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Section I

INTRODUCTION

A. Contract Objective and Scope

The purpose of this task was to develop aeroservoelastic stabilization techniques for

statically unstable hypersonic vehicles (HSVs) and to identify deficiencies in MIL-F-9490D

(Reference 1) and MIL-F-87242 (Reference 2) leading to the eventual development of

new design requirements for structural mode stabilization of these vehicles. The

aeroservoelastic stabilization techniques were developed from generic structural models of

HSVs using a suitable control system architecture. The definition of flight and structural

conditions for the design, analysis, and evaluation of the developed stabilization techniques

was part of this task.

B. Overview

1. Flight Control Design Requirements for Flexible Aircraft

The flight control system (FCS) specifications, MIL-F-9490D and MIL-F-87242,

require at least a +8 dB gain margin and at least a :L-60degree phase margin for frequencies

at and above the first structural mode. In practice, this 8 dB gain margin requirement has

often been interpreted by many engineers as attaining an 8 dB peak clearance below the

0 dB line for all structural modes. This interpretation of attaining an 8 dB peak cle,aranee is

obviously much more stringent than achieving an 8 dB gain margin.

Other specifications such as the airplane strength spec. (MIL-A-008870A,

Reference 3) and aircraft structures spec. (AFGS-87221A, Reference 4) require a phase

margin of at least +60 degrees, but a gain margin of only :L-6dB. In fact, MIL-F-87242

commented that a +6 dB gain margin and a +45 degree phase margin are generally agreed

to be adequate. A similar statment is also made in AFGS-87221A.

Advanced high performance vehicles, including single-stage-to-orbit (SSTO)

hypersonic flight vehicles, that are statically unstable, will require higher bandwidth flight

control systems to compensate for the instability resulting in interactions between the flight



controlsystem,theengine/propulsiondynamics,and the low frequency structural modes.

Military specifications, such as those mentioned in previous paragraphs, tend to limit

stability margin requirements of structural modes to conventional gain stabilization

techniques using notch and low pass filters. The conventional gain stabilization

techniques, however, intrtxtuce low frequency effective time delays which can be

troublesome from a flying qualities standpoint. These time delays can be alleviated by

appropriate blending of gain and phase stabilization techniques for the low frequency

structural modes. This possibility is not addressed in the MIL-spec requirements.

2. The Hybrid Phase Stabilization Concept

The basic concept of phase stabilization is well established and has been analyzed and

applied in the past (e.g., References 5 and 6). The basic principle can be understood from

Figure 1. Flexible aircraft responses are characterized by structural mode dipoles that

appear at intervals, generally close to the imaginary axis. The stability of the closed loop

roots associated with these dipoles, when a FCS is applied, is fundamentally influenced by

the ordering of the airframe pole and zero. If the pole appears first (at lower frequency than

the zero) as shown in Figure la, then the phase curve dips down as it passes through the

dipole. This causes the FCS root locus to bulge toward the right half plane creating a

propensity for closed loop instability.

Figure 1b shows the opposite situation where the zero is below the pole. Here the

root locus bulges to the left, fundamentally improving the prospects for stability. The

practical design problem then becomes one of creating the favorable dipole constellation.

The open loop poles represent unalterable characteristics, since the FCS loop is to be used

to position the poles. The airframe zeros can be positioned though, by appropriate

positioning of sensors (References 5 and 6). In principle, a sequence of the lower

frequency dipoles can be properly arranged (the "saw tooth Bode") such that all of the

primary flex modes can be phase stabilized.

Successful application of phase stabilization requires not merely guaranteeing the

absence of instability, but also achieving some minimum level of structural mode damping

so that uncommanded response due to the structural modes is acceptably low. However,

phase stabilization of structural modes may become less feasible for higher frequency

modes due to general uncertainty of structural mode characteristics at higher frequencies.
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This leads to the concept of Hybrid Phase Stabilization (HPS) investigated in this study,

where only a few lower frequency modes would be phase stabilized with the more robust

conventional gain stabilization used at higher frequency.

The potential advantage of phase stabilization is in the reduction of the high frequency

lags associated with notch and lag filters. As will be seen in the FCS analysis to follow,

the stability margins of statically unstable HSVs may be problematic even at the rigid body

level. The structural model developed in this study (Section II-C) indicates that the first

structural mode may be quite low. The lowest frequency modes are of most concern for

conventional designs because they generally must be treated with notch filters. The lower

their frequency, the higher the resultant effective time delay penalty.

However, reducing effective time delay is not the only design consideration. The

design must also produce acceptably low magnitude high frequency response. In fact, this

is what the gain margin specification for structural modes is intended to insure. Phase

stabilization is complicated by the fact that its effect on high frequency uncommanded

response (referred to as "residual response") is more complex than the effect on time delay.

Phase stabilization has the potential for significant increases in structural mode damping

ratios. However, what can actually be achieved in practical designs is more difficult to

predict (compared to potential time delay reductions) without detailed analysis. Such

analyses will be made later, but there is a deeper question of the relevance of the MIL-spec

to phase stabilized designs; this will be addressed in Section VI-B.

The details of HPS are best explained in the context of a detailed design example.

This will be done in Section V.

C. Technical Approach

The existing MIL-spec gain and phase margin requirements were developed primarily

with conventional gain stabilization in mind. The relevance of these requirements to other

structural stabilization techniques such as phase stabilization is not known. Additional

measures such as the residual response metric must be developed to provide guidance in

assessing phase stabilization.

A "generic" HSV configuration is presented in Section II. The rigid body dynamics,

along with the flexible vehicle model is developed. Note that only the longitudinal

4



dynamics are considered here. In this section, the static propulsion effect of the HSV

configuration used in this contract is also presented. A comprehensive discussion of the

HSV propulsion system interaction with flexible modes and FCS is given in Appendix A.

A realistic actuator model is also included in Section II.

The FCS design begins in Section III with the development of a baseline control

system architecture -- the superaugmented pitch loop. The fundamentals of the

superaugmented pitch loop, and consequently the motivation for selecting this architecture,

is explained. The time delay effect on loop closure is addressed. The low and high

frequency dynamics peculiar to HSVs are identified and discussed. The pitch loop

bandwidth requirement is also discussed in Section-llI. This is an important issue since

there is a strong correlation between adverse time delay effect and high pitch loop

bandwidth. Finally, the baseline FCS, i.e., the superaugmented pitch loop applied to the

flexible vehicle but without any structural compensation, is presented in this section. The

details of the methods used to design the superaugrnented pitch loop at the rigid body level

is included in Appendix B.

Beginning in Section IV, designs are generated for two flight conditions: (1) ascent

and (2) descent, both at Mach 6. The results of a conventional gain stabilized design using

notch and low pass filters are summarized in Section IV. The details of the hybrid phase

stabilized design are developed in Section V by means of an example. The comparison of

a conventional gain stabilized design to the hybrid phase stabilized design is done in

Section VI. First, the stability metrics, which include gain and phase margins and

equivalent system time delay, are examined. Then an alternative criterion, the residual

response metric, is developed and used to provide additional insights for comparing the

two designs.

Section VII follows with a summary and conclusions of the work done in this

contract. Recommendations for future work are also included in this section.
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Section II

HYPERSONIC FLIGHT VEHICLE MODEL

A. Vehicle Configuration

The HSV used in this contract is a National Aerospace Plane (NASP) type

configuration. It was a preliminary version of the MCAIR NASP configuration which has

been declassified. The configuration is referred to as Blended Wing Body (BWB). This

preliminary version of the MCAIR BWB configuration is known as BWB-1 and is shown

in Figure 2. The primary pitch control is provided by all moving wings. Four pitch rate

gyro sensors are available for feedback and signal blending purposes. Two sensors are

located forward of the c.g. and the other two aft of the e.g. The fuselage station (FS) 84

sensor is near the pilot station and the FS 1050 sensor is near the spindle of the all moving

wings.

Figure 3 shows a typical HSV flight envelope, which covers a very large set of flight

conditions. The space shuttle flight envelope is also shown here for comparison.

FS 1050 !

FS 0 f 1 _/" \ /Y -"_'_"-
s

Figure 2. Hypersonic Flight Vehicle Configuration
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B. Vehicle Dynamics

The HSV is modeled with uncoupled rigid body and flexible dynamics as shown in

Figure 4. This is commonly done in fighter aircraft modeling when the system bandwidth

is far below the first structural mode frequency. For vehicles having very low structm-M

mode frequencies like the HSVs, it may not be realistic to assume uncoupled rigid body

and flexible dynamics, i.e., zero cross-coupling terms in the A-matrix shown in Figure 4.

However, for the scope of this contract, the assumption of having zero cross-coupling

terms does not invalidate the developed techniques.

