could result 
in a reduction in creep strength of the W /Nb 
composites during service. 

A comparison of the minimum creep 
rates of the composites tested at 1400 and 
1500 K with that for the arc-sprayed niobium 
monolithic material tested at 1400 K is made 
in Fig. 9. It is evident that the composites 
creep at a much lower rate than the niobium 
matrix material. Noting that the strain- and 
strain-rate compatibility must be maintained 
at the fiber/matrix interface during creep of a 
composite subjected to uniaxial loading, it is 
possible to estimate the relative magnitude of 
the stress on the matrix using Fig. 9. For 
example, at 1400 K the ST300/Nb composites 
exhibit a minimum creep rate of about 1xlO-8 

s-l at 250 MPa. Using the strain-rate com
patibility arguments, the data in Fig. 9 sug
gest that a stress of about 15 MPa would 
enable the niobium matrix to creep at the 
same rate. It can be shown using the rule of 
mixtures, that the corresponding stress on the 
matrix is only about 3 percent of the total 
applied stress acting on a composite contain
ing 50 vol % fibers. This means a first order 
prediction of creep behavior of the composites 
can be described by the creep equations for 
the reinforcing fibers. The minimum creep 
rate of the composites can thus be equated to 
the power creep behavior as follows: 
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where 

q the stress on the composite 

q f the stress on the fiber assuming that the 
fiber carries the total load 

V f the volume fraction of fiber 

Q the apparent activation energy 

n the creep-rate stress exponent 

A a constant for the fiber 

The calculated composite creep activa
tion energy Q of 465 to 490 kJ /IPole agrees 
with results for other forms of tungsten tested 
in this temperature range. The creep rate 
stress exponent n for the ST300 reinforced 
composites ranged between 5 and 6, which is 
in agreement with values predicted by simple 
theories of dislocation climb where n is 
about 5. It is unlikely that grain boundary 
diffusion creep or grain boundary sliding con
trols creep because of the oriented grain struc
ture of the wires. 

The creep-rupture behavior of the 
composite was calculated using the rule of 
mixtures/ power law creep relationship. The 
rupture data for the fiber, the matrix and the 
measured values are plotted along with the 
calculated rupture strength of the composite 
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in Fig. 10. It is extremely encouraging to 
note that the measured values of the rupture 
times of the composite exceed what the rule of 
mixtures predicts. 

The transverse properties of any uni
directionally reinforced composite are far 
lower than their axial properties. In fact , the 
transverse properties of W / Nb composites 
have been shown to be only slightly better 
than the properties of the unreinforced matrix. 
It is possible to alleviate this disparity by 
angle-plying the tungsten fibers to increase the 
transverse properties. It is obvious, though, 
that this will correspondingly decrease the 
axial properties. It is significant to note, 
however, that angle-plying the fibers ± 15° 
results in only about a 20 percent decrease in 
the axial composite creep strength (Fig. 11) . 
It is also apparent from this figure that the 
properties of even those panels with ±15° 
angle-plied fibers exceed the creep properties 
of the monolithic PWC-ll alloy by a factor of 
four and the Nb-1 %Zr alloy by an order of 
magnitude. Although the effect of angle ply
ing on the transverse strength has not yet 
been measured, it is expected to have a corre
sponding increase. 

Graphite/Copper Composites Technology 

Space power system radiator fins require 
a material with high thermal conductivity, 
low to moderate density, and good stiffness. 
Several materials can be used for space power 
system applications. For applications where 
mass is a concern, the density compensated 
specific thermal conductivity (thermal conduc
tivity divided by density) is a better measure 
of the merit of a material than the absolute 
thermal conductivity. The specific thermal 
conductivity of six potential radiator fin mate
rials are shown in Fig. 12. Solar power sys
tems have radiator fins operating between 300 
and 600 K. While nuclear power system radi
ator fins can operate at temperatures as low 
as 300 K, most systems have fins operating 
between 450 and 1050 K. For low tempera
ture applications such as solar power systems, 
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q the stress on the composite 

q f the stress on the fiber assuming that the 
fiber carries the total load 

V f the volume fraction of fiber 

Q the apparent activation energy 

n the creep-rate stress exponent 

A a constant for the fiber 
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(UHM) pitch-based fibers lO are clearly the 
material of choice. It combines high thermal 
conductivity from both the matrix and the 
fiber with low density. Unfortunately, the 
pure aluminum matrix softens considerably 
above room temperature, limiting the maxi
mum use temperature of these composites. 
Even if strength is not a consideration, the 
aluminum will melt at temperatures above 
993 K. 