1. Rigid Body Dynamics

The rigid body longitudinal dynamics are represented by the "short period"

approximation as shown in Figure 5. Note that consideration of low frequency dynamics

and justification of the short period model are given in Appendix A. Figure 6 shows the

aerodynamic stability and control derivatives of the HSV configuration described
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[ j [ ][oJu- Za 1 ]+
q = M a Mq q

Zo= = m--_-VCz_,

zs=qS Cz
mY s

=qScMS Cms
lyy

_2

qSc C
Mq=21yy v mq

Figure 5. Rigid Body Dynamics
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previously in Section II-A. The ascent and descent data are typical of flight conditions at

high and low dynamic pressure, respectively. These flight conditions encompass a fairly

wide range of aircraft static instability.

The propulsion effect is mcxteled implicitly in the control and stability derivatives. As

shown in Figure 7, the propulsion effect on pitch control effectiveness is relatively small.

However, significantly larger propulsion effect in pitch control was observed in other HSV

configurations. Therefore, it can be concluded that propulsion effect is configuration

dependent. Figure 8 shows that, at least for this HSV configuration, the propulsion effect

has a greater impact on pitch static stability than pitch control.

2. Flexible Vehicle Model

The NASTRAN finite element computer code (Reference 7) was used to generate a

finite element model of the BWB-1 structure. The NASTRAN finite element model is

shown in Figure 9. All primary and secondary structural members are modeled using

QUAD and BAR elements. Non-structural mass such as fuel, avionics, landing gear, etc.

are modeled as concentrated mass. A modal analysis was performed using NASTRAN to

Cm 6

(per rad)

000

-0 02

-004

-0.06

-0 08

-olo

•--.c]--- Powered

..43 .... Unpowered

i
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0 30

Figure 7. Propulsion Effect on Pitch Control Effectiveness
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Figure 9. NASTRAN BWB-1 Finite Element Model

reduce the structural degrees of freedom (DOF) of the BWB-1 model from 6000 DOF to 12

generalized (modal) coordinates. At supersonic flight conditions, the vibrating structure

couples with the resulting unsteady aerodynamics to cause the modal frequencies and

modal damping to change. The unsteady aerodynamic theory used in this study was first

order "Piston Theory" (Reference 8) and it was used to generate the aerodynamic influence

matrix. The structural equations of motion (EOM) in terms of the generalized or modal

coordinates are given in Equation 2-1 of Figure 10. The aerodynamic influence matrix is

generated as a function of discrete reduced frequencies k. The mass and stiffness matrices

are obtained from the NASTRAN modal solution. The structural damping of each mode

was assumed to be 0.02 of critical damping.
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1 V2[Qlk)] XA[m]xA+(1 . ig)[K]XA= _- p

where

m

i =

g =

K =

XA =

mass matrix

complex operator

structural damping

stiffness matrix

structural dynamic mode
of the aircraft in

generalized coordinates

P = freestream density

V = freestream velocity

Q = aerodynamic influence matrix

k = reduced frequency (coON)

b = reference length

[ [reAl S2 + (1+ig)[K] - 2 P V'[QA(k) ]] XA= - [ [mAC] s2-

where

xc = rigidbody controlsurface mode

1 V2[QAcIk)]]XcEP

iEgU_aJL0_0.2 

-1

IXA_xci=.[[mA]S2+(1+ig)[K].12PV2[QA(k)]] [[mAC]S 2 1.2pV2[QAc(k)] ]

qF'i=[)q'i] _C S

where

qF, i

(_q ,i

is the pitch rate response for the flexible aircraft model
at sensor location i

is the mode shape for each mode at sensor location i

Figure 10. Flexible Vehicle Model Equations
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The initial aeroservoelastic objective is to obtain the response output at the aircraft

sensor caused by a flcxible airframe due to the aircraft control surface input. Thus, a

transfer function with the aircraft sensor response as the output and the aircraft control

surface as the input was developed. To obtain the output response, an inertial coupled

model of the BWB-I wing was developed. The wing is an all moving control surface for

controlling the BWB- 1 aircraft in the pitch axis. The wing inertia and aerodynamic forces

are assumed to excite the structure in the pitch axis. The structural response of a sensor is a

function of its location on the structure and frequency of excitation. Generally, the

structure will have a large response when excited at a frequency that corresponds to a

natural frequency of the structure. The structure will also have a maximum response at a

structural anti-node point, and a minimum response at a structural node point. The EOM

with the rigid control surface mode both aerodynamically and inertially coupled into the

system is given by Equation 2-2 of Figure 10.

Equation 1b can be manipulated to obtain a transfer function response in terms of the

generalized coordinates. The solution to the transfer function equation is made by

transforming the equation into the Laplace (or complex frequency) domain. The complex

frequency response calculation is performed using Equation 2-3 of Figure 10 by varying

the complex frequencies, s, over the range of interest. The aerodynamic terms for the

flexible aircraft QA and the control surface QAC are interpolated for the complex frequency,

s, of interest.

It should be noted that the Equation 2-3 predicted response is in modal coordinates,

and must be transformed to physical coordinates to obtain the response for a sensor at a

given aircraft fuselage location. This transformation is made using the NASTRAN mode

shapes at the sensor location. This process is mathematically depicted in Equation 2-4 of

Figure 10.

As an example, the flexible pitch rate response at sensor location FS 84 is shown in

Figure 11. A similar response at FS 1050 is given in Figure 12. Note that the first

structural mode occurs at approximately 2 Hz.

After obtaining the response for a given location, the result is transformed into a

equivalent state space model using FAMUSS - a MCAIR proprietary technique developed

under a MCAIR Independent Research and Development project (Reference 9).

14
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C. Actuator Dynamics

Figure 13 shows the actuator dynamic model used in this contract. This actuator is a

third order linear model representing the dynamics as installed in current operational

aircraft.

1
8TC 30 61 9 2 - /it

• . S . 0.S07_______55

Figure 13. Actuator Dynamics
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SectionIII

FLIGHT CONTROL SYSTEMDESIGN:RIGID BODY LEVEL

A. Superaugmented Pitch Loop Concept

The generalobjectiveof this contract is to explore the potential of Hybrid Phase

Stabilization (HPS) particularly for highly unstable aircraft using HSVs as a relevant

example type. Relaxed static stability aircraft must be highly augmented; thus, one of the

first items of work is to establish a flight control system architecture. For the purposes of

this contract, it is very important that the flight control system development be basic and

generic so that conclusions regarding the potential of HPS compared to conventional gain

stabilization can be drawn with a maximum of generality. This puts a premium on design

procedures which not only lead to good systems, but which give insight into the critical

considerations and parameters in the design. Since we are only concerned with

longitudinal dynamics, the superaugmented pitch loop (References 10 and 11) is

appropriate on all counts.

The fundamentals of the superaugmented pitch loop are summarized in Figure 14.

This design creates a pitch rate command, attitude hold (RCAH) characteristic (if the

command filter is essentially a pure gain). HSVs are capable of operating at such high

speeds that kinematic effects due to the earth's curvature can be significant and, strictly

speaking, invalidate the "flat earth" approximation (Reference 12) routinely used in

conventional aircraft flight conU'ol analysis. In particular, an HSV flying a steady constant

altitude, great circle course would hold constant pitch attitude (with respect to the local

direction of the gravity vector); however, the pitch rate would not be zero. Consideration

of the Figure 14 system shows that the "attitude hold" mode (zero command input) is

really zero pitch rate rather than constant attitude. While this is not significant under the fiat

earth approximation, it is a consideration for HSVs. This issue could be addressed by

augmenting the pitch rate feedback with pitch attitude. However, these kinematic effects

due to curvature of the earth appear at very low frequencies, below the phugoid, and can be

treated separately from the dynamics at mid to high frequencies of interest in this contract.

Thus the usual flat earth approximation can be used here.

19

PRECEDING PAGE BLANK NOT FILMED



I

c
0

0
Q:

I!

0

I--

E

.!

U..

2O



The superaugmented pitch loop can be quite generally satisfactory for "up and away"

flight. The only known presently operational HSV, the Space Shuttle, uses this concept.

However, to make the results of this study as general as possible, we wish to at least

consider the widest range of conceptual FCS types. It is important to distinguish between

FCS types and control design methodologies. There are a great profusion of methodologies

emerging such as the many variants of H**, Ix synthesis, eigenvector assignment, etc. that

differ in the mathematics of synthesis. However, these mathematical differences in

methodology can obscure similarities in effective vehicle dynamics imposed by basic

physics. To avoid this problem, we can note that a small number of system concepts

covers much of the range of practical FCS possibilities. Specifically three response types -

- pitch rate command, angle-of-attack command and normal load factor command --

provide archetypes for a wide range of feasible FCS. Further, as indicated in Figure 15, a

command and nz command systems can be most logically developed by adding a feedback

loop to a superaugmented pitch inner loop. Thus the superaugmented pitch loop represents

a uniquely fundamental structure, widely applicable in flight control and it will be the basic

structure for use in this study. Further, this structure can be analyzed by literal procedures

that are particularly useful for developing broad understanding.

The starting point of a superaugmented pitch loop design is the pitch rate to "elevator"

(the generic pitch control effector) transfer function. Figure 16 summarizes the short

period expression for this transfer function. Table 1 summarizes the pitch rate-to-elevator

poles and zeros. The dynamics shown are standard for an unstable aircraft. The poles

consist of two real short period poles (1/Tspl and 1/Tsp2), of which 1/Tsp 2 is generally

unstable. The example vehicle is quite unstable; and thus both poles approach the square

root of/Via in magnitude. The 1/To2 zero shows the normal correlation with Zw; however,

it is unusually low compared to more conventional aircraft. This low value of l/T02

appears to be a distinguishing and problematic characteristic of HSVs which is related to

low lift curve slopes at hypersonic speeds.

There are only two basic decisions for the Figure 14 system concept: definition of the

crossover frequency (t0c), which primarily determines closed loop bandwidth, and

placement of the l/Tq lead. Figure 17 presents a system survey sketch of a "standard"

superaugmented design (Reference 11) applied to pitch dynamics characteristic of HSVs.

The 1/Tq lead is placed above the rigid body dynamics (set by the short period poles). This

creates a region of k/s slope for the Bode asymptote which provides an ideal region for

loop closure. If the crossover frequency is set above 1/Tq, damping ratios above 0.5 for
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• APPROXIMATE OPEN LOOP n z TRANSFER FUNCTION
WITH INNER PITCH LOOP CLOSED

n Uoo/g _c 1 Uoo/g

• SYSTEM SURVEY SKETCH OF PURE GAIN OUTER LOOP

CLOSURE FOR a COMMAND OR nz COMMAND

1

O nz

I_f 'G(O)' G(.)- _¢ or --

_--',,_ _r_ Closed-Loop

G(Ju) asymptote 1

To=

Ju

o

Bode Siggy Root Locus Conventlonal Root Locus

Figure 15 Superaugmented Pitch Loop as Basis for nz

and a Command Systems
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Pitch Rate to Control Surface DeflectionTransfer Function,

N :ls-ZwZ'I-Mr, M s where Zw=Z a

= Ms(s" Zw+M_Zs/Ms)

I s-Zw -1 IA = I "Ma s-Mq

s2-(Zw+Mq)S+ZwM q- M a

=(s+_rr.,,)(s+1rr.,+)

Figure 16. Transfer Function of Short Period Dynamics
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Figure 17. System Survey Sketch of a Superaugmented Design
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the dominant pitch mode would be expected (Reference 11). However, Figure 17 shows

that the highly unstable static margin combined with the low hypersonic lift curve slope

have resulted in an unusually wide 0 dB/decade "shelf" between 1/T02 and the short period

poles. This in turn would lead to poor mid frequency gain margin for the standard pitch

loop design. This can be solved simply by adding appropriate first order lag-lead

compensation to remove the shelf and create the desired broad region of k/s. Such

compensation is straightforward; and ideally, the lag would be placed at 1/'1"02 and the lead

near the short period poles. These roots do not migrate too far over the Mach range of

Table 1; however, this migration could be accommodated by scheduling the lag with

estimates of Zw and the lead with estimates of the square root of Ma.

Assuming ideal lag-lead compensation, the open loop transfer function can be

approximated as

KqM 8(1/Tq) -zs

GOL(S)= (0) (1/ Tsp2) e
(3-1)

[notation: (a) = (s + a)l

where an effective time delay x has been included as a first order approximation of the high

Table 1. Poles and Zeros of q / 8

"Y Power

Ascent On

Ascent On

Ascent On

Descent Off

Descent Off

Descent Off

Mach

15

6

•'V_ U

2.1543

1.9039

1.9696

3.1496

1/Tspl

2.305

2.015

2.012

3.308

1/Tsp=

-2.0034

-1.7929

-1.9263

-2.9907

1/1o 2

0.1328

0.1022

0.0415

0.1780

9 2.7703 2.846 -2.6946 0.0956

15 1.9955 2.024 -1.9668 0.0340

Z w

-0.1180

-0.0944

-0.0354

-0.1380

-0.0737

-0.0276
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frequency (well above the crossover frequency) dynamics including actuators, sensors,

computational delays structural dynamics and structural filters.

The basic design decisions can now be reexamined from this simplified open loop

transfer function. Figure 18 sketches the asymptotic gain and phase characteristics of this

transfer function for _ = 0. At this level of approximation, there axe three "unalterable"

parameters defined by the aircraft configuration -- MS, 1/Tsp2 and x. These are considered

unalterable in that their determination is significantly influenced or constrained by issues

other than control system design. In particular, the effective time delay x is determined by

control considerations such as actuator bandwidth and, of particular concern here,

structural mode control. However, z is not a free parameter that can be made arbitrarily

small to optimize the control system. The remaining two parameters, crossover frequency

and 1/Tq, are considered the two FCS design variables, but of course they are ultimately

subject to constraints as well.

The most fundamental concern is the selection of the crossover frequency (or

equivalently the gain Kq) because it most directly sets the closed loop bandwidth. The pitch

loop bandwidth in turn must be high enough to meet flying qualities requirements for

response time and to stabilize the short period mode. The upper limit on loop gain is

influenced by the effective time delay -- the smaller x is, the higher tot:can be. However,

even if a very small x could be achieved, there is still another upper limit on Kq due to

control power (deflection limits).

B. Impact of High Frequency Dynamics

A simple approach to superaugmented pitch loop design is presented in Appendix B.

This procedure assumes that the high frequency dynamics have negligible impact (i.e., the

effective time delay is negligible). This convenient assumption allows the required Kq and

1/Tq to be determined easily for specified values of the dominant mode natural frequency

and damping ratio. Appendix B also addresses related issues of sensitivity to aircraft

parameter uncertainties, control power and response to command.

However, it cannot be expected that high frequency dynamics can be neglected and,

in fact, the impact of HSV structural modes is the focus of this contract. The simple _ = 0

design approach provides a basis for addressing the flexibility effects. The first step is

to examine these effects with the simplest model--a nonzero time delay. Inclusion of

26



IG(s)l

I /__ KM6/S

Tq _

_/2

0 "_ i

G(s)

-_/2

-3_/2

KM6(lrrq)e"_'

G(s) = (0)(1/T_o=)

s

,_,S i

G(s) (_"= 0)

Figure 18. Asymptotic Frequency Response Sktch of the Compensated
Open Loop Transfer Function
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effective time delay complicates the Appendix B analysis, and simple literal relationships

are not easily obtained. Thus this effect will be examined numerically for the example

flight condition (Mach 6, power on, ascent). Figure 19 shows a family of root loci

parameterized with the effective time delay "c,holding all other parameters the same for each

loci. The loci are computed using third order Pade' approximations of the time delay. The

square boxes in Figure 19 indicate the location of the closed loop poles at the nominal loop

gain of Kq = -1.647 r/r/s. The complex pole in all cases is the dominant closed loop pole.

At high values of time delay, a third real pole appears at low frequencies to further

complicate the dynamics. The primary concern, however, is how rapidly the dominant

mode deteriorates with increasing time delay above about 70 msec.

To put the x values of Figure 19 in perspective, it is useful to compare these to values

for actual aircraft. Table 2 provides such data. The first four aircraft are fighters and the

last is the Space Shuttle. The shuttle is perhaps the most relevant to HSVs and its _ value

of approximately 174 msec would be totally unacceptable for the Figure 19 design.

Certain qualifications need to be made regarding the time delay values in Table 2. These

are estimated from the listed component contributions obtained from block diagram

examinations. Time delay values obtained from actual frequency responses can be

expected to be somewhat lower. In fact, the actual total time delay values for the first four

aircraft are less than 100 msec. Such comparisons for the shuttle are given in

Reference 11. The implication of Figure 19 and Table 2 is that high frequency dynamics

must be considered carefully in HSV flight control design.