Even though copper has a high density 
(8.92 g/cc),l1 the specific thermal conductiv
ity of copper is very good compared to most 
materials. The primary problem with using 
copper for a radiator fin material is its low 
stiffness. Beryllium is often considered for use 
in aerospace applications because of its low 
density (1.85 ~/cc) and high stiffness 
(303.6 GPa).1 Because of its low density, the 
specific properties of beryllium are very high. 
But, as shown in Fig. 12, the density compen
sated thermal conductivity of beryllium is 
actually less than that of Gr/Cu above 450 K. 

Titanium and niobium alloys have been 
proposed as high temperature fin materials for 
nuclear space power systems radiator fins 
operating above 700 K where the use tempera
ture of Be and other materials currently avail
able is exceeded. As can be clearly seen in 
Fig. 12, their specific thermal conductivities 
are very low. 

Gr/Cu composites are being considered 
for applications with operatin~ temperatures 
above 450 K. Previous work l has shown that 
the thermal conductivity of the composites is 
as good or better than copper. The dynamic 
modulus of PlOO graphite fiber reinforced 
composites was also determined to be slightly 
over 300 GPa up to 650 K. The density of 
Gr/Cu composites of interest range from 4.5 
to 5.5 g/cc for 60 and 40 vol % Gr/Cu com
posites, respectively. The combination of high 
thermal conductivity, and moderate density 
give the Gr/Cu composites great potential for 
use as space power radiator fins. 
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The thermal expansion of the radiator 
fin material is also a concern since the fins 
will be brazed to a heat pipe. A large thermal 
expansion mismatch can lead to failure of the 
braze joint and loss of radiator surface. The 
thermal expansion mismatch can be mini
mized since PlOO graphite fibers have a small, 
negative coefficient of thermal expansion 
(CTE),14 while copper has a much larger, 
positive CTE. 1S Varying the fiber orientation 
and volume fraction of the fibers leads to a 
CTE that minimizes the stresses in the braze 
joint. 

Under normal conditions graphite and 
copper do not react and do not form any dif
fusional bond across the interface.16 As a 
result the mechanical load is transferred 
across the interface by friction and limited 
mechanical bonding. This is important in 
thermal expansion where the stresses gener
ated from the CTE mismatch can lead to 
slippage at the interface or yielding of the 
matrix as will be seen later. 

Production of Gr/Cu Composites 

For this study PlOO pitch-based graph
ite fibers were selected for the reinforcing 
graphite fiber. The arc spray process devel
oped at NASA Lewis6 shown in Fig. 6 was 
used to produce the samples tested in this 
study. In the arc spray process, graphite 
fibers coated with copper are passed through a 
series of baths to remove surface contamina
tion and wound onto a drum. The volume 
fraction of graphite fiber was controlled by 
varying the coating thickness on the fibers. A 
thin layer of pure copper is arc sprayed onto 
the fiber to produce a monotape such as the 
one shown in Fig. 13. These mono tapes are 
easily handleable and can be precisely laid up 
in the desired architecture. Four to eight 
layers of monotape were used to produce sam
ples up to 100 mm wide by 200 mm long by 
1- to 2-mm-thick for testing. Actual fiber 
contents of the samples was determined after 
consolidation from specific gravity 
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measurements. The composites have a good 
distribution of fibers in the matrix. Good 
consolidation was achieved with new grain 
boundaries and twins extending across the 
prior particle boundaries (Fig. 14). No voids 
were observed. 

In addition to the unidirectional Gr /Cu 
composites, cross-plied Gr/Cu composites 
have been produced using the arc spray pro
cess. These composites contain eight layers. 
The outer four layers were oriented parallel to 
the length of the plate. This was defined as 
the longitudinal or 0° direction. The inner 
four layers were oriented perpendicular to the 
out er fibers and parallel to the width of the 
plate. This was defined as the long transverse 
or 90° direction. Samples were taken from 
this plate for thermal expansion testing. 

Due to the anisotropy in the UHM 
graphite fibers, the thermal conductivity of 
the composites will differ greatly depending 
whether the heat flow is parallel or perpendic
ular to the fiber axis. The thermal conductiv
ity was therefore tested in the longitudinal, 
long transverse, and short transverse direc
tions. The longitudinal direction of the 
unidirectional composites is defined as the 
direction parallel to the fiber axis. The long 
transverse direction is the width of the plate, 
and the short transverse direction is through 
the thickness of the plate. Figure ~5 shows 
the three directions. Figure 15 also shows 
how a typical composite could be angle-plied 
to improve long transverse properties. 