There is a final point that should be noted in conjunction with Table 2. The ABICS

and F15E aircraft contain lead-lag filters for which the effective time delay contribution is

determined as negative. This occurs because these elements appear in the feedback loop

and reduce the effective time delay, but they are not high frequency "parasitic" lags as are

the other components. The lead-lag filters represent compensation filters inserted in the

loop to provide lead in the crossover region. In fact, they represent an alternative approach

to the hybrid phase stabilization concept considered in this contract. These f'tlters, in effect,

are used to estimate derivatives of sensor outputs. Thus this approach is based on using

estimation techniques to extend the use of a given set of sensors. In contrast, the hybrid

phase stabilization concept is based on the use of additional measurements as opposed to

increased estimation. Practical designs may well need both concepts, but lIPS is the focus

of this study.
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Table 2. "Approximate "1 Time Delay 2 Survey of Operational Aircraft

Space
AIRCRAFT ABICS 4 F15E S/MTD s F18 Shuttle

i.i

Actuator 54.4 54.4 36.4 32.1 50.0

Computational Delay 8.7 8.7 8.7 8.7 46.0

Anti-aliasing Filters 9.9 7.8 8.9 0.5

Structural Filters 45.7 41.0 50.0 62.3 78.0

Lead/Lag Filters 3 -108.5 -66.7 - -

Post-filter 4.2 4.1 3.9 3.4
i

Pure Time Delay 3.3 - - -

Total Time Delay 126.2 116.0 107.9 107.0 174.0

1
Time delay "approximation"of operational aircraft. The actual time delay values
are smaller and meet the MIL-spec requirements.

in milliseconds

lead/lag fliers were not included inthe total lime delay because they were primarily
introduced as equalization for compensating time delay of the system

Ada-Based Integrated Control System

STOL Maneuver Technology Demonstrator

C. Pitch Response Bandwidth Requirement

The sensitivity to effective time delay increases with the pitch loop bandwidth, and

thus definition of the required bandwidth is an important issue for HSVs. This is true of

course for any aircraft. Bandwidth criteria have been established (References 13 and 14)

for more conventional aircraft. For HSVs in hypersonic flight, there are no firmly

established criteria and precedents, and little data is available although research in these
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areas is underway. The Space Shuttle pitch rate step response criteria (Figure 20) are

perhaps the best points of reference. The bandwidth requirement is very closely related to

the rise time requirement, which in turn corresponds to the initial portion of the lower

boundary in Figure 20. On this basis, the shuttle spec implies a significantly lower

bandwidth is acceptable at hypersonic speeds as compared to subsonic flight. However,

this must be tempered with the knowledge that next generation hypersonic aircraft can be

expected to have more stringent hypersonic maneuvering requirements than the shuttle.

With this caveat in mind, the Figure 20 specs provide a means for connecting to

more recently developed pitch rate bandwidth requirements. Figure 21 shows tentative

pitch attitude bandwidth requirements proposed for NASP for low speed (approach and

landing). Figure 22 summarizes the pertinent definitions underlying this bandwidth

specification. By this criterion, the nominal system of Figure 19 has a bandwidth of

3.8 rad/sec with no time delay (which corresponds to essentially zero phase delay as well).

Thus, this system would be well into the "desired" region of Figure 21. For the examples

that follow, a lower Level 1 bandwidth value of 2.0 rad/sec will be used. It will be seen

that even this reduced bandwidth requirement creates significant difficulties for flight

control design of a flexible HSV.

The superaugmented pole placement formulas above can be combined with the

bandwidth definitions of Figure 22 to define the loop parameters from a specified

bandwidth (see Figure 23). Table 3 shows an application of the Figure 23 iterative

procedure for the example case.

The time delay sensitivity survey corresponding to Figure 19 is shown in Figure 24

for the lower bandwidth design. It can be seen that the bandwidth reduction has reduced

the time delay problem somewhat, but the potential problem is stir significant.

D. The Baseline System

To further address high frexluency dynamics, we must compare FCS designs applied

to the actual flexible aircraft. This will be done in the next two sections; first, for a

conventional gain stabilized design, and then for the hybrid phase stabilized design.

However, as an additional "baseline" reference case (but not a true FCS design), the

superaugmented pitch loop (with 2 rad/sec bandwidth) will be directly applied to the

flexible aircraft without structural compensation. The frequency response of the open loop
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Phase Delay:

A¢2_S0

Tp = 57.3(2_so)

Rate Response-Types:

u BW IS lesser of UBW gain and UBW phase

Attitude Response-Types (Including GCGH):

gBW i (JBWphue

_--GaJn Margin

WBW bas_l on _
6 dB of gain

margin -

o_

u (rad/sec) --_
(log scale)

(JBW based on 0 M == 45°

(deg) -100 _i! OM___ 45 °

=_ ...............................

Figure 22. Measurement of Airplane Bandwidth, o)BWe
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• T_r Functions involved (me Appendix B)

q M6 (1/Te2)

G - 6 - 0/l"sp_) (1Jr,p2) Gc -

• Assumptions

GCL= q'
qc =

6
ck-

Kq M 6 (1/Tq)

[/_ ,(Jn]

A

Kq (I/Tq) (I/'rspl)

- (1/'Tspl) = (1/'rl;pl)
A

- (lrre ) = (1/Te2)
- JJ = 0.7

• Design Sequence from Rying QuaJlitiesSpec

[Select (JSWe J

6;BWe - 1/1"q
K ---

(JBWe + 1/Tq

J _BW # I

t

No

Figure 23. Superaugmented Pitch Loop Design to a Specified Pitch Loop Bandwidth
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Table 3. Design of Pitch Loop to Specified Bandwidth

Select Assumed Calculated

Wbw@ 1/Tq K Wn flea Tr 1/Tq

(r/J}. Ill_see) {r/s} {r/s} (see} (llse¢)
................................ .o;; .........2 0.10 0.905 1.101 12.115 0 " 0.342

2 0.15 0.860 1.130 8.515 0.117 0.356
2 0.20 0.818 1.159 6.720 0.149 0.371

2 0.25 0.778 1.188 5.648 0.177 0.385

2 0.30 0.739 1.217 4.937 0.203 0.400

2 0.35 0.702 1.246 4.432 0.224 0.414

2 0.36 0.695 1.251 4.349 0.230 0.417

2 0.37 0.688 1.257 4.269 0.234 0.420
2 0.38 0.681 1.262 4.194 0.238 0.423

2 0.39 0.674 1.268 4.123 0.243 0.426

2 0.40 0.667 1.274 4.056 0.247 0.428

2 0.41 0.660 1.279 3.992 0.251 0.431

2 0.42 0.653 1.285 3.931 0.254 0.434
2 0.43 0.646 1.291 3.873 0.258 0.437.

,-_ [2 0'.44 0.639 2.296- 3.818 0.262 0.44014."
! 2 0045 ' 00633 1.302 30765 0.266 0.443

2 0.50 0.600 1.329 3.534 0.283 0.457

2 0.55 0.569 1.357 3.346 0.299 0.472

2 0.60 0.538 1.384 3.190 0.313 0.486
2 0.65 0.509 1.410 3.059 0.327 0.500

2 0.70 0.481 1.436 2.948 0.339 0.514

2 0.75 0.455 1.462 2.852 0.351 0.528

2 0.80 0.429 1.488 2.768 0.361 0.542

2 0.85 0.404 1.513 2.694 0.371 0.556
2 0.90 0.379 1.538 2.629 0.380 0.569

2 0.95 0.356 1.563 2.571 0.389 0.583

2 1.00 0.333 1.587 2.519 0.397 0.596

2 1.05 0.311 1.611 2.471 0.405 0.609

2 1.10 0.290 1.634 2.429 0.412 0.623

2 1.15 0.270 1.658 2.389 0.419 0.635

2 1.20 0.250 1.680 2.353 0.425 0.648

2 1.25 0.231 1.703 2.320 0.431 0.661

2 1.30 0.212 1.725 2.289 0.437 0.6?3

2 1.35 0.194 1.747 2.260 0.442 0.686

2 1.40 0.176 1.768 2.233 0.448 0.698

2 1.45 0.159 1.789 2.208 0.453 0.710
2 1.50 0.143 1.810 2.184 0.458 0.722
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transfer function is shown in Figure 25. The signal is obtained from the forward sensor

position (FS 84). The five structural modes appear as peaks in the Bode magnitude plot.

The first three structural modes clearly do not meet the gain margin requirements of the

MIL-spec reviewed in Section I-B.

In the mid frequency region below the structural modes, the phase margin is

42 degrees at the magnitude crossover (just above 3 rad/sec) which corresponds to a delay

margin of 0.223 sec. The phase angle steadily decreases as the frequency decreases below

the crossover. This is consistent with the conditional stability of the superaugmented pitch

loop. The gain margin corresponding to the low frequency phase crossover near 1 rad/sec

is only about 5 dB. These gain and phase margins are also somewhat less than the

MIL-spec requirements.

Looking ahead, it is important to note that these lower frequency "rigid body"

margins will be further degraded by the treatment of the structural modes. This is of course

the motivation for the hybrid phase stabilization concept as an alternative to the

conventional gain stabilization method. Within the scope of this contract, only the

incremental improvement of the HPS concept over the conventional approach can be

addressed. It should be kept in mind in the following developments that further mid

frequency compensation, i.e., estimation based approach as noted in Section Ill-B, would

also be used to meet the margin requirements in the mid frequency region. These will be

assumed in the following developments, but correction of the mid frequency margins will

not be considered further as we focus now on the higher frequency structural modes.

The characteristics of the baseline (or the uncompensated) system can be further

investigated from the system survey of Figure 26. The conventional root locus plot shows

that the second, third and fifth structural modes potentially can be driven unstable. The

Bode root locus plot (Reference 9) makes the gain sensitivity and margins much clearer

(and thus this plot will be used routinely). On this plot, complex loci appear as dotted

lines; the dots are solid where the locus lies in the left half s plane and open in the right half

plane. From the Bode loci of Figure 26, it can be readily seen that the first structural mode

can, in principle, be driven unstable as well, but more importantly the third, followed by

the first, mode has the lowest stability margin. Careful comparison of the crossover region

with that of Figure B-6 in Appendix B shows that the two are very similar.
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Section IV

CONVENTIONAL GAIN STABILIZED DESIGN

As the primary reference for assessing the potential of the I-LPS design, a

conventional gain stabilized flight control system design was developed for each of the two

flight conditions (ascent at Mach 6 and descent at Mach 6). These systems consisted of the

2 rad/sec bandwidth design of Section III plus notch filters at the first structural mode and

second order lags at somewhat higher fi'equencies. The filters for the two flight conditions

are summarized in Table 4. The design for the ascent case will be addressed fast.

A. Ascent Case

The open loop frequency response of the gain stabilized design is shown in

Figure 27 and should be compared to that for the baseline (or the uncompensated) system

of Figure 25. It can be seen that gain stabilization improves the gain margins such that 8

dB is exceeded for all modes. However, there is a significant reduction in phase margin

which is an indication of the cost of gain stabilization.

Figure 28 presents the root locus which can be compared to the baseline in

Figure 26. It can be seen that the lag filter has changed the pairings of poles and zeros for

the loci.

Table 4. Filters Used in Gain Stabilized Designs

Flight Condition

Ascent

Descent

Notch Filter

[ 0.01,12.5 ]

[ 0.35,12.5 ]

[ 0.0075 , 12.6 ]

[ 0.30,12.6 ]

Lag Filter

40.0 2

[ 0.5,40.0 ]

22.0 2

[ 0.5,22.0 ]

Notation: [ r, ,(o] =s2 + 2_(os + (o2
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B. Descent Case

In this section, the Mach 6, power off, descent case is examined. As in the ascent

case, the pitch attitude bandwidth (COBW0)of 2 rad/sec is used. For a damping ratio (0 of

0.70, using the airframe parameters in Table 1 and applying the Figure 23 algorithm and

pole placement formula gives

COn= 1.228 r/s

1/Yq = 0.32 r/s

Kq = 1.176 r/r/s

The open loop frequency response of the "baseline" system (i.e., without the use of

structural filters) is shown in Figure 29. The gain and phase margins are 4.22 dB and

35.14 degrees, respectively. As expected, the descent case margins are worse than the

ascent case due to a higher unstable static margin.

The more conservative interpretation of attaining an 8 dB peak clearance for all

structural modes is used in developing a gain stabilized design for the descent case.

Figure 30 shows the open loop frequency response of this design. Although the 8 dB

peak clearance for all structural modes was achieved, the gain margin was only improved to

4.88 dB (when compared to the "baseline" system).

Examining the two "baseline" system open loop frequency responses (Figure 25 and

Figure 29) for both the ascent and descent cases, it appears that the structural filters used in

the ascent case can possibly be applied to the descent case if the more conservative

interpretation of attaining 8 dB peak clearance is not used as the design guideline. It can be

shown that this gain stabilized design, without having to attain an 8 dB peak clearance for

all structural modes, improves the gain margin to 6.61 dB.
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Section V

HYBRID PHASE STABILIZED DESIGN

This section addresses the primary focus of this contract -- the hybrid phase stabilized

approach to flexible vehicle control. The details of HPS are best explained in the context of

a detailed design example and this will be done next for the Mach 6, power on, ascent case.

The basic rigid body FCS design is the 2 rad/sec superaugmented pitch loop developed in

Section III-C.

A. Ascent Case

The key to phase stabilization is proper location of the sensors. For a pitch rate loop,

the sensors are rate gyros. Figure 31 shows the location of the zero associated with the

first structural pole for each of the four available sensor locations. The zero migration

suggests that an effective zero could be positioned arbitrarily, within reason, by blending

forward and aft pitch rate signals. It can be seen that the FS 84 and FS 1050 signal pair

has the most potential.

Figure 32 outlines the signal blending concept. The inclusion of the filters (with

unity low frequency gain) in each path provides additional flexibility in zero placement. As

shown at the bottom of Figure 32, the signal blending problem can be manipulated into a

root locus problem.

Figure 33 shows the zero placement root locus when the blending filters are pure

gains. In this case the locus is a straight line between the two airframe zeros. To

implement phase stabilization, we wish to position the zero directly below the structural

pole and thus near the imaginary axis. As seen in Figure 33, the zero is on the imaginary

axis when Ka/Kf = 0.92.

The potential for improved closed loop damping is related to separation of the

structural dipole. To some extent, separating the pole and zero will improve damping. As

will be seen (and should be expected), the question is not as simple as maximizing dipole

separation. In any case, dipole separation can be set by use of the blending filters.

Figure 34 shows two filter sets from a more extensive survey. The filter poles are made
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equal in both paths (here they are set at 25 rad/sec, but the design is not highly sensitive to

this value). The zero in the forward path filter is fixed at a high value (1000 rad/sec), and

thus the lead in the aft path filter becomes the primary filter design variable. The high

frequency gains are always set to maintain the low frequency gains of both filters equal to

unity.

Figure 34 shows that the dipole separation increases as the aft filter zero is reduced in

frequency. However, there is a practical limit to how low this zero can be. Past a point it

begins to distort the system in the crossover region. In particular, it begins to create a

"shelf" in the open loop transfer function which tends to reduce the flex mode gain margins

and thus would be at cross purposes with the phase stabilization effort. From the survey,

the best blending filter position was selected as 12 rad/sec.

The HPS superaugmented pitch loop is shown in Figure 35. The signal blending

structure is used to phase stabilize the first structural mode and GLAG is the first order lag

(with unity low frequency gain) used to gain stabilize the higher frequency modes.

Because the lag does not have to handle the lowest frequency structural mode, it can be

placed at an unconventionally high frequency. This is the key to achieving minimum

effective time delay by treating the fast structural mode with HPS.

A final element required in the HPS system is the block just before the final lag

(Figure 35). This gain function insures that the q loop crossover region is unchanged by

the signal blending.

Figure 36 shows a first look at the HPS q loop closure without the lag (i.e. with

GLAG = 1). When compared to the baseline (or the uncompensated) system survey in

Figure 26, it can be seen that the crossover region is essentially unchanged. The next

observation is that, with the blended feedback signal unlike the baseline system, the first

flex mode is stable for all gains. The conventional root locus shows that, as advertized, the

locus bulges into the left half plane. However, the closed loop pole for the nominal closure

does not fully exploit the potential for improved damping. Moreover, the gain cannot be

increased to further increase structural damping without adversely affecting the dominant

pitch mode dynamics. It may be that decreasing the separation of the first structural dipole

would lead to increased damping, but further optimization of this was not possible in this

study. The final observation from Figure 36 is that the third structural mode is now the

primary problem; this will set the requirement for GLAG.
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A survey of lags was made and it was found that a 25 rad/sec lag was thc highest
J

value with acceptable gain margin on the critical structural mode (in this case, the second

mode). Figure 37 shows the open loop frequency response of the final HPS design. It

should be noted that not only does the first (phase stabilized) flex dipole show a positive

phase "blip", but next two do as well, so that a "sawtooth characteristic" has been

achieved. The magnitude peaks have been lowered on all flex modes except the first. The

significance of this last point will be addressed in Section VI-B.

Figure 38 shows the system survey for the final HPS design for the ascent case.

When compared to Figure 36, it can be seen that the second structural mode now has the

minimum stability margin but is acceptable.

B. Descent Case

Without repeating the detailed description of the hybrid phase stabilized design

procedure for the descent case, it was found that the blending filters and gains (i.e., Gf a,

Gff, Ka and Kf) developed for the ascent case can also be used here. However, the break

frequency of GLAG must be reduced to at least 22 rad/sec in order to meet the 8 dB gain

margin requirement for all structural modes. The open loop frequency response for this

phase stabilized design is shown in Figure 39. It should be kept in mind that, in some

flight conditions, the blending filters might need to be re-tuned.

The pitch rate response to a unit step pitch rate command is shown in Figure 40.

Responses of the gain stabilized and baseline designs are also included for comparison.

The time response behavior will be discussed in Section VI-B.
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Section VI

DESIGN COMPARISONS

A. Stability Metrics

1. Ascent Case

Since a primary motivation for HPS is reduction of the effective time delay penalty

associated with conventional gain stabilization, this issue will be examined first under the

heading of general stability metrics. Table 5 compares four stability metrics for the ascent

case. The open loop metrics are gain, phase and time delay margin (XM). The gain margin

is that for the phase crossover closest to the first structural mode. The time delay margin is

the additional time delay in the loop that would drive the phase margin to zero. The closed

loop equivalent system time delay (xe) is computed from a low frequency approximation of

the closed loop q to qc transfer function above the dominant pitch mode but below the first

bending mode.