Thermal conductivity testing was con
ducted at the Thermophysical Properties 
Research Laboratory (TPRL) at Purdue 
University using the laser flash technique. 17 

Thermal expansion tests in the longitudinal 
and long transverse directions were conducted 
over a temperature range of 295 to 1073 K 
using a Netzsch dilatometer at NASA Lewis. 

Thermal Conductivity of Gr/Cu Composites 

The results from the thermal conductiv
ity testing of the unidirectionally reinforced 
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Gr/Cu composites produced by the arc spray 
process are shown in Fig. 16. The longitudi
nal values fall in a relatively narrow band 
with values near that of copper. This is 
because the thermal conductivity of the fibers 
in the direction of the fiber axis is near the 
value for copper. Therefore replacing copper 
with graphite fiber does not result in a change 
in the composite thermal conducti vi ty. 

The thermal conductivities for the short 
transverse direction are also presented in 
Fig. 16. The transverse direction samples 
have lower thermal conductivities and show a 
decrease in thermal conductivity with increas
ing fiber content. The decrease in conductiv
ity is caused by the highly anisotropic nature 
of the UHM graphite fibers. IS While the ther
mal conductivity of the fibers in the axial 
direction is high, the thermal conductivity in 
the radial direction is near zero. Because of 
this the heat is conducted almost exclusively 
by the copper matrix in the transverse direc
tions. With the introduction of more fibers, 
the path length for the heat to travel increases 
and the thermal diffusivity decreases, decreas
ing the thermal conductivity. 

The thermal conductivities of the long 
transverse directions were also measured. The 
values were 25 to 35 W / mK higher than the 
values for the short transverse directions. 
This difference is the result of the arc spray 
processing. In the long transverse direction 
there are thin layers of copper rich material 
deposited during the arc spraying in the direc
tion of the heat flow. These layers allow for 
easier diffusion of the heat than in the short 
transverse direction. With the increase in 
thermal diffusivity, the thermal conductivity 
lllcreases. 

For the reduction of mass in space 
power thermal management systems, the den
sity dependent specific thermal conductivity is 
a more important design criterion than the 
absolute thermal conductivity. The effect of 
fiber content on the longitudinal and short 
transverse specific thermal conductivities at 
800 K is presented in Fig. 17. In the 
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longitudinal direction, the specific thermal 
conductivity of the composites increases with 
increasing volume fraction of fiber because of 
the decrease in density. The specific thermal 
conductivity in the transverse directions is 
influenced more by the decrease in the abso
lute thermal conductivity than the decrease in 
density. As a result, the specific thermal 
conductivity decreases with increasing volume 
fraction of graphite fiber. However, it is 
important to note that the transverse thermal 
conductivities of composites with 20 to 
50 vol % graphite fibers retain more than 
50 percent of the specific thermal conductivity 
of pure copper. 

Figure 17 also shows the specific thermal 
conductivity for Be, a Ti-based alloy, a 
Nb-based alloy, and a superalloy. Ti-based 
and Nb-based alloys are suggested candidate 
alloys for applications above 700 K. While 
the transverse specific thermal conductivity of 
the GrjCu composites is less than copper and 
beryllium, it is significantly better than com
petitive titanium- and niobium-based alloys 
and superalloys. Even if beryllium were to be 
considered for use at this temperature, GrjCu 
composites with more than 35 vol % graphite 
fibers have higher specific longitudinal thermal 
conductivities than beryllium, making them a 
better choice. 

In most applications the composites need 
to be angle- or cross-plied to provide the 
desired properties. The thermal conductivity 
of a cross-plied 50 vol % graphite composite 
having an equal number of 0° and 90° plies is 
shown in Fig. 18. The thermal conductivity 
of a unidirectional 50 vol % graphite compos
ite is also shown for comparison. The rule of 
mixtures would predict that the longitudinal 
and long transverse directions would have a 
thermal conductivity equal to the average of 
the values for the unidirectional composite 
which is the observed behavior. 

The short transverse thermal conductiv
ity of the cross-plied composite is also shown 
in Fig. 18. The samples apparently have a 
higher thermal diffusivity in the short trans-
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verse direction compared to the unidirectional 
composite. The result is a curve that parallels 
the unidirectional short transverse curve with 
thermal conductivity values 25 W jmK higher 
than the unidirectional values. 