The Table 5 metrics illustrate that HPS reduces the equivalent system time delay

compared to conventional gain stabilization. While HPS has a time delay cost beyond the

baseline (no structural mode treatment), this incremelat is considerably less than the gain

stabilization increment.

Table 5. Stability Metric Comparison - Ascent Case

DESIGN GM(dB) SM(Deg) x M(sec) x e(sec)

Baseline 5.13 41.8 d.223 0.051

Gain Stabilized 9.20 26.2 0.142 0.218

Phase Stabilized 20.26 35.3 0.192 0.077
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For reference in the next section, it should be noted that the HPS gain margin

(20.3 dB) is much higher than either the baseline or the gain stabilized design. More

importantly, it far exceeds the 8 dB MIL-spec requirement. However, comparison of

Figures 37 and 27 show that the magnitude _ at the first structural mode is well above

0 dB and much higher than that of the gain stabilized design.

This observation touches on an important question about the present MIL-spccs. A

"strict constructionist" view says that the HPS design satisfies the gain margin requirement.

However, in practice the spec is often interpreted as requiring an 8 dB of "peak clearance"

below the 0 dB line, which is in general a much more stringent requirement. The more

conservative peak clearance interpretation has often been acceptable for design guidance

when gain stabilization was assumed, bandwidth requirements were low and airframe static

margin was high. But for HSVs, there are strong and conflicting design pressures toward

highly unstable static margins combined with low structural mode frequencies that force us

to reexamine the FCS design approach and the stability specifications. The latter point will

be considered further in the next section.

2. Descent Case

The gain and phase margin and the closed loop equivalent system time delays are

tabulated in Table 6. As expected, the results follow a similar trend as the ascent case.

The gain margin for the phase stabilized design far exceeds the MIL-spec requirement of 8

dB.

Table 6. Stability Metric Comparison - Descent Case

DESIGN GM(dB) SM(Deg)

Baseline 4.22 35.14

Gain Stabilized 4.88 15.03

Phase Stabilized 16.44 27.04

• . (sec)

0.0551

0.2467

0.0777
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It should be repeated here that the gain stabilized design goal for the descent case was

to make sure that all structural mode peaks stay below -8 dB. Figure 30 shows that the

gain margin closest to the first structural mode occurs at 7 rad/sec which is below the first

structural mode. The FCS spec requires a gain margin of at least +6 dB. Clearly the

MIL-spec requirement was not met. For vehicles with very low structural mode

frequencies, HPS may be the only technique of choice if the MIL-spec requirement is to be

met.

B. Residual Response

The reduction in effective time delay with HPS was expected and in itself a concept

worth pursuing. However, as noted previously, the question of uncommanded high

frequency response (residual response) is also critical but more difficult to deal with. This

is closely connected to the interpretation of the gain margin requirements noted in the

previous section. The perspective for HSVs is that this class of aircraft is likely to present

a considerable challenge to meeting existing stability requirements. All possible solutions

and requirements will probably have to be carefully reexamined. In particular, the gain

margin specs may have to be reexamined and possibly relaxed. To do this rationally,

metrics for quantifying residual response are required.

As a first step, the pitch rate, elevator position and normal acceleration responses to a

unit step pitch rate command for the two designs are compared in Figures 41, 42 and 43

respectively. The q and nz responses are for the pilot's station (actually FS 84).

However, the nz signal is an estimate since an actual signal was not available. In all cases,

the gain stabilized design shows very little residual response after several seconds. The

HPS design's residual pitch response is probably no better or worse than the baseline and

may not be much worse than the gain stabilized design. In the elevator response, the gain

stabilized and HPS residual response are comparable and minimal compared to the

baseline.

The load factor comparison is probably of most importance. In the gain stabilized

design, the residual response essentially vanishes after about four seconds, whereas the

HPS residual response is comparable to the baseline response in magnitude but with a

somewhat different frequency content. The HPS residual response appears to be

dominated by the second structural mode with some contribution from the first.
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The real problem is establishing the significance of the HPS residual response, a

question that could only be briefly explored in this study. Appropriate residual response

metrics are needed, and while some existing specifications can be brought to bear, this area

requires considerable work and validation before the MIL-spec requirements can be relaxed

to allow HPS as a possible solution for HSVs.

As a first step, an exploratory metric was briefly examined. This is diagrammed in

Figure 44. The first three blocks represent an abstraction of normal acceleration response

at the pilot's station. The input is a generic stochastic signal which has characteristics

comparable to either Dryden turbulence or pilot remnant. The closed loop pitch transfer

function reflects the FCS design to be rated. The "s/32" block provides an empirically

based estimate of the pilot station load factor. As noted previously, the available slructural

model did not provide normal acceleration data, but when this is available, the

representation can be improved. The final element, the structural response weighting filter,

provides a means of emphasizing the residual structural response that is the focus of the

metric. The weighted rms normal acceleration is the primary metric.

Table 7 compares the residual response metric of the two designs normalized by the

baseline (or the uncompensated) value for the ascent case. According to the tentative

metric, the gain stabilized design has the greater attenuation, but apparently only slightly

more than the phase stabilized design. This result differs somewhat from the subjective

impression of the Figure 43 comparison. Its validity could not be further assessed in this

study. However, it does indicate a direction for further development as well as potential

difficulties in validating such metrics.

Table 7. Residual Response Metric Comparison - Ascent Case

DESIGN
(° BA,_ q i 0 j^BASE nz

Baseline 1.00 1.00

Gain Stabilized 1.17 0.673

Phase Stabilized 0.916 0.698
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Section VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. Summary

In this contract, a preliminary examination of Hybrid Phase Stabilization (lIPS) for

application to HSVs has been made. Major activities included:

• Development of a linear, flexible model of an HSV operating at hypersonic
speeds.

• Development of example HPS designs for Mach 6 ascent and descent.

• Comparison of the HPS designs to conventional gain stabilized designs at two
flight conditions.

B. Conclusions

The HPS concept does significantly reduce the effective time delay.

The HPS design, as presently developed, shows greater residual response than a
conventional gain stabilized design.

Existing MIL-spec requirements do not provide explicit guidance in assessing
HPS system design.

C. Recommendations

The flexible HSV model should be further developed to include normal
acceleration outputs and additional dynamic pressure cases.

The HPS design should be further refined to define the limits of residual response
reduction.

• Residual response metrics should be further developed and ultimately validated.
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Appendix A

HSV PROPULSION SYSTEM INTERACTIONS

WITH FLEXIBLE MODES AND FLIGHT CONTROL SYSTEMS

The influence of the propulsion system on the longitudinal dynamics and flight

control design of hypersonic vehicles (HSVs) will be reviewed here. Special emphasis is

given to the interaction with the flexible mode dynamics in the context of the objectives of

this contract. In several other recent and ongoing projects (References 15 and 16), STI has

examined a number of dynamics, flight control and flying qualities issues for HSVs.

Among the distinguishing features of HSVs compared to other aircraft are 1) very

significant and complex aerodynamic/propulsion interactions, 2) significant and unusual

low frequency dynamics associated with the kinematics of flight over a spherical earth and

the gradient of density, thrust and other variables with altitude. There are other HSV

issues, of course, including possible weathercock instabilities and problems of path/attitude

consonance which will not be addressed further here.

Since the focus of this project is treatment of flexible modes in flight control design, it

is to be expected that high frequency approximations are in order for the analysis. The

basic high frequency approximation, see Section II-B, involves the use of the short period

(constant speed) equations to represent the rigid body dynamics.

While the short period model appears to be quite adequate for the purposes of this

project, lower frequency HSV dynamics will be briefly examined here because of the

unusual low frequency characteristics of HSVs and, in particular, to review the influence of

the propulsion system dynamics. For conventional (subsonic and supersonic) aircraft, the

phugoid provides a landmark for the lower end of the vehicle dynamics (important zeros

may appear below the phugoid of course). For HSVs, the "altitude" mode is generally

below the phugoid. The altitude mode results from the gradients, with altitude, of several

variables. The density gradient is a key effect; and thus this mode is sometimes referred to

as the "density" mode. The variation of engine thrust with altitude also influences this

mode. This influence is exceptional for HSVs because of their extreme range of flight

conditions and the unprecedented sequence of engine configuration changes they employ;

however, this particular propulsion influence appears at very low frequencies.
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The altitude mode is further complicated by interaction with kinematic "rotation of

vertical" effects. These effects become significant as the aircraft reaches extreme speeds

and altitudes and as aerodynamic forces diminish. These effects arise in the relation

between the angular velocity (referenced to inertial space) and the Euler angles (referenced

to local vertical) for flight over a spherical earth (c.f., Reference 12, pg 232). The rotation

of vertical terms scale with U/r and as orbital speed Uor b= _r_ is approached this tends to

U U , g_Te ° 1.2x 10-3 rad/sec
r r e

where the radius of the earth is re = 2.08912x107 ft. Thus for constant attitude flight (c1,=

,1' = 0), Equation 4-56 in Reference 12 shows that the steady pitch rate (with respect to

inertial space) tends to

Q = -U/r _ 0.0012 rad/sec

This corresponds to a dynamic mode, well below what we expect for conventional

phugoids and, at 84 minutes per revolution, one that corresponds to the orbital (Schuler)

period -- the most basic kinematic artifact for flight over a spherical earth.