Thermal Expansion of Gr/ Cu Composites 

The thermal expansions of the unidirec
tionally reinforced Gr/ Cu composites pro
duced by the arc spray process are shown in 
Fig. 19. Pure copper is also included for com
parison purposes. The long transverse ther
mal expansions fall in a narrow band that is 
independent of graphite fiber volume fraction. 
The values of the thermal expansion of the 
composites is greater than pure copper. No 
direct experimental data is available for the 
CTE of PlOO fibers in the radial direction, but 
data is available for oriented pyrolytic (OP) 
graphite. 2o OP graphite has a CTE greater 
than copper in the direction of the c axis. 
This is the direction equivalent to the radial 
direction of the fiber. The larger CTE of the 
fibers in the radial direction would lead to 
increased thermal expansions in the long 
transverse directions as seen in the results. 

The thermal expansions of the Grj Cu 
composites in the longitudinal direction shown 
in Fig. 19 are between the values for copper 
and PlOO Gr fibers. The curves also show a 
rather unique behavior. As typified by the 
copper curve, the thermal expansion of most 
materials increases with increasing tempera
ture. For the 20 vol % Gr/ Cu composite, the 
thermal expansion curve is nearly parallel to 
the copper curve but at a lower value. The 
lower thermal expansion of the Gr/ Cu com
posites was expected since the contraction of 
the fibers during heating would restrain the 
copper matrix. What was not expected was 
the shape of the other curves. 

The 30 and 40 vol % graphite compos
ites initially behave like the copper and 
20 vol % graphite curves. The thermal expan
sion increases with increasing temperature. 
At higher temperatures the 30 and 40 vol % 
graphite curves deviate negatively from linear. 
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The samples have a nearly constant thermal 
expansion above 750 and 500 K, respectively. 
Analysis of the Gr/Cu composite system has 
shown that thermally induced stresses from 
the CTE mismatch between the fibers and 
matrix can induce compressive yielding of the 
copper matrix at temperatures as low as 400 
to 450 K. Compressive yielding of the matrix 
would result in thermal expansions that are 
less than would occur without yielding. The 
calculated temperatures are lower than the 
temperatures at which the 30 vol % graphite 
composite show a deviation, but the calcu
lated temperature for the 40 vol % graphite 
composite is in reasonable agreement with the 
data. The actual temperature at which yield
ing occurs would be dependent on slippage at 
the interface due to a poor bond and residual 

. ~tresses produced in the composites during 
cooling from the HIPing temperature. Both 
could increase the actual yielding temperature . 
For the 50 vol % graphite composite, the 
thermal expansion of the composite is totally 
dominated by the fiber. As a result, the 
thermal expansion is near zero to slightly neg
ative over the entire temperature range tested. 

The thermal expansion behavior of the 
composites during cooling was also examined. 
Figure 20 shows the thermal expansion of a 
20 vol % Gr/Cu composite in the longitudinal 
direction. As noted earlier, the 20 vol % 
Gr/ Cu composite has a thermal expansion 
during heating that is similar to Cu. On cool
ing the composite initially follows the heating 
curve, but it is offset by about 0.1 percent. 
At approximately 650 K the cooling curve 
levels off to a near constant thermal expansion 
over the temperature range of 298 to 650 K. 
This behavior has also been observed in the 
other unidirectional and cross-plied samples 
tested to varying degrees. In all cases that 
the thermal expansion curves show a hystere
sis, a measurable change in the length of the 
sample following thermal exposure was 
measured. 

The hysteresis of the thermal expansion 
curves can be explained by the CTE mismatch 
between the fibers and matrix and yielding of 
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the matrix during the thermal cycle. As 
explained earlier, the matrix undergoes a com
pressive stress during heating which causes 
yielding and decreases the thermal expansion. 
During cooling the graphite fibers expand and 
the copper matrix shrinks. As a result, the 
stress state of the composite is reversed so 
that the fibers are in compression and the 
matrix is in tension. Some temperature 
change is needed to accomplish this change in 
stress states. During this time the composite 
shows a decrease in length with temperature 
like a monolithic material. At some point, 
however, the stresses in the matrix exceed the 
tensile yield strength of the copper and tensile 
yielding occurs. The magnitude of the posi
tive elongation due to yielding is nearly equal 
to the negative elongation due to cooling. 
The composite therefore shows a virtually 
constant length during cooling once the tensile 
yielding begins. 

As the volume fractions of Gr fibers 
increases, the temperature at which tensile 
yielding begins increases. This is caused by 
the ability of the fibers to generate greater 
stresses in the matrix at the higher volume 
fractions. In the most extreme case tested, 
samples with 50 vol % Gr fibers show essen
tially no contraction in length during cooling 
from 1073 K. 