For some aircraft, the crossover frequencies expected for closed loop throttle control

(manual or automatic) are well below those for closed loop pitch control with elevator (or

any composite pitch control from several effectors). Thus the effects of thrust loop

closures can sometimes be neglected when analyzing the attitude and higher frequency

dynamics; short period (constant speed) models can be then used with thrust loops

neglected. This may be a valid approximation for HSVs in some cases. However, HSVs

do appear to have some characteristics related to thrust control, which should be noted.

A characteristic of HSVs noted in Section II-A is a generally very low value of the

1/T02 zero. This is discussed in Appendix B where it can be seen that the impact is really

on the path-to-attitude response and not on the attitude response per se; most notably it does

not adversely effect the validity of the short period approximation for this contract.

In particular some data (Reference 16) indicate that HSVs can exhibit "backside-like"

characteristics. Most notably, the 1/Thl zero in the altitude to elevator transfer function can

move into the fight half plane. This is characteristic of conventional powered lift and
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VSTOLaircraft and can only be solved (i.e., 11Thl can only be relocated) by feedback to

the throttle since no feedback to the pitch control point can modify 1/Thl. While perhaps

unexpected for HSVs, feedbacks to the thrust control point could, in principle, be used.

However, another problem unique to HSVs could cause problems here. The dynamics

between thrust and throttle may have a non-minimum phase zero fundamentally associated

with it due to the characteristics of son_ turbopump designs. This could create significant

problems in designing feedback loops to the throttle. However, as noted above, all of

these issues have only second order influence on the attitude and structural dynamics.

While the throttle loop _ should be negligible for the purposes of this project,

the static effects of thrust generation on the aerodynamic stability and control derivatives

have influences at much higher frequencies. The formulation in Appendix B indicates that

just one stability derivative, Mot, and one control derivative, M 8, are of VErSt order

importance in the superaugmented pitch loop dynamics. The longitudinal static stability

enters through the approximate factor

1/Tsp2= -,J]_

and M 8 is a factor in the loop gain. A propulsion effect is included in Mot but not in M 8 as

shown in Section II.

It is certainly conceivable that there might be some propulsion system effects directly

on the structural dynamics, say through aerothermoelastic effects. However, it appears that

quantifying these in any generic way would be much more difficult than the already

difficult issue of quantifying the aero/propulsion interactions. Thus it appears that only the

static propulsion effects should be included in this work. Further data reviewed to date

indicate that the power effects on static stability can be quite sensitive to configuration and

this is likely true for other derivatives. Because of this configuration sensitivity and the

generic nature of this project, use of very sophisticated propulsion models is not justified.

The importance of power effects is further diminished by the fact that the superaug-

mented pitch loop is very robust with respect to variations in the static margin (but less

robust to uncertainty in control power). Beyond this, even the details of the

superaugmented pitch loop, other than the k/s asymptote above the rigid body dynamics

and the loop crossover frequency, are not really significant in analyzing the flex effects.

This can be seen in Figure 26 in Section III which shows a system survey of the pitch loop
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closurearoundthe flexible aircraft usingthe forward gyro location(FS = 84)and no
structuralmodefilters. The Bodeasymptotein Figure26 showsa wide stretchof the
desiredk/s slopearoundthe crossoverfrequency(6 rad/sec). The only aerodynamic
derivativedirectlyaffectingthisasymptoteis thecontroleffectiveness,MS. Uncertaintyin
thiscontrolderivative,whichcouldarisefrom uncertaintyin theassociatedpowereffects,
wouldtranslateintoeffectiveloopgainchangesthatwouldaffecttheclosedloopstructural

modeswith phasestabilizedmodesbeingmoresensitiveto this uncertaintythangain
stabilizedmodes.Examinationof Figure26indicatesthatuncertaintyin 1/Ts_resulting
from uncertaintyin Metshouldbemuchlesscritical. Thusit canbearguedthatthemost

importantpowereffectfor thisstudyison thepitchcontroleffectivenessderivative.
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Appendix B

SUPERAUGMENTED PITCH LOOP DESIGN DETAILS

This appendix presents details of the methods used to design the superaugmented

pitch loop at the rigid body level.

A. Formulation

After the loop bandwidth is selected, the remaining design question is the selection of

the lead l[rq. A simple approach is given here which assumes x = 0. If it is assumed for

analysis that the lag-lead (Figure B-l) is scheduled perfectly, then the open loop transfer

equation is that of Section III-A and is repeated here for x = 0.

GoL=GcG =
KqM8 (1/Tq)

(0) (1/Tsp2) (B-l)

If 1/Tsp2 were stable, then placing 1/Tq at the same frequency but in the left half plane

would produce an ideal "k/s-like" open loop transfer function with a 90 deg phase margin

at all frequencies and the loop closure would be trivial. However, since l[rsp2 is unstable,

this strategy will produce a k/s magnitude response, but the phase response will not be flat.

q¢

+

Controller, Gc

h

Kq (1/Tq) (1/1"sP1)

1o)

Aircraft, G

M6 (1/'re=) e "_s

(1/Tspl) (1/'rsp2)

q

Figure B-1. Superaugmented Aircraft

B-1



Regardless of the lead setting, the closed loop q'/qc transfer function will have the form

q' KqM8 (lfl'q)
GCL= -- -

qc F;, O,n] (B-2)

The design approach proposed here assumes that the primary requirement for the

pitch loop closure is to create the desired dominant closed loop mode characteristics, i.e.,

guarantee desired values of _ and COn. This leads to approaching the design as a pole

placement problem. Because Equation B-2 has a second order denominator, simple closed

form pole placement formulas for Kq and 1/Tq as functions of the specified _ and ton can be

developed. This development is shown in Figure B-2.

In the relationships of Figure B-2 there are six basic parameters; it is useful to

distinguish three groups of these parameters:

Airframe parameters: M8 and 1/Tsp2

FCS design variables: Kq and 1/Tq

Modal specs: _ and ton

The final two equations in Figure B-2 are the pole placement formulas.

It is useful to normalize the FCS lead by the magnitude of the unstable short period

pole -- one of the two remaining fundamental airframe parameters. From this relation

Figure B-3 shows how the required lead varies with the static instability as measured by the

ratio I1/'-I'sp21/con. It can be seen that this relation is only somewhat sensitive to the specified

closed loop damping ratio. In general, as the vehicle becomes more unstable, the FCS lead

and the airframe pole become more separated (with the lead below the pole in frequency).

B. Design Example

The procedure will be applied to the Mach 6, power on, ascent case as an illustration.

The modal parameters specified are

= 0.70

COn= 3.0 r/s
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• OPEN LOOP TRANSFER FUNCTION

GOL = GcG
_ KqM6(s* 1/Tq)

s (s, 1/TsP2)

• CLOSED LOOP CHARACTERISTIC POLYNOMIAL

A/ = 1 + GOL = s2 . (1/Tsp 2+ KqM6)s. KqM6 1/'l'q

= s2 + 2_UnS *u 2

• DOMINANT CLOSED LOOP MODE [_,,Un]

wn = J KqM61/Tq

1
- (1/Tsp 22

+ KqM6) I KqM61/Tq

• POLE PLACEMENT FORMULAS

2
1 Un

Tq

Kq

2_._n + I /Tsp21
2

Wn

M6 1/Tq

Figure B-2. Pole Placement for Superaugmented Pitch Loop
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1/Tq _ 1

, Ilrr_p=l)I1/TsP21 ( I1/Tsp21)un(2_+ _n '"

3

2

1

0 I 1 I
0 1 2 3

_rrsp=l/Un

Figure B-3. FCS Lead Location as a Function of Aircraft Instability
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These relatively high values were selected to illustrate worst case difficulties.

Applying the Figure B-2 pole placement formulas gives

Kq = 1.647 r/r/s

1/Tq = 1.451 r/s

Figure B-4 presents a system survey of the closure. The survey verifies that the

specified modal parameters are achieved. It should also be noted that the lead is well below

the open loop pole in this case. The closed loop pitch rate to pitch rate command response

is thus:

q' _ 6.203 ( 1.451 )

qe [0.70,3.00] (B-3)

C. Sensitivity of the Closed Loop Pole to Uncertainty

The equations of Figure B-2 can be rearranged to solve for the actual values of the

modal parameters as functions of the airframe parameters and the FCS variables resulting

in:

(On = _/Kq M8 (lfI'q}

1 ) 4KqMS(1/Tq)= _- (1/"Fsp2+ KqMS
(B -4)

The two airframe parameters (and only these) should be considered uncertain.