The hysteresis loop and other phenom
ena observed during the study of the Gr/ Cu 
composites has led to interest in developing an 
engineered interface in the Gr/Cu composites. 
By improving the bond between the fibers and 
matrix the strength of the composites can be 
improved, and the hysteresis in the thermal 
expansion curves can be minimized or elimi
nated. The engineered interface would be 
introduced by either coating the fiber with an 
element or compound, i.e., Mo or NbC, or 
utilizing an alloy matrix that will react with 
the fibers to form a bond, i.e., a Cu-Cr alloy. 
The cost of coating fibers with an element or 
compound prior to copper coating is, however, 
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limited to a pure copper matrix, making it 
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These problems make the arc spray process 
unsuitable for producing composites with 
engineered interfaces. Interest is currently 
being focussed on pressure infiltration casting 
of Gr/Cu composites. Some samples using 
alloy matrices and coated Gr fibers have 
already been successfully produced. Testing is 
in progress to det ermine if the pressure infil
tration cast composites with an engineered 
interface are better that the arc spray pro
duced composit e. Preliminary results look 
extremely promising. 

Summary of Results 

(1) The PWC-ll alloy is four times 
more creep resistant then the Nb-l%Zr alloy 
at 1350 K. 

(2) The PWC-ll alloy has demonstrated 
its superior creep strength over the Nb-l %Zr 
alloy for times in excess of 35 000 h. 

(3) The thermal stability and creep 
strength of PWC-ll is enhanced by the pre
cipitation of the 70/ 30 (Zr / Nb) monocarbide 
(Zr, Nb)C. 

( 4) The creep properties of W /Nb com
posites at 1500 K exceed rule of mixtures cal
culated values. The creep resistance of these 
composites significantly exceeds that of mono
lithic niobium alloys even when co.rp.pared on 
a density basis. 

(5) The creep-rupture strength of the 
±15° angle-plied fiber W / Nb composite 
exceeds that of the PWC-ll by a factor of 
four. 

(6) Interdiffusion between tungsten and 
niobium did not significantly degrade the 
creep strength of the composite at times up to 
5000 hr. 

(7) The specific thermal conductivity of 
Gr /Cu composites in the longitudinal direc
tion is far superior to that of copper, titanium 
alloys, and niobium alloys. The specific 

9 

thermal conductivity of Gr/ Cu composites is 
comparable to that of beryllium at low 
temperatures and is bet ter at higher 
temperatures. 

(8) The long transverse thermal expan
sion of unidirectional Gr/ Cu composites is 
greater than the thermal expansion of copper. 
The longitudinal thermal expansion is less 
than copper and strongly dependent on the 
volume fraction of graphite fibers. Cross-plied 
composites have thermal expansions between 
the longitudinal and the long transverse val
ues, but they do not follow the rule of 
mixtures. 

Conclusions 

The results to date show that for space 
power and propulsion systems operating in the 
1350 to 1450 K temperature range: (1) the 
PWC-ll alloy exceeds the creep strength and 
thermal stability requirements for the SP-I00 
design and will replace Nb-l %Zr in the Flight 
Qualification System, (2) the creep strength of 
the W / Nb composites exceed that of the mon
olithic niobium alloys and offer more growth 
potential than niobium alloys, and (3) the 
thermal conductivity and thermal expansion 
of Gr/ Cu composites can be engineered to the 
heat rejection system geometry. These mate
rials have been developed and characterized to 
the extent that space power system designers 
now have additional options upon which to 
base their designs. 
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TABLE 1. - CHARACTERIZATION OF PRECIPITATES IN PWC-11 

As-rolled After initial After long-term 
heat treatment high- temperature 

exposure 

Size, IJ-m 1 to 10 0.05 to 0.01 0.1 to 0.15 
Structure HCP FCC FCC 
Composition Nb2C (Zr,Nb)C (Zr,Nb)C 

aConclusions: Aging at 1350 or 1400 K with an applied stress does not 
"overage" the precipitates. After long times (35 000 h) at 1350 K, the 
precipitates are still effective at pinning dislocations and resisting 
plastic deformation in creep. 
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Figure 6.-Photomicrographs of the as-fabricated microstructure 
of a W/Nb composite illustrating the minimal interdiffusion be
tween Wand Nb. 

Figure 7.-W/Nb composite tube, 15 mm inner diameter with 3 mm 
wall, fabricated from arc-spray monotapes. 
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Figure 8.-Macrograph of the microstructure of a ST3001 
Nb-1 % Zr composite and comparison of tensile strength 
of composite to monolithic matrix materials. 
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Figure 13.-Gr/Cu monotapes produced by the arc spray process. 
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Figure 15.-Gr/Cu radiator fin showing three principle directions. 
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Figure 14.-Microstructure of 50 vlo Gr/Cu composite produced 
by arc spray process. 
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