Table B-1 summarizes the partial derivatives representing the sensitivities of the closed

loop mode to these ()pen loop parameters. The expressions after the first set of equal signs

for each partial are the direct derivatives of the right hand sides of Equations B-4. These

expressions involve only the airframe parameters and the FCS variables, all of which are to

be considered nominal values for purposes of assessing sensitivities. The nominal values

of the FCS variables must be considered to covary with the nominal values of the airframe

parameters due to the pole placement relations. However, the nominal values of the modal

parameters are set to the modal specs and do not covary (within some reasonable design

range) with the airframe parameters. Therefore, the FCS variables can be eliminated in the

sensitivity partial in favor of the modal parameters using the pole placement
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formulas. These are given as the second set of expressions in Table B-1. Since the

nominal values of all of the parameters in the second set of expressions can be considered

independent, these expressions can be used to consider how individual variations of

nominal values affect the four sensitivities. The following observations can be made:

O_ / O(1/Tsp2): This sensitivity depends only on the desired bandwidth (closed

loop natural frequency) and the sensitivity decreases as the

bandwidth increases.

at,laMa: This sensitivity is increased by low values of control

effectiveness. For a given damping ratio, the sensitivity

increases as the relative airframe instability increases.

0on I a(llTsp2): The actual natural frequency is not sensitive to variations in the

airframe instability. It should be noted that this is true only in

the sense of a first order approximation.

0COn/ 3M8: This sensitivity is increased by low values of control effective-

ness or high values of specified modal frequency (bandwidth).

D. Control Power Considerations

There are obviously limits to which the pole placement procedure will give feasible

designs, e.g., the gain (and hence the specified modal frequency) cannot be arbitrarily

large. The primary consideration is control power. Here only the effect of control surface

limiting will be considered and then only with respect to commands. Further the only

control power factor that will be considered is the control surface deflection limits; rate

limits will not be considered here. Another limit of particular importance here is the

maximum allowable load factor because this is expected to be rather low for large

hypersonic aircraft.

To begin the considerations, it is useful to examine the pitch rate, incremental load

factor and control surface deflection for a 1 deg/sec pitch rate command step (Figure B-5).

It is assumed here that the trim elevator deflection is zero (due say to the trimming action of

a separate body flap) so that the perturbation value 8 shown in Figure B-5 is the same as the

total deflection and thus deflection limits can be applied directly to this variable. The load

factor n shown in Figure B-5 is the increment from trim which is assumed here to be
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lg, although for HSV operations in general the "trim" load factor might well be less than 1;

however, this is a detail which does not change the basic approach to the control power

analysis. Figure B-5 shows a quite rapid rise time for the pitch rate response, which is

consistent with the reasonably high dominant mode frequency. There is considerable pitch

rate overshoot (about 50%) which is due to the separation of the ltTq lead from the closed

loop pole (and not due to a low damping ratio which is 0.7 as specified.)

The load factor response in Figure B-5 has a much longer rise time; this is due to the

very low value of 1/To2. This can be seen from the sketch in Figure B-6 which shows that

an effective lag appears at 1/'I"02 in the load factor response to pitch rate command

(effectively the pilot's stick at this level of consideration). This lag will be

unconventionally low for HSVs.

Noting that the steady state value of q'/qc will be one, the steady state load factor for a

step command will be

lim Uo/g qc
nss= --s

s-->0 (T02s+I) s

ns$ _- __

U o

qc
g (B-5)

Assuming an acoustic velocity of 1000 fps, Uo at Mach 6 is 6000 fps, he steady state

load factor for a 1 deg/sec (0.0175 rad/sec) pitch rate computed from Equation B-5 is

3.25 g's, which is consistent with Figure B-5.

The elevator response begins at a nonzero value because no actuator or other high

frequency elements are included in the analysis. The initial and final values of 8 are

summarized in Figure B-7 and are consistent with the 8 response in Figure B-5.

Since the n and 8 responses are monotonic, their extreme values occur either at the

initial or final times. Thus Equation B-5 and those in Figure B-7 cover the possible points

at which elevator deflection or load factor limits can be reached and imply three distinct

limits on pitch rate command. However, only the initial elevator response relationship

(Figure B-7) involves an FCS parameter (Kq). This leads to the question of how large Kq

can be before _i(0+) limits at the step pitch rate command that just produces either n or S

limiting in the steady state. This question is addressed in Figure B-8 where it appears that
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Figure B-6. Closed Loop Load Factor Response
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Initial 6 response to a step q c

Feedback Is zero at t = 0+ so

Iim q c
6(0+) = s--- ® s Gc (s) -_

A

lira Kq(1/Tq) (1/'rsp_)
- ^ qo

S -'" =o (0)= (1/re=)

= Kqq c

Steady 6 response to a step q c

6' 1 q'

qc G qc

qi qc6= = sn__m0 s

qc

1/Te_ol * 1/Tap=
= qc

M6 * 1/Te=

Figure B-7. Initial and Final Values of Elevator Deflection
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Assumed limits

6 lira = 25° = 0.436 rad

n IIm = 2 g

Maximum steady state pitch rate:

based on 6 limit

M 6 * 1/Te=
= .... 6 Iim == 2.71 deg/se¢

qss lira 1/Tsp I * 1/'r'sp=

based on n limit

g

qu lira = _oo n nm= 0.615 deg/sec

.'. the load factor limit governs

Maximum gain based on 6(0 _) = 611m

Kqmax = 611m/qsslim =-40.65 deg/deg/sec

Figure B-8. Maximum Loop Gain
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the critical consideration is the limit load factor. The loop gain would have to be increased

by a factor of 23.5 (to -40.6 rad/rad/sec) before the elevator would limit at the start of a

maximum (3g) pullup. This appears to be a very large margin; however,it will be seen in

the next section that other requirements, such as improved path response could, reduce the

gain limit significantly.

E. Shaping Response to Command with Command Path Filters

Figure B-5 shows two undesirable features in the response to pitch rate command for

the basic system: (1) excessive overshoot in the pitch rate, (2) slow load factor response.

A command path filter between the pilot's stick and the qe point can be designed to solve

either, but not both, problems. For example reducing the load factor rise time will

inevitably produce more pitch rate overshoot and vice versa. Furthermore, this is a

fundamental physical problem which cannot be solved with any control system "trick"

short of adding and using another control point, specifically a direct lift effector (which

would create a whole new group of problems, of course). The reason for this can be seen

in Figure B-6 where l/T02 appears in its role as "path lag" between load factor and pitch

rate. The exceptionally low values of path lag for HSVs (due to low hypersonic lift curve

slopes noted previously) imply that rapid step-like changes in load factor can only be

achieved by "overrotating" the pitch attitude. This can either be done by the pilot (by

overrotating the stick) or a command filter can be used to accomplish the same thing for

step-like stick inputs.

To examine the implications of such command filters, two special cases are developed

in Figure B-9. Filter Gf ! eliminates the pitch overshoot and filter Gf2 reduces the lag in the

load factor to a level comparable to a more conventional aircraft, i.e., an effective path lag

of 0.4 r/s. Figures B-10 and B-11 show the response to a step input of the pilot's stick

with command filters Gf 1 and Gf 2 respectively. Figure B-10 compared to Figure B-5

shows that the Gfi filter does reduce the pitch rate overshoot essentially to zero with the

expected increase in pat_ lag which is however quite small. The initial 6 is also reduced

implying a larger allowable range of gain.

Figure B- 11 compared to Figure B-5 shows that the G f2 filter does increase the speed

of the load factor response with the expected increase in the pitch rate overshoot (to about

290%). Further, the initial ti magnitude is increased to -2.4 deg which reduces the

allowable gain range.
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, Command
• Filter Controller Aircraft

FILTER Gfl TO ELIMINATE PITCH RATE OVERSHOOT: CANCELS

(1/'l'q) LEAD AND REPLACES IT WITH LEAD AT en

= (s/e n *1)

Gfl (Tq s+l)

= (o.3333s+1)
(0.6892S+1)

ql _ = Kl(_n)

8p = Gfl qc [_,en]

FILTER Gf2 TO REDUCE PATH LAG:

SAME AS Gfi BUT ALSO CANCELS PATH LAG

IN n_/qc AND REPLACES IT WITH A LAG AT 0.4 r/s

Gf2 =
(S/en +1)(T02 s *1)

(Tqs.1)(Tpath s*l)

_ (.333s.l)F.s3s.l)
(.6892s+1)(2.Ss+l)

n / Uo/___gg ¢1_

8p - Gf2 (T82s+1) qc

_ K2(=n)

(1/rpath)[C,=n]

Figure B-9. Command Path Filters
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